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Abstract

P
lasma turbulence driven by drift wave instabilities is a key issue for understanding

anomalous transport of particle, momentum, and heat observed in magnetically con-

fined plasmas. Ion temperature gradient (ITG) and electron temperature gradient (ETG)

driven instabilities are considered as main causes of the micro-scale turbulence with the spa-

tial scale of the ion and electron gyroradii, respectively. Various flow structures, i.e., fine-scale

turbulent vortices, axisymmetric zonal flows, and radially elongated streamers, are generated

through complicated nonlinear interactions in plasma turbulence. From the aspect of regulating

the turbulent transport in future burning plasmas, it is worthwhile to understand fundamental

physics behind the formation of vortex and zonal flow structures and their stability as well as

the related transport properties. Since the high temperature plasmas with weak collisionality in-

herently involve a lot of kinetic processes, i.e., the Landau damping, the finite gyroradius effect,

the particle drift, and the magnetic trapping, the gyrokinetic theory is a powerful method for the

precise investigation of the physical mechanisms of plasma turbulent transport.

In this dissertation, the ITG and ETG turbulence are explored based on nonlinear gyrokinetic

theory and direct numerical simulations. Then, the results concerning (i) formation of coherent

vortex streets and the resultant transport reduction, (ii) effects of parallel dynamics on the zonal

flow generation, and (iii) nonlinear entropy transfer among turbulent vortices and zonal flows,

are presented.

First, vortex structures in the slab ETG turbulence are investigated, including comparisons

with those in the slab ITG case. Depending on parameters which determine the growth rate of

linear ETG modes, two different flow structures are observed, i.e., statistically steady turbulence

with a weak zonal flow and coherent vortex streets along a strong zonal flow. The former in-

volves many isolated vortices with complicated motion and their mergers, which leads to steady

electron heat transport. When the latter is formed, the high wavenumber components of potential

and temperature fluctuations are reduced, and the electron heat transport decreases significantly.

It is found that the transport reduction is mainly associated with the phase matching between

the potential and temperature fluctuations rather than the reduction of fluctuation amplitudes. A

traveling wave solution of a Hasegawa-Mima type equation derived from the gyrokinetic equa-

tion with the electron temperature gradient agrees well with the coherent vortex streets found in

the slab ETG turbulence.

Second, effects of parallel dynamics on transition of vortex structures and zonal flows, which

are closely associated with transport reduction found in the slab ETG turbulence, are intensively



examined. Numerical results show three different types of vortex structures, i.e., coherent vortex

streets accompanied with the transport reduction, turbulent vortices with steady transport, and a

zonal-flow-dominated state, depending on the relative magnitude of the parallel compression to

the diamagnetic drift. In particular, the formation of coherent vortex streets is correlated with

strong generation of zonal flows for the cases with weak parallel compression, even though the

maximum growth rate of linear ETG modes is relatively large. A physical mechanism of the

secondary growth of zonal flows is discussed based on the modulational instability analysis with

a truncated fluid model, where the parallel dynamics with acoustic modes is incorporated. The

modulational instability for zonal flows is found to be stabilized by the effect of the finite parallel

compression. The theoretical analysis qualitatively agrees with the secondary growth of zonal

flows found in the slab ETG turbulence simulations, where the transition of vortex structures is

observed.

Finally, the investigations of vortex structures and zonal flows are extended to toroidal ITG

and ETG turbulence by means of five-dimensional nonlinear gyrokinetic simulations. In the

steady state, the formation of the strong zonal flow is observed in the toroidal ITG turbulence,

while the radially elongated streamers, which yield the significant enhancement of heat transport,

develop in the toroidal ETG case. Gyrokinetic entropy balance relations for zonal and non-zonal

modes, and the nonlinear entropy transfer function, which is regarded as a kinetic extension of the

zonal-flow energy production due to the hydrodynamic Reynolds stress, are carefully examined.

The different entropy transfer processes in saturation and steady phases are revealed for the ITG

turbulence. The entropy transfer from non-zonal to zonal modes is substantial in the saturation

phase of the instability growth, while the entropy transfer to zonal modes becomes quite weak

in the steady phase. Instead, the entropy variable of the low radial-wavenumber modes driving

the heat transport are successively transferred to the higher radial-wavenumber modes with less

contribution to turbulent heat flux via the strong interaction with zonal flows. On the other hand,

in both the saturation and steady phases of the ETG turbulence, the catalytic role of zonal flows in

the entropy transfer to the higher radial-wavenumber modes is much weaker than that in the ITG

case. Then, the entropy transfer processes among low-wavenumber non-zonal modes including

radially elongated streamers are dominant and the higher heat transport level is sustained.

The formation of vortices and zonal flows, and the related entropy transfer processes in the

ITG and ETG turbulence are comprehensively examined in this study, then the transport regula-

tion due to the nonlinear interactions with zonal flows are clarified in the framework of kinetic

theory. The results obtained by a novel method of the entropy transfer analysis provide one with

not only deeper understandings of the physics of the turbulent transport and zonal flows, but

fruitful suggestions for advanced turbulence diagnostics such as the bi-spectrum analysis.





The one who doesn't go forward goes backward,

The one who doesn't go backward goes forward.
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Chapter 1

Introduction

D
rift wave turbulence driven by micro-instabilities is a key issue for understanding and

predicting anomalous (or turbulent) transport of particle, momentum, and heat in the

core region of magnetically confined plasmas, where the experimentally observed trans-

port level is much higher than that predicted from both the classical and neoclassical transport

theory based on Coulomb collision processes of ions and electrons [1]. In particular, the tur-

bulent heat transport determines the energy confinement time which is directly connected to the

quality of future fusion reactors so that tremendous efforts have been devoted so far to theoretical

prediction, numerical simulations and dedicated experiments. Since the dynamics of turbulent

vortices and the related transport processes in high temperature plasmas with weak collisionality

are inherently nonlinear, and involve a lot of kinetic processes, i.e., the Landau damping, the

finite gyroradius effect, the particle drift, and the magnetic trapping, the direct numerical simula-

tions by means of an appropriate kinetic model are indispensable for understandings of physical

mechanisms of plasma turbulent transport and for quantitative estimation of the transport level.

The gyrokinetic model (for example, see Ref. 2 – 4) is a reduced kinetic equation averaged over

the fast gyromotion without losing important kinetic effects described above, and is the most

reliable and useful kinetic description of the nonlinear dynamics of low-frequency turbulence in

collisionless (or weakly collisional) magnetized plasmas.

In general, magnetically confined plasmas with high ion and electron temperature involve

various fluctuations observed in a wide range of spatial scales, and the turbulent transport is

considered to be driven by micro-instabilities originated from inhomogeneities of density, tem-

perature, and magnetic fields, where the scale lengths related to ion and electron gyroradii are

much shorter than the equilibrium scales. Drift waves are destabilized by the equilibrium den-

sity and temperature gradients above thresholds, even if the plasma equilibrium is stable to the

macroscopic instabilities such as MHD modes. Then, the turbulent vortices with various spatial
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2 Chapter 1 Introduction

scales develop through the complicated nonlinear interactions due to E × B convective flows.

The ion temperature gradient (ITG) driven mode, which is one of the micro-instabilities, is

considered to be a main cause of the turbulent ion heat transport in the core region of tokamak and

helical plasmas, and the ITG turbulence has been extensively investigated by means of numerical

simulations based on gyrokinetic and gyrofluid models [5–13]. The spatial scales of the ITG

turbulence perpendicular to the confinement magnetic field are of the order of ion gyroradii,

and the phase velocity is basically associated with the ion diamagnetic drift motion. One of

the remarkable results obtained by the ITG turbulence simulations is that the meso-scale zonal

flows, which are spontaneously generated through the nonlinear interactions among turbulent

fluctuations, effectively suppress the turbulent heat transport by the strong flow shear in the

radial direction. Intensive simulation studies have confirmed that the transport reduction by

zonal flows leads to the nonlinear up-shift of the critical temperature gradient which is larger

than the linear stability threshold of the ITG modes (that is, so-called Dimits shift) [14]. The

self-generated zonal flow in the plasma turbulence is now recognized as a key constituent of

a “drift-wave – zonal-flow system”. Existence of ion-scale zonal flows has been revealed by

a direct measurement of spatial structures of electrostatic potential fluctuations in laboratory

experiments [15].

Zonal flows are nonlinearly generated through the Reynolds stress in the drift-wave turbu-

lence. The detailed physical mechanisms of the zonal flow generation have discussed from the

view point of the nonlinear parametric instabilities through coupling of zonal flows and coherent

drift waves [16, 17], or the Kelvin-Helmholtz (K-H) instability of radially elongated drift-wave

vortices [18, 19]. The zonal flow generation is, thus, regarded as a “secondary” instability by

contrast with the primary drift-wave instability. For the saturation of the zonal-flow growth in

drift-wave turbulence, several mechanisms have been discussed (reviewed in Ref. 20). General-

ized K-H instability, which is regarded as a “tertiary” instability, is one of the candidates for a

saturation mechanism of zonal flows in the ITG turbulence [18,19]. Furthermore, the importance

of parallel flows and viscosity in the zonal flow dynamics has also been pointed out [21, 22].

The electron temperature gradient (ETG) driven mode is the counterpart of the ITG mode,

and the ETG turbulence is considered as a possible cause of the electron heat transport. How-

ever, the gyro-Bohm scaling for the ETG turbulence with Te = Ti predicts the smaller electron

heat transport by a factor of
√

me/mi than the ion heat transport driven by the ITG turbulence,

where Ts and ms mean the temperature and the mass of ions (s= i) and electrons (s= e), respec-

tively. Many experimental observations, nevertheless, commonly indicate the strong anomaly

of the electron heat transport, which is of the same order as the ion one. Even when the ion

heat transport is reduced by the internal transport barrier [23, 24], the anomalous electron heat
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transport is still observed. From the view point of theoretical model, the linear ETG modes with

an adiabatic ion response are isomorphic to the linear ITG modes with an adiabatic electron re-

sponse. However, the nonlinear evolution of the ETG instability is crucially different from that of

the ITG one, because the intensity of nonlinearly generated zonal flows in the ETG turbulence is

much lower than that in the ITG turbulence. In the ITG turbulence, since the electron gyroradius

is negligibly smaller than the radial wavelengths of the zonal-flow potentials, the radial motion

of the electrons can not shield the zonal-flow potentials which are constant on a flux surface.

Thus, the ITG-driven zonal flows with high amplitude can develop. On the other hand, in the

ETG turbulence, the radial motion of ions resulted from the large gyroradius shields the zonal-

flow potentials. The different radial motion of the background species (electrons for the ITG

case, or ions for the ETG case) is, thus, responsible for the different zonal-flow generations, and

higher transport level in the gyro-Bohm unit is observed in the ETG turbulence [25]. Further-

more, the ETG turbulence involves various vortex structures, such as turbulent vortices, zonal

flows, and radially elongated streamers, of which the appearance strongly depends on geomet-

rical and plasma parameters [26]. Recently, a number of gyrokinetic simulations of the toroidal

ETG turbulence have been performed and benchmarked with various simulation codes [25–31].

Especially, the nonlinear dynamics of streamers, which may lead to substantial enhancement

of the heat transport in toroidal systems, has been actively pursued [25, 29]. Nevertheless, the

saturation mechanism of the toroidal ETG instability under the strong magnetic shear and the

estimation of resultant transport level are still open problems.

From the aspect of the turbulence-control with regulating the turbulent heat transport in the

future fusion plasmas, it is worthwhile to understand fundamental physics behind the forma-

tion of vortex structures including zonal flows and their stability as well as the related transport

properties. One of the objectives of this study is elucidating what kind of the vortex structures

enhance or suppress the turbulent transport, and how the zonal flows play a role in the trans-

port suppression in the ITG and ETG turbulence in the framework of gyrokinetic theory. We

believe that detailed analyses of the vortex structures and the velocity-space structures of the

distribution function are necessary for better understandings of the underlying turbulent trans-

port processes in high temperature plasmas. To this end, vortex and zonal flow structures and

velocity-space structures of the distribution function in the slab/toroidal ITG/ETG turbulence are

extensively explored based on nonlinear gyrokinetic theory and the direct numerical simulations.

The five-dimensional nonlinear gyrokinetic Vlasov simulations with high phase-space resolution

enable us to examine in detail the gyrokinetic entropy balance relation and the associated entropy

transfer processes which provide ones with deeper physical insight into the nonlinear interaction

between drift-wave turbulence and zonal flows as well as the associated transport processes.
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The outline of this dissertation is given as follows. First, gyrokinetic models and the entropy

balance relation used in the present study are briefly described in Chap. 2. In Chap. 3, vortex

structures in the slab ETG turbulence are investigated, including comparisons with those in the

slab ITG case. Then, formation of the coherent vortex streets, which is closely associated with

the transport reduction, in the slab ETG turbulence is discussed in detail. In Chap. 4, effects

of parallel dynamics on the transition of vortex structures and zonal flows are intensively exam-

ined by the comprehensive parameter studies. Also, the physical mechanism of the secondary

growth of zonal flows is discussed based on the modulational instability analysis with a trun-

cated fluid model, where the parallel dynamics with acoustic modes is incorporated. In Chap.

5, the investigations of vortex structures and zonal flows are extended to toroidal ITG and ETG

turbulence by means of five-dimensional nonlinear gyrokinetic simulations. Furthermore, the

gyrokinetic entropy balance relations for zonal and non-zonal modes, and the nonlinear entropy

transfer processes are carefully examined by means of the spectral analysis of the triad entropy

transfer function, which is regarded as a kinetic extension of the zonal-flow energy production

due to the hydrodynamic Reynolds stress. Finally, the results obtained in the present study are

summarized in Chap. 6.
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Chapter 2

Gyrokinetic description for plasma
turbulence

2.1 Brief review of kinetic theory

T
heoretical backgrounds for kinetic simulations of turbulent transport in high tempera-

ture magnetized plasmas are briefly presented in this section. The magnetized plasmas

consist of the charged particles (ions and electrons) coupled with the electromagnetic

fields so that the fundamental description of plasma dynamics is given by Newton-Maxwell or

Klimontovich-Maxwell system [1] as follows,

DNs

Dt
=
∂Ns

∂t
+ {Ns, Hs}z = 0 , (2.1)

Hs(q, p, t) =
1

2ms

∣∣∣∣∣p− es

c
A(q, t)

∣∣∣∣∣2 + esϕ(q, t) , (2.2)

and

∇ · E = 4π
∑

s

ρ(e)
s (q, t) , (2.3)

∇ · B = 0 , (2.4)

∇ × B =
4π
c

∑
s

js(q, t) +
1
c
∂E
∂t

, (2.5)

∇ × E = −1
c
∂B
∂t

, (2.6)

whereNs(q, p, t)≡∑
i δ[q−qi(t)]δ[p− pi(t)] andHs(q, p, t) denote the particle number density for

the species “s” (δ[·] is the Dirac delta-function) and the Hamiltonian of single particle motion in

the six-dimensional phase-space represented by the canonical coordinates q and p, respectively.

(The particle mass, the electric charge, and the speed of lights are denoted by ms, es, and c,

7



8 Chapter 2 Gyrokinetic description for plasma turbulence

respectively.) The Poisson bracket in the canonical coordinates z = (q, p) is represented by

{F, G}z = (∂F/∂q) · (∂G/∂p) − (∂F/∂p) · (∂G/∂q). The electric and magnetic fields, which

are, respectively, written as E = −∇ϕ − c−1∂A/∂t and B = ∇ × A in terms of the electrostatic

scalar potential ϕ(q, t) and the magnetic vector potential A(q, t), are determined by the Maxwell

equations (2.3) – (2.6), where the microscopic electric charge and current densities are given by

ρ(e)
s (q, t) = es

∫
d pNs(q, p, t) , (2.7)

js(q, t) = es

∫
d p3Ns(q, p, t) , (2.8)

respectively, where 3 = [p− (es/c)A]/ms is the particle-velocity vector.

Although the Newton-Maxwell or Klimontovich-Maxwell system provides ones with the rig-

orous description of the whole plasma behavior, it is unrealistic to trace all of ∼1020 particles in

typical fusion plasmas, even with the most powerful computers in the present-day and the fore-

seeable future. Thus, a statistical approach is introduced to describe the plasma behavior by a

particle distribution function, instead of solving all the particle motion for each species. Since,

in high temperature plasmas with ∼10keV, the kinetic energy of particles is much larger than the

potential energy, the multiple particle correlations involving three particles or more are negligi-

ble, and two-particle correlation is reduced to the Coulomb collision operator Css′(Fs, Fs′) for

an one-body distribution function Fs(q, p, t) ≡ ⟨⟨Ns(q, p, t)⟩⟩, where ⟨⟨· · · ⟩⟩ denotes an ensemble

average. Consequently, the time evolution of Fs is described by the Boltzmann equation,

∂Fs

∂t
+ {Fs, Hs}z =

∑
s′
Css′(Fs, Fs′) ≡ Cs(Fs) . (2.9)

In the collisionless limit, Eq. (2.9) is referred to as the Vlasov equation. The Landau expression

is frequently used as the Coulomb collision operator for high temperature plasmas [2],

Css′(Fs, Fs′) =
γss′

2
∂

∂p
·
∫

d p′U ·
[
Fs′(p′)

∂Fs(p)
∂p

− Fs(p)
∂Fs′(p′)
∂p′

]
, (2.10)

where U ≡ |u|−3(|u|2I − uu) with u= 3 − 3′ and the unit tensor I, and γss′ ≡ 4πe2
s e2

s′ lnΛ with the

Coulomb logarithm lnΛ.

The Vlasov-Maxwell (or Boltzmann-Maxwell) system is a reduced kinetic description in

comparison to the Klimontovich-Maxwell system. However, it involves enormous ranges of

spatio-temporal scales so that it is still difficult to carry out the numerical simulation of low-

frequency phenomena such as drift-wave turbulence and MHD waves. Actually, the typical

frequency of the drift-wave turbulence driven by micro-instabilities is much lower than the gy-

rofrequency so that it is useful for the direct numerical simulation of plasma turbulence if the
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fast dependence on gyrophase is eliminated from the Vlasov equation. To this end, a gyrokinetic

model has been developed [3–12] by eliminating high-frequency phenomena while keeping es-

sential kinetic effects, i.e., the Landau damping, the finite gyroradius effect, the particle drifts,

and the magnetic trapping.

The gyrokinetic model was first formulated by averaging the Vlasov equation over the gy-

rophase based on the recursive method for the study of the micro-instabilities, and its application

to numerical simulations started in the early 1980s [3–6]. The modern gyrokinetic theory [7–12]

has been developed based on the Hamiltonian or Lagrangian formalism with the Lie-transform

method [13,14]. The basis of the modern formulation widely used at present was constructed by

the careful modeling of the guiding-center dynamics [15–18]. Indeed, the modern gyrokinetic

theory consists of the guiding-center transform [15–17] and the gyrocenter transform [7, 9, 18].

The modern gyrokinetic theory provides ones with a rigorous treatment of collisionless turbulent

dynamics while keeping important principles such as the symmetry and conservation properties,

which are essential to describe underlying physics and are useful for nonlinear simulations. The

nonlinear gyrokinetic simulation is now considered to be an powerful tool for the study of the

turbulent transport driven by the micro-instabilities.

2.2 Gyrokinetic model

In this section, the gyrokinetic model is briefly presented. One can find easily the detailed review

including the derivations in the papers listed in the bibliography.

The drift-wave turbulence observed experimentally in core plasmas is considered to obey the

gyrokinetic orderings in ϵg,

ω

Ωs
∼ esδϕ

Ts
∼ δB

B0
∼ k∥

k⊥
∼ ρts

L
∼ O(ϵg) , (2.11)

where ω is a characteristic frequency of the turbulence, Ωs=esB0/msc denotes the gyrofrequency

evaluated with the representative strength of the equilibrium magnetic field B0 = |B0|= |∇ × A0|,
esδϕ/Ts and δB are the potential fluctuation normalized by the equilibrium temperature Ts and

the magnetic field perturbation, respectively. The parallel and perpendicular components of the

wavenumber vector k to the unit vector of the equilibrium magnetic field b=B0/B0 are denoted

by k∥ and k⊥, respectively. The ratio of thermal gyroradius to the equilibrium gradient scale-

length is represented by ρts/L, where ρts=3ts/Ωs with the thermal velocity 3ts. It should be noted

that the drift-wave turbulence in the strongly magnetized plasmas considered here is inherently

anisotropic, that is, the wavelength of fluctuations on the plane perpendicular to the magnetic

field line is comparable to the thermal gyroradius, i.e., k⊥ρts ∼ O(1), while the fluctuations are
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elongated along the magnetic field lines, i.e., k∥L∼O(1). For a fusion plasma with finite but small

β (typically β∼ 1%), the perturbed field is given as δB=∇ × δA∥b, and the parallel component

of δB is often neglected compared with B0, where β = (n0Ti + n0Te)/(B2
0/8π) is the ratio of the

plasma kinetic pressure to the magnetic pressure (the equilibrium density is denoted by n0).

For the purpose of gyrokinetic simulations, it is convenient to transform the canonical vari-

ables (q, p) into the non-canonical guiding-center variables Z = (X,U, µ, ξ), where X = q − ρs

is a guiding-center position, ρs = b × 3/Ωs is the gyroradius vector, U = 3∥ + (es/msc)δA∥ is a

generalized parallel velocity, µ=ms3
2
⊥/2B0 is the magnetic moment, ξ= tan−1(3 · e1/3 · e2) is the

gyrophase angle, and e1 and e2 are orthogonal unit vectors defined as e1 × e2 = b. The prelim-

inary non-canonical guiding-center transform for Hamiltonian shown in Eq. (2.2) leads to the

following perturbed Hamiltonian,

Hs =
1
2

ms

∣∣∣∣∣U − es

msc
δA∥

∣∣∣∣∣2 + µB0 + esϕ

=
1
2

msU2 + µB0 + esΨ + O(ϵ2
g ) , (2.12)

where Ψ(X,U, ξ, t)=ϕ − UδA∥/c is the generalized potential fluctuation. Note that the magnetic

moment µ in the guiding-center coordinates is not exact, but approximate adiabatic invariant be-

cause of the existence of the microscopic electromagnetic fluctuations in plasma turbulence so

that µ is no longer conserved. By applying Lie-transform technique, the guiding-center coordi-

nates Z are transformed to new coordinates Z̄ = TGZ = (X̄, Ū, µ̄, ξ̄) such that the new magnetic

moment µ̄ becomes an exact invariant even in the presence of the low-frequency perturbations

and the conjugate angle-variable ξ̄ is regarded as an ignorable coordinate. The coordinates Z̄ and

the map TG are referred to as “gyrocenter coordinates” and as “gyrocenter transform”, respec-

tively. The gyrocenter transform is a near-identity transform, i.e., TG= idZ + O(ϵg). It should be

noted here that one can choose the gyrocenter transform to be canonical one, by the use of the

generalized parallel velocity U=3∥ + (es/msc)δA∥ as a guiding-center variable, rather than U=3∥.

Hence, the specific expression of the gyrocenter transform is given as

Z̄ = TGZ = Z + {S̃ , Z}Z̄ + O(ϵ2
g ) , (2.13)

where {F, G}Z̄ is the Poisson bracket in the gyrocenter coordinates (Note that the form of the

Poisson bracket is unchanged from that in the guiding-center coordinates because TG is a canon-

ical transform),

{F, G}Z̄ ≡
Ωs

B0

(
∂F
∂ξ

∂G
∂µ
− ∂F
∂µ

∂G
∂ξ

)
− B∗

msB∗∥
·
(
∂F
∂U
∇G − ∂G

∂U
∇F

)
− c

esB∗∥
b · ∇F × ∇G . (2.14)
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Here, B∗∥ = b · B∗ is a parallel component of B∗≡B0 + (B0Ū/Ωs)∇ × b. The generating function

S̃ is solved as

S̃ (Z, t) =
es

Ωs

∫ ξ

dξ′
[
Ψ − ⟨Ψ⟩g

]
, (2.15)

where ⟨F⟩g ≡
∮

dξF/2π represents the gyrophase-average. This gyrocenter transform is formu-

lated based on the canonical Lie-transform so that the phase-space volume is conserved up to

arbitrary order in ϵg. After the transform, ξ-dependent perturbations are absorbed in the generat-

ing function S̃ , and hence, the Hamiltonian represented by the gyrocenter coordinates, which is

independent of ξ̄, is given as

Hs =
1
2

msŪ2 + µ̄B0 + es⟨Ψ⟩g . (2.16)

Several different choices of independent variables, especially in the electromagnetic case, are

possible, and we have chosen here to use the generalized parallel velocity, which is transformed

as Ū = U + {S̃ , U} + O(ϵ2
g ) [10]. In this choice, functional forms of the Poisson bracket in

Eq. (2.14) become the same as those in the electrostatic limit, and one easily finds that the

electromagnetic gyrocenter transform is replaced by the electrostatic one.

By using the gyrocenter variables, a gyrocenter distribution function is defined by F (g)
s (Z̄, t)=

Fs(q, p, t), where the Jacobian is given by D(Z̄) = m2
s B∗∥(Z̄). The gyrokinetic equation which

describes time evolution of the gyrocenter distribution function F (g)
s =F (g)

s (X̄, Ū, µ̄, ξ̄, t) is, then,

written as

∂F (g)
s

∂t
+

{
F (g)

s , Hs

}
Z̄
=
∂F (g)

s

∂t
+

{
Z̄, Hs

}
Z̄
· ∂F

(g)
s

∂Z̄

=

(
∂

∂t
+

dX̄
dt
· ∂
∂X̄
+

dŪ
dt
· ∂
∂Ū
+

dµ̄
dt
· ∂
∂µ̄
+

dξ̄
dt
· ∂
∂ξ̄

)
F (g)

s = 0, (2.17)

where the expressions of gyrocenter equations of motion are obtained by means of the Hamilto-

nian [Eq. (2.16)] and the Poisson bracket [Eq. (2.14)] in the gyrocenter coordinates,

dX̄
dt
= Ūb − es

msc
⟨δA∥⟩g

B∗

B∗∥
+

c
esB∗∥

b ×
(
es∇⟨Ψ⟩g + msŪ2b·∇b + µ̄∇B0

)
, (2.18)

dŪ
dt
= − B∗

msB∗∥
·
(
es∇⟨Ψ⟩g + µ̄∇B0

)
, (2.19)

dµ̄
dt
= 0 , (2.20)

dξ̄
dt
= Ωs +

e2
s

msc
∂⟨Ψ⟩g
∂µ̄

. (2.21)

As seen from Eqs. (2.18) – (2.21), the gyrocenter equations of motion are independent of the

gyrophase ξ̄, and the magnetic moment µ̄ is exactly conserved. Hence, the ξ̄-dependence no
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longer appears in the gyrocenter distribution function F (g)
s = F (g)

s (X̄, Ū, µ̄, t) at any time t if it is

initially independent of ξ̄, i.e., ∂F (g)
s /∂ξ̄ |t=0. As a result, the gyrokinetic equation for F (g)

s in the

five-dimensional phase-space is rearranged as

(
∂

∂t
+

dX̄
dt
· ∂
∂X̄
+

dŪ
dt
· ∂
∂Ū

)
F (g)

s (X̄, Ū, µ̄, t) = 0 . (2.22)

Since the gyrokinetic equation (2.22) is regarded as the Liouville equation in the five-dimensional

phase-space, F (g)
s is conserved along the characteristics. Also, another important property is the

conservation of the phase-space volume,

∂

∂Z̄
·
(
DdZ̄

dt

)
=

∂

∂X̄
·
(
DdX̄

dt

)
+

∂

∂Ū

(
DdŪ

dt

)
= 0 . (2.23)

From this property, the gyrokinetic equation (2.22) is written also in a conservative form,

∂

∂t
DF (g)

s +
∂

∂X̄
·
(
DF (g)

s
dX̄
dt

)
+

∂

∂Ū

(
DF (g)

s
dŪ
dt

)
= 0 . (2.24)

Since the collisional dissipation violates the Hamiltonian structure of the problem, we can not

construct the Lagrangian-Hamiltonian formalisms including collisions. Thus, after applying the

guiding-center transform to the collision operator, the gyrophase independent form is obtained

by using a gyrophase-averaging procedures [19, 20],

C(g)
s (F (g)

s ) ≡
∑
k⊥

eik⊥·X̄
⟨
eik⊥·ρs Cs

(
e−ik⊥·ρs F (g)

sk⊥

)⟩
g
, (2.25)

where the Fourier representation is used. Also, the contribution from the polarization term [the

second term in the right hand side of Eq. (2.26) shown below] is neglected here.

Finally, the equation system is closed by the Poisson-Ampère equations. The pull-back trans-

form from F (g)
s to Fs is given as

Fs = F (g)
s +

{
S̃ , F (g)

s

}
+ O(ϵ2

g ) = F (g)
s +

{
S̃ , FMs

}
+ O(ϵ2

g ) , (2.26)

where FMs is a local Maxwellian distribution, and the second relation is obtained because δ f (g)
s ≡

F (g)
s − FMs is small compared with FMs, i.e., δ f (g)

s /FMs ∼O(ϵg). The electric charge density ρ(e)
s
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and the parallel current density js∥ are, respectively, calculated as

ρ(e)
s = es

∫
DdZ δ

[
(X + ρs) − q

]Fs(Z)

= es

∫
DdZ δ

[
(X + ρs) − q

] (F (g)
s (Z) +

Ωs

B0

∂S̃
∂ξ

∂FMs

∂µ

)
= es

∫
DdZ δ

[
(X + ρs) − q

]F (g)
s (Z) − es

Ts

(
ϕ(q, t) − ⟨ϕ(X + ρs)⟩g |X=q−ρs

)
, (2.27)

js∥ = es

∫
DdZ δ

[
(X + ρs) − q

]
3∥Fs(Z)

= es

∫
DdZ δ

[
(X + ρs) − q

] (
UF (g)

s (Z) − es

msc
δA∥FMs + U

Ωs

B0

∂S̃
∂ξ

∂FMs

∂µ

)
= es

∫
DdZ δ

[
(X + ρs) − q

]
UF (g)

s (Z) − esn0

msc
⟨δA∥(X + ρs)⟩g |X=q−ρs . (2.28)

Here, the second term in the right hand side of Eq. (2.27) shows the polarization density due to

the finite gyroradius effect. In Eq. (2.28), a part of the magnetization current (the third term in

the second equation) is cancelled with the second term in the second equation, which appears

due to the use of the generalized parallel velocity U. By using the above equations, the Maxwell

equations yield the gyrokinetic Poisson-Ampère equations as follows,

−∇2ϕ =
∑

s

4πes

∫
DdZ δ

[
(X + ρs) − q

]F (g)
s

−
∑

s

1
λ2

Ds

(
ϕ(q, t) − ⟨ϕ(X + ρs)⟩g |X=q−ρs

)
, (2.29)

−∇2
⊥δA∥ =

∑
s

4πes

c

∫
DdZ δ

[
(X + ρs) − q

]
UF (g)

s

−
∑

s

ωps2

c2 ⟨δA∥(X + ρs)⟩g |X=q−ρs , (2.30)

where λDs is the Debye-length, and ωps is the plasma oscillation frequency. The displacement

current in Eq. (2.5) is neglected for low-frequency phenomena considered here. In deriving Eqs.

(2.29) and (2.30), the nonlinear polarization and magnetization effects, which are higher order

in ϵg, and other higher order terms are neglected. The gyrokinetic Vlasov-Maxwell system, Eqs.

(2.22), (2.29) and (2.30), is a standard kinetic model to describe the drift-wave turbulence in the

core region of low-β plasmas.

Another important approach in modelling an open plasma system is to introduce a multi-scale

expansion with respect to a smallness parameter ϵg. In this approach, we consider a quasi-steady
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plasma in a source free region, and separate the Hamiltonian into the static and perturbed parts,

Hs = H0s + δHs , (2.31)

H0s = msŪ2 + µ̄B0 , (2.32)

δHs = es⟨δΨ⟩g , (2.33)

where δΨ≡Ψ − Ψ0 denotes the perturbed part of the generalized potential, and the unperturbed

part Ψ0=ϕ0 is not considered here. The gyrocenter distribution function F (g)
s is also divided into

the equilibrium part, which is assumed here to be the Maxwellian, and the perturbed part, i.e.,

F (g)
s =FMs + δ f (g)

s . By substituting the above relations into the gyrokinetic equation, one obtains

∂δ f (g)
s

∂t
+

{
δ f (g)

s , H0s

}
+ {FMs, δHs} +

{
δ f (g)

s , δHs

}
= C(g)

s (δ f (g)
s ) , (2.34)

where the nonlinearity resulting from E×B convection appears in the fourth term in the left hand

side of the above equation.

The nonlinear gyrokinetic simulations of the ITG and ETG turbulence presented here are

based on Eqs. (2.34) and (2.29), where the electrostatic limit (δA∥ → 0) is considered. Here,

the perturbed part of the gyrocenter distribution function is written as δ f (g)
s (X,U = 3∥, µ, t) =∑

k⊥δ f (g)
sk⊥

(X, 3∥, µ, t) exp[iSk⊥(X)] in terms of the eikonal representation [2,21], where the overline

for the gyrocenter variables is omitted, and the perpendicular wavenumber vector is defined by

k⊥≡∇Sk⊥ . Then, the electrostatic gyrokinetic equation for perturbed distribution function δ f (g)
sk⊥

written in the k⊥-space is given by[
∂

∂t
+ 3∥b· ∇ + iωDs −

µ

ms
b· ∇B

∂

∂3∥

]
δ f (g)

sk⊥
− c

B

∑
∆

b · (k′⊥ × k′′⊥
)
δψk′⊥δ f (g)

sk′′⊥

= FMs
(
iω∗T s − iωDs − 3∥b · ∇

) esδψk⊥

Ts
− C(g)

s

[
δ f (g)

sk⊥

]
, (2.35)

where ωDs≡ (c/esB)k⊥ · b × (µ∇B + ms3
2
∥ b·∇b) and ω∗T s≡ (cTs/esB){1+ηs[((ms3

2
∥ +2µB)/2Ts) −

(3/2)]}k⊥· b×∇ ln ns with ηs= |∇ln Ts|/|∇ln ns|=Lns/LTs . Here, δψk⊥ are the electrostatic potential

fluctuation averaged over the gyrophase. The symbol
∑
∆ appearing in the nonlinear term of Eq.

(2.1) stands for the summation over Fourier modes which satisfy the triad-interaction condition,

i.e., k⊥ = k′⊥ + k′′⊥. The gyrocenter position X, the parallel velocity U = 3∥ and the magnetic

moment µ are used as the five-dimensional phase-space coordinates, where µ is defined by µ≡
ms3

2
⊥/2B with the perpendicular velocity 3⊥. The equilibrium part of the distribution function is

given by the local Maxwellian distribution, i.e., FMs=ns(ms/2πTs)3/2 exp[−(ms3
2
∥ + 2µB)/2Ts].

The potential fluctuation evaluated at the particle position, δϕk⊥ , is related to the gyrophase-

averaged one, i.e., δψk⊥ = J0sδϕk⊥ , and is determined by the Poisson equation written in the
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wavenumber space as follows,

k2
⊥λ

2
Den0

eδϕk⊥

Te
=

[∫
d3J0iδ f (g)

ik⊥
− n0

eδϕk⊥

Ti
(1 − Γ0i)

]
−

[∫
d3J0eδ f (g)

ek⊥
+ n0

eδϕk⊥

Te
(1 − Γ0e)

]
, (2.36)

where |ei| = |ee| = e and ni = ne = n0 are assumed. The electron Debye-length is denoted by

λDe≡ (Te/4πn0e2)1/2. The first and the second groups of terms on the right hand side of Eq. (2.36)

indicate the ion- and the electron-particle-density fluctuations represented with the gyrocenter

distribution function and the electrostatic potential, respectively. The factors J0s and Γ0s are

defined by J0s≡ J0(k⊥3⊥/Ωs) and Γ0s≡ I0(b) exp(−b) with the zeroth-order Bessel and modified-

Bessel functions, respectively, where b≡ k2
⊥3

2
ts/Ω

2
s . In the turbulence simulations, the closed set

of equations (2.35) and (2.36) is solved numerically by means of the Fourier spectral method and

the finite difference method.

2.3 Entropy balance relation

Since the dynamics of turbulent vortices in high temperature collisionless (or weakly collisional)

magnetized plasmas involves a lot of kinetic processes such as the Landau damping, the finite

gyroradius effect, the particle drift, the magnetic trapping, the kinetic approach is essential for

understanding physical mechanisms of turbulent transport. It also should be emphasized that the

kinetic turbulent transport processes is discussed more appropriately by the entropy balance rela-

tion [19, 22–24] given below, which describes the relation between the microscopic fluctuations

of the distribution function and the turbulent heat flux, rather than the energy balance relation.

From the closed set of equations (2.35) and (2.36) described in Sec. 2.2, one can derive

a balance equation with respect to the entropy variable δS s ≡ S Ms − ⟨⟨S ms⟩⟩ defined as a func-

tional of the perturbed gyrocenter distribution function δ f (g)
s , where ⟨⟨· · · ⟩⟩ means the ensemble

average, where the macroscopic and the microscopic entropy per unit volume are defined by

S Ms≡−
∫

d3 FMs ln FMs and S ms≡−
∫

d3F (g)
s lnF (g)

s , respectively. Then, one finds

δS s = S Ms − ⟨⟨S ms⟩⟩ ≃
∫

d3
⟨⟨
δ f (g)2

s

2FMs

⟩⟩
=

∑
k⊥

∫
d3

∣∣∣δ f (g)
sk⊥

∣∣∣2
2FMs

, (2.37)

which is correct to O(δ f (g)2
s ). Here, we assume the perpendicular components of turbulent fluc-

tuations to be statistically homogeneous in space. Thus, the ensemble average is replaced by the

spatial average in the last equality of Eq. (2.37). The velocity space integral and the field line
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average of Eq. (2.35) multiplied by δ f (g)∗
sk⊥

/FMs lead to

∂

∂t
(
δSsk⊥+Wsk⊥

)
= L−1

Ts
Qsk⊥+ Tsk⊥+ Dsk⊥ , (2.38)

where

δSsk⊥ ≡
⟨∫

d3
|δ f (g)

sk⊥
|2

2FMs

⟩
, (2.39)

L−1
Ts

Qsk⊥ ≡ L−1
Ts

Re
⟨
i3ts

∫
d3 δ f (g)

sk⊥

ms3
2
∥ + 2µB

2Ts

 kyρts

eδψ∗k⊥
Ts

⟩
, (2.40)

Dsk⊥ ≡ Re
⟨∫

d3Cs

[
δ f (g)

sk⊥

] h∗sk⊥
FMs

⟩
, (2.41)

denote the entropy variable, the entropy production due to the conjugate pair of the turbulent

heat flux and the temperature gradient (thermodynamic force), and the collisional dissipation,

respectively. Note that, in the present study, the adiabatic response of background particles is

assumed so that there is no particle flux. Also, Wsk⊥ denotes the potential energy, where the

specific form is given in Sec. 5.2 for the ITG and ETG turbulence with adiabatic background

species. The non-adiabatic part of the perturbed gyrocenter distribution function, hsk⊥ , is defined

by

δ f (g)
sk⊥
= −esδψk⊥

Ts
FMs + hsk⊥ . (2.42)

The second term in the right hand side of Eq. (2.38) represents the nonlinear transfer of the

entropy variable. The definition of the entropy transfer function Tsk⊥ is given by

Tsk⊥ =
∑
p⊥

∑
q⊥

δk⊥+p⊥+q⊥, 0Js
[
k⊥|p⊥, q⊥

]
, (2.43)

Js
[
k⊥|p⊥, q⊥

] ≡ ⟨
c
B

b · (p⊥ × q⊥)
∫

d3
1

2FMs
Re

[
δψp⊥hsq⊥hsk⊥− δψq⊥hsp⊥hsk⊥

]⟩
, (2.44)

where the notation with k′⊥ and k′′⊥ shown in Eq. (2.35) is replaced here by −p⊥ and −q⊥, respec-

tively, in order to represent symmetrically the triad-interaction condition for three wavenumber

vectors, i.e., k⊥+ p⊥+ q⊥=0. In Eq. (2.43), Js[k⊥|p⊥, q⊥] is summed over p⊥ and q⊥. For con-

venience, we call the function Js[k⊥|p⊥, q⊥] the “triad (entropy) transfer function”, hereafter. It

should be noted that the triad transfer function possesses the following symmetry properties,

Js
[
k⊥|p⊥, q⊥

]
= Js

[
k⊥|q⊥, p⊥

]
, (2.45)

Js
[
k⊥|p⊥, q⊥

]
= Js

[−k⊥| − p⊥,−q⊥
]
. (2.46)

Furthermore, one obtains straightforwardly the “detailed balance relation” for the triad-interactions,

Js
[
k⊥|p⊥, q⊥

]
+Js

[
p⊥|q⊥, k⊥

]
+Js

[
q⊥|k⊥, p⊥

]
= 0 . (2.47)
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Positive values of the triad transfer function Js[k⊥|p⊥, q⊥] mean that the entropy is transferred

from two modes with p⊥ and q⊥ toward the mode with k⊥(=−p⊥−q⊥) and that the possible com-

binations of the signs of (Js[k⊥|p⊥, q⊥], Js[p⊥|q⊥, k⊥], Js[q⊥|k⊥, p⊥]) satisfying the detailed

balance relation should be (+,−,−), (+,+,−) and (+,−,+). Negative values of Js[k⊥|p⊥, q⊥]

indicate the entropy transfer in the opposite direction, then (−,+,+), (−,−,+) and (−,+,−) are

the possible combinations of the triad transfer functions.

The explicit description of the entropy balance relation for the non-zonal (ky , 0) and zonal

(ky = 0) modes is useful for the following discussions concerning the entropy transfer processes

among zonal flows and turbulence. By taking the integration of Eq. (2.38) over the non-zonal

and zonal modes, one obtains

d
dt

(
δS (trb)

s +W (trb)
s

)
= L−1

Ts
Qs − T (zf)

s + D(trb)
s , (2.48)

d
dt

(
δS (zf)

s +W (zf)
s

)
= T (zf)

s + D(zf)
s , (2.49)

where the superscripts “(trb)” and “(zf)” represent the turbulence (or non-zonal) and zonal-flow

components, respectively. The above entropy balance relations for non-zonal and zonal modes

have been derived and discussed in detail by Sugama et al [19]. Note here that zonal flows never

contribute to the radial heat flux Qsk⊥ as seen from Eq. (2.49). The entropy transfer function

integrated over the zonal modes, T (zf)
s , represents the entropy transfer from turbulence to zonal

flows so that the negative sign of T (zf)
s appears in Eq. (2.48). As shown in Ref. 19, by using the

simplest approximation for the non-adiabatic part of the ion gyrocenter distribution function, i.e.,

hik⊥≃ n0FMi(1 + k2
⊥ρ

2
ti/2)eδϕk⊥/Ti, the entropy transfer function T (zf)

i is simplified to the energy

production term, which is described by the product of the Reynolds stress due to the non-zonal

turbulent flows and the zonal-flow shear. Thus, T (zf)
s is regarded as an appropriate kinetic ex-

tension of the zonal-flow energy production due to the hydrodynamic Reynolds stress. As seen

from Eq. (2.48), the turbulent heat flux L−1
Ts

Qs works as the entropy source so that the turbulence

part of the entropy variable and the potential energy (δS (trb)
s +W (trb)

s ) is generated. At the same

time, the entropy variable is partly dissipated by collisions and is partly transferred to the zonal

flow components via the transfer term T (zf)
s . When the turbulence reaches a statistically steady

state, the balance relations of T (zf)
s =−D

(zf)
s >0 and L−1

Ts
Qs − T

(zf)
s =−D

(trb)
s are realized separately,

where the overline denotes the time-average in a saturated phase. The entropy balance relations

of Eqs. (2.48) and (2.49) provide us with not only the physical insight into the entropy transfer

processes among zonal flows and turbulence, but also a good measure for the accuracy of turbu-

lence simulations.
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Chapter 3

Vortex structures and transport properties
in slab ITG and ETG turbulence

3.1 Introduction

T
urbulent transport driven by micro-instabilities such as ion temperature gradient (ITG)

modes, electron temperature gradient (ETG) modes has been extensively investigated

so far by means of numerical simulations based on gyrokinetic and gyrofluid models in

order to elucidate physical mechanisms of anomalous heat transport in the core region of mag-

netically confined plasmas [1, 2]. One of the remarkable results obtained by the ITG turbulence

simulations is spontaneous generation of zonal flows which regulate the turbulent transport [3].

Many experimental observations commonly indicate the strong anomaly of the electron heat

transport, which could be of the same order as the ion one, even when the ion heat transport

is reduced by the internal transport barrier [4, 5]. The ETG turbulence is considered as a pos-

sible cause of such electron hear transport. Although the linear ETG modes with an adiabatic

ion response are isomorphic to the linear ITG modes with an adiabatic electron response, the

nonlinear evolution of the ETG turbulence is quite different from that of the ITG one, because

the intensity of nonlinearly generated zonal flows in the ETG turbulence is much lower than

that in the ITG turbulence due to the different adiabatic response of the background species to

the zonal-flow potential [6, 7]. Thus, ETG turbulence involves various vortex structures, e.g.,

turbulent vortices, zonal flows and radially elongated streamers, where the intensities depend

on the magnetic shear and other plasma parameters [8]. A number of gyrokinetic simulations

of the toroidal ETG turbulence have been performed and benchmarked with various simulation

codes [9–12]. Nevertheless, the saturation mechanism of the toroidal ETG instability under the

strong magnetic shear and the estimation of resultant transport level are still open problems.

21



22 Chapter 3 Vortex structures and transport properties in slab ITG and ETG turbulence

Zonal flow dynamics and the properties of large-scale coherent vortex structures in the slab

ETG turbulence have also been discussed by means of gyrokinetic and gyrofluid simulations

[13–18]. It has been pointed out that the weak magnetic shear is important for the zonal flow

generation while the positive magnetic shear leads to the streamer formation [6, 13, 14]. The

scale length of zonal flow is characterized by the Rhines scaling which is proportional to the

density gradient scale length Ln, where the electron heat transport decreases with increasing of

Ln [15]. The statistical analyses for the ETG turbulence dominated by zonal flows reveal the

phase matching between potential and pressure fluctuations which is related to the reduction of

the radial heat flux and the fractal dimension of the turbulent fluctuations [16, 17]. It has also

been pointed out that, in addition to the zonal flows, the dynamics of nonlinearly excited long-

wavelength modes is important for the saturation of the ETG instability and for the regulation of

the electron heat transport [18].

In the present study, by means of the gyrokinetic Vlasov simulations, we investigate vortex

structures of the slab ETG turbulence and velocity-space structures of the distribution function

in detail. The nonlinear gyrokinetic simulations with high phase-space resolution shown below

enable us to examine the entropy balance relation in the slab ETG turbulence with zonal flow

generation, while it has been investigated for the collisionless and weakly collisional slab ITG

turbulence [19–22]. Then, we discuss the role of zonal flows in the statistically steady turbulence

and the transition of vortex structure from turbulent vortices to coherent vortex streets accompa-

nied with the significant reduction of the electron heat transport. The transport reduction in the

coherent state is also studied from the viewpoint of structural change of the perturbed distribution

function in the velocity-space. In the latter part of this chapter, the coherent vortex streets found

in the nonlinear simulation is compared with a traveling wave solution of a Hasegawa-Mima type

equation.

The remainder of this chapter is organized as follows. Gyrokinetic models used in the present

study are described in Sec. 3.2. Simulation results are presented in Sec. 3.3, where the statisti-

cally steady state with weak zonal flows in the slab ETG turbulence is compared with that in the

slab ITG turbulence in Sec. 3.3.1. The spontaneous formation of the coherent vortex streets and

resultant transport reduction, which are found in parameters different from those in Sec. 3.3.1,

are discussed in Sec. 3.3.2. Derivation of a fluid model describing the coherent vortex streets and

the application to the nonlinear simulation results are given in Secs. 3.4.1 and 3.4.2, respectively.

Finally, the concluding remarks are given in Sec. 3.5.
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3.2 Simulation model for slab plasmas

Governing equations for the slab ITG and ETG turbulence simulations are presented in this

section. Here, a slab plasma system with an uniform magnetic field B = Bb is considered.

The electrostatic gyrokinetic equation describing the time evolution of the electron gyrocenter

distribution function F (g)
e =F (g)

e (X, 3⊥, 3∥, t) for the slab plasmas is written as [cf. Eq. (2.22)],

∂F (g)
e

∂t
+ 3∥b · ∇F (g)

e +
c
B

b × ∇ ⟨ϕ(X + ρe)⟩g · ∇F
(g)

e +
e

me
b · ∇ ⟨ϕ(X + ρe)⟩g

∂F (g)
e

∂3∥
= 0 , (3.1)

where X, ρe, c, e and me are the gyrocenter position, the electron gyroradius vector, the speed of

light, the elementary charge and the electron mass, respectively. The gyro-averaged electrostatic

potential is denoted by ⟨ϕ(X + ρe)⟩g, where ⟨· · ·⟩g means the gyrophase average for a fixed gy-

rocenter position. The total gyrocenter distribution function F (g)
e is divided into equilibrium and

perturbation parts: F (g)
e =F + δ f (g). We assume that the former is given by the local Maxwellian

distribution,

F = FM(X, 3⊥, 3∥) = n0

(
me

2πTe

) 3
2

exp

−me(32⊥ + 3
2
∥ )

2Te

 , (3.2)

where n0 and Te denote the equilibrium density and the electron temperature. The perturbed

distribution function and the potential fluctuation are written in terms of the Fourier expansions,

δ f (g)(X, 3⊥, 3∥, t) =
∑

k

δ f (g)
k (3⊥, 3∥, t)eik·X, (3.3)

ϕ(X + ρe, t) =
∑

k

δϕk(t)eik·(X+ρe), (3.4)

where the equilibrium part of the potential is not considered here. In order to keep high resolution

in the real space and the 3∥-space, we assume that 3⊥-dependence of δ f (g)
k is also given by the local

Maxwellian, i.e., δ f (g)
k (3⊥, 3∥, t) = FM⊥(3⊥)δ fk(3∥, t), where FM⊥ ≡ (me/2πTe) exp(−me3

2
⊥/2Te).

The gradient scale lengths of the equilibrium density Ln ≡ −(dln n0/dx)−1 and the equilibrium

temperature LT ≡ −(dln Te/dx)−1, which are much longer than fluctuation wavelengths in the

direction perpendicular to the magnetic field λ=2π/|k⊥|, are set to be constant.

We consider a periodic two-dimensional slab configuration where the plasma is assumed

to be homogeneous in the z-direction. The magnetic field B is set in the y-z plane such that

B=B(ez cos θ + ey sin θ)≃B(ez + θey) for θ≪1, where ey, ez and θ denote the basis vectors in the

y- and z-directions and the tilt angle of the field line, respectively. Substituting Eqs. (3.2) – (3.4)

into Eq. (3.1) and integrating over the 3⊥-space, one can obtain the gyrokinetic equation for the
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perturbed distribution function δ fk⊥(3∥, t) written in the wavenumber space as(
∂

∂t
+ ik∥3∥

)
δ fk⊥ −

c
B

∑
∆

b · (k′⊥ × k′′⊥
)
δψk′⊥δ fk′′⊥ − C∥(δ fk⊥)

= −i

ω∗e
1 + ηe

me3
2
∥

2Te
− 1

2
− k2

⊥ρ
2
te

2

 − k∥3∥

 FM∥
eδψk⊥

Te
. (3.5)

Here, k∥ ≡ k · b ≃ θky is the parallel wavenumber (kz vanishes because of the translational sym-

metry in the z-direction), k2
⊥ρ

2
te is the square of the perpendicular wavenumber normalized by the

electron thermal gyroradius ρte ≡ 3te/Ωe, where 3te ≡ (Te/me)1/2 and Ωe ≡ eB/mec are the elec-

tron thermal speed and the electron gyrofrequency, respectively. The symbol
∑
∆ appearing in

the nonlinear term of Eq. (3.5) stands for the summation over Fourier modes which satisfy the

triad-interaction condition, i.e., k⊥= k′⊥+ k′′⊥. Inhomogeneities of n0 and Te in the x-direction are

taken into account through the electron drift frequency ω∗e ≡−(cTe/eB)k⊥ · b × ∇ ln n0 and the

parameter ηe ≡ Ln/LT . The gyro-averaged potential integrated over the 3⊥-space is denoted by

δψk⊥ ≡ δϕk⊥exp(−k2
⊥ρ

2
te), where the factor exp(−k2

⊥ρ
2
te/2) reflects the finite-Larmor-radius (FLR)

effect. The Maxwellian distribution of 3∥ is denoted by FM∥≡n0(me/2πTe)1/2 exp(−me3
2
∥/2Te). In

the derivation of the above equation, the parallel nonlinearity (e/me)b ·∇ ⟨ϕ(X + ρe)⟩g ∂δ f (g)/∂3∥

included in Eq. (3.1) is neglected because of the the gyrokinetic ordering k∥/k⊥ ∼ ρte/LT ≪ 1.

In order to maintain this ordering, the value of the tilt angle θ is expressed by the dimensionless

parameter Θ≡k∥LT/kyρte≃θLT/ρte.

In the present model, a weak but finite collisionality effect is introduced in terms of a model

collision operator C∥(δ fk⊥) as follows,

C∥(δ fk⊥) = νe
∂

∂3∥

(
3

2
te
∂

∂3∥
+ 3∥

)
δ fk⊥ . (3.6)

Here, νe denotes the electron collision frequency. The collision operator acting on δ fk⊥ smooths

out the fine-scale fluctuations in the 3∥-space. Although the above collision operator does not

conserve the momentum and the energy, its influence on the main results shown below, such as

the transport level, are not crucial as long as νeLT/3te≪1 [20].

The electrostatic potential is determined by the quasi-neutrality condition δne = δni, where

the Laplacian term ∇2δϕ in the Poisson equation is neglected. Since the potential should be

evaluated at the particle position, not at the gyrocenter position, the distribution function should

be transformed from the gyrocenter coordinates to the particle ones. The relation between the

particle distribution function δ f (p)
k⊥

and the gyrocenter distribution function δ f (g)
k⊥

is given by

δ f (p)
sk⊥
= δ f (g)

sk⊥
e−ik⊥·ρs − esδϕk⊥

Ts

[
1 − J0(k⊥3⊥/Ωs)e−ik⊥·ρs

]
FMs , (3.7)
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where the subscript “s” represents particle species [s = {i, e} for ions and electrons], so that es

has a sign of the electric charge for each species, and J0(z) is the zeroth-order Bessel function.

The last group of terms on the right-hand side represents the polarization due to the potential

fluctuations. By taking the velocity-space integral of Eq. (3.7) for electrons, one can obtain the

electron density fluctuation in the particle coordinates

δnek⊥ =

∫
d3

{
δ f (g)

ek⊥
e−ik⊥·ρe +

eδϕk⊥

Te

[
1 − J0(k⊥3⊥/Ωe)e−ik⊥·ρe

]
FMe

}
= e−

1
2 k2
⊥ρ

2
te

∫
d3∥ δ fek⊥ + n0

eδϕk⊥

Te

[
1 − Γ0(k2

⊥ρ
2
te)

]
, (3.8)

where Γ0 is defined by Γ0(z)≡ I0(z) exp(−z) with the zeroth-order modified Bessel function I0(z).

Similarly, the ion particle density fluctuation is given as

δnik⊥ =e−
1
2 k2
⊥ρ

2
ti

∫
d3∥ δ fik⊥ − n0

eδϕk⊥

Ti

[
1 − Γ0(k2

⊥ρ
2
ti)
]
≃ −n0

eδϕk⊥

Ti
(k⊥ρti ≫ 1) . (3.9)

Since the characteristic wave length in the ETG turbulence, which is comparable to the electron

gyroradius, is much shorter than the ion gyroradius, i.e., k⊥ρti ≫ 1, the ion response to the

potential fluctuation is reduced to the adiabatic one as shown in the last equality of Eq. (3.9).

Combining Eq. (3.8) and Eq. (3.9), the quasi-neutrality condition δne=δni with the adiabatic ion

response is rewritten as∫
d3∥ δ fek⊥ = − e

1
2 k2
⊥ρ

2
te

[
1 +

Te

Ti
− Γ(k2

⊥ρ
2
te)

]
n0

eδϕk⊥

Te
. (3.10)

In ITG turbulence simulations, the electron response is often assumed to be adiabatic except for

the zonal-flow component of k∥ = ky = 0. The electron response in ITG turbulence is denoted

by δne = n0e(δϕ − ⟨δϕ⟩)/Te while the ion response in the ETG turbulence is given by Eq. (3.9),

where ⟨· · · ⟩ means a flux surface average. The physical pictures of the responses to the zonal-

flow potential in ITG and ETG turbulence are quite different. In the ITG turbulence, electrons

do not respond to the zonal-flow potential, i.e., δnek∥=0 = 0, because the parallel electric field E∥
vanishes for the mode of k∥=0. On the other hand, ions in the ETG turbulence can move in the

perpendicular direction because of the large ion gyroradius, i.e., k⊥ρti ≫ 1 even if E∥ = 0. As

a result of the different responses of ions and electrons to the zonal-flow potential, the relative

intensity of the zonal flow in the ETG turbulence is lower than that in the ITG turbulence [3].

From the closed set of equations described in Eqs. (3.5) and (3.10), one can derive a balance

equation with respect to the entropy variable δS ≡S M − ⟨⟨S m⟩⟩, where ⟨⟨· · · ⟩⟩ means the ensemble

average [23, 24]. (Remember that the macroscopic and the microscopic entropy per unit volume

are defined by S M≡−
∫

d3 FM ln FM and S m≡−
∫

d3F (g)
e lnF (g)

e , respectively, as described in Sec.
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2.3.) Then, one finds

δS = S M − ⟨⟨S m⟩⟩ ≃
∫

d3
⟨⟨
δ f (g)2

2FM

⟩⟩
=

∑
k⊥

∫
d3∥

∣∣∣δ fk⊥
∣∣∣2

2FM∥
, (3.11)

which is correct to O(δ f (g)2). Here, we assume the turbulent fluctuations to be statistically ho-

mogeneous in space. Thus, the ensemble average is replaced by the spatial average in the last

equality of Eq. (3.11). Taking the 3∥-space integral and the summation over k⊥ of Eq. (3.5)

multiplied by δ f ∗k⊥/FM∥ (where the asterisk denotes the complex conjugate), one can obtain the

entropy balance equation,
d
dt

(δS +W) = L−1
T Qe + D , (3.12)

by use of Eq. (3.10). The quantities W, L−1
T Qe and D denote the potential energy, the entropy

production by the turbulent electron heat flux and the collisional dissipation, respectively. The

definitions are as follows:

W =
∑
k⊥

Wk⊥ =
∑
k⊥

n0

2

(
1 +

Te

Ti
− Γ0(k2

⊥ρ
2
te)

) ∣∣∣∣∣eδϕk⊥

Te

∣∣∣∣∣2 , (3.13)

L−1
T Qe =

q⊥e

Te
· (−∇ ln Te)

=
∑
k⊥

c
B

dln Te

dx
Re

ikyδψk⊥

∫
d3∥

me3
2
∥

2Te
− 1

2

 δ f ∗k⊥

 ,
= n0

(
dln Te

dx

)2 ∑
k⊥

χek⊥ (3.14)

D =
∑
k⊥

Re
∫

d3∥ C∥(δ fk⊥)
δ f ∗k⊥
FM∥

, (3.15)

where q⊥e denotes the electron perpendicular heat flux due to the E×B convection. The electron

heat transport coefficient is defined by χe =
∑

k⊥ χek⊥ = q⊥e · ex/(n0Te/LT ), where ex denotes

the basis vector in the x-direction. The production, transfer and dissipation processes of δS

have been thoroughly investigated for the slab ITG turbulence [20]. The entropy variable δS

is generated by the turbulent heat transport L−1
T Qe in macro-velocity scale, then it cascades to

micro-velocity scale through the phase mixing process caused by the parallel advection term

ik∥3∥δ fk⊥ in Eq. (3.5). Finally, the entropy variable is dissipated by the collision in the micro-

velocity scale. The entropy balance relation also provides us a good measure for the accuracy of

the nonlinear simulation.

In the followings, physical quantities are normalized as x= x′/ρte, y= y′/ρte, 3∥ = 3
′
∥/3te, t=

t′3te/LT , νe = ν
′
eLT/3te, FM∥ = F′M∥3te/n0, δ fk⊥ = δ f ′k⊥LT 3te/ρten0 and δϕk⊥ = eδϕ′k⊥LT/Teρte, where
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the prime means a dimensional quantity. In the numerical simulations, time integrations are car-

ried out by the fourth-order Runge-Kutta-Gill method with appropriate time step. The nonlinear

advection term is calculated by means of the spectral method with 3/2-rule for the de-aliasing

in the wavenumber space. In order to keep high phase-space resolution, our code is parallelized

with respect to the 3∥-coordinates, and the fourth-order central finite difference methods are used

for evaluating the velocity-space derivatives in the collision operator. The nonlinear simulations

have been carried out for two cases which have different dimensionless parameters ηe and Θ.

The detailed simulation conditions for each parameter are given in the Sec. 3.3.1.

3.3 Nonlinear simulations

3.3.1 Physical and numerical parameters

Physical and numerical parameters for nonlinear simulations of the slab ETG turbulence are

summarized below. We consider two sets of the physical parameters {ηe = 6, Θ= 1/6} (Case 1)

and {ηe = 10, Θ= 1/20} (Case 2). The linear growth rate γL and real frequency ωL for the two

cases are plotted for ky in Fig. 3.1. Here, we set kx=0 because the finite kx has a stabilizing effect.

It is found that Case 2 has relatively lower real frequencies, larger growth rates, and a wider range
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FIG. 3.1: Growth rates γL and real frequencies ωL of the linear ETG modes for kx=0 in Case 1

(ηe=6, Θ=1/6) and Case 2 (ηe=10, Θ=1/20).
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TABLE 3.1: Physical parameters used for nonlinear simulations.

ηe Θ 3∥-grids γLmax νe

Case 1 6 1/6 1025 0.021 2.08×10−4

Case 2 10 1/20 2049 0.037 1.25×10−4

of the unstable modes than those in Case 1. The parameters used for nonlinear simulations are

summarized in Table 3.1. Here, sufficiently small collision frequency νe, which does not affect

the linear growth rates and the real frequencies, is introduced in the both cases. Also, we set

τ ≡ Te/Ti = 1. The number of modes in the wavenumber space, the minimum and maximum

wavenumbers are set to be (Nkx ,Nky)=(129, 257), kmin = 0.05 and kmax = 6.4, respectively. The

range of 3∥-coordinates is |3∥|63max=10. Furthermore, the simulation domain is set to be a square

with Lx = Ly = 40πρte. In the ITG turbulence, as will be discussed in Sec. 3.3.2, the parameters

are the same as those in the slab ETG turbulence of Case 1 except for the use of the ion thermal

gyroradius ρti on the normalizations.

3.3.2 Steady turbulence and zonal flows

Simulation results for Case 1 as well as the comparison between slab ETG and ITG turbulence

are shown and discussed below. Time evolution of each term in Eq. (3.12), i.e., d(δS )/dt, dW/dt,

Qe and D is plotted in Fig. 3.2. (Note that L−1
T Q′e is reduced to Qe in terms of the normalization

with LT , where the prime means the dimensional quantity.) It is confirmed that the entropy

balance relation described in Eq. (3.12) is accurately satisfied within an error less than 1% with

respect to the amplitude of the collisional dissipation. In the nonlinear phase (t>700) , one can

find a statistically steady state in the entropy balance, where the mean heat transport balances

with the mean collisional dissipation, namely, Qe≃−D while d(δS )/dt≃dW/dt≃0 (the overline

denotes the time average for t>1000). The statistically steady state of slab ITG turbulence was

confirmed by Watanabe and Sugama [20], where the zonal flow components of the distribution

function were not included for studying the entropy balance with strong ion heat transport. The

present turbulence simulation results demonstrate that the similar steady state with finite electron

heat transport exists in the slab ETG turbulence including zonal flows self-consistently.

The time evolutions of the heat transport coefficients χs are shown in Fig. 3.3, where “s”

denotes the particle species. Here, χe,nz and χe represent the results without and with the zonal

flow generation, respectively. In the former case, the zonal flow components of the perturbed
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distribution function δ fkx,ky=0 are artificially neglected. In addition, a slab ITG case with the zonal

flow generation is also plotted as χi in the figure. The saturation levels of the transport coefficients

are χe,nz = 1.34 × 10−1 [ρ2
te3te/LT ], χe = 4.65 × 10−2 [ρ2

te3te/LT ] and χi = 4.36 × 10−5 [ρ2
ti3ti/LT ],

respectively, where the time average is taken over 6000 6 t 6 8000. We find a quite small ratio

of saturation levels χi/χe ≃ 9.38
√

mi/me × 10−4 ≃ 0.04. This is because the zonal flow driven by

the slab ITG turbulence is much stronger than that driven by the slab ETG turbulence due to the

difference of the adiabatic response to the zonal-flow potential δϕkx,ky=0 as described in Sec. 3.2.

Also, in the present slab configuration with the constant magnetic field, the zonal flow damping

due to the neoclassical polarization is not included. Therefore, the strong zonal flow is driven

by the slab ITG turbulence and sustained for a long time. The time evolution of χe,nz indicates

the higher level and the slow time-variation while the value of χe reaches to the steady state.

The averaged value χe,nz is about 2.9 times larger than χe. These results suggest that the weak

but finite zonal flows driven by the slab ETG turbulence play a major role in regulating the slow

time-variation and in realizing the steady transport.

Comparisons of the cases with and without zonal flows provide us clear understandings of

the role of the zonal flow in regulating the turbulent transport. Figures 3.4(a) – (c) show the

wavenumber spectra of the potential energy Wkx,ky=0, Wkx=0,ky [see Eq. (3.13)] and the transport

coefficient |χekx=0,ky | [see Eq. (3.14)], respectively, where the amplitudes are averaged over 30006
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FIG. 3.2: Time evolution of each term in Eq. (3.12), d(δS )/dt, dW/dt, Qe and D in Case 1.
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FIG. 3.3: Time evolutions of the transport coefficients χe,nz (ETG without zonal flows), χe (ETG

with zonal flows) and χi (ITG with zonal flows), where the gyro-Bohm units ρ2
ts3ts/LT (s= e, i)

are used.

t65000. In Fig. 3.4(b), one can see a much larger amplitude of the (kx=0, ky=kmin=0.05)-mode

compared to the other modes in the case without zonal flows, while its amplitude significantly

decreases by a factor of about 30 in the case with zonal flows. A similar reduction is also found

for |χekx=0,ky=kmin | in Fig. 3.4(c). The correlation between Wk⊥ and |χek⊥ | indicates that the high level

of χe,nz with the slow time-variation shown in Fig. 3.3 is mainly caused by low-k⊥ modes, where

the (kx=0, ky= kmin)-mode makes the largest contribution to the heat transport. The zonal flows

with finite amplitudes shown in Fig. 3.4(a) suppress the low-k⊥ modes and reduce the transport

level. Also, the contribution of |χekx=0,ky=kmin | to the total χe, that is 27% in the case without zonal

flows, decreases to 7% in the case with zonal flows. The reduction of the amplitudes of low-k⊥
modes by zonal flows leads to the steady χe.

The different evolutions of turbulent transport and the role of the zonal flow discussed above

are also understood from the comparison of vortex structures. Color contours of the electrostatic

potential fluctuations on the (x,y)-plane at t=4980 are shown in Figs. 3.5(a) – (c) for the above

three cases [(a)ETG without zonal flows, (b)ETG with zonal flows, (c)ITG with zonal flows],

respectively. In Fig. 3.5(a), one can see formation of isolated vortices with the positive and

the negative signs of the potential values. The size and amplitude of each vortex are typically

∆vortex ≃ 8 [ρte] and |δϕ|vortex ≃ 18 [ρteTe/LT e], respectively. In addition, the (kx = 0, ky = kmin)-
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FIG. 3.4: The wavenumber spectra of (a)Wkx,ky=0, (b)Wkx=0,ky and (c)|χekx=0,ky | in the cases with

and without zonal flows, where the amplitudes are averaged over 3000 6 t 6 5000. The units

(ρte/LT )2(Te/e)2 and ρ2
te3te/LT are used for Wk⊥ and χek⊥ , respectively.
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FIG. 3.5: Contours of the normalized potential fluctuations at t=4980 in (a)ETG without zonal

flows, (b)ETG with zonal flows and (c)ITG with zonal flows.



3.3 Nonlinear simulations 33

mode, which makes a dominant contribution to the heat transport, is clearly observed behind

the isolated vortices. The isolated vortices are also observed in Fig. 3.5(b), where the typical

size and amplitude of each vortex are slightly smaller than those found in the case without zonal

flows. However, the (kx = 0, ky = kmin)-mode no longer appears in the present case because it

is suppressed by the zonal flows with finite amplitudes. Also, the isolated vortices exhibit the

complicated motion and their mergers. Mergers of like-signed vortices have also been observed

in the two-dimensional decaying plasma turbulence with Hasegawa-Mima model (see, for exam-

ple, Ref. 15 and 25). In the present case, the zeroth velocity moment of the gyrokinetic equation

used here includes the similar nonlinearity to that in the Hasegawa-Mima equation which is de-

rived from Eqs. (3.5) and (3.10) in the limits of k∥ = 0 and k⊥ρte ≪ 1. Thus, it is considered

that the formation of the isolated vortices and their mergers found in the slab ETG turbulence

reflect the similarities between the gyrokinetic and the Hasegawa-Mima equations. In the ITG

case with the zonal flow generation [Fig. 3.5(c)], an anisotropic flow structure dominated by the

strong zonal flow (kx≃0.4, ky=0) is observed, where the amplitude of the zonal flow potential is

|δϕ|zonal≃2 [ρtiTi/LT e]. The slab ITG driven zonal flows with the large amplitude and its strong

flow shear completely suppress the turbulent transport.

3.3.3 Formation of coherent vortex streets and transport reduction

Here, we discuss the results of the slab ETG turbulence simulation in Case 2 which is linearly

more unstable in comparison with Case 1. The entropy balance relation is also satisfied in the

present case. However, we find quite different behavior of the electron heat flux and the vortex

structures as shown below.

Figure 3.6 shows the time evolutions of electron heat transport coefficients for Case 1 and

Case 2. As the linear dispersion relation for Case 2 shows the larger growth rate and the wider

range of unstable modes than those in Case 1, one finds earlier saturation and higher transport

level at t 6 3000. In Case 2, however, a transition of vortex structure, which will be shown in

Figs. 3.8, occurs from a turbulent to a coherent states accompanied with the significant reduction

of transport level at t∼ 3500. In contrast, Case 1 keeps the steady transport level of χe = 4.65 ×
10−2 [ρ2

te3te/LT ] for t > 6000. The time averaged heat transport coefficients for Case 2 in the

turbulent and coherent states are summarized in Table 3.2. Surprisingly, the transport level in

the coherent state of Case 2 is about 2.6 times less than the steady transport level in Case 1

with a relatively moderate growth rates of the linear ETG modes. The reversal of transport

level between Case 1 and Case 2 is expected from neither quasilinear theory nor mixing-length

estimates. Since zonal flows play a major role in realizing the steady χe as shown in Fig. 3.3,
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TABLE 3.2: Time averaged heat transport coefficients in Case 2.

χe [ρ2
te3te/LT ] averaging time

turbulent state 3.37 × 10−1 1000 6 t 6 3000

coherent state 1.77 × 10−2 6000 6 t 6 8000

we consider that the onset of the transition of the transport level also depends on the zonal flow

amplitude.

Comparisons of the time evolutions of the potential energy for Case 1 and Case 2 are shown

in Figs. 3.7(a) and 3.7(b), where the total potential energy W in Eq. (3.13) is divided into

zonal flow and turbulence components defined by Wzf ≡
∑

kx
Wkx,ky=0 and Wtrb ≡

∑
kx

∑
ky,0Wkx,ky ,

respectively. In Fig. 3.7(a), we see that the turbulence energy Wtrb in the both cases gradually

increases after the initial saturation of the ETG instability, then they reach to steady states at

t > 5200. The time averaged values are Wtrb = 8.99 [(ρte/LT )2(Te/e)2] for Case 1 and Wtrb =

12.6 [(ρte/LT )2(Te/e)2] for Case 2, respectively, where the time averages are taken over 52006

t68000. Evolutions of the zonal flow energy Wzf are quite different between Case 1 and Case 2
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FIG. 3.6: Comparison of the time evolutions of the transport coefficients χe in Case 1 and Case

2, where the gyro-Bohm units ρ2
te3te/LT are used.



3.3 Nonlinear simulations 35

 0

 1

 2

 3

0 2000 4000 6000 8000
Time t

(b) Wzf in Case 1
Wzf in Case 2

 0

 5

10

15

20 (a) Wtrb in Case 1
Wtrb in Case 2

FIG. 3.7: Time evolutions of (a)turbulence energy Wtrb and (b)zonal flow energy Wzf in Case 1

and Case 2, where the units (ρte/LT )2(Te/e)2 are used.

as shown in Fig. 3.7(b). In Case 1, the nonlinearly generated zonal flows increase exponentially

at t 6 810. After that, the zonal flow energy, however, decays quickly and keeps a steady level

of Wzf = 0.428 [(ρte/LT )2(Te/e)2], where the time averages are taken over 6000 6 t 6 8000. In

contrast to Case 1, the zonal flow energy for Case 2 continue to increase gradually until t∼2700.

Finally, it sustains about 3.2 times higher level of Wzf =1.36 [(ρte/LT )2(Te/e)2] than that in Case

1. The higher level of the zonal flow energy found in Case 2 is associated with the stronger

linear ETG instability causing the higher level of turbulence energy that is a source of zonal

flows. Furthermore, the smaller value of the parameterΘ (=k∥/ky), which denotes the normalized

parallel wavenumber, may also be related to the stronger zonal-flow generation. The different

behavior of the zonal flow energy between Case 1 and Case 2 lead to the different evolutions of

χe with the steady level or the transport reduction, as shown in Fig. 3.6.
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FIG. 3.8: Contours of normalized potential fluctuations at (a)t = 2400 (turbulent state), (b)t =

7800 (coherent state) and normalized temperature fluctuations at (c)t = 2400 (turbulent state),

(d)t=7800 (coherent state) for Case 2.

Figures 3.8(a) – (d) show color contours of potential and temperature fluctuations found in

Case 2 in the turbulent state at t = 2400 and the coherent state at t = 7800, respectively, where

the temperature fluctuations are defined by δTk⊥ =
∫

d3∥(32∥ −1)δ fk⊥ . In the turbulent state, the

spatial structures of the both fluctuations are nearly isotropic on the x-y plane [Figs. 3.8(a) and

3.8(c)]. Moreover, the temperature fluctuations contain finer spatial-scale components than those

in the potential fluctuations. The generation of the fine-scale fluctuations reflects development

of the fine-scale structures of the distribution function in the phase-space. On the other hand,

in the coherent state, vortex streets along the strong zonal flow are observed in the potential and

temperature fluctuations [Figs. 3.8(b) and 3.8(d)] which are almost in-phase. A low wavenumber
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mode with kx = 0.05 and ky = 0.15, and the zonal flow component with kx = 0.15 and ky = 0

mainly contribute to the formation of coherent vortex streets, where they have the comparable

amplitude of |δϕkx=0.05,ky=0.15|= 0.664 [(ρte/LT )(Te/e)] and |δϕkx=0.15,ky=0|= 0.598 [(ρte/LT )(Te/e)].

The coherent vortex streets slowly propagate in the ion diamagnetic direction (the negative y-

direction) which is opposite to the propagation direction of the linear ETG modes. Moreover,

the fine-scale structures of temperature fluctuations disappear in the coherent state while the

amplitude are as large as that in the turbulent state.

In order to find a relation between the transition of vortex structure and transport level, the

power spectra of δϕk⊥ , δTk⊥ and χek⊥ are shown in Figs. 3.9(a) – (c), respectively, where the

quantities are summed over kx components and the time averages are taken for 10006 t 6 3000

in the turbulent state and for 6000 6 t 6 8000 in the coherent state. The low wavenumber

components of |δϕky | for ky60.2 in the coherent state are slightly larger than those in the turbulent

state while the higher wavenumber components for ky > 0.25 significantly decrease by a factor

of 3–10. On the other hand, the amplitude of |δTky | for all ky in the coherent state is less than

that in the turbulent state, where the reduction of high wavenumber components for ky > 1.0 is

significant. These features are consistent with the coherent structures shown in Figs. 3.8(b) and

3.8(d), where the fine-scale fluctuations of δϕ and δT are smoothed out. It is noteworthy that the

low wavenumber components of |χeky | around ky = 0.1, which make dominant contributions to

the total heat transport, decrease by a factor of 15.9 in the coherent state, while the changes in

amplitudes of low wavenumber components of |δϕky | and |δTky | are within a factor of 3. The above

results for Case 2 suggest that the transport reduction in the coherent state is mainly associated

with a decrease of phase difference between δϕk⊥ and δTk⊥ rather than the reduction of fluctuation

amplitudes. Indeed, the transport coefficient χek⊥ can be expressed as [see Eq. (3.14)],

χek⊥ = −e−
1
2 k2
⊥ky|δϕk⊥ |2

∫
d3∥

(
3

2
∥ − 1

)
Im

[
δ fk⊥
δϕk⊥

]
= −e−

1
2 k2
⊥ky|δϕk⊥ |2Im

[
δTk⊥

δϕk⊥

]
, (3.16)

where normalized quantities are used here. The above equation shows that the transport coef-

ficient is proportional to the squared amplitude |δϕk⊥ |2 and the imaginary part of the distribu-

tion function (or temperature fluctuation) divided by the potential fluctuation Im[δ fk⊥/δϕk⊥] (or

Im[δTk⊥/δϕk⊥]). In general, the phase difference ∆θk⊥ between two Fourier modes Xk⊥ and Yk⊥

is given by ∆θk⊥ = sin−1( Im[Yk⊥/Xk⊥] ). Thus, velocity moments of the quantity Im[δ fk⊥/δϕk⊥]

are related to the phase difference between potential fluctuations and other fluid variables. The

reduction of the phase difference between potential and pressure fluctuations in the coherent

vortex structures dominated by zonal flows has also been observed in gyrofluid simulations of
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FIG. 3.9: Power spectra of (a)|δϕk⊥ |, (b)|δTk⊥ | and (c)|χek⊥ | in the turbulent (10006 t63000) and

coherent (60006 t68000) states, where the quantities are summed over kx components and taken

time averages.
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sheared-slab ETG turbulence with small magnetic shear parameter ŝ=0.1 [16, 17].

In the present gyrokinetic simulation study, the transition of vortex structure from a turbu-

lent to a coherent state, which is accompanied with the reduction of the phase difference be-

tween δϕ and δT , is related to velocity-space structures of the perturbed distribution function,

or, especially, to its imaginary part. Figure 3.10 shows velocity-space profiles of the quantity

−Im[δ fk⊥/δϕk⊥] in Eq. (3.16). Here, the solid and dashed lines correspond to the results in

turbulent and coherent states, respectively, where the mode giving the dominant contribution to

the heat transport (kx = 0, ky = 0.1) are plotted. The linear eigenfunction is also shown by the

dotted line in the figure, where a scale factor of 1/2 is multiplied. One can see that the profile

in turbulent state is qualitatively similar to the linear eigenfunction, which can drive large heat

transport. In contrast, the significant decrease of −Im[δ fk⊥/δϕk⊥] is found in the coherent state,

which is related to the transport reduction. The decrease of −Im[δ fk⊥/δϕk⊥] corresponds to the

phase matching of δϕ and δT , and it is consistent with the spatial structures shown in Figs. 3.8(b)

and 3.8(d). Furthermore, the smaller value of −Im[δ fk⊥/δϕk⊥] in the coherent state suggests that

the reduction of phase difference to potential fluctuations δϕk⊥ is found not only for temperature

fluctuations δTk⊥ , but also for any n-th velocity moments of the perturbed distribution function

δM(n)
k⊥
≡

∫
d3∥ 3n∥ δ fk⊥ . This fact is utilized for a derivation of a model equation describing the
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FIG. 3.10: Velocity-space profiles of the quantity −Im[δ fk⊥/δϕk⊥] for the mode giving the domi-

nant contribution to the heat transport (kx=0, ky=0.1).
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coherent vortex streets.

The results of nonlinear simulations suggest that the onset of the transition to the coherent

state and the formation of vortex streets, which is accompanied with the phase matching phenom-

ena, are closely related to the behavior of zonal flows. It depends on the parameters ηe ≡ Ln/LT

and Θ≡ k∥/ky, which determine the linear ETG instability in the present model with the fixed νe

and τ≡ Ti/Te. In particular, the parameter Θ, which is relevant to the magnitude of the parallel

compression, is considered to be influential on the growth of zonal flows through nonlinear mode

couplings with k∥ , 0 modes. It has also been pointed out that the parallel electron flows are es-

sential to the stabilization of the Kelvin-Helmholtz modes for zonal flows [14]. A comprehensive

parameter-scan is given in the next chapter in order to clarify which parameters are crucial for the

strong zonal-flow generation and the formation of the coherent vortex structures. These analyses

are expected to contribute to finding a critical condition for the transition of vortex structures

from turbulent to coherent states with transport reduction, and may provide ones a useful insight

in relation to the chaos- or turbulence-control. In fact, by means of the Hasegawa-Wakatani

model, Klinger et al. [26] pointed out that an externally applied perturbation of the parallel flow

leads to the transition from the drift wave turbulence to a coherent state.

The simple shear-less slab configuration with constant Θ used in the present study is asso-

ciated with a local model for the neighborhood of the minimum-q surface (q denotes the safety

factor), which has a weak magnetic shear ŝ≪1, in the toroidal system with a reversed magnetic

shear profile [4, 5]. In the case with a weak magnetic shear, each position of the rational surface

becomes more distant and the toroidal-mode couplings weaken so that the slab ETG modes can

also be destabilized. Actually, the global gyrokinetic PIC simulations of the slab ETG turbulence

for the reversed magnetic shear profile have found out the strong zonal-flow generation and the

significant reduction of the electron heat transport around the minimum-q surface where the ŝ

vanishes [14].

3.4 Identification of coherent vortex streets

3.4.1 Hasegawa-Mima type model for coherent vortex streets

Here, we derive a model equation by which the coherent vortex streets shown in the previous

section can be described. It can also be utilized for the detailed comparison with nonlinear

simulation results.

Main features of the coherent vortex streets with significantly low transport level found in

the previous section are summarized as follows. First, the spatial profile of δϕ mainly consists of
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large-scale vortices and zonal flows with comparable amplitudes [see Fig. 3.8(b)]. Second, the

propagating direction of these vortices are opposite to that of the linear ETG modes. Third, the

phase matching occurs between the potential fluctuation δϕk⊥ and the fluctuations δM(n)
k⊥

defined

by the n-th velocity moments of the perturbed distribution function. These features allow us

to derive a fluid equation for the coherent vortex streets. By taking the 3∥-space integral of

gyrokinetic equation in Eq. (3.5) and by use of the quasi-neutrality condition in Eq. (3.10), one

can obtain the following equation,

∂

∂t
Λk⊥δψk⊥ − iky

(
1 − ηe

2
k2
⊥

)
δψk⊥ −

∑
k=k′⊥+k′′⊥

b · (k′ × k′′
)
δψk′⊥Λk′′⊥δψk′′⊥ = 0 , (3.17)

which is formally similar to the Hasegawa-Mima equation written in the wavenumber space.

Here, the moment of parallel advection term
∫

d3∥ ik∥3∥δ fk⊥ (= ik∥u∥), which causes the linear

ETG instability through a coupling with higher order moments, is neglected for simplicity be-

cause it is relatively smaller than the other terms in the coherent state. The validity for neglect-

ing the parallel advection term will be discussed in Sec. 3.4.2. The FLR-factor is denoted by

Λk⊥ ≡ ek2
⊥[1 + τ − Γ0(k2

⊥)]. Normalizations are the same as shown in Sec. 3.2 except that the

macroscopic gradient scale length is changed from LT into Ln for comparison with the original

Hasegawa-Mima equation. The original Hasegawa-Mima model (HM model) is derived from

fluid equations for cold ions (Ti→ 0) with the adiabatic electron response, then the model de-

scribes the density gradient driven drift waves. In contrast to the original HM model, Eq. (3.17) is

derived from the gyrokinetic equation for electrons with the adiabatic ion response and includes

the electron temperature gradient ηe described by iky(ηek2
⊥/2)δψk⊥ , which does not appeared in

the cold-electron limit (Te→0). Hereafter, an abbreviation for our model in Eq. (3.17) is denoted

by “HM-ηe model” for convenience. Similar to the original HM model, the HM-ηe model also

has no source driving linear instabilities.

Figure 3.11 shows the comparison of real frequencies for kx = 0 between the linear ETG

mode described by the gyrokinetic model and linear drift waves described by the HM-ηe model.

The real frequency for the HM-ηe model is given by

ωL =
−e−k2

⊥ky

1 + τ − Γ0(k2
⊥)

(
1 − ηe

2
k2
⊥

)
. (3.18)

We see that the real frequencies in HM-ηe model have negative values for the low wavenumber

modes of ky6
√

2/ηe≃0.447 while the ETG modes have positive real frequencies for all modes.

The negative frequency means that the direction of the mode propagation is opposite to that of

the linear ETG modes. Indeed, as described in the previous section, the coherent vortex streets

propagate in the negative y-direction.
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FIG. 3.11: Comparison of the real frequencies ωL(kx=0, ky) between the linear ETG modes and

HM-ηe model, where ωL is normalized by 3te/Ln.

In the long wavelength limit of k⊥ρte ≪ 1, Eq. (3.17) is represented in the real space as

follows:
∂

∂t

{
τ − (1 + τ)∇2

⊥
}
δψ − ∂

∂y

(
1 +

ηe

2
∇2
⊥

)
δψ −

[
δψ, (1 + τ)∇2

⊥δψ
]
= 0 , (3.19)

where the square brackets denote the Poisson brackets [A, B] = (∂xA)(∂yB) − (∂xB)(∂yA). An

isomorphic form to the original Hasegawa-Mima equation, which has an opposite sign of the

drift frequency, is derived by taking a cold-electron limit Te→0 and ηe→0. In analogy with the

HM model having a traveling wave solution [27], e.g., isolated dipole vortices, one can derive

a condition for the traveling wave solution of the HM-ηe equation in the long wavelength limit.

Suppose the potential fluctuation of δψ = δψ(x, y − ut) in Eq. (3.19) with constant traveling

velocity parameter u, then the time derivative is replaced with the y-derivative, ∂tδψ=−u∂yδψ=

[−ux, δψ]. After some simple algebra, one finds the following equation,

[S 1, S 2] ≡
[
∇2
⊥δψ −

(
1 + τu
1 + τ

)
x , δψ −

{
u − ηe

2(1 + τ)

}
x
]
= 0 . (3.20)

This condition shows that δψ is a traveling wave solution of the HM-ηe equation if there is a

functional relation between S 1 and S 2, i.e., S 1=F(S 2) with an arbitrary function F. The analysis

of the functional dependence on S 1 and S 2 is similar to that demonstrated in two-dimensional

rotating fluid turbulence by Jung and Morrison et al. [28]. They introduced a method of averaging
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FIG. 3.12: Comparison of the time evolutions of χe with and without the parallel advection term.

the stream function that allows them to find the linear functional relation between the generalized

vorticity and the stream function. In the present study, we investigate the functional relation

between S 1 and S 2 as a measure for characterizing the coherent vortex streets to be a traveling

wave solution of the HM-ηe equation.

3.4.2 Comparison between HM-ηe model and simulation results

In this section, the coherent vortex streets found in the gyrokinetic simulation for Case 2 is

compared with the traveling wave solution of HM-ηe equation.

In order to confirm the validity for neglecting the parallel advection term in the derivation

of HM-ηe model in Eq. (3.17) [or Eq. (3.19)] for the coherent vortex streets, we compare

gyrokinetic simulation results for cases with and without the parallel advection term ik3∥δ fk⊥ .

Figure 3.12 shows the time evolution of χe, where the solid line is the same as that shown in Fig.

3.6 for Case 2. The dotted line corresponds to the result where the parallel advection term is

artificially eliminated in the coherent state at t= 8000 and later. Although the initial increase of

χe arisen from the discontinuity of the parallel advection term are observed for 80006 t610000,

the long-time behavior of χe for t>10000 shows the quite low transport level, which is the same

level as that in the coherent state at around t=8000 shown by the solid line.

Snapshots of vortex structures for the cases with and without the parallel advection term are
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compared in Figs. 3.13(a) and 3.13(b), respectively, where the gyro-averaged potentials δψ are

plotted by color contours. In Fig. 3.13(b), one finds that the vortex streets found in the coherent

state at t = 7800 [Fig. 3.13(a)] sustain its spatial structure for a long time after eliminating

the parallel advection term. Also, the vortices propagate in the negative y-direction, which is

consistent with the negative real frequency for low wavenumber modes of the HM-ηe model.

These results justify the neglect of the parallel advection term in the derivation of HM-ηe model

for the coherent vortex streets. In addition, the propagation of the vortices keeping the spatial

structure suggests that the coherent vortex streets are described by a traveling wave solution of

Eq. (3.19).

Direct evaluations of the functional relation of S 1 and S 2 in Eq. (3.20) are shown in Figs.

3.14(a) and 3.14(b) for the nonlinear simulation results in Case 2, where the traveling velocity

parameter u ≃ −π/4 is estimated from the simulation results. Here, we used simulation data

taken from +3π 6 x 6 +15π [see Fig. 3.13(a)] for the single vortex street on the right side of

simulation domain, because the vortices on the left side propagate with slightly different speed.

The puncture plots of S 1 versus S 2 in the turbulent (t= 2400) and coherent (t= 7800) states are

shown in Fig. 3.14(a). A nonlinear functional relation between S 1 and S 2 are clearly found in

the coherent state while the dot pattern broadens and looks disturbed in the turbulent state. The

same plots are made for the simulation without the parallel advection term, which corresponds to

a simulation of HM-ηe model [Fig. 3.14(b)]. One can see that the nonlinear functional relation,

which is similar to that in the coherent state shown in Fig. 3.14(a), is apparently sustained for a

long time. The puncture plot for the coherent state in Fig. 3.14(a) clearly shows the qualitative

agreement with that in Fig. 3.14(b) even with a stronger curvature in the functional relation

between S 1 and S 2. Therefore, it is concluded that the coherent vortex streets found in the slab

ETG turbulence for Case 2, which leads to the transport reduction, is described by a traveling

wave solution of the HM-ηe equation.

3.5 Concluding remarks

We have investigated the vortex structure and related transport reduction in the slab ETG tur-

bulence by means of the gyrokinetic Vlasov simulation. The nonlinear simulations with high

phase-space resolution enable us to examine the entropy balance relation, detailed structures of

distribution function in the velocity-space and coherent vortex structures of fluid variables, e.g.,

potential and temperature fluctuations, which have rarely been discussed in earlier studies on

ETG turbulence.

The evaluation of entropy balance relation in the slab ETG turbulence with a moderate linear
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FIG. 3.13: Contours of the gyro-averaged potential with the parallel advection term at (a)t=7800

and without one at (c)t=16000.

growth rate (Case 1) shows that the turbulence reaches to the statistically steady state accom-

panied with weak zonal flow generations. Through the comparison of the slab ETG (with and

without zonal flows) and the slab ITG turbulence simulations, it is found that the zonal flows

driven by the slab ETG turbulence play a crucial role in suppressing the (kx = 0, ky = kmin)-

mode and in realizing the steady transport. Formation of isolated vortices and their mergers with

complicated motion are observed in the slab ETG turbulence while the slab ITG turbulence is

dominated by strong zonal flows which completely suppress the turbulent transport.
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In the slab ETG turbulence with larger growth rates (Case 2), we observed a transition of the

vortex structure from a turbulent state with finer-scale fluctuations to a coherent state dominated

by coherent vortex streets, which are composed of large-scale vortices and strong zonal flows.

At the same time, the turbulent transport reduces to a quite low level which is less than the time-

averaged χe in Case 1. The spectral analysis of |δϕk⊥ |, |δTk⊥ | and |χek⊥ | in the wavenumber space

shows that the transport reduction in the coherent state is mainly associated with a decrease of

phase difference between δϕk⊥ and δTk⊥ , not with the reduction of the amplitudes. The transport

reduction through the phase matching is confirmed more clearly by the velocity-space plots of

−Im[δ fk⊥/δϕk⊥]. The amplitude of −Im[δ fk⊥/δϕk⊥] is quite small in the coherent state while its

profile in the turbulent state is qualitatively similar to the linear eigenfunction which drives large

heat transport. Furthermore, the smallness of −Im[δ fk⊥/δϕk⊥] in the coherent state shows that the

phase matching with δϕk⊥ occurs not only for δTk⊥ , but also for any n-th velocity moments of the

perturbed distribution function, i.e., δM(n)
k⊥
≡
∫

d3∥ 3n∥ δ fk⊥ .

In order to describe the coherent vortex streets, we have derived a fluid model from the

gyrokinetic equation, where the velocity moment of the parallel advection term
∫

d3∥ ik∥3∥δ fk⊥
is ignored. The validity of neglecting the parallel advection term in the derivation has been

confirmed by comparisons of the nonlinear simulations. In addition to a formal similarity to the

original Hasegawa-Mima equation, the HM-ηe model derived in Eq. (3.19) involves the electron

temperature gradient term. By evaluating the functional relation of S 1 and S 2 [see Eq. (3.20)]

from the nonlinear simulation results, it is concluded that the coherent vortex streets found in the

slab ETG turbulence, which are related to the transport reduction, are explained by a traveling

wave solution of HM-ηe equation.
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Chapter 4

Effects of parallel dynamics on transition
of vortex structures

4.1 Introduction

E
lectron temperature gradient (ETG) modes are more recently investigated theoretically

and numerically as a main cause of the anomalous electron heat transport [1–9]. The

ETG turbulence inherently involves various vortex structures, such as turbulent vortices,

zonal flows, and radially elongated streamers, which strongly depend on geometrical and plasma

parameters, due to the weakness of the zonal flow generation. Especially, the nonlinear dynamics

of streamers, which may lead to substantial enhancement of the heat transport in toroidal systems,

has been actively pursued [1, 3, 6, 9]. Nevertheless, the detailed physical mechanism of the

saturation of the toroidal ETG instability growth and the dependence on the magnetic shear

are still open problem, as well as the precise estimation of resultant transport level. From the

aspect of the turbulence-control with regulating the electron heat transport in the future burning

plasmas, of which the electrons are preferentially heated by the collision with high-energy α-

particles, it is worthwhile to understand fundamental physics behind the formation of vortex

structures including zonal flows and its stability as well as the related transport properties.

In Chap. 2, we have investigated vortex structures in the slab ETG turbulence as well as

velocity-space structures of the distribution function by means of the gyrokinetic Vlasov simula-

tions with high phase-space resolution, and have found the formation of coherent vortex streets

accompanied with the significant transport reduction in the nonlinear phase. Detailed analysis of

the distribution function clarified that the transport reduction is associated with the phase match-

ing between the potential and temperature fluctuations rather than the reduction of the fluctuation

amplitude. Furthermore, we have revealed that a traveling wave solution of a Hasegawa-Mima
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type equation derived from the gyrokinetic equation for electrons describes well the coherent

vortex streets found in the turbulence simulation.

In this chapter, a comprehensive parameter study of the slab ETG turbulence is carried out

by means of the nonlinear gyrokinetic Vlasov simulations, with the aim of elucidating underly-

ing physical mechanisms of the transition of vortex structures from turbulent to coherent ones,

which is closely associated with the zonal-flow generation, and the related transport reduction.

Especially, the dependence on the magnitude of the parallel compression, which causes cou-

plings with the higher-order fluid moments, and the electron temperature gradient is intensively

examined. The detailed analyses reveal a critical condition of the transition of vortex struc-

tures associated with the parallel dynamics, and may provide ones an useful insight into the

turbulence-control. Although the present study is limited to the two-dimensional slab system, it

also contributes to deeper understanding of the toroidal ETG turbulence. Actually, in the neigh-

borhood of the minimum-q surface (q denotes the safety factor) of the toroidal system with a

reversed magnetic shear profile, the effect of the parallel compression becomes more important

in a weak magnetic shear region where the magnetic drift frequency decreases. and then the slab

ETG modes may be destabilised as well as the toroidal ones [5–8].

In the latter part of this chapter, we discuss the dependence of zonal flow generation on

the magnitude of the parallel compression based on the modulational instability analysis with

a truncated fluid model, where the parallel dynamics such as acoustic modes is taken into ac-

count. This is an extension of the conventional modulational instability analysis by means of the

Hasegawa-Mima type model [9–13].

The remainder of this chapter is organized as follows. A physical parameters and linear prop-

erties of the present ETG turbulence simulations are described in Sec. 4.2. Nonlinear simulation

results of the slab ETG turbulence are presented in Sec. 4.3. Then, we discuss in detail the tran-

sition of vortex structures, which is closely associated with the zonal flow generation, as well

as the related transport properties. In order to find qualitative understanding of the transition of

vortex structures, the modulational instability analysis is carried out in Sec. 4.4, where the de-

pendence of the zonal flow growth rate on the magnitude of the parallel compression is compared

with the turbulence simulation results. Finally, concluding remarks are given in Sec. 4.5.

4.2 Physical parameters and linear properties

Gyrokinetic model considered here is the same as that used in the previous section. For conve-

nience, governing equations for the slab ETG turbulence simulations are again given here [cf.

Sec. 3.2]. The electrostatic gyrokinetic equation for the perturbed distribution function δ fk⊥(3∥, t)
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written in the wavenumber space is given as(
∂

∂t
+ ik∥3∥

)
δ fk⊥ −

c
B

∑
∆

b · (k′⊥ × k′′⊥
)
δψk′⊥δ fk′′⊥ − C∥(δ fk⊥)

= −i

ω∗e
1 + ηe

me3
2
∥

2Te
− 1

2
− k2

⊥ρ
2
te

2

 − k∥3∥

 FM∥
eδψk⊥

Te
. (4.1)

We introduce a dimensionless parameter Θ associated with the tilt angle of magnetic field lines,

Θ ≡ k∥LT/kyρte = θLT/ρte. The tilt angle parameter Θ reflects the magnitude of the parallel

advection (or the parallel compression) term in proportion to k∥, and turns out to be an important

parameter for the transition of the vortex structures in the slab ETG turbulence as discussed in

Sec. 4.3.

The electrostatic potential fluctuation is determined by the quasineutrality condition with the

adiabatic ion response given as follows,∫
d3∥ δ fek⊥ = −n0Λk⊥

eδψk⊥

Te
, (4.2)

where Λk⊥ ≡exp(k2
⊥ρ

2
te)[1 + τ − Γ0(k2

⊥ρ
2
te)] with τ≡Te/Ti.

Using the closed set of equations described above, the entropy balance equation is derived as

follows,
d
dt

(δS +W) = L−1
T Qe + D , (4.3)

where δS ≡∑
k⊥

∫
d3∥|δ fk⊥ |2/2FM∥, W≡∑

k⊥(n0/2)[1+τ−Γe
0]|eδϕk⊥/Te|2=

∑
k⊥(n0/2)Λk⊥ |eδψk⊥/Te|2,

L−1
T Qe≡ L−1

T
∑

k⊥(c/B) Re[ikyδψk⊥

∫
d3∥(me3

2
∥/Te−1)δ f ∗k⊥/2], and D≡∑

k⊥Re
∫

d3∥C∥(δ fk⊥)δ f ∗k⊥/FM∥

denote the entropy variable, the potential energy, the entropy production due to the turbulent

heat flux driven by the electron temperature gradient (thermodynamic force), and the collisional

dissipation, respectively. It is confirmed that, for all the turbulence simulation results discussed

below, the entropy balance relation is accurately satisfied within an error less than 0.5% of the

mean collisional dissipation level.

The linear growth rate and the real frequency of the ETG modes depends on the collision

frequency νe, the temperature ratio τ, the electron temperature gradient parameter ηe, and the tilt

angle parameter Θ. Using Eqs. (4.1) and (4.2), the dispersion relation of the linear ETG mode is

given by

1 + Λk⊥−
ζ
√

2Θ
−

[
ζ2

√
2Θ
− ζ + 1

√
2Θ

{
1 − ηe

2

(
1+k2

⊥ρ
2
te

)}]
Z(ζ) = 0, (4.4)

where ζ is defined as ζ≡ω/
√

2k∥3te with a complex frequency ω. The plasma dispersion function

is denoted by Z(ζ) ≡ i
√
π exp(−ζ2)(1 + Erf(iζ)) in terms of the error function Erf(z). Since the

collision frequency is set to be sufficiently small here (νeLT/3te = 2.0×10−4), the effect of the
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collisionality is neglected in the above dispersion relation. Also, the temperature ratio τ is fixed

to unity so that the independent physical parameters are ηe and Θ in the present study discussed

in detail below.

Figure 4.1 shows the contour of the maximum growth rate of the linear ETG modes γL(max) on

the two-dimensional (ηe, Θ)-space. Here, the parameter sets used in the turbulence simulations

are also plotted with solid circular symbols. One finds that, in the normalization with LT , the

maximum growth rate γL(max) has weak dependence on ηe, whereas it has stronger dependence

on Θ. From this point of view, we have carried out the parameter scan of the ETG turbulence

for ηe > 6 with focusing on the dependence on Θ. In the present parameter study, 45 nonlinear

gyrokinetic simulations have been carried out in total [12 runs for ηe = 6 and 11 runs for ηe =

{7, 8, 9}].

The ky-spectra of the linear growth rate γL for ηe=6 are shown in Fig. 4.2, where Θ= {0.033,

0.050, 0.133, 0.150, 0.200} are chosen as five representative cases. Here, we set kx = 0 because

the finite kx has a stabilizing effect. From this figure, one can see that the parameter Θ is related

to not only the magnitude of the growth rate, but also the width of unstable region in the ky-space.
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FIG. 4.1: Contour of the maximum linear growth rate γL(max) of linear ETG modes with respect

to ηe and Θ. Circular symbols represent the parameter sets used in turbulence simulations shown

in Sec. 4.3.
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In the nonlinear gyrokinetic simulations, physical quantities are normalized as x= x′/ρte, y=

y′/ρte, 3∥ = 3
′
∥/3te, t = t′3te/LT , νe = ν′eLT/3te, FM∥ = F′M∥3te/n0, δ fk⊥ = δ f ′k⊥LT 3te/ρten0 and

δϕk⊥ = eδϕ′k⊥LT/Teρte, where the prime means a dimensional quantity. The number of Fourier

modes in the two-dimensional wavenumber space and the grids on the 3∥-space are set to be

(Nkx ,Nky ,N3∥)=(129, 257, 2049). The range of the wavenumbers kx, ky and the 3∥-coordinate are

0 6 kx 6 kmax, −kmax 6 ky 6 kmax and −3max 6 3∥ 6 3max with kmax = 12.8 and 3max = 10, respec-

tively. The size of the simulation domain is set to be a square with Lx = Ly = 20πρte, then the

non-zero minimum absolute value of the wavenumber is kmin=0.1. The initial condition for the

distribution function is given by the Maxwellian distribution with a small amplitude of 10−6 and

random phases.

4.3 Nonlinear simulations

4.3.1 Dependence of vortex structures on parallel compression

Results of the parameter study with respect to ηe and Θ on the nonlinear gyrokinetic simulations

are shown and discussed here. The results for Θ={0.033, 0.050, 0.133, 0.150, 0.200} with ηe=6

are selected as representative cases, where the growth rates of linear ETG modes are shown in
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TABLE 4.1: Time averaged heat diffusivity in the early and late nonlinear phases.

Θ χ<e [ρ2
te3te/LT ] χ>e [ρ2

te3te/LT ] types of evolution

0.033 1.99 × 10−1 1.01 × 10−2 transitional

0.050 1.38 × 10−1 3.55 × 10−3 transitional

0.133 6.37 × 10−2 1.23 × 10−2 steady

0.150 6.84 × 10−2 2.47 × 10−2 steady

0.200 1.17 × 10−2 2.29 × 10−3 suppressed

Fig. 4.2. The other cases including the results for ηe = {7, 8, 9} are also summarized in Sec.

4.3.2.

Figures 4.3(a) and 4.3(b) show time evolution of the heat diffusivity χe (= Qe) for the rep-

resentative cases. (Note that χ′e ≡ Q′e/(n0L−1
T ) is reduced to χe = Qe in terms of the normaliza-

tion with LT , where the prime means dimensional quantities.) The initial perturbation linearly

grows due to the ETG instability until the nonlinear saturation takes place. Then, one clearly

finds the different behavior of χe depending on the value of Θ in nonlinear phases. Transition

of the turbulence accompanied with the transport reduction for t & 1000 is observed in the

cases of Θ = {0.033, 0.050} [Fig. 4.3(a)] while the steady transport is sustained in the cases

of Θ = {0.0133, 0.150} [Fig. 4.3(b)]. For the case of Θ = 0.200 [Fig. 4.3(b)], we find that

the turbulent transport is almost completely suppressed in the nonlinear phase. The significant

suppression of the transport for Θ=0.200 is similar to that observed in the ITG turbulence sim-

ulations with L−1
T below the nonlinearly upshifted critical gradient (Dimits-shift) [14, 15]. The

heat diffusivity for the above cases are summarized in Table 4.1, where χ<e and χ>e denote the

time-averaged values taken for an early (immediately after the saturation of linear ETG modes,

e.g., 500 6 t 6 1300 for Θ = 0.033) and a late (e.g., t 6 2500) nonlinear phases, respectively.

Here, the fixed time-interval ∆tave=750 is used for the time-averages.

It is expected that the different behavior of the heat diffusivity discussed above is closely

related to the zonal flow generation. The time evolution of the zonal flow potential energy nor-

malized by the total one W, i.e., Wzf/W, is shown in Fig. 4.4(a) and 4.4(b), where Wzf represents

the zonal flow component of W. It should be emphasized that after the initial saturation of the

zonal flow growth (t & 1000), the subsequent generation of the zonal flow to a higher level is

found in the cases of Θ= {0.033, 0.050} [Fig. 4.4(a)], while the zonal-flow amplitude remains

almost constant for the other cases [Fig. 4.4(b)]. The secondary growth of the zonal flow shows

the clear correlation with the transport reduction found in the late nonlinear phase, as shown in
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FIG. 4.3: Time evolution of the heat diffusivity χe for (a)Θ = {0.033, 0.050} and (b)Θ =

{0.133, 0.150 , 0.200}, where ηe=6.

Fig. 4.3(a). The other cases plotted in Fig. 4.4(b) are also correlated to the steady behavior of

χe shown in Fig. 4.3(b). In addition, in the case of Θ= 0.2000, we see the strong generation of

the zonal flow which is responsible for the significant transport reduction at the saturation of the

instability growth. The secondary growth of the zonal flow depending on Θ will be discussed in

detail in Sec. 4.4 by means of the modulational instability analysis with a truncated fluid model.

The power spectra of potential and temperature fluctuations in the cases of Θ= {0.050, 0.150,

0.200} are shown in Figs. 4.5(a) – (c), respectively, where the quantities are summed over kx-

components and are time-averaged in the early and the late nonlinear phases. Here, the tempera-

ture fluctuation is defined by δTk⊥ ≡
∫

d3∥(32∥−1)δ fk⊥ . The case ofΘ=0.050 [Fig. 4.5(a)] shows the

significant reduction of higher wavenumber components of |δψky | and |δTky | in the late nonlinear
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FIG. 4.4: Time evolution of normalized energy of zonal flows Wzf/W for (a)Θ= {0.033, 0.050}
and (b)Θ= {0.133, 0.150 , 0.200}, where ηe=6.

phase in comparison with those in the early phase. Thus, the transitional behavior is expected to

appear not only for the heat diffusivity, but also for potential and temperature fluctuation profiles

in the real space in similar to Figs. 3.8. On the other hand, no significant change in the spectrum

is observed for the two phases in the case of Θ = 0.150 [Fig. 4.5(b)]. This is consistent with

the steady behavior of the heat diffusivity as shown in Fig. 4.3(b). The case of Θ= 0.200 [Fig.

4.5(c)] also shows similar spectrum, while, the amplitudes of |δTky | and |δψky | are smaller than

those in the case of Θ= 0.150. This implies that the strong zonal flow generation in the case of

Θ=0.200 [see Fig. 4.4(b)] suppress the development of turbulent fluctuations.

Color contours of potential and temperature fluctuations in the real space at t = 3480 are

shown in Figs. 4.6(a) – (e), and Figs. 4.6(f) – (j), respectively. Depending on Θ, three different

types of vortex structures are clearly observed in the late nonlinear phase, i.e., coherent vortex
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FIG. 4.5: Power-spectra of |δψk⊥ | and |δTk| for (a)Θ = 0.050, (b)Θ = 0.150 and (c)Θ = 0.200,

where the quantities are summed over kx. Each line in the figures shows the results with different

time-intervals. The units of |δψky | and |δTky | are Teρte/eLT and Teρte/LT , respectively.
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streets [(a), (b), (f) and (g)], turbulent vortices [(c), (d), (h) and (i)], and zonal-flow-dominated

states [(e) and (j)]. It should be noted here that the coherent vortex streets, which appear in the

cases of smaller value of Θ. 0.1, are formed by the transition from turbulent vortices found in

the early nonlinear phase, while no transition is observed for the other cases. The formation of

the coherent vortex streets is associated with the phase matching of δϕ and δT , where the heat

transport is significantly reduced. On the other hand, for the cases of the turbulent vortices with

Θ= {0.133, 0.150}, the temperature fluctuations involve much finer scale structures than those in

the potential fluctuations. We have verified that the transition of vortex structures, which depends

on Θ, is commonly observed for the other cases with ηe= {7, 8, 9}.
Let us consider a quantity that represents the effect of the parallel compression on the for-

mation of coherent vortex structures. From the Eqs. (4.1) and (4.2), one can derive the fluid

equation for the potential fluctuations δψk⊥ as follows,

∂

∂t
Λk⊥δψk⊥ − iΘkyδuk⊥ − iky

(
1
ηe
− k2

⊥
2

)
δψk⊥ −

∑
∆

b · (k′⊥ × k′′⊥
)
δψk′⊥Λk′′⊥δψk′′⊥ = 0, (4.5)

where the normalized quantities are used. The parallel flow is defined by δuk⊥ ≡
∫

d3∥3∥δ fk⊥ .

Equation (4.5) is reduced to the Hasegawa-Mima like equation (designated as HM-ηe equation

in Sec. 3.4) in the limit of Θ→ 0 and the long-wavelength approximation, where the terms up

to O(k2
⊥) are kept. Here, we define a quantity representing a relative magnitude of the parallel

compression term (the second term) to the diamagnetic drift term (the third term) in Eq. (4.5),

i.e., R ≡ ηeΘ
∑

k⊥Re[δuk⊥δψ
∗
k⊥]/

∑
k⊥ |δψk⊥ |2. From the turbulence simulation results, it is found

that R ≃ 0.33 for Θ = 0.050, R ≃ 0.87 for Θ = 0.150, and R ≃ 1.41 for Θ = 0.200, where the

time-average is taken for 25006 t6 3500. The small value of R for Θ= 0.050 suggests that the

coherent vortex streets are approximately described by a traveling wave solution of the HM-ηe

equation derived from Eq. (4.5) in the limit of Θ→ 0, as discussed in Sec. 3.4.2. In contrast,

for the cases with relatively larger Θ or R, the Hasegawa-Mima model is no longer valid. Thus,

the effect of the finite parallel compression, which causes couplings with the higher-order fluid

moments through electrostatic acoustic modes, becomes more important.

Comparisons of the power spectrum of the distribution function δ fk⊥ in the velocity-space for

the differentΘ give us another physical insight into the different turbulence structures. Following

the works of Watanabe and Sugama [see Ref. 20 and 21], we introduce the Hermite expansion

of the distribution function, i.e., δ fk⊥(3∥)=
∑

n φk⊥,nHn(3∥)FM∥(3∥), where Hn denotes the Hermite

polynomial of the order n. Note that the nth order coefficient of the Hermite expansion φk⊥,n =∫
d3∥Hn(3∥)δ fk⊥/n! represents not only the amplitude of the nth-order fluid moment, but also the

structure of δ fk⊥ in the 3∥-space (n is related to the usual Fourier wavenumber l in the 3∥-space

with n ∼ l2 for n≫ 1), The Hermite expansion applied to the entropy balance equation in Eq.
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(4.3) leads to
∂

∂t
(
δS n + δn,1W

)
= Jn− 1

2
− Jn+ 1

2
+ δn,2Qe + Dn , (4.6)

where the quantities are defined as δS n ≡
∑

k⊥(n!/2)|φk⊥,n|2, Jn− 1
2
≡ ∑

k⊥Θkyn! Im[φk⊥,n−1φ
∗
k⊥,n],

Jn+ 1
2
≡∑

k⊥Θky(n+1)! Im[φk⊥,nφ
∗
k⊥,n+1], and Dn ≡−2νenδS n (the normalized quantities are used).

The symbol δn,m denotes the Kronecker delta. The term Jn−1/2 (Jn+1/2) stands for the entropy

transfer from the (n − 1)th (nth) to the nth [(n + 1)th] components through the phase mixing

process caused by the parallel advection term ik∥3∥δ fk⊥ in Eq. (4.1). By treating the variable n as

a continuous one, the entropy transfer terms are rewritten as Jn−1/2 − Jn+1/2≃−∂Jn/∂n, where Jn

is regarded as the entropy flux in analogy with the energy flux Π(k)≡−
∫ k

0
dk′T (k′) (T (k) is the

energy transfer function) in a theory of the neutral-fluid turbulence [16]. The positive entropy

flux means the normal-cascade process of the entropy variable, namely, the entropy produced by

the turbulent heat flux at the lower-n region is transferred to the higher-n region in accordance

to the generation of the fine-scale fluctuations on the distribution function. In the statistically

steady state, one obtains the following balance relation for n>3,

Jn− 1
2
− Jn+ 1

2
≃ −∂Jn

∂n
= −Dn . (4.7)

It is expected that the inertial subrange, which is affected neither by the entropy production

for n 6 2 nor by the collisional dissipation, can be observed if these scales are well separated.

Watanabe and Sugama had derived the analytical model of δS n for the slab ITG turbulence,

where the zonal flow generation are artificially suppressed, as follows,

δS n =

 Qi

2γn
exp

(
−νin
γ

)
,

Qi

2γM
√

n
exp

−2
3
νin

3
2

γM

 , (4.8)

where the former and the latter equations represent the solutions for the inertial and the dissi-

pation ranges, respectively. Also, γ and γM are factors related to the growth of the averaged

wavenumber ⟨|ky|⟩n≡
∑

k⊥ |ky| |φk⊥,n|2/
∑

k⊥ |φk⊥,n|2 due to the strain produced by E × B flows (The

detail descriptions are given in Ref. 20). The results of the present slab ETG turbulence simula-

tions are compared with these theoretical predictions.

The power spectra of the entropy variable δS n, the entropy flux Jn normalized by −D (≃ Qe)>

0 and the spectrum-averaged wavenumber ⟨|ky|⟩n for the cases of Θ= {0.050, 0.150, 0.200} are

shown in Figs. 4.7(a) – (c), respectively, where the time-average is taken for the late nonlinear

phase. One can see that the n-spectra of δS n and −Jn/D depend on Θ, where the amplitude of

δS n for the case of Θ = 0.150 is much higher than those of the other cases. Indeed, it reflects the

development of the fine scale fluctuations of δT with large amplitude for Θ= 0.150, as seen in

Figs. 4.6. It is also recognized that the formation of the inertial subrange with Jn=−D is not so
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clearly observed in the Fig. 4.7(b), even though the power-law profiles of δS n in proportion to n−α

with α≃1.3 are commonly observed in the region of 5.n.100 for all cases [Fig. 4.7(a)]. This is

because the collision frequency νe=2.0 × 10−4 used here is not sufficiently small to separate the

dissipation region from the entropy production one so that a slight deviation from the power-low

profile of δS n ∝ n−1, which is predicted theoretically, appears even in the turbulence-dominated

case of Θ = 0.150. (Actually, in Ref. 20, the power-law with n−1 has been clearly observed

for the case with νi 6 1.25 × 10−5 in the unit of 3ti/LT .) It is, however, emphasized that the

Θ-dependence of δS n and Jn obviously tells us the importance of the parallel-compression effect

also in the velocity-space spectrum.

It is also noteworthy that the different exponential decay of δS n depending onΘ is observed in

the dissipation range of n&500 even though the collision frequency is fixed in the present study.

This is explained with the n-spectra of ⟨|ky|⟩n as shown in Fig. 4.7(c). While the complicated

behavior, which is owing to the strain produced by the different vortex structures depending on

Θ, appears at the lower-n region, the almost same saturation level of ⟨|ky|⟩n( ≃ γM/Θ) is found

at the higher-n region of n > 500, irrespective of Θ. Thus, by using Eq. (4.8), we obtain the

scaling of the typical value of n for the dissipation range as nd ∝ ν−2/3
e γ2/3

M ∝Θ2/3 (for fixed-νe),
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average is taken for the late nonlinear phase (2500. t.3500). Maximum linear growth rates are

also shown by solid lines with the same colors.
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which is consistent with the results shown in Fig. 4.7(a), where the relation of the dissipation

ranges, nd(Θ=0.050) < nd(Θ=0.150) < nd(Θ=0.200), are observed. These results indicate that

the formation of coherent vortex structures (e.g., vortex streets or strong zonal flows) in the real

space affects the n-spectra for the entropy production region on the lower-n side, but not for the

dissipation region on the higher-n side except for the difference of the value of Θ.

4.3.2 Summary of parameter studies

Let us briefly summarize the vortex structures associated with zonal flows and the related trans-

port properties found in the present parameter study of the slab ETG turbulence. The results

0

0.1

0.2

0.3

0 0.1 0.2 0.3
0

1

2

3

χ e
  [

ρ t
e2
v t

e/
L

T
]

γ L
(m

ax
)  

[v
te

/L
T
]

Θ

[×10−2]
(b) χe

<(ηe=8)
χe

>(ηe=8)
χe

<(ηe=9)
χe

>(ηe=9)

0

0.1

0.2

0

1

2

3

χ e
  [

ρ t
e2
v t

e/
L

T
]

γ L
(m

ax
)  

[v
te

/L
T
]

[×10−2]
(b)

[×10−2]
(a) χe

<(ηe=6)
χe

>(ηe=6)
χe

<(ηe=7)
χe

>(ηe=7)

FIG. 4.9: Time-averaged value of χe as a function of Θ for (a)ηe= {6, 7} and (b)ηe= {8, 9}, where

χ<e and χ>e represent the values averaged over the early and late nonlinear phases, respectively.

Maximum linear growth rates are also shown by solid lines with the same colors.



66 Chapter 4 Effects of parallel dynamics on transition of vortex structures

of the Θ-dependence of time-averaged values of the normalized zonal flow energy Wzf/W are

shown in Fig. 4.8, where all cases of ηe are plotted. For reference, we also plotted the corre-

sponding maximum growth rates of the linear ETG modes γL(max) in the figure. One clearly finds

that the strong zonal flow is generated in the regions of Θ.0.1 and Θ&1.8, corresponding to the

formation of coherent vortex streets and the zonal-flow-dominated structure, respectively. The

zonal flow generation is weaker in the region of 0.1 .Θ . 1.8, where the turbulent vortices are

observed. It is also remarkable that the similar Θ-dependence of Wzf/W is found in all cases of

ηe = {6, 7, 8, 9}. This implies that the transition of the vortex structures in the slab ETG turbu-

lence is mainly controlled by Θ rather than ηe if the value of ηe is large enough. Actually, in all

cases of ηe, the completely different vortex structures have been realized depending on Θ, even

for the cases with the same maximum growth rate γL(max). It is confirmed by the fact that, for

ηe=6, the cases of Θ= {0.033, 0.133} with the same γL(max) show quite different levels of Wzf/W.

In order to discuss the relation between the transition of vortex structures and the transport

reduction, we plotted in Figs. 4.9(a) and 4.9(b) the Θ-dependence of χe averaged over the early

and late nonlinear phases for ηe = {6, 7} and ηe = {8, 9}, respectively. One finds that the distinct

difference between χ<e and χ>e indicating the transport reduction is commonly found in the region

of Θ . 0.1 for all values of ηe. Also, we see the qualitatively similar dependence of χe on Θ

such that the reduction of χe becomes smaller for the larger Θ. It is remarkable that, for small Θ,

the transport reduction associated with the formation of coherent vortex streets is realized in the

nonlinear phase, even if the maximum growth rate of linear ETG modes is relatively large.

4.4 Modulational instability analysis for zonal flow generation

4.4.1 Truncated fluid model

In the previous section, it is found that the formation of coherent vortex structures is closely

related to the secondary growth of zonal flows in the nonlinear phase as shown in Figs. 4.4.

Here, we discuss the dependence of zonal flow generation on Θ (= k∥LT/kyρte) based on the

modulational instability analysis with a truncated fluid model, where the parallel dynamics such

as acoustic modes due to the parallel compression is taken into account. These analyses give us

qualitative understanding for mechanisms of the secondary growth of zonal flows found in the

ETG turbulence simulations.

Here, we consider truncated fluid equations for the modulational instability analysis. In the

derivation of the fluid model below, we employ the description with dimensional quantities again.

By taking the fluid moments of the gyrokinetic equation [see Eq. (4.1)] up to the second order,
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one obtains the following equations,

∂

∂t
δnk⊥ + ik∥n0δuk⊥ + iω∗en0

(
1 − ηe

2
k2
⊥ρ

2
te

) eδψk⊥

Te

− c
B

∑
∆

b · (k′⊥ × k′′⊥
)
δψk′⊥δnk′′⊥ = 0 , (4.9)

n0me
∂

∂t
δuk⊥ + ik∥

(
Teδnk⊥+ n0δTk⊥− n0eδψk⊥

)
− n0mec

B

∑
∆

b · (k′⊥ × k′′⊥
)
δψk′⊥δuk′′⊥ = 0 , (4.10)

n0
∂

∂t
δTk⊥ + ik∥

(
2n0Teδuk⊥+ δqk⊥

)
+ iω∗eηen0eδψk⊥

− n0c
B

∑
∆

b · (k′⊥ × k′′⊥
)
δψk′⊥δTk′′⊥ = 0 , (4.11)

where the fluid quantities are defined by δnk⊥ ≡
∫

d3∥δ fk⊥ , n0δuk⊥ ≡
∫

d3∥3∥δ fk⊥ , n0δTk⊥ ≡
∫

d3∥(me3
2
∥−

Te)δ fk⊥ and δqk⊥ ≡
∫

d3∥(me3
3
∥ −3Te3∥)δ fk⊥ , which denote the fluctuations of the density, the paral-

lel flow, the temperature and the parallel heat flux, respectively. Here, the collisional dissipation

is neglected because of νeLT/3te≪1.

In order to derive a reduced model describing the evolution of zonal flows, we postulate here

that (i) the fluid equations are truncated by ignoring the parallel heat flux δqk⊥ in Eq. (4.11), and

that (ii) the third term iω∗eηen0eδψk⊥ , which drives the linear ETG instability, is also neglected

in Eq. (4.11). The first assumption (i) is necessary for the truncation of the couplings of fluid

equations. The second one (ii) is useful for the analysis of modulational instabilities driven by

the “stable” pump wave, because we focus on the secondary growth of zonal flows after the

initial saturation, where the ETG mode no longer grows linearly. Furthermore, (iii) we neglect

the nonlinear terms in Eqs. (4.10) and (4.11) for simplicity, because they cause higher-order

interactions which are not of interest here. Under these assumptions, the reduced fluid equations

used here are derived by means of the quasineutrality condition Eq. (4.2),(
∂

∂t
− iLk⊥

)
ψk⊥− ik∥3teΛ−1

k⊥uk⊥−
∑
∆

Γ
k′⊥,k′′⊥
k⊥

ψk′⊥ψk′′⊥ = 0 , (4.12)

∂

∂t
uk⊥+ ik∥3te

[
Tk⊥−

(
1+Λk⊥

)
ψk⊥

]
= 0 , (4.13)

∂

∂t
Tk⊥+ 2ik∥3teuk⊥ = 0 , (4.14)

where

Lk⊥ ≡ ω∗e

(
1 − ηe

2
k2
⊥ρ

2
te

)
Λ−1

k⊥ , (4.15)

Γ
k′⊥,k′′⊥
k⊥

≡ 1
2

cTe

eB
b · (k′⊥ × k′′⊥

) (
Λk′′⊥ − Λk′⊥

)
Λ−1

k⊥ . (4.16)
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Here, abbreviations for ψk⊥ ≡ eδψk⊥/Te, uk⊥ ≡ δuk⊥/3te and Tk⊥ ≡ δTk⊥/Te are used. The symbol∑′
∆ means the summation over the Fourier modes which consist of the triad-interaction, i.e.,

k⊥ = k′⊥ + k′′⊥. The above reduced fluid equations involve the effect of acoustic modes due to

the parallel compression which has rarely been incorporated into the conventional modulational

instability analysis for the zonal flow generation [9–13].

4.4.2 Dispersion relation of zonal flows

In order to derive the dispersion equation for zonal flows driven by the modulational instabil-

ity, we consider the low-dimensional model (sometimes called the four-wave model) based on

Eqs. (4.12) – (4.16). The field quantities ξ = {ψ, u, T } are then assumed to be composed of a

monochromatic pump mode, a zonal mode and two sideband modes, such that,

ξ(x, t) = ξkpexp(ikp ·x−iωkpt) + ξkzf exp(ikzf ·x−iΩkzf t)

+ ξk+exp(ik+·x−iωk+ t) + ξk−exp(ik−·x−iωk− t)

+ (complex conjugate) , (4.17)

where the complex frequency and the wavenumber vector of these four modes satisfy the fre-

quency matching and the triad-interaction conditions, respectively, as follows,

ωk± = ωkp ±Ωkzf , k± = kp ± kzf . (4.18)

Also, k∥ p = k±∥ ( ≡ k∥) and ξk = ξ
∗
−k. The reduction to four resonant modes from Eqs. (4.12) –

(4.16) leads to a nonlinear dynamical system of four ordinary differential equations. Here, we

suppose that the complex amplitude of the zonal and the sideband modes are much smaller than

that of the pump mode, i.e.,

|ξkzf | ∼ |ξk± | ∼ ϵ |ξkp | , (4.19)

where ϵ≪ 1. This subsidiary ordering enables us to linearize the nonlinear system so that one

obtains the dispersion relation which determines the linear growth rate of zonal flows.

For the pump mode, one obtains the following equations,

i
(
ωkp+Lkp

)
ψkp+ ik∥3teΛ−1

kp
ukp+ Γ

k−,kzf
kp

ψk−ψkzf+ Γ
k+,−kzf
kp

ψk+ψ
∗
kzf
= 0 , (4.20)

iωkpukp− ik∥3te
[
Tkp−

(
1+Λkp

)
ψkp

]
= 0 , (4.21)

iωkpTkp− 2ik∥3teukp = 0 . (4.22)

Considering the ordering of Eq. (4.19), one can neglect the last two terms on the left hand side of

Eq. (4.20), which are of order ϵ2|ψkp |2, so that Eqs. (4.20) – (4.22) are reduced to the dispersion
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FIG. 4.10: Real frequency of the pump mode ωkp for Θ= {0, 0.050, 0.083, 0.150, 0.167}, where

ηe=6 and kxp=0.1.

equation for the pump mode as follows,

1 +
Lkp

ωkp

−
(1+Λkp

Λkp

) (
k∥3te
ωkp

)21 − 2
(
k∥3te
ωkp

)2−1

= 0 . (4.23)

This can be rewritten as a cubic equation of ωkp , then the root determines the frequency of the

pump mode for given kp and k∥. By evaluating the sign of the discriminant of Eq. (4.23), it is

easily shown that any root must be real-valued. Thus, there is neither instability nor damping.

The dispersion relation of ωkp for Θ= {0, 0.050, 0.083, 0.150, 0.167} are shown in Fig. 4.10,

where ηe = 6 and kxp = 0.1. For the case of Θ , 0, we plotted two of the three branches (the

branches with positive- and negative-ωkp), which approach the solution of HM-ηe equation in the

limit of Θ→ 0 (k∥ → 0). Another branch, which is not plotted here, approaches to the trivial

solution of ωkp = 0. As expected, we see that the deviation of the frequency from that for Θ= 0

becomes larger as Θ increases.

From Eqs. (4.12) – (4.19), one obtains the equations for zonal and sideband modes as follows,

iΩkzfψkzf+ Γ
k+,−kp

kzf
ψk+ψ

∗
kp
+ Γ

−k−,kp

kzf
ψ∗k−ψkp = 0 , (4.24)

iP±ψk±+ Γ
kp,±kzf

k± ψkpψ±kzf = 0 , (4.25)

where

P± ≡ ωk±
[
1 +Kk±

(
ωk± , k∥

)]
+Lk± . (4.26)
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Here, the effect of the coupling among ψk± , uk± and Tk± for sideband modes due to the parallel

compression appears in Kk±(ωk± , k∥) defined as,

Kk±
(
ωk± , k∥

) ≡ − (
1+Λk±

Λk±

) (
k∥3te
ωk±

)21 − 2
(
k∥3te
ωk±

)2−1

. (4.27)

These terms, which are ignored in the conventional analysis with the Hasegawa-Mima equation,

play a crucial role in considering the effect of the finite parallel compression on the zonal flow

generation. Indeed, one can obtain the conventional dispersion relation in the limit of k∥ → 0

which annihilates Kk± in Eq. (4.26), as well as in the long-wavelength limit (k⊥ρte≪1). Finally,

combining Eqs. (4.23) – (4.27), one obtains the dispersion relation of zonal flows as follows,

Ωkzf +

 Γ
k+,−kp

kzf
Γ

kzf ,kp

k+

P+
−
Γ

k−,−kp

kzf
Γ
−kzf ,kp

k−

P−

 |ψkp |2 = 0 . (4.28)

The linear growth rate of zonal flows γzf is then given by the positive imaginary part of a complex

solution Ωkzf of the above equation. Straightforward but somewhat tedious algebraic calculation

shows that the left hand side of Eq. (4.28) is rearranged into a seventh-order polynomial of Ωkzf

with real-valued coefficients, which has to be solved numerically. In the numerical calculations,

we have found only two cases: namely, solutions with a pair of complex conjugate and five

real-valued roots, or with seven real-valued roots.

Figure 4.11 shows the spectrum of the zonal flow growth rate γzf for Θ= {0, 0.050, 0.083,

0.150, 0.167}, where the wavenumber and the amplitude of the pump mode are chosen as kxp =

0.1, kyp = 0.35 and (LT/ρte)2|ψkp|2 = 2, respectively. Here, the branch of the negative-ωkp [see

Fig. 4.10] are chosen, because, for kyp = 0.35, it converges to the non-trivial dispersion relation

(ωkp ,0) in the limit of Θ→0. One clearly finds that growth rate of the modulational instability

for zonal flows is decreased by increasing Θ, and no unstable solution exists for Θ&0.167.

In order to discuss Θ-dependence of the critical pump-amplitude for the instability onset,

we plotted in Fig. 4.12 the maximum growth rate of the zonal flow γzf(max) as a function of the

squared amplitude of the pump mode (LT/ρte)2|ψkp |2. From this figure, we find that the critical

amplitude for the instability becomes larger as Θ increases. In the region where the pump-

amplitude is sufficiently large (e.g., (LT/ρte)2|ψkp |2&3), the instabilities are observed for all cases

of Θ. However, in the region of (LT/ρte)2|ψkp |2.2, one can see the existence of a critical value of

Θ, beyond which the instability no longer occurs. In the present ETG turbulence simulations, we

find (LT/ρte)2|ψkp |2 ∼ 1. Hence, the critical Θ is estimated as Θ∼ 0.1, which qualitatively agrees

with that for the secondary growth of zonal flows found in the cases of small Θ [see Figs. 4.4(a)

and 4.4(b)].
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FIG. 4.11: Growth rate of zonal flows γzf for Θ= {0, 0.050, 0.083, 0.150, 0.167}, where kxp =

0.1, kyp=0.35 and (LT/ρte)2|ψkp|2=2.

We also plot in Figs. 4.13 the maximum growth rate γzf(max) and the real frequencyωzf for ηe=

{6, 7, 8, 9} as a function of Θ, where ωzf is evaluated at the wavenumber giving the maximum

growth rate. One finds that the maximum growth rate γzf(max) shows the similar dependence

on Θ for all values of ηe considered, except that the profiles are shifted downward. The stable

region of Θ with γzf(max) = 0 then becomes wider for larger ηe. Also, we see that the value of

ωzf is larger than that of γzf(max) in the region of Θ&0.1, which means the oscillatory zonal flow.

Since the steady zonal flow suppresses the turbulent transport more effectively compared to the

oscillatory one, these results suggest that the relatively steady zonal flow with larger growth rate

can be driven for smaller ηe if the pump amplitude is fixed. However, the pump amplitude is, in

practice, associated with the turbulence intensity which should depend on ηe. Nevertheless, it is

important that the critical value of Θ, which define the instability onset, commonly appears for

all cases of ηe, and then these results well explain the turbulence simulation results.

Here, we have derived the dispersion relation of zonal flows based on the modulational in-

stability analysis, where the coupling of fluid moments (density, parallel flow, and temperature)

through the parallel compression term is incorporated. The results then show the stabilizing

effect due to the parallel compression which is proportional to Θ.

The present theoretical analysis with a “stable” pump mode provides us with the qualitative
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explanations of the turbulence simulation results for 0.Θ. 0.15. However, the analysis is lim-

ited to the case where the non-zonal fluctuations are dominant in the saturated ETG turbulence,

because the subsidiary ordering Eq. (4.19) for the modulational instability analysis assumes the

quite low amplitude of the zonal mode in comparison with the pump amplitude. It is, thus, not

directly applicable to the case with the generation of the strong zonal flow accompanied with the

transport suppression observed in the turbulence simulation for Θ> 0.200 [see Figs. 4.4(b) and

4.7], where the strong zonal flow is predominantly generated by the nonlinear coupling of linear

ETG modes in the initial saturation phase of the instability growth [e.g., t≃1200 for Θ=0.200 in

Fig. 4.4(b)]. In order to reveal the detailed mechanisms of the initial generation of strong zonal

flows with the effect of parallel compression, one needs more refinement of the present model to

incorporate the unstable evolution of the pump mode precisely which remains as a future work.

The coupling among the fluid moments of {ψ, u, T } considered here suggests the importance

of the parallel dynamics on the stability of zonal flows. It has also been verified that the similar

stabilization of zonal flows due to the parallel compression is observed in a model with only a

coupling of {ψ, u}. Anderson et al. had previously derived the dispersion relation of zonal flows

for ITG turbulence by the similar approach with the fluid equations [17], then they showed fifth-

order polynomial ofΩkzf which differs from our dispersion equation of seventh-order polynomial
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as shown in Eq. (4.28). Consequently, the different dependence of γzf on k∥ (or Θ) appears, e.g.,

the stabilization of zonal flows found in the present analysis for larger k∥ is not observed in Ref.

17. This is because the coupling with the parallel flow, which corresponds to the second term

of Eq. (4.14), had been ignored from the temperature equation shown in Ref. 17. Neglecting

this term reduces the order of polynomial for the dispersion relation, but leads to an incomplete

description of acoustic modes at the same time. The similar modulational instability analysis for

zonal-flows/fields involving the parallel dynamics of shear-Alfvén waves had also been examined

by Guzdar et al., and by Chen et al. for the drift-Alfvén turbulence [18, 19].
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4.5 Concluding remarks

We have investigated the transition of vortex structures including zonal flows and the related

transport properties in the slab ETG turbulence through the comprehensive parameter studies by

means of the nonlinear gyrokinetic Vlasov simulations. Then, the dependence on the magnitude

of the parallel compression, which is characterized by the parameter Θ ≡ k∥LT/kyρte = θLT/ρte,

and the electron temperature gradient has been intensively examined.

Numerical results show three different types of the time evolution of the heat diffusivity de-

pending on Θ, i.e., transitional evolution accompanied with transport reduction, steady turbulent

behavior, and significant suppression of transport. Then, the zonal flow evolutions with or with-

out secondary growth in the nonlinear phase are well correlated to the evolution of the heat

diffusivity. Correspondingly, the detailed analyses of the spectral and the spatial structures of

the potential and temperature fluctuations reveal the different types of vortex structures such as

coherent vortex streets, turbulent vortices, and zonal-flow dominated state. The vortex structures

depend on the value of Θ through the parallel compression.

Power spectra of the entropy variable δS n and the entropy flux Jn in the 3∥-space for the

different Θ have been examined by means of the Hermite polynomial expansion. The spectral

structures strongly depend on Θ, then it is observed that the amplitude for the case with steady

turbulent vortices much exceeds those of the other cases. While the power-law profiles of δS n

show a slight deviation from the theoretical prediction, the similar profiles, which are propor-

tional to n−α with α≃1.3, are commonly observed in the region of 5.n.100. Spectral analysis

of ⟨|ky|⟩n indicates that the different vortex structures in the real space affects the n-spectra for the

entropy production region in the lower-n side, but not for the dissipation region in the higher-n

side, except for the difference of the value of Θ.

By examining the dependence of the heat diffusivity and the intensity of zonal flows on Θ,

we found clear correlation between the formation of coherent vortex streets associated with the

strong generation of the zonal flow and transport reduction for the cases with small values of

Θ . 0.1. These results indicate weak dependence on the value of ηe, which implies that the

transition of vortex structures in the slab ETG turbulence is mainly controlled by Θ rather than

ηe if ηe is large enough. The transport reduction associated with the formation of coherent vortex

streets is realized for small Θ even if the maximum growth rate of linear ETG modes is relatively

large.

We have discussed the dependence of zonal flow generation on Θ based on the modulational

instability analysis with a truncated fluid model, where the parallel dynamics associated with

acoustic modes is taken into account. The dispersion relation of zonal flows derived here shows
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that the linear growth rate of the modulational instability is reduced as Θ increases, and that

there is a critical value of Θ, beyond which the instability does not occur. The modulational

instability analysis shows a qualitative agreement with the turbulence simulation results, where

the secondary growth of zonal flows, the transition of vortex structures, and the related transport

reduction are found in the cases of small Θ.

In the present study, the quasi two-dimensional shear-less slab configuration has been em-

ployed, where Θ and ηe are the main control parameters. Although the various values of Θ

should be treated simultaneously in cylindrical or toroidal plasmas, the two-dimensional slab

configuration with constant Θ used here is still meaningful as a reduced model for them. In these

practical systems, k∥/ky depends on the aspect ratio Lz/a (= “the length of plasma column”/ “the

plasma radius” ) for cylindrical plasmas, or depends on the radial position through the magnetic

shear for toroidal ones. Particularly, in the toroidal plasmas, it has been pointed out that the com-

pression due to the geodesic curvature and the toroidal mode coupling become more important

for the saturation of the toroidal ETG instability with strong magnetic shear, where the toroidal

modes overlap each other significantly [4,5]. However, in the case with weak magnetic shear, the

unstable-mode rational surfaces become more distant from each other so that the toroidal mode

coupling weakens. The present study on the slab ETG turbulence may contribute to fundamen-

tal understandings of the effects of the parallel compression on the long-timescale evolution of

zonal flows and the related transport reduction on the neighborhood of the minimum-q surface

(q denotes the safety factor) in the reversed-shear tokamaks.

In Ref. 4 and 5, it has also been pointed out that the three-wave resonant interaction is crucial

for the saturation of the toroidal ETG instability, rather than the zonal flow generation due to the

modulational instability. Here, we have not quantitatively examined which of the three-wave

interaction and the zonal flow generation driven by the modulational instability is dominant in

the initial saturation of the slab ETG instability. Nevertheless, it is expected that the initial satu-

ration is attributed to not only the three-wave interaction, but also to the zonal-flow generation,

because the zonal flow generation in the slab ETG turbulence is stronger than that in the toroidal

ETG case where the zonal flow is weakened by the neoclassical polarization effect. It should

be emphasized here that the present study reveals the importance of the long-timescale evolu-

tion of zonal flows, which is closely related to the transition of vortex structures and transport

level in the nonlinear phase long after the initial saturation of the slab ETG instability. Then, the

long-timescale evolution of zonal flows generated by the modulational instability may also be

important in the nonlinear phase of the toroidal ETG turbulence.
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Chapter 5

Nonlinear entropy transfer via zonal flows
in toroidal plasma turbulence

5.1 Introduction

O
ne of the most important findings obtained from the gyrokinetic theory and the nu-

merical simulations for drift-wave turbulence, especially the ITG driven turbulence,

is effective regulation of the turbulent transport by self-generated zonal flows [1–3].

Zonal flows are nonlinearly generated through the Reynolds stress resulting from turbulent flows

in the drift-wave turbulence, where the radial scale-length of the zonal-flow shear is associated

with a typical wavenumber range of the turbulence. Existence of ion-scale zonal flows has been

experimentally revealed by a direct measurement of electrostatic potential in laboratory experi-

ments [4]. Tremendous efforts have been devoted so far to the study of the zonal-flow dynamics,

with the aim of elucidating the physical mechanisms of the zonal-flow generation, the nonlinear

saturation of the linear instability growth, and the transport suppression through the nonlinear

interactions between the zonal flow and the drift-wave turbulence. A comprehensive review of

earlier works on the physics of the zonal-flow generation is given in Ref. 5. In contrast with

the primary drift-wave instability, the zonal-flow generation is considered as resulting from a

“secondary” instability, e.g., the nonlinear parametric [6,7] or the Kelvin-Helmholtz [8,9] insta-

bilities. For the saturation of the zonal-flow growth in the drift-wave turbulence, several mech-

anisms have been discussed. The generalized Kelvin-Helmholtz instability, which is considered

as a “tertiary” instability, is one of the candidates for the saturation mechanism of the zonal flow

generation in ITG turbulence [8, 9].

In the ETG turbulence, potential fluctuations with scale lengths of electron thermal gyroradii

are shielded by the adiabatic responses of ions resulting from the perpendicular gyromotion with
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larger thermal gyroradii. Thus, the zonal-flow generation in the ETG turbulence is relatively

weaker than that in the ITG turbulence so that the ETG turbulence involves not only zonal flows,

but also various vortex structures, of which the appearance strongly depends on geometrical and

plasma parameters [10–14]. Particularly, the ETG turbulence simulation for a tokamak with

a reversed magnetic-shear profile has revealed that the electron heat transport is significantly

reduced by the strong zonal-flow generation in the negative magnetic-shear region near the q-

minimum surface (q denotes the safety factor) [11, 12].

Dynamics of turbulent vortices and zonal flows, and the related transport processes in high

temperature collisionless (or weakly collisional) magnetized plasmas involves a lot of kinetic

processes, i.e., the Landau damping, the finite gyroradius effect, the particle drift, and the mag-

netic trapping. In the kinetic turbulent transport processes, the microscopic fluctuations of the

distribution function, the turbulent transport flux, and the collisional dissipation are closely re-

lated to each other through the entropy balance equation [15–19]. Particularly, the nonlinear en-

tropy transfer between non-zonal and zonal modes is described by the entropy transfer function,

which is regarded as a kinetic extension of zonal-flow energy production due to the Reynolds

stress. The entropy balance relations for zonal and non-zonal modes provide ones with a system-

atic method to quantify the nonlinear interaction between drift-wave turbulence and zonal flows

in turbulent transport processes based on the kinetic theory. Some earlier works have discussed

the nonlinear energy (not entropy) transfer between zonal flows and the drift-wave turbulence

based on the theoretical analysis with a fluid model [20, 21] and on the bi-spectrum analysis for

the density (or potential) fluctuation data obtained from experiments [22–24].

In order to evaluate quantitatively the transport level resulted from the interactions between

the zonal flow and drift-wave turbulence, the nonlinear gyrokinetic simulations are indispensable.

Waltz et al. have extensively examined mechanisms of the transport suppression by zonal flows

(including the geodesic acoustic modes) in terms of the nonlinear gyrokinetic simulations of

the ITG-TEM turbulence and the ETG turbulence with adiabatic ions [25]. They have also

discussed the spectral structures of the entropy transfer function in the steady state of the ITG-

TEM turbulence. In addition, several works on the entropy transfer (or cascade) processes based

on the gyrokinetic entropy balance have been reported recently [26–28]. However, the role of

zonal flows in the nonlinear entropy transfer processes in the steady turbulence state, which is

crucial for determining the resultant transport level, has not been fully clarified. Moreover, it

has not been revealed whether the entropy transfer processes among turbulent vortices and zonal

flows are different between the saturation phase of the instability growth and the steady phase of

turbulence.

In this chapter, the nonlinear entropy transfer processes among non-zonal and zonal modes
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in toroidal ITG and ETG turbulence are investigated by means of five-dimensional nonlinear

gyrokinetic Vlasov simulations. The detailed spectral analysis of the entropy transfer function

reveals the role of zonal flows in the nonlinear entropy transfer process, which leads to the

saturation of instability growth and transport suppression in the steady state.

The remainder of this chapter is organized as follows. A theoretical model used in the present

study is described in Sec. 5.2. Nonlinear gyrokinetic simulation results of the toroidal ITG and

ETG turbulence are presented in Sec. 5.3. Then, in addition to the entropy balance relations

for non-zonal and zonal modes, wavenumber spectra of turbulent fluctuations and the heat flux

are compared. In Sec. 5.4, differences between entropy transfer processes in the ITG and ETG

turbulence are discussed through the comparisons of the wavenumber spectra of the triad entropy

transfer function. Also, comparisons of the entropy transfer processes between slab and toroidal

systems are presented. Finally, concluding remarks are given in Sec. 5.5.

5.2 Theoretical model and linear stability analysis

Numerical simulations of the toroidal ITG and ETG turbulence presented here are carried out

by using the GKV code [3] based on the electrostatic gyrokinetic model. The electrostatic gy-

rokinetic equation for the perturbed distribution function δ f (g)
sk⊥

written in the k⊥-space is given

by

[
∂

∂t
+ 3∥b· ∇ + iωDs −

µ

ms
b· ∇B

∂

∂3∥

]
δ f (g)

sk⊥
− c

B

∑
∆

b · (k′⊥ × k′′⊥
)
δψk′⊥δ f (g)

sk′′⊥

= FMs
(
iω∗T s − iωDs − 3∥b · ∇

) esδψk⊥

Ts
− C(g)

s

[
δ f (g)

sk⊥

]
, (5.1)

where ωDs ≡ (c/esB)k⊥ · b × (µ∇B + ms3
2
∥ b ·∇b) and ω∗T s ≡ (cTs/esB){1+ηs[(ms3

2
∥ +2µB)/2Ts −

3/2]}k⊥ · b × ∇ ln ns with ηs = |∇ln Ts|/|∇ln ns| [the subscript “s” denotes the particle species for

ions (s= i) or electrons (s=e)]. Here, b, B, c, ms, ns, es, Ts and δψk⊥ are the unit vector parallel to

the magnetic field, the magnetic field strength, the speed of right, the particle mass, the particle

number density, the electric charge, the equilibrium temperature and the electrostatic potential

fluctuation averaged over the gyrophase, respectively. The symbol
∑
∆ appearing in the nonlinear

term of Eq. (5.1) stands for the summation over Fourier modes which satisfy the triad-interaction

condition, i.e., k⊥= k′⊥ + k′′⊥. The parallel velocity 3∥ and the magnetic moment µ are used as the

velocity-space coordinates, where µ is defined by µ≡ms3
2
⊥/2B with the perpendicular velocity 3⊥.

The equilibrium part of the distribution function is given by the local Maxwellian distribution,

i.e., FMs = ns(ms/2πTs)3/2 exp[−(ms3
2
∥ + 2µB)/2Ts]. A weak collisional effect is introduced in
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terms of a model collision operator given by

C(g)
s = νs

[
1
3⊥

∂

∂3⊥

(
3⊥

∂

∂3⊥
+
32⊥
32ts

)
+

∂

∂3∥

(
∂

∂3∥
+
3∥

32ts

)]
, (5.2)

where νs and 3ts ≡ (Ts/ms)1/2 are the collision frequency and the thermal speed, respectively.

The collision operator acting on δ f (g)
sk⊥

smooths out the fine-scale fluctuations in the velocity-

space. Although the above collision operator does not conserve the momentum and the energy,

its influence on the main results shown below, such as the transport level and the entropy transfer

processes, are not crucial as long as νsLn0/3ts≪1.

A local toroidal flux-tube system in a large-aspect-ratio tokamak with the concentric circular

flux surfaces is considered here [29]. The magnetic field is given by B = B[eζ + (r/R0)eθ] with

neglecting O[(r/R0)2] terms, where r, R0, q, eζ and eθ denote the minor and the major radii,

the safety factor, the unit vectors in the toroidal(ζ) and poloidal(θ) directions, respectively. The

field-aligned coordinates (x, y, z) are, then, introduced by x = r − r0, y = (r0/q0)[qθ − ζ], z = θ

with q= q0[1 + ŝ(r − r0)/r0], where r0 and ŝ represent the radial position of the flux-tube center

and the magnetic shear parameter assumed to be constant, respectively. Use of the field-aligned

coordinates enables us to impose the periodic boundary condition in the x- and y-directions

so that the nonlinear E×B convection term [the last term in the left-hand side of Eq. (5.1)]

is calculated numerically by means of the Fourier spectral method, where the perpendicular

wavenumber vector k⊥ and the squared norm k2
⊥ are written as k⊥ = kx∇x + ky∇y and k2

⊥ =

(kx + ŝzky)2 + k2
y , respectively. (Note here that b · ∇x=0 and b · ∇y=0, but ∇x · ∇y,0.) In this

coordinate system, the magnetic field strength B is reduced to B=B0(1 − ϵ cos z) with ϵ≡ r0/R0,

and then the operators b· ∇, ωDs and ω∗T s in Eq. (5.1) are written as

b· ∇ = 1
q0R0

∂

∂z
, (5.3)

ωDs = −σs

32∥+µB

3tsR0

[
kxρts sin z + kyρts (cos z + ŝz sin z)

]
, (5.4)

ω∗T s = −σs
3ts

Lns

1 + ηs

ms3
2
∥ + 2µB

2Ts
− 3

2

 kyρts , (5.5)

in the low-β limit, respectively, whereσs= {1 (for s= i), −1 (for s=e)} and the thermal gyroradius

is denoted by ρts= (3ts/Ωs)|B=B0 with the gyrofrequency Ωs=msc/|es|B. The gradient scale-length

of the density profile is represented by Lns ≡|∇ln ns|−1.

The potential fluctuation evaluated at the particle position, δϕk⊥ , is related to the gyrophase-

averaged one, i.e., δψk⊥ = J0sδϕk⊥ , and is determined by the Poisson equation written in the
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wavenumber-space as follows,

k2
⊥λ

2
Den0

eδϕk⊥

Te
=

[∫
d3J0iδ f (g)

ik⊥
− n0

eδϕk⊥

Ti
(1 − Γ0i)

]
−

[∫
d3J0eδ f (g)

ek⊥
+ n0

eδϕk⊥

Te
(1 − Γ0e)

]
, (5.6)

where |ei| = |ee| = e and ni = ne = n0 are assumed. The electron Debye-length is denoted by

λDe≡ (Te/4πn0e2)1/2. The first and the second groups of terms on the right hand side of Eq. (5.6)

indicate the ion and electron density fluctuations represented with the gyrocenter distribution

function and the electrostatic potential, respectively. Here, J0s and Γ0s are defined by J0s ≡
J0(k⊥3⊥/Ωs) and Γ0s≡ I0(bs) exp(−bs) with the zeroth-order Bessel and modified Bessel functions

for bs ≡ k2
⊥3

2
ts/Ω

2
s , respectively. For the ITG turbulence with k⊥ρte ≪ 1, the adiabatic electron

response is assumed (except for zonal modes) so that Eq. (5.6) is reduced to∫
d3J0iδ f (g)

ik⊥
= n0Λik⊥

eδϕk⊥

Ti
− n0

⟨
eδϕk⊥

Te

⟩
δky,0 ( for ITG ), (5.7)

where Λik⊥ ≡1+ Ti/Te − Γ0i and δm,n is the Kronecker delta. The angular brackets ⟨· · · ⟩ stand for

the field line average, i.e., ⟨Ak⊥⟩ ≡
∫

dzAk⊥B−1/
∫

dzB−1. Thus, ⟨Ak⊥⟩δky, 0 is equivalent to the flux

surface average of A. For the ETG turbulence with k⊥ρti≫ 1, the ion response to the potential

fluctuation is reduced to the adiabatic one because of J0i ≪ 1 and Γ0i ≪ 1. Then, Eq. (5.6) is

rewritten as ∫
d3J0eδ f (g)

ek⊥
= −n0Λek⊥

eδϕk⊥

Te
( for ETG ). (5.8)

Here, Λek⊥ ≡1 + Te/Ti − Γ0e, and the finite Debye length effect k2
⊥λ

2
De is ignored.

Using the closed set of equations described above, one obtains a balance equation with re-

spect to the entropy variable δSsk⊥ defined as a functional of the perturbed gyrocenter distribution

function δ f (g)
sk⊥

. The velocity space integral and the field line average of Eq. (5.1) multiplied by

δ f (g)∗
sk⊥

/FMs lead to
∂

∂t
(
δSsk⊥+Wsk⊥

)
= L−1

Ts
Qsk⊥+ Tsk⊥+ Dsk⊥ , (5.9)

where

δSsk⊥ ≡
⟨∫

d3
|δ f (g)

sk⊥
|2

2FMs

⟩
, (5.10)

Qsk⊥ ≡ Re
⟨
i3ts

∫
d3 δ f (g)

sk⊥

ms3
2
∥ + 2µB

2Ts

 kyρts

eδψ∗k⊥
Ts

⟩
, (5.11)

Dsk⊥ ≡ Re
⟨∫

d3C(g)
s

[
δ f (g)

sk⊥

] h∗sk⊥
FMs

⟩
, (5.12)
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denote the entropy variable, the turbulent heat flux, and the collisional dissipation, respectively.

(Note that no particle flux is driven by the turbulence with the adiabatic response of background

particles.) The gradient scale-length of the temperature profile is represented by LTs ≡|∇ln Ts|−1.

The non-adiabatic part of the perturbed gyrocenter distribution function, hsk⊥ , is defined by

δ f (g)
sk⊥
= −esδψk⊥

Ts
FMs + hsk⊥ . (5.13)

By using Eqs. (5.7) and (5.8), the potential energy Wsk⊥ is given by

Wik⊥ =
n0

2

⟨(
Λik⊥−

Ti

Te
δky,0

) ∣∣∣∣∣eδϕk⊥

Ti

∣∣∣∣∣2⟩ , (5.14)

Wek⊥ =
n0

2

⟨
Λek⊥

∣∣∣∣∣eδϕk⊥

Te

∣∣∣∣∣2⟩ , (5.15)

for ions and electrons, respectively. The second term in the right hand side of Eq. (5.9) represents

the nonlinear entropy transfer in the wavenumber space. The definition of the entropy transfer

function Tsk⊥ is given by

Tsk⊥ =
∑
p⊥

∑
q⊥

δk⊥+p⊥+q⊥, 0Js
[
k⊥|p⊥, q⊥

]
, (5.16)

Js
[
k⊥|p⊥, q⊥

] ≡ ⟨
c
B

b · (p⊥ × q⊥)
∫

d3
1

2FMs
Re

[
δψp⊥hsq⊥hsk⊥− δψq⊥hsp⊥hsk⊥

] ⟩
, (5.17)

where the notation with k′⊥ and k′′⊥ shown in Eq. (5.1) is replaced here by −p⊥ and −q⊥, respec-

tively, in order to represent symmetrically the triad-interaction condition for three wavenumber

vectors, i.e., k⊥+ p⊥+ q⊥=0. In Eq. (5.16), Js[k⊥|p⊥, q⊥] is summed over p⊥ and q⊥. For con-

venience, we call the function Js[k⊥|p⊥, q⊥] the “triad (entropy) transfer function”, hereafter. It

should be noted that the triad transfer function possesses the following symmetry properties,

Js
[
k⊥|p⊥, q⊥

]
= Js

[
k⊥|q⊥, p⊥

]
, (5.18)

Js
[
k⊥|p⊥, q⊥

]
= Js

[−k⊥| − p⊥,−q⊥
]
. (5.19)

Furthermore, one obtains straightforwardly the “detailed balance relation” for the triad-interactions,

Js
[
k⊥|p⊥, q⊥

]
+Js

[
p⊥|q⊥, k⊥

]
+Js

[
q⊥|k⊥, p⊥

]
= 0 . (5.20)

Positive values of the triad transfer function Js[k⊥|p⊥, q⊥] mean that the entropy is transferred

from two modes with p⊥ and q⊥ toward the mode with k⊥(=−p⊥−q⊥) and that the possible com-

binations of the signs of (Js[k⊥|p⊥, q⊥], Js[p⊥|q⊥, k⊥], Js[q⊥|k⊥, p⊥]) satisfying the detailed

balance relation should be (+,−,−), (+,+,−) and (+,−,+). Negative values of Js[k⊥|p⊥, q⊥]

indicate the entropy transfer in the opposite direction, then (−,+,+), (−,−,+) and (−,+,−) are
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the possible combinations of the triad transfer functions. The detailed balance relation Eq. (5.20)

with the symmetric properties of Eqs. (5.18) and (5.19) is useful for the entropy transfer anal-

ysis of the toroidal ITG and ETG turbulence simulation results shown in Sec. 5.4, where the

nonlinear interactions among turbulent fluctuations and zonal flows are quantified.

Similar discussions on the “energy transfer function” are often found in the study of the

isotropic fluid turbulence governed by the Navier-Stokes equation [30]. The isotropic nature en-

ables us to simplify the energy transfer function as a function of the only wavenumber magnitude

so that the several analytic expressions are derived by means of closure models such as the quasi-

normal Markovian (QNM) model [30] and the direct interaction approximation (DIA) [31, 32].

Then, the spectral analysis of the transfer function describes the local energy cascade processes,

e.g., the normal and the inverse energy cascade processes for the three- and two-dimensional

isotropic turbulence, respectively. On the other hand, since the (quasi) two-dimensional magne-

tized plasma turbulence considered here is inherently anisotropic due to the existence of meso-

scale coherent flow structures such as zonal flows and streamers, the direct numerical simulation

is a powerful tool for examining the entropy transfer function.

The explicit description of the entropy balance relation for the non-zonal (ky , 0) and zonal

(ky = 0) modes is useful for the following discussions concerning the entropy transfer processes

among zonal flows and turbulence. By taking the integration of Eq. (5.9) over the non-zonal and

zonal modes and by using the detailed balance relation of Eq. (5.20), one obtains

d
dt

(
δS (trb)

s +W (trb)
s

)
= L−1

Ts
Qs − T (zf)

s + D(trb)
s , (5.21)

d
dt

(
δS (zf)

s +W (zf)
s

)
= T (zf)

s + D(zf)
s , (5.22)

where the superscripts “(trb)” and “(zf)” represent the turbulence (or non-zonal) and zonal-flow

components, respectively. The above entropy balance relations for non-zonal and zonal modes

have been derived and discussed in detail by Sugama et al. [17]. Note here that zonal flows never

contribute to the radial heat flux Qsk⊥ as seen from Eq. (5.22). The entropy transfer function

integrated over the zonal modes, T (zf)
s , represents the entropy transfer from turbulence to zonal

flows so that the negative sign of T (zf)
s appears in Eq. (5.21). As shown in Ref. 17, by using

the simplest approximation for the non-adiabatic part of the ion gyrocenter distribution function,

i.e., hik⊥≃ n0FMi(1 + k2
⊥ρ

2
ti/2)eδϕk⊥/Ti, the entropy transfer function T (zf)

i reduces to the energy

production term, which is described by the product of the Reynolds stress due to the non-zonal

turbulent flows and the zonal-flow shear. Thus, T (zf)
s is regarded as a kinetic extension of the

zonal-flow energy production due to the Reynolds stress.

As seen from Eq. (5.21), the turbulence part of the entropy δS (trb)
s is produced by the tur-

bulent heat flux L−1
Ts

Qs, partly dissipated by collisions D(trb)
s , and partly transferred to the zonal
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FIG. 5.1: Wavenumber spectrum of the linear growth rate γL of the toroidal ITG instability.

The spectrum for the toroidal ETG instability is the same as that in the ITG case except for the

normalizations with 3te and ρte.

flow components via the transfer term T (zf)
s . When the turbulence reaches a statistically steady

state, the balance relations of T (zf)
s =−D

(zf)
s >0 and L−1

Ts
Qs − T

(zf)
s =−D

(trb)
s are realized separately,

where the overline denotes the time-average in a steady phase. The entropy balance relations of

Eqs. (5.21) and (5.22) provide us with not only the physical insight into the entropy transfer pro-

cesses among zonal flows and turbulence, but also a good measure for the accuracy of turbulence

simulations.

The nonlinear gyrokinetic simulation results, as will be shown below, have been obtained

by means of the GKV code, that is a gyrokinetic Vlasov solver with the flux-tube configu-

ration applicable to both the tokamak and helical systems [3]. The physical parameters of

ϵ = 0.18, q0 = 1.5, ŝ = 0.4, R0/LTs = 6.92, ηs = 2.0 and Ti = Te are the same as the Cyclone-

base case, except that the smaller values of the magnetic-shear parameter ŝ and ηs are used

here to make it easier to carry out the ETG turbulence simulation. The weak collisional ef-

fect is introduced with νsLn0/3ts = 10−3. The number of Fourier modes in the perpendicu-

lar wavenumber space and the number of grids in the z-, 3∥-, and µ-directions are set to be

(Nkx ,Nky ,Nz,N3∥ ,Nµ)=(64, 129, 128, 64, 32). The corresponding ranges of the phase-space coor-

dinates are given as 0 6 kx 6 kx(max) = 1.5ρ−1
ts , −ky(max) 6 ky 6 ky(max) = 2.4ρ−1

ts , −π 6 z 6 π, −53ts 6
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3∥ 6 53ts, and 0 6 µ 6 12.5(ms3
2
ts/B0), respectively. The modified periodic boundary condition is

imposed in the z-direction [29]. The size of the perpendicular domain is Lx×Ly =266ρts×168ρts,

and the non-zero minimum absolute values of the wavenumber are kx(min) = 0.0235ρ−1
ts and

ky(min)=0.0375ρ−1
ts . The time integration is carried out with ∆t=0.025(Ln0/3ts).

In the followings, physical quantities are normalized as x= x′/ρts, y= y′/ρts, 3∥ = 3
′
∥/3ts, µ=

µ′(B0/ms3
2
ts), t = t′(3ts/Ln0), νs = ν

′
s(Ln0/3ts), FMs = F′Ms(3

3
ts/n0), δ f (g)

sk⊥
= δ f (g)′

sk⊥
(33ts/n0)(Ln0/ρts) and

δϕk⊥ =δϕ
′
k⊥(e/Ts)(Ln0/ρts), where the prime means a dimensional quantity.

The wavenumber spectrum of the linear growth rate γL for the toroidal ITG instability is

shown in Fig. 5.1, where the physical parameters shown above are used. One finds that the

maximum growth rate of γL(max) = 9.56×10−23ti/Ln0 is observed at (kx = 0, ky = 0.4125ρ−1
ti ). The

effect of the finite kx reduces the growth rate, then the toroidal ITG instability are completely

stabilized for kx > 0.3ρ−1
ti . As will be discussed below, the stabilizing effect in the higher kx

region is important for the regulation of turbulent transport by zonal flows. Also, note that the

spectrum of γL for the toroidal ETG instability is the same as that plotted in Fig. 5.1 except for

the normalizations with 3te and ρte.

5.3 Nonlinear simulations

5.3.1 Entropy balance relation

The results of nonlinear gyrokinetic simulations for the toroidal ITG and ETG turbulence are

shown and discussed in this section. Time evolutions of each term in the entropy balance relation

of the turbulence part, Eq. (5.21), for the toroidal ITG and ETG turbulence are plotted in Figs.

5.2(a) and 5.2(b), respectively. Here, the turbulent heat flux L−1
Ts

Qs shown in Eqs. (5.9) and

(5.11) is rewritten as ηsQs by the use of the normalization with Ln0 . The deviation from the exact

balance is also plotted by the dashed line, where one finds that the entropy balance relation is

well satisfied for the whole simulation time in both the ITG and ETG cases. As discussed in

Sec. 5.2, the turbulence part of the entropy δS (trb)
s , which characterizes the turbulence intensity,

is produced by the ITG (or ETG)-instability-driven heat flux L−1
Ts

Qs. Then, the saturation of the

linear instability growth, which is observed at t ∼ 45(∼ 60) for the ITG (ETG) case, occurs due

to the nonlinear entropy transfer T (zf)
s and the collisional dissipation D(trb)

s . Thus, the quantity

Rs ≡T (zf)
s /(−D(trb)

s ) provides ones with a good measure for evaluating the effect of the nonlinear

entropy transfer to zonal modes on the linear instability saturation. The typical values [evaluated

at t = 45 (or t = 60) for the ITG (or ETG) case] are Ri = 5.92 × 10−1 and Re = 4.54 × 10−2,

respectively. The larger value of Ri indicates that the nonlinear entropy transfer from non-zonal
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ITG modes to zonal modes is substantial for the saturation of the ITG instability growth, while

the entropy transfer to zonal modes has little contribution to the saturation of the ETG instability

growth. Indeed, some earlier works on the gyrokinetic simulations of toroidal ETG turbulence

with adiabatic ions have also pointed out that the saturation of the ETG instability is mainly

associated with the nonlinear coupling among non-zonal drift-wave fluctuations rather than the

zonal-flow generation for the cases with moderate or strong magnetic-shear [25, 33]. It is also

found that the statistically steady states are realized for t&120 in the ITG case and for t&220 in

the ETG case, where the balance relation of ηsQs −T
(zf)
s =−D

(trb)
s holds. (The time-average in the

steady state is denoted by the overline.) The saturation levels of the turbulent heat flux for the

ITG and ETG cases are evaluated as ηiQi = 5.31 and ηeQe = 88.8 in the unit of (ρts/Ln0)
2(n03ts),
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FIG. 5.2: Time evolutions of each term in the entropy balance relation of the turbulence part, Eq.

(5.21), for toroidal (a)ITG (s = i) and (b)ETG (s = e) turbulence. The deviation from the exact

balance is also plotted by the dashed line.
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respectively, where the time average is taken over 2206 t6320 for both cases. As will be shown

in Sec. 5.3.2, the strong zonal flows are sustained in the steady state of the ITG turbulence, while

the radially elongated streamers with high amplitude are formed in the ETG case with the strong

electron heat transport [cf. Figs. 5.6].

The similar plots for the entropy balance relation of the zonal-flow part, Eq. (5.22), are

shown in Figs. 5.3(a) and 5.3(b). The deviation from the exact balance is quite small in both

the ITG and ETG cases so that the linear and nonlinear dynamics of zonal flows are accurately

solved. One finds the balance relation of T (zf)
s = −D

(zf)
s in the statistically steady states. Also, a

remarkable difference between the ITG and ETG cases is found in the time evolutions of T (zf)
s .

The time evolution of T (zf)
i shows a higher peak than that of T (zf)

e in the saturation phase of the

linear instability growth (t∼45 – 60), then it quickly decreases and leads to the steady state with

the small value of T (zf)
i . In contrast, no strong peak of T (zf)

e appears in the saturation phase of the

ETG instability growth, while the saturation level of the entropy transfer function is larger than

that for the ITG case by a factor of 9.3 in the steady phase. Since the entropy transfer function is

proportional to the fluctuation amplitude [see Eqs. (5.16) and (5.17)], the comparisons in terms

of the entropy transfer function normalized by the mean heat flux, i.e., T (zf)
s /ηsQs, is more useful

for quantifying the role of the entropy transfer in the ITG and ETG turbulence. The time-histories

of T (zf)
s /ηsQs for the ITG and ETG turbulence are shown in Fig. 5.3(c). One again finds that the

amplitude of T (zf)
i /ηiQi is much higher than T (zf)

e /ηeQe in the saturation phase of t ∼ 45, where

the entropy variable of non-zonal ITG modes is efficiently transferred to zonal modes.

After the saturation of the linear instability, the amplitude of T (zf)
i /ηiQi decreases quickly

to a quit low level which is of the same order of magnitude as (but still 1.8 times larger than)

T (zf)
e /ηeQe, where T (zf)

i /ηiQi = 2.56 × 10−2 and T (zf)
e /ηeQe = 1.42 × 10−2 (the time-average is

taken over 2206 t6320). As discussed in the previous section, T (zf)
s is regarded as a kinetic ex-

tension of the zonal-flow production term due to the Reynolds stress, and works as a source for

the zonal-flow component of the entropy δS (zf)
s and the potential energy W (zf)

s [see. Eq. (5.22)].

From this point of view, one might expect that T (zf)
e /ηeQe showing the same order of magnitude

as T (zf)
i /ηiQi should cause the strong zonal-flow generation leading to the effective turbulent-

transport suppression also in the steady state of the ETG turbulence, and this seems to contradict

the results observed in Fig. 5.2(b). However, it should be noted here that the zonal-flow genera-

tion is also affected by the coefficients of |δϕkx, ky=0|2 found in the right hand side of Eqs. (5.14)

and (5.15) (One often refers to the coefficient as the “zonal-flow inertia”), which are quite differ-

ent between the ITG and ETG cases. In the simple evaluation with the long-wavelength limit of

k2
⊥ρ

2
ts≪1, the zonal-flow inertia in the ITG and ETG turbulence are given by 1 − Γ0i≃k2

xρ
2
ti≡Mi

and 1 + (Te/Ti) − Γ0e ≃ (Te/Ti) + k2
xρ

2
te ≡Me, respectively. Then, for the typical wavenumber
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FIG. 5.3: Time evolutions of each term in the entropy balance relation of the zonal-flow part, Eq.

(5.22), for toroidal (a)ITG (s = i) and (b)ETG (s = e) turbulence. The deviation from the exact

balance is also plotted by the dashed line. (c)The time-histories of the entropy transfer function

normalized by the time-averaged heat flux T (zf)
s /ηsQs.
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of kxρts ∼ 0.1 observed in the turbulence simulations, the zonal-flow inertia for the ETG case

is much larger than that for the ITG case: typically, Mi/Me ∼ 10−2. From the turbulence sim-

ulation results, the ratio of the zonal-flow inertia is evaluated as M̃i/M̃e = 2.41 × 10−2, where

the effective zonal-flow inertia is defined by M̃s ≡ (δS
(zf)
s +W

(zf)
s )/

∑
kx
⟨|δϕkx,ky=0|2⟩. The smaller

value of M̃i/M̃e indicates that, as well as the case of W
(zf)
s /

∑
kx
⟨|δϕkx,ky=0|2⟩ ∼ Ms, the ratio

δS
(zf)
s /

∑
kx
⟨|δϕkx,ky=0|2⟩ for the ITG case is much smaller than that for the ETG case because the

contribution of the zonal density perturbation δns kx,ky=0 to δS (zf)
s is significantly reduced for the

ITG case. The large zonal-flow inertia in the ETG turbulence, thus, leads to the weaker zonal-

flow generation, even though the amplitude of T (zf)
e /ηiQe shows the similar level as T (zf)

i /ηiQi in

the steady state.

5.3.2 Comparison of vortex structures and zonal flows in toroidal ITG and
ETG turbulence

The wavenumber spectra of turbulent vortices and zonal flows in the ITG and ETG turbulence are

compared in this section. The time evolutions of ky-spectra of the fluctuation intensity are shown

in Figs. 5.4(a) – (d), where the streamer intensity ⟨|δϕkx=0, ky |2⟩ [(a) and (b)] and the intensity

of finite kx modes ⟨∑kx,0|δϕkx, ky |2⟩ [(c) and (d)] for the ITG (upper row) and ETG (lower row)

cases are plotted. One finds that the streamer modes with kx=0 grow linearly until the nonlinear

saturation takes place at t∼40 – 60 both in the ITG and ETG cases. (The linearly most unstable

streamer mode with ky = 0.4125 is shown in the figures by the dashed line.) We also find that

the strong zonal flow with ky = 0 is nonlinearly generated in the ITG turbulence, and then, the

growth of the streamer and the other finite-kx modes is suppressed significantly [Fig. 5.4(a) and

5.4(c)]. In contrast to the ITG case, the generation of ETG-driven zonal flows is weaker because

of the larger zonal-flow inertia. Thus, the ETG turbulence is dominated by the streamer modes

with high amplitude [Fig. 5.4(b) and 5.4(d)]. Furthermore, it is clearly shown that, in both the

streamer and the finite-kx modes, the spectrum of the fluctuation intensity is down-shifted to the

lower-ky region through the nonlinear couplings in the saturation phases.

The similar plots for the time evolution of kx-spectra of the intensity of the zonal-flow po-

tential ⟨|δϕkx, ky=0|2⟩ and the non-zonal modes potential ⟨∑ky,0|δϕkx, ky |2⟩ are shown in Figs. 5.5(a)

– (d). From Figs. 5.5(a) and 5.5(b), one also finds that the zonal flow generation in the ITG

turbulence is much stronger than that in the ETG case. The saturation levels of the zonal-flow

intensity integrated over kx, ⟨
∑

kx
|δϕkx, ky=0|2⟩, in the steady states of the ITG and ETG turbulence

are 16.4(Tiρti/eLn0)
2 and 1.79(Teρte/eLn0)

2, respectively, where the time average is taken over

220 6 t 6 320. In the saturation phases, the intensity of non-zonal modes, which are linearly
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FIG. 5.4: Time evolution of ky-spectra of the streamer intensity ⟨|δϕkx=0, ky |2⟩ [(a) and (b)] and

the intensity of finite-kx modes ⟨∑kx,0|δϕkx, ky |2⟩ [(c) and (d)] for the ITG (upper row) and ETG

(lower row) turbulence, where the unit is (Tsρts/eLn0)
2 The wavenumber of ky = 0.4125 for the

linearly most unstable mode is also shown by the dashed line.

unstable for t . 40 – 60, quickly spreads to the higher-kx region [(c) and (d)], in contrast to

the down-shift to the lower-ky region as shown in the Figs. 5.4. Then, the non-zonal mode in-

tensity is suppressed by the ITG-driven zonal flows, while the high amplitude streamers with

kx≃0 are sustained in the ETG turbulence. The saturation levels of the non-zonal mode intensity

⟨∑kx, k,0|δϕkx, ky |2⟩ in the steady states of the ITG and ETG turbulence are 4.55(Tiρti/eLn0)
2 and

136(Teρte/eLn0)
2, respectively.

The vortex and flow structures of the ITG and ETG turbulence in the three-dimensional flux-

tube are shown in Figs. 5.6(a) and 5.6(b), respectively, where the potential fluctuations δϕ(x, y, z)

at t= 315 are plotted. As already seen from the spectral analysis, the strong zonal flows, which

are translationally symmetric in the y- and z- directions, are observed in the ITG turbulence [Fig.

5.6(a)]. The radially elongated streamers with high amplitudes observed in the ETG turbulence

[Fig. 5.6(b)] show the ballooning-type structures, i.e., the amplitude on the perpendicular plane

with z= 0 (the outboard side of the torus) decreases toward z=π (the inboard side of the torus).

The different vortex and flow structures between the ITG and ETG turbulence reflect in their
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FIG. 5.5: Time evolution of kx-spectra of the zonal-flow intensity ⟨|δϕkx, ky=0|2⟩ [(a) and (b)] and

the intensity of non-zonal modes ⟨∑ky,0|δϕkx, ky |2⟩ [(c) and (d)] for the ITG (upper row) and ETG

(lower row) turbulence, where the unit is (Tsρts/eLn0)
2 The wavenumber giving the linearly most

unstable mode is kx=0.

different nonlinear entropy transfer processes as will be discussed in Sec. 5.4.

Transport properties in the steady states of the ITG and ETG turbulence are compared in

terms of the wavenumber spectra of the turbulent heat flux ηsQsk⊥ in the two-dimensional k⊥-

space which are plotted in Figs. 5.7(a) and 5.7(b). For reference and comparison, the wavenum-

ber spectra of potential fluctuations are also plotted in Figs. 5.7(c) and 5.7(d), where each am-

plitude is normalized with the maximum value in the non-zonal components (ky,0). While the

mode with (kx≃0, ky≃0.2ρ−1
ts ) makes the largest contribution to the heat transport in both cases,

one clearly finds a qualitative difference in the spectra of the turbulent heat flux and potential

fluctuations between the ITG and ETG turbulence. The wavenumber spectra for the ITG turbu-

lence significantly expands into the high kx-region [Figs. 5.7(a) and 5.7(c)] where the modes are

stabilized [cf. Fig. 5.1] and make less contribution to the heat transport, while the spectra for the

ETG case is confined in the lower-kx region. The different structures of the wavenumber spectra

observed in the ITG and ETG cases will discussed from the view point of the nonlinear entropy

transfer in the next section.
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FIG. 5.6: Contours of the potential fluctuations δϕ(x, y, z) at t= 315(Ln0/3ts) for toroidal (a)ITG

and (b)ETG turbulence, where the unit is (Tsρts/eLn0). The box size is Lx × Ly × Lz = 266ρts ×
168ρts × π. The (x, y)-cross section shown here is the perpendicular plane in the outboard side

of the torus, where z=0.

5.4 Nonlinear entropy transfer via zonal modes

5.4.1 Entropy transfer processes in saturation and steady phases

In this section, nonlinear interactions between zonal flows and the ambient turbulence are ad-

dressed based on the spectral analysis of the triad entropy transfer function given in Sec. 5.2.

The entropy transfer analysis provides ones with quantitative evaluations for the effects of zonal

flows on the transport suppression.

In the previous section, the entropy balance relations for non-zonal and zonal modes in the

ITG and ETG turbulence have been discussed (cf. Figs. 5.2 and 5.3). Particularly, the different

time-evolution of the normalized entropy transfer function T (zf)
s /ηsQs has been shown [cf. Fig.

5.3(c)]. The amplitude of T (zf)
i /ηiQi is much higher than T (zf)

e /ηeQe in the saturation phase of

the linear instability. In the steady state, we observe the lower amplitude of T (zf)
i /ηiQi with the

same order of magnitude as T (zf)
e /ηeQe, which should balance with weak collisional dissipation

for zonal modes. Nevertheless, the ITG-driven zonal flows with the high amplitude are sustained

in the steady state even with the weak source of T (zf)
i /ηiQi = 2.56 × 10−2 (but still larger than

T (zf)
e /ηeQe=1.42× 10−2) because of the smallness of the zonal-flow inertia. It should be stressed

here that, even in the steady state with little entropy transfer to the zonal modes, the ITG-driven
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FIG. 5.7: Wavenumber spectra of the turbulent heat flux ηsQsk⊥ [(a) and (b)] and the potential

fluctuation ⟨|δϕk⊥ |⟩ [(c) and (d)] in the steady states of the ITG (upper row) and ETG (lower row)

turbulence, where the amplitudes are averaged over 2206 t 6 320. The amplitudes of potential

fluctuations are normalized by the maximum value in the non-zonal components.

zonal flows still play an important role in the transport suppression through a different type of

the entropy transfer process from that in the saturation phase, as will be shown later. In order to

understand more accurately the nonlinear entropy transfer processes in the saturation and steady

states, the spectral analysis of the triad entropy transfer functionJs[k⊥|p⊥, q⊥] (rather than T (zf)
s )

with the aid of the detailed balance relation shown in Eq. (5.20) is necessary, because T (zf)
s (or,

equivalently, Tsk⊥) obscures individual entropy transfer processes among the non-zonal modes

through the zonal mode, and provides only the net amount of the entropy variable transferred

from non-zonal (turbulence) to zonal modes. Indeed, Waltz et al. have examined the spectral

structures of the entropy transfer function Tik⊥ for the steady state of ITG-TEM turbulence [25].
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However, the relation between the entropy transfer processes and the turbulence regulation by

zonal flows has not been shown explicitly. The detailed spectral analysis of the triad transfer

function presented in this study can reveal the critical role of zonal flows in the nonlinear entropy

transfer processes, which are closely associated with the saturation of instability growth and

transport suppression in the steady state.

Hereafter, we consider the entropy transfer processes associated with the nonlinear interac-

tions among two non-zonal modes with p⊥ and q⊥ and a zonal mode with kzf = kzf∇x, which

satisfy the triad-interaction condition kzf+ p⊥+ q⊥= 0. (A schematic plot is shown in Fig. 5.8.)

First, the non-zonal primary mode with p⊥ is chosen to be the “transport-driving mode” with

(kx ≃ 0, ky ≃ 0.2ρ−1
ts ) which makes the most dominant contribution to the turbulent heat flux, as

shown in Figs. 5.7(a) and 5.7(b).

The wavenumber spectrum of the triad entropy transfer function normalized by the time-

averaged heat flux, i.e., J s[kzf | p⊥, q⊥]/ηsQs, in the saturation phases of ITG and ETG instabil-

ities are shown in Figs. 5.9(a) and 5.9(b), respectively, where the time-average is taken over

30 6 t 6 45. Here, the wavenumbers of the ITG- and ETG-driven zonal flows are, respectively,

set to kzf = 0.1410ρ−1
ti and kzf = 0.0705ρ−1

te , which have the largest amplitude in the zonal-flow

components. In the ITG turbulence [Fig. 5.9(a)], one clearly finds that the large positive val-

ues of J i[kzf | p⊥, q⊥]/ηiQi spread over the linearly unstable region around qy ≃ 0.4ρ−1
ti [cf. Fig.

5.1]. This suggests that the saturation process of the ITG instability is closely associated with

the high-amplitude zonal-flow generation with the strong flow-shear due to the efficient entropy

transfer from the linearly unstable non-zonal modes to zonal modes. On the other hand, the

lower amplitude of Je[kzf | p⊥, q⊥]/ηeQe is observed in the ETG case [Fig. 5.9(b)] so that the

FIG. 5.8: Non-zonal and zonal modes which satisfy the triad-interaction condition kzf+ p⊥+ q⊥=
0, where kzf=kzf∇x.
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FIG. 5.9: Wavenumber spectrum of the triad transfer function normalized by the mean heat

flux, J s[kzf | p⊥, q⊥]/ηsQs, for the fixed-kzf in the saturation phase of toroidal (a)ITG (s= i) and

(b)ETG (s=e) turbulence, where the time-average is taken over 306 t645.

generation of ETG-driven zonal flows in the saturation process is less effective than that in the

ITG case. These results are consistent with the different amplitude of T (zf)
i /ηiQi and T (zf)

e /ηeQe

observed in the saturation phase, as shown in Fig. 5.3(c).

In the steady state, the entropy transfer processes are qualitatively different from those in

the saturation phase. The wavenumber spectra of J s[kzf | p⊥, q⊥]/ηsQs in the steady state are

shown in Figs. 5.10. It is observed in Fig. 5.10(a) that the amplitude of J i[kzf | p⊥, q⊥]/ηiQi is

quite low in comparison to that in the saturation phase shown above. For the ETG case [Fig.

5.10(b)], the large positive values of Je[kzf | p⊥, q⊥]/ηeQe are found near the region of transport-
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FIG. 5.10: Wavenumber spectrum of the triad transfer function normalized by the mean heat flux,

J s[kzf | p⊥, q⊥]/ηsQs, for the fixed-kzf in the steady state of toroidal (a)ITG (s = i) and (b)ETG

(s=e) turbulence, where the time-average is taken over 2206 t6320.

driving modes [cf. Fig. 5.7(b)], but are partly canceled by the large negative values. Note that,

as discussed above, the generation of ETG-driven zonal flows is less effective due to the large

zonal-flow inertia, even though the relatively large positive values of Je[kzf | p⊥, q⊥]/ηeQe are

observed in comparison to those in the ITG case.

Although the entropy transfer to zonal modes is quite weak in the steady state of the ITG

turbulence, i.e., J i[kzf | p⊥, q⊥]≃0, the ITG-driven zonal flows still play a “catalytic role” in the

entropy transfer from non-zonal transport-driving modes to other non-zonal modes with higher

radial-wavenumbers which make less contribution to the turbulent heat flux [cf. Fig. 5.1 and
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5.7(a)]. In order to clarify this point, the wavenumber spectra of J i[p⊥| q⊥, kzf]/ηiQi in the

steady state for three different p⊥’s is plotted in Figs. 5.11(a) – (c), where py is fixed to py =

0.2250ρ−1
ti which is the dominant component driving the heat flux. It is clearly found that all the

figures commonly show the two-stripe pattern at py=0 and py=−0.2250ρ−1
ti which indicates that

the p⊥-mode dominantly interacts with other non-zonal modes through the zonal modes. Note

that, in general, one can not uniquely determine the direction of the entropy transfer between

“two modes” only from the sign ofJ i[p⊥| q⊥, kzf] because the “triad” transfer function describes

the entropy transfer among “three modes forming a triad interaction”. However, the direction

of the entropy transfer between two non-zonal modes is identified here as p⊥→ q⊥ for negative

J i[p⊥| q⊥, kzf], or as q⊥→ p⊥ for positive one due to the detailed balance relation given in Eq.

(5.20) leading to

J i
[
p⊥|q⊥, kzf

]
+J i

[
q⊥|kzf , p⊥

]
= −J i

[
kzf |p⊥, q⊥

] ≃ 0 , (5.23)

where the last equality is confirmed by the small amplitude of J i[kzf | p⊥, q⊥] in the steady state

as shown in Fig. 5.10(a).

The entropy transfer processes shown in Figs. 5.11(a) – (c) are explained more in detail

as follows: From Fig. 5.11(a), we observe the large negative values at the zonal mode with

qx=kzf=0.1410ρ−1
ti and qy=0 (represented by solid green arrow) and at the non-zonal mode with

qx = −kz f and qy = −py = −0.2250ρ−1
ti (solid blue arrow), which form a triad with the transport-

driving primary mode with p⊥ (solid red arrow). This means that the entropy is transferred

from the non-zonal primary mode (p⊥) to the higher radial-wavenumber mode (q⊥) through

the catalytic role of the high-amplitude zonal mode (kzf). Besides, the −q⊥-mode, which is

equivalent to the q⊥-mode due to the reality of the physical variable, is plotted by the dotted blue

arrow in the figure. In Fig. 5.11(b), the previously transferred mode [dotted blue arrow in Fig.

5.11(a)], which consists of a triad with two modes shown by black solid arrows [equivalent to

red and green solid arrows in Fig. 5.11(a)], is now considered as the new primary mode with

px = 0.1410ρ−1
ti and py = 0.2250ρ−1

ti shown by red solid arrow. Then, the entropy variable is

further transferred to the non-zonal mode with higher radial-wavenumber (solid, or equivalently,

dotted blue arrow) via the interaction with the zonal mode with kzf≃0.1410ρ−1
ti . The “successive”

entropy transfer to the higher radial-wavenumber mode is also found in Fig. 5.11(c). [One again

finds that the entropy of the primary mode (red solid arrow) is coming through the interaction

with two modes (black solid arrows), and is going to the higher radial-wavenumber mode (blue

arrows) via the interaction with the zonal mode (green solid arrow).]

Furthermore, Figs. 5.12 show the contour of J i[p⊥| q⊥, kzf]/ηiQi for three different px’s

with py = −0.2250ρ−1
ti , which indicates a diagonal counterpart of entropy transfer processes
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FIG. 5.11: Wavenumber spectra of the triad transfer function normalized by the mean heat flux,

J i[p⊥| q⊥, kzf]/ηiQi, for three different p⊥’s with py = 0.2250ρ−1
ti (fixed) in the steady state of

toroidal ITG turbulence, where the time-average is taken over 2206 t6320.
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FIG. 5.12: Wavenumber spectra of J i[p⊥| q⊥, kzf]/ηiQi for three different p⊥’s with py =

−0.2250ρ−1
ti (fixed) in the steady state of toroidal ITG turbulence, where the time-average is taken

over 2206 t6320.
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FIG. 5.13: Wavenumber spectra of Je[p⊥| q⊥, kzf]/ηeQe, for three different p⊥’s with py =

0.2250ρ−1
te (fixed) in the steady state of toroidal ETG turbulence, where the time-average is taken

over 2206 t6320.
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shown in Figs. 5.11. The present spectral analysis reveals that, through the non-local interac-

tion with the high-amplitude zonal flows in the wavenumber-space, the entropy of the non-zonal

transport-driving modes is successively transferred to the non-zonal modes with higher radial-

wavenumbers for which stronger damping due to the finite gyroradius effect occurs. These results

provide ones with a novel physical picture of the suppression of the ITG turbulent transport by

zonal flows in the steady state, from the view point of the gyrokinetic entropy balance.

Figures 5.13(a) – (c) show the wavenumber spectra of Je[p⊥| q⊥, kzf]/ηeQe in the steady

state of toroidal ETG turbulence for three different p⊥’s, respectively. In contrast to the ITG

turbulence, no remarkable spectral structures suggesting the successive entropy transfer to the

non-zonal modes with higher radial-wavenumbers are observed. Instead, the entropy transfer

within a low wavenumber region occurs dominantly through the nonlinear interactions among

non-zonal modes. One also finds the net entropy transfer to the primary mode with p⊥ through

the coupling of zonal flows and radially elongated streamers with qx≃0 [cf. Fig. 5.13(c)], while

the subsequent transfer to non-zonal mode with the higher-radial wavenumber does not occur.

Thus, it is concluded that, in both the saturation and steady phases of the ETG turbulence, the

role of zonal flows in the successive entropy transfer to the higher wavenumber modes is much

weaker than that in the ITG case.

In addition to the individual entropy transfer processes involving the interactions with all

components of zonal modes shown above, the wavenumber spectra of J s[p⊥| q⊥, kzf]/ηsQs are

plotted in Figs. 5.14 as a function of px and qx, where py = −qy = 0.2250ρ−1
ts and kzf giving the

largest amplitude in the zonal-flow components are fixed. In the ITG case [Fig. 5.14(a)], one

clearly finds the elongated diagonal stripes indicating that the entropy at px=0 (transport-driving

mode) is transferred to the higher radial-wavenumber non-zonal modes via the successive inter-

actions with zonal modes. The successive transfer processes are represented by the dotted gray

arrows in Fig. 5.14(a). In contrast, in the ETG case [Fig. 5.14(b)], the elongated diagonal struc-

tures indicating the successive transfer are no longer observed. Recently, for the ITG turbulence,

Navarro et al. have shown that the entropy transfer (or cascade) from large- to small-scale shells

in the k⊥-space occurs locally [33]. There, they have examined the entropy transfer function

averaged over isotropic shells in two-dimensional wavenumber-space. However, it should be

pointed out that their shell-to-shell transfer analysis obscures the successive entropy transfer via

zonal flows (the most important ingredient of the ITG turbulence) revealed in this study.

Finally, in Figs. 5.15, we briefly summarize the nonlinear entropy transfer processes in the

saturation and the steady phases of the toroidal ITG and ETG turbulence, which are closely asso-

ciated with the saturation of the instability growth and the suppression of the turbulent transport

in the steady state. In the saturation phase of the toroidal ITG instability growth, the entropy
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FIG. 5.14: Wavenumber spectrum of J s[p⊥| q⊥, kzf]/ηsQs for fixed-|kzf | with py = −qy =

0.2250ρ−1
ts in the steady phases of toroidal (a)ITG (s = i) and (b)ETG (s = e) turbulence, where

the time-average is taken over 2206 t6320. The lower and upper lines in each figure correspond

to kzf + px + qx = 0 for kzf>0 and kzf<0, respectively.

of non-zonal ITG modes is significantly transferred to zonal modes, then the ITG instability

growth is saturated by the high-amplitude zonal flows with strong flow-shear [Fig. 5.15(a)]. In

the steady state of the ITG turbulence, the entropy transfer to zonal modes becomes quite weak,

i.e., T (zf)
i /ηiQi ∼T (zf)

e /ηeQe≪ 1. Nevertheless, the ITG-driven zonal flows still play a catalytic

role in the entropy transfer process from non-zonal modes strongly driving the heat transport to

the higher radial-wavenumber (non-zonal) modes with less contribution to the turbulent heat flux

[Fig. 5.15(b)]. The successive entropy transfer to the higher radial-wavenumber modes due to
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FIG. 5.15: Summary of the entropy transfer processes in the saturation (upper row) and the

steady (lower row) phases for the toroidal ITG (left column) and ETG (right column) turbulence,

where arrows denote the direction of the entropy transfer.

the non-local interaction with the strong zonal flows in the wavenumber-space is associated with

the broadening of the spectra of potential fluctuations and heat flux in the kx-direction shown in

Figs. 5.7(a) and 5.7(c).

In contrast to the ITG case, the nonlinear interactions among the low-wavenumber non-zonal

modes including the radially elongated streamers are dominant in the ETG case so that the en-

tropy transfer resulting from the interactions with zonal flows are not effective for both the sat-

uration of the instability growth and the transport regulation in the steady state [Figs. 5.15(c)

and 5.15(d)]. As pointed out in some earlier works on the toroidal ETG turbulence [12], the

vortex structures and zonal flows strongly depend on the geometrical and plasma parameters. In

particular, strong ETG-driven zonal flows are observed in the case with weak (or negative) mag-

netic shear, where the electron heat transport is significantly reduced. It is not trivial whether

the entropy transfer function for the toroidal ETG turbulence with the strong zonal flows shows

the similar wavenumber spectrum to that in the ITG case presented here. The entropy transfer

analysis for the toroidal ETG turbulence with weak magnetic-shear remains as a future work.
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5.4.2 Comparison between slab and toroidal systems

Here, the entropy transfer process in the slab ITG and ETG turbulence are presented and com-

pared to that in the toroidal cases shown above. The entropy transfer analysis is applied to the

slab ITG and ETG turbulence simulation results calculated with the physical parameters of Case

1 shown in Chap. 3, where the statistically steady turbulence is observed [see Sec. 3.3.2]. (Note

here that the quantities shown below are normalized with Ln0 .) In the slab ETG turbulence,

the formation of isolated vortices with complicated motion are observed rather than elongated

streamers, while the slab ITG turbulence is dominated by strong zonal flows where the turbulent

heat flux is quenched [cf. Figs. 3.5(b) and 3.5(c)].
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FIG. 5.16: Wavenumber spectra of the turbulent heat flux ηsQsk⊥ [(a) and (b)] and the potential

fluctuation |δϕk⊥ | [(c) and (d)] in the steady states of the slab ITG (upper row) and ETG (lower

row) turbulence, where the amplitudes are averaged over 400 6 t 6 500. The amplitudes of

potential fluctuations are normalized by the maximum value in the non-zonal components.
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Figures 5.16 show the wavenumber spectra of the turbulent heat flux ηsQsk⊥ and the potential

fluctuation ⟨|δϕk⊥ |⟩ for the slab ITG and ETG turbulence, where each amplitude is normalized

with the maximum value in the non-zonal components (ky,0). One can see that the mode with

kx∼0 and ky∼0.15ρ−1
ti makes a dominant contribution to the heat transport in the slab ITG case,

while the mode with kx ∼ 0 and ky ∼ 0.05ρ−1
te is for the slab ETG case. It is also found that, in

the slab ITG case, most fluctuation intensity is accumulated on zonal modes, and the relatively

broad kx-spectrum of the ITG-driven heat flux are observed. It is remarkable that relatively large

contribution of zonal flows to the fluctuation intensity in the slab ETG turbulence are found in

comparison to that in the toroidal ETG turbulence [cf. Fig. 5.7(d)].

The time-histories of the entropy transfer function T (zf)
s for the slab ITG and ETG turbulence

are shown in Fig. 5.17(a). For reference and comparison, the time-histories for the toroidal
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FIG. 5.17: Time evolution of the entropy transfer function T (zf)
s for (a)slab ITG (s= i) and ETG

(s=e) turbulence, and (b)toroidal ITG (s= i) and ETG (s=e) turbulence.
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ITG and ETG turbulence are also plotted in Fig. 5.17(b). It is found that the time evolution of

T (zf)
i for the slab ITG case is similar to that for the toroidal ITG case. However, the qualitative

difference of T (zf)
e is observed in the slab and toroidal ETG cases, i.e., the high peak amplitude of

T (zf)
e appears in the saturation phase of the slab ETG instability at t∼120. This suggests that, in

contrast to the toroidal ETG case, the generation of the slab ETG-driven zonal flows somewhat

contributes to the saturation of the slab ETG instability growth through the entropy transfer to

zonal modes. (Remember that the reduction of the peak amplitude of transport level due to the

finite zonal-flow generation is observed in Fig. 3.3.)
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FIG. 5.18: Time-averaged wavenumber spectrum of the triad transfer function normalized by the

mean heat flux, J s[kzf | p⊥, q⊥]/ηsQs, for the fixed-kzf in the saturation phase of the slab (a)ITG

(s= i) and (b)ETG (s=e) turbulence.
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Time-averaged wavenumber spectrum of the triad entropy transfer function normalized by

the mean heat flux, i.e., J s[kzf | p⊥, q⊥]/ηsQs, in the saturation phase of the slab ITG and ETG

instability growth are shown in Figs. 5.18(a) and 5.18(b), respectively. The wavenumbers of the

slab ITG- and ETG-driven zonal flows are chosen as kzf=0.40ρ−1
ti and kzf=0.15ρ−1

te , respectively.

As expected from the high peak amplitude of T (zf)
i and T (zf)

e in the saturation phase shown in Fig.

5.17(a), the large positive values of bothJ i[kzf | p⊥, q⊥]/ηiQi andJe[kzf | p⊥, q⊥]/ηeQe are found

in the linearly unstable region with qy∼0.4 (cf. Fig. 3.1). Also, one finds the broad spectrum of

J i[kzf | p⊥, q⊥]/ηiQi in the qx-direction, while the spectrum for the ETG case is confined in the
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FIG. 5.19: Time-averaged wavenumber spectrum of the triad transfer function normalized by the

mean heat flux, J s[kzf | p⊥, q⊥]/ηsQs, for the fixed-kzf in the steady state of slab (a)ITG (s = i)

and (b)ETG (s=e) turbulence.
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lower-qx region.

The wavenumber spectra of J s[kzf | p⊥, q⊥]/ηsQs in the steady state are shown in Figs. 5.19,

where the time average is taken over 400 6 t 6 500. It is found that, in similar to the toroidal

ITG case [cf. Fig. 5.9(a) and 5.10(a)], the amplitude of J i[kzf | p⊥, q⊥]/ηiQi in the steady state

is much lower than that in the saturation phase shown in Fig. 5.18(a). Furthermore, in the slab

ETG case [Fig. 5.19(b)], one finds the nearly isotropic spectrum of Je[kzf | p⊥, q⊥]/ηeQe, where

the nonlinear local-interactions among non-zonal modes are dominant.

Figures 5.20 show the wavenumber spectra of J i[p⊥| q⊥, kzf]/ηiQi in the steady state of the

slab ITG turbulence for three different px, where py is fixed to py = 0.15 which is the domi-

nant component driving the heat flux. One clearly finds the two-stripe pattern at py = 0 and

py=−0.15 with high amplitude, which indicates the strong interaction of the zonal and the other

non-zonal modes. Hence, the catalytic role of strong zonal flows in the successive entropy trans-

fer to the higher radial-wavenumber mode causing less turbulent heat flux, which is similar to

that observed in the toroidal ITG case, is also demonstrated in the steady state of the slab ITG

turbulence.

The wavenumber spectra of Je[p⊥| q⊥, kzf]/ηeQe in the steady state of slab ETG turbulence

for three different p⊥ are plotted in Figs. 5.21. Similar to the toroidal ETG case shown in

Figs. 5.13, one also finds the nearly isotropic entropy transfer in the low wavenumber region

through the nonlinear local-interactions among non-zonal modes, rather than zonal flows so that

the successive entropy transfer to the higher wavenumber modes due to the interaction with zonal

modes is weak in the steady phases of the slab ETG turbulence.

5.5 Concluding remarks

In the present study, the entropy balance relations for non-zonal and zonal modes in toroidal ITG

and ETG turbulence have been examined by means of five-dimensional nonlinear gyrokinetic

Vlasov simulation code, GKV [3]. Particularly, the nonlinear entropy transfer processes in the

saturation and steady phases, which are associated with the instability saturation and the transport

regulation, are investigated by the spectral analysis of the triad entropy transfer function. The

entropy transfer from non-zonal to zonal modes is regarded as a kinetic extension for zonal-flow

energy production due to the Reynolds stress.

The nonlinear simulation results confirm that the entropy balance relations for turbulence

(non-zonal) and zonal-flow components, which are coupled with each other through the entropy

transfer function T (zf)
s , are accurately satisfied for the whole simulation time both in the ITG

and ETG turbulence. It is also found that the statistically steady states of the ITG and ETG
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FIG. 5.20: Wavenumber spectra of the triad transfer function normalized by the mean heat flux,

J i[p⊥| q⊥, kzf]/ηiQi, for three different p⊥ in the steady state of slab ITG turbulence, where the

time-average is taken over 4006 t6500.
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FIG. 5.21: Wavenumber spectra of the triad transfer function normalized by the mean heat flux,

Je[p⊥| q⊥, kzf]/ηiQi, for three different p⊥ in the steady state of slab ETG turbulence, where the

time-average is taken over 4006 t6500.



5.5 Concluding remarks 113

turbulence are realized long after the saturation of linear instability, where the balance relations

of T (zf)
s =−D

(zf)
s > 0 and L−1

Ts
Qs − T

(zf)
s =−D

(trb)
s hold separately for the turbulence and zonal-flow

components (the overline denotes the time-average in the steady state). A remarkable difference

between the ITG and ETG cases is found in the time evolutions of T (zf)
s /ηsQs. In the saturation

phase of the instability growth, the higher peak amplitude of T (zf)
i /ηiQi in comparison to that

of T (zf)
e /ηeQe is observed, while it decreases significantly in the steady state and becomes same

order of magnitude as that for the ETG case, i.e., T (zf)
i /ηiQi ∼T (zf)

e /ηeQe≪ 1. The nonlinearly

generated zonal flows with strong flow-shear play a critical role for the saturation of the ITG

instability growth whereas the entropy transfer processes among non-zonal modes are dominant

in the ETG case.

The time evolutions of the wavenumber spectra of turbulent fluctuations show that, in the

saturation phase, a spectral peak of the fluctuation intensity is down-shifted to a low-ky region

from the linearly most unstable wavenumber. In addition, it is observed that the fluctuation

spectrum spreads into the higher-kx region as well. The strong zonal flows are sustained in the

steady state of the toroidal ITG turbulence, while the radially elongated streamers with the high

amplitudes, which are associated with the strong electron heat transport, are formed in the ETG

turbulence. Although the mode with kx≃0 and ky≃0.2ρ−1
ts makes the most dominant contribution

to the heat transport, different spectral shapes of the heat flux and the potential fluctuations are

found between the ITG and ETG turbulence, that is, broad kx-spectra are observed for the ITG

case while the spectra for the ETG case are confined within the lower-kx region.

In order to understand the nonlinear entropy transfer processes in the saturation and steady

phases, the wavenumber spectra of the triad transfer functions Js[kzf | p⊥, q⊥] and Js[p⊥|q⊥, kzf]

for two non-zonal modes with p⊥ and q⊥ and a zonal mode with kzf=kzf∇x have been examined.

The detailed balance relation, Eq. (5.20) [or Eq. (5.23)], provides us explicitly with the direction

of the entropy transfer among the zonal and non-zonal modes. Then, the qualitatively different

entropy transfer processes in the saturation and steady phases of the ITG turbulence are clarified.

The entropy transfer from non-zonal to zonal modes is substantial in the saturation phase of the

ITG turbulence, while, once the high-amplitude zonal flows are generated, the entropy transfer

to the zonal modes becomes quite weak in the steady state. Instead, the zonal flows play a

catalytic role in the entropy transfer among non-zonal modes, i.e., the entropy of non-zonal

modes with low radial-wavenumbers driving the heat transport is successively transferred to the

other non-zonal modes with higher radial-wavenumbers with less contribution to the transport.

The successive entropy transfer to the high-kx modes due to the non-local interactions with the

strong zonal flows in the wavenumber-space leads to the broadening of the wavenumber spectra

in the steady state of the ITG turbulence. In contrast to the ITG case, the nonlinear interactions
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among the low-wavenumber non-zonal modes are dominant in the ETG case so that the entropy

transfer resulting from the interactions with zonal flows are not effective for the saturation of the

instability growth and the transport regulation.

The comparison of the slab and toroidal ITG/ETG turbulence simulation results reveals that

the significant entropy transfer from non-zonal modes to zonal modes is commonly observed

in the saturation phases of toroidal ITG, slab ITG, and slab ETG turbulence, while the entropy

transfer among non-zonal modes is dominant in the toroidal ETG turbulence. Similar to the

toroidal ITG case, the entropy transfer to zonal modes are quite weak, and then the successive

entropy transfer to the higher radial-wavenumber modes through the catalytic role of the zonal

mode is found in the steady state of the slab ITG turbulence. In the steady state of the slab

ETG turbulence with isolated vortices and their mergers, the nearly isotropic entropy transfer in

the low wavenumber region through the nonlinear local-interactions among non-zonal modes is

found, in similar to that of the toroidal ETG case where the radially elongated streamers with

high amplitude are formed.

The results obtained in the present study by a novel method of the triad entropy transfer analy-

sis provide ones with not only deeper understandings of the fundamental physics of the nonlinear

interaction between turbulence and zonal flows, but also useful suggestions for advanced turbu-

lence diagnostics such as the bi-spectrum analysis. Specifically, the present analysis in terms of

the triad entropy transfer function involves the explicit information of the direction of the trans-

fer which has rarely been discussed in the conventional bi-spectrum analysis. Also, the use of

entropy variable, which is based on the kinetic equation, enables us to examine systematically

both the nonlinear interactions among the zonal and non-zonal modes and their effects on the

turbulent transport level.
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Chapter 6

Summary

F
undamental physics behind the formation of vortex and zonal flow structures and their

stability, as well as the related transport properties, in slab/toroidal ITG/ETG turbulence

have been extensively explored in this dissertation based on nonlinear gyrokinetic the-

ory and the direct numerical simulations. Then, the highlighted results concerning (i) formation

of coherent vortex streets and the resultant transport reduction, (ii) effects of parallel dynam-

ics on the zonal flow generation, and (iii) nonlinear entropy transfer among turbulent vortices,

streamers, and zonal flows, are presented.

First, vortex structures in the slab ETG turbulence are investigated, including comparisons

with those in the slab ITG case. The evaluation of the entropy balance relation in the slab ETG

turbulence shows that the turbulence reaches to the statistically steady state accompanied with

weak zonal flow generations, where the turbulent heat flux balances with the collisional dissipa-

tion. Through the comparison of the slab ETG (with and without zonal flows) and the slab ITG

turbulence simulations, it is found that the zonal flows driven by the slab ETG turbulence play a

crucial role in suppressing the (kx=0, ky= kmin)-mode and in realizing the steady heat transport.

Formation of isolated vortices and their mergers with complicated motion are observed in the

slab ETG turbulence, while the strong zonal flows dominate and completely suppress the turbu-

lent transport in the slab ITG turbulence. Depending on parameters which determine the growth

rate of linear ETG modes, two different flow structures are observed, i.e., statistically steady

turbulence with a weak zonal flow and coherent vortex streets along a strong zonal flow. When

the coherent vortex streets are formed, phase difference and high wavenumber components of

potential and temperature fluctuations are reduced, and the electron heat transport decreases sig-

nificantly. It is also found that the phase matching with the potential fluctuation is correlated to

the reduction of the imaginary part of the perturbed distribution function. In order to describe the

coherent vortex streets, a fluid model, which is similar to the conventional Hasegawa-Mima equa-
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tion, is derived directly from the gyrokinetic equation for electrons, where the velocity moment

of the parallel advection term
∫

d3∥ ik∥3∥δ fk⊥ is ignored. By evaluating the nonlinear simulation

results in detail, it is concluded that the coherent vortex streets found in the slab ETG turbulence,

which are closely related to the transport reduction, are explained by a traveling wave solution

of a Hasegawa-Mima type fluid equation derived here.

Second, effects of parallel dynamics on transition of vortex structures and zonal flows, which

are closely associated with transport reduction found in the slab ETG turbulence, are intensively

examined by the comprehensive parameter studies. Numerical results show three different types

of vortex structures, i.e., coherent vortex streets accompanied with the transport reduction, turbu-

lent vortices with steady transport, and a zonal-flow-dominated state, depending on the relative

magnitude of the parallel compression to the diamagnetic drift, which is characterized by the pa-

rameterΘ=k∥LT/kyρte. In particular, a clear correlation between the formation of coherent vortex

streets associated with the strong generation of the zonal flow and transport reduction is found

for the cases with weak parallel compression, even though the maximum growth rate of linear

ETG modes is relatively large. Power spectra of the entropy variable δS n and the entropy flux

Jn in the 3∥-space for the different Θ have been examined by means of the Hermite polynomial

expansion. Then it is found that the different vortex structures in the real space, which depend

on Θ, affect the spectral profiles, especially, the n-spectra of the entropy production region in

the lower-n side. A physical mechanism of the secondary growth of zonal flows is discussed

based on the modulational instability analysis with a truncated fluid model, where the parallel

dynamics with acoustic modes is incorporated, then a linear dispersion relation for the zonal-flow

growth rate is derived. The modulational instability driving zonal flows is found to be stabilized

by the effect of the finite parallel compression. The theoretical analysis qualitatively agrees with

the secondary growth of zonal flows found in the slab ETG turbulence simulations for small-Θ,

where the transition of vortex structures and the related transport reduction is observed.

Finally, the investigations of the entropy balance relations, vortex and flow structures are

extended to toroidal ITG and ETG turbulence by means of five-dimensional nonlinear gyroki-

netic simulations. The nonlinear entropy transfer processes in the saturation and steady phases,

which leads to the saturation of the instability growth and with the suppression of turbulent

transport, are carefully examined by the spectral analysis of the entropy transfer function. The

entropy transfer function describes the nonlinear transfer of the entropy variable from non-zonal

to zonal modes, and is regarded as a kinetic extension for zonal-flow energy production due to

the hydrodynamic Reynolds stress. It is found that the statistically steady states of the ITG and

ETG turbulence are realized long after the saturation of linear instability, where the balance re-

lations of T (zf)
s = −D

(zf)
s > 0 and L−1

Ts
Qs − T

(zf)
s = −D

(trb)
s hold separately for the turbulence and
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zonal-flow components (the overline denotes the time-average in a saturated phase). Then, the

formation of the strong zonal flow is observed in the toroidal ITG turbulence, while the radi-

ally elongated streamers, which yield the significant enhancement of heat transport, develop in

the toroidal ETG case. The detailed analysis of the triad transfer functions, Js[kzf | p⊥, q⊥] and

Js[p⊥| q⊥, kzf], clarifies the different entropy transfer processes in saturation and steady phases.

The entropy transfer from non-zonal to zonal modes is substantial in the saturation phase of the

ITG turbulence, while, once the high-amplitude zonal flows are generated, the entropy transfer

to the zonal modes becomes quite weak in the steady state. Instead, the zonal flows play a cat-

alytic role in the entropy transfer among non-zonal modes, i.e., the entropy of non-zonal modes

with low radial-wavenumbers driving the heat transport is successively transferred to the other

non-zonal modes with higher radial-wavenumbers with less contribution to the transport. The

successive entropy transfer to the high-kx modes due to the non-local interactions with the strong

zonal flows in the wavenumber-space leads to the broadening of the wavenumber spectra in the

steady state of the ITG turbulence. In contrast to the ITG case, the nonlinear interactions among

the low-wavenumber non-zonal modes are dominant in the ETG case so that the entropy transfer

resulting from the interactions with zonal flows are not effective for the saturation of the instabil-

ity growth and the transport regulation. The qualitatively similar entropy transfer processes are

also revealed in the slab ITG and ETG turbulence by the detailed comparison of the wavenumber

spectrum of the entropy transfer function.

In the present study based on the framework of the kinetic theory, the comprehensive analysis

of vortex and zonal flow structures and the novel method of the entropy transfer analysis provide

ones with not only deeper understandings of the fundamental physics of the nonlinear interaction

between turbulence and zonal flows including the turbulent transport processes, but also fruitful

suggestions for advanced turbulence diagnostics such as the bi-spectrum analysis.
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