
Asynchronous Pipeline Controller Based
on Early Acknowledgement Protocol

Chammika MANNAKKARA

DOCTOR OF
PHILOSOPHY

Department of Informatics,
School of Multidisciplinary Sciences,

The Graduate University for Advanced Studies (SOKENDAI)

September 2010

file:chammika@nii.ac.jp

Abstract

Over the past couple of decades, the digital design technology scales to date remarkably
satisfying the Moore’s Law. The circuits became denser with the scaling of transistor and
interconnect, and operating frequencies increased several orders of magnitudes during
this period. This poses challenges to digital circuit design in a variety of areas including
clock distribution, power management, process migration, fault-tolerance, etc. A lot of
research effort goes to tackle these issues under the synchronous design methodology
which currently dominates the digital design world. However, the magnitude of the
challenges poised has also revitalized the asynchronous design methodology explored in
this work, as it inherently address some of key issues.

The main philosophy of the asynchronous design practices is to compose a digital circuit
as a collection of autonomous parts communicating with each other locally, as opposed
to synchronous design which controls the circuit with a centralized clock signal. Without
a global clock or clock domains the designs eliminate the ever increasing problems of
high power and area consumption, skew minimization, etc. associated with the clocks.
Each component operates only when required in an inherently power efficient manner
generating a low electromagnetic(EM) noise. The control and data flow is inherently
elastic providing immunity to transistor-to-transistor variability in the manufacturing
process, thus providing better technology migration characteristics. These are only a
few of the main advantages of asynchronous design.

The spectrum of design styles under asynchronous paradigm varies from bundled data
communication model which can employ synchronous-like data processing elements with
careful delay matching for completion detection, to delay-insensitive model which can
accommodate arbitrary delays in the design. The focus of the is work is on the for-
mer style -the bundled data model- which is more close to synchronous design prac-
tices. Synchronous circuits, specially pipelined circuits can be transformed to these
form asynchronous designs with relative ease. In a time when digital design primarily
done in synchronous manner, the work presented here will be significant in harnessing
the strengths of asynchronous practices by migrating from synchronous to asynchronous
with low effort.

This PhD dissertation presents is a new pipeline controller based on Early Acknowledge-
ment protocol for bundled data asynchronous circuits. The Early Acknowledgement pro-
tocol is a hybrid of 2-phase and 4-phase hand-shake protocols, two widely used protocols

iv

for bundled data communication. The new Early Acknowledgement protocol combines
the advantages of 2-phase and 4-phase protocols and the controller that is presented
exploits them. It mainly employs the return-to-zero control signals like 4-phase protocol
retaining the simplicity for interfacing and composition of non-linear controllers. At the
same time, the controller overhead can be hidden in the Early Acknowledgement proto-
col which gives the performance comparable to that of 2-phase protocol. First a linear
controller for the Early Acknowledgement protocol is proposed which can be deployed in
straight pipelines. In order to further the claims of the proposed controller, a non-linear
controller for Early Acknowledgement protocol to perform conditional branch operation
is also proposed using the above mentioned linear controller. Though simple in con-
struction, it has been observed to be superior in performance compared to its 2-phase
and 4-phase counter parts.

The performances of the both linear and non-linear controllers are evaluated analyt-
ically. Constraints for the proper operation of the controllers are obtained and the
conditions for the optimal operation i.e. when the controller hides all its overhead and
operate efficiently are derived. The performances of the controllers are obtained when
the controllers are operating in two different modes: pipelines with logic processing and
pipelines without logic processing. Similar performance analysis for the controllers of 2-
phase and 4-phase protocols (both linear and non-linear controllers) is carried out. The
findings outline the design choices available, cost vs. performance benefits and design
constraints to be satisfied in employing 2-phase, 4-phase and Early Acknowledgement
controller in bundled data communication design.

A case study which carried out to analyse the performance of the each controller in a
practical application environment is presented at the end. The target was to build an
accelerator module to solve set of linear equations using Gauss-Seidel method which can
be used in a core of a Finite Element Method (FEM) analysis system. Three accelerator
modules are designed using 2-phase, 4-phase and Early Acknowledgement protocols for
the control path. All the designs are implemented on a Xilinx Virtex-4 FPGA platform.
Performance of these modules which essentially compares the protocol is analysed and
presented. The conclusions highlight the advantages and best use case scenarios of the
proposed controllers.

In conclusion, this work as highlighted the importance of little known EA protocol by
proposing a controller for it to harness its advantages. This work serves the main source
of any analytical and practical comparison of these protocols. The results of the work

v

will strengthen the importance of EA protocol and encourage the use of it in applications
where it exhibit to work efficiently.

Acknowledgements

This work would not be possible without the immense support extended my advisor
Prof. Tomohiro Yoneda. He was always available for help and guided me in the right
direction. The informal, friendly and productive environment created by him was a key
to this success.

I would also like to thank my wife, Indu who stood by me all along, always supporting
me throughout this period. I am ever thankful for her to for taking a greater share of
responsibilities of household work, specially taking care of our daughter Hansie.

I express my deepest gratitude to my parents and aunt Hilda, for encouraging and
supporting me in during this period. Without their advice and encouragement I couldn’t
have made this far in academia.

My sincere gratitude goes to NII administration who were so understanding and helpful
in making our life comfortable in Japan. Last but not least, I complement the friendship
of Sri Lankan student community in Tokyo for making my stay in Japan more pleasant
and enjoyable.

vii

Dedicated to my beloved wife Indu . . .

ix

Contents

Abstract iii

Acknowledgements vii

Table of Contents xi

List of Figures xv

List of Tables xvii

Abbreviations xix

1 Introduction 1
1.1 Overview . 1
1.2 Contribution of this work . 3
1.3 Organization . 4

2 Background and Theory 5
2.1 Overview . 5
2.2 Pipelined Circuits . 5
2.3 Synchronous Pipelines . 6
2.4 Asynchronous Pipelines . 7

2.4.1 Bundled Data Communication . 9
2.5 Handshake Protocols . 9

2.5.1 4-phase Protocol . 10
2.5.2 2-phase Protocol . 10
2.5.3 Early Acknowledgement Protocol 11

2.6 C-element . 13
2.7 Formal Specification: STGs . 14
2.8 4-phase Linear Controller . 14
2.9 2-phase Controller: MOUSETRAP . 14

xi

Contents xii

3 Design and Analysis of EA Controller 17
3.1 Overview . 17
3.2 Pipelined Operation of Early Acknowledgement Protocol 17
3.3 Controller Operation . 19
3.4 Timing Constraints . 21
3.5 Performance . 28
3.6 Model Checking of Controller . 33

3.6.1 UPPAAL Model Checker . 33
3.6.2 Modelling EA Controller with UPPAAL 34
3.6.3 Properties tested for EA controller model 37

4 Design and Analysis of Non-linear Controller 39
4.1 Overview . 39
4.2 Operation of CB Controller . 39
4.3 Early Acknowledgement CB Controller . 40
4.4 Timing Constraints . 41
4.5 Performance . 44

5 Design and Analysis of non-linear 2-phase Controller 49
5.1 Overview . 49
5.2 2-phase Controller: MOUSETRAP . 49

5.2.1 Performance of MOUSETRAP controller 50
5.3 2-phase Conditional Branch (CB) Controller 52

5.3.1 Performance of CB controller for 2-phase protocol 53
5.4 Summary . 55

6 Analysis of 4-phase Controllers 57
6.1 Overview . 57
6.2 4-phase Linear Controller . 57
6.3 4-phase Conditional Branch controller . 58
6.4 Performance Analysis of 4-phase Linear Controller 58
6.5 Performance analysis of 4-phase CB Controller 60
6.6 Summary . 62

7 Comparison of Controllers 65
7.1 Overview . 65
7.2 Linear Controllers . 65
7.3 Conditional Branch (CB) Controllers . 67
7.4 Performance Test Framework . 69
7.5 Results . 71
7.6 Conclusions . 73

8 Case Study: Gauss-Seidel Accelerator 75
8.1 Introduction . 75
8.2 Gauss-Seidel Method . 75

Contents xiii

8.3 Algorithm . 77
8.4 Pipelined Implementation . 80

8.4.1 Data Path . 80
8.4.2 Control Path . 83
8.4.3 Input and Output . 83
8.4.4 Fixed-point arithmetic and normalization 85

8.5 FPGA Design . 85
8.6 Simulation Results . 88

9 Conclusions and Future Work 93
9.1 Conclusions . 93
9.2 Recommendations for the applications . 94
9.3 Future Work . 95

List of Publications 97

A UPPAAL model for EA controller 99
A.1 Declarations . 99
A.2 2 Input gate (AND gate and C-element) 101

A.2.1 Model . 101
A.2.2 Declarations . 101

A.3 Inverter . 103
A.3.1 Model . 103

A.4 Variable Delay . 103
A.4.1 Model . 103

A.5 Output Environment . 103
A.5.1 Model . 103

A.6 Environment Clock . 104
A.6.1 Model . 104

A.7 Edge detect (generic) . 105
A.7.1 Model . 105

A.8 Clock missing property . 105
A.8.1 Model . 105

A.9 System Declarations . 106

Bibliography 109

List of Figures

2.1 Synchronous Pipeline. 6
2.2 Synchronous Pipeline Data Flow Diagram. 7
2.3 Asynchronous Pipeline. 8
2.4 Asynchronous Pipeline Data Flow Diagram. 8
2.5 Bundled Data Pipeline. 9
2.6 4-phase Protocol. 10
2.7 2-phase Protocol. 11
2.8 Early Acknowledgement Protocol. 12
2.9 4-phase Protocol. 12
2.10 Muller C-Element (symmetric). 13
2.11 Muller C-Element (asymmetric). 13
2.12 4-phase Controller. 14
2.13 MOUSETRAP Controller. 15

3.1 General Pipeline with Logic Processing. 18
3.2 Asymmetric Delay for MD. 19
3.3 Behavior of EA controller. 19
3.4 EA pipeline controller. 20
3.5 Asymmetric delay for RD. 20
3.6 Controller operation. 21
3.7 Fastest environment for constraint analysis. 22
3.8 STG for EA controller (constraint paths). 24
3.9 STG for EA Controller. 27
3.10 2-input logic gate modelled in UPPAAL 35
3.11 Input Side Environment modelled in UPPAAL 36
3.12 Input Side Environment modelled in UPPAAL 36

4.1 Conditional Branch Controller. 40
4.2 Early Acknowledgement CB controller. 41
4.3 STG for EA–CB Controller. 42

5.1 MOUSETRAP controller. 50
5.2 STG for MOUSETRAP Controller. 51
5.3 2-phase CB controller. 53
5.4 STG for Conditional Branch Controller for 2-phase protocol. 54

xv

List of Figures xvi

6.1 4-phase controller. 57
6.2 4-Phase CB controller. 58
6.3 STG for 4-phase Controller. 59
6.4 STG for Conditional Branch Controller for 4-phase protocol. 61

8.1 Gauss Seidel Pipeline. 78
8.2 Gauss Seidel Pipeline (units). 79
8.3 Linear Controllers for each Protocol. 79
8.4 Conditional Branch Controllers for each Protocol. 80
8.5 Asymmetric (Rising-edge) Programmable Delay. 81
8.6 Symmetric Programmable Delay. 81
8.7 Operation of Gauss Seidel Accelerator. 84
8.8 Xilinx Virtex 4 Slice Configuration. 85
8.9 Floor Plan on FPGA Virtex-4. 87
8.10 A Typical Simulation Output. 89
8.11 Control Path: With Early Acknowledgement controllers. 91
8.12 Control Path: With 2-phase controllers. 91
8.13 Control Path: With 4-phase controllers. 91

A.1 2-input logic gate modelled in UPPAAL 101
A.2 Inverter gate modelled in UPPAAL . 103
A.3 Variable delay modelled in UPPAAL . 104
A.4 Output Environment modelled in UPPAAL 104
A.5 Data capture clocks for the input and output environments 105
A.6 Generic observer model to detect edges . 105
A.7 Observer model to test clock missing property 106

List of Tables

7.1 Cycle-time comparison. 70
7.2 Resource utilization comparison. 72

8.1 Data path Resource Utilization. 86
8.2 Accelerator Performance Comparison. 88
8.3 Accelerator Matched Delays. 90

xvii

Abbreviations

CB Conditional Branch

CTL Computation Tree Logic

DI Delay Insensitive

EA Early Acknowledgement

EM Electro Magnetic

FEM Finite Element Method

MD Matched Delay

QDI Quasi Delay Insensitive

RD Resetting Delay

RTZ Return To Zero

SI Speed Independent

STG State Transition Graph

2P 2 Phase

4P 4 Phase

xix

Chapter 1

Introduction

1.1 Overview

Digital design embraced the synchronous design methodology because it greatly simpli-
fies the design task with a single orchestrator –the clock signal– in command. In the
early days of CMOS technology, with low gate densities and low operating frequencies,
the asynchronous design methodology gave way to a rapid advancement in digital design
based on synchronous circuits. However, as the digital design scales to date remarkably
satisfying the Moore’s Law, having a single clock has become one of the fundamental
limitation. In a synchronous design, clock signal is required to be received by the differ-
ent parts of the system, ideally, at the same time. The variations of the clock signal due
to interconnect length, capacitive coupling, manufacturing and material imperfections,
etc. is known as the clock skew. When designs became denser and the operating fre-
quencies increased in several orders of magnitudes, clock skew has become a significant
portion of the cycle requiring action to mitigate the problem. General practice in syn-
chronous design is to use wider and thicker clock trees which reduce the skew, which in
turn makes the clock signal one of the major source of power consumption in a system.
Moreover, the clocked components consume power at every clock cycle whether they per-
form a useful task or not which contribute further to the power consumption problem.
In the performance perspective the simplicity of the synchronous designs lies in finding
the slowest component (known as the critical path of the system) and synchronizing all
the other components to work at that speed. This is otherwise known as “worst–case–
design” practice i.e. the design works at the speed of the slowest component.

1

Chapter 1. Introduction 2

The distinctive advantages of asynchronous design, which counter the above problems,
signify its importance in recent years [1, 2]. Asynchronous designs do away with any
centralized (clock) signal. Instead, each component of the design communicates locally
with each other. In this design paradigm, a digital circuit is viewed as a collection
of autonomous components without any centralized orchestrator to control operations.
Thus, there are number of advantages which are inherent to asynchronous design. (i)
Without a global clock signal, the designs eliminate the ever increasing problems of clock
skew and power consumption associated with it [3]. (ii) Each component operates only
when required an inherently power–efficient manner, generating little electromagnetic
(EM) noise [4–8]. (iii) Component timing is naturally elastic with each component
operating at its own speed. This gives a system average–case performance as opposed
to worst–case performance dictated by the slowest component in a synchronous system.
(iv) Also, it makes the system more resilient to fabrication and environmental variations.
(v) Moreover, metastability issues arising from the handling of inputs and/or multiple
clock domains do not exist in the asynchronous design paradigm [9, 10]. Hence, designs
become more robust.

There is a wide array of asynchronous design methods with trade–offs between robustness
and performance in operation. The most robust category is Delay- Insensitive (DI)
circuits [11]. In this domain of design the functional operation of the circuit is guaranteed
regardless of the gate and wire delays of the implementation. DI circuits implemented
using gates and their performance is very limited as shown in [12].

Quasi-Delay-Insensitive (QDI) is a variant of the DI circuits which is highly robust yet
too restricted to realize useful circuits. Similar to DI, this model does not make assump-
tions about gate or wire delays except for a class of interconnect called isochronic forks.
They allow signals to travel to two destinations and only receive an acknowledgement
from one. Speed Independent (SI) circuits is another class of asynchronous circuits which
comes in the same class as QDI circuits. Operation of a SI circuit is valid irrespective
of the gate delays of the design. Yet, in these circuits the wire delays are assumed to
be zero. However this assumption has become increasingly difficult to guarantee as the
technology scales and wire delays have become predominant.

In Self-Timed (ST) circuit model, the design consists of isochronic regions communi-
cating with zero delay wires. Within each region the elements are self-timed and take
arbitrary amount of time to process. In this type of circuits all the delay assumptions
are related to local signals within each region.

Chapter 1. Introduction 3

The general class of asynchronous circuits which assume bounded gate and wire de-
lays, is the least robust and deliver highest performance. Design effort to ensure the
post fabricated delays of design meets the requirements is the price to pay for the high
performance in this type of design. However, the consideration of robustness and per-
formance depends on the particular application of the circuit.

Asynchronous technology has been applied for processors in numerous occasions. One
of the notable asynchronous processors is the AMULET series which implements the
ARM processor architecture. The AMULET1 was first demonstrated in 1993 and the
processor is currently in its third iteration (AMULET3i) [5, 7, 13].

1.2 Contribution of this work

The main contribution of this work is a proposal of a new pipeline controller for Early
Acknowledgement protocol for bundled data asynchronous circuits. Early Acknowledge-
ment protocol is a relatively new handshake protocol for bundled data communication.
2-phase and 4-phase protocols are the most widely used protocols for this type of asyn-
chronous design. The new protocol combines the advantages of each protocol and hence
claimed to be superior. The contributions of this work can be summarized as follows.

1. The first of the pipeline controller proposed based on this protocol is a linear
controller to operate straight pipelines. The analytical and experimental study on
this controller shows it outperforms 4-phase controller and the performance of it
is comparable to that of high-speed 2-phase controller

2. Another controller is proposed to perform the conditional branch non-linear op-
eration based on the above proposed linear controller. The performance of it is
analytically and experimentally proven to be superior to both 4-phase and 2-phase
conditional branch controllers.

3. Thereby this work also highlights the importance of the Early Acknowledgement
protocol as a promising candidate for bundled data handshake protocol even
though it is not widely employed in asynchronous design community.

Chapter 1. Introduction 4

1.3 Organization

This thesis is organized in to nine chapters. The Chapter 1 gives an introduction to the
dissertation. The rest of the thesis is organized as follows:

• Chapter 2 gives basic theoretical background for asynchronous design and the
pipelined circuits which is the focus of this work.

• The first controller is presented in Chapter 3 which includes its design, operation,
constraint and performance analysis.

• The conditional branch controller is presented in Chapter 4 with similar structure
to the linear controller in the previous chapter.

• An analysis of the performance of 2-phase linear and conditional branch controllers
(MOUSETRAP controllers) are presented in Chapter 5.

• Similarly, an analysis of the performance of linear and conditional branch con-
trollers for 4-phase controllers is presented in Chapter 6.

• Comparison of the performance and an experimental evaluation of their perfor-
mance is presented in Chapter 7.

• The case study carried out to test the performance of the proposed controllers in
a practical design is presented in Chapter 8.

• The conclusions and future research work in this area is given in Chapter 9.

Chapter 2

Background and Theory

2.1 Overview

This chapter provides the background details for the research work discussed in the sub-
sequent chapters. The basics of pipelined circuits and their construction in synchronous
and asynchronous manner are given. Bundled-data communication - the asynchronous
design model that this work is based- is detailed with a brief analogy to its synchronous
counterpart. Then, the hand-shake protocols (4-phase and 2-phase protocols) that are
mainly used for bundled data communication are presented. The Early Acknowledge-
ment protocol, on which this work make a contribution is detailed next. At the end, a
fundamental component used in asynchronous circuits and a formalism used to analysis
the circuit is presented.

2.2 Pipelined Circuits

Very simple systems which perform basic functions that depend on the inputs only, can
be implemented using only combinational logic. However, more often complex systems
require partitioning of the function and keeping the state of the logic held temporally.
A pipeline is a result of such a partitioning of a complex function in temporal order. It
consists of a set of data processing elements (partitions of a task) connected in series,
so that the output of one element is the input of the next one. The elements of a
pipeline are executed in parallel. State registers are inserted in-between two processing
elements to buffer the data. The state registers (or pipeline registers) store the results

5

Chapter 2. Background and Theory 6

of a particular partition and retain it as input the next stage. Such a partitioning has
following advantages.

1. Partitioning allows a single processing element (combinational block) to be shared
by several different operations. (e.g. ALU with different operands)

2. Use the results of the processing element as an input the next operation of the
element (e.g. accumulator unit)

3. Deliver higher throughput by executing the each stage of the pipeline indepen-
dently, as opposed to waiting for the whole task to finish before stating another
cycle.

The timing to operate such a pipeline is addressed differently in synchronous and asyn-
chronous design methods which are discussed in next two sections.

2.3 Synchronous Pipelines

As shown in Figure 2.1, the synchronous circuits derive timing to operate the pipeline
registers from the global clock signal. The conventional microprocessors are synchronous
circuits that use this type of synchronous pipelines. Here, registers are clocked syn-
chronously. The time between each clock signal should be greater than the longest delay
between pipeline stages. Thus ensuring when the registers are clocked, the data that is
written to them is the final result of the previous stage.

stage1

logic1

stage2 stage3 stage4

clk

logic2 logic3

Figure 2.1: Synchronous Pipeline.

Figure 2.2 shows the movement of data from one stage to another by shifting data to
the next stage at the rising edge of the clock. The boxes D0 though D3 denote four

Chapter 2. Background and Theory 7

different sets of data passing through the pipeline stages. At each pipeline stage require
different amount of time depending on the data to process them and make it available
to the next stage. The gray area denotes time each stage waits before the clock signal
arrives. Note that when D0 passes through stage 2 it requires the entire clock cycle
to process data. This in turn defines the critical path and hence the maximum clock
frequency to the entire pipeline. If the clock frequency is increased, D0 cannot be
completely processed from stage 2 before the clock signal arrives to capture the data
for stage registers, resulting a failure in the pipeline. Stage 3, uses relatively less time
to complete any data-set, yet the clock cycle is required to be set to address the above
mentioned worst-case making Stage 3 idling for the considerable time in each cycle.

clk

stage1

stage2

stage3

D0 D1 D2 D3

D0 D1 D2 D3

D0 D1 D2 D3

sync. end

Figure 2.2: Synchronous Pipeline Data Flow Diagram.

2.4 Asynchronous Pipelines

In asynchronous pipelines the stage registers are clocked asynchronously by detecting
the completion of each stage. To achieve this, global clock of the synchronous designs are
replaced with locally distributed set of controllers to provide timing for each stage. These
controllers use a request/acknowledge signals, to indicate handshake between adjacent
stages to pass data.

Figure 2.3 shows an asynchronous pipeline and Figure 2.4 shows the movement of data
within this pipeline. Note that the timing for each stage is generated locally for each
stage. Hence, the pipeline exhibit average case performance. Pipeline “stretches” de-
pending on the stage and/or data being processed. This causes two types of pipeline
stalls in this type of pipelines.

Chapter 2. Background and Theory 8

stage0

logic1

stage1 stage2 stage3

logic2 logic3

req1

ack1

req′
1 req2 req′

2 req3 req′
3

ack2 ack3

Figure 2.3: Asynchronous Pipeline.

• blocking: when the data is ready to be processed but the next stage is busy pro-
cessing the previous set of data

• starvation: when the stage is ready to process data but the data is not available
from the previous stage.

In Figure 2.4 the blocking and starvation are illustrated with light gray and dark gray
respectively. Blocking can be observed between stages 1 and 2 for D1 data. Data is
available from the Stage 1, yet Stage 2 is busy processing the previous data D0, hence
cannot accept D1. Starvation is present in Stage 3 after processing data D0. It has
finished processing D0 and waiting on D1 data which is still not available. When the
pipeline contains too few data elements then starvation is common and the throughput
is low. When the pipeline contains too many data elements then blocking appears often
and causes high latency.

stage1

stage2

stage3

D0 D1 D2 D3

D0 D1 D2 D3

D0 D1 D2 D3

sync. end

async. end

Figure 2.4: Asynchronous Pipeline Data Flow Diagram.

There are two basic schemes to encode the data path of an asynchronous pipeline.
Namely they are: Single-rail encoding (or Bundled-data communication) and Dual-rail

Chapter 2. Background and Theory 9

encoding. In bundled-data communication, a single wire is used to represent a single bit
of data, in the same way as synchronous logic. In dual-rail encoding two wires are used
to represent a single bit of a data path –each rail to transmit the value 0 and value 1.

This work entirely based on the former scheme. A brief introduction to this single-rail
scheme is given below.

2.4.1 Bundled Data Communication

Bundled data communication model uses “matched delays” (MD) to locally generate
the completion signals for each stage as shown in Figure 2.5. The data wires do not carry
the completion signal by themselves, rather all (or a set of) wires are bundled together
by a dedicated wire with a matched delay carrying the completion signal to the local
controllers. This allows “conventional” data processing elements used in synchronous
designs to be used in asynchronous designs employing bundled data model. The bundling
can be done for the entire data set or sets of data to allow more fine control in matched
delay at the expense of additional control wires and stage controllers.

stage0

logic1

stage1 stage2 stage3

logic2 logic3

ack1 ack2 ack3

req′
1req1 MD1 MD3MD2req2 req′

2 req3 req′
3

Figure 2.5: Bundled Data Pipeline.

2.5 Handshake Protocols

The protocol used to communicate between the controllers varies. Three of such pro-
tocols which span the scope of this study are discussed below. The first two protocols
4-phase and 2-phase protocols are the most widely used protocols. Early Acknowledge-
ment protocol is a relatively new protocol on which the main work of this thesis based.

Chapter 2. Background and Theory 10

2.5.1 4-phase Protocol

4-phase protocol is a level-based or Return-To-Zero (RTZ) handshake protocol. The
request (req) and acknowledge (ack) signals starts from zero state and return back to
zero state at the end of a handshake cycle. The 4-phase protocol is shown in Figure 2.6.
As the name suggests, in this protocol, there are four transitions on the req and ack
signals per cycle. Here, a request is made by the rising edge of the req signal. The
corresponding acknowledgement is indicated by the receiver raising the ack signal. The
working period for this protocol is from the rising edge of req to the rising edge of ack.
At the end of the working period, both req and ack signals are high. Upon receipt
of the acknowledgement, req is lowered and ack is also lowered, completing the cycle.
The period when both req and ack are zero before the next cycle starts is the resetting
period. The different sequencing of these 4-phase signalling transitions leads to different
controllers for a range of cost and performance options as shown in [14].

data

req

ack

working period resetting period

Figure 2.6: 4-phase Protocol.

The 4-phase handshake protocol is also the most commonly used protocol for its sim-
plicity. The AMULET processor and Tangram-based systems use the 4-phase protocol.
However, the main disadvantage of the this protocol is the resetting phase where the
protocol is incapable of performing useful task while waiting for signals to reset for the
next cycle.

2.5.2 2-phase Protocol

In the 2-phase, or transition signalling, protocol, each cycle consists of two transitions
(rising or falling edge) on req and ack signals, as shown in Figure 2.7. A request is

Chapter 2. Background and Theory 11

made by a transition on the req signal. The receiver also acknowledges completion of
work by a transition on the ack signal. The working period is defined as the duration
from the request being made to the acknowledgement of completion. Hence, for the
2-phase protocol it is between any transition on the req signal to the same transition on
the ack signal. It should be noted that in this protocol, the next cycle can be started
immediately after the working period. The MOUSETRAP [15], a simple and robust
linear pipeline controller, is based on this protocol, which has been proven to operate
high–throughput pipelines at 2.1–2.4 GHz [16].

data

req

ack

working period

Figure 2.7: 2-phase Protocol.

However, when the transition signalling protocol is used, translations from 2-phase to
4-phase are usually required at some points, because in many cases, environment circuits
use level-sensitive controls.

2.5.3 Early Acknowledgement Protocol

Pipeline controller presented as the main work of this thesis employs the Early Ac-
knowledgement (EA) protocol introduced in [17], where its original idea was presented
in [18]. This protocol is an improvement over the simple 4-phase protocol, and can hide
the resetting period of the signalling. As shown in Figure 2.8, the request is made at
the rising edge of req signal similar to 4-phase protocol. But, the ack signal goes high
at any time point after the request, and the req signal can be lowered in response to
this early acknowledgement. Especially in the EA protocol the completion of work is
indicated by the falling edge of the ack signal in contrast to the 4-phase protocol where
it is indicated by the rising edge. Since working period is from the request made to
notification of completion, in the case of EA protocol it is from rising edge of req signal

Chapter 2. Background and Theory 12

to falling edge of ack signal. Unlike in 4-phase protocol, at the end of working period,
both signals are reset back to zero and next cycle can be started immediately. Hence,
this protocol eliminates the resetting period inherent in the 4-phase protocol and yet
retains its simplicity by maintaining the return-to-zero control signals.

data

req

ack

working period

Figure 2.8: Early Acknowledgement Protocol.

When any of the above protocols is used in an asynchronous pipeline, the requests need
to be appropriately delayed with matched delays such that request on the next stage
arrives after the data is valid. The Figure 2.9 illustrates the 4-phase protocol used in
such a case.

data

req

req′

ack

data′

Figure 2.9: 4-phase Protocol.

Chapter 2. Background and Theory 13

2.6 C-element

In asynchronous circuit design there are some fundamental elements used that are not
common in synchronous design domain. Muller C-element [19] is a commonly used
asynchronous component. It performs “event anding” operation, i.e. C-element produce
and event when it receives events on all of its inputs. The event in this case can be 0-to-1
or 1-to-0 transition. Figure 2.10 shows the C-element symbol and the implementations
of it using feedback logic and at transistor level.

i0
C

i1

o

i0

i1
o i0

i1

o

Figure 2.10: Muller C-Element (symmetric).

Asymmetric C-element is a natural extension of this function. There, the output event
is sensitive to only one of input events, either 0-to-1 or 1-to-0. Figure 2.11 shows
the asymmetric C-element and its implementations. Output is sensitive to the 0-to-
1 transitions of the asymmetric inputs that are attached to the plus (+) side of the
symbol and to the 1-to-0 transitions of the inputs attached to the minus (−) side. The
inputs in the middle are accounted for in both transitions like in symmetric C-element.

p

C
m

o

m

c o o

p

m

c

p
c

+

−

Figure 2.11: Muller C-Element (asymmetric).

Chapter 2. Background and Theory 14

2.7 Formal Specification: STGs

In order to formally analyse the proposed designs State Transition Graphs (STG) are
used [20, 21]. STG is a derivative of a Petri Net [22] a graphical and mathematical tool
for describing and studying various concurrent systems. In the strict sense, STG is an
Interpreted Free-Choice Petri Net (IFCN) [23]. There are many advantages using the
STGs for formal specification of an asynchronous circuit.

• STGs address the basic paradigms of asynchronous systems: the concurrency
causality and choice.

• The behaviour of the circuit and the environment can be captured to one STG
diagram

• Relatively easy to use due to its resemblance to timing diagrams

2.8 4-phase Linear Controller

We have used the 4-phase controller proposed in [24] for this comparison. The con-
troller is shown in Figure 2.12. The G1 and G2 are complex gates which comprises the
controller.

Rin

Ain

Aout

Rout

clk

G1 G2

Figure 2.12: 4-phase Controller.

2.9 2-phase Controller: MOUSETRAP

For the 2-phase or the transition signalling protocol, MOUSETRAP controller is selected
for its simplicity and high performance. As shown in Figure 2.13, the controller consists

Chapter 2. Background and Theory 15

of a simple transparent latch (denoted by the rectangle box) and a XONR gate. The
signal enable is used to drive data latches (instead of D-flipflops) in the data path.

Initially all control signals are low except for enable signals making the all stages of
pipeline transparent. When the first data item flows through the pipeline stage, it flips
the values of RinN , RoutN and AinN exactly once (high). Subsequently, the second data
item flips all these signals once again (low). This is 2-phase (or transition) signalling
where each transition (either up or down) indicates a distinct request or acknowledge-
ment.

Once a data item captured by stage latches, three actions take place in parallel: (i)
the request to next stage RoutN is made; (ii) an acknowledgement, AinN , is sent to the
previous stage, allowing the next data item to be sent; and finally (iii) enableN is lowered
to make the stage latched opaque protecting the current data from being overwritten.
Subsequently, when an acknowledgement, AoutN is received from stageN+1, the latch
in stageN is re-enabled (i.e., made transparent).

enableN

RinN RoutN

AoutN

AinN

enableN+1

MD

AinN+1

RinN+1

AoutN+1

RoutN+1

StageN StageN+1

Figure 2.13: MOUSETRAP Controller.

In [15] the operation of the MOUSETRAP controller in both high-speed pipeline and
pipelines with logic processing is described in detail.

Chapter 3

Design and Analysis of EA
Controller

3.1 Overview

The pipeline controller presented in this chapter is an improvement of the controller
that was proposed earlier in [25]. The new controller has reduced the overhead of the
previously proposed controller under two timing constraints introduced. The operation
of the controller is presented first, followed by a timing analysis for its correct operation.
The performance analysis is presented at the end.

3.2 Pipelined Operation of Early Acknowledgement Pro-
tocol

First, we define a few naming conventions that we use for all controllers throughout the
rest of this dissertation. A general diagram of a pipeline using a bundled–data scheme
with logic processing in between stages is shown in Figure 3.1. In the interface of the
controller, RinN is the request to stageN , and AinN is the corresponding acknowledge-
ment signal from it to the input side (stageN−1). Similarly, RoutN and AoutN are the
request and acknowledgement to and from the output side (stageN+1). The local clock
signal of the stage generated by the controller is clkN . The logic processing delay (logic)
between the pipeline stages is accounted for by the matched delay (MD) inserted in the
request line between stages. For the 2-phase protocol, the delay can be symmetric such

17

Chapter 3. Design and Analysis of EA Controller 18

as a string of buffers, where as for the 4-phase protocol (hence, for the EA protocol as
well), the delays are asymmetric with a quicker resetting time, as shown in Figure 3.2.
tMD↑ represents the variable delay for the rising transition and tMD↓ represents the delay
for the falling transition. In our implementation, tMD↓ is equal to tAND↓.

RoutN RinN+1 RoutN+1RinN

AinN AoutN = AinN+1 AoutN+1

clkN clkN+1

dataN data′
N dataN+1 data′

N+1

StageN StageN+1

MD

logic

Figure 3.1: General Pipeline with Logic Processing.

Figure 3.3 shows the operational waveforms of the EA controller in a general pipeline
with logic processing as in Figure 3.1. The EA protocol uses the falling edge of the
acknowledgement signal to indicate the completion of the working period. Hence, data
D on dataN will be captured in stageN at the falling edge of AinN (i.e., clkN = AinN).
The captured data is processed by the logic unit in between two stages and becomes
available at dataN+1 after tlogic delay. Concurrently, on the control path, RoutN is
raised and stageN+1 controller receives the request on RinN+1 after the tMD↑ delay.
The matched delay MD is chosen such that the falling edge of AinN+1 occurs just after
dataN+1 becomes valid. This essentially hides the controller overhead (i.e., from the
rising edge of RinN+1, up to the falling edge of AinN+1) inside the required tlogic delay
by offsetting it from the matched delay MD. Thus,

tlogic = tMD + tctrl (3.1)

where, tctrl is the controller overhead. When tlogic ≥ tctrl, controller overhead (tctrl)
can be completely hidden inside the required matched delay. However, for fine–grained

Chapter 3. Design and Analysis of EA Controller 19

MD

tMD↑

in out
outin

in

out
tMD↓

Figure 3.2: Asymmetric Delay for MD.

pipelines with 1–2 gates per stage, this condition may not hold and, in that case, the con-
troller overhead is exposed to the pipeline operation. Hence, our controller is preferable
in applications where there is a fairly large processing delay (tlogic) between stages.

3.3 Controller Operation

Our controller the EA protocol is depicted in Figure 3.4. The controller consists of
two AND gates, a C-element, an inverter, and an asymmetric delay (RD) for the self–
resetting of the rst signal. The clock signal clk of the pipeline stage is derived from Āin,

RinN

AinN

RoutN

RinN+1

AinN+1/

tMD↑

tlogic

dataN

data′
N

dataN+1

data′
N+1

D

D

D

D

AoutN tctrl

Figure 3.3: Behavior of EA controller.

Chapter 3. Design and Analysis of EA Controller 20

C

complete

Ain

Rin

Aout

Rout

clk

RD

A1

A2

rst

Figure 3.4: EA pipeline controller.

and allows the clocking of the stage to be made at the falling edge of the acknowledge-
ment. The implementation of this delay is shown in Figure 3.5. tRD↓ is the variable part
of the delay, and tRD↑ is exactly equal to tOR↑.

Figure 3.6 shows the operation of the controller, which conforms to the pipelined op-
eration in Figure 3.3. Initially, all the control signals are low except for the clk signal.
When the input stage raises the request Rin, the controller immediately acknowledges
the request by raising Ain. At first, this is possible because there are no pending requests
at the output stage through Rout (For the blocked case, see below).

Since the early acknowledgement is provided by raising Ain, rst– the input for AND
gate A2 from the asymmetric delay– is also raised. When the input stage lowers the
request in response, the acknowledgement and the data is expected to be ready and the
following events occur.

• Ain is lowered by the falling edge of Rin through A1,

RD

tRD↓

in in out

in

out

out

tRD↑

Figure 3.5: Asymmetric delay for RD.

Chapter 3. Design and Analysis of EA Controller 21

• clk is raised, latching the new valid data from the input stage to the current stage
register, and

• complete is raised, generating the rising edge of the output request Rout

Once the Rout has been driven high, it can be maintained high by C-element1 even after
the complete signal has been lowered by the self–resetting circuit of the controller. This
also constitutes a local timing constraint to be satisfied by tRD↓ of the self–resetting
delay to correctly produce the Rout signal.

Since the controller has fully completed the handshake cycle at the input side, it is free to
make a new request on Rin. However, the pending output request Rout high effectively
blocks the generation of an early acknowledgement back to the input side. Upon receipt
of acknowledgement high on Aout, Rout will be lowered, and the blocked request from
the input stage will be free to send the early acknowledgement by raising Ain.

3.4 Timing Constraints

First, we turn to the timing constraints required for the desired operation described in
Section 3.2. For constraint analysis, we assume that our controller is in a middle stage of

1The C-element used here with a negative input changes its output only when the two inputs have
different values, and its output value is equal to that of the positive input.

Rin

Ain

rst

complete

Rout

Aout

tRD↓ tRD↑

Figure 3.6: Controller operation.

Chapter 3. Design and Analysis of EA Controller 22

C

complete

Ain

Rin

Aout

Rout

clkN

A1

A2

rst

C

A1

tNMD

tN+1
MD

tRD

StageNStageN−1 StageN+1clkN+1

Figure 3.7: Fastest environment for constraint analysis.

a pipeline and that its environment (i.e., the controllers in the previous and next stages)
operates at a speed equal to or slower than that of our controller. This is because we
consider that the linear controller is the fastest, and assuming that the environment
is slower than it allows us to evaluate the impact on constraints when more complex
operations are built around the linear controller, as detailed in Section 4.3. Figure 3.7
shows the fastest environment where the delays can be quantified using the controller
delays.

The Signal Transition Graph (STG) for our controller for constraint analysis is depicted
in Figure 3.8. Thick arrows indicate the signal transitions generated from the envi-
ronment of the controller, where as regular arrows indicate transitions made by the
controller. Transitions are labelled with their associated gate delays. Note that, accord-
ing to our assumptions, the environment delays are either equal to or larger than the
delays incurred from the two similar controllers in the previous and next stages as shown
in Figure 3.7.

We identify two types of expressions throughout the constraint analysis: the constraints
and properties. The equation numbers are appropriately prefixed with the letter C or
P to distinguish between these types. Constraints are what are required to be satisfied,
where as properties express conditions that already hold. We utilize the properties of
the controller and the environment in validating the constraints during our analysis.

In the timing calculations, the inverted inputs of AND gates A1, A2 and of the C-element
are not considered separately. They are attributed to the total delay of the gate.

Constraint 1. The first constraint imposes conditions to prevent data overwriting. In
our controller, the pending output request (Rout high) blocks any new requests on Rin.

Chapter 3. Design and Analysis of EA Controller 23

This requires Rout to go high before a new request (Rin high) is received. Thus, the
timing constraint can be formulated as follows:

(C) tRin↓→Rin↑ ≥ tRin↓→Rout↑ (3.2)

The left-hand side of the above constraint can be given as:

(P) tRin↓→Rin↑ = tAND↓ + tAin↓→Rin↑ (3.3)

The path is labelled A© in Figure 3.8. Note that Ain ↓ is always caused by Rin ↓ through
AND gate A1. Since the delays incurred from the environment at the input and output
sides are considered to be either equal to or larger than the delays incurred by a linear
controller, as mentioned previously, the following holds (see Figure 3.7).

(P) tAin↓→Rin↑ ≥ tC↑ + tNMD↑ (3.4)

Thus, (3.3) can be rewritten as:

(P) tRin↓→Rin↑ ≥ tAND↓ + tC↑ + tNMD↑ (3.5)

As for the right-hand side of (3.2), we need to consider two cases where different events
cause Rout ↑.

Case 1: If Aout ↓ is early enough compared with the next Rin ↑, and if Rout ↑ is
caused by complete ↑, then the following holds:

(P) tRin↓→Rout↑ =max(0,−tAin↑→Rin↓ + tOR↑)

+ tAND↑ + tC↑ (3.6)

The above expression is labelled B© in Figure 3.8. The max operator is used to get the
larger of the delays from two concurrent paths. The first path corresponds to the delays
from the input side, and the second path comprises delays local to the controller in the
self-resetting loop. Since the second path actually originates from Ain ↑, tRin↓→Ain↑ =
−tAin↑→Rin↓ is used. Again, from the delay assumption of the environment,

(P) tAin↑→Rin↓ ≥ tC↓ + tNMD↓ (3.7)

Chapter 3. Design and Analysis of EA Controller 24

Ain ↓

Rin ↑

Ain ↑

Rin ↓

Rout ↓

Aout ↓

Rout ↑

Aout ↑

≥ tC↑ + tN
MD↑

tAND↑

tAND↑

≥ tC↓ + tN
MD↓

tC↑

tC↓

tC↑

tAND↓

complete ↓

complete ↑

tRD↑ + tAND↑

tAND↑

tRD↓ + tAND↓ tC↓

A

D

C

B

clkN ↑ clkN+1 ↑tflop + tlogic

tNOT↑ tN+1
MD↓ + tAND↓ + tNOT↑

E

F

Figure 3.8: STG for EA controller (constraint paths).

holds (see Figure 3.8). Thus, (3.6) can be rewritten as:

(P) tRin↓→Rout↑ ≤max(0,−(tC↓ + tNMD↓) + tRD↑)

+ tAND↑ + tC↑. (3.8)

From (3.5) and (3.8), a conservative version of the constraint (3.2) is obtained in the
form of constraints for the variable parameter tNMD↑, the matched delay to be inserted
between two stages of the pipeline, as follows:

(C) tAND↓ + tC↑ + tNMD↑ ≥ tAND↑ + tC↑

that is, tNMD↑ ≥ tAND↑ − tAND↓ (3.9)

Chapter 3. Design and Analysis of EA Controller 25

and

(C) tAND↓ + tC↑ + tNMD↑ ≥ −(tC↓ + tAND↓) + tOR↑

+ tAND↑ + tC↑

that is, tNMD↑ ≥ tAND↑ + tOR↑

− (tC↓ + 2 · tAND↓). (3.10)

In (3.10), the occurrences of tNMD↓ and tRD↑ have already been replaced with the equiv-
alent gate delays tAND↓ and tOR↑ respectively.

Case 2: If Aout ↓ is late and causes Rout ↑, the following holds:

(P) tRin↓→Rout↑ =− (tAin↑→Rin↓ + tAND↑)

+ tRout↓→Aout↓ + tC↑. (3.11)

The above expression is labelled C© in the STG diagram in Figure 3.8. From the delay
assumption (3.7), it can be rewritten as:

(P) tRin↓→Rout↑ ≤− (tAND↑ + tC↓ + tAND↓)

+ tRout↓→Aout↓ + tC↑. (3.12)

From (3.5) and (3.12), another conservative version of the constraint (3.2) for tNMD↑ is
obtained as follows:

(C) tAND↓ + tC↑ + tNMD↑ ≥ −(tAND↑ + tC↓ + tAND↓)

+ tRout↓→Aout↓ + tC↑

that is, tNMD↑ ≥ tRout↓→Aout↓ − (tC↓

+ tAND↑ + 2 · tAND↓). (3.13)

All the constraints derived for tNMD↑ in Cases 1 and 2 (i.e., (3.9), (3.10), and (3.13))
can be satisfied in the preferred application of our controller where there are processing
elements within the pipeline and hence the matched delay tNMD↑ is large enough to meet
the above constraints.

Constraint 2. The next is a timing constraint to be satisfied by the self resetting
delay. The complete signal should not be self–reset before the Rout high is produced.
This constraint imposes conditions on the minimum delay for the self–resetting loop

Chapter 3. Design and Analysis of EA Controller 26

tRD↓ to satisfy the above condition. We can formulate this constraint as:

(C) tRin↓→complete↓ ≥ tRin↓→Rout↑. (3.14)

From Figure 3.6, the causality relation for Rin ↓, Ain ↓, RD ↓, and complete ↓ is
straightforward. Thus, the left-hand side of the above constraint can be given as:

(P) tRin↓→complete↓ = tAND↓ + tRD↓ + tAND↓

= tRD↓ + 2 · tAND↓. (3.15)

The path of the above expression is labelled D© in Figure 3.8. The right-hand side of the
above constraint is the same as that of (3.2). Thus, exactly the same two cases as those
shown for Constraint 1 are considered, and the following three constraints are obtained
for (3.14).

Case 1: From (3.15) and (3.8), a conservative version of the constraint (3.14) is obtained
as follows:

(C) tRD↓ + 2 · tAND↓ ≥ tAND↑ + tC↑

that is, tRD↓ ≥ tAND↑ + tC↑ − 2 · tAND↓ (3.16)

and

(C) tRD↓ + 2 · tAND↓ ≥ −(tC↓ + tAND↓) + tOR↑

+ tAND↑ + tC↑

that is, tRD↓ ≥ tOR↑ + tAND↑ + tC↑

− (tC↓ + 3 · tAND↓). (3.17)

Case 2: From (3.15) and (3.12), another conservative version of constraint (3.14) for
tRD↓ is obtained as follows:

(C) tRD↓ + 2 · tAND↓ ≥ −(tAND↑ + tC↓ + tAND↓)

+ tRout↓→Aout↓ + tC↑

that is, tRD↓ ≥ tRout↓→Aout↓ + tC↑

− (tAND↑ + tC↓ + 3 · tAND↓). (3.18)

Chapter 3. Design and Analysis of EA Controller 27

Ain ↓

Rin ↑

Ain ↑

Rin ↓

Rout ↓

Aout ↓

Rout ↑

Aout ↑

clkN ↑ clkN+1 ↑tflop + tlogic

tNOT↑ tN+1
MD↓ + tAND↓ + tNOT↑

tC↑ + tN
MD↑

tAND↑

tAND↑

tC↓ + tN
MD↓

tC↑

tN+1
MD↑ + tAND↑

tC↓tAND↓

tAND↑ + tC↑

t
N+1
MD↓ + tAND↓

Figure 3.9: STG for EA Controller.

The constraints derived for tRD↓ in cases 1 and 2 (i.e. (3.16), (3.17) and (3.18)) should
be considered when selecting the minimum delay for the self-resetting loop.

Constraint 3. The last timing constraint prevents StageN clock (clkN) from capturing
new data before StageN+1 captures data already processed between two stages. When
we use Rout ↓ event, which signals the arrival of new data to the StageN+1, and unblocks
the requests pending at AND gate A1, as the starting point of time measurements, this
timing constraint can be formulated as follows.

(C) tRout↓→clkN↑ ≥ tRout↓→clkN+1↑. (3.19)

Right-hand side of the above constraint (labelled F© in Figure 3.8), is the path from
the Rout falling edge to the capture of data by the clock clkN+1. The left-hand side
(labelled E© in Figure 3.8), is the path from Rout falling edge to the capture of new data

Chapter 3. Design and Analysis of EA Controller 28

from clkN .

(P) tRout↓→clkN↑ = tAND↑ + tAin↑→Rin↓

+ tAND↓ + tNOT↑

≥ tAND↑ + tC↓ + tNMD↓
+ tAND↓ + tNOT↑. (3.20)

For the worst case of the constraint (3.19), the equality of the property (3.20) should
hold. In other words, the input environment is the fastest possible (i.e., delays are equal
to those incurred by the linear controller). This gives an upper bound for the right-hand
side of the constraint.

(P) tRout↓→clkN+1↑ ≤ tAND↑ + tC↓ + tNMD↓
+ tAND↓ + tNOT↑. (3.21)

In the case of linear controller in the StageN+1, from Figure 3.8, the following holds.

(P) tRout↓→clkN+1↑ = tN+1
MD↓ + tAND↓ + tNOT↑. (3.22)

Hence, in the linear pipeline, the above environment delay satisfies (3.21) because, when
the equations (3.21) and (3.22) are simplified replacing tNMD↓ and t

N+1
MD↓ with constant

tAND↓ delay, the right-hand sides of the resulting expressions amounts to 5 gate delays
and 3 gate delays, respectively.

The controller is model checked using UPPAAL model checker [26, 27] tool to verify the
correctness of the functionality and to conclude that the above constraints comprehen-
sively guarantee the operation of the controller.

3.5 Performance

Here, we derive equations for two important performance factors of the pipeline i.e.,
forward latency (L) and cycle time (T). More importantly, we show which components of
the latter performance metric can be hidden in the case of a pipeline with logic processing
where the EA protocol has a competitive edge. We assume that the controller in the
middle stage of a pipeline with the similar controllers in the previous and next stages.
In contrast to the constraint analysis, we assume that the controllers are operating at

Chapter 3. Design and Analysis of EA Controller 29

maximum speed in the performance analysis. With these two assumptions we can derive
the maximum performance of our controller.

The Figure 3.9 depicts the STG for our controller in desired operation, when it meets
the above specified constraints. Here, the environment delays are equal to the delays
incurred by the two similar controllers in the previous and next stages according to our
second assumption. Dashed-line arrows are for the clock signals of the controller stage
and the following stage (clkN and clkN+1) as well as for the data path between these
stages, which are not directly in the control path of the main control logic, but are useful
in measuring the cycle time in terms of logic processing delay (tlogic). For clarity, not
all the transition arcs for these two clock signals are shown.

The cycle time is defined as the interval between two successive data items passing
through a pipeline stage when the pipeline is operating at maximum speed. For this
purpose, we can measure the gate delays between two successive clk rising edges or
equivalently the delay between two successive falling edges of Rin.

First, we identify the controller’s critical cycle using the STG branch and merge points.
This critical cycle lies on the path (Rin ↓→ Rout ↑→ Aout ↑→ Rout ↓→ Ain ↑→ Rin ↓)
indicated by the cycle composed of short dashes. It can be proven that the above path
is the critical cycle of the controller according to the following argument.

The Figure 3.8 shows 4-cyclic paths that can be considered for the critical cycle of the
controller. They are

1. Path: Rin ↓→ complete ↑→ Rout ↑→ Aout ↑→ Rout ↓→ Ain ↑→ Rin ↓

2. Path: Ain ↑ complete ↑→ Rout ↑→ Aout ↑→ Rout ↓→ Ain ↑

3. Path: Rin ↓→ Ain ↓→→ Rin ↑→ Ain ↑→ Rin ↓

4. Path: Rin ↓→ Ain ↓→ complete ↓ Rout ↓→ Ain ↑→ Rin ↓

The path with larger delays dominates and becomes the critical cycle. It can be observed
that the difference between #1 path and #2 path is from Ain ↑ to complete ↑ the rest
of the paths are common. Thus if,

tAin↑→Rin↓ + tRin↓→complete↑ > tAin↑→complete↑ (3.23)

Chapter 3. Design and Analysis of EA Controller 30

then, the #1 path is more critical. Substituting the gate and environment delays from
Figure 3.8,

tC↓ + tNMD↓ + tAND↑ ≥ tOR↓ + tAND↑ (3.24)

This condition can be satisfied with three gate delays (or more from the environment
of the input side) on the left-hand side and two internal gate delays of the right- hand
side, hence the #1 is more critical than #2 path.

Similar argument can be held for paths #3 and #4. In this case, the segment of path
from Ain ↓ to Ain ↑ differs while the rest of the two cycles share common paths. Thus
if,

tAin↓→Rin↑ + tRin↑→Ain↑ > tAin↓→complete↓ + tcomplete↓→Rout↓ + tRout↓→Ain↑ (3.25)

then, the #3 path is more critical than the #4 path. Substituting the gate delays the
condition can be obtained as

tC↑ + tNMD↑ + tAND↑ ≥tRD↓ + tAND↓ + tC↓ + tAND↑ (3.26)

tNMD↑ ≥2 · tAND↓ + tC↓ + tAND↑

− (tC↑ + tAND↑) (3.27)

This condition for the matched delay can be satisfied in the applications where our
controller is preferred (with large logic delays in between stages), hence the critical cycle
is dictated by the #3 path.

Paths #1 and #3 can be compared to determine the critical cycle of the two.

#1 path =tAND↑ + tC↑ + tN+1
MD↑ + tAND↑

+ tC↓ + tAND↑ + tC↓ + tNMD↓ (3.28)

#3 path =tAND↓ + tC↑ + tNMD↑ + tAND↑

+ tC↓ + tNMD↓ (3.29)

Thus, for

#1 path > #3 path (3.30)

Chapter 3. Design and Analysis of EA Controller 31

and hence be the most critical cycle of all paths the following should be satisfied.

tN+1
MD↑ ≥ t

N
MD↑ + tAND↓ − (2 · tAND↑ + tC↓) (3.31)

Given the above condition, the critical cycle is defined by #1 path.

The cycle time can be obtained from the critical path as a function of gate delays and
required matched delays (tNMD and tN+1

MD) as follows.

T = 3 · tAND↑ + 2 · tC↓ + tC↑ + tN+1
MD↑ + tNMD↓. (3.32)

Here, all terms except tN+1
MD↑ are constant gate delays. To obtain the cycle time and

forward latency in terms of logic processing delay (tlogic), we need to express the required
matched delay tN+1

MD for the operations in terms of tlogic. When the data is captured with
clkN ↑, the next stage clock clkN+1 ↑ needs to be made after a delay of tflop + tlogic,
where tflop is the delay of the date register. We can relate tlogic to tN+1

MD by measuring
the same delay in two paths to the event of clkN+1 ↑.

• Path on control cycle: Rin ↓→ Rout ↑→ Aout ↑→ Rout ↓→ clkN+1 ↑

T1 = tAND↑ + tC↑ + tN+1
MD↑ + tAND↑

+ tC↓ + tN+1
MD↓ + tAND↓ + tNOT↑ (3.33)

• Path on data cycle: Rin ↓→ Ain ↓→ clkN ↑→ clkN+1 ↑

T2 = tAND↓ + tNOT↑ + tflop + tlogic (3.34)

To ensure the correct operation of the pipeline, T1 ≥ T2 must hold. Thus, from the
above two equations, we can derive an expression for the minimum value of tN+1

MD↑ as:

tN+1
MD↑ ≥ (tflop + tlogic)

− (2 · tAND↑ + tN+1
MD↓ + tC↑ + tC↓). (3.35)

Thus, if

tlogic ≥ (2 · tAND↑ + tN+1
MD↓ + tC↑ + tC↓)− tflop (3.36)

holds, we can find the cycle time in terms of tlogic by replacing tN+1
MD↑ in equation (3.32)

by the right-hand side of (3.35). Then the cycle time for the linear controller of EA

Chapter 3. Design and Analysis of EA Controller 32

protocol can be expressed as follows.

T lEA = tflop + tlogic + tAND↑ + tC↓. (3.37)

Note that in the above expressions, tN+1
MD↓ is equal to tAND↓ for our implementation

shown in Figure 3.2. The convention that we use for cycle time and forward latency
consists of the protocol in the subscript (EA, 2P, 4P, respectively) and the controller
type (l, cb for linear- and CB-type controllers, respectively) in the superscript.

If the logic processing time is smaller and the inequality (3.36) does not hold, we obtain
the minimum cycle time (maximum throughput) of this controller directly from equation
(3.32) by using tN+1

MD↑ = tNMD↓ = 0, that is:

T lEA|min = 3 · tAND↑ + 2 · tC↓ + tC↑. (3.38)

The above cycle minimum time is valid because it is possible to remove the matched delay
without violating the timing constraints derived for tNMD↑2. This could be confirmed in
our experiments as well.

Forward latency is the time taken by a data item to emerge from an initially empty
pipeline. Transitions that take place in the forward latency path starting from the Rin ↓
of the STG is shown in Figure 3.9 by the line of short dashes. When the inequality (3.36)
holds, we can use a similar argument to obtain the forward latency as follows.

LlEA = tAND↓ + tNOT↑ + tflop + tlogic. (3.39)

When the logic processing delay is small and inequality (3.36) does not hold, the critical
path for forward latency lies on the path: Rin ↓→ Rout ↑→ Aout ↑→ Rout ↓→
clkN+1 ↑, which is:

L = tAND↑ + tC↑ + tNMD↑ + tAND↑ + tC↓

+ tNMD↓ + tAND↓ + tNOT↑. (3.40)

Like the minimum cycle time, the minimum forward latency on this path can be derived
using tNMD↑ = tNMD↓ = 0. It is given by

LlEA|min = 2 · tAND↑ + tAND↓ + tC↑ + tC↓ + tNOT↑. (3.41)
2 In the pipeline, the constraints derived for tNMD of stageN are valid for tN+1

MD of stageN+1

Chapter 3. Design and Analysis of EA Controller 33

In a general pipeline with logic processing, condition (3.36) often holds. In that case,
the cycle time and forward latency for our controller are given by equations (3.37) and
(3.39), respectively.

3.6 Model Checking of Controller

A part from the constraint analysis of the controller, which ensures the operation of
the controller, a model checking was performed to formally verify the operation of con-
troller under variety of operating environments. For this purpose, the controller and the
input/output environment of the controller is modelled with UPPAL model checking
program [26].

3.6.1 UPPAAL Model Checker

UPPAAL is an integrated tool environment for modelling, validation and verification of
real-time systems modelled as networks of timed automata, extended with data types
(bounded integers, arrays, etc.) [27]. The UPPAAL model checker is based on timed
automata (finite state machine extended with clock variables) theory and the query
language which is used to specify the properties of the system is a subset of CTL (com-
putation tree logic).

Though the expressiveness of the CTL subset supported by UPPAAL is limited, it
provides an extended timed automata system. This was instrumental in modelling of the
controller and its environment, and to overcome the limitations of property expression
by modelling complex properties into observer automata.

The following UPPAAL extensions of the timed automata are used for the modelling of
the system and observer automata.

1. Templates automata are defined with a set of parameters that can be of any type
(e.g., int, chan). These parameters are substituted for a given argument in the
process declaration.

2. Binary synchronisation channels are declared as chan c. An edge labelled
with c! synchronises with another labelled c?. A synchronisation pair is chosen
non-deterministically if several combinations are enabled.

Chapter 3. Design and Analysis of EA Controller 34

3. Broadcast channels are declared as broadcast chan c. In a broadcast synchro-
nisation one sender c! can synchronise with an arbitrary number of receivers c?.
Any receiver than can synchronise in the current state must do so. If there are no
receivers, then the sender can still execute the c! action, i.e. broadcast sending is
never blocking.

4. Committed locations are even more restrictive on the execution than urgent
locations. A state is committed if any of the locations in the state is committed.
A committed state cannot delay and the next transition must involve an outgoing
edge of at least one of the committed locations [28].

3.6.2 Modelling EA Controller with UPPAAL

The model of the EA controller is mainly divided into 3 parts:

1. Model of EA controller. Individual gates which comprise the EA controller are
modelled and instantiated in the system. Wires connecting gate elements are
modelled as broadcast signals to propagate the changes within the system.

2. Models of the input and output environments.

3. Models of “observers”. Some of the properties to be tested against the model of the
controller are modelled as automata. This provides a way to test the properties
which are difficult and/or impossible to express in the subset of the CTL language
supported by UPPAAL.

The following Figure 3.10 shows the model for 2-input logic gate which use to model the
AND gate and C-element of the EA controller.

There are 5 states of the 2-input logic gate model. stable_op state shown in blue (and
a smaller inner circle) is the initial state which corresponds to the state when the logic
gate has a stable output out depending on its inputs in1, in2 according to the logic
function it represents. The three states with a letter c in the middle are committed states
in UPPAAL which are used to model transient changes in model execution. The inputs
are captured by the model through change_in1 and change_in2 broadcast channels.
If there is any change in inputs the model moves to change_in transient state and
try to determine whether the output is going to change due to the input change using

Chapter 3. Design and Analysis of EA Controller 35

Figure 3.10: 2-input logic gate modelled in UPPAAL

change() function 3. If it does change the output the model arrives at g_delay state
otherwise, it moves back to stable_op. In g_delay state, the model waits for clock to
elapse gdelay time units before updating the output and broadcasting the change of
the output through change_out channel at which point it returns to initial state.

The rest of the two transient states possible_glitch and glitch states are there to
detect any glitches in the inputs that may not get reflected in an output change. Having
the input_glitch state allows to easily compose properties to detect these conditions
which would otherwise require complex CTL expression not permissible in the subset
supported in UPPAAL.

The input and output environments are modelled in such a way that the speed of the
environment is configurable through parameters passed to the model. The input envi-
ronment is shown in Figure 3.11.

It should be noted that dn_max and up_max are configuration parameters for maximum
times between Ain up to Rin down and Ain down to Rin up, respectively. Using these
parameters the input environment can be slowed down or speed up to test the response

3The implementation of this model can be found in Appendix A

Chapter 3. Design and Analysis of EA Controller 36

Figure 3.11: Input Side Environment modelled in UPPAAL

of the controller model. The details of the model description is not provided, though
it can be understood easily using the same UPPAAL construct that we used to model
the 2-input logic gate. There are two “glitch detection” states in the model, namely
Ain_glitch_1 and Ain_glitch_2. They are modelled also as sink states so that if the
model detects a glitch from the controller the entire system is sent into a deadlock which
can be easily detected using liveliness properties of the system.

“Observer” automata were instrumental in testing the above constructed UPPAAL
model of the EA controller and its environment. Using these automata we overcame
the most of the limitations of the CTL subset supported by UPPAAL model checker to
express the properties. Instead of modelling the complex properties in CTL, they are
modelled as automata. The use of broadcast channels (provided by UPPAAL) to trans-
mit the signal changes within the model was exploited in these observer models. The
observer models also listen to these broadcast signals to extract the transitions taking
place and model properties into states of the automata. Figure 3.12 shows such observer
automata which models the missing clock pulses.

Figure 3.12: Input Side Environment modelled in UPPAAL

Chapter 3. Design and Analysis of EA Controller 37

In the above model if Clk_posedge signal is received (i.e. there is a positive edge
in the clock signal of the controller) and followed by a Clk_out_posedge signal the
model returns to the initial state. If however, two consecutive Clk_posedge signals are
received it would go to the Clk_out_missing state which can detected easily testing for
the property that whether the system reaches that state.

3.6.3 Properties tested for EA controller model

Following are the properties tested using the above UPPAAL model of the EA controller.

1. Property: A[] not (Out_env.Rout_glitch_1 or Out_env.Rout_glitch_2). No
glitches in Rout before Aout changes take place from the output environment.

2. Property: A[] not (In_env.Ain_glitch_1 or In_env.Ain_glitch_2). No glitches
in Ain before Rin changes takes place from the input environment.

3. Property: A[] not (A1_and.input_glitch or A2_and.input_glitch or

C_ele.input_glitch). No glitches at the inputs of the logic gates of the con-
troller.

4. Property: A[] not (A1_and.possible_glitch or A2_and.possible_glitch or

C_ele.possible_glitch). There are no glitches occurred in the combinational
gates of the controller

5. Property: A[] not (obs_Clk_Missing.Clk_Missing). For every Rin posedge
there is a Clk posedge –> No missing Clk edges for requests.

6. Property: A[] not (obs_A1_Blocking.A1_Blocking_Failed). A1 AND gate
successfully blocks if there are consecutive request on Rin.

7. Property: A[] not (obs_Clk_out_Missing.Clk_out_Missing). For every Clk
posedge there is Clk_out posedge –> No missing data captures.

8. Property: (Rin==1) –> (Clk==1). Rin posedge always followed by Clk posedge
(i.e. there are no missing clock pulses). This property is better correctly tested
with the obs1.

9. Property: A[] not deadlock. No deadlocks in the system.

Chapter 3. Design and Analysis of EA Controller 38

Among the properties tested all properties except for property #4 have passed. We
expect the glitch behaviour of the controller and verified it is not compromising the
correct behaviour of the controller.

Chapter 4

Design and Analysis of Non-linear
Controller

4.1 Overview

The Conditional Branch (CB) non-linear pipeline operation is used to demonstrate the
simplicity of the EA protocol (which is essentially the4-phase protocol) in composing
complex pipeline constructs. First, the abstract operation of the Conditional Branch
without any particular reference to a signalling protocol is given followed by the imple-
mentation of CB controller for each signalling protocol.

4.2 Operation of CB Controller

In contrast to Fork operation, Conditional Branch operation diverts the data to only
one branch depending on the select signal to the controller. It implements the logical
equivalent of an if-then-else construct. The interface of a two way Conditional Branch
controller is shown in Figure 4.1.

Conditional Branch controller communicates with the input stage by means of Rin and
Ain signals, whereas the two output stage control signals are Rout1, Aout1 and Rout2,
Aout2, respectively. When a request Rin is made from the previous stage of the pipeline,
data is latched by clk signal. Acknowledgement Ain is sent to the input stage when data
is latched. Depending on the select signal, the request is routed on either the first branch

39

Chapter 4. Design and Analysis of Non-linear Controller 40

CB

Rin

Ain Rout2

Rout1

Aout1

Aout2

clk

select

Figure 4.1: Conditional Branch Controller.

Rout1 or the second branch Rout2. It is assumed that the select signal is generated from
several data-path signals.

4.3 Early Acknowledgement CB Controller

The CB controller for the EA protocol is a simple extension of its linear controller.
The controller can be composed of a linear controller (for EA protocol), demultiplexer,
delay element (SD), and an OR gate. The CB controller at StageN of a pipeline is
shown in Figure 4.2. The Rin and Ain of the controller are handled by the linear
controller used within the CB controller. A function generator gen that produces select
from stageN data is explicitly considered for analyzing constraints imposed by such an
application. In Fig. 4.2, the rectangular box connected to clkN signal represents the
stageN register which consists of D-flipflops. data′N is the captured data of dataN in
the stage register according to our naming convention. The select signal is generated
using function generator gen from this captured data as shown. The asymmetric delay
element SD, which is the same type as MD shown in Fig. 3.2, is used to compensate
for the delay of gen. An additional constraint on SD for this correct sampling of the
select signal is presented in the constraint analysis of this controller. The select signal
diverts the delayed request req_d from the linear controller to either the Rout1 or Rout2
conditional paths through the demultiplexer. Since only one request is acknowledged
from either Aout1 or Aout2, the acknowledgements from the conditional branches can
be simply “ORed” to produce the ack to the linear controller.

Chapter 4. Design and Analysis of Non-linear Controller 41

0

1

C

complete
RD

A1

A2
rst

SDAin

Rin

clkN

gen
select

data′
N

dataN

EA linear controller

EA CB controller

req req d

ack
Aout1

Aout2

DEMUX

Rout1

Rout2

t
N+1′
MD1

t
N+1′
MD2

StageN−1 StageN StageN+1

tN
MD

Figure 4.2: Early Acknowledgement CB controller.

4.4 Timing Constraints

Timing constraints for the CB controller are analyzed as an extension of the linear
controller constraints presented in 3.4. Again, we obtain timing constraints to satisfy
the desired operation described in Section 4.2 assuming that the CB controller is in
a middle stage of a pipeline with the environment operating at a speed equal to or
slower than our linear controller. First, the three constraints presented in Section 3.4
are reevaluated to ensure proper operation of the linear controller used within the CB
controller. Then, an additional constraint on tSD for proper operation of demultiplexer
is presented.

Constraints 1 and 2. The CB controller is viewed as a linear controller (or linear
pipeline) from the input side because; it uses a linear EA controller to communicate with
Rin and Ain. The difference can be perceived only when viewed from the controller’s
branches owing to the additional branching logic for request and acknowledge. Thus,
constraints involving tRout↓→Aout↓ should be reconsidered. This corresponds to Case 2
of each constraint where Aout ↓ causes Rout ↑. The two constraints (3.13) and (3.18)
can be restated for the linear controller within the CB controller using the labels req

Chapter 4. Design and Analysis of Non-linear Controller 42

Ain ↓

Rin ↑

Ain ↑

Rin ↓

Rout1 ↓

Aout1 ↓

Rout1 ↑

Aout1 ↑

clkN ↑ clkN+1 ↑tflop + tlogic

tNOT↑ t′
MD1↓ + tAND↓ + tNOT↑

tC↑ + tMD↑

tAND↑

tC↓ + tMD↓

[tOR↓] + tC↑ + [tAND↑]

t′
MD1↑ + tAND↑

tAND↓

t′
MD1↓ + tAND↓

req d ↑

req ↓tAND↑

tAND↑ + tC↑ + [tSD↑]

[tAND↑]

[tOR↑] + tC↓

[tSD↓]

req d ↓

[tAND↓]

select

tflop + tgen

B

A

Figure 4.3: STG for EA–CB Controller.

and ack for the output side as in Figure 4.2.

(C) tNMD↑ ≥ treq↓→ack↓

− (tC↓ + tAND↑ + 2 · tAND↓) (4.1)

and, tRD↓ ≥ treq↓→ack↓ + tC↑

− (tAND↑ + tC↓ + 3 · tAND↓) (4.2)

where,

treq↓→ack↓ = 2 · tAND↓ + tRout1↓→Aout1↓ + tOR↓ (4.3)

Here, tNMD↑ and tRD↓ should be selected to satisfy these new constraints.

Constraint 3. This constraint can be restated for CB controller from (3.21) as follows.

(C) treq↓→clkN+1↑ ≤ tAND↑ + tC↓ + tNMD↓
+ tAND↓ + tNOT↑. (4.4)

Chapter 4. Design and Analysis of Non-linear Controller 43

This condition must be satisfied by any controller in the output stage.

For example, this constraint can be considered for two cases 1) when there is a linear
controller at the output stage, and 2) when there is a CB controller at the output stage.
It should be noted that there is no difference in these two cases as far as this constraint is
concerned because; the input side of a CB controller is composed of a linear controller.
Hence, the output stage, Rout1/Aout1 (and/or Rout2/Aout2) will be connected to a
linear controller in either case. The path delay from req ↓ to clkN+1 ↑ (similar to (3.22)
in linear controller) in above two cases can be obtained from the STG diagram for the
CB controller shown in Figure 4.3.

(P) treq↓→clkN+1↑ = [tSD↓ + tAND↓] + t′MD1↓

+ tAND↓ + tNOT↑. (4.5)

Due to the extra overhead incurred by the SD and demultiplexer, the property becomes
a hard condition to satisfy with 5 gate delays in either side of the inequality. Satisfaction
of this constraint can be guaranteed by increasing tNMD↓ to be more than one gate delay
at the expense of introducing additional overhead to the critical cycle of the controller.
(This can be done by adding buffers in between the out port and the rightmost AND
gate of the asymmetric delay in Figure 3.2. As a result, it also increases the tMD↑ by the
same amount of delay incurred by the buffers. It should be adjusted back by reducing
the AND gates which comprises the variable part of the delay.)

Constraint 4. An additional constraint on a CB controller requires the select signal
to be valid before req_d goes high. This ensures proper operation of the demultiplexer
that switches the request req to either branch depending on the select signal. The EA
protocol stipulates that the data becomes valid before Rin ↓ arrives. Thus, the worst
case for this constraint is when data becomes valid simultaneously with Rin ↓. In that
case, the constraint becomes:

(C) tRin↓→req_d↑ ≥ tRin↓→select. (4.6)

For Rin ↓ to cause req_d ↑, at least tAND↑ of AND gate A2, tC↑ of the C -element, and
tSD↑ of SD should occur (path labelled A© in Figure 4.3). Hence, the lower bound for
the left-hand side of the above constraint can be expressed as follows.

(P) tRin↓→req_d↑ ≥ tAND↑ + tC↑ + tSD↑. (4.7)

Chapter 4. Design and Analysis of Non-linear Controller 44

The Rin ↓ also causes data capture by lowering Ain though the AND gate A1 and
raising the clock NOT gate. The function generator produces the correct select signal
from the captured data after time tgen has elapsed (path labelled B© in Figure 4.3).
Hence, the right-hand side of the constraint can be expressed as

tRin↓→select = tAND↓ + tNOT↑ + tflop + tgen. (4.8)

Thus, the constraint on the asymmetric delay can be derived as

(C) tAND↑ + tC↑ + tSD↑ ≥ tAND↓ + tNOT↑ + tflop + tgen

tSD↑ ≥ tflop + tgen + tAND↓ + tNOT↑

− (tAND↑ + tC↑). (4.9)

This constraint defines the selection of tSD↑ based on the select generator function.

4.5 Performance

In this section, the controller’s cycle time and forward latency are derived analytically
as was done for the linear controller. The minimum time for processing logic tlogic that
ensures the advantage of the new controller by hiding its overhead is also derived in the
form of an inequality similar to that of (3.36).

The STG for the CB controller is shown in Figure 4.3. The arrows with associated delays
in square brackets indicate the delays incurred by the controller’s extra components
(demultiplexer, delay element, and OR gate). We try to differentiate between the linear
operation overhead and the additional overhead incurred due to the CB operation, and
then reflect them in the equations that we derive as well. The diagram shows the
STG for only one branch of the controller (Rout1/Aout1) without losing any functional
information needed to perform the analysis.

The notable difference from the linear controller’s STG is in the matched delays MD1
andMD2 for the controller’s output branches. As shown in Figure 4.2 and detailed in the
constraint analysis, part of the output-side matched delays may be used for SD inside
our controller to compensate for the select generator function and the demultiplexer
delays. The matched delays outside the controller MD1′ and MD2′ are selected such

Chapter 4. Design and Analysis of Non-linear Controller 45

that the original matched delay remains the same. i.e.,

tMD1↑ = t′MD1↑ + tSD↑ + tAND↑

and tMD2↑ = t′MD2↑ + tSD↑ + tAND↑.

We can measure the delays in the control cycle and data cycle to derive the cycle time
in tlogic and the inequality for optimal controller operation. The cycle time (indicated
by the cycle composed of short dashes in Figure 4.3) in terms of gate delays can be
expressed as follows.

T = tAND↑ + tC↑ + [tSD↑] + [tAND↑]

+ t′MD1↑ + tAND↑ + [tOR↑] + tC↓

+ tAND↑ + tC↓ + tMD↓. (4.10)

The delays enclosed within square brackets indicate the extra delays of the path due to
CB operation. We can express this cycle time in terms of tlogic by measuring the delays
in the control and data paths.

• Path on control cycle: Rin ↓→ req_d ↑→ Rout1 ↑→ Aout1 ↑→ req ↓→ Rout1 ↓→
clkN+1 ↑

TCB1 = tAND↑ + tC↑ + [tSD↑] + [tAND↑]

+ t′MD1↑ + tAND↑ + [tOR↑] + tC↓ + [tSD↓]

+ [tAND↓] + t′MD1↓ + tAND↓ + tNOT↑. (4.11)

• Path on data cycle: Rin ↓→ Ain ↓→ clkN ↑→ clkN+1 ↑

TCB2 = tAND↓ + tNOT↑ + tflop + tlogic. (4.12)

Again, for proper operation of the pipeline, TCB1 ≥ TCB2 must hold. This translates to:

t′MD1↑ ≥ (tflop + tlogic)

− (2 · tAND↑ + tC↑ + tC↓ + t′MD1↓)

− [tSD↑ + tAND↑ + tAND↓ + tOR↑ + tSD↓]. (4.13)

Chapter 4. Design and Analysis of Non-linear Controller 46

Thus, if

tlogic ≥ (2 · tAND↑ + tC↑ + tC↓ + t′MD1↓

+ [tSD↑ + tAND↑ + tAND↓ + tOR↑

+ tSD↓])− tflop (4.14)

holds, the cycle time T cbEA for CB controller can be expressed in terms of tlogic by sub-
stituting the minimum of (4.13) into equation (4.10).

T cbEA = tflop + tlogic + tAND↑ + tC↓ − [2.tAND↓]. (4.15)

To simplify the above expression, we use the fact that t′MD1↓ = tMD↓ = tSD↓ = tAND↓
in accordance with our implementation.

Note that in inequality (4.14), the additional delays due to CB operation (enclosed in
brackets) constitute two parts. 1) tSD, which compensates for tgen and 2) delays due to
the DEMUX and the OR gate. When the condition in (4.14) is satisfied, the controller’s
cycle time is given by (4.15).

The condition given by inequality (4.14) gives the minimum of tlogic required to hide
the overhead of the controller in this Conditional Branch controller. A similar condition
derived for the linear controller is the inequality (3.36) in Chapter 3 which is:

tlogic ≥ (2 · tAND↑ + tNMD↓ + tC↑ + tC↓)− tflop (4.16)

According to inequalities of (4.16) and (4.14), minimum of tlogic required in order to
hide the additional overhead incurred by the Conditional Branch Controller is higher
than that of linear controller.

In the case where the logic processing time is too small and inequality (4.14) does not
hold, we get the minimum cycle time directly from the equation (4.10) with t′MD1↑ =
tMD↓ = 0. It is:

T cbEA|min = 3 · tAND↑ + tC↑ + 2 · tC↓

+ [tSD↑ + tAND↑ + tOR↑]. (4.17)

Forward latency is also measured in a manner similar to that for the linear controller;
this is marked in dashed lines on the STG diagram. For sufficiently large tlogic, forward

Chapter 4. Design and Analysis of Non-linear Controller 47

latency has the same terms (despite the minimum tlogic being larger) as for the linear
controller. That is,

LcbEA = tAND↓ + tNOT↑ + tflop + tlogic. (4.18)

When tlogic is small and the inequality (4.14) does not hold, the critical path lies on the
path: Rin ↓→ req_d ↑→ Rout1 ↑→ Aout1 ↑→ req ↓→ Rout1 ↓→ clkN+1 ↑.

L = tAND↑ + tC↑ + [tSD↑] + [tAND↑] + t′MD1↑

+ tAND↑ + [tOR↑] + tC↓ + [tSD↓ + tAND↓]

+ t′MD1↓ + tAND↓ + tNOT↑. (4.19)

Similar to the minimum cycle time, the minimum forward latency can be derived for
this case when t′MD1↑ = t′MD1↓ = 0 as follows.

LcbEA|min = 2 · tAND↑ + tAND↓ + tC↑ + tC↓ + tNOT↑

+ [tSD↑ + tAND↑ + 2.tAND↓ + tOR↑]. (4.20)

Again, the fact that tSD↓ = tAND↓ is used to simplify the above equation.

Chapter 5

Design and Analysis of non-linear
2-phase Controller

5.1 Overview

To demonstrate the advantage of the Early Acknowledgement (EA)–protocol–based con-
trollers, we compared its performance with 2- and 4-phase pipeline controllers. This
chapter details the 2-phase controllers (linear and conditional branch controllers) that
are used for comparison and their key features.

5.2 2-phase Controller: MOUSETRAP

For the 2-phase or the transition signalling protocol, the MOUSETRAP controller was
selected for its simplicity and high performance. As shown in Figure 5.1, this controller
consists of a simple transparent latch (denoted by the rectangular box) and an XONR
gate. The signal enable is used to drive data latches (instead of D-flipflops) in the data
path.

Initially, all control signals are low except for the enable signals that make all the
pipeline stages transparent. When the first data item flows through the pipeline stage,
it flips the values of RinN , RoutN , and AinN exactly once (to high). Subsequently,
the second data item flips all these signals once again (to low). This is 2-phase (or
transition) signalling where each transition (either up or down) indicates a distinct
request or acknowledgement.

49

Chapter 5. Design and Analysis of non-linear 2-phase Controller 50

Once a data item has been captured by stage latches, three actions occur in parallel:
(i) the request to the next-stage RoutN is made; (ii) an acknowledgement, AinN , is
sent to the previous stage, allowing the next data item to be sent; and finally (iii)
enableN is lowered to make the stage latches opaque, protecting the current data from
being overwritten. Subsequently, when an acknowledgement, AoutN is received from
stageN+1, the latch in stageN is re-enabled (i.e., made transparent).

enableN

RinN RoutN

AoutN

AinN

enableN+1

MD

AinN+1

RinN+1

AoutN+1

RoutN+1

StageN StageN+1

Figure 5.1: MOUSETRAP controller.

In [15], the operation of the MOUSETRAP controller in both high-speed pipelines and
pipelines with logic processing is described in detail. The authors also presented that
controller’s cycle time and the forward latency. The most important point to note
regarding the EA protocol and 4-phase signalling protocol is that there is no resetting
overhead in the 2-phase protocol, hence there is no resetting overhead in controller either.
We have extended the original derivation of cycle time and latency for MOUSETRAP
to cases with and without logic processing.

5.2.1 Performance of MOUSETRAP controller

Here we use the STG (Figure 5.2) presented in [15] (with our naming conventions for
the control signals) to derive the performance of MOUSETRAP controller. Also note
that the signals request/acknowledge signals confirm to 2-phase protocol hence an arrow
to/from those signals imply a “transition”. The cycle time lies on the path marked in
dashed line and the forward latency can be measured on the same path from AinN →

Chapter 5. Design and Analysis of non-linear 2-phase Controller 51

RinN

EnN−1+

AinN AoutN

EnN+

RinN+1

EnN− EnN+1−

tlatch + tMD

tlatch

tXNOR↑ tlatch

tMD

tXNOR↑

tlatch

tXNOR↓tXNOR↓

tlogic + tflop

Figure 5.2: STG for MOUSETRAP Controller.

RinN+1 → AoutN . Hence,

T = tMD + tlatch + tXNOR↑ + tlatch

= tMD + 2 · tlatch + tXNOR↑ (5.1)

L = tMD + tlatch. (5.2)

To express the above equations in terms of tlogic, the time can be measured on control
path and data path as follows.

• Path on control cycle: AinN → RinN+1 → AoutN → EnN+1−

T1 = tMD + tlatch + tXNOR↓ (5.3)

• Path on data cycle: AinN → EnN− → EnN+1−

T2 = tXNOR↓ + tlogic + tlatch. (5.4)

To correctly latch the data at the next stage (EnN+1−) it is required that T1 ≥ T2

which lead to below condition:

tMD + tlatch + tXNOR↓ ≥ tXNOR↓ + tlogic + tlatch

tMD ≥ tlogic. (5.5)

Chapter 5. Design and Analysis of non-linear 2-phase Controller 52

In other words, the matched delay should be selected to be equal or greater than the
logic delay. The optimal matched delay is when tMD = tlogic. The cycle time and
forward latency will be:

T = tlogic + 2 · tlatch + tXNOR↑ (5.6)

L = tlogic + tlatch. (5.7)

In contrast to Early Acknowledgement controllers, the above equations holds for any
logic delay making it a very high performance pipeline controller specially when the logic
processing is very low limited to one or two gate delays. The maximum performance
(minimum cycle time and latency) for this controller is when tlogic = 0 which can be
given as:

T |min = 2 · tlatch + tXNOR↑ (5.8)

L|min = tlatch. (5.9)

5.3 2-phase Conditional Branch (CB) Controller

The CB controller for the transition signalling protocol is not as straightforward as in the
EA or 4-phase protocol. Since there is no resetting of the request or acknowledgement
signal, we cannot make use of a demultiplexer to route the request on the sampled select
signal. The CB controller for 2-phase protocol based on [29] is shown in Figure 5.3.
Note that D-flops are used instead of the transparent latches used in the MOUSETRAP
controller for a linear pipeline because; the D-flipflop-based controller is more robust
than the transparent-latch-based controller in this case.

Initially, all control signals are in the same state and the complete signal is high, which
indicates that the controller’s output side operations are complete. The select signal
can be either high or low depending on the data or other control information that
handles the branching operation. When a request is made with a transition on Rin, the
difference between the states of Rin and Ain generates the clk signal, which is gated by
complete. Since complete is initially high, the clk signal is raised and captures the control
and data signals. Once the Rin is captured, the same transition occurs in Ain, which
acknowledges the request to the input side. The s1 and s2 flipflops work as a “transition
demultiplexer” that generates the requests on either Rout1 or Rout2 depending on the

Chapter 5. Design and Analysis of non-linear 2-phase Controller 53

select signal. The transition on Rout1 or Rout2 is made using its previous level from
Aout1 or Aout2, respectively, and inverting it through the two XOR gates. The first
XOR gate generates “Rout1 = Aout1 when select = 0”, whereas the second XOR gate
generates “Rout2 = Aout2 when select = 1”. For example, if the select signal is low,
s1 captures Aout1, generating transitions on Rout1, i.e., requests on the first branch.
The SD delay element is used to appropriately delay the request to match the the select
generator block gen, so that a valid select signal is used to drive s1 and s2 flops.

Either request event causes the complete signal to go low, indicating that the latched
data is being passed to the output stage, which effectively blocks new requests from the
input side. Upon the acknowledgement of the corresponding branch, each pair of request
and acknowledgement signals returns to the same state, raising the complete signal high
and re-enabling the requests from the input side. In comparison to the minimal overhead
of the linear controller (MOUSETRAP), s1 and s2 the request-generating toggle flops
and completion detection mechanism incur a considerable overhead in their operation,
which adversely affects the controller’s performance.

5.3.1 Performance of CB controller for 2-phase protocol

The STG for the functional operation of the 2-phase Conditional Branch Controller is
given in Figure 5.4. In this STG also, transitions for only one branch of the controller

D Q

CLK

Rin

D Q

CLK

select Rout1

Aout1

Rout2

Aout2

clk

D Q

CLK

Ain

complete

s1

s2

gen
dataN

StageN+1

MD1

MD2

StageN

SD

StageN−1

Figure 5.3: 2-phase CB controller.

Chapter 5. Design and Analysis of non-linear 2-phase Controller 54

are given. Note that for signals Rin, Ain, Rout1 and Aout1 STG implies a “transition”
without explicitly unfolding the particular transitions (from low-to-high and high-to-
low) which are identical in the protocol. The matched delays are symmetrical for the
transition signalling protocol. Hence there is no distinction made between tMD↑ and
tMD↓ as in the case of other two protocols.

We can calculate the cycle time and forward latency in terms of tlogic using the same
rationale used in Conditional Branch controller of the Early Acknowledgement protocol.
The cycle time and forward latency of the controller as shown in the STG with thin
dashed lines can be expressed as:

T = tflop + tMD + tlatch + tXNOR↑

+ 2 · tAND↑ (5.10)

L = tXOR↑ + tAND↑ + tflop + tMD

+ tlatch + tXNOR↓. (5.11)

In order to express above in terms of tlogic we measure the delays on the control and
data paths.

• Path on control cycle: clkN+→ Rout1 → Aout1 → En−

TCB1 = tflop + tMD + tlatch + tXNOR↓ (5.12)

Rin

clkN(+)

Ain

Aout1

Rout1

EnN+1(−)
tflop + tlogic

tXOR↑ + tAND↑

tflop

tflop

tXNOR↓

tMD1 + tlatch

tXOR↑ + tLt + tMD0

complete(+)
tAND↑ tXNOR↑ + tAND↑

Figure 5.4: STG for Conditional Branch Controller for 2-phase protocol.

Chapter 5. Design and Analysis of non-linear 2-phase Controller 55

• Path on data cycle: clkN+→ En−

TCB2 = tflop + tlogic. (5.13)

Since TCB1 ≥ TCB2 for proper operation, we can obtain the constraint on tMD1 as:

tMD ≥ tlogic − (tlatch + tXNOR↓) (5.14)

thus, if, tlogic ≥ tlatch + tXNOR↓ (5.15)

holds, the cycle time and latency for this controller can be obtained as:

T = tflop + tlogic + 2 · tAND↑

+ (tXNOR↑ − tXNOR↓) (5.16)

L = tflop + tlogic + tXOR↑ + tAND↑. (5.17)

When the above condition does not hold we can derive the cycle time and latency directly
from (5.10) and (5.11) at tMD = 0 as follows.

T |min = tflop + tlatch + tXNOR↑ + 2 · tAND↑ (5.18)

L|min = tXOR↑ + tAND↑ + tflop + tlatch + tXNOR↓. (5.19)

5.4 Summary

The performance analysis can be summarized as follows. For Linear Controller :

T l2P = 2 · tlatch + tlogic + tXNOR↑ (5.20)

Ll2P = tlatch + tlogic, (5.21)

The minimum cycle time and forward latency can be derived from the above equations
when tlogic = 0 as follows.

T l2P |min = 2 · tlatch + tXNOR↑ (5.22)

Ll2P |min = tlatch. (5.23)

For Conditional Branch controller:

Chapter 5. Design and Analysis of non-linear 2-phase Controller 56

if, tlogic ≥ tlatch + tXNOR↓ (5.24)

holds, the cycle time and forward latency for this controller can be obtained as:

T cb2P = tflop + tlogic + 2 · tAND↑

+ (tXNOR↑ − tXNOR↓) (5.25)

Lcb2P = tflop + tlogic + tXOR↑ + tAND↑. (5.26)

When the above condition does not hold the minimum of these two parameters are
obtained as follows.

T cb2P |min = tflop + tlatch + tXNOR↑ + 2 · tAND↑ (5.27)

Lcb2P |min = tXOR↑ + tAND↑ + tflop + tlatch + tXNOR↓. (5.28)

Chapter 6

Analysis of 4-phase Controllers

6.1 Overview

This chapter details the 4-phase linear and conditional-branch controllers used for the
comparison of Early Acknowledgement controllers. Similar to the 2-phase controllers in
previous chapter, the performance of those controllers are analysed for comparison.

6.2 4-phase Linear Controller

We used the 4-phase controller proposed in [24] for this comparison. That is shown in
Figure 6.1. G1 and G2 are complex gates composing the controller.

Rin

Ain

Aout

Rout

clk

G1 G2

Figure 6.1: 4-phase controller.

57

Chapter 6. Analysis of 4-phase Controllers 58

6.3 4-phase Conditional Branch controller

The construction of the CB controller for the 4-phase protocol is similar to that for
the EA protocol. It is the same as Figure 4.2, except that a 4-phase linear controller
(Figure 6.1) is used in place of the EA linear controller. Moreover, the adjacent stages
also contain the 4-phase linear controllers for this case. The operation as described in
previous Section 4.3 is valid for the 4-phase Conditional Branch controller as well.

The cycle time and forward latency of this controller are obtained in a way similar to
that of CB controller for the EA protocol. A brief performance analysis to obtain its
cycle time and latency is presented below.

6.4 Performance Analysis of 4-phase Linear Controller

We could derive the cycle time and latency for this 4-phase controller using a similar
mechanism to the one used in the EA protocol controller. The STG for obtaining the
cycle time and latency is shown in Figure 6.3. Quite evidently the cycle time of the 4-
phase controller has controller overhead which lies on the critical cycle and it cannot be
hidden by the matched delay, unlike Early Acknowledgement controller. The analysis of
the cycle time and latency is similar to the Early Acknowledgement controller presented
in Section 3.5; hence we left out trivial deductions that can be made directly from the
STG diagram.

0

1

SDAin

Rin

clkN

gen
select

data′
N

dataN

4-phase linear controller

4-phase CB controller

req req d

ack
Aout1

Aout2

DEMUX

Rout1

Rout2

t
N+1′
MD1

t
N+1′
MD2

StageN−1 StageN StageN+1

tN
MD

Figure 6.2: 4-Phase CB controller.

Chapter 6. Analysis of 4-phase Controllers 59

We used the Rin+ as the starting transition confirming to the semantics of the 4-phase
protocol. The critical path lies on the dashed line path which constitutes a twisted loop.
Hence, the cycle time and forward latency can be obtained as a function of gate delays
(starting from Rin+) as follows.

T = tG1↑ + tG2↑ + tMD↑ + tG1↑

+ tG2↓ + tMD↓ + tG1↓ + tG2↑ (6.1)

L = tG1↑ + tG2↑ + tMD↑ + tG1↑ (6.2)

To bring in the tlogic to the above equations two paths on control and data cycles are
considered.

• Path on control cycle: Rin+→ Ain+→ Rout+→ Aout+

T1 = tG1↑ + tG2↑ + tMD↑ + tG1↑ (6.3)

• Path on data cycle: Rin+→ Ain+→ Aout+

T2 = tG1↑ + tflop + tlogic (6.4)

Ain(+)

Rin(-)

Ain(-)

Rin(+)

Rout(-)

Aout(-)

Rout(+)

Aout(+)

tflop + tlogic

tG2↓

tG1↓

tG2↑

tG1↑ + tG2↑

tG2↓

tMD↓ + tG1↓

tG1↑ + tG2↑

tMD↑

tG2↑

tG1↑

+tMD↓

+tG1↑

+tMD↑

Figure 6.3: STG for 4-phase Controller.

Chapter 6. Analysis of 4-phase Controllers 60

From the T1 ≥ T2 condition for proper operation we have:

tMD↑ ≥ tflop + tlogic − (tG1↑ + tG2↑)

Thus, if, tlogic ≥ tG1↑ + tG2↑ − tflop (6.5)

holds, the cycle time and forward latency of the 4-phase controller can be expressed as
follows.

T = tflop + tlogic + tG1↑ + tG2↑

+ tG1↓ + tG2↓ + tAND↓ (6.6)

L = tflop + tlogic + tG1↑ (6.7)

When the above condition does not hold the above parameters can be deduced from
equations (6.1) and (6.2) at tMD↑ = tMD↓ = 0.

T |min = tflop + tlogic + tG1↑ + tG2↑

+ tG1↓ + tG2↓ + tAND↓ (6.8)

L|min = tflop + tlogic + tG1↑ (6.9)

6.5 Performance analysis of 4-phase CB Controller

The Figure 6.4 shows the STG for the Conditional Branch controller for 4-phase pro-
tocol. The analysis of the cycle time and forward latency is similar to that of Early
Acknowledgement protocol Conditional Branch controller presented in Section 4.5.

The arrows with associated delays in square brackets indicate the delays incurred by
the extra components (demultiplexer, delay element and OR gate) of the controller.
With the same reasoning that we followed for Conditional Branch controllers for Early
Acknowledgement protocol, we can derive expressions for cycle time and forward latency
in terms of tlogic. The cycle time and forward latency as marked in thin dashed lines in

Chapter 6. Analysis of 4-phase Controllers 61

the STG can be expressed in terms of gate delays as follows.

T = tG1↑ + tG2↑ + [tSD↑ + tAND↑] + t′MD1↑

+ tG1↑ + [tOR↑] + tG2↓ + [tAND↓]

+ t′MD1↓ + tG1↓ + [tOR↓] + tG2↑ (6.10)

L = tG1↑ + tG2↑ + [tSD↑ + tAND↑]

+ t′MD1↑ + tG1↑ (6.11)

In order to express above two parameters in terms of tlogic two paths on control and
data cycles are considered.

• Path on control cycle: Rin+→ Ain+→ req_d+→ Rout+→ Aout+

T1 = tG1↑ + tG2↑ + [tSD↑ + tAND↑]

+ t′MD↑ + tG1↑ (6.12)

• Path on data cycle: Rin+→ Ain+→ Aout+

T2 = tG1↑ + tflop + tlogic (6.13)

Ain(+)

Rin(-)

Ain(-)

Rin(+)

Rout(-)

Aout(-)

Rout(+)

Aout(+)

tflop + tlogic

tG2↓

tG1↓

tG2↑

tG1↑ + tG2↑

[tOR↑] + tG2↓

t′
MD↓ + tG1↓

[tOR↓]+

t′
MD1↑

tG2↑ + [tOR↑

tG1↑

+tMD0↓

+tG1↑

+tMD0↑

req d(+)

[tSD↑ + tAND↑]

tG1↑ + tG2↑

+[tAND↓]

Figure 6.4: STG for Conditional Branch Controller for 4-phase protocol.

Chapter 6. Analysis of 4-phase Controllers 62

From the T1 ≥ T2 condition for proper operation we have:

t′MD↑ ≥ tflop + tlogic − (tG1↑ + tG2↑

+ [tSD↑ + tAND↑])

Thus, if, tlogic ≥ (tG1↑ + tG2↑ + [tSD↑ + tAND↑])

− tflop (6.14)

holds, the cycle time and forward latency of the 4-phase controller can be expressed as
follows.

T = tflop + tlogic + tG1↑ + tG2↑ + tG1↓

+ tG2↓ + tAND↓ + [tAND↓ + tOR↑ + tOR↓] (6.15)

L = tflop + tlogic + tG1↑ (6.16)

When the above condition does not hold the minimum values for above parameters can
be deduced from equations (6.10) and (6.11) at t′MD↑ = t′MD↓ = 0.

T |min = 2 · (tG1↑ + tG2↑) + tG1↓ + tG2↓

+ [tSD↑ + tAND↑ + tAND↓ + tOR↑

+ tOR↓] (6.17)

L|min = 2 · tG1↑ + tG2↑ + [tSD↑ + tAND↑]

(6.18)

6.6 Summary

The results can be summarized as follows. When the tlogic is large enough such that the
inequality

tlogic ≥ tG1↑ + tG2↑ − tflop (6.19)

holds, the cycle time and the latency can be expressed as:

T l4P = tflop + tlogic + tG1↑ + tG2↑

+ tG1↓ + tG2↓ + tAND↓ (6.20)

Ll4P = tflop + tlogic + tG1↑ (6.21)

Chapter 6. Analysis of 4-phase Controllers 63

When the tlogic is small that the above inequality does not hold, the cycle time and
latency take the following form.

T l4P |min = 2 · (tG1↑ + tG2↑) + tG1↓ + tG2↓ (6.22)

Ll4P |min = 2 · tG1↑ + tG2↑ (6.23)

For the Conditional Branch controller the obtained expressions can be summarized as
follows.

if, tlogic ≥ (tG1↑ + tG2↑ + [tSD↑ + tAND↑])

− tflop (6.24)

Then,

T cb4P = tflop + tlogic + tG1↑ + tG2↑ + tG1↓

+ tG2↓ + tAND↓ + [tAND↓ + tOR↑ + tOR↓] (6.25)

Lcb4P = tflop + tlogic + tG1↑ (6.26)

Otherwise, the minimum of cycle time and forward latency are,

T cb4P |min = 2 · (tG1↑ + tG2↑) + tG1↓ + tG2↓

+ [tSD↑ + tAND↑ + tAND↓ + tOR↑

+ tOR↓] (6.27)

Lcb4P |min = 2 · tG1↑ + tG2↑ + [tSD↑ + tAND↑] (6.28)

Chapter 7

Comparison of Controllers

7.1 Overview

This chapter provides the comparison of performance of the of the controllers of 4-
phase, 2-phase and Early Acknowledgement protocols both linear and non-linear derived
in last four Chapters. Moreover, a test carried out substantiate the analytical results
is presented. The simulation results obtained are discussed in view of the analytical
comparison.

7.2 Linear Controllers

The merits of using the EA controller could be observed in the case where tlogic satisfies
the condition derived in (3.36) in Chapter 3. Then, the cycle time for our controller is
given by (3.37). That is:
If,

tlogic ≥ (2 · tAND↑ + tNMD↓ + tC↑ + tC↓)− tflop (7.1)

Then,
T lEA = tflop + tlogic + tAND↑ + tC↓ (7.2)

65

Chapter 7. Comparison of Controllers 66

This can be compared analytically with the 2- and 4-phase protocols using equations
(5.20) and (6.20). For 2-phase controller:

T l2P = 2 · tlatch + tlogic + tXNOR↑ (7.3)

For 4-phase controller:

T l4P = tflop + tlogic + tG1↑ + tG2↑

+ tG1↓ + tG2↓ + tAND↓ (7.4)

It is not possible to compare the cycle times without specific delays obtained from
technology libraries. However, we can get an idea of the controller overhead in the
overall cycle time in each case. Note that the data-path delays for our controller and for
the 4-phase controller are both tflop+ tlogic because; we use D-flipflops on the data-path.
In the case of the MOUSETRAP controller, the data-path delay is tlatch + tlogic as a
result of the use of transparent latches. Any additional terms appearing in the cycle-time
expressions apart from the data-path delays are incurred by the controller’s overhead.
Hence, our controller has an overhead of only two gate delays (tAND↑ + tC↓), which
is comparable to the 2-phase controller’s overhead (tlatch + tXNOR↑). For the 4-phase
controller the overhead is 5 gate delays, which is incurred by the resetting period.

However, our controller does not exhibit the performance advantage in first-in-first-out
(FIFO) types of pipelines, which have no logic processing. In that case, its minimum
cycle times are given by (3.38), (5.22) and (6.22) derived in Chapter 3, Chapter 5 and
Chapter 6 respectively.

T lEA|min = 3 · tAND↑ + 2 · tC↓ + tC↑ (7.5)

T l2P |min = 2 · tlatch + tXNOR↑ (7.6)

T l4P |min = 2 · (tG1↑ + tG2↑) (7.7)

+ tG1↓ + tG2↓ (7.8)

(7.9)

EA controller overhead is exposed in the critical cycle of the controller. Compared with
2-phase controller (7.6) this is clearly larger though it is in the same order of gate delays
(6 gates) in comparison to the 4-phase controller (7.8).

Chapter 7. Comparison of Controllers 67

The forward latencies of the three controllers can be compared using equations (3.39),
(5.21), and (6.21).

LlEA = tAND↓ + tNOT↑ + tflop + tlogic, (7.10)

Ll2P = tlatch + tlogic, (7.11)

Ll4P = tflop + tlogic + tG1↑ (7.12)

The MOUSETRAP controller clearly exhibits the lowest forward latency, where as the
4-phase controller shows slightly lower latency than our controller for equal gate delays.
The forward latencies when there is no logic processing are given by equations (3.41),
(5.23), and (6.23).

LlEA|min = 2 · tAND↑ + tAND↓ + tC↑+

tC↓ + tNOT↑ (7.13)

Ll2P |min = tlatch (7.14)

Ll4P |min = 2 · tG1↑ + tG2↑ (7.15)

Again, we can see that the MOUSETRAP controller has the lowest latency and our
controller has the highest.

It should be noted that neither our controller nor the MOUSETRAP controller is a
Speed-Independent (SI) circuit, whereas the 4-phase controller is. SI circuits work cor-
rectly when we use the unbound delay model, for which gate delays are unbounded (yet
finite) and wire delays are zero. In our controller (and also in the MOUSETRAP), there
are timing constraints that should be held by the gate delays of the selected technol-
ogy for the design. The performance advantages of both controllers over the 4-phase
controller depend partly on this as well.

7.3 Conditional Branch (CB) Controllers

Again, an accurate comparison of cycle times requires specific delay values from tech-
nology libraries. However we can employ the same mechanism to compare the overhead
of the controllers that we employed in the linear controller comparison. In comparison

Chapter 7. Comparison of Controllers 68

of cycle times, from equations (4.15), (5.25) and (6.25)

T cbEA = tflop + tlogic + tAND↑ + tC↓ − [tAND↓] (7.16)

T cb2P = tflop + tlogic + 2 · tAND↑

+ (tXNOR↑ − tXNOR↓) (7.17)

T cb4P = tflop + tlogic + tG1↑ + tG2↑ + tG1↓

+ tG2↓ + tAND↓ + [tAND↓ + tOR↑ + tOR↓] (7.18)

it can be observed that 4-phase cycle time has high overhead compared to the 2-phase
and our controller. Hence, we put more emphasis on comparing the first two controllers
as it shows the advantage of our controller over 2-phase protocol. For EA controller
(4.15) and 2-phase controller (5.25), an approximate comparison can be done assuming
tAND↑ ≈ tAND↓ and tXNOR↑ ≈ tXNOR↓ which further simplifies the cycle times to as
follows.

T cbEA = tflop + tlogic + tC↓ (7.19)

T cb2P = tflop + tlogic + 2 · tAND↑ (7.20)

A comparison of the controllers’ simplified cycle times (7.20) and (7.19) shows that the
latter is slightly better provided that

tC↓ − tAND↓ < 2 · tAND↑ (7.21)

This can hold in the case of many technologies mainly owing to the fact that the right-
hand side is two gate delays while the left-hand side is less than one gate delay. This gives
a slight performance advantage to the EA-protocol-based controller. In a process tech-
nology where gate delays can be chosen such that tAND↑ < tAND↓ and tXNOR↑ < tXNOR↓
(for example, using transistor sizing in ASIC technologies), the cycle times in both cases
can be reduced according to the expressions that we obtained ((4.15) and (5.25)). Again,
this give rises to the above condition, which determines the higher performance of the
two controllers. As shown in Section 7.5, in the case of our experiments on an FPGA
where the gate delays are identical, we observed that the EA controller’s cycle time was
slightly better.

When there is no logic processing, the cycle times can be compared using equations
(4.17), (5.27), and (6.27). With the minimum cycle time, the 2-phase controller exhibits
the highest performance, whereas the 4-phase controller shows the slowest performance.

Chapter 7. Comparison of Controllers 69

As in the case of the linear controller, this result supports the 2-phase controller as the
best candidate for pipelines with very small or no logic processing in between stages.

The forward latencies of the three CB controllers were derived in equations (4.18), (5.26),
and (6.26). Given that the gate delays are equal, we have 4-phase CB controller with
the lowest latency and 2-phase CB controller with the highest latency. Our controller’s
latency is better than 2-phase controller’s but slightly larger than the latency of 4-phase
controller. The minimum latencies obtained for each type of controller (equations (4.20),
(5.28) and (6.28)) when there are no logic processing units in between stages shows that
our controller has the highest latency compared to other two.

7.4 Performance Test Framework

To prove the concept, we evaluated the performance of each of the controllers on a Xilinx
Vertex-4 (XC4VFX100) FPGA. We made maximum efforts to minimize the uncertain
path delays in FPGA routing. All control and data path circuits of the designs were
placed identically in each case using the rloc placement constraints of the Xilinx ISE tool.
Synthesis options, both general and Xilinx-specific ones were tuned to suit asynchronous
design synthesis; for example, the use of global and regional clock buffers was disabled.
Thus, we believe that the results we obtained are comparable with each other with
minimum uncertainty in the measurements.

For the linear controllers, we created simple 8-bit 4-stage FIFOs operated by controllers
of each type. For the CB controllers, we built 8-bit Y-shaped pipelines with 4-stages
where two stages were in the stem and two stages were branched out. The CB controller
was placed in the second stage of the pipeline. Data width of all pipelines was 8-bit.

Environment of the pipelines comprised input-generating shift registers and output-
capturing registers (two registers in the CB case) were operating with minimum over-
head, which maximized the performance of the controller under test.

Performance of controllers were evaluated in two cases

1. Pipelines operating without any processing

2. Pipelines operating with processing between stages

In the first case, there was minimum delay between stages without any logic processing
in between which represents the maximum performance of the controllers for high-speed

Chapter 7. Comparison of Controllers 70

pipelines. Since there was no logic processing (tlogic = 0), no matched delays were
inserted between stages either (tMD = 0).

In the second case, we tested the performance of pipeline controllers for a general scenario
of pipelines operating with processing in between stages. To emulate the processing
elements, we used simple buffers to delay the data path. The introduced logic delay
ranged from 6.9ns to 7.2ns (varied depending on the exact routing of the data path) for
each stage of the pipeline. This delay was chosen such that it satisfied the condition
(4.14) (which in turn satisfies condition (3.36)) that we derived for CB controller for
the EA protocol. Thus, we could obtain the performance of the EA protocol (and other
protocols) in the case of a general pipeline with logic processing, for which these two
conditions can be easily satisfied.

The delay elements for controllers were tuned starting from a higher delay to the lowest
possible delay for which proper operation of the pipeline was guaranteed. Even when
the logic delay was measured accurately, it was not possible to get the exact delay value.
The tracking error, i.e., the difference between the actual and required delays, should
be always kept positive to correctly operate a design. This error is additive to the cycle
time of each design and is common to all designs of the three protocols. In an ASIC
design, adjustable delays are desired so that the delay can be set properly after the
design has been fabricated.

Table 7.1: Cycle-time comparison.

Cycle Time Without With
processing (ns) processing (ns)

Linear
2-phase (MOUSETRAP) 2.6 9.9
4-phase 3.6 12.4
EA 4.0 10.0
CB
2-phase 4.0 11.2
4-phase 7.1 15.1
EA 5.6 10.6

Chapter 7. Comparison of Controllers 71

7.5 Results

Post-layout simulation results for Vertex-4 obtained using ModelSim are shown in Table
7.1. The first column of results shows, that the 2-phase controllers outperformed the
4-phase and EA controllers in linear and CB operations when there was no processing
in between pipeline stages (tlogic = 0). Its performance advantage was evident in these
cases where minimum controller overhead is desirable. Since tlogic = 0, condition (3.36)
for the EA controller does not hold, so the overhead of the controller is exposed on the
critical cycle time which explains its larger cycle time.

The second column shows that, in the cases where logic processing is present between
pipeline stages, the EA controllers performed better as their overhead got hidden in the
required delay between stages. For EA controllers, condition (3.36) holds in this case, so
their performances are comparable to that of the 2-phase controller in linear operation,
which confirms the analytical cycle times that we obtained in (3.37) and (5.20).

The last thee rows of the second column show, that the CB controller for EA protocol
outperformed the 4-phase controller and performed slightly better than the 2-phase
controller. As we demonstrated in our analysis, the ability of the EA protocol to hide
the control overhead leads to this performance gain. In our FPGA implementation, all
gates (including the C-elements) are implemented using lookup tables (LUTs) that have
identical delays, which simplifies the comparison of controller cycle times. Given the
equal delays in gates, the difference in cycle times of CB controllers derived in (4.15)
and (5.25) amounts to a 2-gate delay, which is roughly between 600 ps and 1100 ps [30]
in the Vertex-4 architecture. Hence, the results (600 ps difference) agree with our formal
analysis, subject to routing delay variations. Even though the gain is relatively small,
the simplicity of the EA protocol as a 4-phase protocol makes it more appealing in this
case, which is a non linear asynchronous pipeline application. As described earlier, when
the 2-phase protocol is used, translations from 2-phase protocol to 4-phase protocol are
usually required at some points where level-sensitive control is necessary. In such cases,
our controller has the added advantage using a variation of the 4-phase protocol and of
having a performance gain over the 2-phase protocol by hiding the additional controller
overhead incurred by non linear operations.

To evaluate the area consumption of our controller, we measured the resource utilization
of the FPGA for our designs. The resource utilization of the control path for controllers
and matched delays in terms of FPGA slices used is shown in Table 7.2. In the Vertex-4

Chapter 7. Comparison of Controllers 72

architecture that we used, one slice comprises two lookup tables and two flipflops and/or
latch units.

Table 7.2: Resource utilization comparison.

slices Without With
processing processing
ctrl. delay ctrl. delay

Linear
2-phase 4 0 4 20
4-phase 4 0 4 23
EA 12 0 12 14
CB
2-phase 8 0 8 35
4-phase 8 0 8 33
EA 20 0 20 22

The second column of Table 7.2 shows the number of slices used by controllers without
processing. In the linear 4-stage FIFO, both 2-phase and 4-phase controllers have the
same resource utilization; 4 slices. EA controllers, which consume the most resources,
utilize 12 slices in total for their logic and for the self-resetting delay elements inside.
Since we did not use any matched delays in this case, the third column which shows
the delay element utilization is always zero. Fourth and fifth columns show the cases
where pipelines are operated with logic processing. Since the difference is only the logic
processing between stages, the number of resources used by the controllers are same in
each case (second and fourth columns). According to the fifth column which gives the
matched delay element resource usage in this case, it can be noted that delay elements
of EA controllers are smaller consuming 14 slices compared to delay elements of 2-phase
(20 slices) and 4-phase (23 slices) controllers. The reason for this is that EA controllers
require a smaller matched delay tMD↑ for a logic processing stage given the same tlogic
compared with the other two protocols. Thus the total resource usage for control path
(controllers and delay elements) for EA controllers (26 slices) is comparable to that of
the 2- and 4-phase controllers (24 and 27 slices, respectively).

The same reasoning applies to the case of CB controllers. Even though EA controllers
themselves consume higher resources, the total resources consumed in the case of a
pipeline with processing are comparable in all thee cases. Hence, we could obtain the
performance gains described earlier with more or less the same resource utilization for
the control path, which highlights the advantages of using EA protocol.

Chapter 7. Comparison of Controllers 73

7.6 Conclusions

We proposed a new pipeline controller for the Early Acknowledgement (EA) protocol.
Its timing constraints were analyzed and performance metrics were derived. When the
pipeline has logic processing, the controller can operate with minimal overhead by hiding
its overhead in the required matched delay. In such a case, we found both analytically
and experimentally that the controller’s cycle time was comparable to that of 2-phase
controller MOUSETRAP.

Furthermore, we highlighted the advantages of using the EA protocol, which also inherits
the simplicity of the 4-phase protocol, by comparing the conditional branch controllers
for each protocol. The area usage of the protocol is also comparable to those of other
protocols in the preferred application of this protocol since the required matched delay
is smaller, so requiring less area is required for the design.

Chapter 8

Case Study: Gauss-Seidel
Accelerator

8.1 Introduction

An accelerator module is designed to validate the performance of the Early Acknowl-
edgement controllers, both linear and Conditional Branch types. The function of the
accelerator is to solve systems of linear equations using Gauss-Seidel method [31, 32].
Accelerator consists of 6 pipeline stages mainly consisting of multipliers, adders and
read/write operations for accessing the variables from the memory.

The accelerator is designed for each protocol, i.e. i). 2-phase, ii). 4-phase and iii).
Early Acknowledgement protocol using the de-synchronization methodology as detailed
in [24]. The synchronous version of the accelerator is first implemented and then de-
synchronized using local controllers for each pipeline stage replacing the clock signal.
Thus, all accelerator designs have same data path while the control path is replaced by
different protocols. This gives an accurate comparison of the performance of the each
protocol/controller pair.

8.2 Gauss-Seidel Method

The Gauss-Seidel method is a technique used to solve a linear system of equations using
an iterative algorithm. It is an improvement of Jacobi method [32] to achieve quick

75

Chapter 8. Gauss-Seidel Accelerator 76

convergence using the previously computed results as soon as they are available. The a
linear system of equations can be expressed as:

Ax = b. (8.1)

where x= (x0, x1, · · · , xn−1) is a vector of n variables, b= (b0, b1, · · · , bn−1) is a constant
vector, and A is n-by-n coefficient matrix with non-zero diagonals. If matrix A either
diagonally dominant, that is, |aii| >

∑
j 6=i aij for every i, or symmetric and semi-positive

definite, the solution for vector x can be obtained using Gauss-Seidel method as follows:

x
(k+1)
i = 1

aii
(bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
k
j), i = 1, 2, . . . , n . (8.2)

k is the iteration of the algorithm. xi, xj , bi and aij denotes the elements of x, b vectors
and A matrix of ith row and jth column in the usual vector notation. The algorithm
computes x(k+1)

i , the value of xi in the (k+ 1)-th iteration, using the already computed
values of the same iteration (x(k+1)

j for j < i) and the previous iteration (x(k)
j for j > i)

according to the equation (8.2). Thus, each xi needs to be computed sequentially unlike
in the Jacobi method where it can be done simultaneously. This enable the use of a
single physical location to store the vector x in memory, overwriting the old value of
iteration (k) with the new value of iteration (k + 1).

Chapter 8. Gauss-Seidel Accelerator 77

8.3 Algorithm

The iterative algorithm based on Gauss-Seidel method can be expressed as in the algo-
rithm 1:

Algorithm 1: The Gauss-Seidel (GS) iterative algorithm
Data: Matrix A, vector b and initial solution x0

Result: Solution x
n←− sizeof(b) ;1

foreach iteration k (= 1, 2, . . .) do2

foreach row i do3

sum←− b[i] ;4

for j=0 to i-1 do sum←− sum−A[i][j] · xk+1[j] ;5

for j=i+1 to n do sum←− sum−A[i][j] · xk[j] ;6

xk+1[i]←− sum / A[i][i] ;7

end8

if solution xk+1 converged to xk then9

return solution x(k + 1) ;10

end11

xk ←− xk+1 ;12

end13

In the algorithm, accepts the system of equation A, b and an initial solution x0 (it can
be x0 = 0). Then for each iteration k and each row i the each term of xi is calculated
in lines 4, 5, 6 and 7 of the algorithm. The final division operation can be optimized
out by properly conditioning the A matrix as explained in Section 8.4.3. At the end
of each iteration solution sets x(k+1) and x(k) are compared to test convergence. If the
difference in the solution is smaller than some threshold value for every i the iteration
stops and the solution is returned.

Even though two or more xi terms cannot be computed simultaneously, the computations
within each xi term can be carried out in parallel. If the elements of x, b, and A are
stored in m ROMs for A and 2m RAMs for b and x such that m elements can be read
in parallel the computation time is reduced by factor of m per iteration. The typical
use of this accelerator is to calculate x for a fixed system at various points. The system
characteristics are captured in coefficient matrix A which will be pre-compiled and stored
in the ROMs. At each point in time and/or scenario the observations of the system are

Chapter 8. Gauss-Seidel Accelerator 78

captured as b. The solution for x the accelerator calculates corresponds to the particular
instance of observations. This is a typical usage of the accelerator in a finite- element
analysis system. Figure 8.1 shows the architecture of such a pipeline with m = 4.

MEM data
gen.

MEM data
gen.

MEM data
gen.

MEM data
gen.

abs.
error

xk
i

xk
i

i = j

addr.
gen.

ctrl0 ctrl1 ctrl2 ctrl3 CBctrl4

ctrl5

ctrl. path

clk0 clk1 clk2 clk3 clk4 clk5

Figure 8.1: Gauss Seidel Pipeline.

Following are the stages of the 6-stage pipeline architecture.

1. Data generation stage where at the start of each computation cycle eight data
elements are read from the RAM/ROM blocks.

2. Product calculation stage where four product terms of the equation is com-
puted in parallel from using the above read data.

3. Product accumulation stage either adds or subtract the computed terms from
a accumulation register which is reset the beginning of the computation cycle.

4. Reduction stage employees a reduction tree of adders to compute the final xk+1
i

term using the partial summations of the accumulation registers.

5. Write back stage write the computed xk+1
i value back to the RAM so that it

can be immediately used by the next computation cycle. The old value xki is
simultaneously read back to compute the error in the next stage

Chapter 8. Gauss-Seidel Accelerator 79

6. Error calculation stage computes the absolute errors between xki and xk+1
i

terms. If the result is sufficiently converged this stage raise finish signal to indicate
completion of the computation block.

MEM data
gen.b

x

A

i = j

mem. read

sign

abs.
error

Figure 8.2: Gauss Seidel Pipeline (units).

C

A1

A2

D Q

E
N

enable

Rin Rout

Aout
Ain

Rin

Ain

Aout

Rout

clk

G1 G2

Ctrl

Ain

Rin

RD

clk

Rout

Aout

Rin

Ain Aout

Rout

clk/enable

Figure 8.3: Linear Controllers for each Protocol.

Three different versions of the Gauss-Seidel accelerator were built using each protocol
to compare their performances. As shown in Figure 8.3, the linear controllers of GS
accelerator (ctrl0, ctrl1, ctrl2, ctrl3 and ctrl5 of Figure 8.1, were implemented with
respective linear controllers of the each protocol. Similarly the CB controller (ctrl4 of

Chapter 8. Gauss-Seidel Accelerator 80

Rin

Ain

Aout1

Rout1

Aout2

Rout2

clk

select

CB

ctrl.

D Q

En

Rin

Ain

select

clk

Rout1

Rout2

Aout1

reqlinear

ctrl.

DEMUX

0

1

select l

ack

SD

req d

Aout2

D Q

CLK

Rin

D Q

CLK

select

Rout1

Aout1

Rout2

Aout2

clk

D Q

CLK

Ain

complete

s1

s2

Figure 8.4: Conditional Branch Controllers for each Protocol.

Figure 8.1) is replaced with the respective CB controller of the protocol as shown in
Figure 8.4.

8.4 Pipelined Implementation

8.4.1 Data Path

In our design, n = 32, i.e. the accelerator solves a linear system of 32-variables. It is a
design choice we made which can be easily extensible for any n = 2p number of variable
systems. The width of the data A, b and x i.e. input and output for the accelerator is
set to be 16-bit. These results in 16x16 multipliers and 16x256 RAM/ROM units for

Chapter 8. Gauss-Seidel Accelerator 81

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C
dout

din

dclk

s

sd

sds

Figure 8.5: Asymmetric (Rising-edge) Programmable Delay.

D Q

C

D Q

C

D Q

C
dout

din

dclk

sds

s sd

DEMUX

Figure 8.6: Symmetric Programmable Delay.

logic processing stages which can be directly mapped to the DSP48 blocks and block
RAM macros available on Virtex-4 FPGAs [33].

As shown in Figure 8.1, the main computational block has 4 parallel pipeline stages
(m = 4). Thus, the memory of the accelerator which holds the elements A, b and x
are split into 4 blocks to generate data simultaneously for the computations. There
are 4-multipliers and 4- adder/subtracter units and a 4-to-1 reduction tree of adders to
produce the x(k+1)

i term as shown. The accelerator consists of 6-pipeline stages. The
gray rectangles denote the stage registers.

The first stage consists of address generator, memory and data generators. When the

Chapter 8. Gauss-Seidel Accelerator 82

next set of addresses is provided by the address counter this stage drive the data gener-
ators to read data from memory for the next computation. As shown in Figure 8.2, in
each block of memory A elements are stored in a ROM and elements of b and x are stored
in RAM. The initial solution x0(if any), should be loaded to RAM before executing the
accelerator. At every iteration the x(k+1) replaces the x(k) in the same RAM blocks.
A dual-port RAM is used for this purpose to avoid some extra addressing logic which
would require otherwise. Note that both b and x are stored in the same RAM block as
the addressing of their elements is mutually exclusive (i.e. there is no bixj term involve
in the calculations). The memory is realized using FPGA block RAM IP core modules
with necessary write-before-read property set. The data generator modules consists of
address logic: mainly multiplexors and a common address counter (a simple up counter
to generate addresses) shared by all generators.

The second stage is the bank of multipliers which calculate the product terms in parallel.
Adder/subtracter units accumulate the product terms depending on the sign of the
calculation in the third stage registers. Reduction tree of adders constitute the fourth
stage which produce the x(k+1)

i . Since n = 32 and m = 4 the accelerator execute
(n/m =)8-times over the previous stages to complete the calculation for each xi per
iteration. RTL descriptions according to the design guidelines are used to realize these
blocks such that multipliers are mapped to DSP48 blocks and adder/subtracter units
are mapped to FPGA macro blocks.

Once, the x(k+1)
i is computed the value calculated it is written back to the corresponding

RAM holding x overwriting the previous value. The old value xi(k) is simultaneously
read back to absolute error calculator to compute the error. To ensure the consistency of
this operation the read-before-write property of the RAM is ensured. The convergence
of the algorithm is computed using the absolute error calculator unit. It consists of
adder/subtracter pair to calculate this function.

e =
∑
|x(k+1)
i | − |x(k)

i |. (8.3)

Figure 8.2 shows the implementation of this unit comprising of adder/subtracter unit
and an accumulator. This error is computed as a running total within each iteration
so that the final error e can be tested against the threshold value at the end of each
iteration and reset back to zero.

Chapter 8. Gauss-Seidel Accelerator 83

8.4.2 Control Path

The control path consists of 6 controllers to drive each stage of the pipeline as shown in
Figure 8.1. First 4 stages and the last stage of the pipeline consists of linear controllers
where as fifth stage employs a conditional branch controller. The select signal for the
Conditional Branch controller is the boolean predicator which test whether the number
of iterations are less than 8 (iter < 8). Thus, control flow drives the data path up to
that stage 8-times before the absolute error is tested.

Control logic including the C-elements for the Early Acknowledgement controllers are
implemented using LUTs and FF/LT resources of FPGA. Hierarchical design and place-
ment using rloc placement constraint allows fine control over the placement of controllers
in the FPGA. Three accelerators are implemented employing each of the 3 protocols (2-
phase, 4-phase and Early Acknowledgement protocols) for comparison of performance.
In each case the data path remains identical. The relative placement of the control paths
is also comparable.

8.4.3 Input and Output

Gauss-Seidel method requires matrix A to be either diagonally dominant, that is, |aii| >∑
j 6=i aij for every i, or symmetric and semi-positive definite for guaranteed convergence.

This precondition must be satisfied for using the accelerator which would not explicitly
check it.

Moreover, there matrix A provided for the accelerator is pre-conditioned to eliminate
the division operation of step 7 of the algorithm. This can be achieved by defining a
new matrix A′ for the computations in the accelerator, such that:

A′ = (−ai0
aii
, · · · ,

ai(i−1)
aii
,

1
aii
,
ai(i+1)
aii
, · · ·
ai(n−1)
aii

)T (8.4)

Thus, equation 8.2, deduce to:

x
(k+1)
i = (a′iibi −

∑
j<i

a′ijx
(k+1)
j −

∑
j>i

a′ijx
k
j), i = 1, 2, . . . , n . (8.5)

which only consists of multiplication operations. Accelerator is fed with this A′ matrix
instead of A as a result of this optimization.

Chapter 8. Gauss-Seidel Accelerator 84

start

b

A

x

finish

[ROM]

write

write read write

write

Figure 8.7: Operation of Gauss Seidel Accelerator.

The Figure 8.7 shows the top-level operational waveforms for using the accelerator.
The data in A′ matrix are pre-computed and loaded to the ROMs this values set won’t
change during the computation. The accelerator solves the equation system using Gauss-
Seidel method for different sets of observations (b) and initial solutions (x0). At the
beginning of each computation, RAMs are loaded with b and x0 using the CPU interface
of the accelerator. Once completed, start signal is raised to initiate the execution of
the accelerator. During the iterative solving phase, the RAM blocks of x is overwritten
by the successive solutions computed by the accelerator. Once the solution converged,
the finish signal is raised by the accelerator. The solution x can be read out using the
CPU interface. A new set of b and x0 can be loaded afterwards to for another run of
the accelerator.

The CPU interface of the accelerator, which is used to assign the problem to the accel-
erator and read back the solution, is not implemented for this case study. This does not
affect the performance comparison of the three protocols. Instead, the inputs (A′, b and
x0) are generated using a C program and directly written to memory locations of the
final design to be simulated. At the end of the execution of the accelerator the output
(stored in x RAMs) are compared with the solution generated by the C program.

Chapter 8. Gauss-Seidel Accelerator 85

8.4.4 Fixed-point arithmetic and normalization

The accelerator employs fixed point arithmetic. Hence a diagonally dominant matrix of
A produces a factional numbers for all a′ij elements as of equation (8.4) making significant
bits to underflow. Thus the A′ matrix is normalized by left-shifting elements to avoid
underflow by 16-bits (i.e. multiplied by 216). When x(k+1)

i the computed as a 32-bit
value, the result is de-normalized by discarding the upper 16-bits. The convergence test
becomes a simple due to the use of fixed-point arithmetic. When every element of x(k+1)

i

is equal to previous iteration xki , the convergence achieved and accelerator terminates.
This corresponds to the test of e = 0 of equation (8.3).

8.5 FPGA Design

As a proof of concept of the performance of the protocols, the implementation of the
accelerators for this case study is carried out on Xilinx Virtex-4 FPGA architecture.
Xilinx ISE and ModelSim simulator is used during the design, implementation and
evaluation cycle of the accelerators. The designs are implemented with Verilog HDL.
The Figure 8.8 shows the architecture of the Virtex-4 FPGA slice.

Figure 8.8: Xilinx Virtex 4 Slice Configuration.

It mainly consists of 2 Look-Up-Tables (LUTs) with maximum of 4 inputs and 2 registers
that can either be used as Flip-flops or Latches (FF/LT). As a general design guideline,
both LUTs and FF/LT units of the slice are used whenever possible. However, at

Chapter 8. Gauss-Seidel Accelerator 86

instances where there is a better routing possibility with a shorter delays the design is
spread to adjacent resources if available.

Necessary steps to minimize the uncertain path delays are taken during the design
process. First, the de-synchronization methodology used ensures that the data path
remains identical in each case of the accelerator. The design is done hierarchically and
all memory DSP48 units and logic slices which comprises the control and data paths
are placed identically in each case using rloc placement constraints of the Xilinx ISE
tool. Synthesis options, both general and Xilinx specific ones are tuned to suit the
asynchronous design synthesis. For example, use of global and regional clock buffers is
disabled. Thus, the simulation results obtained from this are made comparable with
each other with minimum of uncertainty in measurements.

The Figure 8.9 shows the floor plan of the designs on Virtex-4 FPGA. The resource
usage of the data path is shown in Table 8.1

Table 8.1: Data path Resource Utilization.

Block(s) # Resource Units
A ROMs 4 MEM
b and x RAMs (dual port) 4 MEM
Multipliers 4 DSP48
Adder-subtracters 128 Slices
Adder (Reduction) tree 96 Slices
Address generator 5 Slices
Address logic 26 Slices
Error calculation logic 32 Slices
De-normalizer logic 9 Slices

As for the control path, the placement of controllers remains at the same relative location
as indicated in the Figure 8.9 though the exact usage of the slices for controllers and
matched delays varies according to the different protocols. In each case of the accelerator
with different protocols, the designs are tuned to have optimal operational performance
by tuning the matched delays. The tuning is started from a higher delay value and
gradually reduced to the lowest possible value where the proper operation of the pipeline
is guaranteed. At each step the design is simulated with a batch of random input sets
generated by the C program and the generated output is tested against the results. Also,

Chapter 8. Gauss-Seidel Accelerator 87

Figure 8.9: Floor Plan on FPGA Virtex-4.

Chapter 8. Gauss-Seidel Accelerator 88

the simulation is checked against possible timing violations which could invalidate the
design generated for the given input data sets.

8.6 Simulation Results

Simulation results for place-and-route(PAR) designs for the Virtex-4 architecture are
obtained using the ModelSim simulator. A waveform capture of a typical simulation
cycle is shown in Figure 8.10. Note, only few important signals of the design are shown
here.

The simulation results obtained for each of the accelerator are summarized in in Table
8.2. The simulation results show the accelerator solving the linear system of equation
for a same set of A, b and x0. Hence, the iteration count in all cases is the same. For this
particular set of data the accelerator iterates 6 times (i.e. k = 6) before converging in
to the solution. The first row shows accelerator time taken to calculate x(k+1)

i per single
element in nano seconds(ns). The second column indicates the time taken to complete
an iteration (i.e k=1,2,. . .) also in ns. The last column shows the complete time taken
in micro seconds (us), from start signal is raised to finish is raised by the accelerator
to indicate the completion of the task.

Table 8.2: Accelerator Performance Comparison.

simulation time
Protocol /x(k+1)

i /iteration total
(ns) (ns) (us)

4-phase 122.6 3922.9 23.67
2-phase 118.7 3799.4 22.93
Earl Acknowledgement 107.7 3447.8 20.81

It can be observed that the accelerator employing the EA protocol has better perfor-
mance than the other two. The computation times taken for each xk+1

i element, and
each iteration and the total time are less than the consumed time for 2-phase and 4-phase
protocols. In this accelerator, the gap between 4-phase and 2-phase is also observed to
be narrower than in the results obtained in previous chapter. This is caused by two
reasons:

Chapter 8. Gauss-Seidel Accelerator 89

Figure 8.10: A Typical Simulation Output.

Chapter 8. Gauss-Seidel Accelerator 90

• The accelerator uses flip-flops instead of latches. The level-sensitive latches could
not be used in this accelerator especially at the accumulator unit where output
is feedback to as one input. Use of latches is prone to errors in the accumulator
output with multiple feedback cycles.

• Use of extra edge-to-pulse control logic in the controller path. The control path of
pipeline restart requires less logic and identical for 4-phase and EA protocols. For
2-phase it requires edge-to-pulse transformations incurring additional overhead.

The matched delay inserted in between each stage is given in Table 8.3. Note that the
all the delays required for the EA controller based accelerator are less than both 2-phase
and 4-phase cases.

Table 8.3: Accelerator Matched Delays.

pipeline stage matched depaly /(ns)
Fuction Early Ack. 4-phase 2-phase
1 Data gen. 1.0 3.02 3.74
2 Multiplier 4.65 6.79 5.38
3 Add/Sub 1.07 3.62 3.91
4 Reduction 4.88 7.64 8.93
5 Store x(k+1)

i 0.87 1.58 1.92
6 Abs. Error 4.96 7.27 8.68

The same reasoning that we used in Section 7.5 of Chapter 7 can be used to explain the
above table timing. The EA controllers exhibit the highest controller overhead and able
to offset some of the logic processing delay needed to be matched by the delays inserted
in between stages. Hence, additional required to match the stage logic processing is
smaller according to the following equation.

tlogic = toverhead + tMD (8.6)

The Figures 8.11, 8.12 and 8.13 shows the control paths of the each protocol (EA, 2-
phase and 4-phase protocols respectively) on the place-and-routed (PAR) design of the
Virtex4 FPGA.

Chapter 8. Gauss-Seidel Accelerator 91

Figure 8.11: Control Path: With Early Acknowledgement controllers.

Figure 8.12: Control Path: With 2-phase controllers.

Figure 8.13: Control Path: With 4-phase controllers.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

Before this work there were considerable research work done on the bundled data commu-
nication model of asynchronous design mainly targeting the use of 2-phase and 4-phase
protocols. The Early Acknowledgement protocol was initially introduced in [18], as a
zero-time overhead protocol. Lack of an implementation of the protocol into a controller
that exploit its advantages and a formal comparison of its performance to 2-phase and
4-phase controllers, made it difficult to appreciate the superiority of the Early Acknowl-
edgement protocol.

Initial attempt to implement a Early Acknowledgement protocol based controller is
attempted in [25]. In the evaluation, it turned out that controller is too rigid ensuring
the control sequencing that its overhead is too high even though the controller is robust.
Thus, the initial EA controller compared to 4-phase and 2-phase controllers did not
deliver the performance attributed by the protocol.

A new controller is proposed based on the previous version of the controller which
removes some of the overhead of the controller, in lieu of timing constraints introduced
to operate it correctly. The new controller is validated to satisfy these constraints and
expressions for the timing constraints are analytically derived. It has been compared
with 4-phase and 2-phase controllers analytically and experimentally. The performance
of the linear controller is comparable to high-speed MOUSTRAP 2-phase controller.
Furthermore, the conditional branch controller derived based on this EA linear controller
has better performance than their 4-phase and 2-phase counterparts.

93

Chapter 9. Conclusions and Future Work 94

To substantiate the claims of EA controllers in a more practical application, an accel-
erator for solving set of linear equations using Gauss-Seidel method was build. Three
instances of the accelerators were built each using 2-phase 4-phase and EA protocols.
The performance results highlight the advantages of using EA protocol and the proposed
controllers for it.

In conclusion, this work as highlighted the importance of little known EA protocol by
proposing a controller for it to harness its advantages. This work serves the main source
of any analytical and practical comparison of these protocols. The results of the work
will strengthen the importance of EA protocol and encourage the use of it in applications
where it exhibit to work efficiently.

9.2 Recommendations for the applications

According to our observations in the comparison of the controllers in Chapter 7, EA
controller has the advantage when there is sufficiently enough logic processing between
stages. In the analytical evaluation of controllers it could be shown that the difference in
the cycle-time is in the order of 1–2 gate delays for both linear controller and conditional
branch controller.

In the case study performed for the controllers we could show that in a accelerator ap-
plication like Gauss-Seidel solver where the pipeline operation is iterative and performed
in large numbers the cumulative advantage gained by using the EA controllers becomes
significant.

On the other hand, with respect to the power consumption EA protocol efficiency is
lower than that of 2-phase protocol since EA is essentially a 4-phase protocol. Thus we
have following recommendations in the application of the proposed controllers.

1. Use in pipelines where there is sufficiently large logic processing units (as a rule of
thumb at least 10 logic gates deep) like multipliers, adders or memory accessing
logic in between stages.

2. Use EA controllers in pipelines with iterative computation to amplify the gain of
the advantage in processing the data as a whole.

3. Use them when there is more emphasis on performance than the power consump-
tion of the pipeline.

Chapter 9. Conclusions and Future Work 95

On the other hand, following is a list of scenarios where EA controller is not desirable.

1. For simple FIFOs or micro-pipeline applications with logic depth of processing is
very low -not more than 2–3 logic gates.

2. DSP applications, where pipeline process streams of data minimal or no iterations.
The performance gains expected by using the EA controller heavily over weigh the
power penalty incurred.

9.3 Future Work

We would like to evaluate and confirm the performance of the controllers on ASIC,
like on 65nm technology. Experimental results in such a case are deemed necessary to
strengthen our claims of the advantages of using Early Acknowledgement protocol.

This work mainly focused on the formulating and evaluating the performance of the Early
Acknowledgement protocol. However, there is a great emphasis on power consumption in
the present day design methodologies. Even though asynchronous designs are generally
more power efficient than their synchronous counterparts, we would like to evaluate
that for EA protocol in future. Especially a comparison of power consumption between
the three asynchronous communication protocols will be interesting and will provide
guidelines for designer in choosing protocols. As a general rule, EA protocol is expected
to consume about the same power consumption as 4-phase protocol owing to its return-
to-zero nature of signals.

Implementing different pipeline structures like fork is also necessary and is a requirement
in composing complex pipelines using EA protocol. Moreover, the performance of EA
protocol needs to be evaluated on different applications, for example on an MPEG
decoder. The performance on pipelines processing data streams need to be examined.

List of Publications

1. C. Mannakkara, T. Yoneda, “Asynchronous Pipeline Controller Based on Early
Acknowledgement Protocol”, IEICE Transactions on Information and Systems.
Vol. E93-D, No. 8, pages 2145-2161, August, 2010.

2. C. Mannakkara, T. Yoneda, “Asynchronous Pipeline Controller Based on Early
Acknowledgement Protocol”, NII Technical Report, #NII-2008-009E, pages 1-18,
2008.

3. C. Mannakkara, T. Yoneda, “Asynchronous Pipeline Controller Based on Early
Acknowledgement Protocol”, Proceedings on Applications of Concurrency to Sys-
tem Design, pages 118-127, 2008.

4. C. Mannakkara, T. Yoneda, “Comparison of Standard Cell based Non-linear Asyn-
chronous Pipelines”, IEICE Technical Report, VLSI, pages 49-54, 2007.

5. C. Mannakkara, S. Signell, “Software implementation of DVB-RCT Modulator”,
Conference on Industrial and Information Systems, Pages 463-469, 2006

97

Appendix A

UPPAAL model for EA controller

This contains the UPPAL model used to model check the EA controller.

A.1 Declarations

Following are the declarations of the model.

// PCE3x Controller IO & internal wires

bool Rin= 0;

bool Ain =0;

bool Rout =0;

bool Aout =0;

bool Clk =1;

bool rst =0;

bool complete=0;

// Broadcast channels for signalling output changes

broadcast chan Rin_change, Ain_change, Rout_change, Aout_change, Clk_change;

broadcast chan rst_change, complete_change;

// Input environment signals

broadcast chan Clk_in_posedge;

99

Appendix A. UPPAAL model for EA controller 100

// Output environment signals

broadcast chan Clk_out_posedge;

// Observer variables

broadcast chan Clk_posedge, Clk_negedge;

broadcast chan Rin_posedge, Rin_negedge;

broadcast chan Ain_posedge, Ain_negedge;

broadcast chan Rout_posedge, Rout_negedge;

broadcast chan Aout_posedge, Aout_negedge;

// Controller Delays

const int A1_D = 4;

const int A2_D = 4;

const int CE_D = 4;

const int INV_D = 4;

// Controller RD delay

const int RD_UP = 4;

const int RD_DN = 4;

// Environment delays

const int IN_DN_MIN = 8; // min == t_C_dn + t_MD_N_dn

const int IN_DN_MAX = 100;

const int IN_UP_MIN = 8; //?min == t_C_up + (t_MD_N_up >= 1 gate delay)

const int IN_UP_MAX = 100;

const int IN_CLK = 4;

const int OUT_DN_MIN = 8; // min == t_MD_N+1_dn + t_AND_dn

const int OUT_DN_MAX = 15; // < 16 (*** !! should be less than 4 gate delays !! ***)

const int OUT_UP_MIN = 8; // min == (t_MD_N+1_up >= 1 gate delay) + t_AND_up

const int OUT_UP_MAX = 100;

const int OUT_CLK = 4; // OUT_CLK + OUT_DN_MAX < 20 (i.e. 4 gate delays)

The following sections describe model of each logic gate of the EA controller.

Appendix A. UPPAAL model for EA controller 101

A.2 2 Input gate (AND gate and C-element)

A.2.1 Model

The model of the 2 input gate is shown in Figure A.1. It should be noted that two
models need to be created with the similar structure and the function (AND gate and
C-element) should be replaced according to the model.

Figure A.1: 2-input logic gate modelled in UPPAAL

A.2.2 Declarations

This contains the UPPAL declarations used to model both AND gate and C-element
functions.

// Place local declarations here.

clock clk;

// Check for changes in output for AND gate with inverted "in2"

// if out != (in1 && !in2) then change

Appendix A. UPPAAL model for EA controller 102

// no-change otherwise

//

bool change(bool in1, bool in2, bool out)

{

return (in1 && !in2) != out;

}

// AND gate with inverted "in2"

// out = in1 && !in2

//

bool and10_op(bool &in1, bool &in2)

{

return in1 && !in2;

}

// Check for changes in output for Celement with inverted "in2"

// if in1 != in2 and in1 != out then change

// no-change otherwise

//

bool change(bool in1, bool in2, bool out)

{

return (in1 !=in2) && (in1 !=out);

}

// C-element with inverted input "in2"

// out = in1 if in1 != in2

// = out otherwise

//

bool cele10_op(bool &in1, bool &in2, bool &out)

{

return (in1 != in2) ? in1: out;

}

Appendix A. UPPAAL model for EA controller 103

A.3 Inverter

A.3.1 Model

Figure A.2, shows the model for the inverter (1-input logic) of the EA controller.

Figure A.2: Inverter gate modelled in UPPAAL

Note: There is just the clock clk in the declaration of the inverter.

A.4 Variable Delay

A.4.1 Model

Figure A.3, shows the model for the variable delay (1-input logic) of the EA controller.

A.5 Output Environment

A.5.1 Model

Figure A.4, shows the model for the output environment of the controller.

Appendix A. UPPAAL model for EA controller 104

Figure A.3: Variable delay modelled in UPPAAL

Figure A.4: Output Environment modelled in UPPAAL

A.6 Environment Clock

A.6.1 Model

Figure A.5, shows the model clocks of the input and output environments which captures
the data.

Appendix A. UPPAAL model for EA controller 105

Figure A.5: Data capture clocks for the input and output environments

A.7 Edge detect (generic)

A.7.1 Model

Figure A.6, shows the generic model used to detect edges (positive and negative) from
various signals. The detected edges are used in other observer models in turn.

Figure A.6: Generic observer model to detect edges

A.8 Clock missing property

A.8.1 Model

Figure A.7, shows the model for testing “clock missing” property using edge detectors
(above) for Rin and Rout signals.

Similar models are used to model the “A1 blocking” and “Clk_out missing” properties.

Appendix A. UPPAAL model for EA controller 106

Figure A.7: Observer model to test clock missing property

A.9 System Declarations

// PCE3x Controller

A1_and = AND10Gate(Rin, Rout, Ain, Rin_change, Rout_change, Ain_change, A1_D);

A2_and = AND10Gate(rst, Rin, complete, rst_change, Rin_change, complete_change, A2_D);

C_ele = Celement10(complete, Aout, Rout, complete_change, Aout_change,

Rout_change, CE_D);

RD_delay = VDelay(Ain, rst, Ain_change, rst_change, RD_UP, RD_DN);

CLK_inv = Inverter(Ain, Clk, Ain_change, Clk_change, INV_D);

// signals deriving edges

obs_Rin_edge = Obs_edge_detect(Rin_change, Rin_posedge, Rin_negedge);

// obs_Ain_edge = Obs_edge_detect(Ain_change, Ain_posedge, Ain_negedge);

obs_Rout_edge = Obs_edge_detect(Rout_change, Rout_posedge, Rout_negedge);

obs_Aout_edge = Obs_edge_detect(Aout_change, Aout_posedge, Aout_negedge);

obs_Clk_edge = Obs_edge_detect(Clk_change, Clk_negedge,

Clk_posedge); // swapped edge signals as init. Clk==1

// Input side Environment

In_env = InputEnv(Rin, Rin_change, Ain_change, IN_DN_MIN, IN_DN_MAX,

IN_UP_MIN, IN_UP_MAX);

In_env_clk = EnvClk(Rin_negedge, Clk_in_posedge, IN_CLK);

// Output side Environment

Out_env = OutputEnv(Aout, Aout_change, Rout_change, OUT_DN_MIN, OUT_DN_MAX,

OUT_UP_MIN, OUT_UP_MAX);

Out_env_clk = EnvClk(Aout_negedge, Clk_out_posedge, OUT_CLK);

Appendix A. UPPAAL model for EA controller 107

// Observers

obs_Clk_Missing = Obs_Clk_Missing(Rin_posedge, Clk_posedge);

obs_A1_Blocking = Obs_A1_Blocking(Rin_posedge, Rout_posedge);

obs_Clk_out_Missing = Obs_Clk_out_Missing(Clk_posedge, Clk_out_posedge);

// System components

system A1_and, A2_and, C_ele, RD_delay, CLK_inv, // Controller

obs_Rin_edge, /* obs_Ain_edge, */ obs_Rout_edge, obs_Aout_edge,

obs_Clk_edge, // Edge signals

In_env, In_env_clk, // Input Env

Out_env, Out_env_clk, // Output Environment

obs_Clk_Missing,

obs_A1_Blocking,

obs_Clk_out_Missing; // Observers

Bibliography

[1] Chris J. Myers. Asynchronous Circuit Design. Wiley-Interscience, 2001. ISBN
978-0471415435.

[2] Steve Furber Jens Spars. Principles of Asynchronous Circuit Design: A Systems
Perspective. Springer, 2001. ISBN 978-0792376132.

[3] E.G. Friedman. Clock distribution networks in synchronous digital integrated cir-
cuits. Proceedings of the IEEE, 89(5):665–692, May 2001. ISSN 0018-9219.

[4] M. Singh and S.M. Nowick. High-throughput asynchronous pipelines for fine-grain
dynamic datapaths. Advanced Research in Asynchronous Circuits and Systems,
2000. (ASYNC 2000) Proceedings. Sixth International Symposium on, pages 198–
209, 2000.

[5] S.B. Furber, J.D. Garside, P. Riocreux, S. Temple, P. Day, Jianwei Liu, and N.C.
Paver. AMULET2e: an asynchronous embedded controller. Proceedings of the
IEEE, 87(2):243–256, Feb 1999. ISSN 0018-9219.

[6] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor, and
G. Stegmann. An asynchronous low-power 80C51 microcontroller. Advanced Re-
search in Asynchronous Circuits and Systems, pages 96–107, Mar-2 Apr 1998.

[7] J. D. Garside, W. J. Bainbridge, A. Bardsley, D. M. Clark, D. A. Edwards, S. B.
Furber, D. W. Lloyd, S. Mohammadi, J. S. Pepper, S. Temple, J. V. Woods, J. Liu,
and O. Petlin. AMULET3i - an asynchronous System-on-Chip. page 162, 2000.

[8] N.C. Paver, P. Day, C. Farnsworth, D.L. Jackson, W.A. Lien, and J. Liu. A low-
power, low noise, configurable self-timed DSP. Advanced Research in Asynchronous
Circuits and Systems, pages 32–42, Mar-2 Apr 1998.

[9] Stephen H. Unger. Hazards, critical races, and metastability. IEEE Trans. Comput.,
44(6):754–768, 1995. ISSN 0018-9340.

109

Bibliography 110

[10] Leonard R. Marino. General theory of metastable operation. IEEE Transactions
on Computers, pages 107–115, 1981.

[11] F.U. Rosenberger, C.E. Molnar, T.J. Chaney, and T.-P. Fang. Q-modules: inter-
nally clocked delay-insensitive modules. Computers, IEEE Transactions on, 37(9):
1005–1018, Sep 1988. ISSN 0018-9340.

[12] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
AUSCRYPT ’90: Proceedings of the sixth MIT conference on Advanced research in
VLSI, pages 263–278, Cambridge, MA, USA, 1990. MIT Press. ISBN 0-262-04109-
X.

[13] S.B. Furber, P. Day, J.D. Garside, N.C. Paver, and J.V. Woods. AMULET1: a
micropipelined ARM. Compcon Spring ’94, Digest of Papers., 1(1):476–485, Feb-4
Mar 1994.

[14] S.B. Furber and P. Day. Four-phase micropipeline latch control circuits. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 4(2):247–253, Jun 1996.
ISSN 1063-8210.

[15] M. Singh and S.M. Nowick. MOUSETRAP: ultra-high-speed transition-signaling
asynchronous pipelines. International Conference on Computer Design (ICCD),
pages 9–17, 2001.

[16] M. Singh and S.M. Nowick. MOUSETRAP: High-speed transition-signaling asyn-
chronous pipelines. Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, 15(6):684 –698, jun. 2007. ISSN 1063-8210.

[17] T. Yoneda, A. Matsumoto, M. Kato, and C. Myers. High level synthesis of timed
asynchronous circuits. Asynchronous Circuits and Systems (ASYNC), Proceedings.
11th IEEE International Symposium on, pages 178–189, March 2005. ISSN 1522-
8681.

[18] N. Sretasereekul, H. Saito, M. Imai, E. Kim, M. Ozcan, K. Thongnoo, H. Nakamura,
and T. Nanya. A zero-time-overhead asynchronous four-phase controller. Interna-
tional Symposium on Circuits and Systems (ISCAS), Proceedings, 5:V–205–V–208,
May 2003.

[19] D. E. Muller. Asynchronous logics and application to information processing.
Switching Theory in Space Technology, pages 289–297, 1963.

Bibliography 111

[20] T. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic specifications.
Technical report, Cambridge, MA, USA, 1987.

[21] Leonid Ya. Rosenblum and Alexandre Yakovlev. Signal graphs: From self-timed
to timed ones. In International Workshop on Timed Petri Nets, pages 199–206,
Washington, DC, USA, 1985. IEEE Computer Society. ISBN 0-8186-0674-6.

[22] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle
Mathematik, Bonn, 1962.

[23] L. Lavagno, K. Keutzer, and A.L. Sangiovanni-Vincentelli. Synthesis of hazard-
free asynchronous circuits with bounded wire delays. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 14(1):61–86, Jan 1995.
ISSN 0278-0070.

[24] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou.
Handshake protocols for de-synchronization. Asynchronous Circuits and Systems.
Proceedings. 10th International Symposium on, pages 149–158, April 2004. ISSN
1522-8681.

[25] C. Mannakkara and T. Yoneda. Comparison of standard cell based non-linear asyn-
chronous pipelines. IEICE Technical Report, 107(337):49–54, 2007. ISSN 09135685.

[26] Johan Bengtsson, Fredrik Larsson, Paul Pettersson, Wang Yi, Palle Christensen,
Jesper Jensen, Per Jensen, Kim Larsen, and Thomas Sorensen. UPPAAL: a tool
suite for validation and verification of real-time systems. Proceedings of Workshop
on Verification and Control of Hybrid Systems III, pages 232–243, 1995.

[27] UPPAAL Model Checker. http://www.uppaal.com/.

[28] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAALL.
In Marco Bernardo and Flavio Corradini, editors, Formal Methods for the Design
of Real-Time Systems: 4th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, number 3185 in LNCS, pages
200–236. Springer–Verlag, September 2004.

[29] M.Singh. Private communication with montek singh.

[30] ALTERA (White Paper). Stratix II vs. Virtex-4 performance comparison.

[31] H. Jeffreys and B. S. Jeffreys. Methods of mathematical physics. pages 305–306,
1988.

Bibliography 112

[32] W. H. Press, B. P. Flannery, and S. A. Teukolsky. Numerical Recipes in FORTRAN:
The Art of Scientific Computing. pages 864–866, 1992.

[33] Edgard Garcia. Writing RTL Code for Virtex-4 DSP48 Blocks with XST 8.1i. Xcell
Journal Online, 1995.

[34] C. Mannakkara and T. Yoneda. Asynchronous pipeline controller based on early
acknowledgement protocol. NII Technical Report, NII-2008-009E, pages 1–18, 2008.

[35] C. Mannakkara and T. Yoneda. Asynchronous pipeline controller based on early
acknowledgement protocol. Application of Concurrency to System Design, 2008.
ACSD 2008. 8th International Conference on, pages 118–127, June 2008. ISSN
1550-4808.

[36] I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–738,
1989. ISSN 0001-0782.

[37] Erik Brunvand. Using FPGAs to implement self-timed systems. J. VLSI Signal
Process. Syst., 6(2):173–190, 1993. ISSN 0922-5773.

[38] Erik Lee Brunvand. Translating concurrent communicating programs into asyn-
chronous circuits. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA,
1992.

[39] R.O. Ozdag, M. Singh, P.A. Beerel, and S.M. Nowick. High-speed non-linear asyn-
chronous pipelines. Design, Automation and Test in Europe Conference and Exhi-
bition, 2002. Proceedings, pages 1000–1007, 2002.

[40] Quoc Thai Ho, Jean-Baptiste Rigaud, Laurent Fesquet, Marc Renaudin, and Robin
Rolland. Implementing asynchronous circuits on LUT based FPGAs. FPL ’02: Pro-
ceedings of the Reconfigurable Computing Is Going Mainstream, 12th International
Conference on Field-Programmable Logic and Applications, pages 36–46, 2002.

[41] Y. Sato, Yamasoto Y., M. Saito, H. Kagotani, T. Okamoto, and M. Kawai. Sys-
tematic reducing of metastable operation occurred in CMOS D flip-flops. Systems
and Computers in Japan, 81(9):1090–1098, 1998. ISSN 09151915.

[42] A. Peeters. Support for interface design in Tangram. Asynchronous Interfaces:
Tools, Techniques, and Implementations, pages 57–64, 2000.

[43] K. Van Berkel, F. Huberts, and A. Peeters. Stretching quasi delay insensitivity by
means of extended isochronic forks. In ASYNC ’95: Proceedings of the 2nd Working

Bibliography 113

Conference on Asynchronous Design Methodologies, pages 99–106, Washington, DC,
USA, 1995. IEEE Computer Society. ISBN 0-8186-7098-3.

[44] M. Ampalam and M. Singh. Counterflow pipelining: Architectural support for
preemption in asynchronous systems using anti-tokens. Computer-Aided Design,
2006. ICCAD ’06. IEEE/ACM International Conference on, pages 611–618, Nov.
2006. ISSN 1092-3152.

[45] Montek Singh, Steven M. Nowick, Jose A. Tierno, Sergey Rylov, and Alexander
Rylyakov. An adaptively-pipelined mixed synchronous-asynchronous digital FIR
filter chip operating at 1.3 GigaHertz. page 84, 2002.

[46] P. Balaji, W. Mahmoud, E. Ososanya, and K. Thangarajan. Survey of the coun-
terflow pipeline processor architectures. System Theory, Proceedings of the Thirty-
Fourth Southeastern Symposium on, pages 1–5, 2002. ISSN 0094-2898.

[47] Blunno Ivan and Lavagno Luciano. Automated synthesis of micro-pipelines from
behavioral Verilog HDL. In ASYNC ’00: Proceedings of the 6th International
Symposium on Advanced Research in Asynchronous Circuits and Systems, page 84,
Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0586-4.

[48] Ligthart Michiel, Fant Karl, Smith Ross, Taubin Alexander, and Kondratyev Alex.
Asynchronous design using commercial HDL synthesis tools. In ASYNC ’00: Pro-
ceedings of the 6th International Symposium on Advanced Research in Asynchronous
Circuits and Systems, page 114, Washington, DC, USA, 2000. IEEE Computer So-
ciety. ISBN 0-7695-0586-4.

[49] Ozdag Recep O. and Beerel Peter A. High-speed QDI asynchronous pipelines. In
ASYNC ’02: Proceedings of the 8th International Symposium on Asynchronus Cir-
cuits and Systems, page 13, Washington, DC, USA, 2002. IEEE Computer Society.
ISBN 0-7695-1540-1.

[50] Victor Khomenko and Mark Schaefer. Combining decomposition and unfolding for
STG synthesis. In ICATPN’07: Proceedings of the 28th international conference
on Applications and theory of Petri nets and other models of concurrency, pages
223–243, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-73093-4.

[51] A. Semenov, A. Yakovlev, E. Pastor, M. A. Pe na, and J. Cortadella. Synthesis of
speed-independent circuits from STG-unfolding segment. In DAC ’97: Proceedings
of the 34th annual Design Automation Conference, pages 16–21, New York, NY,
USA, 1997. ACM. ISBN 0-89791-920-3.

Bibliography 114

[52] K. Y. Yun, P. A. Beerel, and J. Arceo. High-performance asynchronous pipeline
circuits. In ASYNC ’96: Proceedings of the 2nd International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems, page 17, Washington, DC,
USA, 1996. IEEE Computer Society. ISBN 0-8186-7298-6.

[53] Jung-Lin Yang and Erik Brunvand. Using dynamic domino circuits in self-timed
systems. In GLSVLSI ’03: Proceedings of the 13th ACM Great Lakes symposium
on VLSI, pages 253–256, New York, NY, USA, 2003. ACM. ISBN 1-58113-677-3.

[54] Charles E. Molnar and Ian W. Jones. Simple circuits that work for complicated rea-
sons. In ASYNC ’00: Proceedings of the 6th International Symposium on Advanced
Research in Asynchronous Circuits and Systems, page 138, Washington, DC, USA,
2000. IEEE Computer Society. ISBN 0-7695-0586-4.

[55] Montek Singh and Steven M. Nowick. High-throughput asynchronous pipelines for
fine-grain dynamic datapaths. In ASYNC ’00: Proceedings of the 6th International
Symposium on Advanced Research in Asynchronous Circuits and Systems, page 198,
Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0586-4.

[56] Frédéric Béal, Tomohiro Yoneda, and Chris J. Myers. Hazard checking of timed
asynchronous circuits revisited. Fundam. Inf., 88(4):411–435, 2008. ISSN 0169-
2968.

[57] Chris Myers and Teresa H. Y. Meng. Synthesis of timed asynchronous circuits.
IEEE Transactions on VLSI Systems, 1:106–119, 1993.

[58] Curtis A. Nelson, Chris J. Myers, and Tomohiro Yoneda. Efficient verification of
hazard-freedom in gate-level timed asynchronous circuits. In ICCAD ’03: Proceed-
ings of IEEE/ACM international conference on Computer-aided design, page 424,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 1-58113-762-1.

[59] Tomohiro Yoneda. Synthesis of speed independent circuits based on decomposition.
In In ASYNC 2004, pages 135–145. Society Press, 2004.

[60] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and
Alex Yakovlev. Petrify: A tool for manipulating concurrent specifications and
synthesis of asynchronous controllers, 1996.

[61] Xiao Yong and Zhou Runde. Single-track asynchronous pipeline controller design.
In ASP-DAC ’05: Proceedings of the Asia and South Pacific Design Automation
Conference, pages 764–768, New York, NY, USA, 2005. ACM. ISBN 0-7803-8737-6.

Bibliography 115

[62] Je-Hoon Lee, Seung-Sook Lee, and Kyoung-Rok Cho. Asynchronous ARM pro-
cessor employing an adaptive pipeline architecture. In ARC’07: Proceedings of
the 3rd international conference on Reconfigurable computing, pages 39–48, Berlin,
Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-71430-9.

[63] Montek Singh and Steven M. Nowick. The design of high-performance dynamic
asynchronous pipelines: lookahead style. IEEE Trans. Very Large Scale Integr.
Syst., 15(11):1256–1269, 2007. ISSN 1063-8210.

[64] Montek Singh and Steven M. Nowick. The design of high-performance dynamic
asynchronous pipelines: high-capacity style. IEEE Trans. Very Large Scale Integr.
Syst., 15(11):1270–1283, 2007. ISSN 1063-8210.

[65] D. Sokolov, A. Bystrov, and A. Yakovlev. STG optimisation in the direct mapping
of asynchronous circuits. In DATE ’03: Proceedings of the conference on Design,
Automation and Test in Europe, page 10932, Washington, DC, USA, 2003. IEEE
Computer Society. ISBN 0-7695-1870-2.

[66] Ivan Sutherland, Bob Sproull, and David Harris. Logical effort: designing fast
CMOS circuits. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.
ISBN 1-55860-557-6.

[67] Christos P. Sotiriou. Implementing asynchronous circuits using a conventional EDA
tool-flow. In DAC ’02: Proceedings of the 39th annual Design Automation Confer-
ence, pages 415–418, New York, NY, USA, 2002. ACM. ISBN 1-58113-461-4.

[68] Peggy B. McGee and Steven M. Nowick. A lattice-based framework for the classifi-
cation and design of asynchronous pipelines. In DAC ’05: Proceedings of the 42nd
annual Design Automation Conference, pages 491–496, New York, NY, USA, 2005.
ACM. ISBN 1-59593-058-2.

[69] Sunan Tugsinavisut, Youpyo Hong, Daewook Kim, Kyeounsoo Kim, and Peter A.
Beerel. Efficient asynchronous bundled-data pipelines for DCT matrix-vector mul-
tiplication. IEEE Trans. Very Large Scale Integr. Syst., 13(4):448–461, 2005. ISSN
1063-8210.

[70] Tiberiu Chelcea, Girish Venkataramani, and Seth C. Goldstein. Self-resetting
latches for asynchronous micro-pipelines. In DAC ’07: Proceedings of the 44th
annual Design Automation Conference, pages 986–989, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-627-1.

Bibliography 116

[71] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nystroem, Paul Penzes,
Robert Southworth, and Uri Cummings. The design of an asynchronous MIPS
R3000 microprocessor. In ARVLSI ’97: Proceedings of the 17th Conference on Ad-
vanced Research in VLSI (ARVLSI ’97), page 164, Washington, DC, USA, 1997.
IEEE Computer Society. ISBN 0-8186-7913-1.

[72] Rakefet Kol and Ran Ginosar. Kin: a high performance asynchronous processor
architecture. In ICS ’98: Proceedings of the 12th international conference on Super-
computing, pages 433–440, New York, NY, USA, 1998. ACM. ISBN 0-89791-998-X.

