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Abstract

Understanding a user’s natural interaction is a challenge that needs to be addressed in
order to enable novice users to use robots smoothly and intuitively. While using a set of
hard-coded commands to control a robot is usually rather reliable and easy to implement,
it is troublesome for the user, because it requires him/her to learn and remember special
commands in order to interact with the robot and does not allow the user to use his or
her natural interaction style. Understanding natural, unrestricted spoken language and
multi-modal user behavior would be desirable but is still an unsolved problem.

Therefore, this dissertation proposes a domain-specific approach to enable a robot to learn
to understand its user's natural way of giving commands and feedback through natural in-
teraction in special virtual training tasks. The user teaches the robot to understand his/her
individual way of expressing approval, disapproval and a limited number of commands us-
ing speech, prosody and touch.

In order to enable the robot to pro-actively explore how the user gives commands and pro-
voke approving and disapproving reactions, the system uses special training tasks. During
the training, the robot cannot actually understand its user. In order to enable the robot to
react appropriately anyway, the training tasks are designed in such a way that the robot
can anticipate the user's commands and feedback - e.g. by using games which allow the
user to judge easily whether a move of the robot was good or bad and give appropriate
feedback, so that the robot can accurately guess whether to expect positive or negative
feedback and even provoke the feedback it wants to learn by deliberately making good or
bad moves.

In this work, "virtual® training tasks are used to avoid time-consuming walking motion and
to enable the robot to access all properties of the task instantly. The task-scene is shown
on a screen and the robot visualizes its actions by motion, sounds and its LEDs. A first ex-
periment for learning positive and negative feedback, uses easy games, like "Connect Four’
and "Pairs" in which the robot could explore the user’s feedback behavior by making good or
bad moves. In a follow-up study, which was conducted with a child-sized humanoid robot
as well as pet-robot AIBO, this work has been extended for learning simple commands.
The experiments used a 'virtual living room’, a simplified living room scene, in which the
user can ask the robot to fulfill tasks such as switching on the TV or serving a coffee.
After learning the names of the different objects in the room by pointing at them and asking
the user to name them, the robot requests from the task server to show a situation that
requires a certain action to be performed by the robot: E.g. the light is switched off so
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that the room is too dark. The user responds to this situation by giving the appropriate
command to the robot: "Hey robot, can you switch the light on?" or ‘It's too dark herel!".
By correct/incorrect performance, the robot can provoke positive/negative feedback from the
user. One of the benefits of 'virtual’ training tasks is that the robot can learn commands,
that the user cannot teach by demonstration, but which seem to be necessary for a service
or entertainment robot, like showing the battery status, recharging, shutting down, etc.
The robot learns by a two-staged algorithm based on Hidden Markov Models and classical
conditioning, which is inspired by associative learning in humans and animals. In the first
stage, which corresponds to the stimulus encoding in natural learning, unsupervised train-
ing of HMMs is used to model the incoming speech and prosody stimuli. Touch stimuli are
represented using a simple duration-based model. Unsupervised training of HMMs allows
the system to cluster similar perceptions without depending on explicit transcriptions of
what the user has said or done, which are not available when learning through natural
interaction.

Utterances and meanings can usually not be mapped one-to-one, because the same mean-
ing can be expressed by multiple utterances, and utterances can have different meanings.
This is handled by the associative learning stage. It associates the trained HMMs with
meanings and integrates perceptions from different modalities, using an implementation of
classical conditioning. The meanings are inferred from the robot’s situation. E.g. If the
robot just requested the task server to show a dirty spot on the carpet, the robot assumes,
the following utterance means clean(carpet), so the system first searches for a match of any
of the HMM s, associated with the meaning "carpet’. Then, the remainder of the utterance is
used to train @ HMM sequence to be associated with the meaning "to clean”. The positions
of the detected parameters are used to insert appropriate placeholders in the recognition
grammar.

In a first study, based on game-like tasks, the robot learned to discriminate between posi-
tive and negative feedback based on speech, prosody and touch with an average accuracy
of 95.97%. The performance in the more complex command learning task is 84.45% for
distinguishing eight commands with 16 possible parameters.
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“The true delight is in the finding
out rather than in the knowing.”

Isaac Asimov (1920 - 1992)

Introduction

1.1 Overview

In recent years, robot engineering has made significant steps forward toward creating
robots that can coexist in a household together with humans and assist them in performing
their household chores, help caring for the elderly, entertain and serve as a companion or
provide an universal interface to electronic devices in a smart home. First entertainment
robots like AIBO [2] or Pleo [62] as well as simple household robots like the robotic vacuum
cleaner Roomba [38] or the robotic mop Scooba [39] have already found their ways into
millions of households worldwide. Some examples of current robots, used in research,
homes and industry are shown in Fig. 1.1.

Typical fields in which robots will be applied in the not-too-distant future, such as health
care and care for the elderly, will require robots to be able to interact with naive users
in a natural and socially acceptable way. An important factor that needs to be considered
to make robots intuitively usable for non-experts, is their ability to understand natural
instruction and feedback. Therefore roboticists are striving to create “manual-free robots”,
that is, robots which can be operated intuitively by everyone without having to study and
remember the contents of a handbook.

This thesis concerns enabling a robot to learn to understand its user’s natural, multimodal
interaction, in order to make a step forward toward the implementation of a "manual-free
robot”.

The main goal of this work was to implement a method by which a robot can learn
parameterized commands, object names and feedback through situated interaction with
a user without requiring transcriptions of the user's utterances or remote-controlling of
the robot. The proposed approach comprises a learning algorithm and special training
tasks, which can be used for situated learning with an actual robot. The two-staged
learning algorithm is based on a combination of unsupervised clustering of utterances as
well as prosody and touch stimuli using Hidden Markov Models and supervised learning of
associations between the clustered stimuli and symbolic representations of their meanings
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Figure 1.1: Different types of robots used in research, homes and industry

using classical conditioning. Knowledge about the meanings, that the trained Hidden
Markov Models are associated with, is obtained by using special training tasks, that allow
the robot to accurately guess the meaning of the user’s next command or feedback and even
actively provoke behavior, such as utterances with a certain meaning from the user. Using
the training tasks, the robot can actively select commands, feedback and object names for
training and also repeat the training of selected commands or feedbacks for which it has
not gathered sufficient training data yet.

A series of experiments has been conducted in order to look into how users give commands
and feedback to robots. The aim of the user studies was to answer three questions which
are the basis for this research:

e [s there a benefit in having a robot learn multimodal feedback from its user? This
is only true, if different people give reward in different ways which are difficult to
handle by using hard-coded patterns for recognizing commands and feedback.

e [s it possible to learn multimodal user feedback in a training phase in a reasonable
amount of time? Only if commands and reward behavior, used by a single person,
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do not vary excessively and are similar between different tasks, they can be learned
effectively in a training phase

e Which features of the training tasks are important for learning natural user feedback?

Based on the experiments, the consistency of feedback, the use of multimodality as well
as factors that influence the amount of feedback, given by a user, were analyzed and
commands and feedback given to a humanoid and a pet-robot were compared. Based on
the findings from the user studies, this thesis evaluates and discusses the feasibility and
usefulness of learning commands and feedback from a user through the proposed training
tasks and gives details on the implementation of the learning algorithm to enable a robot
to learn to understand its user’s feedback and commands.

1.2 Motivation

Current service robots, such as AIBO [2] or Roomba [38] can only react to hard-coded
commands, which the user has to learn from a handbook. This means, that every user who
wants to interact with or use the robot, first needs to memorize, which commands to utter or
which buttons to press to make the robot perform the desired actions. In case of Roomba,
which cannot be controlled by speech but is operated by pressing buttons either on a
remote control or on the robot itself, controlling the robot actually requires close proximity
to either the robot or its remote control. That means, that in many cases the user would
have to stand up and physically manipulate the robot or fetch the remote control in order
to give commands to the robot.

While learning commands from a handbook or walking to and physically interacting with
a robot may be a mere inconvenience for average, adult, non-handicapped users with normal
memory capabilities, this way of using robots may become increasingly difficult for elderly,
memory-impaired or handicapped persons. Moreover, having to read and understand a
complicated handbook or interact using non-natural modalities typically increases the
inhibition level against using an electronic device in non-tech-savvy individuals.

Having a robot learn commands from its user instead of forcing the user to learn com-
mands to control the robot, has different advantages: From the system designer’s point
of view, hard-coding multimodal input and speech dialogues in a way, that they allow
commands and feedback to be given in a user’s natural interaction style, is a difficult task,
because it requires foreseeing how users will try to interact with the robot. The system
designer not only needs to deal with personal, as well as language- or culture-dependent
differences in user behavior but also with differences in interaction, depending on the type,
the shape and the size of the robot. Even a carefully designed multimodal dialog is un-
likely to work well for every user without reading a handbook and memorizing commands.
Therefore, learning through situated training tasks, how a certain user actually interacts
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with a robot and automatically adapting to the user's preferences instead of requiring
pre-modeled dialogs etc. facilitates the conceptual work of the system designer.

One particularly difficult task in processing naturally spoken commands is handling
implicit commands, such as ‘It is too dark here”" or “I'd like to drink a coffee”” which
require world knowledge as well as reasoning capabilities to interpret them correctly as
“Switch the light on!” or “Bring me a coffee!”. By learning these commands from the user
in a training tasks and mapping them to their meanings without analyzing the grammatical
structure word-by word, the algorithm, proposed in this thesis can handle implicit commands
in exactly the same way as explicit commands.

As the system learns speech commands directly from its user and trains user-dependent
Hidden Markov Models, it is also robust against common causes of speech recognition
problems, such as regional accents or unusual voices.

Having the robot learn to understand commands and feedback through a training task
also has different benefits from the user’'s perspective: When a robot is able to learn its
user's way of giving commands and feedback, the user can give commands and feedback
to the robot naturally and intuitively in the same way as he or she would interact with a
human or a pet. As the proposed approach, which adapts a robot to its user’s natural way
of giving commands and feedback, shifts the learning effort from the user to the robot, it
would be especially desirable for elderly people with memory deficits.

One could argue, that the easiest way to control a robot and to avoid the difficulties of
speech-based interaction, is by using a remote control with buttons and easily understand-
able icons, so that no time is needed for the robot to learn and no processing of natural
speech data is necessary. However, using a remote control may become complicated if the
number of commands increases or if commands have parameters etc. Moreover, a remote
control needs to be carried around or fetched every time, the user wants to control the
robot, and can easily be misplaced. Icons may be difficult to see for people with reduced
eyesight, when there is a large number of buttons or the user is operating the system in
the dark. As opposed to this, natural human modalities like speech are readily usable at
any time without any preparation.

A downside of user adaptation based on the proposed technique is that it takes some
time and effort until the robot can be used productively. However, as household robots are
expected to interact with only a small number of individuals over a long time of several
years, adaptation to specific users is still desirable.

Moreover, the virtual training tasks have been designed in a way, that they can not only
be used for adapting the robot to its user but also to allow the user to familiarize with the
robot within a controlled scenario where incorrect operation does not have any negative
consequences.

The main design decisions for the training tasks and the learning algorithm and their
motivation are summarized in the following paragraphs:
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1.2.1 Learning user feedback

The starting point of this work was enabling a robot to learn one aspect of natural human
teaching behavior: approving or disapproving feedback given in response to the robot’s
moves. Understanding approval and disapproval is important and a highly reliable recog-
niton of these two kinds of feedback is desirable, because humans use approving and
disapproving feedback in almost any kind of teaching situation. When teaching a robot
by natural interaction, one important task for the human teacher is to evaluate the robot's
performance and give positive and negative reward. This is especially true in case of re-
inforcement learning with a human teacher [79] [80], where positive and negative reward is
the only means for the user to guide the behavior of the robot, but feedback is also used
frequently in general teaching tasks.

Overall, positive and negative feedback are the smallest useful set of commands, that
can be used to teach a robot, for example by reinforcement learning. Therefore, learning
to understand positive and negative feedback was chosen as a first step toward learning
more complex utterances.

1.2.2 Progressing from feedback to commands

While positive and negative feedback can be used for simple teaching situations, a robot,
that can perform useful work in a household, needs to be able to understand more detailed
instructions. Therefore the long-term-goal of this research was to develop a method for
not only learning to understand positive and negative rewards but also parameterized
commands, that can be used for controlling the service and entertainment functions of
service-robots and pet-robots through the interaction with a user. The original approach
for learning user feedback was extended to handle such commands.

Extensions were made to the training tasks as well as the learning algorithm for feedback
learning to enable the system to learn parameterized commands, such as ‘Please put the
ball into the box!" or "Please clean the table." through interaction with a user.

1.2.3 Processing multimodal user input

Humans express commands, as well as approval and disapproval toward a robot through
different channels, such as spoken words, prosody, gestures, facial expressions and touch.
Most work on understanding approval and disapproval has been done with single-modal
approaches based on prosodic information from speech signals such as intonation, pitch,
tempo, loudness and rhythm [13]55] However, it can be assumed that integrating additional
modalities improves the reliability of the recognition and allows the system to adapt to the
preferences of the users. Therefore, the proposed approach integrates speech, prosody and
touch for a reliable recognition of feedback and commands.
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1.2.4 Using a biologically-inspired learning approach

The learning algorithm is inspired by the processes which are present in biological learning
and speech understanding. Human speech acquisition has several features, which are very
desirable for speech learning in a robot. Most important, humans can learn speech without
transcriptions of the utterances and learn to segment utterances into relevant parts.

However, the goal of the thesis was not implementing a computational model of human
speech acquisition but developing a method that can be integrated efficiently into a robot
to learn natural human commands and feedback. While the proposed learning method does
not try to model all processes accurately, that occur in nature, it uses the findings from
biology and psychology to determine mechanisms that can be implemented efficiently and
are suitable for the given task.

Some of the mechanisms, that have been designed after processes found in nature are the
interplay of bottom-up and top-down processing, the separation of the learning process into
a stimulus encoding phase and an associative learning phase, the use of a mathematical
model of classical conditioning, which was created in psychological research to model
human associative learning etc. Details are given in the literature review in chapter 2 as
well as in the description of the learning algorithm in chapters 4 and 5.

1.2.5 Using “virtual” training tasks for user adaptation

The learning algorithm is, in principle, independent from the tasks used for training the
robot. It only needs input data pairs consisting of meanings, such as “positive feedback”
or "MOVE(BALL, BOX)" and perceptions of the user’s behavior, such as audio data of
utterances or data from the touch sensors.

In this thesis, these data pairs are provided by virtual training tasks, which the robot
performs in front of a screen and which allow it to accurately guess the meaning of the
user's behavior and persuade the user to utter certain commands or feedback. They are
described in detail in chapter 3.

The main motivation for using virtual training tasks was, that they are independent from
the physical capabilities of the robot, so that the same tasks can be used for different
robots, including very small ones, like AIBO, which have very limited physical capabilities.
Moreover, they do not require time-consuming walking and other complex motions of the
robot and permit focusing on the implementation of the interaction learning without having
to handle perception of the environment and task execution.

In a real application with a service robot, the virtual training tasks would be performed
by the user and the robot in front of the TV or a PC before actually using the robot. All
commands and feedback, that the robot needs to understand, would first be trained using
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the virtual tasks. After finishing the training, the learned commands and feedback could
be used to control the robot in real-world tasks.

1.3 Outline of the training method

The proposed approach for training a robot through interaction with its user consists of
special, “virtual” training tasks and a two-staged learning algorithm. This section intends
to give a very brief overview of the training phase as well as the learning algorithm. Details
are explained in chapters 3, 4 and 5.

1.3.1 The training tasks

In the studies, different, “virtual” training tasks were used, in which the robot interacted
with the user in front of a screen. Scenes from the experiments are shown in Figure 1.2.
Game-like tasks were used for enabling the robot to learn feedback from its user and
a simplified living room scene was employed for learning object names and commands.
During the experiments for learning feedback and commands, the actions, shown on the
screen, and the motions of the robot were synchronized to give the user the impression that
the robot actually manipulates objects on the screen.

Figure 1.2: Scenes from the experiments on feedback and command learning

The training tasks were designed to enable the robot to automatically record and learn
users’ feedback. The aim of the tasks is allowing the robot to provoke and learn natural
feedback from the user without any prior understanding of the user’s utterances. Therefore,
they need to be designed in a way that they provide enough background knowledge to the
robot to allow it to anticipate the commands or feedback that the user utters in response to
an action of the robot or a change in the scenario. Moreover, the training tasks should be
designed in such a way, that they can be performed without boring or stressing the user.
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As the user should be able to train the robot independently, the robot needs to be
able to explore its user's commands and feedback behavior autonomously without remote
control. This is ensured by using training tasks, in which the robot can anticipate its users
commands and feedback with very high confidence. For example, in the experiment for
learning feedback, game-tasks were used, in which the robot could easily judge whether
a move was good or bad. Moreover, the tasks were designed in a way that it was also
obvious for the user, whether the robot had made a good or bad move and give appropriate
feedback. This allowed the robot to rely on the heuristic, that a good move results in
positive feedback and a bad move results in negative feedback. Based on this heuristic, it
could associate stimuli, that occurred, when positive feedback was expected, with positive
feedback, and associate stimuli, that occurred in a situation when negative feedback was
expected, with negative feedback. In a similar way, the meaning of object names and
commands was provided by the training task through vizualisations in the "virtual living
room” scenario. For example, when the carpet in the "virtual living room” got visibly dirty,
the robot expected a command from the user, telling it to clean the carpet. Details on the
training tasks, used for learning to understand feedback and parameterized commands, can
be found in chapters 3, 4 and 5

1.3.2 The learning algorithm

The learning algorithm was designed with the goal to allow the robot to learn a certain
user's natural way of giving commands and feedback using speech, prosody and touch
without posing any restrictions on users’ expressions, such as having to use certain ut-
terances or a simplified grammar when interacting with the robot and without requiring
transcriptions or manual processing of the user's interaction.

As interaction behavior typically varies between users and even for the same user, the
robot needs to learn how to deal with multiple stimuli that refer to the same meaning and
multiple meanings for the same user behavior.

A combination of Hidden Markov Models [89] and classical conditioning [67] is used
for enabling the robot to learn its user’s preferred ways of giving reward and instruction,
integrating multiple modalities and handling ambiguous utterances and multiple utterances
with the same meaning. Details of the learning algorithm are given in chapters 4 and 5.

In the first learning stage, which is modeled after the stimulus encoding, that occurs
in human perception, the different individual stimuli are clustered in an unsupervised way
using Hidden Markov Models. Similar stimuli are clustered to train a model for their
recognition. The clustering for speech utterances uses user-independent phoneme models
as a basis for creating and training user-specific utterance models. For clustering prosody
information, the k-means algorithm is used with global prosody information, such as mean
pitch or energy, calculated from each utterance. Touch is classified, based on its duration
and the sensor of the robot, that was touched by the user.




1.4. CONTRIBUTIONS OF THIS WORK

The second stage is based on the idea of associative learning, which uses the trained
models, generated in the stimulus encoding phase and associates them with a meaning. In
this stage the meanings, such as positive or negative feedback, which are provided through
the training tasks, are used to train an association matrix storing the associative strengths
between the stimult and their meanings. Using the trained association matrix, multiple
models can easily be associated with the same meaning and also multiple meanings can
be associated with the same stimulus, e.g. calling the robot's name can be associated
with both, positive and negative feedback. Depending on how often certain stimuli, such
as utterances and touches are given by a user, when a certain meaning is expected, their
association with that meaning becomes stronger or weaker.

1.4 Contributions of this work

The goal of this work was to enable a robot to learn to understand commands and feedback
from a human through natural, situated interaction. The main contributions are:

e A two-staged learning algorithm based on Hidden Markov Models and classical
conditioning to learn multimodal commands, object names and feedback from spon-
taneous, unrestricted, non-transcribed utterances.

e A method for teaching a robot by natural interaction in "Virtual Training Tasks”
e User studies on how users employ different modalities to teach robots.

e An implementation of a client-server based framework for learning and recording
audio and video data based on virtual tasks, which was created with a focus on
extensibility and reusability and can easily be adapted to new robots as well as
new tasks

1.5 Organization of the thesis

This thesis is structured as follows: Chapter 1 gives a general introduction to the topic
and the motivation for this work.

Chapter 2 presents an overview of existing work on robot learning and human-robot
interaction that this thesis is built upon. It also gives a brief introduction into learning and
speech acquisition in humans, which has inspired the learning method, presented in this
thests.

Chapter 3 outlines three user studies that were conducted to explore users’ ways of
giving feedback and commands to robots: The first exploratory study investigated the
effect of restrictions in giving feedback and the dependence of user feedback on the robot’s
behavior. The second study quantitatively analyzed the way in which users give feedback
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to a robot and the final study compared feedback and commands given to a pet-robot a
humanoid robot.

Chapter 4 presents the learning algorithm for learning positive and negative feedback.
The chapter outlines the requirements for such an algorithm, based on the experiments,
presents basic techniques, used for learning, and explains the implemented learning algo-
rithm and the results of the learning process in detail.

Chapter 5 presents the extensions of the learning algorithm for the more general task
of learning commands with parameters. It analyses requirements for learning commands
and outlines similarities and differences between the problem of symbol grounding and
the proposed method for command learning. Based on this, it explains the modifications,
made to the original algorithm, such as the extensions for learning the correct order and
positions of parameters in a command, and presents the results of the learning process.

Chapter 6 gives details on the client-server based implementation of the experimental
framework and the implementation of the learning method. It shows the different programs,
which were developed for the experiments, as well as the usage of external tools which
were used for implementing the learning method.

Finally, in chapter 7 the results of this work are discussed and conclusions are drawn,
identifying possible areas for improvements and future work.
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“Le langage est source de malentendus.”
(“Language is the source of misunderstandings.”)

Antoine de Saint-Exupéry (1900 - 1944)

Multimodal perception and learning in
humans and robots

2.1 Overview

This chapter discusses related work on speech acquisition and multimodal perception in
humans and robots and gives an overview over previous research, that has influenced this
work. The first section gives a brief overview over findings in human understanding of mul-
timodal interaction and human language acquisition, outlining the biological foundations
that have inspired this work. The rest of the chapter discusses related work. The proposed
method for training a robot and learning multimodal commands and feedback is linked to
different fields of computer science and robotics:

Systems, that use multimodal fusion, such as the integration of speech and prosody, to
improve the recognition accuracy in speech-centered communication have been researched
in depth in the field of intelligent user interfaces as well as human-robot interaction.

In recent years, different approaches toward learning through user feedback, symbol
grounding and speech acquisition in robots, as well as training speech models without
requiring transcriptions have been implemented by various researchers. There has also
been a great deal of research investigating how users interact with robots and teach robots
and on how the appearance of a robot influences the interaction with the robot and the
impression of the user.

Taking into account these works from various fields this chapter concludes with a dis-
cussion of the features that differentiate the proposed method from previous work.

2.2 Human speech acquisition

The ability to speak and to understand spoken utterances is one of the most unique capa-
bilities of human beings. It starts to develop in the first months in the life of an infant and
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progresses very quickly during the first few years. However, speech acquisition does not
only occur in children, but humans actually continue to learn new words along with their
meanings and usage throughout adulthood [21].

The learning algorithm, implemented in this work, is inspired by findings from language
and speech acquisition in infants. However, it does not claim to implement an accurate
model of all processes which occur in natural associative learning and understanding of
elementary utterances. Instead, it focuses on the concepts which appear most relevant to
the research objective of learning to understand human commands and feedback for a robot
and which can be implemented effectively, such as the interplay of bottom-up processes
and top-down processes of speech understanding as well as the different functional layers
of stimulus encoding and associative learning, which exist in human speech acquisition.

2.2.1 Speech bootstrapping in infants

Children’s first words are usually the names of objects in their environment [28]9] In a
study on infant word learning, Huttenlocher et al. [36] found that the first words, learned by
a child are names of small, mobile objects, such as “ball’, “shoe”’, or “apple”. They assume
that the most probable reason for this is, that these are objects that they can take and
manipulate with their hands and use the visual and tactile information to create a mental
model of these objects. The learning of words, referring to actions, such as “walk’, “eat”
or "play” usually starts after the learning of object references. An overview the processes
involved in infants’ early speech acquisition is given by Roy in [70].

Jusczyk [45] has proposed a model of recognizing words in continuous speech utterances.
He assumes that an infant is born with language independent abilities of distinguishing
phonemes. Based on the frequencies of phonemes in its native lanquage, the child learns
to precisely distinguish phonemes, actually occurring in the native language while losing
the ability to distinguish other phonemes. Werker et al. [86] outline the processes that are
involved in children’s bootstrapping of speech perception and the development of infants’
perceptual systems. According to Werker, speech perception in infants starts from being
able to distinguish speech sounds from non-speech sounds and continues with adapting the
perception of phonemes to the native language. Next, the infants learn word segmentation
and associate the words with actual objects.

The method, presented in this thesis, is modeled in such a way that its behavior resembles
the findings on speech bootstrapping in children. It learns to understand object names
based on an initial set of known phonemes, which is used for creating word models and is
adapted to the actually perceived utterances. The robot first learns object names and then
uses the learned object names to segment commands and their parameters when learning
commands based on continuous speech from its user.

12
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2.2.2 Stimulus encoding for associative learning

Before a child can establish an association between a stimulus and its meaning, the
physical stimulus needs to be converted into a representation that the brain can deal with.
This process is called stimulus encoding [21]. Stimulus encoding also enables the brain
to abstract from the concrete individual stimuli - which always differ to some extend - to
attain a common representation.

For speech, the process of phonological encoding develops and refines in the first months
of an infant’s life. Experiments found, that infants’ speech acquisition starts from acquiring
a proper way of encoding speech-based stimuli [86] several months before they are actually
able to learn the meaning of words by associative learning.

Evidence of these two stages of stimulus encoding and learning associations with word
meanings has been found in experiments on classical conditioning as well as infant word
learning [21] [86)].

The proposed system adopts this separation between the stimulus encoding and the
learning of associations between stimuli and their meanings for the implementation of the
learning algorithm. It combines a stimulus encoding phase based on unsupervised cluster-
ing of similar perceptions and an associative learning phase using classical conditioning as
a supervised learning method. This way the system can learn the meaning of feedback from
the user during natural interaction, because the learning algorithm does not require any
explicit information, such as transcriptions of the user's utterances for stimulus encoding.
It only needs the information about the meaning of a stimulus, such as positive or negative
feedback or commands, to associate the HMMs with their correct meanings.

Classical Conditioning and Associative Learning

Associative learning is the process of learning connections between stimuli, ideas and
percepts, which are repeatedly experienced together. The theory of classical conditioning
explains how humans and animals learn associations and was first described by I. Pavlov
[61]. It originates from behavioral research in animals. It models the learning of associations
in animals as well as in humans. In classical conditioning, an association between a
new, motivationally neutral stimulus, the conditioned stimulus (CS), and a motivationally
meaningful stimulus, the unconditioned stimulus (US), is learned [7]. The unconditioned
stimulus produces an unconditioned reaction (UR) as a natural behavior. After completing
training, which is done by repeatedly presenting the conditioned stimulus just before the
occurrence of the unconditioned stimulus, the conditioned stimulus is able to evoke the
same reaction, when it is presented alone. This reaction is called the conditioned reaction.

Pavlov found this relationship while he was doing experiments investigating the gastric
function of dogs and measuring the amount of their salivation in response to food.
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At first the dog did not show any reaction to the tone of a bell (CS) but when the dog
was given food (US), it salivated (UR). After repeatedly ringing the bell just before feeding
the dog, the tone of the bell alone was able to make the dog salivate.

This example serves as a model for the implementation of classical conditioning for the
associative learning phase of the proposed learning algorithm. In the proposed system, the
symbolic representations of meanings are used as US. The models of the user’s utterances,
prosody patterns and touches are CS that get associated with approval or disapproval
during the feedback association learning phase.

The relation of classical conditioning to the phase of learning word meanings in human
speech acquisition has been postulated in the book “Verbal Behavior” by B. F. Skinner
[73] and has been adopted and modified by researchers in the field of behavior analysis.
In [74] Staats et al. describe an early approach to psychologically explain the learning
word meanings by classical conditioning. An explanation of more complex phenomena in
learning word meanings by conditioning is described by B. Lowenkron in [56].

For the task of learning multimodal commands and feedback patterns, the most relevant
properties of classical conditioning are blocking, extinction and second-order-conditioning
as well as sensory preconditioning:

Blocking occurs, when a CS; is paired with a US, and then conditioning is performed
for the CS; and a new CSy to the same US [7] In this case, the existing association
between the CS; and the US blocks the learning of the association between the CSy and
the US as the CSa does not provide additional information to predict the occurrence of the
US. The strength of the blocking is proportional to the strength of the existing association
between the CSy and the US.

For the learning of multimodal interaction patterns, blocking is helpful, as it allows the
system to emphasize the stimuli that are most relevant.

Extinction refers to the situation, where a CS that has been associated with a US,
is presented without the US. In that case, the association between the CS and the
US is weakened. [7] This capability is necessary to deal with changes in user behavior
and mistakes, made during the training phase, such as misunderstandings of the situation
resulting in incorrect feedback.

Sensory preconditioning and second-order conditioning describe the learning of an
association between a CS; and a CSs, so that if the CS; occurs together with the US,
the association of the CSy towards the US is strengthened, too. [7] In sensory precon-
ditioning, learning the association between CS; and CSs is established before learning
the association towards the US, in second-order conditioning, the association between
the US and CS5; is learned beforehand, and the association between CSy and CSs is
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learned later. Secondary preconditioning and second-order conditioning are important for
the proposed learning method, as they enable the system to learn connections between
stimult in different modalities.

Top-Down and Bottom-Up-Processes in Speech Understanding

Human perception is not an unidirectional process, that converts physical stimuli into
meanings, but involves bottom-up as well as top-down processes. [21]. The bottom-up
processes are triggered by the physical stimuli, such as audio signals received by the
inner ear. The top-down processes, on the other hand, are based on the context in which
a specific stimulus occurs. The context is used to generate expectations about which
perceptions are likely to occur. Both, bottom-up and top-down processes, work together in
human perception of audio-visual signals to determine the best explanation of the available
data.

The interplay of bottom-up processes and top-down processes in speech perception has
been investigated in detail by psychologists [21]. W. F. Ganong [27] found, that if a person
heard a spoken word with an ambiguous phoneme, such as a mixture between “d" and
“t". and one of the possible phonemes resulted in a correct word, while the other one did
not, such as “drash’/“trash’, the participants were more likely to identify the ambiguous
phoneme as the one, that belonged to a correct word. CM. Connine [18] found that the
meaning of a sentence, that an ambiguous phoneme is presented in, has an influence on its
identification. These findings suggested, that perception is not only driven by the physical
stimulus but also depends on expectations generated from the context. Figure 2.1 shows
an overview of bottom-up and top-down processes in human speech perception.

In the proposed system, top-down processes are used to improve the selection accuracy
when choosing an HMM for retraining. They generate an expectation, which utterances or
prosodic patterns are likely to occur, based on context information. The context information
is calculated from the state of the training task, which provides the knowledge, which com-
mand or feedback is expected, using the previously learned associations between HMMs
and the symbolic representations of commands or positive/negative feedback. This way
HMMs, that have previously been associated with positive/negative reward or a certain
command, become more likely to be selected, when another positive/negative reward or the
same command is expected.

The implementation of top-down processes in the proposed learning algorithm is shown
in section 4.8.
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Figure 2.1: Bottom-up and top-down processes in speech perception.

2.3 Related Work

This work is related to research from different fields in human-computer interaction and
human-robot interaction, such as multimodality, speech acquisition, learning through human
guidance and studies on factors that influence users’ interaction with robots.

2.3.1 Multimodality

The method, proposed in this thesis, integrates information from different modalities to
reliably learn and recognize users’ commands and feedback. Using multimodal information
to improve the reliability of speech or object recognition has been an active field of research
since a quite early stage of computing history. The first predecessor of current multimodal
user interfaces was the "Put that therel”-system, which was proposed by R. Bolt already
in 1980 [11]. It integrated speech and gestures to manipulate objects in a virtual space.

Multimodality and especially the integration of speech and pointing gestures is also
applied in human-robot interaction. While many robots, that are designed for interacting
with people, use speech and gestures when communicating with the users, only some of
them are also able to process multimodal input from the user.

In [85] a system for multimodal interaction with a factory robot is outlined. Wallhoff et al.
developed the system, which can solve an assembly task in cooperation with the user. The
factory robot uses video data, 3D-data, speech, hand detection, detection of the storage
boxes, used for the task as well as eye gaze and projected buttons as multimodal input for
the robot.
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A multimodal dialog system for the robot BIRON, that combines the recognition of speech
and accompanying gestures, was developed by Haasch et al. [33] It is used to teach the
robot in a home-task scenario. More details on the implementation of the multimodal dialog
system as well as the BIRON robot are given in [81] and [22].

Giuliant et al. [32] created a multimodal recognition system for artificial agents, such
as computers and robots, that was designed with the focus on adaptability to various
situations and integrates facial expression, head movements and speech. They presented
an application of their system in a kitchen scenario with a mobile robot.

Stiefelhagen et al. [77] [78] have developed a system for multimodal interaction using
speech, head pose and hand gestures for their humanoid robot ARMAR [ll. The system is
able to recognize known users and aims at conducting natural multimodal dialogs with
users. It can follow dialogs with multiple persons and automatically recognizie the ad-
dressee of dialog acts etc. The system was evaluated in various different scenarios.

However, previous approaches to multimodal interaction with a robot typically use a
predefined dialog system and do not learn multimodal communication through interaction
with a user.

Various studies have been conducted to investigate how users apply different modalities
when interacting with a computer system. In [60] Oviatt gives an overview of some major
results of recent research in multimodality and points out ten of the most common mis-
conceptions about how people interact with multimodal voice- and gesture-based systems.
However, most quantitative analyses on multimodal user behavior have been conducted
using GUI-based systems. Although several implementations of multimodal systems for
Human-Robot-Interaction can be found in literature, such as the ones outlined above, little
knowledge exists on user preferences for natural, unrestricted multimodal interaction with
robots. As embodiment needs to be considered as an important factor in Human-Robot-
Interaction [84], it is unclear in how far results from the interaction with GUI-based systems
can be transferred to Human-Robot-Interaction.

2.3.2 Human-robot interaction

In the early days of robotics, which started with the first industry robot, Unimate, built
in 1961 [68], most robots were huge machines used in industry and users of robots were
usually experts. Since robots are becoming more and more a part of our everyday lives,
the requirements for robots, concerning usability and the ability to interact with non-expert
users increase.

In response to these new requirements, the research area of human-robot interaction has
developed within the field of human-computer interaction in recent years to investigate on
safe, comfortable and socially acceptable interaction between humans and robots. Human-
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robot interaction strives to understand how people like to interact with robots and how
natural interaction between a robot and a human can be realized.

Human-robot interaction is a very diverse, interdisciplinary field, which is influenced
not only by computer science and robotics but also by psychology and social sciences.
The questions that are most relevant for this thesis are how robots can acquire speech
understanding through interaction with a user, how users can intuitively teach robots and
which factors affect users’ ways of interacting with robots.

Speech acquisition in robots

There has been a great deal of research on adapting robots to their users, speech acquisi-
tion and understanding natural language [40] [48] and recognizing affect and emotions for
human-robot-interaction [13]55]59].

Learning the connections between words and their meanings through natural interaction
with a user has been researched in the field of language acquisition. [15]40]48]. In
speech acquisition a system, such as a robot, learns to understand the meaning of a
user’s utterances from non-transcribed speech data using visual or other cues, that provide
information on the meanings of the utterances.

One of the most comprehensive systems for robot speech acquisition was developed by
Iwahashi et al. [40] [41] [42] [43] It allows the active and unsupervised acquisition of
new words, simple grammar as well as pragmatic and communicative capabilities for the
multimodal interface of a robot. lwahashi et al. applied Hidden Markov Models to learn
verbal representations of objects and motions, perceived by a camera. The robot learns to
handle users’ utterances following a simple grammar without any function words, such as
‘Red box Kermit move-over"”.

In the first step of the learning process, the system learns speech-unit HMMs, similar to
phoneme models, in an unsupervised way from one minute of speech from the user. These
speech-unit HMMs are then used to learn words from three different word classes using
speech and visual information: Words, that refer to perceptual characteristics of objects,
such as “box", “big"” or "red’, words that refer to abstract meanings, such as “tool” or “food",
which describe classes of objects, that are characterized by the same functions, and words,
that refer to motions, which are characterized by trajectories of a trajector (one of the
previously learned objects, that is moved), relative to a landmark (another object, which
is not moved). The user has to show the objects and demonstrate the motion verbs like

move-onto, move-over, move-around etc. to the robot.

Based on these known words, the system can infer a simple grammar by statistically
modeling the sequences of words, spoken by the user. E.g. if the user says “Kermit
box move-onto”, while putting the Kermit puppet on the box, then the sequence {trajector,
landmark, motion} would be learned as a possible grammatically correct utterance.
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Using the grammar, the system learns to actually execute commands. In this stage, the
user utters a command, such as "Big box red box move-over” and the robot executes the
command. If it performed incorrectly, the user slaps the robot arm for negative feedback.
The robot maintains and updates a belief system, consisting of own, learned beliefs, that
are used for understanding the user’s utterances. e.g. “an object with certain visual features
is called "Kermit" It also maintains beliefs about the user’s belief system, that allow the
robot to estimate, whether the user would consider a certain utterance, action or pointing
gesture from the robot as correct. The belief system is a statistical model, which allows the
robot to calculate the most likely interpretation of an utterance given the current situation,
the speech utterance, the learned words, etc. It also estimates a confidence value and
calculates an appropriate reaction to the user's command.

The pragmatic capabilities enable the robot to estimate, which object the user refers
to, in case of ambiguities, or understand that it cannot execute a command well enough
without asking back to the user. E.g. if there are multiple boxes of different colors, and the
user says “Kermit box move-onto’, then the robot can ask back, which box the user refers
to, if its estimate of the certainty of understanding the user's believes, is below a threshold.

Finally, the system learns to understand question words and to answer to its user'’s
questions. In the experiments, the robot learned the word “What", which was used to make
the robot utter the name of an object and “which” which was used to make the robot point to
an object. For example, when the user moves the Kermit puppet over the box and asks “Box
what move-over”, then the robot would have to answer “Kermit’, if the user says “Kermit
Which", then the robot would have to point to the Kermit puppet.

The approach, proposed in this thesis, only tries to solve a small subset of the problems,
that are handled by Iwahashi's system. The main drawback of his system is, that it can
only learn strongly simplified utterances. Learning to understand non-simplified, naturally
spoken utterances without restricting the usage of words and grammar was one of the main
targets of this research.

Kayikct et al. [48] utilized Hidden Markov Models and a neural associative memory for
learning to understand short speech commands in a three-staged recognition procedure.

The system has three different modules, a HMM-based triphone recognizer, a word
recognizer and a sentence recognizer. Each of the modules generates hypotheses, which
are then passed to the next module. E.g. the phoneme recognizer estimates the most likely
sequence of triphones and then passes it to the word recognizer, which returns the most
likely sequence of words. Ambiguities, that cannot be solved in one module, can be passed
forward to the next module, which may be able to decide for one of the possibilities.

When an utterance is recorded, such as “Bot put red plum yellow lemon’, the system
first passes it to the phoneme recognizer, which returns a recognized sequence of triphones
using standard HMMs. Then the phoneme sequences are translated into a sequence of the
most likely words, spoken by the user, using a neural associative memory. This step allows
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in many cases to correct phonemes, that were incorrectly recognized by the HMM based
recognizer. Ambiguities may be carried over to the next stage, if there are multiple, possible
phonemes, which would all result in a correct english word e.g. the word “bwall’, which
may either mean “ball” or “wall". Finally, a neural associative memory is used to obtain
the most likely semantic representation of the utterance. The sentence recognizer tries
to disambiguate ambiguous word hypotheses using the grammatical context of the words,
learned associations between words or information from outside the speech recognizer, such
as visual input. The system can be used to teach object names and simplified sentences to
a robot.

Roy [69] proposed a model of cross-channel early lexical learning to segment speech and
learn the names of objects, which are recorded by a camera. He used insights from infants’
word learning and recorded the speech samples for training the robot through experiments
with mothers playing with their infants.

He used models of long term memory and short time memory to find and learn recurring
auditory patterns, which are likely to be object names. The short-term memory stores
the recently perceived audio and video information. Speech is represented as a phoneme
sequence. The short-term memory searches for recurring phoneme sequences occurring in
the same visual context. The long term memory searches for phoneme sequences that often
occur together with similar visual contexts and rarely occur in other contexts over time.

The basic concept of the learning method is discovering words by segmenting utterance
parts, that reliably predict the occurrence of a certain visual stimulus. If the word “ball”
occurs is many utterances of the user, while the user is showing a ball to the robot, the
robot identifies this recurring speech pattern and learns to associate it with the visual
representation of the ball, perceived by its camera.

The most remarkable capability of the system is, that it does not need object names to
be uttered as single words, but is able to segment word names from continuous utterances
by relying on the co-occurrence of speech and visual perceptions. However, it does not
learn names of actions or other word categories.

Steels and Kaplan [72] developed a system to teach the names of three different objects
to an AIBO pet robot. They used so-called ‘language games” for teaching the connections
between visual perceptions of an object and the name of the object through social learning
with a human instructor.

They conducted experiments with three different games. In the first game, the robot
performed social learning and learned through intensive interaction with the user. The
user drew the attention of the robot to a certain object and taught it the name of the
object. In the second game, the user created a situation for the robot in a way, that the
robot could learn by supervised learning from observations. The user uttered the names of
objects, when the robot looked at them. In the third game, the robot performed unsupervised
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learning and tried to cluster the visual information about the objects without any utterances
from the user.

They found, that the recognition rate improved considerably through applying social
learning. An overall classification rate of 82% for three visually presented objects and their
names was reached for social learning and 58% for supervised observational learning. For
unsupervised learning, the robot created nine clusters for the three different objects and
four of the clusters contained views of two or more different objects. Their result shows,
that lanquage is important for learning to visually classify objects.

Corin et al. [31] as well as Alshawi [3] proposed techniques for learning spoken language
from training data without transcriptions. The focus of their work was different from the
previous ones, as their methods were not used for robot speech acquisition but for mapping
whole, short utterances to non-parameterized actions in a telephone dialog system. Both
systems could learn without transcriptions but could not detect and handle parameters in
parameterized utterances.

Learning through human instruction and feedback

Various researchers have investigated how robots can lean through human instruction, use
human feedback and also learn to understand human feedback. One approach that is
particularly related to this work is presented in [55]. Kim and Scassellati described an
approach to recognize approval and disapproval in a Human-Robot teaching scenario and
used it to refine the robot's waving movement by Q-Learning. They employed a single-
modal approach to discriminate between approval and disapproval based on prosody.

Thomaz et al. described an experimental setting for assessing human reward behavior
and its contingency [79]80]. The participants of the study could give positive as well as
negative reward to teach the virtual character Sophie to bake a cake in the “Sophie's
Kitchen” scenario. Reward could be given by an interactive reward interface that allowed
the user to assign any reward on a scale from -1 to +1 either to a certain object or to
the world state. The character learned from a human teacher by this kind of reinforcement.
In their experiments they found a strong bias towards positive reward and discovered
a phenomenon that they described as anticipatory rewards, positive rewards that were
assigned to an object that the character has to use in a later step. This kind of reward can
be interpreted as guidance for the character.

Blumberg et al. [10] showed how to teach a synthetic dog-like character by clicker
training based on reinforcement learning. Clicker training was also used by Kaplan et al,
who presented a method to train complex tasks to an AIBO robot by performing clicker
training [47]. However, his study mainly focused on adapting reinforcement learning to
work with a human teacher and on an adequate way to model the state- and action-space
for reinforcement learning.
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Yamada et al. described an approach to mutual adaptation between a human and an
AIBO type robot based on classical conditioning using the Klopf neuron model [88] While
the robot learned to interpret the human's commands, given by touching its touch sensors,
the human found out in the course of the experiments, which stimuli the robot understood
in what wau.

Ullerstam and Mizukawa [83] developed a method to teach complex behavior patterns
to an AIBO pet robot based on reinforcement learning. In their system, reward is given
through two predefined positive and negative utterances, as well as pressing the robot’s
head or back sensor.

Effect of the robot’s appearance

Various studies [52] [49] [29] [35] have investigated the effect of a robot's appearance on
the interaction with a user. However, most studies concerning the appearance of robots
rather deal with the uncanny valley effect [19] and users’ impression of robots than with
the effect of a robot's appearance on its user's communicative behavior. The effects, that
make users treat robots differently, depending on their appearance and behavior, need to
be understood in order to design robots and robotic behavior in such a way, that they can
be handled intuitively by naive users.

Kanda et al. [49] conducted a study with two different humanoid robots and showed that
different appearances of the robots did not affect the participants’ verbal behavior but did
affect their non-verbal behavior such as distance and delay of response. They explain the
observed differences by impressions, such as novelty, safety, familiarity and activity as well
as attributions, such as whether the robot is respected as a conversation partner.

Kriz et al. [52] investigated users’ conceptualizations of robots by analyzing the way
the users talked to the robot. They compared features of robot-directed speech to how
humans talk to infants or adult non-native speakers. They found that the participants
spoke more loudly, raised their pitch, and hyperarticulated when they spoke to the robot.
This behavior is typical when the conversation partner is assumed to have low linguistic
competence. However, they did not speak in easier sentences, which suggests, that they
believed that the robot has almost humanlike cognitive capabilities.

Coetz et al. [29] investigated users' attribution of capabilities depending on the appear-
ance of a robot. They created images of more or less human-like looking robots and had
participants judge their suitability for different tasks. They found that people systemat-
ically preferred robots for jobs when the robot's human-likeness matched the sociability
required in those jobs. They also found in a second user study with a humanoid robot, that
playful or serious demeanor of the robot affects the compliance of the participants. The
participants performed a playful task longer, when the instructing robot showed a playful
demeanor while the participants performed a serious task longer, when the robot behaved
more seriously.
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Similar results were obtained by Hegel et al. [35] who found that the appearance of
robots affected users’ attribution of possible applications. They conducted a user study in
which the participants were asked to match videos of twelve robots to thirteen different
categories of applications. Especially the perceived human-likeness or animal-likeness
affected which tasks the participants considered suitable for each robot. While the partici-
pants considered human-like robots for fields like health care, personal assistance, security
and business, they considered animal-like robots as companions, entertainers, toys, and
robotic pets.

The experiment, presented in this thesis, built on the knowledge from these previous
studies and tried to solve the question, in how far users’ multimodal behavior as well as
their way of uttering feedback and commands was influenced by an either human-like or
pet-like appearance of a robot. The main research questions were in how far the usage
of speech, touch and gestures varied for the two different robot types and whether certain
features of speech utterances, such as their length, politeness or the amount of explanations
given, are affected by the appearance of the robots. The study was based on the assumption
that a more pet-like appearance of a robot might persuade the users to treat it more like
a pet, while a more human-like appearance might make the interaction resemble more to
the interaction between humans. Moreover, the experiments looked into the impression of
the users when interacting with both robots in the same training tasks.

2.4 Unique characteristics of the proposed method

In the same way as the approaches, outlined in section 2.3.2, the proposed learning algo-
rithm attempts at assigning a meaning to an observed auditory or touch pattern through
Human-Robot Interaction using HMMs as a basis. However, the system is not trying to
learn the meaning of individual words or symbols and a grammar, describing, how to con-
nect them, but focuses on learning patterns expressing a feedback as a whole utterance or a
command as a command pattern with placeholders for parameters. Moreover, the proposed
approach is not limited to learning speech-utterances but tries to integrate perceptions
from speech, prosody and touch.

In contrast to previous approaches in robotic language acquisition, such as the ones
by Iwahashi [40] and Kayikci [48] the system tries to learn naturally spoken, domain-
specific, parameterized commands and feedback that are not constrained by a restrictive
grammar. The participants were instructed to utter commands to the robot in any way they
consider natural, not restricting commands to simple utterances and even allowing implicit
commands, such as saying “This room is too dark” to make the robot switch the light on.
These natural utterances typically contain non-informative words such as “please” or “can
you” as well as function words. There is usually no one-to-one mapping of utterances and
their symbolic representations but one symbol may be represented by multiple utterances
and one utterance can have multiple meanings. Most previous systems cannot handle
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complex, natural utterances from a user but need a very restricted grammar. For example,
in the system, proposed by Iwahashi [40], the user must not utter any function words or
motion words that are divided into multiple parts, occurring at different positions in the
utterance. So the system is not able to learn the utterance “Move the kermit onto the box,
please”’, but the user has to utter the simplified sentence “Kermit box move-onto”.

The previous systems for robotic speech acquisition typically learn object names, action
names and grammar separately, as this facilitates the segmentation of these speech-units.
Some of them only learn object names and do not learn actions or commands at all. For
example, lwahashi's system first learns object names and action names as separate words
and then uses the known objects and actions to learn in the next training phase, how
they can be put together to express a meaning. The method, proposed in this thesis, is
able to learn command patterns and segment utterances into parameters and parts of the
command during the learning process in one step from naturally spoken utterances. It still
needs to learn object-names before learning to understand commands but does not require
an additional step of learning action words separately. This is more similar to speech
acquisition in infants, as parents often explicitly teach object names e.g. “This is a cat”
but usually do not teach words for actions in this explicit way, e.g. “This is walking." but
children typically learn action words from conversational utterances.

The focus of this work differs from typical symbol grounding for robots as it concentrates
on learning how a certain user utters commands and feedback, but assumes that the robot
already knows basic grounded symbolic representations of the set of actions, that it can
perform, and is able to recognize objects and map them to symbols. That means, it can
correctly interpret a written command in simple syntax like MOVE(BALL, BOX). In order
to react to naturally spoken commands, it needs to learn a mapping between these existing
symbolic representations on the one hand and commands, object names and feedback, given
through natural speech by the user, on the other hand. Having a set of known symbolic
representations of objects and actions is a relatively strong requirement, but the required
mapping of objects and actions to symbols can be performed without a human teacher
or even be implemented based on markers or RFID tags attached to objects. Only the
concrete command utterances and object names are really user-dependent. This was the
main reason for deciding to focus on the mapping between simple symbolic representations
and users’ actual utterances.

The learning algorithm does not need any transcriptions of the users’ utterances or the
words and language to be used. There have been previous approaches for learning to clas-
sify utterances without transcriptions [3] [31]. However, while these approaches recognize
the training utterances as a whole to classify them into actions, the proposed approach is
able to segment utterances into commands and their parameters. Utterances which did not
occur in the training data can be recognized if they are combinations of known parameters
with known commands. This allows the system to avoid combinatorial explosion when
learning actions which are combinations of commands with multiple different parameters.
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In the majority of systems for speech acquisition or robot leaning, understanding positive
and negative feedback is preprogrammed and feedback needs to be given by fixed modali-
ties. Only in the system by Kim et al. [55] understanding user feedback is actually learned
based on prosody information. To the author's knowledge, the proposed system is the only
one that learns feedback given by speech, prosody and touch through situated interaction
with the user.

The algorithm combines HMMs, which are a typical method used in speech recognition
and other fields which require the classification of time-series data, with concepts from
biological and psychological research. For learning associations between commands, object
names as well as feedback and the HMM representations of the observed user behavior,
classical conditioning is used in the proposed system.

All proposed approaches for learning through feedback use either robots or virtual char-
acters. The combination of a real robot with a virtual task is a novel approach proposed in
this work. It allows the system to have different robots with different capabilities, shapes
and sizes execute the exact same tasks while perceiving the interaction with the user
through the robot's actual sensors and experiencing all the effects on the user behavior,
that are caused by the appearance and behavior of the robot,

The main advantage of learning to understand users’ interaction through virtual training
tasks is, that the robot does not actually have to perform any time-consuming real-world
tasks, just for learning to understand it's user’s way of interacting, and that the robot can
learn useful command utterances from a user, even when visual grounding is difficult or
unnecessary. The existing systems for language acquisition and learning by demonstration
usually use “toy tasks” for learning, which allow an easy visual grounding of symbols for
objects and actions (e.g. all possible actions can be represented by a typical trajectory),
and the methods cannot be easily applied to learn, for example, how a user utters actual
commands for a household robot. For example, a household robot would probably be pre-
programmed to know how to vacuum clean a room or wash the dishes and just needs to
learn, how a certain user requests it to perform these tasks. In such cases, learning to
understand utterances by demonstration would be unnecessarily time-consuming. More-
over, there are several commands, that are robot-specific and cannot be demonstrated by
a human. For example, a human could not demonstrate, how to recharge, show the battery
level, switch on/off etc. Visualizing and learning these commands in a virtual training tasks
can therefore speed up and facilitate learning for a robot. Moreover, virtual tasks are easy
to perform even for elderly and disabled persons, as they do not require much physical
activity from the user.
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“Brick walls are there for a reason. The brick walls are
not there to keep us out. The brick walls are there to
show how badly we want something.”

Randy Pausch (1960 - 2008)

Characteristics of Users’ Feedback and
Commands in Human-Robot Interaction

3.1 Overview

This chapter discusses the design of the training tasks, used for command and feedback
learning and summarizes the findings from three experiments concerning users’ ways of
giving commands and feedback in human-robot interaction tasks. While the experiments,
described in this chapter, were used for analyzing the participants’ behavior in a human-
robot teaching scenario, they were also used to gather training data for learning to un-
derstand users’ feedback and commands using the learning method proposed in chapters
4 and b.

The first part of this chapter analyses the requirements for training tasks to be used
with the proposed learning method. The main function of the training tasks is providing
information on the meaning of the user’s behavior, such as positive or negative feedback, to
the learning algorithm, by giving the robot all necessary background information to enable
it to non-intrusively persuade the user to give a certain command or feedback.

The following parts of this chapter describe three experiments on analyzing users’ ways
of giving feedback and commands to a robot:

e The first pilot study investigated how restrictions in the available ways of giving
feedback affect the frequency and consistency of user feedback. It also looked into
how users give feedback in response to different types of positive and negative actions
of the robot.

e The second experiment looked into the modalities used for giving feedback as well
as the typical variability and task-dependence of user feedback. This experiment
also provided information on whether learning user feedback is useful and actually
feasible. The data, recorded in this experiment, was used to learn user feedback as
described in chapter 4.
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e The third experiments dealt with users’ commands and analyzed in how far commands
and feedback differ for the pet-robot AIBO and a child-sized humanoid robot. The
data, recorded in these experiments, was used to learn user commands and feedback
as described in chapter 5

Based on the results of these three studies, the feasibility as well as the usefulness of
learning to understand natural feedback and commands from a user instead of hard-coding
sentences and other stimuli, that the robot can understand, are discussed.

3.2 Training tasks

In order to allow the robot to explore, how its user gives commands and feedback and in
order to record positive and negative feedback for learning and further analysis, special
training tasks are used. The tasks were designed based on the following requirements:

e The tasks must enable the robot to accurately guess the meaning of the user’s com-
mands or feedback and allow the robot to explore its user's way of giving commands
and feedback

e The training should work without implementing a Wizard-of-Oz approach, that can
only be used in a controlled experimental study. Instead the method should actu-
ally be implementable in a household robot and allow the user to train the robot
independently.

e To allow independent training, the method should be easy to perform by an end-user
within a home-scenario without any special equipment.

Adaptation of a robot to its user by the proposed method is done in a training phase
before actually using the robot. During the training phase, the robot solves training tasks, in
cooperation with the user. The training tasks are designed to allow the robot to anticipate
and explore the user’'s commands and feedback.

The main difficulty, that has to be addressed when designing the training tasks for learn-
ing feedback and commands without actually understanding the user during the training
and without using the Wizard-of-Oz principle, is that the robot needs to perform the train-
ing autonomously while not having any knowledge about its user and his or her way of
interacting.

The training phase is designed to give the user the impression that the robot adequately
reacts to his or her commands in a stage, where the robot actually does not understand the
user. However, the training can be performed without remote controlling the robot, which
would be infeasible for actual use with a newly bought service robot. Instead, the tasks
are designed to ensure that the robot and the user share the same understanding of which
command is expected or whether a move of the robot is good or bad. This way, the robot is
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able to anticipate the user’s feedback and commands and can explore its user’'s expressions
of approval and disapproval as well as commands.

In order to learn positive and negative feedback, the robot uses its knowledge about the
task to deliberately make good or bad moves to provoke positive and negative feedback.
As a result, natural, situated feedback can be observed and learned.

When learning object names and commands, the training tasks are used to enable the
robot to ask for object names and make the user utter commands with a predefined meaning.

In the experiments, different kinds of “virtual” training tasks are used. The robot executes
these tasks in front of a big screen or a projection on a white surface, while interacting with
the user. Different tasks were implemented to learn commands, object names and feedback.
The experimental setting, that was used for the experiments on feedback learning can be
seen in Figure 3.1.

Figure 3.1: AIBO performing training tasks.

3.2.1 Using "virtual" training tasks

An issue, the impact of which became obvious in the preparation and during the execution
of preliminary experiments, is the very limited ability of the AIBO robot to physically
manipulate its environment and to move precisely and quickly.
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In the pilot study, described in section 3.3, this issue was addressed by equipping the
robot with a shovel to facilitate moving objects around. However, in this experimental
scenario it was still possible that the robot did not detect errors during task-execution,
such as failing to pick up the correct object or moving imprecisely. This poses a risk for
misinterpreting the current status of the task. Therefore the training tasks are implemented
in a way that the robot can complete it without having to directly manipulate and observe
its environment.

The tasks, that were used for the experiments, have been implemented as “virtual” training
tasks. “Virtual” training tasks are tasks that do not require direct manipulation of the
environment by the robot, but are computer-generated and visualized on a big screen and
the robot and the user interact with each other in front of the screen. The design of
the tasks allows the robot to manipulate objects on the screen and access all required
information about the current situation of the robot through a direct connection to the task
server. During the experiments, the image of a playfield or any other task is generated by
the task server and shown on the screen, as seen in figure 3.1. The robot visualizes its
moves and reacts to the user’s behavior, such as utterances, touch or gestures, by motion,
LEDs, gestures and sounds.

Using virtual training tasks as a basis for human-robot-communication has different
benefits. One main advantage is the reduction of effort needed to implement perception and
understanding of the environment, so that priority can be given to the system capabilities
that are actually needed for interacting with a human.

Many commercially available robots, used in research, such as the AIBO [2] or Khepera
[57] are quite small and have no or very simple actuators. So their ability to actually
manipulate objects in their environment is often quite limited. AIBO, the robot, that the
experiments were originally designed for, can only pick-up small cylindrical objects with
its mouth and needs to approach them extremely precisely in order to be able to pick them

up.

Another difficulty in real-world tasks is to detect errors during task-execution, such as
failing to pick up an object, hitting any objects that are in the way etc. Failing to detect that
an attempted action could not be performed successfully poses a risk for misinterpreting
the current status of the task and misunderstanding the user’s feedback.

Moreover, virtual tasks can be standardized easily and used with different robots that
may have different sizes, shapes and capabilities for comparative user studies. One such
study, comparing users’ interaction with a humanoid and the dog-shaped pet robot AIBO
is described in section 3.5.

For these reasons, the training tasks were designed in such a way that the robot can com-
plete them without having to directly manipulate its environment. When using a computer-
based task, the current situation of the robot can be assessed instantly and correctly by
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the software at any time. It can be manipulated freely, e.g. to ensure exactly the same
conditions for all participants in an experiment.

By reducing the risk, that either the robot or the user misinterprets the situation, the
training tasks ensure that the robot is able to anticipate the user’s next reward or instruction
correctly. This is necessary for associating the observed behavior correctly with a command
or positive/negative reward.

Using a robot simulation or a virtual agent can be an alternative to using a real robot in
many cases. However, it has the disadvantage that interaction cannot be perceived through
the actual sensors of the robot and does not occur in the same spatial context as with a real
robot. Moreover, especially in case of gestures or touch, user behavior depends on inherent
properties of the robot like its size and the location of its sensors and can be expected
to differ significantly between interacting with a real robot and a computer simulation. In
order to allow the user to train the robot in a virtual training task but use it in a real-world
situation, it must be ensured, that the interaction is similar between training and actual
interaction. Based on these considerations, it was decided to teach a real robot in a virtual
training task in order to create an efficient teaching situation.

3.2.2 Prerequisites for designing training tasks

Deliberately provoking positive and negative rewards as well as command utterances with a
predefined meaning from a user is only possible for the robot within a task where the human
and the robot have the same understanding of which moves are desirable or undesirable
or which commands need to be executed. If the task is sufficiently transparent so that the
user and the robot have a common understanding of desirable and undesirable actions,
the robot can anticipate the user's commands and explore his or her feedback behavior by
performing compliant or non-compliant actions.

Considerations for learning user feedback

During the training tasks for feedback learning, the robot needs to be able to explore
its user’s feedback behavior autonomously without remote control. The system employs
an approach for provoking users’ commands and feedback that is inspired by the Wizard-
of-Oz principle, which is widely used in research on Human-Robot Interaction [50] In
a Wizard-of-Oz scenario, the participant of an experiment has the impression that the
robot adequately reacts to his or her interaction at a stage of development, where the
robot actually cannot understand any utterances or other interaction from the user. This is
realized by having a person - the wizard, who is hidden from the participant - watching
the user and controlling the robot.

Instead of a person, who remote-controls the robot, the proposed learning method uses
special tasks, that provide all necessary information to the robot, without the user being
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aware of it. This allows the robot to robot act as if it understood the user’s interaction.
While the user thinks that he or she teaches the robot how to successfully perform a task,
such as a simple game, by giving positive and negative feedback, the robot actually already
knows how to perform the task, and therefore knows, which moves are good or bad, and can
exploit this knowledge by deliberately making good or bad moves to learn to understand
its user's positive and negative feedback. Because of its knowledge about the tasks and
because of its ability to evaluate its own moves, the robot can accurately guess the meaning
of the user’s feedback and associate it with the observed utterances.

For example, in one of the tasks the user is asked to teach the robot to select an image
which has the same contents as a sample image. In this task, the user gives feedback
to the robot for correct and incorrect selections. Using the task server, the robot knows
the position of the correct image and can therefore either select the correct image and
expect positive feedback or select any of the other images and expect negative feedback.
By selecting less correct images at the beginning of the task and more toward the end of
the task, the robot can give the user the impression that it actually learns through his or
her feedback.

Making the users believe, that the feedback is actually used by the robot to learn how
to perform a task, is necessary to make sure that they give feedback in the way they would
in a real-world teaching scenario. If a user is aware, that the robot actually learns to
understand feedback, then he or she might try to help the robot by speaking slowly or use
only simple sentences or repeat the same sentences over and over and try to accommodate
the robot's learning process, which results in unnatural training examples.

In the experiments on feedback learning, four different game-based virtual training tasks
were used for analyzing the feedback given by the user to the robot. The tasks resembled
simple children's games and are described in detail in section 3.4.1. Two of the tasks
allowed the user to give reward as well as instructions, while in the remaining two tasks,
the users were asked to teach the robot by only giving positive and negative reward.

Tasks that only allow positive and negative feedback from the user for training the robot
can be designed relatively freely as long as their goal is known to both, the user and
the robot. However, tasks that allow the user to give additional instructions to the robot
have to be designed carefully to ensure, that the user and the robot maintain the same
understanding of whether an action of the robot is positive or negative. For example,
when users feel, their current level of instruction is not interpreted correctly by the robot
they tend to give more fine-grained instructions. E.g. when the robot did not understand
‘Put the red stone on the yellow field’, the participants of the preliminary experiments
typically changed their instructions to "go forward. stop. pick up the red stone, ..". In tasks
which do not induce a total order on their subtasks, fine grained instruction can lead to
a situation where the robot’s actions do not comply with the user’s instructions, although
they lead to the correct goal state, which is known to the robot. In such cases the robot
would expect positive feedback but the user would give negative feedback. Therefore, when
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allowing instructions from the user, tasks for learning feedback have to be designed in a
way that they are either atomic or that knowing the goal state imposes a total order on
their subtasks.

However, the user’s judgment of the situation remains a potential source of errors. If
the users cannot fully understand, which moves are good or bad, they are likely to give
feedback, that the robot does not expect. Therefore, the task must be designed in a way that
the situation is easy to evaluate by the user. In three out of four tasks of the experiments
for feedback learning, described in section 3.4, the goodness of the moves of the robot was
fully transparent for the user. In the 'Pairs’ game and the "Same Image’ game the user
only had to evaluate whether two cards, chosen by the robot, show the same picture or
not to decide, whether a move was good or bad. In the 'Dog Training’ game, the users
had to evaluate, whether the motion of the robot corresponded to the command given. The
fourth training task was used to assess changes in the participants’ behavior depending on
whether they are confident in the feedback, they provide, or not. For this task, the "connect
four’ game was used, which is a strategic game, where the evaluation of a single move is
more difficult for the user and there are possible moves that are not clearly good or bad.
Using these four different tasks, the task-dependence of user feedback and properties of
the training tasks, that facilitate or hamper feedback learning, could be researched.

Considerations for learning object names and commands

When learning commands and object names, the training tasks need to ensure that the
robot is able to ask for object names and provoke commands with a known meaning from
the user. A simplified living room scenario, the “virtual living room”, was used for this task,
because this would be one of the potential working areas of a service robot.

One requirement from the learning algorithm was that the system needs to train a
recognizer for object names before being able to use these object names as parameters
when training commands. Therefore the task for learning commands had to consist of two
successive phases. In the first one, the robot asked for object names, while in the second
phase, the robot learned commands.

Designing a task for learning object names, that provides the meaning of the users’
utterances to the learning algorithm, is relatively straight-forward. In order to learn an
object name, the robot just points at an object and asks the user to name it. By using
appropriate visualizations, it can be ensured, that the user and the robot focus their attention
on the same object. This is necessary, because attaining shared attention is a prerequisite
for learning and teaching object names.

However, it would have been unnatural to make the robot ask the user to teach it a
certain command. Moreover the tasks needed to be designed in a way that the meanings
of expected commands were provided to the user in a non-verbal way to avoid influencing
the user’s choice of words, sentence structure etc. when interacting with the robot.
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To handle this problem, the system uses changes in the virtual living room, such as
a carpet getting visibly dirty or the room getting dark, as well as thinking bubbles that
visualize requests, such as watching TV or knowing the robot's battery status to make
the user give appropriate commands to the robot. This enables the robot to accurately
anticipate the meaning of the user’s utterances and even request certain scenes from the
task server, if it needed more training examples for a command.

Learning commands this way has the advantage, that even commands for actions that
cannot be taught by demonstration, such as showing the battery status or switching to
sleep mode, can be taught using the visualizations in the training task.

The sequence diagram in Figure 3.2 shows an example, how the robot uses the task
server and the interaction with the user to learn the user's way of asking for the robot’s
battery status and giving negative feedback:

Figure 3.2: Sequence diagram of command and feedback learning

First, the robot requests the task "“QUERYBATTERY” from the task server. The task
server visualizes the task on the screen by showing a battery icon with a question mark.
The user looks at the screen and gives the appropriate command to the robot ‘Aibo, what
is your battery level?”. The robot perceives the command, given by the user, and knows,
that it means “QUERYBATTERY”. It can now decide to either provoke positive feedback,
by actually informing the user about its battery level or provoke negative feedback by
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incorrectly doing something else, pretending it has misunderstood the user's command.
In the example, shown in Figure 3.2, the robot decides to learn negative feedback, so it
switches the television on instead of telling its battery level. It sends this information
to the task server, which visualizes the robot's action by showing a paw icon moving to
the television and switching it on. The robot makes appropriate movements and sounds
to make its actions easily understandable for the user. As the robot did not execute the
correct command, the user gives negative feedback, for example by saying “No Aibo!" and
touching the back sensor.

Using the recorded data, consisting of expected commands and feedbacks on the one
hand and perceived utterances and touch signals on the other hand, the robot leans, using
the learning algorithm, proposed in this thesis, that “Aibo, what is your battery level?"
means “QUERYBATTERY" and that saying “No Aibo!" in a certain tone and touching the
back sensor of the robot means negative feedback.

3.3 Exploratory Study on fixed feedback vs. users’ intuitive
feedback

A preliminary experimental study was conducted to investigate, how the frequency and
accuracy of user feedback as well as the user’s impression of the interaction are affected
by restrictions, such as using only fixed touch feedback or recorded utterances for giving
feedback. Most previous studies, focusing on reinforcement learning with a human teacher
[79][80] [47], allow the user to only give restricted feedback, such as predefined utterances
or feedback, given through a GUI interface. Throughout this pilot study the robot was fully
remote-controlled and a Wizard-of-Oz-scenario was applied.

3.3.1 Experimental setting and instruction

The experimental setting can be seen in Fig. 3.3. The AIBO was equipped with a shovel
attached to the front of its body, to enable it to move objects easily without having to pick
them up with its mouth.

The participants were told to instruct the robot to approach one of four differently colored
bricks and move it to its appropriate place. The places, that the robot had to deliver the
objects to, were marked by four A3 sized sheets of paper with differently colored frames.

Each participant received a deck of cards showing which object to move and where it
should be placed. One such card, representing the instruction to put the yellow object onto
the red sheet of paper, is shown in Fig. 3.4.
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Figure 3.3: Experiment 1: Experimental Setting.

Figure 3.4: Experiment 1: Sample Instruction Card.
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Every participant was given a short introduction on the concept of reinforcement and
was told to give positive and negative reward to the robot, L.e. to praise and punish the
robot, when necessary.

Three different reinforcement principles were introduced to each participant throughout
the course of the experiment. The first reinforcement principle was introduced before the
first trial, the following two reinforcement principles were introduced after three successful
trials and after six successful trials. The order of reinforcement principles was changed for
each user to avoid sequence effects.

The three different reinforcement principles will be referred to as "touch’, 'recorded” and
‘free’ reward.

The following instructions were given to the participants describing the different rein-
forcement principles:

e Jouch: If you want to give positive reward to the robot, touch its head sensor. If you
want to give negative reward to the robot, touch its back sensor.

e Recorded: Please decide in which way you want to give positive/negative reward.
You can choose any combination of spoken words, gestures as well as touching the
head and back sensors of the robot. Before starting to instruct the robot, please have
your choice of behavior for positive/negative reward recorded. Please stick to the
chosen behavior whenever you want to give positive/negative reward to the robot.
Please do not change your reward behavior after the beginning of this experiment

e free: The choice of positive/ negative reward is up to you. Please give the kind of
feedback you like, depending on the situation freely by voice, gestures or by touching
the robot’s head and back sensors.

The instructions, given to the participants as well as the questionnaire provided to
them after the experiments, to evaluate their impression of the interaction, can be found in
appendix 1.

3.3.2 Robot control in the experiment

During the experiments, AIBO was remote-controlled to perform the task of moving an
object to its designated place, but make some mistakes in the fulfillment of the task in
order to receive positive as well as negative reward from the user. The following actions
were considered positive because they led to the correct fulfillment of the task. Therefore,
the actions were likely to result in a positive reward from the user:

e picking up the correct object

e delivering the object to the correct target
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e recovering from a mistake, e.g. changing direction when the robot was approaching
the wrong target object

The robot made three different types of mistakes. Those actions were considered negative,
as they hamper or slow down the fulfillment of the task. Therefore, negative reward was
expected from the user:

e ‘clumsy” mistake: The robot tries to pick up an object with its shovel but misses it.
The robot tries to deliver an object to a target but misses it.

e ‘misunderstanding” mistake: The robot walks into the wrong direction towards an
object or target, simulating a misrecognition from the speech recognizer.

e ‘lazy mistake”: The robot sits or lies down or walks very slowly.

As the different kinds of mistakes were expected to have an effect on the reward behavior
of the participants, the three types of mistakes, committed by the robot, were balanced
throughout the trials.

The reward from the user in the touch” and ‘recorded” setting could be classified into
one of four categories:

e correct reward: the designated reward was given. Repetition of correct reward, such
as saying “good dog .. good dog” was still considered correct reward.

e plus-reward: the designated reward and some additional reward were given to the
robot. (e.g. touching the robots’ head sensor and saying "good robot’, in the "touch’
reward principle)

e incorrect reward: the designated reward was not given but replaced by some different
reward

e no reward: Although one of the above described positive/negative actions was per-
formed by the robot, no reward was given at all.

Only utterances/actions containing an implicit or explicit evaluation like "okay’, "good’, "bad’,
no’, etc. were counted as positive/negative rewards.

3.3.3 Results

The users’ interaction with the robot was recorded on video and analyzed after the exper-
iments. A still image from the recorded video is shown in Fig. 3.5.

In the experiments, a total of 109 minutes of video data were gathered from four par-
ticipants, interacting with an AIBO pet robot. Altogether 141 rewards were given by the
participants, 64 of which were positive, 77 negative.
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All four participants were male graduate students aged 25-35 and experienced computer
users but had no previous experience in interacting with entertainment robots or service
robots.

Reward behavior

In this pilot study, the number of participants was rather small. Therefore, a thorough
statistical analysis was not possible. However, the results can be understood as a rough
direction of what effects have to be expected when developing more or less restricted reward
modalities for a robot.

Figure 3.5: Experiment 1: Still image from the recorded video.

The most surprising result turned out to be that even though the participants were
explicitly told to stick to the designated reward behavior and to give no different kind
of reward in the "touch” and "recorded’ reinforcement principle, none of the participants
actually provided reward in the designated way only.

Out of 44 rewards, given by the participants with the "touch” reinforcement principle,
there were 19 correct rewards, 17 plus-rewards, most of which adding a speech utterance
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such as "very good!" to touching the sensors and 8 incorrect rewards, mostly providing a
speech utterance only instead of touching the sensors.

Out of the 48 rewards given by participants with the "recorded" reinforcement principle,
there were 23 correct re-wards, 18 plus-rewards and 7 incorrect rewards. The recorded
preferred rewards differed between all four users, but all included verbal utterances. One
of the users additionally decided to clap his hands for positive reward, and one participant
decided to underline verbal positive reward by touching AIBO's head sensor.

Figure 3.6: Experiment 1: Results as Bargraph.

The effect of the different reward principles on the frequency of giving rewards can
be seen in Fig. 3.6. The diagram compares the percentage of positive and negative
behaviors of the robot, like picking up an object, delivering an object or "misunderstanding’
an instruction, in response to which a reward was given by the user, between the three
reinforcement principles. The percentage of positive reward is lower because the users
typically did not give positive reward to all of the positive actions performed by the AIBO.
The only positive action that was always rewarded, was delivering the correct object to the
correct place, but the amount of positive reward given for approaching the correct object
and recovering from errors differed largely between the different participants. This is also
the reason for the larger standard deviation in case of positive rewards.

In case of "touch” reward, there was reward given for 34.7% of the positive and 80.5%
of the negative actions performed by the robot. In case of recorded’ reward, both reward
percentages are slightly higher with 37.6% positive and 86.3% negative rewards. When it
comes to "free’ reward, the percentages both increase by roughly 10% compared to "recorded’
reward. When reward could be given freely, 47.9% of the robot’s positive and 96.4% of the
robot's negative actions were rewarded by the users.
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An additional finding from the experiments was that apart from giving explicit reward, the
users tended to repeat their previous instructions in situations when either positive/negative
reward was expected, either instead of giving a reward or in addition to a reward. This
behavior was not noticeably affected by the choice of the reward principle.

The kind of mistake, committed by the robot, also affected the choice of reward behavior
given by the participants. This was not only visible in the "free’ reward principle but also
became obvious in the "touch” and ‘recorded" reward principles, where especially ‘lazy’
mistakes, which were probably rather unexpected to the participants, tended to cause
punishment behavior different from the designated one.

Questionnaire

The participants were asked to fill a short questionnaire on their experience throughout
the experiment and on their subjective rating of the different reinforcement principles.

Ratings from one to five could be given to rate the statements in the questionnaire, five
meaning “absolutely agree’, one meaning "absolutely disagree”. The results can be found
in Table 3.1. The values in each column are mean and standard deviation of the given
responses.

In the free response part of the questionnaire, the participants could utter their comments
concerning the experiments freely. Two participants remarked that, in real world, they
would not want to give reward to a robot for just doing its job, especially, if it is just
fulfilling a rather simple service task. This may be a cause for the bias towards negative
rewards, found in the experiments. Therefore, in the following two experiments for learning
feedback and commands, a teaching scenario was used and the participants were given the
impression that the robot actually learned through their feedback to make them provide
feedback to the robot more comfortably and avoid negative bias.

Participants also complained, that the task execution by the robot was quite slow, which
was one reason for choosing “virtual” training tasks for the following experiments.

3.3.4 Discussion

The findings from the pilot study suggest that natural human feedback to a robot is relatively
variable and that restricting the ways, that users can employ for giving feedback, not only
affects the user’s impression of the interaction but actually decreases the overall amount
of feedback.

Moreover, it was found that users still give additional, “incorrect” positive and nega-
tive feedback even when only fixed feedback utterances are allowed. This may lead to
misrecognitions and misinterpretations of feedback given to a robot with a fixed set of
recognizable commands and feedback utterances.
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Table 3.1: Experiment 1: Results of the questionnaire (standard deviations given in
brackets)

touch recorded free

| was able to instruct the robot in a || 1.65 (0.6) 2.75 (0.3) 475 (0.3)
natural way
| would like to give feedback to a real || 1.5 (0.6) 4.0 (0) 35 (0.3)
world service robot in the same way
Throughout the experiment, | was al- || 35 (1.2) 4.25 (0.6) 45 (0.4)
ways sure about my next step to in-
struct the robot

3.4 User Study on feedback modalities and variability of user
feedback

This section describes a user study which aimed at finding out, how users employ different
modalities to give positive and negative feedback to a robot. The usage of speech, touch
and gestures for giving reward was analyzed quantitatively. The experiments also assessed
the variability of positive and negative feedback between users and between different tasks,
that the robot performed. By analyzing and comparing users’ feedback in different training
tasks, it was investigated which features of a task encourage or discourage the user to give
feedback in a natural way.

The experiment used virtual training tasks based on easy children’'s games. During the
experiments, the image of the playfield was generated by a computer and projected from
the back to the physical playfield, as seen in Figure 3.7. When the robot made a move,
it pointed to the appropriate position on the screen and made a sound to ask the user for
feedback. When playing together with the user against a computer opponent, it reacted
to the moves of the computer by looking at the appropriate positions on the playfield. In
order to make the moves of the robot easier to understand for the user, the game-server
also visualized them on the playfield using appropriate animations. (e.g. showing a frame
around the picture that AIBO is currently looking at)

In order to provoke positive and negative feedback from a user, the robot needs to
know, which moves are good or bad, so that it can deliberately chose to make appropriate
moves for getting positive or negative feedback. As the robot does not actually understand
instructions from its user throughout the task, the user’s instructions as well as positive and
negative feedback need to be reliably predictable from the task-state. If the task fulfills
this condition the robot can easily explore the user’s reward behavior by performing in a
good or bad way. The tasks and the behavior of the robot were designed with the objective
to ensure that the user and the robot share the same understanding of the goal of the
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Figure 3.7: Experiment 2: Aibo playing one of the game tasks during the training phase.
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task as well as the way to reach it. This is done in two ways: The rules of the game
task as well as an evaluation function to calculate the quality of all possible moves are
implemented in the robot, so that it knows whether a move is good or bad in a certain
situation. On the other hand, tasks were selected, which are easy enough to allow the user
an instant and correct evaluation of the moves of the robot and give feedback accordingly.
So the robot does not need to actually understand the user's commands to know how to
correctly perform the task and can deliberately provoke feedback from the user by good or
bad performance.

Although the combination of Hidden Markov Models and classical conditioning is de-
signed to be robust against occasional false training examples it is desirable to keep the
number of errors as low as possible. In order to ensure that a good move of the robot
results in positive reward and a bad move results in negative reward from the user, the
games, used for training, must be designed in a way that the user can easily evaluate
the situation. The suitability of the different training tasks has been analyzed in the user
studies.

3.4.1 Selected game tasks

The following tasks were selected to be used in the experiments, because they are easy to
understand and allow a user to evaluate every move instantly. Four different tasks were
selected in order to see whether different properties of the task, such as the possibility
to provide not only feedback but also instruction, the presence of an opponent or the
game-based nature of the tasks influence the user’s behavior. The tasks were implemented
in such a way that the robot was not required to perform any time-consuming walking.
The different training tasks were selected and implemented in a way, that they cover two
dimensions which are assumed to have an impact on the interaction between the user and
the robot.:

e Fasy - Difficult: Training tasks can range from ones, that are very easy to understand
and evaluate for the user, to tasks where the user has to think carefully to be able
evaluate the moves of the robot correctly.

e (Constrained - Unconstrained: In the most constrained form of interaction in the
training tasks, the user is told to only give positive or negative feedback to the robot
but not to give any instructions. In an unconstrained training task, the user is only
informed about the goal of the task and asked to give instructions and reward to the
robot freely.

The positions of the different tasks in the two dimensions can be seen in Figure 3.8.
There is one task for each of the combinations “easy/constrained”, “easy/unconstrained” and
“difficult/constrained”. The reason, why there is no task for the combination “difficult/un-
constrained” is that that in such a situation, the user behavior becomes too hard to predict,
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so that the robot cannot reliably anticipate positive or negative reward. Screenshots of the
playfields can be seen in Figure 3.9

Figure 3.8: Experiment 2: Dimensions for the game tasks.

Find Same Images

On the easy/unconstrained end of the scale, there is the “Find Same Images” task. In this
task, the robot has to be taught to chose the image, that corresponds to the one, shown
in the center of the screen, from a row of six images. While playing, the image that the
robot is currently looking or pointing at is marked with a green or red frame to make it
easier for the user to understand the robot's viewing or pointing direction. By waving its
tail and moving its head the robot indicates that it is waiting for feedback from its user.
In this task the user can evaluate the move of the robot very easily by just looking at the
sample image and the currently selected image.

The participants were asked to provide instruction as well as reward to the robot freely
without any constraints to make it learn to perform the task correctly. The system was
implemented in such a way that the rate of correct choices and the speed of finding the
correct image increased over time.
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Pairs

As an easy/constrained task, the “Pairs” game was chosen. In this task, the robot plays
the classic children's game “Pairs”: At the beginning of the game, all cards are displayed
upside down on the playfield. The robot chooses two cards to turn around by looking
and pointing at them. In case, they show the same image, the cards remain open on the
playfield. Otherwise, they are turned upside down again. The goal of the game is to find
all pairs of cards with same images in as little moves as possible. In this task the user
can evaluate easily whether a move of the robot was good or bad by comparing the two
selected images.

The participants were asked not to give instruction to the robot, which card to chose but
to assist the robot in learning to play the game by giving positive and negative feedback
only.

Connect Four

As a difficult/constrained task, the “Connect Four” task was selected. In the “Connect Four”
game, the robot plays the game “Connect Four” against a computer player. Both players
take turns to insert one stone into one of the rows in the playfield, which then drops to the
lowest free space in that row. The goal of the game is, to align four stones of one’s own
color either vertically, horizontally or diagonally.

The participants were asked to not to give instructions to the robot but provide feedback
for good and bad draws in order to make the robot learn how to win against the computer
player. Judging whether a move is good or bad is considerably more difficult in the “Connect
Four” task than in the three other tasks as it requires understanding the strategy of the
robot and the computer player.

Dog training

The “Dog Training” task was implemented as a control task in order to detect possible
differences in user behavior between the virtual tasks and “normal” Human-Robot Inter-
action. Like the "Find Same Images” task covers the dimensions easy/unconstrained. The
user can easily evaluate the robot's behavior and use his/her way of giving instruction and
reward freely without restrictions. In the “Dog Training” task, the participants were asked
to teach the speech commands “forward”, “back’, “left”, “right”, “sit down" and “stand up” to
the robot. The “Dog Training” task is the only task that is not game-like and does not use
the “virtual playfield”. Only in this task the robot was remote-controlled to ensure correct
performance.
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Figure 3.9: Experiment 2: Screenshots of the virtual game tasks.

3.4.2 Instruction and experimental setting

Ten persons, aged 23 to 47, participated in the study. All of them were Japanese graduate
students or employees at the National Institute of Informatics in Tokyo. Five of them were
females, five males. All participants had experience in using computers. Two participants
had previous experience in interacting with entertainment robots. Seven participants have
kept pets before, five of them have or had a pet dog. Interaction with the robot was done in
Japanese. During the experiments, roughly 5.5 hours of audio and video data were recorded
and analyzed. The instructions and questionnaires, given to the participants, can be found
in appendix 2.

Figure 3.10 shows an overview of the experimental setting. Some videos of the inter-
action which were taken during the experiments are shown in Figure 3.11. During the
experiments, the participants could sit or stand next to the AIBO robot in front of a white,
semi-transparent screen. The playfield is projected onto the screen from the back.

The users received some general explanations on the experiment as well as a brief expla-
nation of every game task as a written document. The participants were asked to teach the
robot, how to correctly play the different games by giving instructions and positive/negative
reward for the robot's moves. They were instructed to interact with the robot naturally in
their preferred way by gesture, voice and/or by touching the robots touch sensors. They
received the explanation that the robot adapts to their way of teaching and learns to play
the different games through their instructions.

In order to record audio and video data and to endorse the impression, that the system
actually processes and learns from gestures as well as speech data, a stereo camera was
placed in 25 meters distance, facing the participant, and a microphone was attached to
his/her clothes. The locations of the touch sensors on the back and the head of the robot
were explained to the participants. In order to give the participants the impression, that the
robot is acting independently, a third dummy camera was placed below the screen facing
the robot. The participants were told that it is used by the game server for recognizing the
moves of the robot.
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Figure 3.10: Experiment 2: Experimental setting

3.4.3 Results

As for the modalities used for giving reward, a strong preference for speech-based reward
was found. Among 2409 stimuli used for giving reward, 1888 (78.37%, sd=10.51%) were
given by speech, 504 (20.92%, sd=10.95%) were given by touching the robot and 17 (0.71%,
sd=0.85%) were given by gestures. For the different users, the percentage of speech-
based rewards ranged from 52.25% to 97.75%. Gestures were frequently employed by the
participants for giving instructions, but gestures were almost never observed when users
gave positive or negative reward.

Typically, multiple rewards were given for a single positive or negative behavior of the
robot. Counting only the rewards given during the time, when the robot signaled that it was
waiting for feedback after an action, 3.43 rewards were given for one action on average,
usually including one touch reward and one to four utterances. One utterance was counted
as one reward. Repetitions of an utterance were counted as multiple rewards. In case of
touch reward, one or multiple contacts with the robot’s touch sensors were counted as one
reward, as long as the participant kept his/her hand close to the sensor.

The favorite verbal feedback differed between the users especially in case of positive
reward. None of the utterances, used for positive feedback, appeared within the first six
most frequently used utterances for all ten participants. On average, each person shared
his/her overall most frequently used positive feedback with one other person. In case of
negative reward, the feedback, given by the participants was more homogenous. The most
frequently used feedback - “wrong” (chigau) - was preferred by eight out of ten persons.
For the two remaining persons, it was the second and third most frequently used feedback
utterance.
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As for the variability of the feedback, given to the robot by an individual user: On average,
participants used 12.3 (sd=6.26%) different verbal expressions to convey positive feedback
and 13.4 (sd=6.65%) different expressions to express negative feedback. However, this
number varies strongly between individuals: One person always used the same utterance
for giving positive feedback and a second utterance for giving negative feedback while the
person with the most variable feedback used 30 different expressions for giving positive
and 28 different expressions for giving negative feedback. 55.61% (sd=25.03%) of all verbal
feedback was given by the participants using their preferred feedback utterance. 88.73%
(sd=8.17%) of a user’s verbal feedback was given using one of his/her six most frequently
used positive/negative utterances, so understanding a relatively small number of different
utterances suffices to cover most of a participant’s verbal feedback.

For positive feedback, four out of ten participants had one preferred utterance which did
not vary between the four training tasks. In case of negative reward, this was true for five
people. For eight out of ten participants in case of positive reward and six participants in
case of negative reward, their overall most frequently used feedback utterance was among
the top three feedback utterances in each individual task. In the cases, where the preferred
feedback was not the same in all tasks, it typically differed for the “Connect Four” task,
while in the three other tasks, including the “Dog Training” control task similar feedback
was used as described above. As in the “Connect Four” task it was difficult for the users
to judge, whether a move was good or bad in order to provide immediate reward, feedback
tended to be very sparse and tentative like “not really good” (amart yokunat), “Is this good?”
(it kana?) or “good, isn't it" (it deshou).

Participants’ evaluation of the different tasks

The participants were asked to answer a questionnaire about their evaluation of the different
tasks. They could rate their agreement with different statements concerning the interaction
on a scale from one to five, where five meant “completely agree” while one meant “completely
disagree”. The results can be found in table 3.2. As can be seen from the table, the four
tasks were considered almost equally enjoyable by the participants. For the “Find same
Images” task and the “Dog Training” task, the participants’ impression that the robot actually
learned through their feedback and adapted to their way of teaching was strongest. Those
two tasks allowed the participants to not only give feedback to the robot but also provide
instructions. Moreover, they were designed in a way that the robot's performance improved
over time. In the "“Dog Training” task, the robot was remote-controlled to react to the user’s
commands and feedback in a typical Wizard of Oz-Scenario. However, in the “Find Same
Images” task, which was judged almost equally positively by the participants, the user’s
instructions and feedback were not actually understood by the robot but anticipated from
the state of the training task. This did not have a negative impact on the participants’
impression that the robot understood their feedback, learned through it and adapted to
their way of teaching. The lowest ratings were given for the “Connect Four” task. As
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Figure 3.11: Experiment 2: Still images from the recorded video from different tasks.

Table 3.2: Experiment 2: Results of the questionnaire (standard deviations given in
brackets)

Same || Pairs Four Dog
Teaching the robot || 4.19 410 419 437
through the given task || (1.04) (0.83) (0.89) (0.81)
was enjoyable.
The robot understood || 4.73 419 3.10 419
my feedback. (0.4) (0.74) (0.85) (0.30)
The robot learned || 4.64 319 255 4.46
through my feedback. || (0.59) (0.93) (0.95) (0.69)
The robot adapted to || 455 3.37 255 4.36
my way of teaching. (0.66) (1.05) (1.04) (0.58)
| was able to teach the || 3.82 3.91 3.46 4.36
robot in a natural way. || (0.96) (0.86) (1.12) (0.69)
| always knew, which | 4.00 3.91 3.10 4.09
instruction or reward || (0.72) (0.86) (1.02) (0.83)
to give to the robot.
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the robot's moves could not be evaluated as easily, as in the other tasks, the participants
were unsure which rewards to give and therefore did not experience an effective teaching
situation. This also becomes apparent in the overall low quantity of feedback given in this
task which still included incorrect feedback.

3.4.4 Discussion

The user study was conducted to determine the modalities to implement in the system. It
was found, that speech was by far the most frequently used modality, when giving feedback
to an AIBO robot. 78.37% of all feedbacks were given by speech. It was followed by touch,
which was used for 20.92% of the feedbacks. Gesture was applied for giving instructions,
but did not play a significant role for giving feedback and was only used in 0.71% of
the cases. Therefore, for learning and understanding users’ feedback, emphasis should be
placed on the modalities speech and touch, while gesture does not play a major role in
conveying positive or negative reward.

Natural feedback given by different users can vary strongly, especially in case of positive
rewards. Therefore, learning to understand the feedback that a certain user employs instead
of using hard-wired and potentially unintuitive commands, which have to be learned by
the user, helps to ensure natural interaction and a positive user experience.

Learning to understand feedback through a training task is only feasible and useful,
if the feedback, given by one user is similar within different tasks. The results from the
experiments suggest that this is actually the case, and that typically a limited number of
utterances are used by an individual to convey positive and negative reward.

However, there are cases, where the contents of the utterances alone may not be un-
derstood as a reward. For instance, some of the users occasionally just repeated their
previous command in a stricter tone before or instead of giving other negative feedback
to the robot. In these cases, analyzing and learning the prosody, which determines the
sentence melody of typical positive and negative feedback utterances, can be expected to
improve the recognition accuracy.

Problems arise, if the user is not exactly sure, how to judge the robot's behavior, as in
the "Connect Four' task. Therefore, for automatically learning rewards, the task has to be
designed in a way that it is easy to understand for the user. Otherwise the amount and
reliability of the given reward, as well as the user’'s motivation to complete the training,
decrease.

The experiments have been conducted with a dog-shaped AIBO pet robot. This might
have persuaded the users to interact with the robot in a similar way as with an actual
pet. To ensure the transferability of the findings to general human-robot-interaction tasks,
experiments with other types of robots are necessary. Because of this, a third study was
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conducted, in which the differences in commands and feedback from a user for the pet robot
AIBO and a humanoid robot have been assessed.

3.5 Users’ commands for a humanoid vs. pet-robot

The third study targeted the issue that different robots may be treated differently by users
when giving commands and feedback. While the two previous studies were conducted with
the small pet-robot AIBO only, this study compares users’ feedback between the previously
used AIBO and a child-sized humanoid robot. Apart from feedback, the study also looked
into users’ ways of giving commands to the two robots.

When humans interact with other humans or with their pets they tend to adapt their way
of speaking and interacting to their interaction partner. For example, people talk to adults
in a more elaborated way than to small children, and they pet their dog as a reward while
they would rather say “thank you” when their colleague has done them a favor. Moreover,
they speak more slowly and clearly, when they assume their communication partner is not
understanding them well.

It can be assumed that similar mechanisms also affect how people interact with robots.
Especially the appearance of a robot and its resemblance to familiar creatures or objects
can be an important factor, which helps a human to anticipate the capabilities of a robot
and decide how to interact with it. The results from this research can help inform the
design choices that roboticists make when considering what type of interaction they want
with their robots.

3.5.1 Outline of the study

The user study investigated on how participants give commands and feedback to a pet-
robot and a humanoid. As a pet-robot, the dog-shaped robot AIBO was used, which has
roughly the size of a cat or a small dog. The humanoid robot, which was developed by
Honda, is 1,20 m tall, which is about the size of a 8-year-old child. Both robots are shown
in Fig. 3.13. The goal of the study was to find differences and similarities in user behavior
when the participants give commands and feedback to the pet-robot and the humanoid.

Each participant interacted with either the humanoid or the pet-robot and instructed
the robot to perform different typical household tasks like bringing a coffee, switching on
the light or the TV, tidying up etc. and gave feedback to the robot for correct or incorrect
performance.
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Table 3.3: Experiment 3: Commands that were used in the training task.

Command Parameters Example sentence

move object, place Put the ball into the box.

bring object Bring me a coffee, please.

clean object Please clean up the carpet.
switch on object Robot, switch on the light.

switch off object Switch off the radio.

charge battery - Recharge your battery.

call name Please make a phone-call to Rita.
show status - What is your status?

The “Virtual Living Room”

In order to avoid time-consuming and error-prone task execution in the real world and
because of the different physical capabilities of the two different robots, a “virtual living
room” has been implemented. The tasks as well as the actions of the robot were visualized
on a large screen. The robot was placed in front of the screen and used motion and speech
to inform the user which action it is currently performing in the virtual living room. The
robots’ actions and pointing direction were also visualized in the living room scene with a
hand or paw icon and the scene changed in response to the actions of the robot. Based
on these cues the participants could easily understand the relation between the robot's
motions and the changes happening in the scene. While the robots differed in shape and
size all other parameters were kept as similar as possible, using the same synthesized
speech utterances, similar gestures, same simulated learning rate, almost same position of
the robot in relation to the user etc.

During the training, the user could figure out by looking at the scene, what command to
give to the robot next. A graphical representation of the scene without any text was used
in order to avoid influencing the participants’ wording when giving commands to the robot.

Table 3.3 shows the list of all commands, that were used in the task along with sample
utterances for each command. The users were not instructed in advance, which commands
they had to teach to the robot but were asked to infer which commands were appropriate
by looking at the virtual living room scene.

The training phases

One experiment with one participant comprised two successive training phases. In the first
phase, the user had to teach the names of eighteen different objects to the robot. The robot
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pointed at objects on the screen and a spotlight as well as a pointing arrow was shown
in the living room scene to make it easier for the user to understand the robot’s pointing
direction. The robot then asked “What is that” ("*kore ha nan desu ka?”) to prompt the user
for an object name. After the user uttered an object name, the robot continued with the
next object.

The users were asked to only utter the object names without any additional, introductory
words. This was a requirement for the learning algorithm. Because of this restriction, the
speech, recorded in the first training phase was not evaluated.

In the second phase, a scene was shown on the screen. As described above, the scene
visualized the task that had to be performed by the robot in a way that the user could
understand which instruction would be suitable. The robot looked at the user while it
was waiting for an instruction. After the user had uttered an instruction, the robot either
performed correctly or incorrectly. For example when the user uttered a command like
“Can you bring me a coffee” the robot pointed at the screen, made an appropriate gesture
and the robot hand icon moved to the table to put the coffee cup there. Then the robot
said “Here you are” ("douzo”). For a incorrect performance, it would, for example, switch
the light off instead of bringing a coffee.

Then the robot looked at the user to wait for feedback. After receiving either positive or
negative feedback, the robot confirmed by either thanking for positive feedback or confirming
that it understood the negative feedback. As the robot could not actually understand the
given feedback, it responded according to the expected feedback depending on whether
it had performed correctly or incorrectly. The expectation almost always agreed with the
actual feedback given by the user. After that, the next scene was shown on the screen, so
that the user could continue teaching the next command.

When executing any of the commands, the robot performed a specific gesture. The
gestures were selected so that they could be implemented in a similar way on the four-
legged pet-robot and the humanoid.

Sample virtual living room scenes to prompt the user to give a command to the robot are
shown in Fig. 3.12. In the first scene, the robot asks the user to name the “audioplayer”
object. In the second scene, the user is expected to tell the robot to switch the light on. In
the third scene, the user is expected to make the robot switch off the television. The white
texts in the images show the internal representation of commands and were not shown to
the user during the training task.

3.5.2 Assumptions

Based on the schema theory [14] in psychology, which suggests that people use schemata
of familiar objects and situations to understand and handle unfamiliar situations, it was
assumed that users are likely to interact with a pet-robot in a similar way as with a
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Figure 3.12: Experiment 3: Sample scenes from the “virtual living room”
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real dog, while the interaction with a humanoid was expected to resemble more to the
interaction with a human.

Moreover, it was assumed that the participants were likely to conclude that the humanoid
is more intelligent than the pet-robot, based on its humanlike appearance. This might lead
to higher expectations and to adaptations such as a more elaborated speaking style, more
politeness, more explanations etc. when interacting with the humanoid. Details on the
expectations as well as the actually observed interaction are given in the results section.

3.5.3 Experimental setting

Sixteen participants aged from 22 to 52 participated in the user study. Ten participants (7
males, 3 females) interacted with the humanoid and six participants (4 males, 2 females)
interacted with the pet-robot for roughly 45 minutes. The language used in the experiments
was Japanese. All participants were employees of the Honda Research Institute Japan. The
instructions, given to the participants, as well as the questionnaire, the participants were
asked to fill out after the experiment can be found in appendix 3.

Fig. 3.13 shows the experimental setting. The participants were asked to sit at a table
in order to avoid excessive changes of position during the experiment. This was necessary
because video data was recorded for later analysis and for gesture recognition. The robot
was placed to the right of the participant, close enough that the user could easily reach
it with its hand to touch it. As the pet-robot was a lot smaller than the humanoid, it was
placed on the table, so that the participants could reach it easily.

The participants were equipped with a headset microphone to record audio data. Video
data was recorded using a stereo camera which was placed above the screen.

The participants were given an explanation about the two training phases. In the first
phase, they were asked to name the objects that the robot was pointing at. In the second
phase, they were instructed to give commands to the robot and give positive feedback if
the robot reacted correctly and negative feedback if the robot reacted incorrectly. They
were instructed to give commands and feedback in any way they like by speech, gestures
and touch. The participants had to teach each object name and each command ten times.
As the duration of an experiment was relatively long and the users were required to talk
a lot, there was five minute break between the learning of object names and the learning
of commands.

3.5.4 Results

In the user study two different kinds of results have been obtained: The participants
were asked to answer a questionnaire about their subjective impression of the interaction.
Moreover the data, which was recorded during the interaction, was annotated and analyzed
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Figure 3.13: Experiment 3: Experimental setting.

to find objective similarities and differences in the participants’ behavior. The t-test was
used to determine the statistical significance of the observed differences.

Questionnaire results

The results of the questionnaire, which are listed in table 3.4, show a slight tendency
towards more positive ratings for the interaction with the pet-robot. However, none of the
differences is statistically significant. There are multiple possible interpretations of the
questionnaire results. As no statistical significance has been found, there actually may be
no difference at all between the impressions of the participants who interacted with the
pet-robot and who interacted with the humanoid.

Another possible explanation for the slightly better results for AIBO may be higher
expectations for the humanoid robot, that are more difficult to satisfy. When the expectations
toward a humanoid are higher than toward a pet-robot, the same behavior is perceived less
satisfactory for a humanoid than for a pet-robot. As the robot was set to “learn” relatively
slowly, in order to gather enough training data for the command learning algorithm, the
higher expectations may have resulted in stronger dissatisfaction when interacting with the
humanoid robot.

As the study was conducted with participants from Honda Research Institute, which did
not all have previous experience in interacting with the humanoid robot but were more
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Table 3.4: Experiment 3: Users’ evaluation of the training task

Question (5: fully agree - 1: do not agree) Humanoid Pet-robot
| enjoyed teaching the robot through the given task || 3.5 (0.8) 4 (0.8)
The robot understood my feedback 3.6 (0.9) 43 (1.1)
The robot learned through my feedback 32 (1.3) 43 (0.5)
The robot adapted to my way of teaching 32 (1.7) 3.8 (1.3)

| was able to instruct the robot in a natural way 36 (1.1) 35 (15)
The robot took too much time to learn 36 (1.4) 2.7 (0.9)
The robot is intelligent 2.7 (1.3) 2.8 (1.5)
The robot behaves autonomously 2.7 (14) 2.8 (0.9)
The robot behaves cooperatively 3.7 (0.8) 3.3 (0.7)

familiar with it, than they were with AIBO, the slight differences in the evaluation may also
be attributed to the novelty effect.

User behavior

Different aspects of the users’ commands and feedback, that were assumed to be related to
the perceived intelligence and human-likeness of the robot, were analyzed. The analysis
compared the speaking speed (in seconds per word) and the number of words per com-
mand/feedback, as it could be assumed that people talk slower and in simpler sentences,
when they consider the robot less intelligent. However, it was found, that the length of
commands was almost the same for both robots. An average command for the humanoid
was 3.75 (sd=0.42) words long, while an average command for the pet-robot was 3.72
(sd=0.71) words long. The speaking speed was also similar for the pet-robot with 0.45
(sd=0.09) seconds per word, and the humanoid with 0.42 (sd=0.07) seconds per word. This
is in line with the participants’ subjective evaluation of the robots" intelligence, shown in
Table 3.4.

Multimodality

During the interaction with both robots, no pointing gestures from any of the users were
observed. A possible explanation is that all objects were very easy to distinguish verbally,
so that pointing gestures would have been redundant. Moreover, the robot took the active
role when asking for object names and pointed at the objects it wanted to learn. Touch-
based rewards were only observed for one out of ten participants for the humanoid but for
five out of the six participants who interacted with the pet-robot. As touch is frequently

58



3.5. USERS’ COMMANDS FOR A HUMANOID VS. PET-ROBOT

Table 3.5: Experiment 3: Types of commands used in the interaction with the humanoid and
the pet-robot (All values in percent, value in brackets is the standard deviation)

Type Humanoid Pet-Robot
Plain commands 75.01 (14.00) || 60.83 (41.04)
Polite commands 9.86 (10.88) || 26.23 (41.99)

Questions in commands
Implicit commands
Parameters left out

Explanations in commands

(

1023 351) || 834 (6.73)
340 (482) || 410 (7.23)
6.78 (225) || 413 (477)
181 (390) || 095 (232)

used with real dogs, it can be assumed that users considered touch to be appropriate for
giving feedback to a pet-robot because of its dog-like appearance.

Verbal commands

The study also analyzed, how many commands had explanations or polite expressions and
how many commands were phrased as a question. This was based on the estimation
that users might be more polite, explain more and use more questions when talking to a
humanoid robot, while they rather give plain commands to a dog-like robot. Commands that
contain words like “kudasai’, “kureru?’, “moraeru?” etc, which are similar to the English
word “please” were considered as polite commands. Moreover, it was analyzed, how many
commands were implicit ones like saying ‘it is too dark here” to make the robot switch
the light on, and in how many commands some expected parameters were left out like in
“put away the toy car” instead of “put the toy car into the box", because this kind of verbal
behavior might be related to the perceived intelligence of the robot.

The results can be found in Table 3.5. The values do not add up to 100% because not
all types of commands are mutually exclusive (e.g. a polite command can have parameters
left out). Quite different utterances were observed for different users and some of the
findings actually contradicted the assumptions, such as more polite commands given to the
pet-robot than to the humanoid. However, the differences seemed to be rather caused by
personal preferences, than by the appearance of the robots. This assumption is supported
by the high standard deviations between users. None of the observed differences was
statistically significant. In case of polite expressions, it was found, that most users either
used polite expressions for commands all the time or not at all. Therefore, the difference in
the amount of polite commands for the pet-robot and the humanoid robot is most probably
user dependent, rather than caused by the robot.
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Verbal positive and negative feedback

Three different types of feedback were distinguished: Personal rewards like “Thank you”
or ‘I like that better, now’, which emphasize, that the robot has done something for the
user and are given from the user’s perspective, feedback which directly comments on the
performance of the robot, like “Well done.” or “That was wrong.” and explanations used
as rewards like “That is not a toy car, it is a ball” or “That is a toy car. The usage of
different rewards for the humanoid and the pet-robot is shown in table 3.6.

Table 3.6: Types of feedback used in the interaction with the humanoid and the pet-robot
(All values in percent, value in brackets is the standard deviation)

Type Humanoid Pet-robot
Personal 5278 (17.99) || 24.83 (27.41)
Performance evaluation || 38.39 (18.28) || 70.02 (28.16)

Explanations 11.10 (14.29) 3.56 (3.90)

Statistically significant differences were found for the usage of personal rewards (df=14,
t=2.48, p=0.026) and rewards, which comment on the robots’ performance (df=14, t=2.75,
p=0.016). While the users usually gave feedback like “well done (yoku dekimashita)" or
“good (it yo)" to the pet-robot, they used more personal rewards like “Thank you (arigatou)”
for the humanoid, especially for positive reward. Fig. 3.14 shows the differences in user
feedback, given to the humanoid and the pet-robot. While the participants gave more
explanations when talking to the humanoid, especially for negative rewards, the difference
between both robots was not significant.

Behavior changes over time

The experiments also investigated the change in user behavior over time by comparing the
commands and feedback, the participants gave in the first five minutes of the command
learning phase to the commands to the feedback given throughout the whole experiment
and to the last five minutes of the experiment.

There were no significant changes in commands given to both robots over time and in
the feedback given to the pet-robot. However, two marginally significant changes in the
feedback given to the humanoid could be observed: The amount of explanations for negative
feedback was marginally significantly lower (p=0.071, t=2.06, df=9) at the beginning of
the experiments than it was throughout the whole experiment. While at the beginning of the
experiment only 26.98% (sd=32.32%) of the negative feedback for the humanoid contained
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Figure 3.14: Experiment 3: Difference in feedback for the humanoid and the pet-robot.

an explanation, it was an average of 34.57% (sd=35.87%) during the whole experiment and
went up to 75.00% (sd=35.36%) at the end of the experiment.

A marginally significant increase (p=0.091, t=1.90, df=9) in personal feedback compar-
ing the first five minutes of the command learning to the whole command learning phase
was found for the interaction with the humanoid. Overall the percentage of personal feed-
back increased from 34.85% (sd=22.62%) in the first five minutes to 61.92% (sd=24.60%) in
the last five minutes, while the average was 52.78% (sd=17.99%).

Similar trends toward more personal feedback and more explanations for negative re-
wards were also found for the pet-robot. However, the statistical significance of these
trends could not be confirmed. Fig. 3.15 compares the feedback given during the whole
task to the feedback given during the first five and last five minutes of the task. For the
interaction with the pet-robot no more explanations could be observed within the last five
minutes of the training. This is because the analysis considered explanations accompa-
nying negative feedback when the robot made mistakes. Due to the simulated learning,
the robot stopped making mistakes towards the end of the training. As the amount of
explanations was generally lower for the pet-robot, there was no negative feedback with
explanations in the last five minutes of the experiments with the pet-robot.

3.5.5 Discussion

In the experiments, there were less than expected differences in users’ behavior toward the
pet-robot and the humanoid. While especially the way of uttering commands seems to
depend rather on the personal preferences of the user, than on the appearance of the robot,
robot-dependent differences were found concerning the feedback, given by the participants.
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Figure 3.15: Experiment 3: User feedback changes over time.

The most obvious one was the frequent use of touch for giving feedback to the pet-robot,
while touch was almost not used for the humanoid. Moreover, users tended to give personal
feedback like "Thank you" to the humanoid, while they rather commented on the performance
for giving feedback to the pet-robot. These findings suggest that people actually use their
experience with real dogs as a guideline when giving feedback to the pet-robot.

When interacting longer with the humanoid, people started to give more explanations
when the robot performed incorrectly and also gave more personal reward. While the
results are only marginally significant and hard to interpret, one explanation may be, that
the perception of the humanoid robot as an intelligent interaction partner increases when
the robot shows learning capabilities and improves its performance during the experiment.
Similar tendencies could be observed with the pet-robot. However, these tendencies were
not statistically significant.

The users’ subjective evaluation did not reveal significant differences between the hu-
manoid and the pet-robot. As both robots were programmed to behave in the same way on
the same task, it can be assumed that the users’ impression of the robot’'s behavior on the
given task depends rather on its actual performance than on its appearance.
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There are different possible explanations, why no significant differences were observed
for giving commands. One of them is that both robots used speech to communicate with the
user. As speech is a typical human modality of interacting, differences might have been
stronger, if the pet-robot had communicated with the user in a more dog-like non-verbal
way. As there was no significant difference in users’ evaluation of both robots’ intelligence,
users may have considered similar types of commands acceptable for both robots.

Further experiments would be necessary to confirm whether the trend that was found in
the experiments with one particular humanoid and one particular pet-robot and a special
training task can actually be generalized to other types of humanoids or pet-like robots
and to more general tasks. As discussed in chapter 2, previous literature suggests, that
depending on their appearance, user-behavior can vary for different types of humanoid
robots and presumably the same is true for different pet-robots.

3.6 Conclusions from the experiments

Summarizing the findings from the three experimental studies, it can be concluded, that
it is useful to enable a robot to understand its user’s natural way of giving commands
and feedback instead of restricting the user to predefined commands or other means of
interaction and having him or her learn from a handbook, how to use the robot. As feedback
and commands differ between users and also between different types of robots, adaptation
to the concrete interaction situation between a user and a robot can be expected to improve
the smoothness of the interaction and make the user feel comfortable about interacting with
the robot.

3.6.1 Feasibility and usefulness of the proposed learning method

As the experiments confirmed, that feedback and commands do not vary excessively for a
single user, learning them appears feasible, as long as there is only a limited number of
commands and objects to be learned. If the number of commands and object grows large,
the training should be conducted in multiple training sessions to avoid boring or stressing
the user.

Feedback varies strongly between different users while feedback from one user is similar
between different tasks. However, users do not use the same feedback all the time but have
a limited number of utterances to express positive and negative feedback. The learning
method needs to deal with this and allow multiple ways of expressing the same command
or feedback. If this condition is fulfilled, learning feedback and commands through the
proposed training tasks is feasible.

The findings from the first experiment suggest, that users react relatively sensitive to
restrictions in allowed feedback behavior. If allowed feedback was restricted, then the
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overall amount of feedback decreased. Moreover, it was difficult for users to actually stick
to a designated feedback behavior while otherwise interacting naturally with the robot.
Learning to understand natural feedback behavior from the user is therefore expected to
increase the frequency as well as the quality of user feedback and make the user feel more
comfortable with the teaching situation.

3.6.2 Design of the training tasks

The first experiment showed that training tasks, used for the experiments, in which the
robot actually had to move around in its environment and had to pick up objects, resulted
in relatively few feedback utterances throughout the course of one experiment, because
the participants had to spend most of the time waiting for the robot to complete its tasks.
Therefore training tasks, which do not require the robot to actually move around, are
desirable to maximize the effectiveness of the training and minimize waiting times.

Training tasks need to be designed in a way that the user is sure which command, object
name or feedback he or she should give next. As seen in the "Connect Four' task, the user’s
subjective uncertainness about his or her evaluation of the current state of the task results
in less contingent and reliable reward being given by the user.

The results from the third experiment, which found changes in the amount of explanations
and reward types toward the end of the experiment, suggest that the training must not be
too short. As user behavior can change over time, when the user gets more acquainted
with the robot, the training needs to be long enough to cover these possible changes in
user behavior.

3.6.3 Multimodality

The results of the second experiment, which used virtual tasks for learning feedback, suggest
that for learning and understanding users’ feedback, emphasis should be placed on the
modalities speech and touch, while gestures do not play a major role in conveying positive
or negative reward. The same observation was made in the third experiment on learning
commands and reward with a pet-robot and a humanoid. For commands, the by far most
important modality was speech. Neither touch nor prosody conveyed information, necessary
for interpreting the commands given by the user.

In case of ambiguous utterances, such as calling the name of the robot, which can mean
positive or negative feedback, depending on the tone of the user’s voice, or repeating a
command with a stricter tone when the robot made a mistake, the prosody of the utterances
should be taken into account, because the utterances cannot be disambiguated using only
their semantic contents. Learning the prosody, that is the sentence melody, loudness etc.
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of a user’s typical positive and negative feedback utterances can be expected to have a
positive effect on the recognition accuracy, compared with speech and touch only.

3.6.4 Robot Appearance

We could not confirm any dependence between the way, in which users express commands,
and the appearance of the robot. However, we found, that the appearance of the robot
influences, how users give feedback to it. In all experiments with the pet-robot, touch was
used a lot for giving feedback, while no touch feedback was given to the humanoid. The
experiments also showed that utterances for giving feedback were different for both robots.
While the users commented on the actual performance of the robot when giving feedback
to the pet-robot, using utterances like “Well done” or “That was wrong’, they rather gave
personal feedback to the humanoid, commenting on the effect of the robot’s action for the
user, such as saying “Thank you". Learning feedback through a training task allows to adapt
to this kind of robot-dependent differences automatically without having to take them into
account at design time.
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“The most exciting phrase to hear in science, the one
that heralds new discoveries, is not 'Eureka!’ but 'That’s
funny ...” *

Isaac Asimov (1920 - 1992)

Learning to understand multimodal user
feedback

4.1 Overview

This chapter discusses the basic algorithm for learning user feedback given through speech,
prosody and touch. Extensions of the algorithm to enable the robot to understand param-
eterized commands will be presented in the following chapter.

First, an overview of the method is presented and the basic techniques, such as Hidden
Markov Models and classical conditioning, that the learning method is based on, are
described.

In the following paragraphs the proposed learning method is described in detail: The first
part explains the necessary preprocessing steps to convert audio signals to a representation
that HMMs can deal with. Then the two phases of stimulus encoding and conditioning are
explained.

Parallels to naturally occurring processes in human speech acquisition and how these
processes are implemented in the system as well as several extensions to the first version
of the feedback learning algorithm, that were implemented into the system to improve the
learning and recognition accuracy, are explained in the last part of this chapter.

4.2 Qutline of the learning method

In order to enable a robot to learn to interpret natural user feedback, a biologically-inspired
two-staged learning method is proposed in this thesis. It is modeled after the stimulus
encoding and the association processes, which are assumed to occur in human learning
[15]56] [86] of associations and word meanings. Details about the biological background
of this work are given in section 2.2.
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The proposed approach combines unsupervised training of Hidden Markov Models (HMMs)
with an implementation of associative learning using a mathematical model of classical
conditioning. The Hidden Markov Models model the stimulus encoding occurring in nat-
ural learning. They are trained in a way that each HMM clusters similar observed user
feedback. Classical conditioning is then used to associate the trained HMMs with either
approval or disapproval and integrate the available information perceived through multiple
modalities.

The combination of supervised and unsupervised learning as well as the special training
tasks, described in chapter 3, allows the system to learn to understand and adapt to a
user’s natural way of giving feedback to a robot without requiring any transcriptions of
training utterances and without any prior knowledge on the words, language or grammar
to be used.

The robot was trained using the game-based training tasks described in section 3.4. As
the tasks were designed in such a way, that they allow the robot to anticipate the feedback
that the user is going to give, one input for the training algorithm corresponding to one
feedback situation consists of three items:

e The symbol POSITIVE or NEGATIVE depending on whether positive or negative
feedback was expected

e A sequence of speech data containing one or multiple rewards to be used for speech
and prosody classification

e A sequence of data recorded from the touch sensors containing one or multiple
rewards for touch classification

The training task makes it easy to distinguish between instructions and feedback. In-
structions are only expected, while the robot looks at the screen before its next move.
Feedback is expected after the robot made a move. The time between a good or bad move
of the robot and its response to a feedback is considered as one feedback situation. All
observations that are made during this time are combined and used for the training. The
robot responds to the given feedback five seconds after either the voice activity detection
or the touch sensors has detected the last activity. If no feedback is observed, the robot
waits 15 seconds until proceeding with the next move. These values were selected based
on previous experiments, in such a way, that the robot was unlikely to interrupt the user’s
feedback.

The term "'multimodal feedback’ is used hereafter to refer to a time sequence of observa-
tlons that possesses the following properties:

e |t consists of perceptions in one or more modalities
e |t begins by an increase in activity in one of the modalities (e.g. voice onset)

e |t ends by a period of inactivity in all modalities
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Figure 4.1: Overview of the learning method

e Actions in different modalities occur in close timely relation, that is, at the same time
or in a sequence, quickly following one another.

e The perceptions follow a behavior of the robot that can be clearly attributed a positive
or negative value

Figure 4.1 shows an overview of the proposed learning method. First the speech and
touch signals are preprocessed to extract relevant features used for speech and prosody
detection.

Based on the sequences of feature vectors, output by the preprocessing, the stimulus
encoding stage trains a set of HMMs for both, speech and prosody. The models are trained
in an unsupervised way and cluster similar perceptions, e.g. utterances that are likely to
contain the same sequence of words or similar prosody. Touch is handled using a simple
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duration based model, as the data returned by the AIBO remote framework does not suffice
for HMM based modeling.

The associative learning stage is based on an implementation of classical conditioning.
It associates the HMMs, trained in the first stage, with either approval or disapproval,
integrating the data from different modalities. As users have different preferences for
using speech, prosody and touch when communicating with a robot, the system has to
weight the information, coming in through these different channels depending on the user’s
preferences. Classical conditioning can deal with this problem by emphasizing cues that
frequently occur in connection with approving or disapproving feedback for a certain user.
It allows the system to weight and combine user inputs in different modalities according
to the strength of their association toward approving or disapproving feedback.

The information whether a certain HMM has to be associated with approval or disap-
proval is retrieved from the state of the training task. In the games, used for training, each
move of the robot is either a good or a bad one. As the games were designed in a way that
the participants could easily evaluate the moves, the system uses the heuristic that positive
feedback is given for good moves while negative feedback is given for bad moves. Knowing
whether the robot made a good move or bad move before getting a certain feedback, the
system reinforces the association between the model of the observed utterance, touch or
prosody pattern and either positive or negative feedback.

The output of the learning process are HMM sets for speech and prosody as well as
a classifier for touch and an association matrix which stores the associative strengths
between the different models and their meanings.

As a model of the top-down processes, which occur in human learning, the associations
learned in the conditioning stage are used to integrate context information when selecting
the best HMM for retraining. This is done by adding a bias on models, that are already
associated with approval or disapproval depending on what feedback is expected based
on the state of the training task. Based on this bias, models that are already associated
with a certain type of feedback get more likely to be selected when the same feedback is
expected again.

The audio and touch data, which was recorded in the experiment described in section
3.4 was used for the offline training and evaluation of a model of the user’s preferred way
of giving feedback. During the experiment, a log file was written, which contained all the
moves, the robot made and an evaluation of the move as positive or negative. Based on
the audio and touch data and the log file, the system created the mappings, as described
above, between the expected feedback and the utterances and touch patterns produced by
the user, which were used as an input to the learning algorithm.

As sample data structure, created during the learning process, is shown in Fig. 4.2. At
the bottom, the HMMs as well as the touch models are shown, which are trained during the
stimulus encoding phase. The symbolic representations of positive and negative feedback
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Figure 4.2: Data structure created by the learning method

are shown at the top. The connections between the symbols and the HMMs are learned
during the associative learning phase.

4.3 Feedback modalities

Based on the findings from the studies on users’ feedback behavior as well as literature
research, the learning algorithm was designed to integrate multimodal information from the
phonetic contents of speech utterances, prosody of speech utterances, as well as touch to
recognize user feedback.

The implemented system also records video data and can track objects for gesture recog-
nitlon. However, the experiments showed that the users did not employ gestures for giving
feedback and commands to the robot in the given tasks. Therefore gestures were not used
as a modality in the recognition algorithm.

Feedback given through speech utterances varies a lot between different users and also
varies for one user. This was investigated in the experiments, described in section 3.4.

An average user employs multiple different utterances for positive as well as for negative
feedback.

Touch feedback, given by the users, could be classified into hitting and caressing the
robot. Hitting the robot corresponded to short touches while caressing the robot corre-
sponded to longer touches. Moreover, a relatively high number of participants only used
touch for positive feedback.
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As for prosody, previous studies by various researchers [13] [59] showed that certain
prosodic features of an audio signal are correlated with positive or negative emotional
valence of a speech utterance. The most important features are the pitch and the energy of
the signal as well as the energy distribution in the frequency spectrum. Positive feedback
is expected to have a high variability in the pitch and energy contours and a relatively
high average pitch while negative feedback is correlated with low pitch and a low pitch
variability and typically higher average energy but lower enerqgy variability.

Based on these findings, appropriate features were selected for encoding speech, prosody
and touch stimuli. For speech, standard MFCC feature vectors are used, which are common
in speech recognition. For prosody the system uses feature vectors based on features
calculated from the energy, pitch and frequency spectrum of the utterances. Touch is
classified based on its duration and on the location of the touch sensor, touched by the
user.

4.4 Basic techniques

The proposed learning method uses Hidden Markov Models as well as an implementation of
the Rescorla-Wagner model of classical conditioning. This section gives a brief description
of the basic ideas behind Hidden Markov Models and the development of mathematical
models of classical conditioning. It also presents the main algorithms used in training and
recognition with Hidden Markov Models and learning by classical conditioning.

4.4.1 Hidden Markov Models

Hidden Markov Models (HMMs) [89]66] are statistical models which are widely used in
speech recognition and in various other fields, such as gesture recognition, handwriting
recognition and genome analysis.

A HMM is essentially a Markov chain in which the current state is not observable.
However, while the state of the HMM itself is not visible, a sequence of outputs O =
01,02, ..., 0, from the HMM can be observed. A HMM is defined by a number of states
X = 1...n, transition probabilities A = a1, aa, ...a, between the different states, as well
as output probabilities B = by, by, ...b,. In every state i, the model produces a certain
output vector o; based on the probability density b;. Fig 4.3 shows a HMM along with its
transition probabilities and output probabilities.

The probability of an output sequence oy, ...06 being produced by traversing a state
sequence X in the model M, shown in Fig. 4.3, can be calculated as in equation 4.1.

ID(O, X‘/\/’) = 012b2(01)022b2(02)023[33(03)... (41)
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Figure 4.3: A Hidden Markov Model. (from HTKBook [89])

When HMMs are used for speech recognition, one HMM models a speech unit. This can be
a word, a whole utterance but also a phoneme, diphone, triphone or any other unit deemed
suitable for the task at hand. For speech recognition, the observation vectors are usually
vectors of Mel Frequency Cepstrum Coefficients (MFCC), calculated from the speech signal.
Details are given in section 45.2. Different types of observation vectors can be used for
other applications like gesture recognition or prosody recognition. For the implementation
of prosody recognition, described in this thesis, custom output vectors are created from
relevant features of the speech signal like pitch, energy and the frequency spectrum.

In order to recognize an utterance from a recorded speech signal, the system needs to find
the most likely HMM or sequence of HMMs that would produce the observed sequence of
speech vectors, so it needs to determine the model M with the highest probability P(O|M)
which can be calculated as in equation 4.2.

O|M Z ax(0)x(1) |_| by Ot Ux(t)x(t+1) (42)

Instead of summing up the probability over all possible state sequences, this probability
can be approximated as follows by only taking into account the most likely state sequence:

T
ID(OV\/’) = m)z(xx {GX(O)X(I) I_I bx(t)(ot)ax(t)x(t_,_l)} (43)

t=1
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However, both equations cannot be used directly for efficiently calculating the probability
of an output sequence. A computationally efficient method to calculate the probability
P(O|M) is the Viterbi algorithm which is described later in this section. The Viterbi
algorithm can be used to recognize the meaning of a sequence of observations using a
set of trained HMMs. The Baum-Welch algorithm, which is used for training HMMs from
training data is described in the following paragraphs.

Training with the Baum-Welch Algorithm

In order to use HMMs for speech recognition, they need to be trained using existing speech
data. Usually this speech data is labeled. That means, each audio file also has a label
which specifies in detail which word or phoneme was uttered at what time. The timing
information can be omitted in case of embedded training of HMMs for continuous data,
such as continuous speech.

The Baum-Welch algorithm estimates the transition probabilities A and the output prob-
abilittes B of an HMM M in a way, that the maximum likelthood of producing a set of
observation sequences, corresponding to the training data, when running through M is
optimized.

The algorithm is based on the idea to first calculate the probability of an observation
sequence based on an initial HMM and record how often which transitions and output
symbols of the HMM were used. The ones, that are used more often, get assigned a
higher probability while the probability of those, which are used less, is decreased. By
iterating this procedure until the change in probabilities falls below a threshold, the HMM
is adapted to the training examples.

The output distribution of a state is described by equation 4.4.

]. 1 / 1
bi(or) = —————e 2(07m) 2 (0rmm) (4.4)
\/ (2m)" [3)]

The parameters, that need to be estimated by the Baum-Welch algorithm are the means
p and variations ¥ that specify the output distribution. They can be estimated as the
following weighted averages:

>y Lo

o = =t o 45

Y rT:1 Lj(t) -

& _ Y1 Li(0) onty) (00 — p) (4.6)
! rT=1 Lf(t)

L;(t) denotes the likelihood of being in state j at time t which is calculated using the
forward and backward procedures of the Baum-Welch algorithm.
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The forward procedure

The Baum-Welch algorithm, which is also named Forward-Backward algorithm consists of
a forward procedure and a backward procedure The forward procedure calculates the joint
probability «;(t) of being in state j of model M at time t after seeing the observations
01...0¢:

0)(t) = P(o1, .., or, x(1) = jIM) (47)

The Markov condition defines that in a Markov chain the probability of a transition from
a state i to a state j does not depend on how the state i was reached. Therefore the
probability «;(t) can be calculated recursively based on the probability of being in one
of the predecessor states of a; at time t — 1. This recursive calculation is called “forward
procedure”, because the probability is calculated recursively, starting at the beginning of
the model and proceeding forward until reaching the end of the model.

N—-1
o(t) = [Z a(t — 1)al-,-] bi(oy) (4.8)

i=2
The initial conditions for the recursion for 1 < j < N are a;(1) = 1 because the calculation
always starts in the first state of the HMM and a;(1) = ay;b;(01) because the first state
of the HMM does not emit an output symbol. Thus, the total likelihood of observing the
state sequence O in the model M can be calculated as

N—

P(OIM) = an(T) = ) _ai(T)a (4.9)
=2

[y

The backward procedure

The backward procedure calculates the probability B;(t) of being in state j of model M
at time t and then seeing the outputs os4;...07 in a similar way as the forward procedure
but using a recursion that starts at the end of the HMM and goes backward from the end
to the beginning of the model.

B(1) = Plors1, .., orlx(t) = M) (410)

In a similar way as the forward probability a, the backward probability 8 can be calculated
as follows:

Bi(t) = . aijbj(or1)Bj(t +1) (4.11)
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The initial conditions become B;(T) = o;N and B;(t) = Z;\;l aijbj(o1)bj(1) with 1 <
i < N. The final condition can be calculated as

N—-1
Bi(1) = a1;bj(01)B;(1) (4.12)

j=2

Using the results of the forward and backward processes, the probability of state occupation
L;(t), given the observation sequence O and the model M, can be calculated as follows:

(D8, (1) = P(O,x(1) = jIM) (413
L) = PUx(0) = lo.w) = HOSEEIN) — a0B(0 (e

Based on this formula, the Baum-Welch algorithm can be used as follows to train a HMM
from a set of training utterances for that HMM:

1. Calculate the forward and backward probabilities ;(t) and p;(t) for all states j and
times t using the recursions explained above.

2. Calculate the probability L;(t) for each state using a;(t) and B;(t)

3. Iterate through all observation vectors o; to calculate the numerators and denomi-
nators used in equations 4.5 and 4.6 for estimating the means and variances of the
output distributions of each state. After processing each observation vector, store the
current values in memory for the next iteration.

4. Calculate the new parameter values for the HMM from the stored values.

5. Repeat the steps one to four, using the new parameter values, until the value P =
P(O|M) does not exceed the value at the previous iteration

Training HMMs for Continuous Speech Recognition The algorithm, described above,
can only be used to estimate parameters if labels exist, which provide exact timing infor-
mation about which HMM is used for which part of the data. For embedded training of
models for continuous speech recognition, some adaptations are necessary.

When training models for continuous speech recognition from data without time labels,
there is usually a bootstrapping phase in which a small part of the data is time-labeled
and used to calculate initial distributions for the parameters of the HMMs.

The main difference between the isolated word recognition, which was described above,
and the continuous case is that the system trains all HMMSs in parallel while the HMMs
for isolated word recognition can be trained one after the other. Moreover, the Baum-
Welch algorithm for continuous speech only updates the parameters of the HMMs after all
utterances have been used for training.

For continuous speech recognition the steps to estimate the parameters of a set of HMMs
are as follows:
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1. lterate the following steps over all utterances:

2. Create a sequence of HMMs according to the label of the utterance by concatenating
the HMMs corresponding to the label of the utterance.

3. Calculate forward and backward probabilities ¢;(t) and B;(t) as above

4. lterate over all observations o; to calculate the state occupation based on forward
and backward probabilities and update and store the numerator and denominator of
the equations 4.5 and 4.6.

5. After processing all utterances use the stored data to update HMM parameters

Recognition with the Viterbi Algorithm

When an utterance is recognized with a set of Hidden Markov Models, the recognition
algorithm tries to find the HMM sequence that is most likely to have produced the utterance
in question. While the maximum likelihood formula, outlined earlier, can be used for
recognizing isolated words, corresponding to only one HMM,, the usual case is that an
utterance is modeled by a sequence of HMMSs. In order to recognize such an utterance,
the most commonly used technique is the Viterbi algorithm, which generalizes easily from
isolated word recognition to continuous speech recognition.

The Viterbt algorithm tries to find the most likely HMM sequence and the most likely
path through it corresponding to an observation sequence o. As the number of possible
paths can grow very large, the algorithm prunes paths, which have a likelihood below a
defined threshold.

For a model M the maximum likelihood ¢;(t) of being in state j and having observed
the observation vectors 07 to o can be calculated for 1 < j < N according to the following
recursion:

¢j(t) = max {¢i(t — 1)a;;} bj(or) (4.15)
The start conditions are:
¢1(1) =1 (4.16)
¢;(1) = ai;b;(01) (4.17)
The maximum likelihood P(O|M) is then given by:
¢n(T) = max {¢i(T)ain} (4.18)

To avoid the likelihoods becoming too small when long HMM sequences of HMMs are
used, log likelihoods are used in the calculations:

¢;(t) = max {@i(t — 1) +1og(ai;) } + log(b;(or)) (4.19)
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Figure 4.4: Visualization of the Viterbi algorithm. (from HTKBook [89])

The concept of the Viterbi algorithm is visualized in Figure 4.4. The dots symbolize the
output probabilities while the arrows symbolize the transition probabilities of the HMM.
Recognizing a sequence of observation vectors O can be understood as going through the
network, starting at the lower left point and making a step to the adjacent points, summing
up the probabilities, for every observation vector o;. For continuous speech recognition
some adaptations of the isolated word Viterbi algorithm are necessary in order to record
the best path through the network of connected HMMs. The basic idea of the extension to
continuous speech recognition is concatenating all possible HMMSs and pruning the paths
which get a too low probability.

4.4.2 Mathematical models of classical conditioning

In this work, a mathematical model of classical conditioning is employed to learn associa-
tions between speech, prosody and touch stimuli and their meanings. The theory of classical
conditioning was first described by I. Pavlov and originates from behavioral research in
animals. Details are given in section 2.2.2.

Since the 1950s, psychologists and mathematicians have tried to create mathematical
models of learning processes in humans and animals. There are several mathematical
theories, trying to model classical conditioning as well as the various effects that can be
observed when training animals using the conditioning principle. The models describe how
associations between unconditioned stimuli and conditioned stimuli are learned. One main
topic of interest was creating a model of classical conditioning that can predict all the
effects that occur when a human or animal learns through classical conditioning.
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The first attempt at creating a mathematical model of classical conditioning was made
1950 by Estes, who described in his stimulus sampling theory [20], how associations can
be predicted using a statistical model. The learning algorithm, described in this thesis, is
based on the Rescorla-Wagner model, which was developed in 1972 and is described in
detail in section 4.4.2. An overview over the various models of classical conditioning and
the effects that can and cannot be explained by the different models can be found in [7]

Relevant features of classical conditioning

When humans or animals learn associations by classical conditioning, various effects can
be observed that control learning and forgetting, interference of stimuli, etc. Chapter 2
provided an overview over the features of classical conditioning. This section gives some
more details on how these properties actually affect the integration of multimodal data and
the performance of the learning algorithm.

In the proposed learning method, the concepts of positive and negative feedback are
modelled as unconditioned stimuli (US), which are known to the robot before starting the
tratning. They get associated with the conditioned stimuli (CS), which are the trained
models encoding a user’s speech, prosody and touch stimuli.

For the task of learning multimodal feedback and command patterns, the most relevant
properties of classical conditioning are blocking, extinction and second-order-conditioning
as well as sensory preconditioning:

Blocking occurs, when a CS; is paired with a US, and then conditioning is performed
for the CS; and a new CSy to the same US [7] In this case, the existing association
between the CS; and the US blocks the learning of the association between the CSy and
the US as the CS, does not provide additional information to predict the occurrence of the
US. The strength of the blocking is proportional to the strength of the existing association
between the CS; and the US.

For the learning of multimodal interaction patterns, blocking is helpful, as it allows the
system to emphasize the stimuli and modalities that are most relevant. If, for example, the
user uses touch very reliably to distinguish positive and negative feedback - e.g. always
touches AIBO's head sensor for positive reward and the back sensor for negative reward
- then a strong association is learned quickly. If this reliable touch behavior is coupled
with lots of different, maybe even unrelated speech utterances, the increasing associative
strenghts for touch will more and more suppress the learning of the unnecessary speech
utterances. The same would happen, if the user reliably says “yes” for positive feedback
and “no” for negative feedback but gives some explanations after saying “yes” or “no”. In
that case, the increasing associations for the HMMs modeling “yes” or "no” would suppress
the learning of associations for the HMMs modeling the varying, complicated explanations.
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Extinction refers to the situation, where a CS, that has been associated with a US, is
presented without the US. In that case, the association between the CS and the US is
weakened. [7]

This capability is necessary to deal with changes in user behavior and mistakes, made
during the training phase, such as misunderstandings of the situation resulting in incorrect
feedback. When, for example, the user says ‘good’, because he or she did not detect
an error of the robot, the HMM modeling “good” is associated with negative feedback.
However, when the HMM is observed multiple times later, but for positive instead of
negative feedback, then the association to negative feedback gets weaker over time.

Sensory preconditioning and second-order conditioning describe the learning of an
association between a €Sy and a €5y, so that if the CSy occurs together with the US, the
association of the CSy towards the US is strengthened, too. [7] In sensory preconditioning,
learning the association between CSy and CSs is established before learning the associ-
ation towards the US, in second-order conditioning, the association between the US and
CS5y is learned beforehand, and the association between CSy; and CSs is learned later.

Secondary preconditioning and second-order conditioning are important for the learn-
ing method, as they enable the system to learn connections between stimult in different
modalities. For example, a connection between the utterance “good” and touching the head
sensor of the robot would be learned, if these stimuli reqularly occurred together. While the
effect of the sensory preconditioning is relatively minor during the training phase, where
the meaning of utterances is given by the training task, it is interesting because it allows
the learning to continue even after the training tasks have finished. If new utterances or
other stimuli were paired with known utterances or stimult during the actual use of the
robot, secondary conditioning would enable the robot to associate the new stimuli with the
same meanings as the trained stimuli.

The Rescorla-Wagner model

In this study, the Rescorla-Wagner model [7] is used for learning the associations between
HMMs modeling speech utterances and the symbolic representations of feedback, object
names and commands. The Rescorla-Wagner model was developed by Robert Rescorla and
Allen Wagner in 1972 and most of the newer theories base on it. In the Rescorla-Wagner
model, the change of associative strength AVx(n) of the conditioned stimulus A to the
unconditioned stimulus US(n) present in trial n, is calculated as in (4.20).

AVa(n) = aaBus(n) (Ausn) — Vau(n)) (4.20)

as and Bys(y) are the learning rates for the conditioned stimulus A and the unconditioned
stimulus US(n) respectively. Aysy) is the maximum possible associative strength of the
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Figure 4.5: Learning Curves predicted by the Rescorla-Wagner model with two different
learning rates a and B.

currently processed CS to the US(n). Vall(n) is the combined associative strength of all
conditioned stimuli towards the currently processed unconditioned stimulus. The equation
is updated on each occurrence of the unconditioned stimulus for all observed conditioned
stimuli.

Modeling the effects occurring in classical conditioning with the
Rescorla-Wagner model

Learning an association between two stimuli happens, when a CS is present just before
the US occurs. In this case Ays(y) has a positive value. The actual value typically depends
on the types of stimuli. For positive values of Ays(,) , the change in associative strength
AVj(n) becomes positive, which means that the association between the US and the CS is
strengthened. As the difference between Ays,), the maximum possible associative strength
for an US and Vi, the already existing associative strength between the observed CS
and the US, gets smaller with every iteration, the typical learning curve is generated,
which is shown in Fig. 4.5.

Extinction occurs, when the CS is presented without the US. In this case, the maximum
possible associative strength to the US, AUS(H) becomes zero, as the US is not present,
and consequently AV4(n) becomes negative, which leads to a decrease in the strength of
the associative connection between the CS and the US. Thus, extinction of the previously
learned association can be observed. The stronger the existing associative strength between
the observed CS and a US the larger is the decrease when the CS occurs without the
Us.
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Blocking is also modeled by the Rescorla-Wagner model. When there is an existing
association between a CSy and an US and then a second CSs occurs together with the
C5; before the US then learning the new connection is blocked. In this case the V),
that is the association of all currently observed CS to the US is already high because of
the existing association between the CS; and the US, so the difference between Ays(y)
and Vgi(n), which is used for learning €Sy is smaller, than when the CSo were presented
alone. Therefore learning is slower in this case. If the association between the CS; and the
US is very strong, the learning of an additional CSsy, which always occurs together with
the CS; and therefore does not provide additional information, can be almost completely
blocked.

Limitations of the Rescorla Wagner model and overview over current theories

The Rescorla-Wagner model has a number of limitations, that is there are some processes
which occur in classical conditioning in nature, but cannot be accurately predicted using
the Rescorla-Wagner model.

The main limitation is, that the Rescorla-Wagner model is unable to correctly model
secondary conditioning and sensory preconditioning. That means, connections among con-
ditioned stimuli are not learned. The implementation, presented in this thesis, uses a second
association matrix and a second pass of the Rescorla-Wagner model to model secondary
conditioning and establish connections between simultaneously occurring multimodal stim-
ull. Details are explained in section 4.7.

Another limitation of the Rescorla-Wagner model is, that it is not able to model any time
dependence of the conditioning process, so it does not matter, whether the conditioned
stimulus and the unconditioned stimulus occur in very close temporal relation or whether
they are further apart from each other. However, this is not relevant for the implementation
of this learning algorithm, because only stimuli should be taken into account that occur as
a response to and in very close temporal relation to one move of the robot and only these
are passed to the learning algorithm.

Balkenius compared different advanced models of classical conditioning and their de-
scriptive strengths and limitations in [7].

4.5 Preprocessing of the speech data

The first step of the implemented learning algorithm is the preprocessing of the speech data.
Before the speech data can be used for training or recognition with HMMs, a number of
preprocessing steps need to be performed. The preprocessing phase converts a continuous
audio signal, containing speech and non-speech passages, into sequences of feature vectors.
Each sequence corresponds to one speech utterance, which can be used to train HMMs.
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A continuous speech signal first needs to be cut into a sequence of small, overlapping
pieces, so-called frames. The proposed system uses a frame-length of 32 ms with an overlap
of 16 ms. For every frame, the system needs to determine, whether it contains speech, or
not and create frame sequences corresponding to utterances.

For each frame, that belongs to an utterance, relevant features are extracted and combined
into a feature vector. The choice of appropriate feature vectors depends on the input data
and the application. Appropriate feature-sets for representing speech and prosody are
outlined in [89] [13][55] and [59].

In the proposed system, Mel Frequency Cepstrum Coefficients (MFCC) are used for
speech training and recognition. For prosody recognition a custom set of 14 features is
calculated from the pitch-contour, energy-contour and frequency spectrum of the signal.
The different steps involved in feature extraction and the feature-sets, that are used as an
input for the HMM-based stimulus encoding, are described in sections 4.5.2 and 4.5.3.

4.5.1 Voice activity detection

In order to accurately and efficiently recognize speech utterances from a continuous stream
of audio data the system first needs to determine, which of the frames of the signal actually
contain speech and which frames only contain background noise. Frames that do not contain
speech are considered irrelevant for the learning and recognition and can be discarded.

Therefore, the first step of the preprocessing phase is classifying, whether a frame con-
tains speech, or not. This step is called voice activity detection (VAD). The approach for
voice activity detection, that is used in this work, is described in [37]

The system uses two main cues to classify a frame of an audio signal into either speech
or non-speech: The energy and the periodicity of the signal. While different methods
for VAD exist, many of them are based on one or both of these features. An overview of
different methods for voice activity detection is given in [30].

Energy

The energy of an audio signal is directly related to its observed loudness. It can be
measured in decibel (DB). A frame, that contains a speech signal is typically louder than
one which only contains background noise. This means, it has a higher energy. The energy
of a whole speech signal or a frame of a speech signal can easily be calculated as:

E= Z s(t)? (4.21)
t=1
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E is the energy of a signal s which contains n samples. If the energy is calculated for
individual frames of the speech signal, the resulting value is called the short-time energy
of a signal s in frame i. For a frame of N samples length and an offset o from the beginning
of the signal the energy is calculated as follows:

E=) s(t)? (4.22)

This equation is used for calculating the short-term energy of every frame for voice
activity detection.

Periodicity

The periodicity of a speech frame mainly comes from the pitch of voiced speech. Noise
as well as unvoiced speech usually has a low periodicity, while voiced speech, especially
vowels, as well as music show a high periodicity. The more periodic a signal is, the more
melodic it sounds. The less periodic a signal is, the more it sounds like noise. In order to
estimate the periodicity of a frame of a speech signal the following approach is used:

In the Voice Activity Detector, the periodicity of the signal is calculated, based on the
LSPE (Least Square Periodicity Estimation) technique, which was first described in 1992
by R. Tucker [82]. Every audio signal s(t) can be separated into a periodic component
so(t) and a non-periodic component n(t), so that it can be written as:

s(t) = so(t) + n(t) (4.23)

fort =1,2,...N, where N is the frame length. The method tries to determine the periodic
component so(t) in a way that it minimizes the mean squared difference between s(t) and
so(t). The estimate 5g(t) can be calculated for 1 < t < Py and Ppin < Py < Ppax. as:

Ko A
So(t) =) ‘“W (4.24)
h=0

Pnin and Ppgy are the lower and upper boundaries for the period Py. In [82] they are
set to 2.75ms and 14 ms, which correspond to values between 71.43 Hz and 363.64 Hz, the
typical pitch range in a human voice.

Ko denotes the number of periods in a frame of N samples. It depends on the period
length Py and the frame length N, and can be calculated as in equation 4.25.
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Ko = +1 (4.25)

The algorithm tries to minimize the mean square error between the original signal and
the estimate of the periodic component of the signal:

N
Y [s(t) = %(0)? (4.26)

t=1

The normalized periodicity measure Ry was proposed by Friedmann in [24] and can be
calculated as in equation 4.27.

- lo(Po) — |
Ri(Py) = — 02) 1(P) (427)
>, s2(t) — h(Po)
With /; and /y defined as follows:
P Ko
t=1 h=0
N /bo Ko D 12
A 0 s(t+ hPy
=) ()= Z[ o 5( ] (4.29)
=1 =1 Ko

By finding the maximum value for Ry for period lengths Py between the minimum period
length Py, and the maximum period length P, gy the system can estimate the periodicity
and the main periodic component of the input signal.

The state machine

In order to determine, which frames of a signal contain speech or background noise, the
VAD first calculates the energy and periodicity for each frame. A sample signal which
contains only background noise is used to calculate initial energy and periodicity values.
Based on these values a threshold is calculated to detect speech.

After initialization, the algorithm processes the signal frame by frame. It uses a simple
state machine to decide whether a frame belongs to a non-speech passage, is a speech
onset, is a frame within in a speech passage or is a speech ending. The state machine has
four states and transitions between them, which are shown in Fig. 4.6:

85



CHAPTER 4. LEARNING TO UNDERSTAND MULTIMODAL USER
FEEDBACK

Figure 4.6: Statemachine for Voice Activity Detection. (t1 = enerqgy threshold, t2 = pe-
riodicity threshold, t3 = minimum onset length, t4 = energy timeout, t5 =
periodicity timeout)

e SILENCE: No speech is observed. The state machine starts in this state. When
observing a new sample, the state machine stays in the state SILENCE, if either the
energy or the periodicity does not exceed the computed thresholds. If both values
exceed the thresholds it will go to the state ONSET.

e ONSET: A possible speech onset has been detected. From this state the state
machine can go back to the state SILENCE, in case either the energy or periodicity
thresholds have not been exceeded in a frame. This means that no actual speech was
detected. It goes to the state SPEECH if both periodicity and energy thresholds have
been exceeded for a given number of frames. If both energy and periodicity thresholds
have been exceeded, but the set number of frames for detecting speech has not been
reached, the system stays in the state ONSET.

e SPEECH: Speech is being observed. When observing a new frame, the system
can either stay in the state SPEECH, if both energy and periodicity are above the
threshold or go to the state ENDING if one of the values is below the threshold.

e ENDING: A possible speech ending has been found. If a timeout of 300 ms for energy
or 500 ms for periodicity has occurred without detecting further speech, the system
goes to the state SILENCE and returns the detected speech signal to be processed
by the learning algorithm. If both thresholds are exceeded the system goes back to
the state SPEECH. Otherwise it stays in the state ENDING to wait for either the
timeouts to expire or new speech to occur.
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4.5.2 Preprocessing for utterance recognition

The signal frames that have been classified by the voice activity detection as containing
speech are passed to the subsequent preprocessing steps for utterance and prosody learning
and recognition. To recognize utterances with HMMs they have to be transformed into a
sequence of feature vectors. The proposed system uses feature vectors consisting of Mel-
Frequency Cepstrum Coefficients as an input to the speech utterance based learning and
recognition phases.

Extraction of Mel-Frequency Cepstrum Coefficients

The mel frequency scale is a psychophysiological scale to measure pitch, which is modeled
after human aural perception. It has been developed in 1937 by Stevens et al. [76]. A
tone that has twice the mel-value is perceived as twice as high. For tones up to 500 Hz
the Mel scale corresponds to the frequency scale. That means 100 Hz correspond to 100
mel, 300 Hz correspond to 300 mel and so on. For tones that are higher than 500 Hz, the
human perception of pitch increase and the actual increase in frequency diverge and the
frequency intervals between tones that are perceived to have the same distance increase.

A frequency can be converted into a mel value as in equation 4.30 where m is the mel
value and f a frequency in Hz

f (4.30)

=1124.010481 14+ —
m 01048 log, ( + =00

Mel-Frequency Cepstrum Coefficients (MFCC) are based on the above described mel
scale and represent the observed audio signal in a similar way as human aural perception.
MFCCs are widely used in speech recognition applications because they emphasize the
frequencies that differ depending on speech phonemes while suppressing the speaker-
dependent influence of the speaker’s vocal tract shape as well as the influence of prosody
on the speech sounds.

To extract MFCCs from an audio signal, the signal is first transformed into the frequency
domain by applying a Fourier transform. Then it is filtered using a special mel filter bank,
consisting of 24 triangular shaped filters, which is shown in Fig. 4.7.

Next the mel filtered spectrum is converted into the cepstrum by first calculating the
logarithm of each component of the filtered spectrum and then calculate the discrete cosine
transformation of it. The result is called the "Mel Frequency Cepstrum” and each of the
coefficients is called a “Mel Frequency Cepstrum Coefficient” and is used to construct the
input vector to the speech learning and recognition.

In the proposed system, MFCCs are automatically extracted from the audio signals by
HTK. [89].
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Figure 4.7: Filterbank for mel-filtering [89]

4.5.3 Preprocessing for prosody recognition

While MFCCs as a standard feature set are used for learning and recognizing the contents
of speech utterances, a custom feature set is used for representing prosodic information.
The system uses three different prosodic cues for learning and recognizing prosody, which
have been described in literature [59] [13] as being related to the emotional valence of
spoken utterances. These cues are the energy contour, pitch contour and the frequency
spectrum of the utterances.

To capture this information, the system first cuts the signal into frames of 32 ms length
with 16 ms overlap. The frame size must be selected in such a way that one frame is long
enough to contain several pitch periods of the signal. On the other hand, a frame must
not be too long, as a high resolution of pitch and energy contours is desirable. Moreover,
the frame size must be selected small enough to avoid large variations in the length of
fundamental periods within one frame, so that the signal can be assumed to be quasi-
stationary within a frame. Typical frame sizes for speech processing are between 10 and
64 ms. To get smoother transitions between frames and increase the resolution of pitch
and energy contours, frames typically overlap each other.

For each frame, the preprocessing phase extracts the short-time energy, pitch and short-
time power spectrum. In the next step, feature vectors are calculated from this information,
including the values of pitch, energy and the energy ratio in different frequency bands for
the current frame as well as the changes in energy and pitch between the previous frame
and the current frame.
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Energy extraction

As explained in section 4.5.1, the energy of a frame corresponds to its perceived loudness.
This is relevant for the prosody recognition, because the energy contour gives information
on the positive or negative valence of a speech utterance. For example, an angry utterance
is typically louder than an approving utterance. In the same way, as described in section
451, the energy of a frame of N samples length from a signal s(t) with an offset of o
samples from the beginning of the signal the enerqgy is calculated as follows :

E=) s(t) (4.37)

t=o0

The system calculates the energy as well as the difference in energy compared to the
previous frame for each frame of the speech signal.

Pitch extraction

The most important cue to determine positive or negative valence of a speech signal is the
pitch contour. The fundamental frequency (fg) of a speech signal is determined by the
resonant frequency of the vocal cords. It is the physical correlate of the perceived pitch
of an audio signal. The fundamental frequency varies when a sentence is spoken. For
example, it is raised at the end of a question while it falls at the end of a declarative
sentence. The pitch also varies on syllable level. The relation between pitch and meaning
or sentence types does, however, depend strongly on the language. For example, in tonal
languages, pitch can actually change the meaning of a word. The variation of pitch in the
course of a sentence is called pitch contour.

A sample of an audio signal and its pitch contour is shown in Fig. 4.8. Pitch only exists
for voiced phonemes and it is visible in the power spectrum of a voiced frame as a peak in
the range between 80 and 450 Hz, depending on the age and gender of the speaker.

In many cases the pitch can be seen with the bare eye when looking at the power
spectrum of a frame of a speech signal. It is the first maximum in the spectrum while higher
maxima typically mark the formants of the speech signal. However, determining the pitch
only by peak-picking from the spectrum is rather unreliable.

To determine pitch, lots of methods have been proposed in literature over the years. Most
algorithms for pitch tracking are based either on the cepstrum, LPC or autocorrelation of
a signal. Each of them has its various advantages and disadvantages and a method that
always yields optimal results is yet to be found, as explained in [75]. Comparisons of the
different pitch tracking methods can be found in [23] [75] and [65] The error rate of the
different algorithms depends on the use-case as well as the speaker and the background
noise.
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Figure 4.8: A speech signal and its pitch contour

In this work, the YIN algorithm [17] is used for extracting the pitch of an audio signal.
The YIN algorithm is based on the autocorrelation idea, however it has various advantages:

e |t is relatively easy to implement and well-documented in literature.

e |t is robust against noise, which is important as it is used with data recorded by a
moving robot.

e According to [17], the error rate of the YIN algorithm is lower than in most older
methods.

The YIN algorithm

The YIN algorithm [17] was developed in 2002 and is based on the autocorrelation method.
The autocorrelation method, which is not very reliable, when used alone has been extended
and refined in six steps. According to [17] these steps lowered the average error rate on
the authors’ test database from 10% to 0.5% compared with the standard autocorrelation
method.

The main difference between the autocorrelation method and the YIN algorithm is that
the autocorrelation method tries to maximize the product of the original signal and its
time-shifted version while the YIN algorithm tries to minimize the difference between the
original signal and its time-shifted version.

The basic idea behind this method is, that if a perfectly periodic signal s is shifted
against itself, then the difference between the signal and its shifted version is O when the
shift distance is the same as the period T of the signal:

St — St4T = 0, vVt (432)
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Therefore, the YIN algorithm can determine the most salient periodic component in a frame
of the speech signal by minimizing the following difference function:

w

di(1) =) (5j—5/40)° (433)

=1

The main advantage of this approach over the autocorrelation is, that changes in amplitude
are less likely to cause errors. If a signal gets louder over time, then the autocorrelation
function might show higher peaks in later parts of the signal and therefore estimate a too
low fundamental frequency. The difference function does not have this problem, because
changes in amplitude always result in higher values of the difference function.

The next step is replacing the difference function by a cumulative mean normalized
difference function. This means, that the original value of the difference function at the
position T is divided by the mean of the difference function for all possible time shifts
smaller than 7.

d'(7) { : or 1 =0 (4.34)
T) = d((T) . . .
T a0 otherwise;

Errors when determining pitch by searching the minimum of d’(7) often come from picking
later minima, which may be caused by the first formant and can be deeper than the
minimum corresponding to the pitch frequency. A threshold is used to handle this problem.
If a minimum is lower than the threshold then the search for later minima is stopped.

In the next step, the minimum, found in d’(7), and its direct neighbors are interpolated
by a parabolic function and the minimum of the parabolic function is used as the real
minimum. This improves the results of the pitch extraction, if the sampling frequency,
that was used when recording the signal, is not a multiple of the fundamental frequency.
Without interpolation, errors of at most a half sampling period length are expected to occur.

The final step ensures that estimations of the fundamental frequency do not change too
much from one frame to the next. When a large jump in pitch is detected, an error is
likely, as the pitch in a natural speech signal typically only varies slightly from one frame
to the next. The final step is based on the observation that erroneous estimations of the
fundamental frequency are often accompanied by a high value of d;(T;) where T; is the
pitch period length determined by the algorithm. Slightly varying the parameter t often
results in a lower minimum that corresponds to the actual fundamental frequency of the
frame.

Therefore, for each t a minimum dj(Tp) is searched in the interval [% %] where

Tg is the expected fundamental frequency at time 8 and T4 the maximum expected period
length. According to [17] a value of Tpay = 25ms has been used successfully.
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The pitch, calculated by the YIN algorithm, as well as the pitch difference between the
current frame and the previous frame are calculated for every frame of the speech signal
and added as components in the feature vector for that frame.

Frequency spectrum

The frequency spectrum of a frame of an audio signal gives information about which fre-
quency components a signal consists of. The lowest frequency in the spectrum is zero, the
highest possible frequency is half the sampling rate of the audio signal, as the highest
frequency, that can be represented in a sampled audio signal depends directly on the
sampling rate. This frequency is called the Nyquist frequency. Fig. 4.9 shows a speech
signal in the frequency domatn.

To calculate the frequency spectrum of a frame, first a window function is applied to the
samples in the frame. The purpose of windowing a frame is to suppress artifacts, resulting
from the samples at the beginnings and ends of frames, by reducing the amplitudes of
those samples. This phenomenon is called “spectral leakage”. “Spectral leakage” results
in additional maxima in the frequency spectrum, which are artifacts and do not have a
correspondent in the actual signal.

Typical window types are Hamming-, Hanning- Blackman or rectangle windows [64]. All
window types have various advantages and disadvantages and therefore have to be selected
based on their purpose. In speech recognition the most frequently selected windowing
functions are Hamming- and Hanning windows. In this work the Hamming window function
is used, which can be calculated as in 4.35, where n are the samples and N is the frame

length.

2 N N
w(n) =0.54 —0.46 cos(ﬂ , <n< )

) =2 (435)

For each windowed frame the power spectrum is calculated. It can be determined from
the sampled input signal with the help of a discrete fourier transform:

N—-1
Sk=) sk (4.36)
t=0

Sk denotes the fourier coefficients of the signal s. N denotes the number of samples per
frame. The power spectrum can be calculated from the fourier coefficients S¢ by squaring
them.

Sl = |Si? (4.37)

The effort for directly calculating the fourier transform using the DFT formula can be
reduced by using a fast fourier transform (FFT). Calculating the FTT using the Cooley-
Tukey-algorithm, which was used in this thesis, is a standard method that can be found in
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literature, such as [25]64]. The FFT implementation used in this work is taken from the
book “Numerical Recipes: The Art of Scientific Computing” [63].

Figure 4.9: Speech signal in the frequency domain

From the power spectrum the system calculates the energy ratio in ten frequency bands,
which are equally spaced between 0 Hz and 8000 Hz, that is the energy in each of the
frequency bands normalized by the energy of the whole frame.

Creation of the prosody feature vector

Based on the data calculated from the energy, pitch and power spectrum the system
generates feature vectors for prosody learning and recognition. As shown in Fig. 4.10, one
feature vector consists of the pitch, the pitch difference to the previous frame, the energy,
the energy difference to the previous frame as well as the energy ratio in the ten frequency
bands as described above.

Figure 4.10: Prosody vector

The sequence of feature vectors for a speech utterance is written to a file in a HTK
compatible format, which is described in section 6.3.2. Then it is used as input for the
stimulus encoding stage of the algorithm.
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4.6 Stimulus encoding

Based on the feature vectors, which were generated during the preprocessing phase, the
stimulus encoding phase clusters the robot's perceptions of the user’s feedback, creating a
low-level model of the user’s behavior. The stimulus encoding uses Hidden Markov Models
for speech and prosody and a simple duration-based model for touch.

For each feedback, given by the user, the best matching speech, prosody and touch models
are determined using the methods, described in 4.6.1 to 4.6.3 and new models are created,
if necessary. Then, the best matching models are retrained with the data corresponding
to the observed feedback and passed on to the feedback association learning stage where
they are associated with either approval or disapproval based on the situation, that the
robot was in, when perceiving the feedback.

4.6.1 Speech utterances

To model speech utterances, the system trains a user-dependent set of whole-utterance
HMM s for the observed feedback. As the robot learns automatically through interaction, no
transcription of the utterances is available. Therefore, unsupervised clustering of perceived
feedbacks, that are likely to correspond to the same utterance, is necessary.

This is done by using two recognizers in parallel. One recognizer tries to model
the observed utterance as an arbitrary sequence of phonemes using an existing set of
monophone HMMSs. The other recognizer uses the already trained utterance models to
calculate the best-matching known utterance. It initially does not contain any HMMs and
is filled with the trained models in the course of the training. When the system observes
feedback from the user, it tries to recognize the utterance with both recognizers. Matching
is done using HVite, an implementation of the Viterbi Algorithm, included in the Hidden
Markov Model Toolkit (HTK) [89]. The recognizers return both, the best-matching phoneme
sequence and the best-matching utterance out of the previously generated utterance models.
A confidence level is output by the system for both recognition results.

The confidence levels, which are calculated by HVite as the log likelihoods per frame
of both results, are compared to determine whether to generate a new model or retrain
an existing one. Typically, for an unknown utterance, the phoneme-sequence based rec-
ognizer returns a result with a noticeably higher confidence, than the one of the best
matching utterance model. For a known utterance, the confidence corresponding to the
best-matching utterance model is either higher or similar to the best-matching phoneme-
sequence. Therefore, if the confidence level of the best-fitting phoneme sequence is worse
than the confidence level of the best-fitting utterance model or less than 1075 better, then
the best-fitting utterance model is retrained with the new utterance, assuming that the
best-fitting model is actually a model of the observed utterance. If the confidence level of
the best-matching phoneme sequence is more than 107 better than the one of the best-
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fitting whole-utterance model, then a new utterance model is initialized for the utterance,
assuming the utterance is unknown. The new model is created by concatenating the HMMs
of the recognized most likely phoneme sequence. The new model is retrained with the ob-
served utterance and added to the HMM-set of the whole-utterance recognizer. So it can
be reused when a similar utterance is observed. The threshold of 107 was determined
experimentally, using data that was recorded with the same audio equipment but not used
for training or evaluation. An overview of the training for speech is shown in Figure 4.11.

Figure 4.11: Algorithm for recognizing speech.

The phoneme-sequence recognizer
The HMM-set for the phoneme-sequence recognizer contains all Japanese monophones
and is taken from the Julius Speech Recognition project [44].

The phoneme-sequence recognizer uses a simple grammar, which is shown in listing
41. It permits an arbitrary sequence of phonemes, not restricted by a language dependent
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dictionary. A sequence of phonemes may have an optional beginning and ending silence
and contain short pauses:

Listing 4.1: Grammar of the phoneme-sequence recognizer.

$phoneme=N|ala:|blbylchl|dldylele:|flglgylhlhylil
i:ljlelkylmlmylninylolo:lplpylqlriryls|shlspl
tltslulu:lwlylz;

$feedback=[silB]{$phoneme} [silE]

Standard left-right HMMs are used for training and recognition. The HMMs are based
on the MFCC feature-vectors calculated in the preprocessing phase. Monophone models
are used instead of diphone and triphone models although the latter are more powerful and
widely used in speech recognition, because of their smaller number and lower complexity.
While the monophone set for Japanese contains only 43 models, 7946 HMMs are contained
in the Julius triphone set for Japanese.

As the initial HMMs only form a basis for constructing word models and training them
in a user-dependent way, perfect accuracy is not needed for the initial models. Moreover,
the number of states of the word models directly depends on the number of states of the
concatenated elementary models, which is significantly higher for triphone models. To keep
the number of necessary training utterances low, the degrees of freedom, that is the number
of states and transitions, used when training the models should not grow excessively large.

The utterance-based recognizer

The utterance based recognizer starts with an empty HMM set for recognition at the
beginning of the training process. It is successively filled with models, generated from
observed utterances. When an utterance occurs, that is classified as new by the above
described algorithm, the system creates a new model by concatenating the HMMs of the
phoneme sequence recognized by the phoneme-sequence based recognizer:

First, the beginning and ending silence models are discarded, as they do not belong to
the utterance itself and the recognizer should be able to recognize similar utterances even
when no silence is present at the beginning and the end. Optional beginning and ending
silence models are added later using the recognition grammar.

During recognition with the phoneme-based recognizer, the Viterbi algorithm calculates
the recognized phoneme sequence by concatenating phoneme models. Concatenation is
done by unifying the non-emitting first and last states of the phoneme models. Details
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are given in the description of the Viterbi algorithm at the beginning of this chapter. The
same way of concatenating a sequence of phoneme models is applied by the learning
algorithm for creating a new utterance model from the best sequence of phonemes, that the
Viterbi algorithm has determined. Based on the phoneme models, a new state sequence
and transition matrix are written by copying the states and transitions from the phoneme
models to the new model, which is used as a basis for training with the user's actual
utterances.

To be able to integrate the newly created model into the utterance-based recognizer,
the HMM list, grammar and dictionary need to be updated to include the new model. The
HMM list is simply a list of all existing HMMs in a HMM set. The dictionary can be used
to map a sequence of HMMs to an output symbol - e.g. to map the phoneme sequence ‘i
z " to the word “easy”. In the proposed system, the dictionary maps every model on itself,
because every feedback utterance is modelled by one HMM. The grammar, which is shown
in listing 4.2, describes all possible sequences of HMMs that are allowed as an output of
the recognizer. In the utterance recognizer, exactly one of the learned utterance is allowed,
with an optional beginning and ending silence:

Listing 4.2: Grammar of the utterance recognizer.

$possibleutterance=utterancel |utterance2|utterance3]|...

$feedback=[silB]{$possibleutterance}[silE]

Determining the threshold for creating new models

In the description of the learning algorithm for speech utterances, a threshold of 172 is
mentioned as a suitable cutoff value for the decision whether an utterance is already known,
or not.

The threshold was determined experimentally using a set of utterances, not used in
training or recognition. The utterances were first hand-classified into classes of same
or very similar utterances. In the next step, each of the utterances was recognized with
the phoneme recognizer to create the best-fitting phoneme sequence. For each utterance a
grammar was created, allowing only the best matching phoneme sequence of that utterance.
And all other utterances were “recognized” using that grammar, to obtain the confidences,
which are represented as the log likelihoods per frame.

This way, typical differences of log likelihoods per frame within a class of same utterances
and between classes could be determined. The threshold was selected in such a way, that
it lies between the average in-class difference and the average between-classes difference.
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However, it was found to be useful to select a threshold closer to the average in-class
difference than to the between-classes difference, so that the system avoids training and
associating the same model with utterances with different meanings, which would lead to
misrecognitions. This may sometimes lead to creating two different models for utterances,
that are actually the same, but this can be handled by the associative learning stage, which
can associate both models with the same meaning.

4.6.2 Prosody

The approach, proposed in this dissertation, employs HMMs for recognizing the prosody
of speech utterances. The HMMs for interpreting prosody are based on features extracted
from the speech signal, as described in section 45.3. The signal is divided into frames of
32 ms length with 16 ms overlap. For every frame, the system calculates the pitch, the
energy as well as the frequency spectrum.

Based on this data, a feature vector is calculated consisting of the pitch, the pitch
difference to the previous frame, the energy, the energy difference to the previous frame
and the energy in frequency bands 1-n. The sequence of feature vectors is written to a file
in HTK format in order to be used for training the HMM:s.

Additionally, the algorithm calculates some global information based on the sequence of
feature vectors for all frames belonging to one utterance. These are the average, minimum
and maximum pitch and energy, the range and standard deviation of pitch and energy as
well as the average difference between two adjacent frames of pitch as well as energy. For
determining, which HMM is trained with which utterances, the system relies on these global
features which have proven effective for speech emotion and affect recognition [13]55]59].

The k-means [34] [71] algorithm is used for clustering utterances with similar global
features. The cluster number is optimized between two and ten. This clustering approach
using global features was chosen instead of directly working with the time-series data,
because there were no available, previously trained initial models for clustering similar
perceptions, like the phoneme HMMs for speech. Therefore, the approach of comparing the
confidence values of two recognizers to decide whether to create a new cluster or not, could
not be applied easily to learning prosody. After the clustering has finished, one HMM is
trained for each of the clusters, generated by the k-means algorithm.

To associate the HMMs with approval or disapproval, every utterance is recognized
using the trained HMMs to get the best matching model. This model is then passed to
the feedback association learning stage. Figure 4.12 shows an overview of the prosody
recognition.
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Figure 4.12: Algorithm for learning prosody.

Clustering prosody training samples

The input to the clustering are global feature vectors. One such feature vector is generated
per utterance, containing global information on its pitch and energy contours as well
as the frequency distribution, such as averages, variances and average differences. Before
starting the clustering, the feature vectors are normalized. This is necessary to calculate the
euclidian distance for the k-means algorithm, because the different features have different
ranges of values. Otherwise, features with large ranges of values, such as energy variance,
would have a higher influence on the distance than features with a small range of values,
such as the mean pitch difference between frames.

The clustering, based on the k-means algorithm then works as follows: First, the prosody
feature vectors are distributed randomly to k clusters. The averages of the feature vectors
in each cluster are calculated and used as the centers of gravity of the clusters for the next
step of the clustering algorithm.

Next, every feature vector is re-assigned to the cluster with the smallest euclidian dis-
tance between the feature-vector and the cluster center. After reassigning all feature
vectors, new centers of gravity are calculated for each cluster.
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The execution of the algorithm ends, when either a maximum number of 1000 iterations
has been reached or the cluster centers do not change anymore.

The k-means algorithm assumes a fixed value for k. As the number of different prosody
classes is not known, the system runs the k-means algorithm multiple times for cluster
numbers between two and ten. The quality of the clustering is then calculated as the
average distance between cluster centers divided by the average distances within the
clusters between the prosody feature vectors and the cluster center. The best cluster
partitioning is then used to decide which utterances are used to train which HMM. For
every cluster one HMM is created and trained with the utterances corresponding to the
feature vectors within that cluster.

4.6.3 Touch

The implementation of the touch recognition does not use HMMs to model touch but a
simple duration based model. This is because the output of the touch sensors of the AIBO
robot does not suffice for HMM-based modeling: It is binary and does not contain any
information on the force applied when touching the sensors. Moreover, the refresh rate
when using the AIBO remote framework is quite low. Therefore, the algorithm classifies
touches of the head sensor and of the back sensor depending on their duration:

e short: less than 0.5 seconds
e medium: between 0.5 seconds and 1 second
e long: one second or longer

Typically, short touches were observed when the user was hitting the robot, while medium
and long touches corresponded to stroking the robot. However, many participants in the
user study employed touch only for expressing approval by stroking the robot.

4.7 Feedback association learning

In the feedback association learning phase, an association between the HMM or touch
pattern, that matches the current observation and is obtained from the feedback recognition
learning, and either approval or disapproval is created or reinforced. The information of
whether an HMM should be associated with approval or with disapproval is obtained from
the current state of the game and passed as an input to the learning algorithm. If the
last move of the robot was a good one, the model, which represents the perceived user
feedback, is associated with approval. If the last move was a bad one, it is associated with
disapproval.
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Figure 4.13: Algorithm for learning touch.

In the proposed system the associations between HMMs and stimuli are stored in an
association matrix. The system uses the Rescorla-Wagner algorithm, which is described
in more detail in section 4.4.2, to calculate the associations between positive and negative
feedback on the one hand, and utterances, prosody patterns and touches on the other hand,
and to update the association matrix accordingly. When a user feedback is observed, the
association between the observed stimuli, encoded by the corresponding HMMs and touch
models, and either the US “positive feedback” or “negative feedback” is strengthened. The
change in associative strength, AVx(n), is calculated as described in equation 4.38 and
added to the corresponding value Vj ys(,) in the matrix.

AVa(n) = aaBus(n) (Ausn) = Vau(n)) (4.38)

In the next step, the formula is used with the CS that have been observed and the
US that did not occur (e.g. negative feedback in a positive feedback situation) to handle
extinction, so that incorrect associations, resulting from misrecognitions or incorrect user
feedback get weaker over time.
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In this study, the learning rates a and B for conditioned and unconditioned stimuli are
fixed values for each modality. They determine how quickly the robot learns and adapts
to changes in feedback behavior. The maximum associative strength Ays(,) is set to one,
if the corresponding CS is present, when the US occurs, zero otherwise. The combined
associative strength of all conditioned stimuli towards the unconditioned stimulus Vg
is calculated by summarizing the association values of all CS towards the US, that have
been calculated in the previous runs of the feedback recognition learning.

The major drawback of the Rescorla-Wagner-Model is that it cannot model the effects of
second-order-conditioning and sensory preconditioning directly. The algorithm deals with
this issue by using a second association matrix storing the associations between different
conditioned stimuli and running a second pass of the Rescorla-Wagner-algorithm to learn
associations between simultaneously occurring CS. In this second pass, the CS; serves
as the US for the conditioning of CSs. In a third pass, the algorithm updates the relation
between the US and all CSy, that have an association to the observed CSy, using a new
learning rate aa.,.,,,, Which is calculated as the product of the original learning rate ax
and the associative strength between the CS; and the corresponding CSs.

4.8 Integration of top-down processes

Without top-down processes, all HMMs are equally likely to be selected for retraining in
the feedback recognition learning phase. The selection of the best-matching model depends
only on the perceived signal while the context is not taken into account.

Based on the findings on human learning, which are described in section 2.2, integrating
context information using top-down processing is helpful to disambiguate ambiguous per-
ceptions, deal with noisy signals and reduce the search space by pruning interpretations
of perceptions that do not fit in the situation.

In order to improve the selection of the best-matching speech and prosody models for
retraining, a model of top-down processes has been integrated into the system [21] It
uses the associations, learned in the feedback association learning phase, to generate
expectations about which HMMSs are most likely to occur in a given context.

Knowing through the state of the training task, whether positive or negative feedback is
expected from the user, the system uses the learned association matrix to assign a positive
or negative bias to each of the existing HMMs. The algorithm calculates the bias By for
an HMM A from the difference of the associative strength V4 of the HMM A towards the
expected feedback and the associative strength of it towards the opposite feedback. For
positive feedback, the factor would be calculated as in (4.39).

Bs = G\/A,positive - bVA,negative (439)
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The constants a and b, which can have values between 0 and 1, determine the impact
of the excitatory and inhibitory influences on the calculated bias. A high value a makes
the system reuse known HMMs, which are already associated to the present stimulus. A
high value b makes the system avoid HMMs, which are already associated to a different
stimulus. It was found that moderate values for @ and high values for b produce best
results. In the experiment, the learning algorithm used the values ¢ = 0.2 and b = 0.8.

The bias By is used, if the feedback recognition learning determines that there is more
than one HMM that models the stimulus well enough to be a candidate for retraining. In
this case, the biases modify the confidence factors returned by the Viterbi algorithm. The
biases B4 and the normalized confidence factors C4 are weighted as shown in equation
4.40 to select the best HMM for retraining.

Dy = cBa+ (1 — C)CA (4.40)

Using this method, HMMSs, which are already associated with either positive or negative
feedback, become more likely to be selected when a similar feedback is expected again.
Depending on the constant ¢, associations of one HMM with both positive and negative
reward are more or less likely. A value of ¢ = 0.8 has turned out to increase the quality of
the HMM selection, while still allowing HMMSs for ambiguous utterances to be associated
with both, positive and negative reward.

4.9 Extensions of the learning method

While the previously explained procedure has been designed to allow both, online learning
during actual interaction as well as offline learning using pre-recorded data, some addi-
tlonal improvements can be made when online training is not needed and the system is
trained offline using a full set of data, recorded during the training phase with a user.

4.9.1 Multiple passes through the training data

By exploiting the offline training, additional information can be extracted from the training
data and initial misrecognitions and sub-optimal assignments of utterances to HMMs can
be handled to improve the trained models by passing through all training data gathered
from one participant multiple times:

When the system learns in one pass through the training data, applying the proposed
algorithm can result in different qualities of trained HMMs depending on the order of
the training samples. Utterances, that have been assigned to train a certain model at the
beginning of the training might be a better fit for another model which is created later.
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To overcome this problem and increase the accuracy of the clustering process, the al-
gorithm can make up to three passes through the training data. In the first pass it only
decides whether to create a HMM if an utterance is unlikely to have been observed before,
or not to create a new HMM if an utterance is close to an existing model. However, in
this phase, the system does not train the models with the user’s utterances but just creates
utterance HMMs by concatenating phoneme models.

In the second pass the algorithm does not create any new HMMs but uses the HMMs,
created in the first pass and assigns each utterance to the best-fitting HMM. At the end
of the second pass, the HMMs are retrained with the assigned utterances. This way, the
system can make sure that all utterances, including the ones at the beginning of the training
are always assigned to the best fitting model.

After the second pass the HMMs are trained with the assigned data. It is possible to
use a third pass to again reassign the utterances. This especially improves the accuracy if
HMMs with a low number of training examples have been pruned and the corresponding
data has to be reassigned.

4.9.2 Treating “no feedback” as a special kind of feedback

One issue, that became clear during the evaluation of the study, is that in many cases
there is a meaning or systematics when users do not give feedback or do not use a certain
modality, when giving feedback. For example, the user only gives positive feedback by
touch, while he does not touch the robot for negative feedback, or the user sometimes does
not give any feedback at all when the robot makes good moves but reliably corrects bad
moves.

Therefore treating “no feedback” in a situation, where feedback is expected, as a special
kind of feedback helps increasing the recognition accuracy. The information, that no feed-
back has been given through a certain modality is exploited by the learning algorithm as
follows:

If no speech or touch was observed after the robot has made a good or bad move,
the symbol NO_TOUCH or NO_SPEECH is passed to the association learning phase as
a result of the stimulus encoding instead of a HMM or touch model together with the
other observed stimuli. The symbols NO_TOUCH or NO_SPEECH are handled by the
associative learning in the same way as ‘normal” speech or touch stimuli and thus get
associated with positive or negative reward and can be used for recognition in the same
way as other stimuli.
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4.9.3 Pruning and re-clustering samples

Training a Hidden Markov Model needs a minimum number of training samples. Otherwise
the trained model overfits the training samples and does not generalize well. When the
system creates models which only very few training examples then there are basically two
options to avoid overfitting models: Either not to train these models but use the original
phoneme sequence that was generated when the model was first created or to prune models
with a too low number of training samples and delete them from the HMMSet. In [89] a
minimum number of three training utterances per HMM is suggested. This value has been
used for training and evaluation of the system.

If models are pruned and the amount of training data is small, it usually makes sense to
re-allocate the training samples for these models to one of the existing models. In a third
pass through the data after the first training, this is done by forbidding the creation of new
models, reassigning each utterance to the best-fitting HMM and re-training the models
with the data.

4.9.4 What parts of the HMMs should be re-trained?

Due to the small number of training examples available for each model, it is necessary to
reduce the number of degrees of freedom of the HMMs to be trained. As described at the
beginning of this chapter, an HMM is defined by its states, its output probabilities and
its transition probabilities. In order to keep the degrees of freedem for training low, the
system only trains the means of the gaussians for the output probabilities of the HMMs
while keeping the transition probabilities as well as the variances of the original models.

Keeping the variances of the original models has a second benefit apart from reducing
the degrees of freedom for the training. If the amount of training data is small, the variances
can become too narrow, as a result of overfitting to the training data, which makes them
unsuitable for recognizing utterances, that have not been part of the training data. In [89] it
is recommended to set a floor for the variances to avoid this problem. If re-training from an
existing set of HMMSs, trained with a large amount of data, such as the Julius phonemeset,
used in this thesis, keeping the variances results in the same effect.

4.10 Recognition using the trained models

The output from the training phase is a set of HMMs for speech utterances and prosody,
models of touch as well as an association matrix holding the associations between the
trained HMMs and the symbols “positive” and “negative”.

After the training, the trained models and association matrix can be used for recognizing
feedback. Fig. 4.14 shows an overview of the recognition process. Like in the training
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phase, the data is first preprocessed and converted into sequences of feature vectors for
speech, prosody and touch. After the preprocessing, the speech, prosody and touch feature
vectors are passed to the stimulus encoding stage, which uses recognizers based on the
trained models created by the learning algorithm to determine the best-matching HMM
for the observed utterance or prosody pattern or the best touch model. Then the strongest
association is determined using the trained association matrix and the results of the
recognizers as an input. The output of the recognition is a classification result of either
“positive feedback” or “negative feedback”.

All feedback given in one feedback situation, that is after one good or bad move of
the robot, is combined for recognition. The combined associative strengths Vg positive and
Valt,negative for positive and negative feedback respectively are obtained by summing up the
associative strengths between all recognized speech, prosody and touch models (CS) in
feedback situation n and either positive or negative feedback. For Vg positive the combined
associative strength is calculated as follows:

Vall,positive(n) = Z \/A,positive (4.41)
AeCS(n)

The combined associative strength for negative feedback is calculated accordingly. The
recognition result is the feedback with the highest combined associative strength to the
recognized models. It is output as the result of the recognition process.

4.11 Experiments

The training method and the learning algorithm were evaluated experimentally. Ten per-
sons, aged 23 to 47/, participated in the study. All of them were Japanese graduate students
or employees at the National Institute of Informatics in Tokyo. Five of them were females,
five males. All participants had experience in using computers. Two participants had pre-
vious experience in interacting with entertainment robots. Interaction with the robot was
done in Japanese. During the experiments, roughly 5.5 hours of audio and video data were
recorded. Details on the experiments as well as a quantitative analysis of the observed
user behavior were presented in section 3.4.

4.11.1 Results

The performance of the learning algorithm was evaluated offline with the data recorded
within the above described setting. On average 24.73 (sd=16.50) HMMs were created
per speaker for speech and 4.49 (sd=0.22) for prosody. On average, 65.13% (sd=18.37%)
of the models for speech, prosody and touch were associated with positive and 34.87%
(sd=18.37%) with negative reward.
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Figure 4.14: Overview of the recognition

The system was trained and evaluated in a user-dependent way using 10-fold cross
evaluation. The recognition rate is calculated as the number of accurately recognized
feedback situations divided by the overall number of feedback situations. A feedback
situation corresponds to one good or bad move of the robot. All the feedback that occurs
after a move of the robot is combined for recognition. The average accuracy of the proposed
method for classifying between approving and disapproving feedback, given by one user,
based on speech, prosody and touch was 95.97%. The standard deviation between users was
3.30%. As the feedback given by the participants showed a slight bias toward approval, the
confusion matrix, shown in Table 4.1 gives a more detailed overview over the performance
of the recognizer.

Without using top-down processes for speech, the recognition rate for speech as a single
modality drops to 77.42% (sd= 13.12%). This degrades the overall recognition rate to
93.95% (sd= 5.33%).

Using speech only the recognition rate was 83.53% with a standard deviation of 8.30%.
Using prosody only, the recognition rate was 84.27% with a standard deviation of 8.57%.
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Table 4.1: Confusion matrix for feedback learning (in percent)

Positive(actual) Negative(actual)

Positive (recognized) 5250 176
Negative (recognized) 2.27 43.47

For touch the recognition rate was 88.17% with a rather high standard deviation of 11.77%
as the usage and frequency of touch varied strongly between users.

To calculate the single-modality recognition rates, all feedback given through other
modalities was filtered out. However, all feedback given through the selected modality
occurring in one ‘feedback situation’, for example multiple speech rewards given for one
move of the robot, was still combined. All single-modality recognition rates are considerably
lower than the recognition rate for multimodal feedbacks shown above. This underlines
that combining stimuli given through different modalities is crucial for reliable recognition.

A marginally significant improvement (p=0.0514, t=1.816, df=9) was found when com-
paring the combined multimodal recognition to the best single modality, touch, using a
paired T-Test on the recognition rates for all participants. Significant improvements were
obtained when comparing the combined multimodal results to the results from speech
(p=0.0015, t=4.014, df=9) or prosody (p=0.0010, t=4.315, df=9) alone. The recognition
rates for the different modalities and participants can be seen in Fig. 4.15.

When using a combination of speech and touch without prosody and without top-down
processes, the recognition rate was 90.33%. The improvement reached by adding prosody
and top-down processes was not statistically significant. Possible explanations for this
are the relatively low number of participants and the fact that three of the ten participants
already had 100% recognition rate with only speech and touch. Especially the results for
the participants which had low recognition rates using only speech and touch benefitted
from adding prosody and top-down processing.
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Figure 4.15: Multimodal and single modality recognition rates for all participants.
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“Jede Loesung eines Problems ist ein neues Problem.”
("“The solution of every problem is another problem.”)

Johann Wolfgang von Goethe (1749 - 1832)

Extension of the algorithm for learning to
understand parameterized commands

5.1 Overview

This chapter shows how the method, described in chapter 4, was extended in order to
enable the robot to learn not only feedback but also object names as well as parameterized
commands. Understanding commands and understanding feedback are necessary functions
for a robot that assists a human, for example, in everyday household tasks.

Using the training task, described in section 3.5, in which the user and the robot interact
which each other using a virtual living room scenario, the system learns to understand
eight commands and 16 different object names through situated interaction with a user.
Like the training for feedback leaning, the training for command learning is also performed
using a “virtual” training task. The training task depicts a simplified living room scene and
is conducted in two successive phases, as described in chapter 3.5. In the first phase of the
training, the robot learns to understand the names of objects in the living room by asking
the user to name the objects that it points at. When enough object names are known, the
robot continues with the second learning phase.

In the second phase of the learning process, the robot learns command patterns like
‘switch the <object> on!", 'Please move <object> to <place>" etc. It uses the task server,
which visualizes changes in the virtual living room scene, to make the user utter commands
with a predefined meaning and learns the commands as well as the positions of parameters,
that can be used to specify the command.

The HMMs for the object names, which have been trained in the first phase, are used
in the second training phase for determining and learning the positions of parameters in
commands. By searching the most likely part of an utterance, that corresponds to a trained
object name HMM, e.g. finding the most likely position of an HMM associated with the
meaning TELEVISION, when an utterance with the meaning SWITCH_ON(TELEVISION)
is expected, the system can determine the parameter positions in the commands and model
the order of command parts and parameters in the grammar for the recognizer.
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In order to enable the system to learn commands, both, the stimulus encoding and the
associative learning stage had to be adapted to the new task. Details of the necessary
adaptations are presented in the following paragraphs.

5.2 Requirements

While positive and negative feedback utterances do not need to be segmented but can
be processed as a whole, commands may contain different parameters, which need to be
handled by the system. For example, the command “Put the book on the table!” contains
the object name “the book” and the place name “the table” and the command “put” itself. In
order to understand the meaning of the whole utterance, the command and its parameters
need to be segmented and the system needs to be able to determine, which parts of
an utterance belong to the command itself and which parts of the utterance belong to
parameters, so that the trained command pattern can later be combined with different
parameters for recognition. For example a command model for the concept SWITCH_ON,
that was trained with the utterance “Switch the <TV> on” can be reused for the utterance
“Switch the <light> on” or “Switch the <radio> on"

Users do not always give commands in an explicit way but can also give implicit com-
mands. Instead of saying “Switch the light on!", the user might say “It is too dark here." or
instead of “Switch the TV on!” he or she might say “l would like to watch TV The learning
method must be able to handle implicit commands as well as explicit commands.

When a user utters a command, some expected parameters may be omitted. For example,
the user might say “Put <the ball> away" instead of "Put <the ball>> in <the box>". The
system must be able to detect and handle such cases.

In order to learn the correct meaning of its user’s utterances, the robot needs to know in
advance, which commands the user is going to utter and even make the user give commands
in his or her preferred way but with a predefined meaning. However, verbal instructions
must not be given to the user in order to avoid influencing the user’s wording. This is done
by showing situations in the virtual living room, where it is obvious which task needs to
be performed by the robot. The user is informed about which actions he or she should ask
the robot to perform, by typical and easily recoverable changes in the living room, such
as a carpet getting dirty or a book falling from the shelf. Moreover, thought balloons with
appropriate icons are used to visualize requests of the user, which cannot be understood
easily from the state of the virtual living room alone, such as wanting a coffee or wanting
the robot to shutdown.

Details are given in section 3.5. Some examples of command visualizations and possible
commands from the user are:
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It is getting dark and the light is still switched off:
“Switch the light on!”

A dirty spot on the carpet:
‘Clean the carpet, please!”

A book has fallen off the shelf:
‘Can you put the book on the shelf?”

An icon showing a battery and a question mark?:
“What is your battery status?”

A thought balloon showing a battery and a connector:
“‘Go to your charging station!”

5.3 Outline of the implemented extensions

In commands or requests, uttered naturally by a human to another human, a pet or a
robot, only a part of the utterance actually conveys the meaning, while a relatively large
number of words could be omitted without affecting the understanding of the command
and often make a grammatical and semantic analysis more difficult. Such words are, for
example “please’, “can you” or “for me” as well as articles and several other grammatical
constructs. What the robot actually needs to know to execute a naturally spoken command
like "AIBO, can you please switch off the light for me?" can be reduced to the simple
meaning SWTCH_OFF(LIGHT). Therefore, the proposed system tries to learn models of
the actual utterances of a user, without analyzing their structure more than necessary, and
map the learned utterance models to their meanings.

The system does not try to analyze the grammatical structure of a command, but rather
attempts to learn command-patterns as a whole and just determine the positions, where
parameters can be inserted, instead of parsing the utterance and analyzing it word-by-
word. A command-pattern is a sequence of utterance-part HMMSs and placeholders for
parameters. Each of the utterance-part HMMSs can cover a sequence of multiple words,
which are not further analyzed.

For example, if the user utters the command “Bring me a coffee please!”, the system would
first determine the position of the word “coffee” as an already learned object name, and
then use the parts “Bring me a” and “please” to train the utterance-part HMMs BRINGT
and BRING?Z respectively and create the command-pattern BRING1 {PART} BRING?Z for
the command BRING. { PART} is a placeholder, where the system can insert parameters at
recognition time. So the same command pattern, which has been trained on the utterance
“Bring me a coffee please!” can be used for recognizing the utterance "Bring me a tea
pleasel!”, if the word “tea” has been learned before.
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While this approach is less flexible than a full grammatical analysis it can be used
relatively easily to model a user's typical ways of uttering commands without requiring
any prior knowledge on the user's language or typical way of speaking.

In a real-world scenario, the training tasks, which allow the robot to adapt to its user,
would have to be performed before actually starting to use the robot. In order to allow
for a quick and easy training, for example in front of the TV/PC screen, “virtual” training
tasks are used. For the experiments on command learning an animated virtual living room
was created as a simplified 3D-model of a living room, because this is a typical scenario
in which a household robot would be applied. It is described in more detail in section 3.5
of this thesis. The virtual living room is projected on a white screen and the robot uses
motions, sounds and its LEDs to show which moves it is making. Appropriate animations
are shown in the virtual living room for each move.

5.4 Learning command patterns vs. symbol grounding

A lot of research has been done on automatic symbol grounding for robots [40][72]. Symbol
grounding is a complex task in which symbols, such as the words of a natural language,
are connected with meanings, that is objects, places, actions etc. in the real world. It often
involves visual recognition and naming of objects or actions.

This work has a slightly different focus. The proposed approach concentrates on learning
how a certain user utters commands and feedback, but it assumes that the robot already
knows basic symbolic representations of the actions, that it is able to perform and the
objects/places, it can recognize. For example, it knows, how to perform the task, repre-
sented by MOVE (objectA, placeB). The approach further assumes, that these actions can
be performed in the virtual training task and also be transferred to a real-world task.

In order to react to natural, multimodal commands and feedback, based on its known ca-
pabilities, the robot needs to learn a mapping between its existing symbolic representations
of commands, object/place names or feedback and the way, they are expressed naturally
by a certain user, using speech, prosody and touch. This enables the robot to deal with
instructions given by the user in his or her preferred way. Assuming, that the robot already
knows basic grounded symbols by the time of the training with the user is a relatively hard
requirement. However, as this knowledge can be acquired in a user-independent way, this
is likely to be the case for typical service- or entertainment robots, which normally have
a set of built-in functions and can visually recognize and manipulate certain objects in
their environment. While commands and feedback depend on the user and are particularly
suitable for acquisition in a training phase, the required mapping of objects to symbols
could be performed without training by a human teacher, for example based on markers,
pre-trained recognizers or RFID tags attached to objects. Therefore, the proposed learning

114



5.5. EXTENSIONS TO THE TRAINING TASKS

method focuses on the mapping between simple symbolic representations and users’ actual
utterances.

5.5 Extensions to the training tasks

The design of the training phase is a key point for the learning method, because it needs to
enable the robot to provoke commands as well as feedback from the user, which are leaned
in the virtual task but can be used to control the robot in the real world. For training
the robot, computer-based ‘virtual' training tasks are used, like in the previous study on
feedback learning. However, in order to provoke useful commands, the system cannot use
the previous game-like tasks but instead uses a “virtual living room”, a simplified 3D model
of a living room. In this “virtual living room”, the robot is able to perform all the commands,
that it needs to learn. The basic idea behind this approach is, that the user would perform
the training together with the robot in front of the PC or TV and then use the learned
commands and feedback to control the robot in the real world.

The virtual living room, that has been used for the experiments, is shown on a large screen
and the robot uses motions, sounds and its LEDs to show which move it is performing.
During the training, the robot cannot actually understand its user but needs to react
appropriately to allow natural interaction. This is ensured by designing the training task
in a way, that the robot can anticipate the user's commands.

During the training phase, the robot sends the requests, which object, place or command
and reward it wants to learn, to the task server. The task server then visualizes the expected
command or highlights the requested object/place on the screen in a way that the user can
understand it easily. It also sends relevant information, such as the coordinates of objects
back to the robot, so that it can, for example, perform a pointing gesture to ask for an object
or place name. When the user utters a command, the robot can either perform a correct or
incorrect action to provoke positive or negative feedback from the user. This way, the robot
is able to explore the user’s way of giving different commands as well as feedback.

The system can only learn verbal representations of simple commands consisting of one
action and the related objects. Table 5.1 shows the set of commands that the robot learns
in the experiments along with their parameter signature and an example of a sentence that
the user might utter.

5.6 Extensions to the learning algorithm

Like the algorithm for feedback learning, the command learning algorithm is divided into
a stimulus encoding phase and an associative learning phase. In the stimulus encoding
phase, the system trains Hidden Markov Models (HMMs) to model command patterns,
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Table 5.1: Commands that were used in the training task

Command Parameters Example sentence

move object, place Put the ball into the box.

bring object Bring me a coffee, please.

clean object Please clean up the carpet.
switch on object Robot, switch on the light.

switch off object Switch off the radio.

charge battery - Recharge your battery.

call person Please make a phone call to Rital!
show status - What is your status?

object/names which are used as parameters, as well as positive and negative rewards
based on speech, prosody and touch stimuli from the user.

In the associative learning phase, the system associates the trained models with a known
symbolic representation, integrating the data from different modalities. For example, it
associates an HMM sequence, representing the utterance “Could you please move <A>
to <B>" with the known symbolic representation MOVE (object, place) or the utterance
“Good robot” and a touch of the head sensor with positive reward.

An example of a data structure resulting from this learning process is shown in Fig. 5.1.
The rewards are modeled in the same way as described earlier in chapter 4. Command
patterns are modeled as sequences of HMMs for speech and touch. Prosody models
are associated with either positive reward, negative reward or command, to distinguish
these three classes of utterances, in case this information is not given by the context.
The representations of place and object names as well as details on the structure of the
command patterns are not shown in the figure. It can be found in Fig. 5.2.

5.6.1 Stimulus Encoding

The stimulus encoding phase was modified to enable the robot to learn commands and
object/place references. As described in the previous chapter, the learning algorithm for
feedback is based on Hidden Markov Models for speech as well as for prosody and a
simple duration-based model for touch. However, for learning commands and object names
the contents of the speech utterances plays the most important role, while prosody and
touch have relatively little impact.

As in the feedback learning algorithm, the system determines the best matching models
for each command or object name, spoken by the user, using two recognizers in parallel. If
there is no good existing model, a new one is created. Otherwise, the best matching model
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Figure 5.1: Data structure created by the learning algorithm

Figure 5.2: Data structure of a command

is retrained with the data corresponding to the observed command or object name. When
retraining has finished, the models are passed on to the association learning stage.
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Speech

For learning commands, it can be assumed, that speech is by far the most important
modality. Therefore the development of extensions for learning commands and object names
was focused on speech.

There are three different kinds of utterances, that the speech stimuli encoding needs to
deal with: positive/negative feedback, names of objects/places and command-patterns. The
learning of feedback has already been described in the previous chapter. Object names
can be learned in exactly the same way as user feedback, because the whole utterance
can be modeled as one HMM.

As opposed to user feedback and object names, command-patterns can have a variable
number of slots for inserting parameters. Typical parameters are object- or place-names.
The commands in the experiments had zero to two parameters, like 'Recharge!”, "Clean
<object> please’ or "Can you move <object> to <place>?. An example of a command
structure is shown in 5.2. The leaves of the tree are trained HMMs. The inner nodes
are symbolic representations of objects and command patterns. The thick lines represent
associations, learned later in the associative learning phase. Feedback-utterances, names
of objects/places and commands without any parameters can be trained as single HMMs.
In case of commands with one or more parameters, the system needs to model the corre-
sponding command pattern using multiple HMMs with placeholders to allow the insertion
of HMMs representing objects/places used as parameters.

In the same way as for learning feedback, the system also uses two recognizers in
parallel for learning commands in order to determine whether an utterance is already known
or whether a new utterance model should be created to encode an observed utterance.
However, the recognizers differ from the ones, used for feedback learning.

The first, phoneme-based recognizer uses monophone models when learning object names
and a combination of monophone models and trained utterance models for object names
when learning commands. The second, utterance-based recognizer uses only the previously
generated command and parameter models. It is initially empty. Details on the recognizers
and the grammars used by them to determine object positions and parts of the command
patterns are given in the following sections.

A new model is created when none of the existing models is a good match of the cur-
rent utterance. This situation is detected by obtaining the recognition results of both the
phoneme-based and the utterance-based recognizers and comparing the returned confi-
dence values (log likelihood per frame). As in the feedback learning, the same difference in
confidence of 107°, has been used as a cutoff value to determine whether an utterance is
already known or not. Thus, If the result from the phoneme sequence recognizer is not at
least 10~° better than the result from the utterance-based recognizer, then it is assumed
that the utterance is already known and it is retrained with the current utterance. Oth-
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erwise it is assumed to be unknown and a new model is generated by concatenating the
phoneme models corresponding to the recognized phoneme sequences.

If a model is created for an object name or for a command which does not have any
parameters, one model is created for a whole utterance. However, when learning commands
with parameters, multiple models are created. One model is created for each non-empty
phoneme sequence either before the first parameter, after the last parameter or between
parameters. Information about the order of the generated utterance models as well as the
parameter positions and the order of the parameters is stored separately, because this
information is needed for creating the grammar for the utterance-based recognizer. For
example, if the expected command is MOVE(BALL, BOX) and the user says “Put the ball
into the box!", then the system will create two new models, named ‘MOVET" and "MOVEZ2"
based on the phoneme sequences for “put the” and ‘into the" and stores the command
pattern ‘MOVET{ PART}MOVE2{ PARZ}".

It is possible, that a user utters a command with less parameters than expected from
the symbolic representation. For example the user might say ‘It is too dark here” to
utter the command SWITCHON(LIGHT). In this situation the number of parameters in
the command pattern and in the symbolic command representation do not match and the
missing parameter is usually implicitly contained in the utterance. This is handled in the
associative learning stage of the algorithm, which is explained in section 5.6.2. An overview
of the training for learning a command pattern is shown in Fig. 5.3.

Creation of the search grammars for training

In order to learn a command pattern consisting of multiple HMMSs, the system must first
determine which parts of the utterance belong to the verb pattern itself and which parts
belong to its parameters. From the training task, the system knows which parameters to
expect. The algorithm uses this information to locate object/place names in the utterance.
The search grammars for the recognizers, used for learning object names and command
patterns, are created and updated on the fly during the learning process.

For learning object names, the phoneme-based recognizer accepts an arbitrary sequence
of phonemes with an optional beginning and ending silence. The utterance-based recog-
nizer accepts exactly one known utterance model of an object name with an optional
beginning or ending silence.

When learning commands, the system has to handle parameters and their positions within
the utterance. Therefore search grammars for both recognizers need to be created for each
observed utterance. The search grammars are used to find the the parameter positions in
the spoken utterances from the user and model the rest of the utterance either by phoneme
sequences or by previously learned command patterns in order to decide whether to train
an existing command pattern model or create a new one.
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Figure 5.3: Extended learning algorithm for speech for command learning.

If, for example, the system perceives an utterance that is assumed to correspond to the
symbolic representation MOVE(BALL, BOX), then the system first uses the trained associ-
ation matrix to find all models that have an association to the symbol BALL and all models
that have an association to the symbol BOX. Based on this information, search grammars
for the phoneme-based recognizer and the utterance-based recognizer are created:

The search grammar for the phoneme based recognizer allows both parameters in either
order or one of the parameters or no parameter to handle cases, when the user omits one or
all of the expected parameters when uttering a command. Arbitrary phoneme sequences are
inserted before, between and after the parameters. Listing 5.1 shows the search grammar
for a command with two parameters, object1 and object2.

The utterances 1 to 3 in this grammar are all utterances, found in the association matrix,
which have an association to object 1. The utterances 4 and 5 are utterances, that have
an association to object 2. The phoneme sequences are arbitrary sequences of phonemes,
generated from the Julius monophone models that are also used for the phoneme-based
recognizer in the learning of feedback and object names. The silence model is trained with
only background noise.
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Listing 5.1: Search-grammar of the phoneme-based command recognizer.

$0bjectl = Utterancel | Utterance2 | Utterance3
$0bject2 = Utterance4 | Utteranceb
$Phonemesequence = {N [ a | b | 4 | ... | ts}

$Searchstring = [SilB] $Phonemesequence $0bjectl
$Phonemesequence $0bject2 $Phonemesequence [SilE]]|
([SilB] $Phonemesequence $0bject2
$Phonemesequence $0bjectl $Phonemesequence [SilE]]
[SilB] $Phonemesequence $0bjectl $Phonemesequence [SilE] |
[SilB] Phonemesequence $0bject2 $Phonemesequence [SilE] |
[SilB] $Phonemesequence [SilE]

The grammar for the utterance-based recognizer, shown in listing 5.2, contains all known
command utterances and inserts the models, which are associated with the expected pa-
rameters into the positions where parameters are expected. This information is contained
in the command patterns, that were generated along with the utterance models. At the
position in the command pattern, where { PART} is found, the system inserts a nonterminal
which expands to all models associated with BALL. At the position, where { PARZ} is found,
the system inserts a nonterminal which expands to all models associated with BOX.

Listing 5.2: Search-grammar of the utterance-based command recognizer.

$0bjectl = Utterancel | Utterance2 | Utterance3
$0bject2 = Utterance4 | Utteranceb

$Searchstring = [SilB] Commandpatternl -1 $0bjectl
Commandpatternl -2 $0bject2 Commandpatternl -3 [SilE]|
([SilB] Commandpatternl -1 $0bject2
Commandpatternl -2 $0bjectl Commandpatternl-3 [SilE]|
[SilB] Commandpattern2-1 $0bjectl
Commandpattern2 -2 $0bject2 Commandpattern2-3 [SilE]|
([SilB] Commandpattern2-1 $0bject2
Commandpattern2 -2 $0bjectl Commandpattern2-3 [SilE]|
[SilB] Commandpattern3-1 $0bjectl Commandpattern3-2
[SilE]| [SilB] Commandpattern3-1 $0bject2
Commandpattern3-2 [SilE]| [SilB] Commandpattern4 [SilE]
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Figure 5.4 shows how the search grammars for the phoneme-based and the utterance-
based recognizers are generated when learning an utterance for the command MOVE(BALL,
BOX) using the HMMSs associated with the expected parameters.

Figure 5.4: Grammar for the recognition. (grey: terminals, white: nonterminals)

Prosody

The recognition of prosody was mainly implemented to enhance the learning and recogni-
tion of positive and negative feedback. As it is unlikely, that prosody can be effectively used
to discriminate between different commands or object names, only three classes of prosody
are used for the prosody based recognizer: positive reward, negative reward and com-
mands. While speech and touch stimuli are associated with individual commands, prosody
is only used to discriminate between these three categories. While in the current training
tasks, the distinction between positive and negative feedback as well as commands can be
made easily, based on information about the current state of the training task, it may be
necessary to use the recognizers to distinguish commands and feedback in other kinds of
tasks.
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For the prosody recognition, utterances are always processed as a whole without locating
and cutting out parameters. The HMMs that are used for interpreting prosody are based
on feature vectors extracted from the speech signal. The same feature vectors, as for
learning feedback, containing the pitch, the pitch difference to the previous frame, the
energy, the energy difference to the previous frame and the energy in frequency bands 1-n
are also applied for the extended recognizer. Apart from introducing the class “‘commands’
in addition to “positive feedback” and “negative feedback”, there have been no changes for
the prosody-based recognizer.

Touch

The user can also interact with the robot using its touch sensors on the head and on the
back. Similar to prosody, touch is more important for learning rewards than for learning
commands. However, the implementation gives users the possibility to use touch to express
commands because there may be some commands, that are intuitive for the user to express
by touch: e.g. use a long press of the back touch sensor to put AIBO into sleep mode. As
it is unlikely, that users use touch to encode names of object or places, no associations are
learned between touch patterns and objects/places.

To encode touch, the system uses its duration as well as the information whether the
head or the back sensor was touched. There are three cateqgories for short (< 0.5 s), medium
(05s < x < 1) and long ( > 1 s) touches.

In the first implementation on learning to understand positive or negative feedback,
the algorithm did not take into account the exact sequence of short, medium and long
touches. However, if the user employs touch to encode commands, the exact sequence may
be important. The observed sequences of short, medium and long touches representing a
command or feedback are encoded as strings, such as 'LB,SH,LH" for a long touch of the
back sensor, a short touch of the head sensor and a long touch of the head sensor.

A table is used to store all learned touch patterns in the stimulus encoding phase. For
each observed command or feedback the stimulus encoding tries to find an existing pattern
in the table and creates a new entry if necessary. The entry number is then passed on to
the associative learning stage.

However, during the experiments, no touch stimuli were observed for encoding commands.
Therefore the implementation could not be evaluated.

5.6.2 Associative learning

In a similar way as for feedback learning, the extended learning algorithm for commands
uses classical conditioning to establish associations between the known symbolic rep-
resentations of actions, rewards and objects/places and the trained HMMs for command
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patterns and parameters. As in the algorithm for learning positive and negative rewards,
the Rescorla-Wagner model [67] is employed to learn and update the associations.

When an utterance is recognized with a HMM sequence while a certain command is
expected, the association between the corresponding command pattern and the symbolic
representation of the command or object name is reinforced using the Rescorla-Wagner
formula.

The symbolic representations of feedback, commands and their parameters are used as
unconditioned stimuli. The HMMs, encoding stimuli coming from the user, are used as
conditioned stimuli. The three different kinds of stimuli - feedback, command patterns and
parameters - are handled separately from each other during the associative learning, as
the training tasks enable the system to distinguish commands and feedback easily, based
on whether the stimuli from the user were perceived before or after an action of the robot.

For speech, associations to HMMs are learned for the symbolic representations of feed-
back, of objects/places and for the different commands. For prosody, associations are
learned toward either positive or negative feedback or the symbol ‘command’, which stands
for any command. This way, prosody can help to distinguish between feedback and com-
mands from the user, when the robot is used in a real world task and faces situations, when
it cannot reliably decide in advance, whether a command or a feedback is expected. Touch
models can be associated with positive or negative feedback and with different command
patterns, but not with objects/places, as it is unlikely, that users encode object or place
descriptions into touch patterns.

When an utterance is recognized with a HMM sequence, while an object name or
command is expected, then the association between the corresponding command pattern
and the symbolic representation of the command or object name is strengthened. Using
classical conditioning, multiple utterance models can be associated with the same symbol
and vice versa.

When a command is learned and the command pattern, received from the stimulus en-
coding, contains less parameters than the symbolic representation expects, the command
pattern is not only associated with the symbolic representation of the command but with
a combined symbol consisting of the command and the parameters that were expected but
not found in the utterance. For example, the system would create a new combined symbol
MOVE_BOX(PART1), when the system expected a command with the meaning MOVE(BALL,
BOX), but was given the command “Put away <the ball>", which lacks a parameter with the
meaning BOX. The association of the command pattern “Put away {PAR1}" to the combined
symbol MOVE_BOX(PAR1) is used to store the information, that the second parameter BOX
of the original symbol MOVE(FPART, PARZ) is included implicitly in the command pattern
"Put away {PAR1}". When the system is given the new command “Put away <the toy
car>" later, it can use the trained association to determine most probable second param-
eter, BOX, automatically. However, the command “Put away {PAR1}" can imply different
second parameters depending on the given parameter PAR1. For example “Put away <the
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ball>" means MOVE(BALL, BOX), while “Put away <the book>" means MOVE(BOOK,
BOOKSHELF). So the command pattern “Put away {PAR1}" would get associated with
both combined symbols MOVE_BOX(PAR1) and MOVE_BOOKSHELF(PAR1). Based on
the associations between the given parameters, learned in the training, the system is able
to estimate the most likely missing parameter when recognizing an utterance, such as “Put
away the book” or “Put away the ball".

Classical conditioning has different desirable properties, such as blocking, secondary
conditioning has different desirable properties, such as blocking, secondary conditioning
and sensory preconditioning which allow the system to integrate and weight stimuli from
different modalities, emphasize salient stimuli and establish connections between multi-
modal conditioned stimuli, e.g. between certain utterances and touches or prosody patterns,
which have been described earlier in chapters 2 and 4.

5.6.3 Recogpnition

After the training, the trained models and the trained association matrix can be used for
recognizing commands. Like the training, the recognition works in two steps: First, the
utterance is preprocessed and recognized by the trained speech recognizer, the prosody
recognizer and the touch recognizer. The speech recognizer returns the then most likely
sequences of recognized utterance parts along with their confidence values. Then the
system determines, based on the learned command patterns, which of these utterance parts
are parameters and which of them belong to the command pattern.

Finally, it uses the learned association matrix to determine the meaning of the command
pattern or patterns using the recognition results from speech and touch. If multiple utter-
ances or touches occur, while one command is expected, all utterances are combined to
get the symbol with the highest associative strength. After the most likely meaning of the
command has been determined, the system looks up the meaning of the parameters in the
association matrix. The recognition result is constructed from the symbolic representations
of commands and objects with the highest combined associative strength to the recognized
sequence of utterance parts.

Recognizing feedback is done in exactly the same way, as described in the previous
chapter, if the system can determine, based on the situation, whether commands or feedback
are expected. If the system needs to distinguish between feedback and commands without
external information, only based on the stimuli from the user, prosody can help to improve
the recognition result. The system first tries to recognize the stimuli from the user separately
with the trained speech and touch models and the association matrix for feedback and with
the trained speech and touch models and the association matrix for commands.

The prosody recognizer is then applied to the speech utterances and returns either the
symbol “command’, “positive feedback” or “negative feedback” The associative strength
to the symbol “command” is added to the associative strength, that is returned from the
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recognition as a command, the associative strengths to the symbols “positive feedback”
and "negative feedback” are added to the associative strengths of positive and negative
feedback of the feedback recognizer. Now the model with the highest modified associative
strength is selected as the recognition result.

The system can use available world knowledge when creating the recognition grammar.
Usually not all possible parameters make sense for all possible commands. If information
is available on which parameters can be used with which commands, the system can use
the association matrix to create a grammar that allows only HMMs, that are associated
with possible parameters to be inserted into a model sequence for a command.

5.7 Experiments

The experimental setting is shown in Fig. 55. The system recorded speech using a
close-talk microphone. Video was recorded for later integration of gesture recognition.

Figure 5.5: AIBO performing “virtual living room” task.

The participants were instructed to teach the robot in two phases. In the first phase,
they were asked to teach object and place names to the robot. After the object learning has
finished, the experiment continues with the teaching of commands. The users are instructed
to utter commands, which match the situation shown in the ‘virtual living room" scene, and
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give positive or negative feedback depending on whether the robot has reacted correctly
or not.

The learning algorithm was evaluated with data from ten participants (7 male, 3 female).
Five of them interacted with the pet-robot AIBO and five of them interacted with the
humanoid robot. They used the task, explained in section 3.5, to teach object names and
parameters to the robot. Every participant interacted with the robot for roughly 45 minutes
until every object name and command was trained ten times. The language used in the
experiments was Japanese.

The system was trained and evaluated with the recorded data using 10-fold cross eval-
uation. It was evaluated under three different conditions:

e In the first condition, training and evaluation data were checked for false examples,
that were caused by users misinterpreting the situation, shown in the virtual living
room, training samples, that were actually breathes, but misdetected as speech by the
voice activity detection, utterances like "hmm’, “ah” etc. Only training examples, that
were clearly false were removed. Implicit commands or feedback were still used for
training and recognition. With this manual preprocessing of the data, the recognition

rate for commands was 84.45% with a standard deviation of 8.23%.

e In the second condition, the uncorrected data was used for training while the corrected
data was used for evaluation. In a real world teaching scenario the raw audio
data and the expected meanings are the only information available for training.
However, the system should recognize the correct commands, even if there have
been some incorrect ones during the training. Therefore it can be assumed that this
way of determining the recognition rate is the best approximation of the real world
performance of a robot trained with the proposed method. In this case, the recognition
rate dropped to 80.89% with a standard deviation of 7.23%.

e In the third condition, both, training and evaluation data, were not checked or modified
manually but used as recorded during the experiments. That means the error rate
contains not only speech recognition problems but also other kinds of errors, such as
wrong or no commands uttered by the participants, incorrect speech onset detection,
noise from the robot's motion etc. The recognition rate in this case was 75.61% with
a standard deviation of 8.52%.

The accuracies for the individual speakers and conditions are shown in Fig. 5.6.
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Figure 5.6: Recognition rates for the participants.
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Implementation of the framework

6.1 Overview

This chapter gives an overview over the architecture and implementation of the system.
The system consists of four different components, which communicate via TCP/IP. This
architecture was chosen, because it is easily extensible and can be distributed between
different machines.

The focus of the actual implementation of the system was to develop a framework for
conducting experiments that is easy to adapt to new tasks and to different robots or virtual
agents.

6.2 Architecture overview

The basic architecture of the system is shown in Fig. 6.1. It is implemented using a client-
server based architecture consisting of four components which are linked via TCP/IP. It
consists of the task server, the perception server, the robot controller and the robot itself.
The task server and the robot controller are connected through a TCP/IP connection. The
robot controller is also connected via TCP/IP to the perception server and to the robot.

6.2.1 The task server

The task server provides the display and handling of the playfield, an evaluation function
for the robot's moves as well as the opponents’ artificial intelligence in case of a game for
multiple players. It can use a projector or a computer screen to display the playfield.

The task server provides all necessary background information on the state of the training
task, about which moves are good or bad etc. to the robot controller. The robot controller
can also request tasks from the task server, e.g. to visualize a certain command, that the
user is expected to give to the robot.
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Figure 6.1: Architecture of the experimental framework.

6.2.2 The perception server

The perception server records and processes audio and video data of the user’s interaction.
It receives data from the robot’s touch sensors, video data from two Logitech Fusion web
cameras as well as audio data from a wireless lavalier microphone that is attached to
the user’s clothes or from a headset microphone. The data from different modalities is
synchronized and stored, while the information, which is extracted from the audio and
video data streams is sent to the robot control software. Learning to interpret the user’s
behavior using the method described in chapters 4 and 5 takes place in the perception
server

6.2.3 The robot controller

The robot controller is connected to the task server as well as the perception server and the
robot. It uses information about the task state, which are received from the task server, to
calculate the next moves of the robot and sends control commands to the robot. Moreover,
it uses information from the perception server in order to assess whether interaction has
been perceived, so that it can react appropriately.

The AIBO Remote Framework [2] is used by the robot control software for wireless control
of AIBO and for reading its sensor data. The robot controller is the only component that
needs to be adapted to use other robots or agents with the learning framework.
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Figure 6.2: User interface of the perception server.

The robot controller was modified to communicate with the humanoid robot. However,
details of the connection and control of the humanoid robot cannot be included in this
thesis for confidentiality reasons.

6.2.4 The robot

An AIBO ERS-7 [26] as well as a child-sized the humanoid robot was used for the exper-
iments.

Aibo is a dog-shaped robot which has roughly the size of a cat. It possesses twenty
degrees of freedom and has touch sensors on its head and back as well as under each of

its feet. Moreover, it is equipped with a camera as well as stereo microphones. It is shown
in Fig. 6.4.

The humanoid robot is 120 c¢m tall, which is roughly the size of an 8-year-old child. It
possesses 26 degrees of freedom.
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Figure 6.3: User interface of the robot controller.

Figure 6.4: The pet-robot AIBO
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6.3 Implementation details of the learning method

The framework was implemented in Java and C++. The robot controller and the perception
server both run on a Windows PC and were implemented in Visual C++. A platform
dependent solution using C4++ has been selected, as these components need to process
audio and video data quickly and also need to use OpenCV [12] and the Intel Performance
Primitives [37] as well as the Aibo Remote Framework [1] which are only available as C++
libraries.

The task server as well as the component for offline training and evaluation of HMMs
has been implemented in Java. This way they can be used platform-independently. As the
task server does not have to perform any time-consuming calculations and the training and
evaluation are performed offline, performance is not critical.

6.3.1 The HTK toolkit

The Hidden Markov Model Toolkit (HTK) [89] the HMM implementation, used in this
thesis, was developed at the engineering department of Cambridge University. It consists
of various tools for training and recognition using Hidden Markov Models and is widely
used in research as well as for commercial purposes.

In this work, the tools Hinit and HErest for HMM initialization and Baum-Welch Re-
estimation and HVite for Viterbi recognition have been used. The tool HParse is used to
convert the grammar files into a format that the other HTK tools can handle. The basic
algorithms for training and recognition with HMMs are described in section 4.4.1.

Hinit

Hinit initializes a Hidden Markov Model using speech data by uniformly segmenting the
data for training and using it to initialize the output distributions of the HMMs. The
transition probabilities for all states are by default initialized to the same values for all
outgoing transitions of a state.

The system uses Hinit for initializing the HMMs of the prosody recognizer. As the speech
recognizer creates new HMMs by concatenating existing monophone models, it does not
have to rely on Hinit for initializing the speech HMMs.

HErest

HErest re-estimates the parameters of an inittal HMM using a set of training data based
on the Baum-Welch re-estimation method. To do so, it needs the following information as
input:
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e A list of training data files
e The initialized or pre-trained HMM(s) to be re-estimated
e A list of labels corresponding to the training data files

It returns a set of trained HMMSs, which can then be used for recognition.

HVite

HVite is the HTK implementation of the Viterbi algorithm for continuous speech. It is
used in the proposed learning algorithm to recognize utterances either based on phoneme
sequences or based on the already learned models.

HVite takes the following information as input:
e The audio file to be recognized (or another data file in HTK format)
e The grammar for the recognizer
e The dictionary for the recognizer
e The trained HMMs

It returns a transcription of the recognized file, which is then further processed by the
system to determine the final recognition result based on the stored associations of the
recognized models to feedback, object names and commands.

HParse

The proposed learning algorithm generates all grammars for the different recognizers in
Extended Backus-Naur Form (EBNF), which is a standard notation for expressing context-
free grammars. HParse is used in the system to convert a grammar written in EBNF format
to a grammar in lattice format that can be used by the HTK.

6.3.2 The HTK format
For speech data, HTK can process files in various formats, including standard wave files,
from which MFCCs can be calculated automatically.

When training HMM s for custom data, such as the ones used for prosody recognition in
this thesis, the data has to be stored in HTK format. Files in HTK format consist of a header
and data part. The header is twelve bytes long. It contains the following information:

e The number of samples as a four-byte integer

e The sampling period as a four-byte integer in 100 ns units
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e The sample size as a two-byte integer
e The format as a two-byte integer

There are different formats, that can be specified for speech signals, such as waveforms,
MFCCs etc. The format, that is used for custom data is “USER’, which is specified by the
number nine (001001), given in the first six bits and 0 in the remaining ten bits.

After writing the header, the entries of the feature vectors of the prosody data are written
to the file in float format. The number of samples must not exceed the value, specified in
the header.
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“The important thing is not to
stop questioning.”

Albert Einstein (1879 - 1955)

Conclusion and outlook

7.1 Overview

The previous chapters presented an approach for learning multimodal user feedback and
commands through natural, situated human-robot interaction in virtual training tasks. Based
on the findings from three user studies, requirements for the learning algorithm were iden-
tified and an extensible framework for teaching a robot through virtual training tasks im-
plemented. In this chapter, the findings from the user study as well as the results from the
training are discussed, limitations are identified and possible future directions of this work
are outlined.

7.2 User’s ways of giving feedback and commands

In a series of three experiments, different properties of user feedback and users’ commands
in human-robot interaction were analyzed. The findings from the experimental studies
indicate that users react rather sensitive to restrictions in acceptable reward behavior, and
that there is a need for techniques, like the one, proposed in this thesis, that allow a robot
to process reward given freely by the user.

The studies also found that users’ ways of giving feedback differed between users and
also differed, depending on the robot, while it was relatively similar for one user between
different training tasks. Moreover, detailed information on how users give positive and
negative feedback to a robot were determined by analyzing the audio and video data from
the training tasks.

In the analysis of commands given to the humanoid and the pet-robot it was found that
commands, like feedback, varied strongly between users, while no significant dependence
on the appearance of the robot could be observed. Differences between users were found
for different characteristics of command utterances, such as the use of polite expressions or
the use of explanations when giving feedback.

137



CHAPTER 7. CONCLUSION AND OUTLOOK

These findings lead to the assumptions, that learning to understand users’ feedback and
commands is useful and feasible, because the observed feedback and commands would be
very difficult to hard-code for the system designer but still do not vary too strongly for one
person, so that they can be learned by the robot from its user in a reasonable amount of
time.

One important question that has not been fully answered by the user studies, presented
in this thesis, is the similarity of user behavior between virtual tasks and real world tasks.
The proposed approach assumes that user's commands and feedback are actually similar
between real and virtual tasks, so that interaction patterns, learned in a virtual tasks can
be transferred to a real tasks. However, confirming this for the proposed command-learning
task would require user studies with robots, that can actually perform useful, real world
household tasks.

In order to obtain a first, rough idea about whether the assumption holds or not, the
study on feedback learning contained one control task, which was not a virtual task but
required real-world performance by the robot. In this task, the user had to teach “dog-like”
commands to the AIBO pet-robot, such as “sit down”, “stand up” etc. No visible differences
in users’ interaction between the virtual game tasks and the dog training task in the
experiment were observed. However, more experiments would be necessary to conclusively
answer the question, if and under which conditions it is possible to train a robot for a real
world task using a virtual task.

7.3 Results of the learning algorithms

Chapters 4 and 5 described and evaluated a method for learning a user’s feedback and
commands for human-robot interaction, based on the findings from the user studies. The
performance for interpreting speech, prosody and touch feedback as well as commands
from a human can be considered sufficiently reliable for being used to teach a robot, for
example, by reinforcement learning and instruct it using simple commands.

The first version of the algorithm, which was implemented for learning feedback, has
been extended for learning parameterized commands for human-robot interaction. The main
restriction of the proposed approach is that it is only applicable as long as the number
of commands, that the robot needs to understand, does not grow too large. Otherwise,
the learning process for commands could become too time-consuming for real-world use.
The learning of object names with the proposed approach can continue after the training
phase in a real environment, provided the robot can visually identify objects. However, the
learning of commands heavily relies on the virtual training tasks to make the user utter the
commands that the robot wants to learn. Determining experimentally how much time for
training is acceptable for users, would require a long-time study with real, useful household
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or entertainment robot. Therefore this question cannot be answered conclusively within
the scope of this thesis.

Based on analyzing the typical misrecognitions and the amount of training data, used for
each HMM, the main reason for misrecognitions appears to be the relatively low amount
of training data per HMM especially for commands but also for participants who gave very
variable feedback. For persons with a very variable way of uttering commands, there were
often only one or two examples of an utterance available to train a HMM. In such cases, the
concatenated monophone models had to be used as they were and could not be retrained
with the user’s speech data, as the current system cannot train HMMs incrementally.

It can be expected that taking more time for training, using incremental training or
applying approaches for speaker adaptation to the generated phoneme sequences instead
of simply retraining the generated HMMs with the utterances would result in an improved
recognition accuracy.

One potential drawback of the proposed approach is that the robot has to complete a
training phase with every user who wants to interact with it in order to adapt to the user’s
way of giving rewards. However, a typical pet robot or entertainment robot only interacts
with a very limited number of persons in a household and usually interacts with the same
users frequently and for a long time. Therefore, user-specific adaptation can be considered
an efficient means to facilitate interaction, even though it needs some initial training effort.

The learning method, proposed in this thesis, focuses only on a small part of the whole
process, that is covered, for example, by the system, developed by Iwahashi et al. [42] [43].
Capabilities like disambiguation of ambiguous utterances, performance by manipulating
objects in a real-world task, visually recognizing objects or actions or answering questions
have not yet been implemented and are not in the scope of this thesis.

While the system does not enforce any restrictions on the grammar of the user's ut-
terances, it can only map utterances to simple meanings, consisting of a command with
up to two parameters or positive/negative feedback. While sentences and object names,
learned by the robot, may contain adjectives or prepositions, the system does not learn to
understand the meaning of adjectives or prepositions independent from the learned sample
utterances. It is also not possible to give more than one command in one utterance or
connect parameters with “and” like in “Clean the floor and the table”.

7.4 Outlook

While the system learned the participants’ commands from scratch during interaction with
the user, the approach can be used very easily to adapt an existing predefined set of
commands to a user by only learning commands that are not matched well by the existing
model. In this case the utterance-based recognizer and association matrix would not be
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empty upon initialization but filled with the predefined utterances. The system would then
start from the known utterances and generate new models only if unknown utterances are
observed.

Currently the system is working offline. It first records all training data and then trains
the models based on the recorded data. Using incremental training of the HMMs, the
system can be made capable of online learning through actual communication with a user
during the training phase. Main issues that need to be targeted for implementing an online
version of the algorithm are the clustering of the training samples for prosody as well as
the incremental re-training of the HMMs for speech and prosody.

At the moment, the system can only deal with names of objects or places, not with more
detailed descriptions, containing attributes or prepositions. "The blue cup’ or "the cup on the
table" would be learned as one object name. In order to allow for more flexible instructions
from the user, it is necessary to extend the learning method to enable the system to learn
prepositions and certain attributes, such as colors, which are commonly used to distinguish
different objects of the same class. The algorithm is able to handle this almost without
modifications, by using the extensions, which have been implemented for command learning.
In addition to segmenting utterances into known object names and unknown command parts,
and then learning the unknown command-parts in the command learning phase, the system
would perform another learning step with the same algorithm, in which it learns to segment
utterances into previously learned object names and unknown parts, which correspond to
modifiers, such as “blue” or "big” to train new HMMs. Combinations of object names and
modifiers could then be used in the command learning and recognition stage.

For the user, this would result in an additional training phase between the object learn-
ing phase and the command learning phase, in which the system learns attributes and
prepositions used for distinguishing objects. In this phase, the user and the robot have to
perform a task, in which the modifiers to be learned are used to disambiguate object names.
For example, if the robot has learned to understand the word “box” in the first stage, the
system could show a virtual scene with multiple boxes with different colors and sizes and
ask the user teach the robot to pick the right one using modifiers such as “the big box"
or “the red box". As in the command learning task, the system would then search for the
known parts of the user’s utterance, that correspond to the already known object names.
Then it would use the unknown parts of the utterance to train an HMM and associate it
with the expected modifier, such as “big"” or “red".

Pointing gestures could be integrated and used to disambiguate or even replace spoken
object references. Using the learned command patterns, which contain the expected param-
eters as well as their order, the system could be extended to allow replacing parameters of
commands by pointing gestures or use pointing gestures as additional information, when
the spoken parameter names are ambiguous.

Another possible extension would be learning to understand users’ states and implicit
user feedback for a robot in addition to the explicit commands and feedback, which are the
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focus of this thesis. In human communication, information is not only conveyed by explicit
verbal utterances, but implicit, non-verbal information also plays an important role to ensure
smooth and pleasant interaction. In addition to learning, how a user expresses feedback,
object names and commands explicitly, it is therefore desirable to also learn to recognize
users’ internal state by processing implicit feedback from the user to the robot. This would
allow the system to detect communication problems and adapt its behavior to the state
of the user in order to avoid disturbances for the user and recover from communication
problems smoothly.

While this thesis deals with the application of the learning algorithm for learning com-
mands and feedback for natural human-robot interaction, other applications are possible,
as long as training utterances or other stimuli, that can be modeled by HMMs, along with
their meanings are provided to the learning algorithm. The proposed algorithm for learning
feedback, given to a pet-robot, has already successfully been applied to classify positive
and negative answers from users in a hotel reservation task.
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1 Pilot study on user feedback

1.1 Instructions

Introduction
Welcome to this experiment! Thank you very much for your participation.

Please read the following instructions carefully. If there are points in the explanation,
that remain unclear, or if you have any further questions, please ask the instructor. The
experiment, we are going to conduct, deals with human-robot interaction in the field of
service robots.

The robot, you will be interacting with, throughout the experiment, is a Sony Aibo robot.
In this experiment, it is used to simulate a service robot that helps you with tidying up
your room and will tidy up the objects found in the room in the way that you instruct it to.

The task of the robot is putting differently coloured objects to their designated places.
The robot does not know, which object belongs where, so it has to learn the desired
positions of the objects through your guidance.

You will receive a deck of cards which show the desired final configuration of objects on
their places. Please instruct the robot to arrange the objects according to the
configuration, depicted on the card. The position of objects, not shown on the card, is of
no importance for the result of the experiment
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Please follow the instructions below:

2) Take the card on top of the stack, read at it carefully and memorize the desired
position of the objects as depicted on the card.

3) Put away the card and any other objects, you may hold in your hands, that might
affect your movements.

4) Aibo will make a sound, when he is ready to receive instructions

5) You may use your voice as well as your body freely for instructing the robot

6) Please do not turn your back to the cameras.

7) If the robot does not know, what to do as a next step, please assist it, by giving more
detailed instruction or repeating your instruction

9) The robot needs your feedback to accomplish its task. Please give positive and
negative feedback for the robot’s behaviour. More information on giving feedback is
provided on a separate sheet of paper.

10) In case you forget the contents of the card or give incorrect instructions to the robot,
please inform the instructor. He will put objects, that already have been tidied up, back
to their original place and you can start the instruction again from the beginning of the
card

11) When you finish a card, give feedback to the robot, that the task has been solved
and inform the instructor, so that he can put the objects, that have been tidied up, back
to the field. Then you can resume with the next card.
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Reinforcement Principle:

All of your feedback to the robot that contains information whether the robot is performing
correctly or incorrectly is considered as a reward.

There are basically two types of reward you can give to the robot: positive and negative
reward. Positive reward will cause the robot to continue its behavior. Negative reward will
cause the robot to change its behavior.

If the robot is performing in the way, you expect it to perform, please give positive reward. If
it is not performing in the expected way, please give negative reward. Reward can be given

at any moment during the interaction.

The choice of positive and negative reward is up to you. Please give the kind of feedback
you like freely using voice, gestures or by touching the robot’s head and back sensors.
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Reinforcement Principle:

All of your feedback to the robot that contains information whether the robot is performing
correctly or incorrectly is considered as a reward.

There are basically two types of reward you can give to the robot: positive and negative
reward. Positive reward will cause the robot to continue its behavior. Negative reward will
cause the robot to change its behavior.

If the robot is performing in the way, you expect it to perform, please give positive reward. If
it is not performing in the expected way, please give negative reward. Reward can be given

at any moment during the interaction.

Please decide, in what way you want to give positive reward. You can choose any
combination of spoken words, gestures as well as touching the robots head and back

sensors.

Please decide, in what way you want to give negative reward. You can choose any
combination of spoken words, gestures as well as touching the robots head and back

Sensors.

Before starting to instruct the robot, please have your choice of behavior for positive and
negative reward recorded. Please stick to the chosen behavior whenever you want to give
positive or negative reward to the robot. Please do not change your reward behavior after
the beginning of the experiment.
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Reinforcement Principle:

All of your feedback to the robot that contains information whether the robot is performing
correctly or incorrectly is considered as a reward.

There are basically two types of reward you can give to the robot: positive and negative
reward. Positive reward will cause the robot to continue its behavior. Negative reward will
cause the robot to change its behavior.

If the robot is performing in the way, you expect it to perform, please give positive reward. If
it is not performing in the expected way, please give negative reward. Reward can be given

at any moment during the interaction.

If you want to give positive reward to the robot, please touch its HEAD sensor.
If you want to give negative reward to the robot, please touch its BACK sensor.
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1. PILOT STUDY ON USER FEEDBACK

1.2 Questionnaire

Experiment number: Order

Questionnaire:

1) | was able to instruct the robot in a natural way (without feeling restricted in my movement
or speech utterances)

Reinforcement Principle 1:  absolutely agree 1..2..3..4..5 absolutely disagree
Reinforcement Principle 2: absolutely agree 1..2..3..4..5 absolutely disagree

Reinforcement Principle 3: absolutely agree 1..2..3..4..5 absolutely disagree

If not, what restrictions did apply?

2) | would like to give feedback to a real world service robot in the same way
Reinforcement Principle 1: absolutely agree 1.2.3.4.5 absolutely disagree

Reinforcement Principle 2: absolutely agree 1..2..3..4..5 absolutely disagree

Reinforcement Principle 3: absolutely agree 1..2..3..4..5 absolutely disagree

If not, what would you like to change?

3) Throughout the experiment, | was always sure about my next step to instruct the robot
correctly.

Reinforcement Principle 1: absolutely agree 1..2..3..4..5 absolutely disagree
Reinforcement Principle 2: absolutely agree 1..2..3..4..5 absolutely disagree

Reinforcement Principle 3: absolutely agree 1.2..3.4.5 absolutely disagree

If not, what kind of situations remained unclear?
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4) Apart from the things, mentioned above, did you notice any problems during the
communication with the robot and what problems did you notice?

Reinforcement Principle 1: absolutely agree 1..2..3..4..5 absolutely disagree
Reinforcement Principle 2: absolutely agree 1..2..3..4..5 absolutely disagree

Reinforcement Principle 3: absolutely agree 1.2..3.4.5 absolutely disagree

4) Apart from the things, mentioned above, did you miss anything in the interaction with the
robot, either in the robot's behaviour or in the systems understanding of your instructions,
that would make interaction easier for you?

5) Apart from the things, mentioned above, are there any thoughts about the research topic,
the experiment or its execution, that you would like to share?

6) My preferred way of giving reward to the robot was

O Reinforcement Principle 1
O Reinforcement Principle 2
O Reinforcement Principle 3
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2. STUDY ON LEARNING USER FEEDBACK

2 Study on learning user feedback

2.1 Instructions

Thank you very much for participating in this study.
FBRIZBML TSN THY R E S TSN ET,

The experiment comprises four different subtasks. In each of the subtasks, please teach the
robot to accomplish the given tasks by providing positive and negative feedback to it.
FBRT 4O A A E T ARECTED 7 4 — Ky 7 LADT 41— KRy 72k v,
aRy MR E EITT 2 HIEEZHATIIES N,

For giving feedback to the robot, you can use voice and gesture freely. You can also use the
touch sensors, located on the robot’s head and back to provide feedback. However, please
use simple sentences, when talking to the robot.

BRy M7 4= RNy 7 &2525%, ERPHSVEZABIESTFIY, 2Ry bo
ByFerh—Tb 74—y 7% B2 2 LRaETT, ¥y Ty F—rRy b
DEHEHFPIZH FF, 72720, vaRy MEeGET &, MiERHETHEL T LI,

After the experiments are finished, please answer the questionnaire.
FBD%RT, T — FEBEZTEFEN,
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Task1: Comparing Images (i@ % K.~ %)
Please teach the robot to pick the image that is equal to a sample image.
YT VER LR CEig ARSI LA Ry MCHZ T EE0,

Task description

To teach the robot, which image is equal to the sample one, please give instruction to the
robot, while it is looking at the different images.

While the robot is browsing the images, the one, that the robot is currently looking at, is
shown with a green frame on the screen.

As soon as the robot has decided to choose one of the images, it points to the image and a
red frame is shown around it. The other images disappear.

After the robot has chosen an image, please give positive or negative feedback to it
depending on whether it has chosen the correct or incorrect one.

The robot needs to adapt to your teaching, so it may not understand you from the beginning.

AIDOWE Y T VEG LR CTEE rR Yy MIEHA T EEN, 25T 5%, vaRy bR
W% LTV AMICmBE 52 TRFIW,

Ry MG ERD LI, Ry FRRSMEEN AT Y =2 ETRO 7 L— AR
RSNET,

ARy MAEREBRT S L ARV T L— AMHIFRR ST, RSN RV ER
HAET,

BAFHEHRIZELWONE I NCE 2T, EOT7 4 —F KRNy I EFADT 4 — RNy 7 %
HZTFaW,

Ry MRHRIEOBEZT RN VLERHY T, TR T, MBEINLRVEENRS
DET,
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2. STUDY ON LEARNING USER FEEDBACK

Task2: Pairs solitaire (X—7 X« Y U F—))
Please teach the robot, how to play the game “pairs solitaire”.
R=T R+ PV TF=LOHEOFE Ry MR TFE,

Explanation of the game:

“Pairs solitaire” is a game for one person. The goal of the game is, to find pairs of cards
showing the same image. At the beginning of the game, all cards are turned upside-down so
that their front sides cannot be seen. In every move, the player turns around two cards. If
their images match, the cards remain open. If their images do not match, the cards are
turned back upside down. Then the player continues with the next move until all pairs have
been found. The lower the number of moves, necessary to find all pairs, the higher the

score.

N=T X VYT ME— NTHESS — LT, BIEFE CEEA TS 2 ol —
RERDOTF5ZETT, UNIETOI—FRO-L ViR F§, ERRZFEAL, T
AY—BH—RE2KEZVO>< VIELET, I— FOEGEAFELCTHNIE, I—FE2TD
FFRCLTBEET, BEAECTIERTUE, A= REFLERPRLIAZVEIITU-L
DIRLET, LT, F—LAF2TO—MOD— FRRONHEThix £, FOKML
BN TAaTNEL 2 £7,

Task description:

To make a move, the robot first points at one card and the card is turned around on the
playfield, so that its surface can be seen. Then it points at a second card which is also
turned around. After selecting two cards, the robot waits for feedback from the user. Please
teach the robot without giving commands, just by providing positive or negative feedback on
its draws.

FaFTO%, ARy MBRA—RICHEELET, ZLTI—FOBEBEBEN/RAD L OICRY F
T W, vRy MR THKBOI— RIZHEELT, TOI—FOEGELERRINET, 2/
DI — REBRAUIZHRIZOR Y ER2—FNEDT7 4 — Ry 7L ET,
MBELGZRNT, EDT 4 — RNy 7 EFADT 4 — Ry 72 caRy Moy —
LDV EHZ TFEW,
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Task3: Connect four (IU B 3£ X)
Please teach the robot, how to play the game “connect four”.
1Ry MW HEROBEOST 2 AT IEEN,

Explanation of the game:

Connect four is a game for two persons. One player takes the red stones, the other player
takes the yellow stones. The goal of the game is, to arrange four stones of one’s own color
in a row, either vertically, horizontally or diagonally.

The board stands upright and the players take turns to drop a stone of their own color into
one of the columns of the board. Because of the gravity, the stone will then occupy the
lowest free space of that column.

WRESFZZACTESS—LTT, —ADTL—YRRN~—2 &ffi>T, o7 L—F
VAW — 7 B ENET, BOOAO~—7 ZRRETIEME TR A~ D & B
HTI,

T BBRESLTHET, Y=Y —RlEx Il flo~v—2 &2 —FlicAnET, EHD
Ry, =7 PIDO—FTFDENTOVDHINCAY £,

Task description:

The robot plays the game against a computer player. Your task is, to provide feedback to the
robot for good and bad moves, so that it learns how to win against the computer. To make a
move, the robot points at a row on the board. The robot’'s move is recognized and displayed
on the screen. After making a move, the robot waits for your feedback. Then it is the

computer player’s turn to make a move.

PRy A Ea—g— &2 MFCLET. vy FORVFERFRAVFICT (—
RAY 2 EEZTFSY, HAREDT 41— KRy 2k, uRy biiasEa—s—%
BB DR T, FEATOH, nRy FRS—AEO-FIHELET, nRy
FOFRBIMEINC, = MECRRINET, FAHH T, B Ry FR7 ¢ — ks
Y IIELET, KA Ea— s —REETHET,
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2. STUDY ON LEARNING USER FEEDBACK

Task4: Commands (#14)

Task description

Please teach the robot the following commands:

Mae (forward)

Ushiro (back)

Hidari (left)

Migi (right)

Suwatte (sit down)

Tatte (stand up)

In order to make the robot learn the commands, please utter the commands and give
positive feedback if it reacts correctly and negative feedback if it does not react correctly.
Please take care, to make sure that the robot does not drop from the table.

2Ry ML FOMAGEHZLTFIW:
il
)

>3

B

#
JiE T
7=~

aRy MIMBEBEALR, MBES>CTREN, ~AY PRMFICIELISLS L, IE
DT 4—=F Ny a52TFs, MiE>TURLDE, ADT 4 — RNy 7252 TFS
W,

BAR Y FBRT =T ANLELRONX I TEELSE S0,
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2. STUDY ON LEARNING USER FEEDBACK

2.2 Questionnaire

Questionnaire (7 > %7 — )

1) Teaching the robot through the given task was enjoyable
Ry N ZORBEICLVH D LIFELY,

fully agree 1...2...3...4...5 fully disagree
Z5HE5 Z 9o Bban

2) The robot understood my feedback
BRy FRFDT o — RNy 7 2B TEI,
fully agree 1....2...3...4...5 fully disagree

3) The robot learned through my feedback
Ry FRFDT 4 — RNy 72X EETEI,
fully agree 1....2...3...4...5 fully disagree

4) The robot adapted to my way of teaching
aRy M AFADE R T ITEIG LTz,
fully agree 1....2...3...4...5 fully disagree

5) I was able to instruct the robot in a natural way
FATr ARy MCEBENICBRE B2 bV,
fully agree 1....2...3...4...5 fully disagree

6) Throughout the experiment, I always knew what instruction or reward to give to the
robot.

FRO I HIZ, EARBREIZT 4 —F Ay 7 &nRy MCEATZLRW)®

GhoTo,
fully agree 1....2...3...4...5 fully disagree

If not, what kind of situations remained unclear?

9 TIRBRWEEIE, EARREBABHTLEZN?
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1) Which task did you prefer? why?
BRI L 5T, MORER—FLY LT o 72T ? BB TN ?

2) Did you give different kind of feedback to the robot dependent on the different tasks?
ENENORED ) HILEZT7 4 — RNy VB Z AT TR >TEZELE
e
If yes, why?

NI L&27%HE: BEHIEIMTLEN?

3) Did you notice any problems during the communication with the robot ? What kind
of problems did you notice?

Ry b EDOHEEROM, MBBENHY £ L2 Eo kS RETLE
2

4) Do you have any experience in interacting with entertainment robots ?

TUH =T A A By N EDOHEERORBRN D D £302?

5) Have you ever kept a dog or any other pets?

If yes, which ones?

RECIIMMDONy P a2 L3 £F 02
NIv) EBEx7HE: L0y hTTRn?

6) Do you have any other remarks about the experiment?

FEBRIZOWTHAMFIT A D Z Liddh v 02
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3. STUDY ON LEARNING COMMANDS

3 Study on learning commands

3.1 Instructions

Thank you for participating in this experiment!

The goal of my research is enabling a robot to learn to understand basic human commands
and feedback.

For this experiment, please imagine, you have just bought a new robot. (The one, standing
on your right.) It has a training-software installed, which allows you to teach it commands
and feedback, so that it will be able to understand you later. All you need to do is running
through an adaptation phase together with the robot in front of your TV screen.

You will see a living room scene on the screen. The robot is able to manipulate objects in the
living room scene using gestures. The robot’s actions are also visualized on the screen
through icons. If there is any object in the picture, that you cannot identify, please ask before
the start of the experiment.

This experiment has two phases.

1) Learning object names

In the first phase, the robot will ask you for object names. When the robot asks for an object,
you will see a green arrow and a white spotlight, which highlights, the object, that the robot is
currently asking about.
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In this phase, please say only the name of the object, which the robot is pointing at, without
any additional words.

Example: “Ball”, not “This is a ball”.

It may take some time and several tries for the robot to remember the object names. Please
be patient.

2) Learning commands

In the second phase, you will teach commands to the robot. Please have a look at the scene
on the sheet of paper that you received together with this instruction. It shows the correct
state, in which you would like the room to be. If something is wrong (there is only one thing
in each scene), please instruct the robot to return the room to its correct state. E.g. you see,
that the toy car is lying around on the floor, then please instruct the robot to put it into the box,
or if the floor is dirty, then please ask the robot to clean it.

Thinking bubbles with icons mean that you want the robot to do something that cannot be
known from the state of the living room scene only. E.g. you want to know the robot’s battery
status or you want the robot to bring you something. Please give instructions accordingly.
After your instruction, it is the robot’s turn to react to your command. You can see the
changes on the screen. Speaking bubbles with icons mean that the robot gives you an
answer — e.g. when you asked it about the status of its battery, it will show an icon to
visualize its battery state.
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3. STUDY ON LEARNING COMMANDS

Teaching a command to the robot is done as follows:

1) Anew scene is shown on the screen

2) The robot waits for your instruction. Please give an instruction according to what you

see on the screen. (You can start giving instruction, as soon as you see the new scene)

2a) The robot may ask you to repeat your instruction because it did not understand you. In

that case, please repeat your instruction.

2) The robot performs responds to your command by performing an action. The action will
be visualized on the screen and also by gestures and sounds of the robot. Please
understand that the robot will make mistakes, especially at the beginning, but it will get
better, over time.

3) The robot looks at you to ask you for feedback. Please give positive feedback, if the
robot performed correctly. Otherwise, please give negative feedback

For giving positive and negative feedback or commands to the robot, you can use speech
and gesture freely and also touch the robot’s head.

Please talk to the robot in JAPANESE.

On the sheet of paper that you received together with this instruction, you can find an image
of the correct living room scene as well as three faces. Before starting the experiment,
please write down and remember a name of your choice for each of the three persons. Put
the sheet in front of you during the experiments, so that you can see it easily, and use it as a
reference, if necessary..
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Please make sure to:

...give instructions only once, unless the robot asks you a second time

...give positive and negative feedback in the way you prefer after the robot has finished
its action and looks at you

...behave naturally and talk spontaneously, as you would, when you actually had to train
a robot to use in your home. Please do not try to test the limits of the system or
adapt your teaching to how you think the system works on a technical level. (The
teaching method has been designed for novice users without any computer
science or engineering background!)

...avoid talking about the contents of the experiment to anyone who is going to
participate later.

After the experiments are finished, please answer the questionnaire.

Thank you for your cooperation.

Anja Austermann
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3. STUDY ON LEARNING COMMANDS
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3. STUDY ON LEARNING COMMANDS

3.2 Questionnaire

Questionnaire:

Age:

Gender

1) Teaching the robot through the given task was enjoyable
fully agree 1....2...3...4...5 fully disagree

2) The robot understood my feedback
fully agree 1....2...3...4...5 fully disagree

3) The robot learned through my feedback
fully agree 1....2...3...4...5 fully disagree

4) The robot adapted to my way of teaching
fully agree 1....2...3...4...5 fully disagree

5) I was able to instruct the robot in a natural way

fully agree 1....2...3...4...5 fully disagree

6) The robot took too much time to learn

fully agree 1....2...3...4...5 fully disagree

7) The robot is intelligent
fully agree 1....2...3...4...5 fully disagree

8) The robot behaves autonomously

fully agree 1....2...3...4...5 fully disagree

9) The robot behaves cooperatively
fully agree 1....2...3...4...5 fully disagree

10) The robot repeated its queries too often
fully agree 1....2...3...4...5 fully disagree
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11) Throughout the experiment, I always knew what instruction or reward to give to the
robot.

fully agree 1...2..3..4..5 fully disagree

If not, what kind of situations remained unclear?

3) Did you notice any problems during the communication with the robot ? What kind

of problems did you notice?

4) Do you have any experience in interacting with humanoids or entertainment robots ?

If yes, which ones?

5) Have you ever kept a dog or any other pets?

If yes, which ones?

6) Do you have any other remarks about the experiment?
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