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Abstract

In this Thesis I discuss quantum fluctuations in physics of horizons. There

are two main topics. The first topic is the fluctuations in Unruh effect. When

a particle uniformly accelerated in Minkowski vacuum, it will experience the

vacuum as a thermal bath. Using a stochastic approach, we investigated

the fluctuations of this particle and proved the equipartition theorem for the

transverse fluctuations. We also obtained the relaxation time of the fluctu-

ations and the radiation due to the fluctuations(the Unruh radiation [12]).

These result are also related to the experiment for detecting the Unruh effect

by using high intensity laser(ELI) which is under construction in Europe now.

The second topic is to apply fluctuation theorem to black holes. There is an

analogue between black hole physics and thermodynamics. This analogue

was well established in equilibrium region. We investigated the fluctuations

of the black holes. We considered a system with a black hole coupled with

matter fields and derive a non-equilibrium relation for the black holes. This

relation corresponds to the non-equilibrium fluctuation theorem of Crooks

and Jarzynski. As a result, we can also obtain the generalized second law

from this relation. In our derivation, the second law holds only after taking

a thermodynamic average, and it should be violated as individual process in

a way to satisfy the Jarzynski equality. The thermodynamic features of the

horizons should be closed related to a more fundamental structure of space-

time. So it will be important to investigate the fluctuations of the horizons.
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Chapter 1

Introduction

One of the most interesting problem for theoretical physics must be the

unification of quantum theory with general relativity. It is expected that

the answer to this problem will tell us about the structure of spacetime.

There are various approaches to this problem, it is widely believed that the

thermodynamical behaviors of black holes and the Hawking effect will play

a key role.

A black hole is a region in spacetime where the gravitational field is so

strong that even light can not escape from there to infinity. The black hole

itself is just a solution of Einstein equation which is a hyperbolic second order

partial differential equation. However, people noticed that there is an anal-

ogy between black hole physics and thermodynamics [1]. After that, Hawking

showed that due to the quantum effects, there is a thermal radiation with

a black body spectrum from the black hole [2]. This means that the black

hole thermodynamics is not just an analogue, it should has some physical

meaning. The Hawking radiation also gives many implications about micro-

scopic structure of spacetime itself. For example, if the thermodynamical

quantities of black hole are physical, then how do we explain them from sta-

tistical mechanics? How to count the number of states and obtain the black

hole entropy? The theory of quantum gravity should answer these questions.
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CHAPTER 1. INTRODUCTION 2

Indeed there are varieties of works to explain the black hole entropy from

microscopic point of view, for example see [3] [4].

In the thermodynamics of black holes, the event horizon plays an impor-

tant role . Unruh found that the Minkowski vacuum will appear as a thermal

state for an uniformly accelerated observer [5], this is known as the Unruh

effect. Just as the black hole has event horizon, there is a event horizon for

the uniformly accelerated observer. Indeed, the Unruh effect is related to

Hawking radiation via equivalence theorem. A derivation of the Hawking

radiation by using quantum anomaly can clearly show that the existence of

event horizon is a essential for the Hawking radiation [6]. Further more,

Ted Jacobson showed that one can derive Einstein equation by assuming the

thermodynamics of horizons [7].

One see that the thermodynamics of event horizon is a key to the quantum

aspect of gravity. However, most of the discussions were done in equilibrium

region. We would like to investigate the fluctuations related to the event

horizons. We expect that this will be important to understand the structure

of spacetime. In this thesis, I am going to show two approaches. The first

one is a stochastic approach to the Unruh effect and the second one is to

show a fluctuation theorem for black holes.

When a particle uniformly accelerated in Minkowski vacuum, it will ex-

perience the vacuum as a thermal bath. Due to the interactions with this

thermal bath, the motion of the particle will be stochastic. Using the stochas-

tic approach, we investigated the fluctuations of this particle and proved the

equipartition theorem for the transverse fluctuations. We also obtained the

relaxation time of the fluctuations and the radiation due to the fluctua-

tions(the Unruh radiation [12]). These results are also useful in experiments

which are under planning to detect the Unruh radiation by using ultrahigh

intensity lasers [13, 14].

For black holes. We applied the recent developments in non-equilibrium

statistical physics to area changing processes of a black hole interacting with
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external matter. We derived the non-equilibrium fluctuation theorems of

Crooks and Jarzynski for the black holes. And this procedure also gives an-

other derivation of the generalized second law of black hole thermodynamics.

In our derivation, the second law holds only after taking a thermodynamic

average, and it should be violated as individual process in a way to satisfy

the Jarzynski equality. This is a first step to understand the non-equilibrium

nature of the black hole horizons.

The plan of this thesis is following. In chapter 2, I am going to review the

fundamental facts of the event horizons. In chapter 3, I am going to show

the stochastic approach and the results for the Unruh effect. In chapter 4, I

am going to show our fluctuation theorem of the black holes.



Chapter 2

Physics of Horizons

The organization of this chapter is following. First I am going to review

the Unruh effect. Then is the black hole physics, the thermodynamics, the

Hawking radiation, the argument of Ted Jacobson. Finally I would like to

review the Membrane paradigm, which is a very interesting approach to the

horizon.

2.1 Unruh Effect

An uniformly accelerated observer sees the Minkowski vacuum as thermally

excited, this is called Unruh effect. Unruh effect is very fundamental and

important since it means that in field theory the content of particle is ob-

server dependent. The existence of an event horizon is essential for Unruh

effect, and Unruh effect is also related to Hawking radiation by equivalence

principle.

2.1.1 Scalar Fields in curved space

The Unruh effect is in flat spacetime. But it is useful to briefly review the

framework of quantum field theory in curved spacetime. This framework will

also be used in derivation of Hawking radiation. Here, we only consider a

4



CHAPTER 2. PHYSICS OF HORIZONS 5

scalar field. The other case can add some technical details (for example to

concern the spin components), but the essence is same.

Consider the action

S =

∫
d4x

1

2

√
−g (gµνϕ,µϕ,ν −m2ϕ2), (2.1)

the field equation is given by

(
1√
−g

∂µg
µν
√
−g∂ν +m2)ϕ = 0. (2.2)

Using the complete sets of the solutions of this equation of motion, one can

expand operator ϕ(x) as:

ϕ(x) =
∑
k

(akuk(x) + a†ku
∗
k(x)). (2.3)

Define an inner product as

(f, g) = (g, f)∗ = i

∫
Σ

(
f ∗(x)nµ∇µg(x)− (nµ∇µf

∗(x))g(x)

)√
hd3x. (2.4)

If f(x) and g(x) are both solutions of the equation of motion, then the value

of their inner product will be independent of the choice of hypersurface Σ.

The ortho-normality condition is given by:

(uk, uk′) = δ(k, k′), (u∗
k, u

∗
k′) = −δ(k, k′), (uk, u

∗
k′) = 0. (2.5)

Note that we took uk(x) to be always positive norm and u∗
k to be negative

norm. One can written ak and a†k by the inner product

ak = (uk, ϕ), a†k = −(u∗
k, ϕ). (2.6)

Now, consider to different complete sets uM,k and uR,k. Then there are

tow different expansions of ϕ(x)

ϕ(x) =
∑
k

(aM,kuM,k(x) + a†M,ku
∗
M,k(x))

=
∑
k

(aR,kuR,k(x) + a†R,ku
∗
R,k(x)). (2.7)
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Generally, operators (aM,k, a
†
M,k) and (aR,k,a

†
R,k) are different, they are related

by

aR,k̃ =
∑
k

(
α∗(k̃, k)aM,k + β∗(k̃, k)a†M,k

)
a†
R,k̃

=
∑
k

(
α(k̃, k)a†M,k + β(k̃, k)aM,k

)
. (2.8)

The coefficients α(k̃, k) and β(k̃, k) are given by:

α∗(k̃, k) = (uR,k̃, uM,k), β∗(k̃, k) = (uR,k̃, u
∗
M,k). (2.9)

This transformation is known as Bogolubov transformation. The coefficients

α(k̃, k) and β(k̃, k) are called Bogolubov coefficients. The Bogolubov coeffi-

cients possess the following properties∑
k

(
α(i, k)α∗(j, k)− β(i, k)β∗(j, k)

)
= δ(i, j),

∑
k

(
α(i, k)β(j, k)− β(i, k)α(j, k)

)
= 0, (2.10)

which retains the commutation relations,

[ak, a
†
k′ ] = δ(k, k′), [ak, ak′ ] = 0, [a†k, a

†
k′ ] = 0, (2.11)

for both aM,k and aR,k.

With this two sets of annihilation and creation operators aM,k and aR,k,

there are also two definitions the vacuum: |0⟩M defined by aMk|0⟩M = 0, or

|0⟩R defined by aRk|0⟩R = 0. Generally this two vacuums are not identical.

For example, the expectation value of the number operator defined by uR is

zero for |0⟩R, but is generally nonzero at state |0⟩M

⟨NR,k⟩R = R⟨0|a†R,kaR,k|0⟩R = 0

M⟨NR,k⟩M = M⟨0|a†R,kaR,k|0⟩M
= M⟨0|

∑
k′

β(k, k
′
)β∗(k, k

′
)aM,k

′a†
M,k

′ |0⟩M

=
∑
k
′

β(k, k
′
)β∗(k, k

′
). (2.12)
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Finally, the exact relation between |0⟩M and |0⟩R can be obtained by inserting

a set of complete states

|0⟩M =
∑
{nω}

R⟨nω|0⟩M |nω⟩R. (2.13)

Where |nω⟩R =
∏
ω

1√
nω!

(a†Rω)
nω |0⟩R. The two vacuum |0⟩M and |0⟩R are

equal if and only if β(k̃, k) = 0 for all k̃ and k.

2.1.2 Rindler Space

Now we are going to show that the vacuum for the inertial observer is looks

like a thermal state for the uniformly accelerated observer. Here we con-

sider the scalar field in flat space. The coordinates correspond the uniformly

accelerated observers are

t = ρ sinh τ

x = ρ cosh τ. (2.14)

Then the metric takes the form:

ds2 = ρ2dτ 2 − dρ2 − dy2 − dz2. (2.15)

Where ρ ≥ 0 and this Rindler coordinates (τ, ρ, x2, x3) covers only the region

z ≥ |t|. It is easy to check that ρ = ρ0 describe a world line with constant

proper acceleration Fig. 2.1.

It is convenient to define the coordinates (u, v) and (U, V )

u = τ − log ρ, v = τ + log ρ

U = t− x = −e−u, V = t+ x = ev. (2.16)

Now the metric takes the form ds2 = ρ2dudv−dy2−dz2 = dUdV −dy2−dz2.

The Rindler coordinates covers V ≥ 0, U ≤ 0. The future horizon is given
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Figure 2.1: Rindler Coordinates.

by U = 0, corresponds to v = v0 and u → ∞. The past horizon is given by

V = 0, corresponds to v → −∞ and u = u0.

Next we solve the wave equation in the two coordinates and calculate

β(ω̃, ω) explicitly. The solutions of the equation of motion can be written in

the form

ϕM,ωk⃗ =
e−iωt−ik⃗·x⃗√
(2π)3|ω|

ϕR,ω̃k⃗ =
e−iω̃τ−i(k1x+k2y)√

(2π)|ω̃|
gω̃k⃗(ρ), (2.17)

for the Minkowski observers and the Rindler observers respectively. Here

ω = (µ2 + k⃗ · k⃗) 1
2 and ω̃ is a free parameter. gω̃k⃗(ρ) satisfies the equation:

ω̃2 + ρ∂ρρ∂ρ − ρ2(k2
1 + k2

2 +m2)gω̃k⃗(ρ) = 0. (2.18)

Near horizon (ρ → 0) the mass term and the transverse momentum is neg-

ligible, the equation behaves like {( ∂
∂ log ρ

)2 + ω̃2}gω̃k⃗(ρ) = 0. Then ϕR,ω̃k⃗ is

solved as

ϕR,ω̃k⃗ =
(e−iω̃u + αe−iω̃v)e−i(k1x+k2y)√

(2π)3|ω̃|
. (2.19)
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Here α is a complex number satisfies |α| = 1. Near the past horizon (V = 0

and v → ∞)

ϕR,ω̃k⃗ →
e−iω̃u−ik1x−ik2y√

(2π)3|2ω̃|
=

|1
2
U |i2ω̃e−ik1x−ik2y√

(2π)3|2ω̃|
. (2.20)

Since we are considering the null surface, the normalization of the wave

function is need to be specified. Here we the normalization as

i

∫ ∞

−∞
du

∫
d2x⃗(ϕ∗

R,ω̃k⃗
∂uϕR,ω̃′ k⃗′ − ∂u(ϕ

∗
R,ω̃k⃗

)ϕR,ω̃′ k⃗′ )

= i

∫ 0

−∞
dU

∫
d2k⃗(ϕ∗

R,ω̃k⃗
∂UϕR,ω̃

′
k⃗
′ − ∂U(ϕ

∗
R,ω̃k⃗

)ϕR,ω̃
′
k⃗
′ )

= δ(ω̃ − ω̃
′
)δ2(k⃗ − k⃗

′
) (2.21)

With the same normalization ϕM,ωk⃗ is

ϕM,ωk⃗ =
e−i(ω+k3)

U
2 e−ik1x−ik2y√

(2π)3|ω̄|
. (2.22)

Where ω̄ = ω + k3. With these preparation we can calculate β(ω, ω̃) and

obtain the expectation velues of Nω

β(ω, ω̃) = −
∫ 0

−∞
dU

ω

2π
√

|ω̃ω|
|U |iω̃e−iωU

= −
∫ ∞

0

dτ

2π

√
|ω|
|ω̃|

e2ω̃i log τeiωτ

= −
∫ ∞

0

ds

2π

1

|ωω̃|
e2ω̃i log s+ise−2ω̃i logω

= − 1

2π
e−ω̃π−2ω̃i logωΓ(1 + 2ω̃i)

1

|ω̃ω|
. (2.23)

The last line can be carried out by complex path integral. Nω is given by∫
β(ω̃, ω)β∗(ω̃′, ω)dω = e−2ω̃π

∫
e−2i logω(ω̃−ω̃′)Γ(1 + 2ω̃i)Γ(1− 2ω̃′)

|ω̃ω̃′|
dω

4πω

=
e−2ω̃π

2 sinh (2ω̃π)
δ(ω̃ − ω̃′). (2.24)
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Here we used equation 1
Γ(s)Γ(1−s)

= sin (πs)
π

in the last line. Now we obtain

the thermal distribution Nω = 1
1−e4ω̃π . Note that energy of the wave function

ϕRω is given by ω
2
(at past horizon U = T + Z = 2T ), the temperature of

this thermal distribution is TR = 1
βR

= 1
2π
.

To make the meaning of Unruh effect concrete, the Unruh detector is

proposed

(a) The detector will react to states which have positive frequency with

respect to the detectors proper time, not with respect to any universal time.

(b) The process of detection of a field quanta by a detector, defined as the

exciting of the detector by the field, may correspond to either the absorption

or the emission of a field quanta when the detector is an accelerated one.

With these assumptions one can show that a uniformly detector will

record finite temperature while a inertial detector record nothing. We will

come back to this model in Chapter 3. As we have already seen, the es-

sential reason for this result is that the detector measures frequencies with

respect to its own proper time. For an accelerated observer, this definition of

positive frequency is not equivalant to that of a nonaccelerated observer. In

Minkowski spacetime, positive frequency defined with respect to any geodesic

detectors are all equivalent. However in noneflat spacetime, two equally valid

geodesic detectors may disagree on whether there are field quanta present.

Hence the concept of particles is observer dependent. It is natural to ask

that how can we detect the Unruh effect. I will discuss this point in Chapter

3.

2.2 Black Hole Physics

Black hole gives many implications to the microscopic structure of space-

time. Here I am going to review the thermodynamics and the Hawking

radiation of the black holes.
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2.2.1 Black Hole Thermodynamics

Consider that a black hole swallows a hot body possessing a certain amount of

entropy. Then the observer outside it finds that the total entropy in the part

of the world accessible to his observation has decreased. This disappearance

of entropy could be avoided in a purely formal way if we simply assigned the

entropy of the ingested body to the inner region of the black hole. But this

solution is unsatisfactory because the outside observer can not determine

the amount of entropy absorbed by the black hole. Quite soon after the

absorption, the black hole becomes stationary and completely forgets the

information of the ingest body and its entropy.

If we are not inclined to forgo the law of non-decreasing entropy because

a black hole has formed somewhere in the Universe, we have to conclude that

any black hole by itself possesses a certain amount of entropy. A hot body

falling into it not only transfers its mass, angular momentum and electric

charge to the black hole, but also transfers its entropy S. As a result, the

entropy of the black hole will increase when something falling to it. Beken-

stein noticed that the properties of the black hole horizon area, A, resemble

those of entropy. Indeed with the following correspondences

T =
~κ
2πkc

, S =
A

4G~
, E = Mc2, (2.25)

there is an analogy between thermodynamics and black hole physics. People

formulated the four laws of black hole physics, which are similar to the four

laws of thermodynamics.

Zeroth law: The surface gravity of a stationary black hole is constant

everywhere on the surface of the event horizon.

The zeroth law corresponds to that thermodynamics does not permit

equilibrium when different parts of a system are at different temperatures.

The existence of a state of thermodynamic equilibrium and temperature is

postulated by the zeroth law of thermodynamics. This zeroth law of black

hole physics plays a similar role. This proposition was proved under the
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assumption of the energy dominance condition

TαβTγθg
αγuβuγ ≥ 0, (2.26)

which is that Tαβu
β is a non-spacelike vector. Where Tαβ is the energy

momentum tensor and uµ is an arbitrary timelike vector field.

First law: When the system incorporating a black hole switches from one

stationary state to another, its mass changes by

dM = TdS + ΩdJ + µdQ+ δq, (2.27)

where dJ and dQ are the changes in the total angular momentum and electric

charge of the black hole, respectively, and δq is the contribution to the change

in the total mass due to the change in the stationary matter distribution

outside the black hole.

The first law is known as a mass formula of the black holes. And this can

be generalized to the higher derivative gravity, known as Wald formula [8].

The entropy of black hole is just the Noether charge.

Second law: In any classical process, the area of a black hole, A, and

hence its entropy S, do not decrease:

∆S ≥ 0. (2.28)

The second law is known as the Hawking’s area theorem, which is proved

with the weak energy condition

Tαβu
αuβ ≥ 0. (2.29)

In both cases of thermodynamics and black hole physics, the second law sig-

nals the irreversibility in the system. As in thermodynamics, the entropy

stems from the impossibility of extracting any information about the struc-

ture of the system, the structure of the black hole. Note that this second

law is classical, the quantum effects can violate Hawking’s area theorem.

Hawking radiation will reduce the black hole area. On the other hand, the
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radiation itself is thermal and it will rise the entropy outside the black hole.

So people expect the generalized second law which says that the sum of the

black hole entropy and the entropy of the radiation or matter outside the

black hole will not decrease. I will derive this generalized second law at

chapter 4, in context of the fluctuation theorem for black hole.

Third law: It is impossible by any procedure, no matter how idealized, to

reduce the black hole temperature to zero by a finite sequence of operations.

The impossibility of transforming a black hole into an extremal one is

closely related to the impossibility of realizing a state with M2 < a2 +Q2 in

which a naked singularity would appear. Israel [9] proposed and proved the

following version of the third law: A non-extremal black hole cannot become

extremal at a finite advanced time in any continuous process in which the

stress-energy tensor of accreated matter stays bounded and satisfies the weak

energy condition in a neighborhood of the outer apparent horizon. It must

be emphasized that unlike the thermodynamics, the entropy of black hole

generally will not vanishes at zero temperature. The horizon area A remains

finite as κ → 0.

In this section, we only reviewed the analogues between the thermody-

namics and the black hole physics. The physical meanings of this black hole

thermodynamics, especially for the black hole temperature will be clear in

Hawking radiation.

2.2.2 Hawking Radiation

Here we consider the Schwarzschild black holes for simplicity. The essence

does not change for general black holes.

The Schwarzschild black holes are described by the metric

ds2 = (1− 2M

r
)dt2 − (1− 2M

r
)−1dr2 − r2dΩ2. (2.30)

Here M is the mass of the black hole. This metric will goes to flat at infinity,

r → ∞, so (r, t) is the coordinates of the observer who stays at the infinity,
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the asymptotic observer. This coordinates is singular at r = 2M , this cor-

responds to the horizon of the black hole. However this singularity is just

a coordinate singularity, and physical quantities will not diverge here. For

example, a coordinate which is regular at the horizon can be given by

U =
(

r
2GM

− 1
) 1

2 e
r+t
4GM

V = −
(

r
2GM

− 1
) 1

2 e
r−t
4GM . (2.31)

Then the metric are

ds2 =
32G3M3

r
e−r/2GM(dUdV )− r2dΩ2, (2.32)

which is regular at r = 2M , and this coordinates correspond to coordinates

of free falling observers.

Hawking radiation is related to Unruh effect via equivalence principle.

Indeed, Rindler space will emerge in the near horizon limit of the black holes.

For example, consider the near horizon limit (r → 2M) of the Schwarzschild

metric

ds2 = (1− 2M

r
)dt2 − (1− 2M

r
)−1dr2 − r2dΩ2

→ (r − 2M)
dt2

2M
− 2Mdr2

r − 2M
− r2dΩ2

= ρ2(
dt

4M
)2 − dρ2 − r2dΩ2. (2.33)

Here dρ =
√
2M√

r−2M
dr and ρ = 2

√
2M(r − 2M) > 0. The black hole horizon

(r = 2M) corresponds ρ = 0 in the Rindler coordinates.

Denote |0⟩U for Unruh vacuum which defined as the vacuum for the free

falling observer, and denote |0⟩S for Schwarzschild vacuum which defined as

the vacuum for the observer at spacetime infinity. Here |0⟩U corresponds to

|0⟩R and |0⟩S corresponds to |0⟩M at the previous section.

One can evaluate the Bogolubov transformation at the horizon. Then the

geometry will becomes the Rindler space. Unruh vacuum is vacuum for free
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falling observers near horizon, and Schwarzchild is vacuum for observers at

infinity.

However the temperature TR = 1
2π

obtained before is defined by Rindler

time and is different from the temperature observed at infinity. One should

take account the redshift from Rindler time to Schwarzchild time. For exam-

ple, as we showed before (2.33), the near horizon Schwarzschild geometries

can be written by:

ds2 = −ρ2(
dt

4M
)2 + dρ2 + r2dΩ2. (2.34)

Where t
4M

is the Rindler time, and t is the Schwarzchild time. So the radi-

ation will experience a redshift from the Rindler coordinates to the infinity

observers. Hence the temperature of Hawking radiation is given by

T =
1

8πM
. (2.35)

The Unruh effect just tells us that |0⟩R is different from |0⟩M , and one

can find the explicit relation between |0⟩M and |0⟩. There is no problem for

that which state is more natural to be vacuum. However Hawking radiation

occurs for vacuum |0⟩U . If one chooses vacuum |0⟩ there will be no Hawking

radiation.

There are a number of reasons why people favor the Unruh vacuum over

the Schwarzchild vacuum:

(1) As we mentioned before, Unruh vacuum is the vacuum for free falling

observers. It seems more natural to take the vacuum that free falling ob-

server observes nothing than the vacuum that free observers boserves finite

temperature.

(2) Most physical properties of the scalar field (charge density, energy,

etc.) are regular for Unruh vacuum and will become singular for Schwarzchild

vacuum.

(3) Unruh vacuum preserves more symmetris than Schwarzchild vacuum.

For the case of flat spacetime, it is the property that |0⟩M is invariant under

the full Poincaré group while |0⟩R does not.
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(4) Consider the situation that a star shell collapse to black hole, for

example, the Vaidya metric, then it will turn out that Unruh vacuum is

preferred.

2.2.3 Information Puzzle

The Hawking radiation from a black hole is thermal. This result is obtained

in the semi-classical approximation, which is supposed to be valid until the

black hole has shrunk to nearly the Planck mass. Then, if the black hole

disappears completely, what is left is just thermal radiation. This also occurs

even in the case when we start from some pure state collapse into a black

hole. This means whatever initial state one start from, once it collapse to a

black hole, the final state will be the same which is just thermal radiation.

The information of the initial state are lost in this process. Or in another

way to say, a pure state seems to go to a mixed state in this process. This can

not happen in a quantum system with unitary time evolution. This problem

is called the information loss puzzle, or information paradox.

There are many discussions on the information puzzle. However, none of

them are satisfactory. The information paradox appears more like a hint or

motivation than a problem, which helps people to investigate the microscopic

structure of spacetime.

2.3 The Argument of Ted Jacobson

Though the black holes are just solutions of the Einstein equation, but the

thermodynamics do hold for black holes. This fact is very surprisingly since

the Einstein equation is just a hyperbolic second order partial differential

equation. This fact may implies some connections between gravity and ther-

modynamics. Some people also expects that the gravity may just be effective

descriptions, like thermodynamics. Ted Jacobson [7] push this idea further.
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He reversed the argument by assuming the thermodynamics of horizons first

and then derived the Einstein equation.

The basic idea is following. First assume that in quantum spacetime there

is a universal entropy density α per unit horizon area

S = αA, (2.36)

here A is the horizon area. Next consider the energy flux flows through this

horizon as the heat, dQ. Then determine the temperature from the Unruh

effect. And finally obtain the Einstein equation from the relation

δS =
δQ

T
. (2.37)

The local causal horizon at a point p is defined like this: choose a spacelike

2-surface patch B including p and consider the past boundary of B. Near

p, this boundary is a congruence of null geodesics orthogonal to B. These

comprise the horizon. Here B is chosen as such that the expansion θ and

shear σab of this congruence are vanishing at p. This means the equilibrium

state at p.

To define the heat flux and temperature, employ an approximate boost

Killing vector field χa that vanishes at p, so its flow leaves the tangent plane

Bp to B at p invariant. The direction of χa is chosen to pointing on future of

the causal horizon. The normalization of χa is chosen so that χa;bχ
a;b = −2,

just like the usual boost Killing vector x∂t + t∂x in Minkowski spacetime.

One can obtain χa by solving Killing’s equation χa;b + χb;a = 0 in Riemann

normal coordinates, yµ, order by order. However, there may be no solutions

at O(y3), since a general curved spacetime may not to have a Killing vector.

Killing time along the horizon is given by the parameter v such that

χµ∇µv = 1. This Killing time is related to the affine parameter along the

horizon generators by λ = −e−v, the point p is located at infinite Killing

time and λ = 0. It will be convenient to work in terms of horizon tangent

vector kµ which is related to χa by χa = −λka.
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Now consider the heat as the energy current of matter across the horizon

δQ =

∫
TM
µνχ

µdΣν , (2.38)

where TM
µν is the stress tensor of matter. The integral is taken over a short

segment of a thin pencil of horizon generators centered on the one that ter-

minates at p. The temperature is given by T = ~
2π

which is the Unruh

temperature of the Rindler space. Thus one have

δQ

T
=

2π

~

∫
TM
µν k

µkν(−λ)dλd2A. (2.39)

The entropy change δS = αδA is given by

δA =

∫
θdλd2A, (2.40)

where θ = d(ln d2A)/λ is the expansion of the congruence of null geodesics

generation the horizon. Using the Raychaudhuri equation

θ

dλ
= −1

2
θ2 − σµνσ

µν −Rµνk
µkν , (2.41)

one can expand θ around p where λ = 0, then

δS = α

∫ [
θ − λ

(
1

2
θ2 + σµνσ

µν +Rµνk
µkν

)]
|p
dλd2A. (2.42)

Note that all quantities in the integrand are evaluated at p. Using the as-

sumption of the equilibrium, θ = σab = 0 at p

δS = α

∫
Rabk

akb(−λ)dλd2A. (2.43)

Now if one require that δS = δQ/T holds for all local Rindler horizons

through all points p. Then the integrand of (2.39) and (2.43) should be same

at every point

Rabk
akb =

2π

α~
TM
ab k

akb. (2.44)
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This should hold for all null vectors ka. So

Rab + Λgab =
2π

~α
TM
ab , (2.45)

here the λ is a undetermined constant since gabk
akb = 0. Finally, with the

entropy density α

α =
1

4~G
, (2.46)

the Einstein equation with cosmological constant is derived.

2.4 Membrane Paradigm

Another interesting issue closely related to the horizons is the Membrane

Paradigm. It has been shown that observer who remains outside a black

hole will see the horizon to behave according to equations that describe a

fluid bubble with electrical conductivity as well as shear and bulk viscosities.

The membrane paradigm is a point of view that consider a black hole as a

dynamical time-like surface, the membrane. It was first proposed by Kip S.

Thorn, R. H. Price and D. A. Macdonald [10]. Here I am going to review an

approach given by M. K. Parikh and F. Wilczek [11].

The basic idea is like this, since (Classically) nothing can emerge from a

blackhole, an observer who remains outside a blackhole cannot be affected

by the dynamics inside the hole. Hence we should be able to obtain the

equations of motion for external region from varying the action restricted to

the external universe.

But the boundary of external region is not the boundary of spacetime.

Then some surface terms will be left when we varying the action to obtain

the equation of motion. So we have to add some surface terms which cancel

the residual surface terms and enable us to get the complete equations of

motion. Interpreting these added surface terms as sources residing on the

horizon will give the picture of membrane.
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Here what we actually do is just dividing the space-time into two regions

(the boundary is not necessary to be horizon) and rewriting the total action

as

Stotal = (Sout + Ssurf ) + (Sin − Ssurf ), (2.47)

requiring δSout + δSsurf = 0. Then Ssurf corresponds to sources on the

boundary.

Here instead of the true horizon we consider the stretched horizon, which

is a time-like surface just outside the true horizon. We parameterize it’s

location by α in the way that α → 0 corresponds the limit that the stretched

horizon coincides with the true horizon. Many intermediate quantities will

diverge at the true horizon, α also plays the role of a regulator.

This stretched horizon has several advantages over the true horizon. Un-

like the true horizon the stretched horizon is a time-like (rather than null)

surface. So the metric is nondegenerate, and this enable us to write down

a conventional action of the stretched horizon. We can also say that the

stretched horizon is more fundamental by this sense: an external observer

can make a measurement and report it at the stretched horizon which can

not be done at the true horizon. By the way a one-to-one correspondence

between points on the true horizon and the stretched horizon is always pos-

sible.

2.4.1 The Electromagnetic Membrane

For example, we consider the electromagnetic case here. The action is given

by:

S =

∫
d4x

√
−g(− 1

16π
F µνFµν + JµAµ). (2.48)
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Restrict the integral region to external:

δSout =

∫
d4x

√
−g(− 1

4π
F µν∇µδAν + JνδAν)

=

∫
d4x

√
−g{− 1

4π
∇µ(F

µνδAν) + δAν(
∇µF

µν

4π
+ Jν)}

=

∫
dS

√
−h

1

4π
nµF

µνδAν +

∫
d4x

√
−gδAν(

1

4π
∇µF

µν + Jν).

(2.49)

Put the second term to zero gives the Maxwell equations: ∇µF
µν = −4πJν .

The first term is left because we can not set δAµ to zero at the boundary of

external region. To cancel this term, adding Ssurf :

Ssurf =

∫
d3x

√
−hjµsAµ. (2.50)

Here the equations of motion at the boundary are given by:

jµs =
1

4π
F µνnν . (2.51)

From the antisymmetry of F µν this current is parallel to the horizon (jµs nµ =

0). By component, it is given by:

j0s = − 1

4π
F 0bnb = E⊥

jAs =
1

4π
FAbnb =

1

4π
(n⃗× B⃗)A. (2.52)

This is just the relation between the surface charge and surface current and

the discontinuity of electromagnetic field at the surface. So it is natural to

interpret jµs as the electromagnetic current at the surface. One can also show

that js satisfies the continuity equation by using the equations of motion,

∇µj
µ
s = jµs|µ =

1

4π
∇µF

µνnν

= −Jνnν . (2.53)

This means that any charges that fall into the in-region can be regarded as

remaining on the surface. We did not choose the surface to be the horizon
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until now. So the results obtained here do not depend on which surface we

choose.

It can be show that the membrane behaves like a conductor with certain

conductivity if we choose the surface to be the horizon. We impose the

regularity condition that the electromagnetic fields measured by free falling

observer (FFO) should not diverge at horizon. The fiducial observer (denoted

by FIDO, the observer who just remaining outside the horizon) is related

to the free falling observer by some infinite Lorentz boosts (β → 1). For

example, EFIDO
θ and BFIDO

ϕ are given by:

EFIDO
θ = F 0θ

FIDO = γF 0θ
FFO − βγF rθ

FFO

= γ(EFFO
θ −BFFO

ϕ )

BFIDO
ϕ = F rθ

FIDO = −γβF 0θ
FFO + γF rθ

FFO

= γ(BFFO
ϕ − EFFO

θ ). (2.54)

We obtain relation: EFIDO
θ = −BFIDO

ϕ . Similarly we can also obtain EFIDO
ϕ =

BFIDO
θ . In summary:

E⃗FIDO
∥ = n⃗× B⃗FIDO

∥ = 4πj⃗s. (2.55)

This is the Ohm’s law for the conductor with resistivity ρ = 4π ≈ 377Ω.

Here the regularity condition is equivalent to the statement that classically

all radiation in the normal direction is ingoing (a black hole acts as a perfect

absorber). Indeed the Poynting flux can be calculated,

S⃗ =
1

4π
E⃗ × B⃗ = −j2sρn⃗. (2.56)

It is always inward. This equation also describes the Joule heating.

2.4.2 The Gravitational Membrane

In order to explore more about the membrane, we fix our convention here.

We denote Ua to be the tangential vectors of the world lines of the fiducial
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observers(Ua = ( d
dτ
)a, where τ is the proper time of the fiducial observer).

The normal vector of the hypersurface is denoted by na. Also we choose the

normal vector congruence to be along the geodesics. We can parameterize

the location of the stretched horizon in the way that αUa → la and αna → la;

in other words αUa and αna are equal in the true horizon limit, and the null

vector la is both normal and tangential to the horizon.

The hypersurface can be regarded as a d+1 space-time splitting, and na

is the normal vector. We can also consider the (d − 1) + 1 splitting of the

hypersurface, take Ua to be the normal vector, and the d − 1 part can be

regarded as the space-like section of the hypersurface. We denote the metric

on the hypersurface and on the space-like section by hab and γAB.

If some vector fields lie in the hypersurface, then we can define a covariant

derivative on the hypersurface, denote |a to be the d-covariant derivative

(the derivative on the stretched horizon) and denote ||A to be the (d − 1)-

covariant derivative (the derivative on the space-like section of the stretched

horizon). The covariant derivatives are related by hc
d∇cw

a = wa
|d −Kc

dwcn
a,

where Ka
b = hc

b∇cn
a is the extrinsic curvature of the stretched horizon. In

summary

Ua = (
d

dτ
)a, U2 = −1, lim

α→0
αUa = la (2.57)

n2 = 1, ac = na∇an
c = 0, lim

α→0
αna = la (2.58)

l2 = 0 (2.59)

ha
b = gab − nanb,

γa
b = ha

b + UaUb = gab − nanb + UaUb (2.60)

For wa lies in the surface hc
d∇cw

a = wa
|d −Kc

dwcn
a

∇cw
c = wc

|c. (2.61)

Action

Now we turn to the gravitational membrane. First we write down the action

for the membrane, second we show that this membrane behaves like a fluid
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which satisfies the “Navier-Stokes equation”.

The way to obtain the action of membrane is same as the electromagnetic

case. But the calculation is more complicated and for gravitational case the

surface has to be the stretched horizon in order to write down the action.

The Einstein-Hilbert action is given by:

S[gab] =
1

16π

∫
d4x

√
−gR +

1

8π

∮
d3x

√
±hK + Smatter, (2.62)

the integral of the second term is only over the outer boundary of the space-

time. It is necessary to obtain the Einstein equations since the Ricci scalar

contains second derivatives of gab. The equations of motion well known

Rab −
1

2
gabR = 8πTab. (2.63)

The surface term only comes from gabδRab

gabδRab = ∇a[∇b(δgab)− gcd∇a(δgcd)]. (2.64)

Note that the normal vector na is taken to point outward, and Gauss’s the-

orem gives∫
d4x

√
−g(gabδRab) = −

∫
d3x

√
−hnagbc[∇c(δgab −∇a(δgbc))]. (2.65)

Equation nanbnc[∇c(δgab − ∇a(δgbc))] = 0 and equation gab = hab − nanb

enable us to replace gbcδRbc to hbcδRbc:∫
d4x

√
−g(gabδRab) = −

∫
d3x

√
−hnahbc[∇c(δgab −∇a(δgbc))]. (2.66)

Since the variation of membrane action takes the form δSsurf =
∫
d3x

√
−h tsabδh

ab,

we have to rewrite this term in order to obtain the membrane action,∫
d4x

√
−g(gabδRab) =

∫
d3x

√
−hhbc[∇a(n

aδgbc)− δgbc∇a(n
a)

−∇c(n
aδgab) + δgab∇c(n

a)]. (2.67)
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Terms involving derivative of δgab will vanish in the limit that the stretched

horizon approaches the true horizon:∫
d3x

√
−hhbc[∇a(n

aδgbc)−∇c(n
aδgab)] = 0. (2.68)

With Kab = hbc∇cn
a the variation of the external action is

δSout[g
ab] =

1

16π

∫
d3x

√
−h(Khab −Kab)δh

ab. (2.69)

We have to integrate equation (2.69) to obtain the membrane action.

Ssurf [h
ab] =

∫
d3x

√
−h(Babh

ab − b) (2.70)

is a solution, with source terms to be

Bab =
1

16π
Kab

b = − 1

16π
K. (2.71)

If we write the variation of the membrane action by the form

δSsurf [h
ab] = −1

2

∫
d3x

√
−htsabδh

ab, (2.72)

then the membrane stress tensor is given by

tabs =
1

8π
(Khab −Kab). (2.73)

Just as a surface charge produces a discontinuity in the normal component

of the electric field, a surface stress tensor creates a discontinuity in the

extrinsic curvature. The membrane stress tensor is consistent with the Israel

junction condition:

tabs =
1

8π
([K]hab − [K]ab), (2.74)

where [K] = K+−K− is the discontinuity of the extrinsic curvature through

the surface. One can also show that tabs satisfies the continuity equation by

using the equations of motion:

t ab
s |b =

1

8π
[(Khab)|b −Kab

|b]

= −T na

= −ha
cT

cdnd. (2.75)



CHAPTER 2. PHYSICS OF HORIZONS 26

The “Navier-Stokes equation”

The continuity equaiton and the fact that tabs consistent with Israel junction

condition imply that stretched horizon can be considered as a fluid mem-

brane. Indeed, it can be shown that membrane obeys the Navier-Stokes

equation.

In the limit that the stretched horizon approaches the true horizon both

αUa and αna approach la:

U c∇cn
a → 1

α2
lc∇cl

a =
gH
α2

la. (2.76)

Using this fact we can write down all the components of Ka
b . For K

U
U :

KabU
aU b = UaU b∇anb

→ α−2Ualb∇alb = α−2U blbgH

→ α−1UaUagH = −α−1gH = −g. (2.77)

For KU
A :

KU
A = γa

AU
bKab → gγa

AUa = 0.

If we define the extrinsic curvature of the space-like section of stretched

horizon as: kA
B = γd

AlB|d =
1
2
£laγAB, then KA

B is given by:

KB
A = γa

AK
b
aγ

B
b = γa

Aγ
B
b ∇an

b

→ 1

α
γa
Aγ

B
b ∇al

b =
1

α
kB
A . (2.78)

We can decompose kA
B into traceless part and trace part: KAB = σAB+

1
2
γABθ.

Where θ is the traceless part, correspond to shear of the membrane. And θ

is the trace part, correspond to expansion of the membrane. Then we can

write down all the components of tsab explicitly (K = gH+θ
α

here):

πA = tbsaγ
a
AUb =

1

8π
(KhabγaAUb −KU

A ) = 0

Σ = tbsaUbU
a = −K

8π
+

KU
U

8π
= − θ

8πα

tAB
s =

1

8πα
[γAB(gH +

1

2
θ)− σAB]. (2.79)
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The ordinary fluid stress tensor is given by:

Πik = pδik + ρvivk − η(∂kvi + ∂ivk −
2

3
δik∂lvl)− ζδik∂lvl, (2.80)

where vl is velocity of the fluid and p, η, ζ is pressure, shear viscosity and

bulk viscosity of the fluid. If we identify Ua with vl, then the membrane

pressure (p = gH
8πα

), shear viscosity (η = 1
16πα

) and bulk viscosity (ζ = − 1
16πα

)

are obtained.

Now we can write down the Navier-Stokes equation for membrane. Define

the A-momentum density by: πA = tbsaγ
a
AUb. Using the continuity equation:

−γa
AT

c
anc = −T n

A = γa
A(t

b
sa|b)

= (γa
At

b
a)|b − tba(γ

a
A|b)

= −(πAU
b)|b + (tabγ

a
Aγ

bB)||B − tba(UA|b)

= (tBA)||B − U bπA|b − πBUA|B + πAU
b
|b + ΣU bUA|b

= (tBA)||B − γB
A£UπB (2.81)

We have used equation πA = 0 to set πU b
b = 0 and used equation U bUA|b =

U b∇bUA → 1
α2 l

b∇blA = gH
α2 lA = 0 to set ΣU bUA|b = 0. Substitute tsAB, then:

−γB
A£UπB = −∇Ap+ ζ∇Aθ + 2ησB

A||B − T n
A. (2.82)

This equation is quit similar to the Navier-Stokes equation of the ordinary

fluid in 4-dimension (except the source term T n
A):

ρ[
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗] = −∇⃗p+ η∆v⃗ + (ζ +

1

3
)∇⃗(∇⃗ · v⃗)

= −∇⃗p+ 2η∇⃗ · σ + ζ∇⃗(∇⃗ · v⃗) (2.83)

Where σij is shear of the fluid in 4-dimension (2σij = ∂ivj + ∂jvi − δij
2
3
∂lvl).

The viscosity and the Joule heating mean there are disspasion on mem-

brane. It seems mysterious that dissipation can appears, since the equations

of motion of bulk fields are symmetric under time-reversal.
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The breaking of time-reversal symmetry can come from the definition of

the stretched horizon: given data on some suitable surface, for the exterior

we can predict the future but cannot determine the entire past; however

inside the blackhole we can “postdict” the past but cannot determine the

entire future. Thus, our choice of the horizon contains some asymmetry

between past and future. Beside this global properties, the local property

that the normal vector to the horizon is also the tangential to the horizon can

also cause time-reversal asymmetry. In our calculation, this local property

manifests itself as the regularity conditions. Without regularity conditions

we can also obtain surface terms, but no disspation.

Thermodynamics

We can extend the analogy to fluid dynamics to thermodynamics by writing

down the equation for Σ = T abUaUb. Using the continuity equation:

(Uat
ab
s )|b = −TabU

anb + tabs Ua|b

= −TabU
anb + tabs UaUbU

cUdUc|d + tAB
s UA|B

= −TabU
anb − gΣ +

1

α
kABt

AB
s . (2.84)

(Uat
ab
s )|b itself can be written by:

(Uat
ab
s )|b = −Σ|cU

c − ΣU b
|b + (Uat

ab
s γB

b )|B

= −£UΣ− Σg − 1

α
Σθ. (2.85)

Then we obtain:

£UΣ +
1

α
Σθ =

1

α
KABt

AB
s + TabU

anb

= −pθ + ζθ2 + 2ησABσ
AB + T a

b naU
b. (2.86)

This is just the equation of energy conservation. From the analogy with

fluids we may expect that this equation can be related to the heat transfer

equation for a two-dimensional fluid. Indeed if we writing the expansion of
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the fluid in terms of the area, θ = ∆A, we can indeed write the equation as

the heat transfer equation:

T (
d∆S

dτ
− 1

g

d2∆S

dτ 2
) = (ζθ2 + 2ησABσ

AB + T a
b naU

b)∆A, (2.87)

with the entropy S and temperature T given by:

S = F
kB
~
A, T =

~
8πkBF

g. (2.88)

F is some constant remains undetermined.

The temperature T and entropy S can be obtained by another way. Tem-

perature can be obtained by performing an analytic continuation to imagi-

nary time, τ = it. For removing the conical singularity τ have to be periodic.

Temperature can be read from the period:

β =

∫
dτ =

2π

gH
.

Entropy can be calculated using partition function. Since the dominant

contribution to the path integral comes frome the classical solution, we just

evaluate the partition function in a stationary phase approximation:

Z =

∫
DgabE exp (−1

~
(SE

out[g
ab
E ] + SE

surf [h
ab
E ]))

= exp (−1

~
(SE

out[g
ab
E cl] + SE

surf [h
ab
E cl])). (2.89)

Where Sout = Sbulk+S∞, and for a blackhole alone in the universe, Sbulk = 0.

A term proportional to the surface area at infinity can be included in S∞

without effect the Einstein equations. We fix S∞ by:

S∞ =
1

8π

∫
d3x

√
−h[K], (2.90)

where [K] is the difference in the trace of the extrinsic curvature at the

spacetime boundary for the metric gab and the flat-space metric ηab ([K] =

K[g]−K[η]).
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For Schwarzschild blackhole, β = 8πM and

K[g]ab = Γr
ab

1√
1− 2M

r

⇒ K[g] =
1

r2
√
1− 2M

r

(2r − 3M). (2.91)

Here we take the surface of S∞ to be a sphere. Then K[η] is given by:

K[η]ab = Γr
ab ⇒ K[η] =

2

r
. (2.92)

Using equation
∫
d3x

√
−h =

∫
dτdΩ r2

√
1− 2M

r
= 4πβr2

√
1− 2M

r
one can

evaluate S∞ as:

S∞ = lim
r→∞

4π

8π
β(2r − 3M − 2r

√
1− 2M

r
).

= 4πM2 (2.93)

Now we turn to the membrane action, Ssurf . Using equation (2.70,2.71) we

obtain:

Ssurf [h
ab
cl ] =

1

8π

∫
d3x
√
−hab

clKcl (2.94)

For the stationary blackhole, the expansion is zero: θ = 0. Then K is given

by K = g + θ = g. And using equation
∫ √

−hd3x = βα4πr2, we obtain:

Ssurf = lim
r→rH

1

8π
4πr2Hαg = −πr2H = −4πM2. (2.95)

Where rH = 2M and gH = αg = 1
4M

.

Here the membrane action exactly cancels the external action. Hence the

entropy is zero. This is what makes the membrane paradigm attractive: to

an external observer, there is no black hole but only a membrane and no a

generalized entropy. The entropy of the outside is simply the logarithm of

the number of quantum states.
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We just using the action of outside and membrane to obtain the entropy

of outside region. To revover the Bekenstein-Hawking entropy, we have to

use the action of internal and membrane actions. Since R = 0 everywhere

Sin = 1
16π

∫ √
−gR = 0. So we only have to evaluate Ssurf . Remember

we divided the action in the fashion: S = (Sin − Ssurf ) + (Sout + Ssurf ).

The membrane action contribute in the different sign. Now we obtain the

partition function:

ZBH = exp (−1

~
(4πM)). (2.96)

Then the Bekenstein-Hawking entropy is given by:

SBH = β(M +
logZBH

β
) =

A

4
. (2.97)



Chapter 3

Stochastic Approach to Unruh

Radiation

The Unruh effect is closely related to the Hawking radiation and the hori-

zon physics. It tells us that an accelerated particle will see the vacuum

of Minkowski as thermally excited. This can be shown by the Bogolubov

transformation, which is the transformation of the wave function. These

discussion were done in the equilibrium region, and the interactions were

ignored. Here we would like to investigate the fluctuations of the uniformly

accelerated particle. Due to the interactions, the motion of the uniformly

accelerated particle should become stochastic. We are going to analyze this

stochastic motion and the radiation due to it. This study is also motivated

from a point of view from experiment.

3.1 Detectability of Unruh Effect

The Unruh temperature is given by

TU =
~a

2πckB
= 4× 10−23[K]×

(
a

1 cm/s2

)
. (3.1)

32
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Generally it is very small for ordinary acceleration. To detect Unruh effect,

we need a extremely high acceleration, and the recent development of ultra-

high intensity lasers makes it possible. In the electro-magnetic field of a laser

with intensity I[W/cm2], an electron can be accelerated to

a = 2× 1012 [cm/s2]×
√
I (3.2)

and the Unruh temperature is given by

TU = 8× 10−11[K]×
√
I. (3.3)

The ELI (Extreme Light Infrastructure) project [14] recently approved is

planning to construct Peta Watt lasers with an intensity as high as 5 ×
1026 [W/cm2]. Then the expected Unruh temperature becomes more than

103K which is much higher than the room temperature. Now, the question

is that how can we experimentally observe such a high Unruh temperature of

an accelerated electron in the laser field. One proposal was given by P.Chen

and T.Tajima [12]. Their basic idea is the following.

Their basic idea is the following. An electron is accelerated in the oscil-

lating electro-magnetic field of lasers. It is not a uniform acceleration, but

they approximated the electron’s motion around the turning points by a uni-

form acceleration. Since the electron feels the vacuum as thermally excited

with the Unruh temperature, the motion of the electron will be thermalized

and fluctuate in the transverse directions to the direction of the acceleration

(Fig. 3.1). Because of this fluctuating motion of an electron, they conjectured

that additional radiation, apart from the classical Larmor radiation, will be

emanated. Using an intuitive argument, they estimated the additional radia-

tion (which they called the Unruh radiation). Though the estimated amount

of radiation is much smaller than the classical one (×10−5), the angular de-

pendence is different. Especially in the direction along the acceleration there

is a blind spot for the Larmor radiation while the Unruh radiation is radiated

more spherically. Hence they proposed to detect the additional radiation in

this direction.



CHAPTER 3. STOCHASTIC APPROACH TO UNRUH RADIATION 34

Figure 3.1: Stochastic trajectories induced by quantum field fluctuations.

The above heuristic argument sounds physically correct, but it has been

known in a simpler situation that such a radiation is canceled by an interfer-

ence effect between the radiation field emanated from the fluctuating motion

and the quantum fluctuation of the radiation field itself [15, 16]. The can-

cellation was shown to occur for an internal detector in 1+1 dimensions. Hu

and Lin [19] extended the same calculation to 3+1 dimensions and showed

that the cancellations. The detail will be briefly reviewed in Section 3.2.

In this chapter, I am going to investigate a stochastic motion of a uni-

formly accelerated charged particle and to study whether there is additional

radiation (the Unruh radiation) associated with the stochastic motion of the

particle. The situation becomes much more complicated than the internal

detector case because the equations of motion are highly nonlinear. When

the particle’s motion z(τ) is affected by the vacuum fluctuation, the Green

function GR(x, z(τ)) is also changed accordingly unlike the internal detector

case. Hence we need to approximate that fluctuations are small in the trans-

verse directions. We first study a stochastic equation for a charged particle

coupled with the scalar field [22]. This gives a simplified model of the real

QED. A self-interaction with a scalar field created by the particle itself gives
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a backreaction to the particle’s motion, and it gives a radiation damping term

of the Abraham-Lorentz-Dirac equation [20]. If we further regard the vac-

uum fluctuation as stochastic noise, the particle’s motion obeys a generalized

Langevin equation. The equation determines stochastic fluctuations of the

particle’s momenta. Here, I mainly focus on the scalar QED for simplicity.

The generalization to real QED case is straightforward.

The organization of this chapter is following. In section 3.2 I review

the Unruh detector, the model and the cancellations of Unruh radiation.

In section 3.3, I summarize the basic framework and obtain a generalized

Langevin equation for a charged particle coupled with a scalar field. In

section 3.4, I consider small fluctuations in the transverse directions. Then

the stochastic equation can be solved and one can prove the equipartition

theorem for the transverse momenta, i.e. a stochastic average of a square

of the momentum fluctuations in the transverse directions is shown to be

proportional to the Unruh temperature. I also discuss the relaxation time of

the thermalization process. In section 3.5, I show the radiation emitted by a

charged particle in the scalar QED. The interference terms partially cancel

the radiation coming from the contribution ⟨ϕinh(x)ϕinh(x
′)⟩, but unlike the

internal case, they do not cancel exactly. In section 3.6, I obtain a similar

stochastic equation for an accelerated charged particle in the real QED, and

show the equipartition theorem for transverse momenta.

3.2 Unruh Detector

The Unruh detector is a toy model proposed to investigate Unruh effect.

The model is composed by a quantum field and a detector. The detector is a

box moving on some specified path. Inside the box there is a quantum state

which will interact with the quantum field outside. 3.2 Here I review the

cancellation of the Unruh radiation for Unruh detector at 1+1 dimensions

and 3+1 dimensions.
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Detector

Figure 3.2: Unruh Detector

3.2.1 1+1 Dimensions

The action is given by [15, 16]

S = S(Q) + S(ϕ) + e

∫
dτ

dQ

dτ
ϕ(z(τ)) (3.4)

where z(τ) = (t(τ), x(τ)) represents a classical trajectory of the internal

detector. S(Q) and S(ϕ) are quadratic actions of the internal detector (a

harmonic oscillator) and the scalar field in 1+1 dimensions respectively;

S(Q) =

∫
dτ

(
1

2
Q̇(τ)2 − ω2

0

2
Q2(τ)

)
(3.5)

S(ϕ) =

∫
d2x

1

2
(∂ϕ(x))2. (3.6)

Since the coupling term is linear both in Q and ϕ, the Heisenberg equations

of motion can be exactly solved. The scalar field is written as a sum of the

vacuum fluctuation ϕh(x) (a solution to the homogeneous equation in the

absence of Q) and an inhomogeneous term ϕinh(x) as

ϕ(x) = ϕh(x) + ϕinh(x), (3.7)

where ϕinh is given by

ϕinh(x) =

∫
dτGR(x, z(τ))

dQ

dτ
(3.8)
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and GR is the retarded Green function of the scalar field. The equation of

motion of the internal detector becomes

Q̈+ ω2
0Q = −e

dϕh

dτ
− e

dϕinh

dτ
. (3.9)

The inhomogeneous part ϕinh is solved linearly in Q(τ) and accordingly the

second term of the r.h.s. gives a dissipative term γQ̇ for the internal detector

where γ = e/2π. It also renormalizes the frequency ω0. Hence Q(τ) can be

solved as

Q̃(ω) = h(ω)φ(ω) (3.10)

where Q̃(ω) and φ(ω) are the Fourier transformations of Q(τ) and ϕh(z(τ))

with respect to τ , and h(ω) ∼ iω/(ω2 − ω2
0 − iωγ). By inserting the solution

to (3.8), the inhomogeneous solution ϕinh is written linearly in terms of the

vacuum fluctuation ϕh(x). Then it is straightforward to calculate the energy

flux. Since the energy flux is written in terms of the 2-point function, they

calculated the 2-point function

G(x,x′) = ⟨ϕ(x)ϕ(x′)⟩. (3.11)

It is written as a sum of the following terms,

G(x,x′)−G0(x,x
′) = ⟨ϕinh(x)ϕinh(x

′)⟩+ ⟨ϕinh(x)ϕh(x
′)⟩+ ⟨ϕh(x)ϕinh(x

′)⟩

(3.12)

where an uninteresting vacuum fluctuation G0(x,x
′) = ⟨ϕh(x)ϕh(x

′)⟩ is sub-
tracted. Since ϕinh is induced by the internal detector, the first term ⟨ϕinh(x)ϕinh(x

′)⟩
can be considered as an analog of the Unruh radiation proposed in [12]. It

is actually nonzero because the internal detector is thermally excited from

the classical ground state Q = 0. However, Sciama et.al. [15] and Hu.

et.al. [16] have shown that the contributions from the interference terms

⟨ϕinh(x)ϕh(x
′)⟩+⟨ϕh(x)ϕinh(x

′)⟩ exactly cancel the radiation ⟨ϕinh(x)ϕinh(x
′)⟩

in (1+1)-dimensional case.
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3.2.2 3+1 Dimensions

Now I am going to see how the Unruh radiation is canceled by the interference

effects in (3+1) dimensions[19].

The action is given by

S =

∫
dτ

m

2

(
(∂τQ(τ))2 − Ω2

0Q
2
)
+

∫
d4x

1

2
(∂µϕ)(∂

µϕ)

+ λ

∫
d4xdτQ(τ)ϕ(x)δ4(x− z(τ)), (3.13)

where ∂τ is used to denote a derivative with respect to the proper time τ .

The equations of motion are given by

∂2ϕ(x) = λ

∫
dτQ(τ)δ4(x− z(τ)) (3.14)

(∂2
τ + Ω2

0)Q(τ) =
λ

m
ϕ(z(τ)). (3.15)

Substituting the solution ϕ = ϕh + ϕinh,

ϕinh(x) = λ

∫
dτQ(τ)GR(x− z(τ)), (3.16)

to the equation of the internal detector, we get the following equation,

(∂2
τ + Ω2

0)Q(τ)− λ2

m

∫
dτ ′Q(τ ′)GR(z(τ)− z(τ ′)) =

λ

m
ϕh(z(τ)). (3.17)

Here ϕh is the homogeneous solution representing the vacuum fluctuations.

The inhomogeneous term is evaluated by expanding the Green function with

respect to (τ − τ ′) as we did in (3.63). Then after a renormalization of the

mass term, we get the diffusive term of the radiation reaction,∫
dτ ′Q(τ ′)GR(z(τ)− z(τ ′)) ⇒ Q′(τ)

4π
. (3.18)

The stochastic equation can be solved by the Fourier transformation on the

path as

Q̃(τ) = λh(ω)φ(ω), (3.19)
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where

h(ω)−1 = −mω2 +mΩ2 − i
ωλ2

4π
(3.20)

and the Fourier transformations are defined as

Q̃(ω) =

∫
dτeiωτQ(τ), (3.21)

φ(ω) =

∫
dτeiωτϕh(z(τ)). (3.22)

Note that GR(z(τ) − z(τ ′)) is a function of (τ − τ ′) if the classical solution

z(τ) represents the accelerated path (3.48). The 2-point correlation function

is decomposed into

⟨ϕ(x)ϕ(y)⟩ =⟨ϕh(x)ϕh(y)⟩+ ⟨ϕinh(x)ϕh(y)⟩+ ⟨ϕh(x)ϕinh(y)⟩+ ⟨ϕinh(x)ϕinh(y)⟩
(3.23)

where

⟨ϕinh(x)ϕh(y)⟩+ ⟨ϕh(x)ϕinh(y)⟩

=

∫
dτ

dω

2π
e−iωτλ2h(ω)

(
GR(y − z(τ))⟨ϕh(x)φ(ω)⟩+GR(x− z(τ))⟨φ(ω)ϕh(y)⟩

)
(3.24)

⟨ϕinh(x)ϕinh(y)⟩

=

∫
dτdτ ′

dω

2π

dω′

2π
e−i(ωτ+ω′τ ′)λ4GR(x− z(τ))GR(y − z(τ ′))h(ω)h(ω′)⟨φ(ω)φ(ω′)⟩.

(3.25)

We first evaluate the interference term (3.24);

⟨ϕh(x)φ(ω)⟩ =
∫

dτeiωτ ⟨ϕ0(x)ϕ0(z(τ))⟩

=− 1

4π2

∫
dτ

eiωτ

(x0 − z0(τ)− iϵ)2 − (x1 − z1(τ))2 − ρ2

=− 1

4π2
P (x, ω). (3.26)
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Poles of the denominator are given by solving the equation,

0 =(x0 − sinh aτ

a
)2 − (x1 − cosh aτ

a
)2 − ρ2 (3.27)

=− u
eaτ

a
+ u

e−aτ

a
+ x2 − 1

a2
. (3.28)

The solutions of this equation are classified according to two different

types of observers (See Fig.3.3);

OF (in future wedge) : u > 0, v > 0

⇒ eaτ
F
− =

a

2u

(
−L2 +

√
L4 +

4

a2
uv
)

(3.29)

−eaτ
F
+ =

a

2u

(
−L2 −

√
L4 +

4

a2
uv
)

(3.30)

OR (in right wedge) : u < 0, x0 + x1 > 0

⇒ eaτ
R
− =

a

2|u|

(
L2 −

√
L4 − 4

a2
|uv|

)
(3.31)

eaτ
R
+ =

a

2|u|

(
L2 +

√
L4 − 4

a2
|uv|

)
, (3.32)

where, L2 = −x2 + 1/a2. The poles at τF,R− correspond to the proper times

at the intersections of the particle’s world line and the past light cone of the

observer’s position. Hence they are the physically acceptable poles. On the

other hand, τF+ correspond to the proper time at a point on a ”virtual path”

in the left wedge. τR+ lies at an intersection of the world line and the future

light cone of the observer. Both of them are classically unacceptable.

Summing these contributions to the integral, we obtain

P (x, ω) =
−πi

ρ0

1

e2πω/a − 1

(
eiωτ−x − eiωτ

x
+Zx(ω)

)
, (3.33)

where

Zx =eπω/aθ(u) + θ(−u), (3.34)

ρ0 =
a

2

√
L4 +

4

a2
uv. (3.35)
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Using the following relation,∫
dτGR(x− z(τ))f(τ) =

1

4πρ0
f(τ−), (3.36)

a part of the interference term depending on τR− or τF− can be written as

⟨ϕh(x)ϕinh(y)⟩ → iλ2

∫
dτdτ ′

dω

2π
GR(x− z(τ))GR(y − z(τ ′))eiω(τ−τ ′) h(ω)

e2πω/a − 1
.

(3.37)

Similarly, we have

⟨ϕinh(x)ϕh(y)⟩ → iλ2

∫
dτdτ ′

dω

2π
GR(x− z(τ))GR(y − z(τ ′))e−iω(τ−τ ′) h(ω)

1− e−2πω/a
,

(3.38)

where we have used the identity

⟨φ̃(ω)ϕh(y)⟩ =
(
⟨ϕh(y)φ̃(−ω)⟩

)∗
. (3.39)

The correlation function of inhomogeneous terms is given by

⟨ϕinh(x)ϕinh(y)⟩ =λ4

∫
dτdτ ′

dω

2π

dω′

2π
e−i(ωτ+ω′τ ′)GR(x− z(τ))GR(y − z(τ ′))

× h(ω)h(ω′)⟨φ̃(ω)φ̃(ω′)⟩

=λ4

∫
dτdτ ′

dω

2π

dω′

2π
e−iω(τ−τ ′)GR(x− z(τ))GR(y − z(τ ′))h(ω)h(−ω)

×
∫

(dτa − τb)2πδ(ω + ω′)eiω(τa−τb)⟨ϕ0(z(τa))ϕ0(z(τb))⟩

=λ4

∫
dτdτ ′

dω

2π
e−iω(τ−τ ′)GR(x− z(τ))GR(y − z(τ ′))

ω

2π

h(ω)h(−ω)

1− e−2πω/a
.

(3.40)

These three contributions (3.37), (3.38), (3.40) to the correlation function

are shown to be canceled each other because of the relation

h(ω)− h(−ω) =
iωλ2

2π
|h(ω)|2. (3.41)
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Therefore if we neglect the contributions from the classically unacceptable

poles at τ+ the 2-point function vanishes, and therefore there are no energy-

momentum flux after the thermalization occurs.

The remaining term in the 2-point function is the contributions of the τ+

dependent terms to the interference term, and written as∫
dω

2π

−ia2λ2

8πρ0(x)ρ0(y)

1

1− e−2πω/a
(h(ω)e−iω(τ−(x)−τ+(y))Zy(−ω)− h(−ω)e−iω(τ+(x)−τ−(y))Zx(−ω)).

(3.42)

It looks strange why we have such a (classically unacceptable) term in the

final result.

3.3 Stochastic Equation of an Accelerated Par-

ticle

We consider the scalar QED. The model is analyzed in [22] and here we

briefly review the settings and the derivation of the stochastic ALD equations.

In [22], the authors have used the Feynman-Vernon formalism or the influence

functional approach, but here we take a simplified method. The system

composes of a relativistic particle zµ(τ) and the scalar field ϕ(x). The action

is given by

S[z, ϕ, h] = S[z, h] + S[ϕ] + S[z, ϕ], (3.43)

with

S[z, h] = −m

∫
dτ
√

żµżµ,

S[ϕ] =

∫
d4x

1

2
(∂µϕ)

2,

S[z, ϕ] =

∫
d4x j(x; z)ϕ(x). (3.44)
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The scalar current j(x; z) is defined as

j(x; z) = e

∫
dτ
√

żµżµδ
4(x− z(τ)), (3.45)

where e is negative for an electron. We can parametrize the particle’s path

satisfying ż2 = 1 by taking τ properly.

The equation of motion of the particle is given by

mz̈µ = F µ −
∫

d4x
δj(x; z)

δzµ(τ)
ϕ(x) (3.46)

where we have added the external force F µ so as to accelerate the particle

uniformly;

F µ = ma(ż1, ż0, 0, 0). (3.47)

The external force can be considered as a gradient of an external potential

V (x), but it does not matter in the following discussions. Then a classical

solution of the particle (in the absence of the coupling to ϕ) is given by

zµcl = (
1

a
sinh aτ,

1

a
cosh aτ, 0, 0). (3.48)

Note that the external force satisfies F µżµ = 0 and therefore the classical

equation of motion preserves the gauge condition ż2 = 1. From the definition

of the current (3.45), it is easy to prove the identity,∫
d4x

δj(x; z)

δzµ(τ)
f(x) = e−→ω µf(x)|x=z(τ) (3.49)

where −→ω µ is given by

−→ω µ = żν ż[ν∂µ] − z̈µ. (3.50)

Here we have used the gauge condition ż2 = 1 and z̈ · ż = 0. Hence the

equation of motion (3.46) becomes

mz̈µ = F µ − e−→ω µϕ(z(τ)) (3.51)
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Since the differential operator −→ω µ satisfies −→ω µż
µ = 0 for a classical path

satisfying the gauge condition, the stochastic equation (3.51) continues to

preserve the condition ż2 = 1. The second term of (3.51) represents a self-

interaction of the particle with the radiation emitted by the particle itself.

The equation of motion of the radiation field ∂µ∂µϕ(x) = j(x) is solved

by using the retarded Green function GR as

ϕ(x) = ϕh(x) + ϕinh, ϕinh =

∫
d4x′GR(x, x

′)j(x′; z) (3.52)

where ϕh is the homogeneous solution of the equation of motion and repre-

sents the vacuum fluctuation. It is responsible for the particle’s fluctuating

motion under a uniform acceleration. The retarded Green function satisfies

∂µ∂µGR(x, x
′) = δ(4)(x− x′) (3.53)

and is given by

GR(x, x
′) = i⟨[ϕ(x), ϕ(x′)]⟩θ(t− t′) =

θ(t− t′)δ((x− x′)2)

2π
=

δ((t− t′)− r)

4πr
(3.54)

where r2 = |x − x′|2. Inserting the solution (3.52) into (3.51), we have the

following stochastic equation for the particle

mz̈µ(τ) = F µ(z(τ))− e−→ω µ

(
ϕh(z(τ)) + e

∫
dτ ′ GR(z(τ), z(τ

′))

)
. (3.55)

Here we have used the gauge condition ż2 = 1. The operator −→ω µ acts on

z(τ). The homogeneous part ϕh(z(τ)) of the scalar field describes Gaussian

fluctuations of the vacuum, and hence the first term in the parenthesis can

be interpreted as random noise to the particle’s motion. Expanding ϕh as

ϕh(x) =

∫
d3k

(2π)3
1√
2ωk

(ake
−ikµxµ + a†ke

ikµxµ), (3.56)

the vacuum fluctuation is given by

⟨ϕh(x)ϕh(y)⟩ = − 1

4π2

1

(t− t′ − iϵ)2 − r2
. (3.57)
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It is essentially quantum mechanical, but if it is evaluated on a world line of a

uniformly accelerated particle x = z(τ), y = z(τ ′), it behaves as the ordinary

finite temperature noise.

The second term in the parenthesis of (3.55) is a functional of the total

history of the particle’s motion z(τ ′) for τ ′ ≤ τ , but it can be reduced to

the so called radiation damping term of a charged particle coupled with a

radiation field. It is generally nonlocal, but since the Green function damps

rapidly as a function of the distance r, the term is approximated by local

derivative terms. First define yµ(s) = zµ(τ) − zµ(τ ′) where τ ′ = τ − s with

τ kept fixed. Then it can be expanded as

yµ(s) = sżµ(τ)− s2

2
z̈µ(τ) +

s3

6

...
z µ(τ) + · · · . (3.58)

A square of the space-time distance σ is given by

σ(s) ≡ yµyµ = s2(1− s2

12
(z̈)2 + · · · ) (3.59)

and
dσ(s)

ds
= 2yµẏµ = 2s(1− s2

6
(z̈)2 + · · · ). (3.60)

In deriving them, we have used the gauge condition (ż)2 = 1, ż · z̈ = 0 and

ż · ...z = −(z̈)2. The derivative ∂µ appearing in the operator −→ω µ can be written

in terms of d
ds
, when it acts on a function of σ, as

∂µ =
∂σ

∂zµ
d

dσ
= 2yµ(

dσ

ds
)−1 d

ds
=

yµ
yν ẏν

d

ds

= (żµ −
s

2
z̈µ +

s2

6
(
...
z µ + żµ(z̈)

2) + · · · ) d
ds

. (3.61)

Hence the backreaction part of the stochastic equation can be simplified as

e2−→ω µ

∫ τ

−∞
GR(z(τ), z(τ

′))dτ ′ = ds −→ω µGR(s)

= e2
∫ ∞

0

ds{aµ(τ)GR(s) + aµ(τ)
s

2

d

ds
GR(s)

+(żµz̈
2 +

...
z µ)

s2

6

d

ds
GR(s) +O(s3)}.(3.62)
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In the first equality, we have neglected the singular term proportional to δ(σ).

The first two terms can be absorbed by a mass renormalization. The last

one is the radiation reaction. Since the retarded Green function is given by

(3.54), the mass renormalization is divergent. The radiation reaction term

can be evaluated by using the identity∫ ∞

0

dss2
d

ds
GR(s) =

∫ ∞

0

dss2
d

ds

δ(s)

4πs
= − 1

2π
(3.63)

After the mass renormalization, we get the following generalized Langevin

equation for the charged particle,

mz̈µ − F µ − e2

12π
(żµz̈2 +

...
z µ) = −e−→ω µϕh(z). (3.64)

This is an analog of the Abraham-Lorentz-Dirac equation for a charged parti-

cle interacting with the electromagnetic field. The dissipation term is induced

by an effect of the backreaction of the particle’s radiation to the particle’s

motion. Note that, if the noise term is absent, the classical solution (3.48)

with a constant acceleration is still a solution to the equation (3.64).

3.4 Thermalization of Transverse Momentum

Fluctuations

The stochastic equation (3.64) is nonlinear and difficult to solve. Here we

consider small fluctuations around the classical trajectory induced by the

vacuum fluctuation ϕh. Especially we consider fluctuations in the transverse

directions. First we expand the particle’s motion around the classical trajec-

tory zµ0 as

zµ(τ) = zµ0 + δzµ. (3.65)

The particle is accelerated along the x direction. In the following we consider

small fluctuation in transverse directions. By expanding the stochastic equa-

tion (3.64), we can obtain a linearized stochastic equation for the transverse
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velocity fluctuation δvi ≡ δżi as,

mδv̇i = e∂iϕh +
e2

12π
(δv̈i − a2δvi). (3.66)

Performing the Fourier transformation with respect to the trajectory’s pa-

rameter τ

δvi(τ) =

∫
dω

2π
δṽi(ω)e−iωτ , ∂iϕh(τ) =

∫
dω

2π
∂iφ(ω)e

−iωτ (3.67)

the stochastic equation can be solved as

δṽi(ω) = eh(ω)∂iφ(ω). (3.68)

where

h(ω) =
1

−imω + e2(ω2+a2)
12π

. (3.69)

The vacuum 2-point function along the classical trajectory can be evalu-

ated from (3.57) as

⟨∂iϕh(x)∂jϕh(x
′)⟩|x=z(τ),x′=z(τ ′) =

1

2π2

δij
((t− t′ − iϵ)2 − r2)2

=
a4

32π2

δij

sinh4(a(τ−τ ′−iϵ)
2

)
. (3.70)

It has originated from the quantum fluctuations of the vacuum, but it can

be interpreted as finite temperature noise if it is evaluated on the accelerated

particle’s trajectory [5] ∗. Its Fourier transformation is evaluated as

⟨∂iφ(ω)∂jφ(ω′)⟩ = 2πδ(ω + ω′)δijI(ω) (3.71)

∗The finite temperature (Unruh) effect is caused by the appearance of the horizon

for a uniformly accelerated observer in the Minkowski space-time and analogous to the

Hawking radiation of the black hole, but you should not confuse the radiation we are

discussing in this paper with the Hawking radiation. The accelerated observer sees the

Minkowski vacuum as thermally excited, but it is excited from the Rindler vacuum (not

from the Minkowski vacuum) and the energy momentum tensor remains zero as ever. The

radiation discussed in the paper is, if exists, produced by an interaction with the vacuum

and the accelerated charged particle.
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where

I(ω) =
a4

32π2

∫ ∞

−∞
dτ−

eiωτ−

sinh4(a(τ−−iϵ)
2

)
=

1

6π

ω3 + ωa2

1− e−2πω/a
. (3.72)

By symmetrizing it, i.e., ⟨∂ϕ(x)∂ϕ(x′)⟩S = ⟨{∂ϕ(x), ∂ϕ(x′)}⟩/2, the Wight-

man Green function becomes

IS(ω) =
1

12π
coth(

πω

a
)(ω3 + ωa2), (3.73)

which is an even function of ω. The correlator I(ω) or IS(ω) should be UV

cut-off for large ω, or for short proper time difference, where quantum field

theoretic effects of electron become important. Full QED treatment is nec-

essary there.

For small ω, this is expanded as

I(ω) =
a

12π2
(a2 + aπω + · · · ). (3.74)

The expansion corresponds to the derivative expansion

⟨∂iϕh(x)∂jϕh(x
′)⟩|x=z(τ),x′=z(τ ′) =

a3

12π2
δijδ(τ − τ ′)− i

a2

12π
δijδ

′(τ − τ ′) + · · · .(3.75)

We approximate the 2-point function by the first term, which corresponds

to the white noise approximation. The coefficient determines the strength

of the noise. We show that it is consistent with the fluctuation-dissipation

theorem at the Unruh temperature.

The expectation value of the square of the transverse velocity fluctuation

can be evaluated as

⟨δvi(τ)δvj(τ ′)⟩S = e2
∫

dωdω′

(2π)2
⟨∂iφ(ω)∂jφ(ω′)⟩S h(ω)h(ω′)e−i(ωτ+ω′τ ′)

= e2δij

∫
dω

2π
IS(ω)|h(ω)|2e−iω(τ−τ ′)

∼ e2δij

∫
dω

24π3

a3

(mω)2 +
(

e2

12π

)
(ω2 + a2)2

e−iω(τ−τ ′).(3.76)
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The denominator has four poles at ω = ±iΩ± where

Ω+ =
12πm

e2
(1 +O(a2/m2)), Ω− =

a2e2

12πm
(1 +O(a2/m2)). (3.77)

The acceleration of an electron in high-intensity laser fields in near future

can be at most 0.1 eV and much smaller than the electron mass 0.5 MeV.

Hence, the values of these poles satisfy the following inequalities,

Ω+ ≫ a ≫ Ω−. (3.78)

Since the energy scale of the dynamics of the accelerated particle is much

smaller than the electron mass, the poles at ±iΩ+ should be considered

spurious and we should not take the contributions of the residues at ±iΩ+
†.

By taking the residue at ±ω = iΩ−, we can evaluate the integral and get the

following result,

m

2
⟨δvi(τ)δvj(τ)⟩ = 1

2

a~
2πc

δij
(
1 +O(a2/m2)

)
. (3.79)

Here we have recovered c and ~. This gives the equipartition relation for the

transverse momentum fluctuations in the Unruh temperature TU = a~/2πc.
The thermalization process of the stochastic equation (3.66) can be also

discussed. For simplicity, we approximate the stochastic equation by drop-

ping the second derivative term. Then it is solved as

δvi(τ) = e−Ω−τδvi(0) +
e

m

∫ τ

0

dτ ′ ∂iϕ(z(τ
′))e−Ω−(τ−τ ′). (3.80)

The relaxation time is given by τR = 1/Ω−. The momentum square can be

also calculated as

⟨δvi(τ)δvj(τ)⟩ = e−2Ω−τδvi(0)δvj(0)

+ e2
∫ τ

0

dτ ′
∫ τ

0

dτ ′′ e−Ω−(τ−τ ′)e−Ω−(τ−τ ′′)⟨∂iϕ(z(τ ′))∂jϕ(z(τ ′′))⟩

= e−2Ω−τδvi(0)δvj(0) +
aδij
2πm

(1− e−2Ω−τ ). (3.81)

†Or we can simply approximate the denominator by dropping the ω4 term. Then only

the poles at ±iΩ− survive.
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For τ → ∞, it approaches the thermalized average (3.79). The relaxation

time in the proper time can be estimated, for a = 0.1 eV and m = 0.5 MeV,

to be

τR =
12πm

a2e2
= 5× 10−5sec. (3.82)

This relaxation time should be compared with the laser frequency. The

planned wavelength of the laser at ELI is around 103nm and the oscillation

period of the laser field is very short; 3×10−15 seconds. Hence the relaxation

time is much longer and the charged particle does not thermalize during each

oscillation. Hence an assumption of the uniform acceleration in the laser field

is not good. Even in such a situation, if the electron is accelerated in the

laser field for a long time, an electron may feel an averaged temperature.

The position of the particle in the transverse directions also fluctuates

like the ordinary Brownian motion in a heat bath. The mean square of the

transverse coordinate is given by

R2(τ) =
∑
i=y,z

⟨(zi(τ)− zi(0))2⟩ = 2D

(
τ − 3− 4e−Ω−τ + e−2Ω−τ

2Ω−

)
. (3.83)

The diffusion constant D is given by

D =
2TU

Ω−m
=

12

ae2
, (3.84)

which is estimated for the above parameters as D ∼ 6 m2/s. In the Ballistic

region where τ < τR, the mean square becomes

R2(τ) =
2TU

m
τ 2 (3.85)

while in the diffusive region (τ > τR), it is proportional to the proper time

as

R2(τ) = 2Dτ. (3.86)

As the ordinary Brownian motion, the mean square of the particle’s trans-

verse position grows linearly with time. If it becomes possible to accelerate

the particle for a sufficiently long period, it may be possible to detect such a

Brownian motion in future laser experiments.
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3.5 Quantum Radiation by Transverse Fluc-

tuation

Once we obtain the stochastic motion of the accelerated particle, it is straight-

forward to calculate the energy flux of the radiation field emitted by this par-

ticle. In this section, we calculate the radiation induced by the fluctuation

in the transverse direction. First we evaluate the two point function

G(x, x′)−G0(x, x
′) = ⟨ϕinh(x)ϕinh(x

′)⟩+ ⟨ϕinh(x)ϕh(x
′)⟩+ ⟨ϕh(x)ϕinh(x

′)⟩.(3.87)

The inhomogeneous part ϕinh is a direct consequence of the presence of an

accelerated charged particle while the homogeneous part ϕh is the vacuum

fluctuation of the quantum field ϕ. The Unruh radiation estimated in [12] cor-

responds to calculating the 2-point correlation function of the inhomogeneous

terms ⟨ϕinh(x)ϕinh(y)⟩. (As we will see later, the same term also contains the

classical Larmor radiation.) However, this is not the end of the story. As it

has been discussed in [15], the interference terms ⟨ϕinhϕh⟩+ ⟨ϕhϕinh⟩ cannot
be neglected and may possibly cancel the Unruh radiation in ⟨ϕinhϕinh⟩ after
the thermalization occurs. This is shown for an internal detector in (1+1)

dimensions, but it is not obvious whether the same cancellation occurs for

the case of a charged particle we are considering.

The inhomogeneous solution of the scalar field is written as

ϕinh(x) = e

∫
dτGR(x− z(τ)) =e

∫
dτ

θ(t− z0(τ))δ((x− z(τ))2)

2π
=

e

4πρ
.

(3.88)

where ρ is defined by

ρ =ż(τx−) · (x− z(τx−)). (3.89)

Because of the step and the delta functions in the integrand of (3.88), τx−

satisfies

(x− z(τx−))
2 =0, x0 > z0(τx−), (3.90)
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which is the proper time of the particle whose radiation travels to the space-

time point x. Hence z(τx−) lies on an intersection between the particle’s world

line and the light cone extending from the observer’s position x (See Fig 2

below). We write the superscript x to make the x dependence of τ explicitly.

The meaning of the subscript (−) will be made clear later. By using the light

cone condition, ρ can be also written as

ρ(x) =
dz0(τx−)

dτ
r(τx−)(1−

v · r
r

) (3.91)

where v = dz
dz0

, r(τx−) = x − z(τx−) and r = |r|. It is the spacial distance for

the observer moving with the particle.

The particle’s trajectory is fluctuating and expressed as z = z0+δz+δ2z+

· · · where we have expanded the fluctuation with respect to the interaction

with the radiation field (i.e. e). Then ρ is also expanded as ρ = ρ0 + δρ +

δ2ρ+ · · · and (3.88) becomes

ϕinh =
e

4πρ0

(
1− δρ

ρ0
+

(
δρ

ρ0

)2

− δ2ρ

ρ0
+ · · ·

)
. (3.92)

The first term is the classical potential, but since the particle’s trajectory

deviates from the classical one, the potential also receives corrections. Here

ρ0, δρ and δ2ρ are given by

ρ0 =ż0(τ
x
−) · (x− z0(τ

x
−)) (3.93)

δρ =δż(τx−) · (x− z0(τ
x
−))− ż0(τ

x
−) · δz(τx−), (3.94)

δ2ρ =δ2ż(τx−) · (x− z0(τ
x
−))− δż(τx−) · δz(τx−)− ż0(τ

x
−) · δ2z(τx−). (3.95)

From now on we only consider the transverse fluctuations. Then ż0 · δz = 0

is satisfied. In the above, we neglected the change of τx− since it corresponds

to the longitudinal fluctuation. As seen from (3.91), ρ is proportional to the

spacial distance from the particle to the observer. The variation of ρ becomes

negligible for large distance r if we take a variation of (x − z0(τ)) in ρ. On
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the contrary, if we take a variation of ż0, δρ or δ2ρ is still proportional to the

spacial distance r. Hence for large r, we can approximate the variations by

δρ ∼ δż(τx−) · (x− z0(τ
x
−)), δ2ρ = δ2ż(τx−) · (x− z0(τ

x
−)). (3.96)

Note also ⟨δ2żi⟩ = 0 since the velocity in the transverse directions fluctuates

uniformly and its expectation value vanishes.

Let us calculate the 2-point function. If we take the classical part without

the fluctuation of ρ, the 2-point function becomes

G(x, x′)−G0(x, x
′) → ⟨ϕinh(x)ϕinh(x

′)⟩ =
( e

4π

)2 1

ρ0(x)ρ0(y)
.(3.97)

This gives the classical radiation corresponding to the Larmor radiation.

The interference term vanishes because 1-point function vanishes identically

⟨ϕh⟩ = 0.

Corrections to the classical Larmor radiation are induced by the trans-

verse fluctuating motion δρ. First we consider 2-pt function between the

inhomogeneous part up to the second order of the transverse fluctuations.

Since ⟨δ2ρ⟩ = 0, we have

⟨ϕinh(x)ϕinh(y)⟩ =
( e

4π

)2⟨ 1

ρ(x)ρ(y)

⟩
=
( e

4π

)2 1

ρ0(x)ρ0(y)

(
1 +

⟨δρ(x)δρ(y)⟩
ρ0(x)ρ0(y)

+
⟨(δρ(x))2⟩

ρ20(x)
+

⟨(δρ(y))2⟩
ρ20(y)

)
.

(3.98)

Note that all the terms in the parenthesis behave constantly as the distance r

between the observer and the particle becomes large. The first term gives the

Larmor radiation mentioned above. The other terms correspond to the radi-

ation induced by the fluctuations. The calculation of them is easy, because

one can write ⟨δρδρ⟩ in terms of ⟨δżiδżi⟩ = ⟨δviδvi⟩ which we have already



CHAPTER 3. STOCHASTIC APPROACH TO UNRUH RADIATION 54

evaluated in the previous section. With the expression (3.76), it becomes

⟨ϕinh(x)ϕinh(y)⟩ =
( e

4π

)2 1

ρ0(x)ρ0(y)

[
1 + e2

∫
dω

2π
|h(ω)|2I(ω)

×
(xiyie−iω(τx−−τy−)

ρ0(x)ρ0(y)
+

xixi

ρ0(x)ρ0(x)
+

yiyi

ρ0(y)ρ0(y)

)]
.

(3.99)

As before, since we are considering the fluctuating motion whose frequency is

smaller than the acceleration, we may as well approximate I(ω) by a3/12π2.

If we calculate the symmetrized correlation function between x and y, I(ω)

is replaced by IS(ω).

Next let us calculate the interference terms. They are rewritten as

⟨ϕinh(x)ϕh(y)⟩+ ⟨ϕh(x)ϕinh(y)⟩ = − e

4π

(
⟨δρ(x)ϕh(y)⟩

ρ20(x)
+

⟨ϕh(x)δρ(y)⟩
ρ20(y)

)
.

(3.100)

Calculation of the interference terms are more complicated since we need to

evaluate the following correlation functions;

⟨δρ(x)ϕh(y)⟩ =− xi⟨δżi(τx−)ϕh(y)⟩ = −exi

∫
dω

2π
e−iωτx−h(ω)⟨∂iφ(ω)ϕh(y)⟩

⟨ϕh(x)δρ(y)⟩ =− yi⟨ϕh(x)δż
i(τ y−)⟩ = −eyi

∫
dω

2π
e−iωτy−h(ω)⟨ϕh(x)∂iφ(ω)⟩.

(3.101)

Since two terms ⟨∂iφ(ω)ϕh(y)⟩ and ⟨ϕh(x)∂iφ(ω)⟩ are related by

⟨∂iφ(ω)ϕh(y)⟩ =(⟨ϕh(y)∂iφ(−ω)⟩)∗, (3.102)

it is sufficient to calculate one of them. From the definition of φ in (3.67),
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the interference term ⟨ϕh(x)∂iφ(ω)⟩ is written as

⟨ϕh(x)∂iφ(ω)⟩ =
∫

dτeiωτ
(

∂

∂yi
⟨ϕh(x)ϕh(y)⟩

)
y=z(τ)

=− 1

4π2

∫
dτeiωτ

(
∂

∂yi
1

(x0 − y0 − iϵ)2 − (−→x −−→y )2

)
y=z(τ)

=
1

4π2

∂

∂xi

∫
dτ

eiωτ

(x0 − z0(τ)− iϵ)2 − (x1 − z1(τ))2 − x2
⊥
,

(3.103)

where x2
⊥ = (x2)2 + (x3)2 is the transverse distance. We first evaluate the

integral and then take the derivative. The integral

P (x, ω) ≡
∫

dτ
eiωτ

(x0 − z0(τ)− iϵ)2 − (x1 − z1(τ))2 − x2
⊥
, (3.104)

can be evaluated by the contour integral in the complex τ plane. The posi-

tions of the pole are given by a series of points

τn± =T± +
2nπi

a
− iϵ, (3.105)

where n is an integer. T± are complex numbers whose imaginary parts are 0

or π/a and satisfy

eaT± =
a

2u

(
−L2 ∓

√
L4 +

4

a2
uv

)
. (3.106)

Here we have defined

L2 =− xµxµ +
1

a2
, (3.107)

u =x0 − x1, v = x0 + x1. (3.108)

Note the relation eaT+eaT− = −v/u. The positions of the poles reflect the

finite temperature property of the uniformly accelerated observer. In the

following we will consider two different types of observers as shown in Fig.3.3.

The first observer is to observe the radiation in the right wedge (OR) while the
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second one is in the future wedge (OF). For both cases, v > 0 is satisfied and

the radiation can travel causally from the particle to the observers. There

are two different types of poles τ±. A pole at τ− = T−, which is real, is

located at a classically acceptable point. Namely, τ− is the proper time of

the particle whose radiation travels to the observer in a causal way. The

other pole at T+ is more subtle. For u < 0 (in the right wedge), T+ = τR+ is

real and corresponds to the advanced causal proper time. For u > 0 (in the

future wedge), T+ = τF+ + iπ/a has an imaginary part and one can interpret

it as the proper time of a trajectory of a virtual particle in the left wedge, as

in Fig. 3.3. In the following, we drop the superscript F or R. In the region

where v < 0, ϕinh does not exist and no nontrivial correlation is observed

there.

The residue of the pole at τn± is given by −eiωτ
n
±/2ρ(τn±) where

ρ(τn±) = ż(τn±) · (x− z0(τ
n
±)) =

1

2
(ueaτ

n
± + ve−aτn±). (3.109)

Because of the periodicity, ρ(τn±) is independent of n. The integral is now

given by

P (x, ω) =
−πi

ρ0

1

e2πω/a − 1

(
eiωτ

x
− − eiωτ

x
+Zx(ω)

)
, (3.110)

where

Zx(ω) = eπω/aθ(u) + θ(−u) (3.111)

ρ0 = ρ(τn−) can be rewritten in terms of L2 as

ρ0 =
a

2

√
L4 +

4

a2
uv. (3.112)

Note that the relation ρ(τn+) = −ρ0 follows the identity eaT+eaT− = −v/u.

The second term of the parenthesis in (3.110) depends on τ+. With naive

intuition based on classical causality, the term may be removed by hand, but

the calculation of the interference terms is essentially quantum mechanical,
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Figure 3.3: The hyperbolic line in the right wedge denotes the world line of

the particle. The points OF and OR are observers in the future and right

wedges, respectively. For an observer in the right wedge, the light-cone of

the observer has two intersections with the world line, and the proper time of

the intersections are given by τR± . For an observer in the future wedge, there

is only one intersection on the particle’s real trajectory which corresponds

to τF− . The other solution TF
+ = τF+ + iπ/a is complex. One may interpret

this complex proper time as the intersection between the light-cone of the

observer and the world line of a virtual particle with a real proper time τF+

in the left wedge. The superscript letters R or F are used to distinguish two

different observers, but we do not use them in the body of the paper to leave

the space for the observer’s position x.
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and it should not be neglected. It is puzzling how we can physically interpret

such τ+ dependence of the integral.

Taking a derivation of P (x, ω), we obtain ⟨ϕh(x)∂iφ(ω)⟩ as

⟨ϕh(x)∂iφ(ω)⟩ =
iaxi

4πρ02
1

e2πω/a − 1

((aL2

2ρ0
+

iω

a

)
eiωτ

x
− +

(
−aL2

2ρ0
+

iω

a

)
eiωτ

x
+Zx(ω)

)
.

(3.113)

Here we have used the following identities,

∂ρ0
∂xi

=
a2L2

2ρ0
xi,

∂τx±
∂xi

= ± 1

ρ0
xi, (3.114)

where i is the transverse direction. The second identity can be obtained by

differentiating (x− z(τx±))
2 = 0 with respect to xi. (See (3.123) below.)

The whole interference terms are now given by

⟨ϕh(x)ϕinh(y)⟩+ ⟨ϕinh(x)ϕh(y)⟩

=
−iae2xiyi

(4π)2ρ0(x)2ρ(y)2

∫
dω

2π

1

1− e−2πω/a

[
e−iω(τx−−τy−)

(
h(−ω)

( aL2
x

2ρ0(x)
− iω

a

)
− h(ω)

( aL2
y

2ρ0(y)
+

iω

a

))
+ e−iω(τx+−τy−)h(−ω)

(
− aL2

x

2ρ0(x)
− iω

a

)
Zx(−ω)− e−iω(τx−−τy+)h(ω)

(
−

aL2
y

2ρ0(y)
+

iω

a

)
Zy(−ω)

]
.

(3.115)

In the following, in order to see whether there is a cancellation between

the interference terms and the correlation function of the inhomogeneous

terms, we study the first term in the parenthesis of (3.115) which depends

only on τ−. (Note that the correlation function of the inhomogeneous terms

(3.99) depends only on τ−.) Using the relation,

h(ω) + h(−ω) =
e2

6π
(ω2 + a2)|h(ω)|2, (3.116)
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one can show that a part of the interference terms

iae2xiyi

(4π)2ρ0(x)2ρ0(y)2

∫
dω

2π

1

1− e−2πω/a
e−iω(τx−−τy−)

(
h(−ω)

iω

a
+ h(ω)

iω

a

)
=−

( e

4π

)2 xiyi

ρ0(x)2ρ0(y)2

∫
dω

2π

1

1− e−2πω/a
e−iω(τx−−τy−) e

2

6π
|h(ω)|2(ω2 + a2)ω

=−
( e

4π

)2 ⟨δρ(x)δρ(y)⟩
ρ0(x)ρ0(y)

(3.117)

cancels the first correction term of the inhomogeneous part in (3.99). This

term was obtained by taking a derivative of eiωτ
x
− in P (x, ω).

Summing up both contributions, (3.99) and (3.115), we get the following

result of the 2-point function;

⟨ϕ(x)ϕ(y)⟩ − ⟨ϕh(x)ϕh(y)⟩ =
e2

(4π)2ρ0(x)ρ0(y)
F (x, y) (3.118)

where

F (x, y) = 1 + e2
∫

dω

2π

|h(ω)|2

6π
I(ω)

((
xi

ρ0(x)

)2

+

(
yi

ρ0(y)

)2)
− ia2xiyi

ρ0(x)ρ0(y)

∫
dω

4π

1

1− e−2πω/a

[
e−iω(τx−−τy−)

(
h(−ω)

L2
x

ρ0(x)
− h(ω)

L2
y

ρ0(y)

)
− e−iω(τx+−τy−)h(−ω)

(
L2
x

ρ0(x)
+ i

2ω

a2

)
Zx(−ω)− e−iω(τx−−τy+)h(ω)

(
−

L2
y

ρ0(y)
+ i

2ω

a2

)
Zy(−ω)

]
.

(3.119)

The first term in F is the classical effect of radiation corresponding to the

Larmor radiation. The second term comes from the inhomogeneous term

⟨(δρ(x)/ρ0(x))2⟩+ ⟨(δρ(y)/ρ0(y))2⟩. The third term comes from the interfer-

ence term, which is obtained by taking a derivative of ρ(x) in P (x, ω). The

forth term is also an interference effect and depends on τ+.

Let us compare the above result with the calculation for an internal de-

tector. In the case of an internal detector in (1+1) dimensions, there are no

terms depending on τ+. All the contributions to radiation (derived from the

2-point correlation function) are canceled. In the case of an internal detector
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in (3+1) dimensions, there are τ+ dependent terms. But if we neglect these

terms, it was shown [22] that the interference terms completely cancel the

radiation. (The calculation is reviewed in the appendix.) On the contrary, in

the case of a charged particle, since the position of the particle is fluctuating,

only a part of terms are canceled even if we neglect the τ+ dependent terms.

Hence there is a possibility to detect additional radiation besides the clas-

sical Larmor radiation. In the following we neglect the τ+ dependent terms

because the oscillating function e−iωτ remains even after setting x = y and

suppresses the ω integral.

In calculating the symmetrized 2-point function, F (x, y) is replaced by

FS(x, y)

FS(x, y) = 1 + e2
∫

dω

2π

|h(ω)|2

6π
IS(ω)

((
xi

ρ0(x)

)2

+

(
yi

ρ0(y)

)2)
− ia2xiyi

ρ0(x)ρ0(y)

∫
dω

8π
coth(

πω

a
)e−iω(τx−−τy−)

(
h(−ω)

L2
x

ρ0(x)
− h(ω)

L2
y

ρ0(y)

)
+ τ+-dependent terms. (3.120)

In the remainder of this section we consider the radiation emitted by the

accelerated particle. The energy momentum tensor of the scalar field is given

by

⟨Tµν⟩ = ⟨: ∂µϕ∂νϕ− 1

2
gµν∂

αϕ∂αϕ :⟩S. (3.121)

Hence we can evaluate it by taking a derivative of the 2-point function

(3.120).

The following relations are useful in taking derivatives;

∂µρ0 = (z̈0 · (x− z0)− 1)∂µτ− + ż0µ = −a2L2

2
∂µτ− + ż0µ

∂µτ− =
xµ − z0µ

ρ0
(3.122)

In the last line of the first equation, we used the explicit form of the classical

trajectory (3.48) and z̈0 ·x = −a2L2/2. The derivative ∂µτ− was obtained by
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taking a variation of the light-cone condition (x− z0(τ
x
−))

2 = 0 as

2(xν − z0ν)(δx
ν − żν0δτ

x
−) = 0 −→

δτx−
δxν

=
xν − z0ν

ρ0
. (3.123)

In particular, u and v derivatives are given by

∂uτ− =
v − vz
2ρ0

, ∂vτ− =
u− uz

2ρ0

∂uρ0 = −a2L2

2
∂uτ− +

avz
2

, ∂vρ0 = −a2L2

2
∂vτ− +

1

2avz
(3.124)

where uz = −e−aτ−/a, vz = eaτ−/a. From (3.122), we have (∂ρ0)
2 = a2x2.

Since (x − z(τ))2 = 0, x2 ∼ O(r) and (∂ρ0)
2 is approximately proportional

to the spacial distance r, not r2. On the other hand, since L2 = −x2
µ + 1/a2

is O(r), ∂µρ0 itself is growing as O(r).

First we calculate the classical part of the energy momentum tensor. It

becomes

Tcl,µν =
e2(∂µρ0∂νρ0 − gµν

2
∂αρ0∂

αρ0)

(4π)2ρ40
∼ e2∂µρ0∂νρ0

(4π)2ρ40
. (3.125)

Note that ∂αρ0∂
αρ0 does not make a contribution here, since it is the order

of ρ0 at the infinity while ∂µρ0∂νρ0 is in general ρ20. This part of the energy

momentum tensor corresponds to the classical Larmor radiation and behaves

as 1/ρ20 ∼ 1/r2 at infinity. The term ż0µ(τ
x
−) in ∂µρ0 seems to be negligible,

since it is O(1) while ∂µρ0 is O(r). However, a care should be taken of

because ż0µ(τ
x
−) = (cosh aτx−, sinh aτ

x
−, 0, 0) behaves singularly if the observer

is located near the horizon.

Next we evaluate the other parts of the energy momentum tensor. We

especially consider the (u, u) and (v, v)-components in the following. From

(3.120), extra terms of the energy momentum thensor besides the classical
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ones are given by

Tfluc,µν =
(xi)2

ρ20

[(e2
π
Im − 6ma2I1L

2

ρ0

)
Tcl,µν −

e2a2L2

(4π)2ρ30

(
mI3 ∂µτ

x
−∂ντ

x
−

+
2mI1
ρ0L2

(xµ∂νρ0 + xν∂µρ0) +
e2Im
12πL2

(xµ∂ντ
x
− + xν∂µτ

x
−)

− e2Im
24πρ0

(∂µτ
x
−∂νρ0 + ∂ντ

x
−∂µρ0)

)]
(3.126)

where we have defined the following ω integrals

I1 =

∫
dω

4π
|h(ω)|2 coth(πω

a
) ω,

I3 =

∫
dω

4π
|h(ω)|2 coth(πω

a
) ω3,

Im =

∫
dω

4π
|h(ω)|2 coth(πω

a
) (ω3 + a2ω) = I3 + a2I1. (3.127)

These integrals can be similarly evaluated as in section 3, and we have

I1 =
3

2mae2
, Im ∼ a2I1. (3.128)

Because of the inequality Ω− ≪ a, terms containing I3 are generally negligible

compared to other terms; I3 ∼ Ω2
−I1 ≪ a2I1.

Near the past horizon, the v → 0, the u-derivatives of ρ0 and τx− become

very small and negligible. On the other hand, v-derivative of τ− becomes

potentially large. u-derivatives of them are approximately given by

∂vτ
x
− → 1

av
, ∂vρ0 → −au

2
. (3.129)

A singular term of ∂vρ0 near v ∼ 0 is canceled and it remains finite near the

past horizon. Hence the second term in (3.126) proportional to (∂τ−)
2 may

becomes large there. However, there are two reasons that the term cannot

grow so large. One is a suppression by the ω integral, which is proportional

to a very small coefficient I3. The other reason is the overall factor (xi)2/ρ20.

Since the observer is much further than the acceleration scale 1/a from the

particle, L2 is much larger than 1/a2. Then ρ0 = (a/2)
√
L4 + (4/a2)uv can
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be approximated by ρ0 ∼ (a/2)|xµ|2 and (xi)2/ρ20 is also suppressed. Because

of these two reasons, the singular behavior near the past horizon seems to be

difficult to be observed experimentally.

3.6 Thermalization in Electromagnetic Field

In this section, we consider the thermalization of an accelerated charged par-

ticle in the realistic electromagnetic field (QED). Calculations of the energy

momentum tensors are more involved and left for a future investigation. We

study the thermalization of the transverse momenta of a uniformly acceler-

ated particle in an electromagnetic field. The calculation is almost the same,

but due to the presence of the polarization, several quantities become twice

as large as those in the scalar case.

The action is given by

SEM = −m

∫
dτ
√

żµżµ −
∫

d4x jµ(x)Aµ(x)−
1

4

∫
d4x F µνFµν , (3.130)

where the current is defined as

jµ(x) = e

∫
dτ żµ(τ)δ4(x− z(τ)). (3.131)

The equations of motion are

mz̈µ = eFµν ż
ν

∂µF
µν(x) = jν . (3.132)

Using the gauge

∂µAµ = 0, (3.133)

the equation of motion for Aµ becomes

∂µ∂µA
ν = jν . (3.134)
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One can solve this equation as

Aµ = Ahµ +

∫
d4y GR(x, y)jµ(y)

= Ahµ + e

∫
dτGR(x, z(τ))żµ(τ), (3.135)

where Ahµ is the homogeneous part of the equation of motion which satisfies

∂2Aµ
h = 0. GR(x− y) is the retarded Green function

GR(x, y) = θ(x0 − y0)
δ((x− y)2)

2π
, ∂2GR(x, y) = δ4(x− y). (3.136)

Inserting the solution of Aµ(x) back to the equation of motion for zµ, we

obtain the following stochastic equation

mz̈µ(τ) = Fµ + e{∂µAhν(z)− ∂νAhµ(z)}żν

+e2
∫

dτ ′żν(τ){żν(τ ′)∂µ − żµ(τ
′)∂ν}GR(z(τ), z(τ

′)).(3.137)

The second line is the radiation reaction which can be treated similarly to

the scalar case. It becomes

e2
∫

dτ ′ {żν ż[ν∂µ] − s2

2
(z̈2∂µ −

...
z µż

ν∂ν)}
d

ds
GR(z(τ), z(τ

′))

= −e2
∫ ∞

∞
ds

s2

3
{...z µ(τ) + żµ(τ)z̈

2(τ)} d

ds

δ(s2)

2π

=
e2

6π
{...z µ + żµz̈

2}, (3.138)

which has exactly the same form as the scalar case, but the coefficient is

twice as large since the gauge field have two different polarizations. This is

the Abraham-Lorentz-Dirac self-force term.

For the transverse momentum fluctuations δvi ≡ δżi, we can similarly

simplify the stochastic equation and solve it, by the Fourier transformation,

as a function of the homogeneous part of the gauge field as

δṽi(ω) = −eh(ω)(v0α∂i + δiα(v0 · ∂))Aα
h , (3.139)
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where

h(ω) =
1

−imω + e2

6π
(ω2 + a2)

. (3.140)

The relaxation time is also twice as large as the scalar case. The noise

correlation of Aµ
h in the rhs of (3.139) can be evaluated as

(v0α∂i + δiα(v0 · ∂))(v′0β∂′
j + δjβ(v

′
0 · ∂′))⟨Aα

h(z)A
β
h(z

′)⟩ = a4

16π2

δij

sinh4(a(τ−τ ′−iϵ)
2

)
,(3.141)

which is also twice as large as the scalar case. Note that the quantity is gauge

invariant

(żαkµ − ηαµ(ż · k))(ż′βk′
ν − ηβν(ż

′ · k′))kαkβ = 0. (3.142)

Hence following the same calculations in the scalar case, the fluctuations of

the transverse momentum becomes

m

2
⟨δvi(τ)δvj(τ)⟩ = 1

2

a~
2πc

δij

(
1 +O

(
a2

m2

))
. (3.143)

The relaxation time is twice as large as the scalar case.

3.7 Summary

In this chapter, we studied a stochastic motion of a uniformly accelerated

charged particle in the scalar QED. The particle’s motion fluctuates because

of the thermal behavior of the uniformly accelerated observer (the Unruh

effect). Because of this fluctuating motion, Chen and Tajima [12] conjectured

that there is additional radiation besides the classical Larmor radiation. On

the other hand, it was argued [15, 16] that interferences between the radiation

field induced by the fluctuating motion and the quantum fluctuation of the

vacuum may cancel the above additional radiation. The cancellation was

shown in the case of an internal detector, but it was not yet settled whether
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the same kind of cancellation occurs in the case of a fluctuating charged

particle in QED.

In order to investigate the above issue systematically, we first formu-

lated a motion of a uniformly accelerated particle in terms of the stochas-

tic (Langevin) equation. By using this formalism, we showed that the mo-

menta in the transverse directions actually get thermalized so as to satisfy

the equipartition relation with the Unruh temperature. Then we calculated

correlation functions and energy flux from the accelerated particle. Partial

cancellation is actually shown to occur, but some terms still remain. Hence

there is still a possibility that, besides the classical Larmor radiation, we can

detect additional radiation associated with the fluctuating motion caused by

the Unruh effect.

There are several issues to be clarified. First in calculating the energy flux

at infinity there appeared classically unacceptable contributions (i.e. those

depend on τ+). If the observer is in the right wedge, the contribution to the

energy flux come from the particle in the future of the observer. In the case

of the observer in the future wedge, this contribution comes from the virtual

particle in the left wedge. Both of them are classically unacceptable, and we

do not yet have physical understanding why these contributions appear in

the calculation.

Another issue is the calculation of longitudinal fluctuations. Since the

particle is moving at a relativistic speed in the longitudinal direction, such

small fluctuations caused by the Unruh effect seem to be difficult to be sep-

arated from the classical motion. Even the meaning of the thermalization is

unclear because once the particle fluctuates in the longitudinal direction it

is kinematically unstable.



Chapter 4

Fluctuation Theorem and Black

Hole

As already reviewed in Chapter 2, the black hole physics are related to the

thermodynamics. And the Hawking radiation causes the information prob-

lem. The information problem says that in the systems involve black hole

evaporation, one may not be able to know the initial state only from the

information of final state. People this may be because that the black hole

are just some thermodynamic description, which are the descriptions after

some kind of coarse graining of some microscopic theory. We would consider

this point from the view of thermodynamics.

From statistic mechanics, one can calculating various thermodynamic

quantities from a microscopic theory. The microscopic theory we starting

from are time reversible but the thermodynamics are generally not time

reversible (the process with increasing entropy). The information are lost

here. One interesting explanation is that the coarse graining are responsible

for this. However, this problem is still not solved completely. There is a

recent development of non-equilibrium statistic physics called the Jarzynski

equality. The Jarzynski equality itself is an equality which can be derived

from quantum mechanics, however, from this equality one can obtain a in-

67
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equality which have the same form to the second law of thermodynamics. So

we expect that the Jarzynski equality may shed new lights on this problem.

And here, we would like to apply the thought of this Jarzynski equality to

the black hole physics.

The organization of this chapter is following. First I review the Jarzynski

equality and fluctuation theorem briefly. Then after some preparation of

the correction transition rates of the Hawking radiation, I will apply the

fluctuation theorem to black hole and derive the generalized second law of

black hole as a result.

4.1 Jarzynski Equality and Fluctuation The-

orem

4.1.1 Jarzynski Equality

Consider a system with some parameter λ and change this parameter with

time, denote by λ(t). This is, for example corresponds to change the position

of a cylinder, or to change some potential of the system. The operation does

not have to be quasi-static. Now let the system starting from a thermal

equilibrium state, and under the operation λ(t) the system went to some final

state which does not have to be thermal equilibrium. Then the Jarzynski

equality says that the work done by the external force which caused the

change of the parameter should obey

⟨e−βW ⟩ = e−β∆F . (4.1)

Here W is work done to the system during the whole process. Microscopi-

cally it is defined by W = Ef − Ei, with Ei (Ef ) is the energy of the initial

(final) state. And ∆F is the difference of the free energy between the initial

and the final state, ∆F = Fi − Ff , with Fi is the free energy of the initial

state. Note that the thermal equilibrium state will not stay at thermal equi-
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librium during general operation. And here the final state is not at thermal

equilibrium. So generally, Ff can not be the free energy of the final state.

Here Ff is defined by the free energy of the thermal equilibrium state at the

temperature of the initial state, and with the parameter λ(tf ). This equality

was proved in various systems. The average in the left hand side are taken

by the probability of the microscopic process, the exact definition are depend

on the system one consider.

One can confirm equation (4.1) using quantum mechanics. Assuming

that the system is controlled by a Hamiltonian Hλ(t), which depends on the

parameter λ(t) and changing with time. Denote ρ̂0 for the density matrix of

the initial state,

ρ̂0 =
e−βĤλ(0)

Tr(e−βĤλ(0))
(4.2)

then the probability of the external work to be W are given by

P (W ) ≡
∑
Ei,Ef

|⟨Ef |Û(t, 0)|Ei⟩|2⟨Ei|ρ̂0|Ei⟩δ(W − Ef + Ei). (4.3)

Then ⟨e−βW ⟩ is

⟨e−βW ⟩ ≡
∑
W

P (W )e−βW

=
∑
Ei,Ef

|⟨Ef |Û(t, 0)|Ei⟩|2⟨Ei|
e−βĤλ(0)

Tr(e−βĤλ(0))
|Ei⟩e−β(Ef−Ei)

= eβFi

∑
Ei,Ef

⟨Ef |Û(t, 0)|Ei⟩⟨Ei|Û †(t, 0)|Ef⟩e−βEf

= eβFi

∑
Ef

e−βEf

= e−β∆F . (4.4)

With equation (4.1), using the Jensen’s inequality

⟨ex⟩ ≥ e⟨x⟩ (4.5)
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one obtain

W −∆F ≥ 0 → ∆S ≥ 0 (4.6)

which is just the second law of thermodynamics. I have to note a fact that

what the second law of thermodynamics says is about two states both at

thermal equilibrium. And here what we considered is starting from one

thermal equilibrium state to another general state. To complete the settings

one have to put the final state to some thermal bath and wait it to go to

the thermal equilibrium. But this process generally may not be controlled

by a Hamiltonian, since it involves another systems. So the second law of

thermodynamics can not be proved only with this discussions, one need other

assumptions to complete this proof. However I believe that this Jarzynski

equality catches some important informations on our problem.

4.1.2 Fluctuation Theorem

The Jarzynski equality is closely related to the fluctuation theorem. The

fluctuation theorem was discovered earlier, and one can derive the Jarzynski

equality from the fluctuation theorem.

The non-equilibrium fluctuation theorem was first discovered in [24].

There are several variations of the theorem. Here I am going to introduce

the Crooks fluctuation theorem [25].

The setting is same to the previous session. Assuming that the system is

initially in thermal equilibrium at inverse temperature β with the external

parameter λF (0). Then changing the external parameter λF(t) as a function

of time from t = 0 to t = T . The procedure of changing the parameter

corresponds, for example, to a process of moving a piston and it needs not

to be quasi-static.

The process of changing the external parameter λF (t) is called a forward

protocol, this is what the index F refers for. We also consider a reversed

protocol which defined as changing the external parameter in a reversed way
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as λR(t) ≡ λF(T−t) from t = 0 to t = T . In the reversed protocol, the system

is assumed to be initially in thermal equilibrium at the same temperature,

but with a different external parameter λR(0) = λF(T ).

In changing the external parameter, the system becomes out-of-equilibrium.

For each microscopic state, one does some measurements on the system, and

takes an ensemble average over the initial density matrix. For general micro-

scopic states |af⟩ and |ai⟩, define a function KF (af , ai)

K(af , ai) = KF (af , ai) = ln
P F [af , ai]

PR[ai, af ]
(4.7)

and KR(ai, af )

KR(ai, af ) = ln
PR[ai, af ]

P F [af , ai]
= −K(af , ai). (4.8)

Where P F [af , ai] and PR[ai, af ] are the probability of the transition from |ai⟩
to |af⟩ in the forward protocol and from |af⟩ to |ai⟩ in the reversed protocol

P F [af , ai] =
∑
ai

|⟨af |Û(t, 0)|ai⟩|2⟨ai|ρ̂F0 |ai⟩

PR[ai, af ] =
∑
af

|⟨af |Û(t, 0)|ai⟩|2⟨af |ρ̂R0 |af⟩ (4.9)

As in (4.3), define PF(K) and PR(K) as the probability of measurement K

in the forward and reversed protocol respectively

PF(K) ≡
∑
ai,af

PF[af , ai]δ(K −K(af , ai))

PR(K) ≡
∑
ai,af

PR[af , ai]δ(K −KR(ai, af )). (4.10)

Using equation (4.7) and (4.8)

PR(K) =
∑
ai,af

e−K(ai,af )P F (af , ai)δ(K +K(af , ai)) = eKP F (−K). (4.11)

Replace K to −K one obtains the fluctuation theorem

P F (K)

PR(−K)
= eK . (4.12)
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To obtain the probability of the exerted work W under the change of

parameter λF(t). One only need to choose the state |ai⟩ and |af⟩ to the

energy eigen state |Ei⟩ and |Ef⟩. Then K(Ef , Ei) becomes

K(Ef , Ei) = ln
⟨Ei|ρ̂F0 |Ef⟩
⟨Ef |ρ̂R0 |Ef⟩

= β[(Ef − Ei)− (Ff − Fi)], (4.13)

since Ff and Fi are state independent, P (K) = P (W ). Then

PF(W )

PR(−W )
= eβ(W−∆F ), (4.14)

this equation states that the ratio of these two probabilities is given in terms

of the work and the difference of free energies F (λ) between the two equilib-

rium states. The Jarzynski equality [26] can be obtained by summing over

W

⟨e−β(W−∆F )⟩ =
∑
W

e−β(W−∆F )P F (W ) =
∑
W

PR(−W ) = 1 (4.15)

can be obtained. Here, the angled bracket stands for the average with the

probability ρF(W ). It is surprising since the average of exponentiated work

in non-equilibrium processes in the left hand side is related to the difference

of equilibrium quantities at the beginnings of the protocols. By using the

Jensen’s inequality, the Jarzynski relation is reduced to

⟨(W −∆F )⟩ ≥ 0, (4.16)

which implies the second law of thermodynamics. Note that since ex are

always smaller than 1 for negative x, though the average of W − ∆F is

always non-negative, to satisfy the Jarzynski equality (4.15), there must be a

nonzero probability for the quantity to take a negative value microscopically.

4.2 Application to Black Holes

Now we are going to apply the fluctuation theorem and Jarzynski equality

to the black hole physics.
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4.2.1 Transition Rates

We consider a coupled system of a black hole and matter. The external

parameter λ(t) characterizing the system Hamiltonian, which appeared in

the fluctuation theorem, is, for example, height or shape of the potential

for the matter field. If the whole system is controlled by a unitary time

evolution with time-reversal symmetry, a transition probability WλF(t)(C →
C ′) from one configuration C to another C ′ under a time evolution of the

external parameter λF(t) is equal to a probability WλR(t)(C ′ → C) from C ′

to C under the reversed change of the parameter λR(t). In the presence of

a black hole, however, the time-reversal symmetry is violated by imposing

the ingoing boundary condition at the horizon. In a black hole space-time,

regular coordinates near the horizon, i.e. Kruskal coordinates (U, V ), are

defined by U = −κ−1e−κ(t−r∗) and V = κ−1eκ(t+r∗). Here, t and r∗ are the

Schwarzschild-time and the tortoise coordinates. Quantum fields near the

horizon are classified into two types of chiral fields (in a two-dimensional sense

on (t, r∗) plane), one depending on U and the other on V . Fields depending

on V are ingoing waves falling into the black hole while those depending

on U are propagating nearly along the horizon and correspond to outgoing

modes. The regularity at the horizon requires occupation of outgoing modes

ϕ(ω) ∼ e−iωU to vanish at the (future) horizon. Namely, we must impose the

vacuum condition for the outgoing modes in the Kruskal coordinates. On

the contrary, there is no constraint for the ingoing modes, and the conditions

are asymmetric between U and V . The time-reversal transformation t → −t

exchanges the coordinates U and V , and the presence of horizon violates

the time-reversal symmetry of the quantum states. Therefore, the above

transition probabilities are not necessary the same.

The ratio of the above transition probabilities was evaluated by Massar

and Parentani [28] for Hawking radiation processes. They have shown that

the transition rates for systems with a black hole horizon are governed by

changes in the horizon area. In the present case, the ratio of transition
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probabilities between a configuration C with black hole area A and another

one C ′ with area A′ under a fixed value of external parameter λ is given by

Wλ(C(A) → C ′(A′))

Wλ(C ′(A′) → C(A))
= exp(∆A/4G~), (4.17)

where the change of area ∆A = A′ − A is assumed to be small. In deriving

this, they used the WKB approximation for the system wave function, and

calculated the transition rates in the first Born approximation for the interac-

tion between the detector and radiation field. A similar result was obtained

in a different way in [29]. If we identify ∆A as the energy ∆E emanated

from the black hole by ∆A/4G~ = −∆E/TH , it becomes the Boltzmann

factor exp(−∆E/TH) of the Hawking radiation. The ratio eq.(4.17) takes

into account the back reaction of the radiation to the black hole area. If the

detailed balance condition is satisfied in the processes, the ratio eq.(4.17) is

identified as the ratio of a probability in the configuration C ′(A′) to that in

C(A), and hence consistent with the entropy of the black hole SBH = A/4G~.
In proving (4.17), they have used an observation by Carlip and Teitel-

boim [30] that, if we consider a coupled system of a black hole and matter

exchanging energy between them, one needs to add a boundary term to the

bulk action, S = Sbulk + AΘ/8πG. Here, Θ = κt for on-shell and station-

ary metrics. Then in quantizing the system, the Wheeler-DeWitt equation

ĤtotΨ = 0 in the bulk must be supplemented by the boundary Schröedinger

equation [30] i~∂ΘΨ = −(Â/8πG)Ψ, and the total system’s wave function

evolves as exp(iAΘ/8πG~) in the WKB approximation.

The ratio (4.17) is valid also for processes including classical absorption of

energy into the black hole, if we generalize the notion of transition probabil-

ities in the following way. The matter system outside the horizon dissipates

the energy by transferring it into the black hole. Furthermore, the matter

system feels thermal noise due to the Hawking radiation. Hence, by includ-

ing both effects of the heat transfer, in and out, at the horizon, the effective

equation of motion for matter is controlled by a stochastic Langevin equa-
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tion with dissipation and noise terms. In such a situation, one can define

a probability distribution of the system to take some configuration. Time

evolution of the probability distribution function is described by the Fokker-

Planck equation. Clearly the time reversal symmetry is violated, and there

is an asymmetry between the probabilities of the forward and the reversed

processes. The ratio is evaluated in general Langevin processes in [27]. By

applying it to our case, the energy transfer into the black hole can be rewrit-

ten as the area change of the black hole through the first law of black hole

thermodynamics (∆SBH = ∆E/TBH). Hence the probability ratio (4.17) is

valid for wider situations including classical absorption of energy into the

black hole.

4.2.2 Non-equilibrium Fluctuations of Horizons

We consider a sequence of configurations of a coupled system of a black

hole and matter, and denote it as Γ = {C0(A0), C1(A1), . . . , CM(AM)}. The

configuration Ck is realized at a discretized time t = k∆t. Each transition

probability is given by WλF(tk)(Ck(Ak) → Ck+1(Ak+1)). If we assume the

Markov process, the transition probability for the sequence of configurations

Γ to be realized is given by a product of them,

PF(Γ) =
M−1∏
k=0

WλF(tk)(Ck(Ak) → Ck+1(Ak+1)). (4.18)

The sequence represents a general process of absorbing and emitting matter

through the black hole horizon. On the other hand, the probability for the

reversed sequence of configurations Γ∗ = {CM(AM), . . . , C1(A1), C0(A0)} with

the reserved change of the external parameter is given by

PR(Γ∗) =
M−1∏
k=0

WλR(tk)(CM−k
(A

M−k
) → C

M−k+1
(A

M−k+1
))

=
M−1∏
k=0

e
∆A
4G~WλF(tk)(Ck+1(Ak+1) → Ck(Ak))). (4.19)
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Here we have used eq. (4.17). The ratio of these two probabilities is given

by

PF(Γ)

PR(Γ∗)
= exp

(
AM − A0

4G~

)
≡ exp(SP (Γ)). (4.20)

SP (Γ) is defined as the logarithm of the ratio, and proportional to the dif-

ference of area, which is not necessarily small.

We now derive a Crook’s type fluctuation theorem in the black hole sys-

tem. The matter is assumed to be in thermal equilibrium with Hawking

temperature TH with an external parameter λF (0) at the beginning. First

define the total dissipation ∆S(Γ) by

exp(−∆S(Γ)) ≡
pλR(0)(CM)

pλF(0)(C0)
exp(−SP (Γ)), (4.21)

where pλ(F, R)(t0) is the initial probability distribution for matters under the

forward or reversed protocols. We assume that these probability distribu-

tions are canonical distributions with the Hawking temperature. A relation

∆S(Γ∗) = −∆S(Γ) follows the identity SP (Γ
∗) = −SP (Γ). A transition

probability to produce the total dissipation ∆S(Γ) = ∆S under the forward

protocol λF(t) is now given by

ρF(∆S) =
∑
C0,Γ

pλF(0)(C0)PF(Γ)δ(∆S(Γ)−∆S)). (4.22)

Here,
∑

C0 pλF(0)(C0) stands for a sum over all possible initial states weighted

by the initial distribution.
∑

Γ is a path integral for all possible trajectories.

By using (4.20) and (4.21), it is straightforward to show the Crook’s type

fluctuation theorem

ρF(∆S)e−∆S = ρR(−∆S). (4.23)

From the definition of ∆S(Γ) in (4.21), it is identified as a change of a sum

of the black hole entropy and the entropy of matter;

∆S(Γ) =
∆A

4G~
+ βH(∆E −∆F ). (4.24)
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By integrating the equation (4.23) over ∆S, it gives a Jarzynski type equality

⟨e−∆S⟩ = 1. (4.25)

It can be expanded as
∞∑
n=1

(−1)n

n!
⟨(∆S)n⟩ = 0. (4.26)

Since the black hole entropy is inversely proportional to ~, it is an equality

relating different powers of (1/~n). This meas that the fluctuation of the

horizon area ⟨(∆A)n⟩ is a nontrivial function of ~, and contains information

of the microstates of black holes.

The generating function to compute correlation functions of ∆S such as

⟨(∆S)n⟩ is

ZF(f) ≡
∫ ∞

−∞
d(∆S)ρF(∆S)eif∆S. (4.27)

This is the generating function of correlators under a variation of external

parameter λF(t). The fluctuation theorem (4.23) suggests a following general

relation.

ZF(f) =

∫ ∞

−∞
d(∆S)ρR(−∆S)eif∆S+∆S

=

∫ ∞

−∞
dx ρR(x)eix(i−f)

= ZR(i− f). (4.28)

Non-equilibrium fluctuations of black hole horizons and matters under for-

ward protocol and reversed protocol are related this way. Because correlation

functions have different quantum corrections under forward or reversed pro-

tocol, the equation (4.28) relates complex quantum nature of non-equilibrium

fluctuations.

By using the Jensen inequality ⟨exp(x)⟩ ≥ exp(⟨x⟩), the generalized sec-

ond law of black hole thermodynamics [1]

⟨∆S⟩ ≥ 0 (4.29)
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is derived as a corollary of the Jarzynski equality. An important point here

is that it is satisfied only in an averaged sense, and in order to satisfy the

Jarzynski equality (4.25), entropy decreasing processes (∆S < 0) must exist

as individual processes (otherwise (4.25) can not be satisfied). The proba-

bilities to microscopically violate the second law are arranged to satisfy the

Jarzynski equality.

4.3 Future Work

Here, we have considered a special class of the fluctuation theorem where the

matter system is initially in the thermal equilibrium with the Hawking tem-

perature. If the matter field is interacting with another thermal bath with

a different temperature from TH , there is a constant flow of energy between

the black hole and the matter. The fluctuation theorem is also applicable to

such a situation. From the steady state fluctuation theorem, we can derive

a fluctuation-dissipation relation and calculate various response functions.

We may also be able to obtain Green-Kubo relations that relates the corre-

lation of energy flow and a proportionality coefficient between area change

of horizon and energy flow. Moreover, if we consider charged rotating black

holes, we will obtain the Onsager reciprocal relations among proportionality

coefficients of several currents.

Another important issue is to take into account the effect of back reac-

tion of the radiation to the Hawking temperature. In the present letter, we

have assumed that the temperature of the black hole is not affected and the

matter system continues to be in thermal equilibrium with the black hole.

In the real dynamical process of evaporation, the temperature is varying

and it drastically changes the fluctuation of the horizon area, if the size of

the black hole is small. In particular, the Schwarzschild black hole has a

negative specific heat and it is thermodynamically unstable. The ordinary

linear response theorem can not be valid for such an unstable system. The
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fluctuation theorem is, however, applicable and we can in principle calculate

fluctuations of horizon area for an evaporating black hole. Furthermore, the

way a black hole reacts to radiation is dependent on the details of the mi-

crostates of the black hole, and so is the fluctuation theorem. Then we may

reveal microscopic structures of a black hole by observing details of horizon

area fluctuations against a change of external parameters of the black hole.
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Appendix A

Radiation Damping

Classically, an accelerating charged particle will emit radiation. Since those

radiation carries energy and momentum, the conservation laws requires that

the charged particle should receive some change due to the radiation. This

is called the radiation damping. In this section, I am going to review the

classical treatment of this back reaction on the charged particle due to the

radiation. First I am going to review the Abraham-Lorentz-Dirac(ALD)

force and its problems. Next I am going to see the approach by Landau and

Lifshitz.

In classical electromagnetic dynamics, usually we only determine the field

with the source specified or determine the classical motion of the charged

particle with the external field specified. So generally we don’t consider the

problem of back reaction. One reason is that this kind of effect are negligible

for most case under dealing. There is a simple way to briefly estimate that

if or when the back reaction will be important. The radiation power of

the accelerated charged particle can be obtained from the Lienard-Wiechert

Potentials

E = − e2

6πm2c3

∫
dt
dpµ

dτ

dpµ
dτ

, (A.1)

this is called the Larmor radiation. Then, consider a particle of charge e has

an acceleration of typical magnitude a for a period of time T , the energy

81
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radiated is of the order of

Erad ∼ e2a2T

6πc3
. (A.2)

On the other hand, the relevant energy E0 of the problem can be estimated

from the kinetic energy

E0 ∼ m(aT )2. (A.3)

So the condition for the back reaction to be unimportant is

E0 ≫ Erad −→ ma2T 2 ≫ e2a2T

6πc3
(A.4)

or

T ≫ e2

6πmc3
. (A.5)

Here we find a characteristic time

τ0 =
e2

6πmc3
, (A.6)

for the phenomenon with time T much longer than τ0, the back reaction can

be neglected. For electron, τ0 ∼ 10−24s, which is the time taken for light to

travel 10−15m (the Compton wavelength is 10−13m).

A.1 Abraham-Lorentz-Dirac Force

Writing the equation of motion for the charged particle in the form

dpµ

dτ
= F µ

ext + fµ, (A.7)

here F µ
ext denotes the external force which cause the acceleration of the

charged particle, and fµ denotes the back reaction force due to the radi-

ation. Then we are going to determine the form of fµ. It can be done from
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the energy momentum conservation. The covariant form of the power for the

Larmor radiation (A.1) can be written by

P µ
rad = − e2

6πc5

∫
dτ

dxµ

dτ

d2xν

dτ 2
d2xν

dτ 2
. (A.8)

With this expression, we can have∫
dτfµ =

e2

6πc5

∫
dτ

dxµ

dτ

d2xν

dτ 2
d2xν

dτ 2
. (A.9)

Taking off the integral

f̂µ =
e2

6πc5
dxµ

dτ

d2xν

dτ 2
d2xν

dτ 2
. (A.10)

However, this result suffers an ambiguity when we taking off the integral.

This ambiguity can be fixed by the on-shell condition. Fix the parameter τ

to be the proper time

dxµ

dτ

dxµ

dτ
= c2, (A.11)

then

dxµ

dτ

dpµ

dτ
= 0 −→ fµdxµ

dτ
= 0, (A.12)

to satisfy this condition, one have to add fµ a total differential term

fµ =
e2

6πc3

(
d3xµ

dτ 3
+

1

c2
d2xν

dτ 2
d2xν

dτ 2
dxµ

dτ

)
, (A.13)

then fµ satisfies the on-shell condition, fµ(dxµ/dτ) = 0. This fµ is called

the Abraham-Lorentz-Dirac force.

The Abraham-Lorentz-Dirac force is very different from the ordinary force

on the point particle because it contains third derivatives of the particle path.

Corresponding this feature, there are several problems on the ALD force. To

show the problems explicitly, it will be convenient to use the non-relativistic

limit. Then the three-dimensional notation of ALD force can be written by

m(−̇→v − τ0
−̈→v ) =

−→
F ext. (A.14)



APPENDIX A. RADIATION DAMPING 84

From this expression, one can see that in the absence of external force, there

are to solutions. One is the constant velocities, −→v = const, the other is the

so called runaway solution,

−̇→v = −̇→v 0e
t/τ0 .

The runaway solution is unphysical, since it suggests that even there are no

forces, the particle can be accelerated to speed of light!

One might consider that the problem will be resolved by just neglect-

ing the unphysical runaway solutions and only taking the regular solutions.

However this is not true, there is an acausal problem for the regular solu-

tions. The regular solutions can be specified by insisting proper boundary

conditions (in particular −̇→v → 0 at t → ∞ with
−→
F ext vanishes in this limit).

With this condition, the solutions can be written by an integral form

m−̇→v =

∫ ∞

0

ds e−s−→F ext(t+ τ0s). (A.15)

The runaway solutions are eliminated from this form, but another unpleasant

feature arise. Consider that the external force are turned on to constant at

some instance, so
−→
F ext takes value 0 for negative t and takes value of some

constant,
−→
F 0 for positive t, as in Fig. A.1. With this external force, the −̇→v

Fext(t)

Figure A.1: External Force
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can be solved as

m−̇→v =
−→
F 0e

−|t|/τ0 for t < 0
−→
F 0 for t > 0, (A.16)

one can see that even when
−→
F ext is zero for negative t, the acceleration

−̇→v does not vanish but rather starts increasing at earlier times of order τ0

(∼ 10−24s for an electron), which is the time required for light to cross the

electromagnetic radius, Fig. A.2. This means that the electron will know the

v
.

(t)

Figure A.2: Preacceleration of a classical charge

force and starting to accelerate before one switching on the force. However,

this acausal effects are only occur at the time scale, τ0, which are much

smaller than the Compton length. So one may hope that the acausal effects

are unobservable because the quantum effect.

The acausal effects can also be seen in another case. We just considered

is that to turn on an external force for infinity time. Now we consider that

only turn on the external force for an finite time interval, δt = T . So the

external force takes value
−→
F 0 between t = 0 and t = T , as shown in Fig.

A.3. In this case, the solution becomes
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Fext (t)

0 T

Figure A.3: External Force

m−̇→v =
−→
F 0e

−|t|/τ0(1− e−T/τ0) for t < 0
−→
F 0(1− e(t−T )/τ0) for 0 < t < T

0 for t > T, (A.17)

here one can see different acausal effects. As in Fig. A.4, the electron starts

to accelerate before the force acts on it. Beside that, the acceleration of the

electron also starts to decrease to zero before the external force vanishes,

again at earlier times of order τ0. And there also exist a screen effect due to

the ”finite time effect”, the maximum acceleration of the charge will not be

|
−→
F 0|, but |

−→
F 0|(1− e−T/τ0). The suppression e−T/τ0 are negligible for T ≫ τ0,

v
.

(t)

T

Figure A.4: Preacceleration of a classical charge
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and will be important for T ∼ τ0, which again in a region that the quantum

effects should be essential.

A.2 Landau-Lifshitz Equation

To avoid the unpleasant feature of the ALD equation, Landau and Lifshitz

have proposed another equation to describe the radiation damping. The basic

idea is like this, since the radiation damping are generally small compare to

the leading order of the motion for the classical charge, so the radiation

damping term can be treated as perturbation. Writing the ALD equation in

the form

duµ

ds
= e

mc2
F µνuν +

e2

6πmc2
gµ,

gµ = d2uµ

ds2
− uµuν d2uν

ds2
, (A.18)

where uµ = dxµ

ds
, note that we changed the variable from τ to s with ds = cdτ ,

when c = 1 they are same. In this expression, gµ describes the effects of

radiation damping. Here we treat gµ as the perturbation.

For the leading order, the equation is(
duµ

ds

)
0

=
e

mc2
F µνuν , (A.19)

which is just the equation of motion without radiation damping. For the

next order (
duµ

ds

)
1

=
e

mc2
F µνuν +

e2

6πmc2
gµ0 , (A.20)

with gµ0 given by

gµ0 =

(
d2uµ

ds2

)
0

− uµuν

(
d2uν

ds2

)
0

, (A.21)
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substituting (A.19) to
(

d2uµ

ds2

)
0(

d2uµ

ds2

)
0

=
d

ds

( e

mc2
F µνuν

)
=

( e

mc2

)2
F µνFνρu

ρ +
e

mc2
uρuν∂ρF

µν . (A.22)

Finally we have

gµ =
e

mc2
uρuν∂ρF

µν +
( e

mc2

)2
F µνFνρu

ρ −
( e

mc2

)2
(Fνρu

ρ)(F νθuθ)u
µ.

(A.23)

The Landau-Lifshitz equation is a second order differential equation.

Since the radiation damping term in this equation are all depending on the

field strength or its derivative, it is free from the runaway solution and the

acausal problem.
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