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Abstract

Phase response curve (PRC) describes the response of an oscillator to external perturbation;
it is useful to predict and understand synchronized dynamics of oscillators. In recent years,
neuroscientists have focused on neurons’ PRCs, and measured them experimentally. This
originates from the leading hypotheses that the synchronization of neurons has a functional
meaning in the brain.

In this thesis, we propose two statistical methods for estimating PRCs from data; it
allows for the correlation of errors in explanatory and response variables of the PRC. This
correlation is neglected in previous studies.

The first method is implemented with a replica exchange Monte Carlo technique; this
avoids local minima and enables efficient calculation of posterior averages. A test with arti-
ficial data generated by noisy Morris-Lecar equations shows that, in terms of accuracy, this
method outperforms conventional regression that ignores errors in the explanatory variable.
Experimental data from the pyramidal cells in the rat motor cortex is also analyzed; a case
is found where the result with the first method is considerably different from that obtained
by conventional regression.

The second method is developed using a transformation that mixes the variables; it
effectively removes the correlation. The computation time of this method is considerably
less than that of the first method. The same test using the noisy Morris-Lecar equations
shows that the second method also outperforms than convectional regression in terms of
accuracy.






Acknowledgment

| am deeply grateful to my supervisor Associate Professor Yukito Iba. | would like to
express my gratitude to Associate Professor Toshio Aoyagi, who was my supervisor of my
master course in Kyoto University.

| am indebt to Professor Tomoyuki Higuchi and Professor Kenji Fukumizu whose com-
ments made enormous contribution to this thesis. Professor Tomoki Fukai in RIKEN gave
insightful comments, and encouraged me to apply the method in this thesis to experimental
data. Dr. Tsubo Yasuhiro in RIKEN provided the experimental data. Discussion with him
has been interesting for me.

| have had the encouragement of Professor Takashi Tsuchiya in National Graduate In-
stitute for Policy Studies, Professor Satoshi Kuriki, Professor Hiroe Tsubaki and Associate
Professor Genta Ueno in the Institute of Statistical Mathematics. Special thanks to Profes-
sor Nobuhisa Kashiwagi in the Institute of Statistical Mathematics and Assistant Professor
Hayato Chiba in Kyushu University, who give important comments in my research.

| would like to express my gratitude to President Genshiro Kitagawa in the Research
Organization of Information and Systems, Associate Professor Toshio Ohnishi in Kyushu
University, Dr. Hai-Yen Siew in Meiji University, Professor Emeritus Yoshiaki Itoh, As-
sociate Professor Yoichi Nishiyama, Assistant Professor Shogo Kato, Dr. Xiaoling Dou
and Dr. Ushio Tanaka in the Institute of Statistical Mathematics. We had a talk in Indian
Statistical Institute; this made me decide to be a researcher.

| want to thank my colleagues in Kyoto University and in the Graduate University for
Advanced Studies. | especially thank my friends Dr. Keisuke Ota and Mr. Kaiichiro Ota,
who and | often discuss my research. My heartfelt appreciation goes to my family, who
support me in the doctor course.

This research was supported by an allocation of computing resources of HP XC4000



and Fujitsu PRIMERGY RX200S5 from the Institute of Statistical Mathematics.



Overview of this thesis

This thesis is divided into 3 parts and consists of 10 chapters. Part | (Chap. 1-4) provides
the background and motivation of this thesis. In part Il (Chap. 5-7), we propose a Bayesian

method for estimating PRCs, where we consider a correlation between the explanatory and
response variables. This method is implemented with replica exchange Monte Carlo meth-
ods. In part Ill (Chap. 8-10), we propose another statistical method, which also consider

the correlation. A transformation that removes the correlation plays an essential role in this

part. In Chap. 10, we summarize this thesis and discuss future problems.

The details of each part are as follows:

Partl In Chap. 1, we briefly discuss motivations of this thesis and concepts of syn-
chronization and phase response curve. The detail of the concept is discussed in Chap. 2.
In Chap. 3, we review methods for estimating PRCs including that proposed in my master
thesis. We discuss drawbacks of these methods, and discuss our approach of this thesis.
In Chap. 4, we briefly discuss a Bayesian framework used in this thesis, and introduce
Metropolis-Hastings methods and replica exchange Monte Carlo methods used in part Il

Part Il In Chap. 5, we derive a Bayesian model, which describes a correlation be-
tween errors in PRC explanatory and response variables. In Chap. 6, we propose a Bayesian
method for estimating PRCs using replica exchange Monte Carlo methods. In Chap. 7, this
proposed method is tested with artificial data generated by noisy Morris-Lecar equations.
We compare the method with conventional regression in terms of accuracy for the data. We
also analyze experimental data from the pyramidal cells in the rat motor cortex.

Part Il In Chap. 8, we propose a statistical method using a data transformation that
mixes the PRC explanatory and response variables. This method is based on a modification
of the model in part Il. In Chap. 9, the method in part Il is compared with the method in
Il and conventional regression in terms of accuracy and computation time. In Chap. 10,
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summary and future problems are presented.
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Chapter 1

Introduction

1.1 Synchronization

Synchronization is observed everywhere in nature [Pikovsky et al., 2002, Strogatz, 2004].
For example, beating of the heart is a result of the synchronization of the cell activities of
the heart muscles [Reemtsen and Rueckmann, 1983]. Fireflies in an area of Southeast Asia
flash periodically and simultaneously [Smith, 1935, Buck and Buck, 1968, Ermentrout and
Rinzel, 1984], which is first reported by E. Kaempfer in 18-th century. Synchronizations
are also observed in chirps of the snowy tree crickets [Walker, 1969] and in croaking of the
neighboring two tree frogs [Aihara et al., 2007, Aihara, 2009]. We encounter synchroniza-
tion phenomena in biology [Aschoff et al., 1982, Dano et al., 1999, Elowitz and Leibler,
2000], in chemistry [Toth et al., 2006, Mikhailov and Showalter, 2006], and in physics [Si-
monet et al., 1994, Pantaleone, 2002, Eckhardt et al., 2007, Kitahata et al., 2009].

In the brain, we also observe synchronization between neurons and its result [Salinas
and Sejnowski, 2001, Varela et al., 2001]. For example, gamma frequency oscillations ob-
served in the local field potential of the mammalian olfactory bulbs is considered to be the
result of synchronous activities of the neurons [Adrian, 1950, Freeman, 1972, Schoppa,
2006]. A periodic activity of electroencephalogram is also the result of the synchroniza-
tion [Eccles, 1951, Singer, 1999, Whittingstall and Logothetis, 2009]. Epilepsy is caused
by an abnormal synchronization between neurons [Engel et al., 2007, Lehnertz et al., 2009].
In these examples, oscillatory phenomena are often observed as the result of the synchro-
nization of neurons.

15



16 CHAPTER 1. INTRODUCTION

In recent years, we have directly observed the synchronization between neurons because
of the developments of systems for recoding the neural population [Nicolelis et al., 1999].
For example, activities of neurons are measured by multi electrodes systems [Thomas et al.,
1972, Taketani et al., 2006], calcium imaging [Grynkiewicz et al., 1985, Stosiek et al.,
2003], and voltage sensitive dye imaging [Cohen and Salzberg, 1978, Zochowski et al.,
2000] of the neurons. Using them, the synchronization are experimentally detected in
various areas of the brain: for example, motor cortex [Riehle et al., 1997, Baker et al.,
2001], somatosensory cortex [Steinmetz et al., 2000, Roy et al., 2001], visual cortex [Fries
et al., 2001, Freiwald et al., 2001] and basal ganglia [Goldberg et al., 2004].

Neuroscientists have been focusing functions of synchronization in the brairgiBuzs
2006]. This is because some hypotheses are proposed that the synchronization is essential
for understanding information processing of the brain [Malsburg and Schneider, 1986, Gray
and Singer, 1989, Fries, 2005, Engel et al., 2001, Hopfield and Brody, 2001, Aoki and
Aoyagi, 2007]. These hypotheses argue that coherence in neural activities induced by
synchronization is not a side effect but essential for understanding brain functions.

Here, we briefly explain one of the hypotheses proposed by Malsburg and Schneider
[1986] that the synchronization is closely related to the “binding problem” of cognitive
neuroscience. To understand the binding problem and the hypothesis, we present an ex-
ample where a person looks a brown disc as shown in Fig. 1.1. According to the studies
in neuroscience [Gazzaniga, 2004], it is known that the information of the shape and the
color of the disc is distributed in different regions in visual cortex of the brain. Through
an unknown information processing, the person bind the information of the shape and the
color, and recognize “This is a brown disc”. In this example, the binding problem is a
guestion: What is the unknown information processing? Gray and Singer [1989] try to
answer the question through the hypothesis that binding of information occurs because of
the synchronizations between the spikes of neurons in the corresponding areas. Many re-
searchers have tried to investigate the binding problem and this hypothesis from various
aspects [Revonsuo and Newman, 1999, Thiele and Stoner, 2003, Bartels and Zeki, 2006,
Dong et al., 2008].



1.2. PHASE RESPONSE CURVES AND COUPLED PHASE OSCILLATORS 17

spikes

color P

‘ observation @ || | ||

shape  synchronization

Figure 1.1: A example of the binding problem and the hypothesis proposed by Malsburg and Schnei-
der [1986].

1.2 Phase response curves and coupled phase oscillators

Phase response curves

To deal with synchronization from the theoretical viewpoint, Kuramoto [1984] developed
a theory based on phase reduction from interacting nonlinear oscillators to “coupled phase
oscillators”; see also [Malkin, 1949, 1959, Winfree, 1967, 2001, Kopell and Ermentrout,
1990, Hansel et al., 1995, Ermentrout, 1996, Izhikevich, 2007, Kuramoto and Kawamura,
2010] and recent surveys [Strogatz, 2000, Acebron et al., 2005]. A key concept of this
theory is a phase response curve (PRC), which describes the response of an isolated os-
cillator to external perturbations. The PRCs are usually defined from the viewpoint of the
dynamical systems; here, we assume that the oscillator has a stable limit cycle. This means
that no closed orbit exists near the limit cycle, and it attracts all neighboring trajectories.
Here, we explain an definition of the PRCs, where we assuiidimensional dynam-
ical systemu(t) has a stable limit cyclé' as shown in the upper-left panel of Fig. 1.2. The
procedure consists of the following three steps:

1. We define a smooth and bijective function on the limit cygle C — S*, which
corresponds to a phase variable frono 27 of the oscillator, as shown in the upper-
left panel.
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2. Under regularity conditions [Coddington and Levinson, 1955, Guckenheimer, 1975],
the domain ofy is appropriately' extended to a neighborhoad(C) of the limit
cycle; i.e. the extended functiaff : N(C) — S! satisfies)®|c = . Thed — 1
dimensional manifold (¢) = {u € N(C)|y°(u) = ¢} is called an isochron, which
is shown as the curve of the upper-right panel.

3. Finally, we obtain the phase response curves (PR(s) = grad,, 4)cc%°(u), which
is ad-dimensional periodic vector function. The right side of this equation means a
normal vector ati(¢) := 1 ~1(¢) on the isochrod (¢). The red arrows in the lower
panel show the normal vectors.

Thed-dimensional dynamics of the oscillator can be reduced to a one-dimensional dy-
namics of the phase variabfewhere phase shifts by external perturbations are described
by the PRCs. In this thesis, we call this reduction “phase reduction of the oscillator”.

Another definition of phase response curves

Here, we explain an operational definition of the PRCs, which is more intuitive and use-
ful for understanding experiments. Its correspondence to the definition based on phase
description of the dynamical systems is explained in the next section.

We define PRCZ(¢) of a nonlinear oscillator from an operational viewpoint. PRC
Z(p) = (ZW(¢),...,Z9(¢)) is a periodicd-dimensional vector function in the domain
0, 27), when the dynamical system of the oscillator Hedimensional state.

As an example of the nonlinear oscillator, we consider a neuron, whose activity is peri-
odic. The state of the neuron has various components, which correspond to the activities of
the voltage, the potassium channel, the sodium channel and so on. Here, we operationally
define the voltage component of PRATo); it is denoted byZ(¢). This is because other
components of PRC can be defined in the same manner, and the voltage component of
the PRC gives sufficient information to analyze the synchronization of neurons. The latter
reason will be explained in Sec. 2.2

We assume that the activity of a neuron is periodic and the peribd T$e solid curve
in the left panel of Fig. 1.3 represents a time-series of the voltage for the neuron. We

ln an asymptotic sense (+ oo), we can identify a pointr’ on the limit cycle as points at which values®f are
equal to the phase of the poiat; the set of the identifiable points is @ 1-dimensional manifold “isochron”, which
is shown as the curves in the upper-right panel.
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Figure 1.2: Three steps of defining the PRCd ef 2 dimensional dynamical system.

consider a set of trials indexed by The neuron is assumed to fire at the origie- 0.

For theith trial, a perturbation is added at time= ¢;. The neuron then fires again at time

t = T} as shown by the dotted curve in the Fig. 1.3. We repeat this procedure a number of

times and plot the points;, 7Z;), i = 1,--- ,n, defined by
t; T-1T!

=2 Z; =2
=2l Zi=2m—

(1.1)

A smooth and periodic curvg(¢) interpolating these points in the domdin2r) is the
voltage component of the PRC of the neuron. The example of the curve is shown by the
solid curve in the right panel of Fig. 1.3.
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Figure 1.3: Measurement of a phase response curve. A trial with a perturbatientais illustrated

in the left panel. The solid curve indicates the voltage for the neuron without perturbation, while
the dotted curve indicates that with perturbation. Each p@int?;) in the right panel corresponds

to a trial with timingt¢;. PRC is defined by interpolating these points.

Connection to the definition through dynamical systems

In the previous section, we explain an operational definition of PRC of a nonlinear oscilla-
tor. Conventionally, the PRC is defined through phase reduction of the dynamical system
of the oscillator. Here, we discuss a correspondence between two definitions of the PRC.
Details of the phase reduction can be found in the book [Kuramoto, 1984].

Here, we revisit the phase reduction of the oscillator from the viewpoint of dynamical
system. Let us represent the state of the oscillator by the vacto(u, ... u@) ¢ R™.
An equation that describes dynamics of the oscillator is assumed as

du
T f(u) +p(1), (1.2)
where the vector fiell(u) has a stable limit cyclé’ as shown in the left panel of Fig. 1.4.

The vectorp(t) = (p™M(t),---,p?(t)) represents an external perturbation. WHiém)
satisfies regular conditions [Coddington and Levinson, 1955, Guckenheimer, 1975] and
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p(t) is sufficiently small, Eq. (1.2) is reduced to the dynamics

L —wr29) p0) 13)
where the natural frequeney is 27/T and a point or”' is indicated by the phase vari-
able¢ € [0,2x) [Kuramoto, 1984]. The smooth and periodic vector functitf) =
(ZW(9),..., 2D (¢)) represents a response of the oscillator to the perturbation As
shown in Fig. 1.4, the dynamics of the stai¢) on the limit cycleC is reduced to the
dynamics of the angle(t) of the unit circle. This reduction from Eq.(1.2) to Eq.(1.3) is

called the phase reduction of the oscillator.

u(t)

N

o(t)

!
phase reduction // \\

Y

Y

Figure 1.4: Phase reduction of a dynamical system that has a limit€ycle

To show a correspondence to the operational definition, we assume that the first com-
ponentu(!) of the state is the voltage of the neuron discussed in the previous section. When
the perturbatiomp(t) is added to the first componeat" only and the functional form of
pI(t) is the Dirac’s delta functios (¢ — t;), Egs. (1.2) and (1.3) correspond to the ex-
periment defining PRCZ(¢) from the operational viewpoint. Thus, we can identify the
function Z((¢) in Eq. (1.3) with a PRCZ(¢) defined operationally. This can be seen
by integrating Eq. (1.3) in the region8, t;) and[0,7;). As a result, we derive the two
equations /

o(t:) = 2”%’ ZW(p(t:)) = o ;TZ ) (1.4)
which correspond the left and right equations in Eq. (1.1) respectively.
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Coupled phase oscillators

In the theory developed by Kuramoto [1984], we deal with synchronization of the dynamics
of NV interacting nonlinear oscillators. Phase reduction of each oscillator reduc¥s<he
dimensional dynamics of all oscillators to that/@fdimensional dynamics of their phase
variables as shown in the left and middle panels of Fig. 1.5.

Coupled phase oscillators are defined through averaging of the interactions and the
PRCs in thisN-dimensional dynamical system; the average is considered as an effective
interaction called a coupling function. Coupled phase oscillators provide a concise descrip-
tion of the original interacting nonlinear oscillators. In Fig. 1.5, we illustrate the above
procedure that derives the coupled phase oscillators. Details of the procedure are explained
in Chap. 2.

interaction interaction effective interaction
WO o0 020
- - - > .
- averaging .
N x d -dimensional dynamics of N-dimensional dynamics of N-dimensional dynamics of
interacting nonlinear oscillators phase variables coupled phase oscillators

Figure 1.5: Phase reduction from interacting nonlinear oscillators to coupled phase oscillators.

From a viewpoint of statistical physics, Kuramoto [1975] studied coupled phase oscilla-
tors (Kuramoto model) where all coupling functions are the same sine function, and natural
frequencies of the oscillators follow a Cauchy distribution. Using an analytical technique,
he found a transition from synchrony to asynchrony state of the coupled phase oscillators
whenN — oco. Being motivated by this study, many researcher investigate synchronization
properties of various types of coupled phase oscillators and dynamics of coupled phase os-
cillators [Hansel et al., 1993, Kori and Kuramoto, 2001, Strogatz and Mirollo, 1991, Daido,
1994, 1996, Crawford, 1995, Sakaguchi et al., 1987, Hong et al., 2005, Ichinomiya, 2004,
Kuramoto and Battogtokh, 2002].
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These theoretical results refresh scientists for studying synchronization phenomena in
biology [Aihara et al., 2007, Aihara, 2009], chemistry [Kiss et al., 2002, Zhai et al., 2004]
and physics [Wiesenfeld et al., 1996, Strogatz et al., 2005]. They apply this theory to these
phenomena and obtain successful results.

1.3 Phase response curves in neuroscience

Theoretical results

Here, we briefly discuss theoretical results about PRCs of neurons in this section, and show
experimental data of the PRCs in the next section.

The PRCs<Z(¢) of a neuron have many components. For example, Hodgkin-Huxley
equations [Hodgkin and Huxley, 1952], which is widely used for a mathematical neuron
model, are described as a four-dimensional dynamical system; the components of the state
are denoted by the activities of the voltagehe potassium channe] and the sodium chan-
nelm, h (the details are explained in Appendix. B). Thus, the PRCs has four corresponding
components,(¢), Z,(¢), Z.(¢) andZ,(¢) as shown in the upper-left, upper-right, lower-
left and lower-right panels of Fig. 1.6, respectively.

Many neuroscientists discuss only a voltage component of the PRCs of a neuron. This
is because the voltage compongpi¢) of the PRCs gives sufficient information to analyze
the synchronization of neurons, as we discuss in Sec. 2.2. This means that the component
Z,(¢) is an essential representation of the dynamics of the neuron; hereafter, we call it the
PRCZ(¢) of the neuron.

From theoretical viewpoints, synchronization properties of neurons can be predicted
using their PRC%/(¢). According to the study by Hansel et al. [1995], two types of PRCs
of neurons are classified:

1. Forall phases € [0, 27), the value of the PRC(¢) is positive as shown in the left
panel of Fig. 1.7; it is called a type-I PRC.

2. Foraphasep € [0, 27), the value of the PRC is negative as shown in the right panel
of Fig. 1.7; itis called a type-Il PRC.

They conclude that neurons which have type-Il PRCs are easier to synchronize than neurons
which have type-I PRCs. This result is supported by these successive studies [Nomura and
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0
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0 \/ Z n(d))
0 o 2n 0 d 2n
Zu(9) Zn(0)
0 0
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Figure 1.6: PRCs of Hodgkin-Huxley equations.

Aoyagi, 2005, Gdn et al., 2007a,b, Marella and Ermentrout, 2008, Abouzeid and Ermen-
trout, 2009]. Based on the classification Tsubo et al. [2007b] predict the synchronization
properties of neurons in rat motor cortex using the PRCs estimated from experimental data.
This analysis shows that activities of neurons in the layer Il/lll of the cortex are easier to
synchronize than that in the layer V.

Z(d) Z(d))o

0 Y

0 (I) 21 0 (I) 21

Figure 1.7: Type-l and Type-Il PRCs.
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PRCs are useful for not only predicting but also understanding synchronization phe-
nomena in neural populations. For example, experimental results by Mainen and Sejnowski
[1995] indicates that neurons synchronize when common noises input to them. Such a
“noise induced synchronization” can be explained by the dynamical system based on the
PRCs of neurons [Teramae and Fukai, 2008, Lin et al., 2009 &Atearez et al., 2009].

Experimental data

Many researchers have recently tried to estimate neuron’s PRE from experimental

data in various areas of the brain [Reyes and Fetz, 1993a,b, Dorval et al., 2001, Oprisan
et al., 2003, 2004, Gah et al., 2005, Gutkin et al., 2005, Lengyel et al., 2005, Netoff
etal., 2005a,b, Preyer and Butera, 2005, Ermentrout and Saunders, 2006, Ermentrout et al.,
2007, Goldberg et al., 2007, Mancilla et al., 2007, Tateno and Robinson, 2007, Tsubo et al.,
2007a, Ota et al., 2009a, Ota, 2010, Phoka et al., 2010]. In Fig. 1.8, we present some
examples of the data (the black or colored points) and the estimated PRCs (the black or
colored curve). The data in the upper-left and upper-right panels are measured by neurons
in rat somatosensory cortex [Tateno and Robinson, 2007] and in the abdominal ganglia of
Aplysia californica [Preyer and Butera, 2005], respectively. The data in the lower-left and
lower-right panels are measured by neurons in rat neocortex [Goldberg et al., 2007] and in
rat motor cortex [Tsubo et al., 2007a], respectively.

In these examples, a sample y) is obtained by adding an external perturbation to a
neuron. The explanatory variablecorrespond to timing of the perturbation. The response
variabley corresponds the difference between neuron’s period and the inter-spike interval
when adding the perturbation. Details of the experiments are explained in Chap. 3. Note
that all PRCs of Fig. 1.8 are estimated using regression analysis where errors in the response
variable are only considered.

1.4 Motivation of this thesis

As shown in these examples, noise in the PRC measurements is often very large, and so-
phisticated statistical techniques are necessary for efficient estimation. In Chap. 3, we
discuss the following two facts:

e A data point(x, y) whose valuer > 27 can exist in experiments.
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Figure 1.8: Experimental data (black or colored points) and estimated PRCs (black or colored
curves).

e All data points are in the regioR’ = {(z,y) € R?|z > 0,z +y < 27}.

To see these facts, we present experimental data measured in rat motor cortex, which are
shown as the points of Fig. 1.9; the data are provided by my coworkers Yasuhiro Tsubo.
Actually, a data pointz, y) whose value: > 27 exists, and all data points are in the region

K shown as the mesh region of Fig. 1.9. In the conventional regression analysis, the data
point whose value: > 27 are neglected, because PRC is a periodic in the rdgiam).

These facts can be explained by existences of the errors in the PRC explanatory vari-
ables and the correlation between errors in the explanatory and response variables, which
are discussed in Chap. 3. The role of errors in explanatory variables for regression has been
considered in the literature on statistics [Amari and Kawanabe, 1997, Cheng and Ness,
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21

response

Figure 1.9: Experimental data and the regién= {(z,y) € R?*|z > 0,z +y < 27}.

1999, Berry et al., 2002, Fuller, 2006, Caroll et al., 2006]. The correlation between errors
in the explanatory and response variables is also treated in some textbooks, for example,
[Cheng and Ness, 1999], but it seems a less known subject; its appearance in the present
problem of estimating PRCs will be interesting in terms of statistical science.

This study is devoted to developing two new methods that can deal with these errors and
the correlation. In part Il, we propose a Bayesian model accounting for them, and estimate
PRCs using replica exchange Monte Carlo methods [Hukushima and Nemoto, 1996, Geyer
and Thompson, 1995, Iba, 2001]. In part lll, the correlation is effectively removed using a
transformation that mixes the explanatory and response variables.

Using the proposed methods, we successfully improved the estimation precision for
PRCs in examples of simulated data. The method proposed in part Il is also applied to
experimental data from the pyramidal cells in rat motor cortex.

The proposed methods for PRC estimation are useful for any kind of nonlinear oscillator
that permits the phase description. Although our current interest is in applications for brain
science, the method can also be used in other fields of biology, chemistry, and physics.






Chapter 2

Theory of synchronization

Kuramoto [1984] developed a theory based on collective dynamics of interacting nonlinear
oscillators; it explains various examples of the synchronization phenomena. In this chapter,
we explain this theory and its application in neuroscience. We first explain dynamics of
coupled phase oscillators and analyze the synchronicity of two coupled phase oscillators in
Sec. 2.1. An application of the theory to neuroscience discussed in Sec. 2.2.

2.1 Coupled phase oscillators

2.1.1 Phase reduction and averaging of interacting nonlinear oscillators

Coupled phase oscillators are derived from interacting nonlinear oscillators by applying
the phase reduction and an averaging technique. Here, the dynamics/éfititeracting
nonlinear oscillators are given by

du al

d—t’“ = fo(uy) + 0fy (uy) +lzlvk,(uk,ul), k=1,...,N, (2.1)
where thed-dimensional state of thé-th oscillator is represented by the vecioy =
(u,(:), . ,u,@). The vector filed of thé:-th oscillator is represented Wy(uy) + dfx(uz),
which has a limit cycle whose natural frequencwjs The effect from the:-th oscillator
to thel-th oscillator is represented By, (u, u;).

Here, the vector fielf,, (u) also has a limit cycl€’, and the natural frequencydsg. The

29
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solution on the limit cycle”; derived from the vector filed,(u) is represented by (¢).
Since the vector filedf,(u) denotes a small perturbation, we obt&in — wy)/wy < 1.

Using the phase reduction of each oscillator, Eq.(2.1) can be reduced to

doy,

dt —wk—i—Zk ¢k kal uo qbk) u0(¢l)) k= 1,...7N, (22)

=1
whereuf(0) = ug(6/wy). Note that the vector filef) (uy) + 0fy (uy) satisfies the regularity
conditions and the interactiovi;, (uy, u;) are sufficiently small for alk andi. As Eq. (1.2)
in the previous section, a point on the limit cycle of théh oscillator is denoted by, €
0, 27).

Here, we define a new variable = ¢, —wot forallk = 1, ..., N. Using the variables
{x}, EQ. (2.2) can be written as

N
= (wp — wo) + Zi(r + wot) - > Vi (g (e + wot), ug (e + wot)).  (2.3)

=1

v
dt

Since (wy — wop)/wo < 1 and|Vy| < 1, both term in the right side of Eq. (2.3) are
sufficiently small; i.e. the dynamics @f, is “slower” than that ofp,.. Thus, we approximate
the right side by a time average of the right side from 0 to¢ = 7". We call this procedure
“averaging” of Eq.(2.2).

Finally, we obtain the dynamics of coupled phase oscillators

djtk—warZFkl gbk ¢l) k’zl,...,N, (24)
1 27T
Tul6) = 5- / Z4(0) - Via(wy(0), ui (6 + 6))do. (2.5)

where we restore the original variablgs, }. The functionl’y,(¢) is called coupling func-

tion. Based on the coupled phase oscillator defined by Eq.(2.4), we can explore the syn-
chronization more easily than that based on the interacting nonlinear oscillators defined by
Eq.(2.1).
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2.1.2 Analysis of two coupled phase oscillators

Here, we discuss synchronization properties of two coupled phase oscillators, where the
natural frequencies are equak (= w,) and the coupling functions between the two os-
cillators are symmetricI{;o(¢) = T'a1(¢) = T'(¢)). We illustrated this coupled phase
oscillators in Fig. 2.1.

I'(¢-9,)

en R
T 5D
Lo~ 9,)

Figure 2.1: Two coupled phase oscillators.

The dynamics of the phase difference between the oscilldigrs= ¢, — ¢, is repre-
sented by
dA¢
— =
wherel' (¢) = I'2(¢) — I'i2(—¢). Equilibrium pointA¢, satisfied ™ (A¢.) = 0. When
the derivative o'~ (¢) at¢ = A¢. is negative, the equilibrium point is stable. In Eq. (2.6),
the pointsA¢ = 0 andr are equilibrium points, because the function(¢) is periodic and
odd. We show three types of the functidris(¢) in Fig. 2.2. The solid curve represents the
function'~(¢), the point denotes the stable point, and the circle means the unstable point.
The upper left and upper right panels indicate a in-phase and an anti-phase synchronization
of the two oscillators, respectively. On the other hand, two oscillators are synchronized
with a phase shift if0, 27) in case of the lower panel. This type of synchronization is
called out-of-phase synchronization.

[ (Ag), (2.6)
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I “(Ad) ['"(Ad)

['"(A9)

—T 0 Ad T

Figure 2.2: Equilibrium points and their stabilities. The solid curve indicate the fundfiofs) =
I'(¢)—T'(—¢) and its zero-crossing means the equilibrium point of Eq.(2.6). The point and the circle
shows that the equilibrium points are stable and unstable, respectively. Two symmetric connected
oscillators are synchronized at in-phase, anti-phase and out-of-phase as shown in the upper-left
panel, the upper-right panel and the lower panel, respectively.

2.2 Application in neuroscience

2.2.1 Mathematical model of neuron and synaptic transmission

To apply this theory to neuroscience, we discuss a system given by two neurons, which is
synaptically inputted from neuron B to neuron A as shown in Fig. 2.3. Here, we assume
that activities of both neurons are represented by the same nonlinear oscillator. Thus, the
connected neurons can be considered as a example of coupled phase oscillators. In this
section, we explain how to derive the coupling functiof®) between the two neurons.

The discussion in this section is easily extendMeynaptically connected neurons.
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Neuron A Neuron B

dendrite

AN

Figure 2.3: Synaptic connection from neuron A to neuron B.

For simplicity, neurons are assumed to be represented by conductance-based mod-
els [Koch and Schutter, 1999], which include Hodgkin-Huxley model [Hodgkin and Hux-
ley, 1952] and Morris-Lecar model [Morris and Lecar, 1981]. The dynamics of neuron B
connected from neuron A is described by the equations for the membrane patearicl
the activities of ionic channels™), . .. u(@-b:

d—1
dv < ) :
e = D gi(u)(v = v) +iex + isyn 27)
=1
() .

wherec is the membrane capacitanggjs the voltage-dependent conductance ofittte
ionic current, andy; is its reversal potential. The curreny; represents external inputs
besides that from neuron A. The synaptic currgptfrom neuron A is usually modeled as

Npre

isyn = —gsyn(V — Vsyn) Z ot — t;pike>7 (2.9)

J=0

where gsyn is the maximal synaptic conductance angh is the reversal potential of the
synapse. The summation in Eq. (2.9) means the total effect of all the spikes from neuron A,
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spike
J
a(t), which is called alpha function, is defined by

wheret;""" is the timing of each spike, anll,r is the number of the spikes. The function

Lexp{-=2l, t>0,
a(t) =47 p{=5h 12 (2.10)
0, t <0.

In Egs.(2.7) and (2.8), the interaction between the two neurons is represented by the
synaptic currentsy,; i.e. we can assume the form of the interaction in Eq.(2.Nis =
(isyn O, ..., 0). The dynamics of coupling oscillators defined by Eq.(2.4) are affected from
the interactioriv, » through the form of the inner produ®t, , - Z(¢) in Eq.(2.5). Thus, all
components without the voltage compongiit) of the PRCZ(¢) can be neglected. This
is why the voltage componett(¢) of the PRC gives sufficient information to analyze the
synchronization of neurons.

2.2.2 Coupling function between neurons

To compute the coupling functidi(¢) between the two neurons, we assume that the sum-
mation in Eq.(2.9) is approximated as

—00

ar(t) =Y _a(t —nT), (2.11)

n=0

because the activity of neuron A is periodic and its period i8/reeswijk et al., 1994].
Using these two formulas

Zr =1 ;m’ :(1—7“)2’ Ir| < 1, (2.12)

n=0

the periodic functionx(t) is expressed as

(2.13)

1 { t—T}t(l—e_T/T)—Te_T/T

ar(t) = exp T (1= e T77)2

The coupling function defined by Eq.(2.5) is
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r(g) = o

,whereZ(#) is the voltage component of the PRC of neuronvB#) = v(6/wo), and
ar(0) = ar(0/wp).

Here, we show the example of the computation of the coupling fundtign, when
neuron B is represented by Morris-Lecar equations. Using the operational definition in
Sec. 1.2, the PRC of neuron B is derived as shown in the upper-left panel of Fig. 2.4. The
normalized voltage*(¢) and the periodic function’.(¢) are shown in the upper-right and
lower-left panels, respectively. By numerically integrating Eq.(2.14), the coupling function
is computed as the lower-right panel.

/0 " 2(6) {—geyn(v* (6) — vym)s(6 + )} b, (2.14)

30

Z(9) V(o)

-30

0 ¢ 2n 0 (I) 2n

Figure 2.4: The voltage componef{¢) of the PRC of Morris-Lecar equations is shown as the
curve in the upper-left panel. The curves in the upper-right panel and the lower-left panel are the
normalized voltage*(¢) and the functiom™(¢), respectively. The coupling functiofi(¢) as
shown in the lower-right panel is computed using the Eqg. (2.14).

By using the functiol'~(¢) = I'(¢) — I'(—¢), we can analyze the synchronization
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property of the two neurons as discussed in Sec. 2.1. Here, we assume neuron A and neu-
ron B have the same PRCs and are symmetrically connected. When the coupling function
is expressed as the lower-right panel in Fig. 2.4, the fundtiof\¢) is shown in Fig. 2.5.

The circle and the point in Fig. 2.5 represent the instability and the stability of equilib-
rium points of the phase differend®p = ¢, — ¢, between the two neurons, respectively.
Figure 2.5 shows that the two neurons are synchronized at anti-phase.

" (A9)

-TC 0 Ad) T

Figure 2.5: The functiol’ = (A¢)

2.2.3 Type-l and Type-Il phase response curves

Using the function~(¢), Hansel et al. [1995], et al. discuss a synchronization property
of two symmetrically connected neurons, whose periods and PRCs are the same. By their
analysis, the following two types of PRCs are classified:

e in Type I, the value of the PRC(¢) is positive for all phases € [0, 27) as shown
in the left panel of Fig. 2.6, whereas

¢ in Type Il, the value of the PRC is negative for a phase as shown in the right panel of
Fig. 2.6.

They conclude that the two neurons a@ synchronized at in-phase, when the PRCs of
the neurons are Type I.
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Z(d) Z(9)

0 w
0 (I) 2n 0 (I) 2n

Figure 2.6: The Type-l and Type-Il PRCs.

2.2.4 Usages of phase response curves in heuroscience

Here, we explain why PRCs are used in neuroscience. From the theoretical viewpoint,
the dynamical system defined by Eq.(2.4) is easier for analyzing synchronizations than
that defined by Eq.(2.1). Many mathematical models of a neuron are proposed to define
the vector fieldf(u) in Eq.(1.2). For example, the leaky integrate-and-fire model [Koch
and Schutter, 1999], Hodgkin-Huxley model [Hodgkin and Huxley, 1952], and Morris-
Lecar equations [Morris and Lecar, 1981] are widely used in computational neuroscience.
However, mathematical analysis based on the models is difficult, because the vector field
f(u) is complicated (except for the leaky integrate-and-fire model). On the other hand,
the dynamical system defined by Eq.(2.4) is usually simpler than the original dynamics.
Actually, a lot of mathematical analysis is done based on Eq.(2.4) [Kuramoto, 1984, Tsubo
et al., 2007a].

Moreover, computer simulations based on Eq.(2.4) are easier than that based on Eq.(2.1)
[Galan et al., 2006], because the number of the dimension of the (gate ., ¢y ) in
Eqg.(2.4) isl/d times of that of the stat@u, ..., uy) in Eq.(2.1).






Chapter 3

Estimation of phase response curves

3.1 Measurement of phase response curves

Measurements of PRCs are conventionally based on the operational definition 8Sec.
However, in experiments, inter-spike intervals fluctuate stochastically [Mainen and Se-
jnowski, 1995] as shown in the upper-left panel of Fig. 3.1. The pé€fidd Eq. (1.1)
is conventionally replaced by the averafjeof the inter-spike intervals. The data point
(x;,y;) from the measurement is expressed as

t; T—-1T!

r; = 27—, ;= 2M—— 1=1,...,n. 3.1
= y = (3.1)

The data pointg(z;,y;)} in the upper-right panel are generated with noisy Morris-Lecar
equations explained in Appendix. B. The data in the lower panel are experimentally mea-
sured, which we discuss in Sec. 7.2.1. Note that the data point whosexyatu@r exist

in the example. This is one of key observations in this chapter.

39
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voltage

x

Figure 3.1: The left panel shows fluctuation of the periods. iThénter-spike interval is denoted
by T; fori = 1,2, 3, 4. Examples of the data is in the middle and right panels.

3.2 Previous studies

Fourier regression

In most existing studies, the PRC is estimated from the flatay;)} in Sec. 3.1 based on
the normal regression model

yi = Z(x;) + €4, g ~N(0,07), i=1,....n (3.2)

where the error in the response variable is representegd byd the variance of the error is
a2. In the regression model, the valugis assumed to be less tham, because the domain
of the PRC is[0, 27). R. F. Gahn and his collaborators [Gal et al., 2005] proposed a
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representation of the PRZ(¢) as the finite Fourier series

3
Z(¢) = % + Z ag, cos(k¢) + by sin(ko). (3.3)
k=1

We call this method “Fourier regression” in this thesis. An example of the estimate is
shown in Fig. 3.2, where the data points whose value 27 are removed.

Fourier regression —
data

_______________________________________________

0 T & 21 3n
Figure 3.2: An example of the estimate obtained through Fourier regression

Spline regression

For estimating PRCs, Ke. Ota and his collaborators proposed a Bayesian method [Aonishi
and Ota, 2006, Ota et al., 2009b] with a smoothing prior, where the representation of the
PRC is based on high order Fourier series. Their method can deal with data generated
with various types of experiments, where arbitrary input is injected to a neuron. When the
injection is a pulse, their method essentially corresponds to Bayesian regression based on
the normal regression model.

In this thesis, we introduce another Bayesian regression with a smoothing prior (see
Secs. 5.3 and 5.3), the framework of which is proposed by Tanabe and Tanaka [1983]. Itis
convenient for our method proposed in part Il. This Bayesian regression is also based on the
normal regression model. Hereafter, we call the Bayesian regression “spline regression”.
The estimate through the spline regression is shown in Fig. 3.3.
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In this thesis, “conventional regression” means the method based on the normal regres-
sion model Eq.(3.2), where no errors exist in explanatory variable. The Fourier regression
and the spline regression are the examples of the conventional regression.

spline regression —
i data

0 n g o 3

Figure 3.3: An example of the estimate obtained through spline regression

Other methods for different types of data

Recently, some methods are proposed for estimating PRCs using different types of data
discussed in Sec. 3.1.

Phoka et al. [2010] proposes that supplemental data are added to the data explained in
Sec. 3.1 using inter-spike intervals before and after the input of a neuron. The drawback of
this method is that the estimated PRCs can not be a periodic function.

Ermentrout et al. [2007] and Ota et al. [2009a] propose that white and correlated noises
are injected to a neuron, respectively. These experiments can be alternatives to the conven-
tional experiments supposed in this thesis, although there are applications that would be
difficult to treat with this approach, e.g., circadian rhythm.

Oprisan et al. [2003] estimates PRCs using the limit cycle reconstructed from mem-
brane potential of a neuron. The PRCs estimated by this method correspond to PRCs
where the strength of inputs are large in the operational definition of”2ebowever, the
strength should be small because of the definition from dynamical viewpoints in this thesis.
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3.3 Measurement error model

The existence of the data point whose valye> 27 implies errors in the explanatory
variable. In my master thesis [Nakae, 2008], we discuss a measurement error model, where
both errors in the explanatory and response variables are considered [Amari and Kawanabe,
1997, Cheng and Ness, 1999, Berry et al., 2002, Fuller, 2006, Caroll et al., 2006]. The
measurement error model is expressed as

Y, = Z(¢z) + (gy)iv (5y>i ~ N(()? 05)7 7i = 17 a1 (35)

where we assume that the variar{e@); is proportional tor;. The representation of the
PRCZ(¢) in this model is that of the spline regression. In this model, the €9y in the
explanatory variable and the eri@rt, ), in the response variable d@relependeneach other;

the errors are not correlated. Unfortunately, we did not achieve a significant improvement
over conventional regression in terms of accuracy.

3.4 Characteristics of errors in the data

In this section, we discuss two characteristics of errors in the{datay;)} as follows:
1. The data pointz;, y;) whose valuer; > 27 exist.

2. All data points are in the regioki = {(z,y) € R?|x > 0,z + y < 27}; as shown in
the right panel of Fig. 3.4.

Characteristic 1 is caused by a perturbation inputted at the timingZ” as shown in
the left panel of Fig. 3.4. Conventional regression can not deal with such data, because the
domain of PRC ig0, 27).

Characteristic 2 is a consequence of the two inequalities for=all, ..., n

T; = 27— Z O, 3.6
= (3.6)
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T-T! 2
— =27 — ;(T{—ti) < 2, (3.7)

t;
xi+yi:27r%+27r

which are derived by the definition of the data point Eqg.(3.1) and the trivial two inequalities
t; > 0andt; <T.
The measurement error model Egs. (3.4) and (3.5) is not sufficient; it generates the data
points outsidek’, especially above the line+ y = 27. This is because the err@r,); and
the error(e,); are independent each other.

voltage
A

Y

~+~Y

Figure 3.4: Two characteristics of the data.

3.5 Our Approach

The discussion in the previous section implies that the errors in the explanatory and re-
sponse variables are not independent each other; the errors are correlated. Our motivation
in this thesis is developing a statistical method dealing with the correlation.

In part I, we propose a statistical model, which represents a correlation between the
explanatory and response variables. Based on the model, we provide a Bayesian method
for estimating the PRCs using replica exchange Monte Carlo methods. In numerical exper-
iments, we show that estimates obtained through the proposed method are more accurate
than those obtained through conventional regressions.

Unfortunately, massive parallel computing environments are necessary for actual use
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of the proposed method. Without parallel computing, computation time of the proposed
method is abou8 days for a sample size = 100. On the other hand, computation time
with parallel computing is reduced to approximatelgours for the same sample size. Our
motivation of part Ill is developing a more efficient method based on the model proposed
in part Il.

In part Ill, the correlation is effectively removed using a transformation that mixes the
explanatory and response variables. We show that the method through the transformation
gives more accurate estimator than conventional regressions and the computation time is
considerably less than that of the method in part Il.






Chapter 4

Bayesian estimation and Markov chain
Monte Carlo methods

4.1 Bayesian framework

In this section, we briefly explain a Bayesian framework used in this thesis. Suppose that
observationyy = {y;|i = 1,...,n} are independent and identically distributed; the distri-
bution of the observations is dependiidimensional variables = (", ... M) e T

and M’-dimensional variable@ € ©. The density function of the observation is repre-
sented byp,(y|@). Here, the variable@ called “parameters” are assumed to be random
variables, while the variableg called “hyperparameters” are assumed tanberandom
variables. The prior density @ is denoted by, (0). The joint density ofy and @ is
defined as

P4y, 0) = py(y160)p4(0). (4.1)

We estimate the hyperparameterand the parametét from the observationg. The
hyperparameters is estimated by an empirical Bayesian method [Good, 1965, Akaike,
1980, Titterington, 1985, MacKay, 1992] that maximizes the marginal likelihood

L (y) = / P (y.60)d6 .2)

overI'. Once the estimatg are obtained, the posterior density(@|y) is derived by the

47
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Bayes’ theorem

p(0ly) = 2T, 4.9

In the following sections, the paramet@rs estimated by the expectation éfover the
posterior distribution

Eyod6] — /9 Oy (6ly)ao. (4.4)

The estimate is denoted Iy

4.2 Markov chain Monte Carlo methods

4.2.1 Metropolis-Hastings method

The estimate$ and@ are automatically derived using the framework in the previous sec-
tion. It is, however, difficult to give analytical representations of the marginal likelihood
in Eq. (4.2) and the posterior expectation in Eq. (4.4), when the likelihogsg|6) and
the priorp,(0) are complicated. In this section, we explain a Metropolis-Hastings method
[Hastings, 1970], which is one of Markov chain Monte Carlo (MCMC) methods, for ap-
proximating the integral in Eq. (4.4). The Metropolis-Hastings (MH) method is extended
to a replica exchange Monte Carlo (REM) method [Geyer, 1991, Hukushima and Nemoto,
1996, Iba, 2001] in the next section. In Chap. 6, we will explain how to maximize the
marginal likelihood in Eq. (4.2) based on the MCMC methods.

In the MCMC methods, the posterior expectatiorfaé approximated by the average
of samples from the MCMC methods

Nwmc

E 0, 4.5
pOS NMC Z ( )

where Nyc is the number of the samples, aétlis jth sample. These samples are gen-
erated by the following procedure called Metropolis-Hastings methods. Here, we define a
conditional distribution as a proposal distribution, whose density is representg@’ls)).

e Choosd; in the regiono.
Forj = 17~~~7NMC—1
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e Generate a candidag&®™ ~ ¢(6'|6,)

e Take
0. — gcand with the probabilityr, (4.6)
0; otherwise,
where :
r = min {W% 0"")q(0°67) 1} . @.7)
P4 (y,6”)a (6716

Note that’*! = 67, when the candida®*®"%is out of the regior®.

This procedure defines a Markov chain with the stationary depsit§|y) on some
convergence properties [Robert and Casella, 2004]. By simulating the Markov chain, we
can draw samples @ according to the posterior density. Details of the general theory of
MCMC can be found in books by [Robert and Casella, 2004, Gilks et al., 1995, MacKay,
2003, Gelman et al., 2003].

4.2.2 Replica exchange Monte Carlo method

The procedure explained in the previous section is a standard example of MCMC methods
used in Bayesian statistics. It works if the number of iterations is sufficiently large. How-
ever, the number of iterations necessary to obtain stable results using such an algorithm
can be very large in a complicated problem, which is known as “slow mixing” or “slow
relaxation”. We will encounter the problem in part Il of this thesis, where we can barely
get stable results using a MH method in a range of hyperparameters.

To deal with this difficulty, we introduce the replica exchange Monte Carlo (REM)
method, which is also known as parallel tempering or Metropolis coupled MCMC [Geyer,
1991, Hukushima and Nemoto, 1996, Iba, 2001].

REM is designed to increase the efficiency of MCMC method by connecting a fast mix-
ing “easy” region to the slow mixing “difficult” region. The REM shares this idea with the
simulated annealing algorithm for optimization, but there is an important difference. While
simulated annealing is designed for obtaining an optimal solution and does not necessarily
reproduce correct averages of statistics with a given distribution, the REM is designed for
correct sampling and calculation of averages.
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To implement the REM, we preparg copies of the systems (replicas). Each replica
corresponds to a posterior density (6;|y) parameterized by;. Here,v; is usually a
component ofy,; i.e. we denote,w ./ o0y (0kly) asp,, (6xly). The state of théth
replica is represented I#};,. We assume that <+, < --- < v/, and the hyperparameters
~1 and~/j, correspond to the hyperparameters where the slowest and fastest mixing is ob-
served, respectively. The idea of REM is to introduce occasional swaps of thefstates
0,11 of the replicas with the neighboring parametgrsand~; . ,. The swap is performed

as follows:
e Choose the indek of a replica randomly.

e Swap the pair with the probability

. p’\/}; (y7 0k+1)p7}’€+1 <Y7 ek)
r = min 1.
Py (¥, 0k)py (v, Oki1)

(4.8)

The entire algorithm of REM consists of a basic MCMC algorithm applied to each replica
and the swap of replicas defined in the above.

An essential property of the swapping procedure of the REM is that it is designed for
making the simultaneous density.

N
p(B1,- -+, 0x) = | [y (Bkly) (4.9)
k=1

stationary. Through the swapping procedure, the states of the replicas in the fast mixing
region propagate to the slow mixing region, which realizes an annealing effect as shown
in Fig. 4.1. Even with such a propagation of states, we can reproduce the correct averages
at all values{~;} of the parametet/; this is because the simultaneous density Eq. (4.9)
represents the stationary distribution of the REM.
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Figure 4.1: Schematic view of replica exchange Monte Carlo. For eachyjabfe)’, the landscape
sampled by MCMC is shown by the curve that represenISp%(-|y). A case with 3 replicas is
shown in the figure, whil82 replicas are used in examples in part II.






Part |l

Bayesian estimation of phase response
curves using replica exchange Monte
Carlo methods
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Chapter 5

Bayesian model of phase response curves

5.1 Introduction

As discussed in Chap. 3, a common weakness of previous studies for estimating PRCs is
that they neglect the correlation between errors in the PRC explanatory and response vari-
ables. The significance of this correlation is discussed in Sec. 5.2. This part is devoted
to developing a new method that can deal with the correlation, which is realized by a sys-
tematic use of Bayesian methods. Using the method proposed in this part, we successfully
improved the estimation accuracy for PRCs in examples of simulated data. The method is
also applied to experimental data from the pyramidal cells in rat motor cortex.

The Bayesian model proposed in this part is non-linear and non-Gaussian; a stan-
dard way to treat such a model is by using Markov chain Monte Carlo (MCMC) meth-
ods [Gilks et al., 1995, MacKay, 2003, Gelman et al., 2003, Robert and Casella, 2004]
such as Metropolis-Hastings methods in Chap. 4. For the current problem, however, a
direct application of standard MCMC methods is difficult due to the slow convergence of
MCMC. To deal with this difficulty, we introduce the replica exchange Monte Carlo (REM)
method [Geyer, 1991, Hukushima and Nemoto, 1996, lba, 2001] discussed in Chap. 4.
REM is widely used in statistical physics and biomolecular simulations, and also applied
to statistical inference [Geyer and Thompson, 1995, Huelsenbeck and Ronquist, 2001, Jasra
et al., 2007]. Using REM, the difficulty is reduced, and we can get results within a reason-
able amount of time.

This proposed method for PRC estimation is useful for any kind of nonlinear oscillator
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that permits the phase description. Although our current interest is in applications for brain
science, the method can also be used in other fields of biology, chemistry, and physics.

The organization of this part is as follows. In this section, we propose a Bayesian model
where we consider both the correlation of errors and smoothness of PRCs. In Chap. 6,
we discuss how to estimate the PRC from data using REM. In Chap. 7, we test the pro-
posed procedure with artificial data generated using the Morris-Lecar equations [Morris
and Lecar, 1981] and data from a real experiment.

5.2 Derivation of the model

Effect of fluctuation of period T’

As explainedin Sec. 3.1, inter-spike intervals fluctuate stochastically in an experiment [Mainen
and Sejnowski, 1995]; this suggests that pefioitiself should be considered as a random
variable.

In conventional analysis, the periddin Eq. (1.1) is replaced by the avera@eof the
inter-spike intervals of the neuron, which corresponds to the expectation of the random
variableT. The resultant estimates andy; of ¢; andZ(¢;) are represented by Eq. (3.1)

t; T—T!

xTr; = 271'7, P = 2w <
T Y T

In most existing studies, statistical analysis, such as fitting by trigonometric or spline func-
tions, is performed after the data are normalized by Eq. (3.1) as discussed in Chap. 3.

We observed that this approach seems not optimal for our purposes. To explain the idea,
we tentatively assume that we know the timifigof the next spike when the perturbation
does notexist. The valuél; can be regarded as a realization of the random vari&bte
theith trial. We can then define ardependent normalization as

li / T, - T,

I —or2 =9
€; 7TT¢’ Y; m TZ s

(5.1)

which leads to different estimatés, y.) of (¢;, Z(¢;)). Direct use of Eq. (5.1) is usually
impossible in analysis of a real experiment where we cannot obggnt¢owever, it will
give results better than those from Eq. (3.1) when we kilpw



5.2. DERIVATION OF THE MODEL 57

To confirm this, we design the following numerical experiment. When we simulate a
mathematical neuron model with noise on a computer, we can generate pairs of “perturbed”
and “unperturbed” time-series of spikes using the same random number sequences. For the
ith pair, a perturbation is addedat= ¢; for only the “perturbed” series. In this case, we
can regard the inter-spike interval in tit “unperturbed” series ds;, which cannot be
measured in a real experiment. Thus, we can realize the normalization with Eq. (5.1) and
compare it to the results using Eq. (3.1).

Figure 5.1 shows the results of the experiment where the data is generated by the noisy
Morris-Lecar equations (see appendix B). The valuésy.) of the variable normalized by
Eq. (5.1) are plotted in the right panel, while the valg¢esy;) of the variable normalized
by Eq. (3.1) are plotted in the left panel. The solid curve common to the panels corresponds
to the true PRC estimated by numerical experiments without the noise term. The points
(«%, ) give a better approximation for the PRC, which supports our conjecture.

T
/2L
, . 2(0) 0 =
SN
—Tt/2 | . * ! s ] —T/2}
-7 | -7 |
‘ 2‘ |
0 T & T 3n 0 T ¢ 21 3n

Figure 5.1: Comparison of the different normalization schemes. The left and right panels correspond
to Egs. (3.1) and (5.1), respectively.

An important observation is that the fluctuation’@fcauses a correlation between
andy; as defined by Eq. (3.1). From Egs. (3.1) and (5.1), the difference betixeen)
and(x}, y) is written as

/
T — x; = 10,
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wherey; is defined by )
T, —T
0 = T (5.3)
If we assume that a poii;, Z(¢;)) on the true PRC is approximated well by the improved
estimate(z/, y.), the differencdx; — 2}, y; — y;) can be regarded as the error of the naive
estimate(x;, y;). Equation (5.2) indicates that the errors in the explanatory variable is not
negligible and that there is a strong correlation between the errors in the explanatory and
response variables.
Figure 5.2 visualizes the correlation in the data of Fig. 5.1. Each arrow in Fig. 5.2
represents the vector; — =%, y; — v.), where the starting point of the arrow(is;, /) and
the endpoint iz;,y;). The solid curve is the true PRC of the Morris-Lecar equations.
The correlation is shown by the systematic distribution of the lengths and directions of the

arrows, and is clearly seen in the data.

Figure 5.2: Correlated errors in an estimated PRC. The arrows showing the correlation never exceed
the broken line, which corresponds to the constrairt 7.

Estimation of UnobservedT;

In real experiments, we cannot identify directly. Our strategy in this part is to estimate

both Z(-) and {T;} simultaneously. We give here a rough sketch of the concept. The

method proposed in this part will be gone over in more details in Sec. 5.3 and Chap. 6.
In the previous section, we identified the poidts’, vi)} to {(¢:, Z(¢;))}, but there
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are actually some observational noises, i.e., we can write

T, = Qi+,
ZJ; = Z(¢:) + &, (5.4)

wheren; and¢; are small residual terms. Hereafter, we get= 0. Later, in the analysis
detailed in Sec. 5.3, we will assume tHgt} are samples from the normal distribution
N(0,62).

Using Eq. (5.2) and Eq. (5.4) withy = 0, we have the relation

T = ¢+ x5, (5.9)
yi = Z(¢i) + (yi —2m)0i + & (5.6)

Note thatd; in Egs. (5.5) and (5.6) is defined frof by Eg. (5.3), and the data;, y;) is

the output of an experiment normalized by the conventional Eq. (3.1). Given the function
Z(+) and a prior distribution of;s, we can estimatéd;} (or equivalently{7;}) by using

Egs. (5.5) and (5.6). On the other hand, given a sébgf Eqgs. (5.5) and (5.6) are reduced

to a functional regression problem of estimatifi¢), which can be treated by assuming
some parametric form or smoothness of the func#dn.

Roughly speaking, our goal of estimating béify) and{J,} simultaneously can be at-
tained by solving undetermined stochastic equations Egs. (5.5) and (5.6) with assumptions
for Z(-) and{¢,}. However, it is not so obvious as to how to formulate such a complicated
problem and solve it. In this study, a combination of a Bayesian framework and MCMC is
proposed as a systematic solution to the problem, which will be explained in the following
sections.

5.3 Bayesian model in part Il

Bayesian framework

As we discussed in the previous section, our task can be summarized as a simultaneous
estimation ofZ(-) and{¢;} from the data{(x;,y;)} defined by Eg. (3.1). In a Bayesian
framework, we begin with writing down the simultaneous density of relevant variables.
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Given ¢;, we can erase; using the deterministic relation Eqg. (5.5) and déta}. The
simultaneous density gf, Z and/ is then written as

p(y,Z,6) = p(ylZ,0) p(Z) p(d). (5.7)

Our Bayesian model now consists of three components; the likelihood fungyo4, 9),

and the prior distributiong(Z) andp(d), which will be defined in Secs. 5.3 — 5.3. Once
these components are defined, the simultaneous density Eq. (5.7) is explicitly given, and
the Bayes’ theorem provides the posterior density

pylZ,8)p ( ) p(9)

// (y|Z,8) p(Z) p(6) d& dZ

of Z andé. In the Bayesian framework, estimators of any quantity are derived from
Eqg. (5.8). For example, we can estimate the cufyg that minimizes the posterior expec-
tation of mean square loss as an averagg oler the distribution defined by the density
Eq. (5.8).

In Eq. (5.8), the symbolg --- dé and [ --- dZ denote multiple integration and inte-
gration in a function space, respectively; the latter is approximated by finite dimensional
integrals in an actual computation. Even with such an approximation, the sampling and
calculation of averages with the posterior distribution Eq. (5.8) is far from trivial. This will
be treated by MCMC in Chap. 6.

p(Z,40|y) = (5.8)

Representation ofZ(-)

Before defining the factors on the right hand side of Eq. (5.7), let us fix a representation of
the functionZ(-). We use a naive discretization &f-); this representation is convenient
for our problem, wherd«z’} are not uniformly separated and should be estimated from
data.

We divide the¢ axis intom successive interval§[¢;, ¢}, ,), j = 1,---,m} of equal
lengths. The piecewise constant cu&e) indexed withz. = (24, - - - , 2,,)T is then defined
by Z(¢) = z; for ¢ € [¢5,¢5,,). Here( )" denotes the transpose of a vector. These
definitions are illustrated in the Fig. 5.3.

When we use the discretized representatior 0f) defined here, it is convenient to
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)

1 N

$T=0 ¢} O 21

Figure 5.3: Representation of the functigi-).

define then x m matrix function £(v) of v. = (vy,...,v,), whose(i, j) component is
given by

1 ; € *7 *

0 v & [9], d741),

which we will use in Sec. 5.3.

Likelihood p(y|Z, 9)

Let us begin with Eq. (5.4) in Sec. 5.2. Assuming th&t} are independently distributed
with the normal distributioo\/(0, #%), the probability density(y’|Z) of y’ is written as

/ 1 1 / /
pl3'le) = o exp { ~ sl — Bl 5.10)

wherex’ andy’ are defined as a vector who##d component is given by, andy; in
Eq. (5.1) respectively. Here is the discretized representation &f-) and we use the
n x m matrix E(x’) defined by Eq. (5.9).

To obtain an explicit form of the densityy|z, §), the stochastic variablg in Eq. (5.10)
should be changed tp). In addition, the variabl&’ should be represented by and;.
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This can be done with the following relation,

r; = (1 = &), (5.11)

yi = (1= 6;)y; + 2765, (5.12)

which is derived from Eq. (5.2). Using Eq. (5.11), the densgity|z, §) can be expressed
in the matrix form

n

pyla,8) = {H Ll } e { gl @) - Ex@)a | 613)

i=1

wherex’(d) andy’(d) are defined as vectors who#t component is given by.(d) =
(1 —6;)x; andyl(d) = (1 — 6;)y; + 2md;, respectively. Note that the variance gfis
computed a$?/(1 — §;)2, which corresponds to the normalization factor d;)/+v/2762
in Eq. (5.13).

The Prior p(6)

A simple choice for the prior distribution ¢f; is a normal distribution. However, it is
reasonable to assume that< T;, because a neuron should fire after the perturbation is
added. Thus, it is better to assume a truncated normal distriatfion.\ (7', &r) as the
prior distribution ofT;, whose density is given by

1 T, — T)?
—exp{—%}, ti <T;

p(ﬂ) = L 201
0, otherwise,

(5.14)

whereT ando; are the sample average and the sample variance of inter-spike intervals of
the neuron, respectively.

When we change the variable frahto §; = (7; — T)/E-, it is transformed to the prior
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density of9;
11 1 o7 L
————=eXp{ — = ) - X0 .
p(5;) = 4 4 (1 =67 2(er/T)? (1= 0)? & (5.15)
0 otherwise.

I

Here.; and.; are the normalization constants. The prigd) is expressed af[;"_, p(d;)
with p(0;) defined by Eq. (5.15).

The Prior p(Z(-))

We assume that the phase response curves are smooth and periodic functions. To represent
this, a smoothness prior &f(-) is introduced. Using the discretized representatio ©f,
it is expressed as

p(z) = % exp {—% D (zo1 22+ zj+1)2} , (5.16)

j=1

where we assume the periodic boundary conditipe= z,,, z,,.1 = z1. Equation (5.16)
can also be expressed in the matrix form

) = e <—%HDZI|2) , (5.17)

where then x m matrix D is defined by

—2 1 0 0 0 1
—2 1 0 0 0
1 -2 0 0
D= 0 1 -2 0 0 (5.18)
0 —2 1
] 0 1 -2

The term(z;_1 —2z;+ z;41)? in Eq. (5.16) represents the smoothness of the cé(ve
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When the hyperparameteris larger, the estimated PRZ(-) becomes smoother. This

prior is essentially the same as the one introduced by [Aonishi and Ota, 2006], but here we
utilize the discretized representatipg; } of the PRCZ(-) defined in Sec. 5.3. Smoothness
priors in statistical science and machine learning have been discussed in the litexgture,
[Titterington, 1985, Wahba, 1990, Kitagawa and Gersch, 1996, MacKay, 1992]; regression
using discretized representation and a smoothness prior is also considered as a version of
spline regression [Wahba, 1990].

Precisely speaking, Eqg. (5.16) defines an improper priar, tiat is, we cannot give a
finite normalization constantr) without some additional regularization term. However, it
is harmless for our purpose of estimatingnd hyperparameters. The latter is because we
can separate a finite part dfr) that reproduces the correct dependencgofon .

An alternative choice for the prior comes from the use of the fixed boundary condition
Z(0) = 0, which is a consequence of the refractory period of a neuron and biologically
plausible. In this case, the matrix form of the prior becomes

(2) = - exp (=2 || Dl (5.19)
p(z) = ) exp 5 Z , .
whereD is given by deleting the first row of the matriX. In this case, the prior Eq. (5.19)
iS proper.

Hyperparameters

The Bayesian model defined in this chapter contains the tunable paramgtétsd, and

7. Among them g and7’ can be measured in a preliminary experiment without pertur-
bations. On the other hand,andr are difficult to determine from auxiliary information

and should be estimated from the present déia v;)}. In this part, these two parame-

ters are treated as “hyperparameters” of the model and estimated by an empirical Bayesian
method [Good, 1965, Akaike, 1980, Titterington, 1985, MacKay, 1992] that maximizes
their marginal likelihood

(ylo.7) = / / po(y|2, 8)p,(2)p(8) dbdz (5.20)
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of these hyperparametetandr. Here we explicitly show the dependenceytf |z, ) and
p(z) on the hyperparameters pagy|z, ) andp.(z). How to utilize the output of MCMC
for maximizing Eq. (5.20) will be discussed in the next chapter.






Chapter 6

Estimation of the model using MCMC
methods

6.1 Basic Markov chain Monte Carlo method

As explained in Sec. 5.3, once we define a Bayesian model, the posterior distribution
p(z,d|y) is automatically derived by the Bayes’ theorem. It is, however, difficult to give

an analytical representation of posterior averages because our likelihood and prior are very
complicated. Here, we introduce a Markov chain Monte Carlo (MCMC) algorithm that
consists of alternate sampling »aindé.

Sampling of z

The sampling otz is defined by drawing a new value afaccording to the conditional
densityp(z|éd,y), which is given by the normal density with the mean

w, = (ETE+60°7*D"D)'ETy, (6.1)
and variance .
. _
Y, = (0_2 ETE + TQDTD) , (6.2)

where E andy’ are shortened forms df(x'(d)) andy’(d), respectively. The matrices
E(x'(d)) and D and the vector functiory’(d) used here are defined in Secs. 5.3, 5.3,

67
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and 5.3. Using the Cholesky decomposition of the mafij%, all components of; are
generated simultaneously by a standard method (see, for example, [Gelman et al., 2003]).

Sampling of §

Sampling ofé is a little difficult because the distribution éfconditional onz is compli-

cated and direct sampling is impossible. Here, we use the Metropolis method [Metropolis
et al., 1953], which is a version of Markov chain Monte Carlo methods. Our implementa-
tion of the Metropolis method is as follows. First, we randomly select a compaénehd.

A candidate’*2"for a new value of; is then generated near the current valft of 6;, as

ogand — seurm 1 ¢ wheree ~ N(0, x2) and the constant? is a parameter of the algorithm.
Finally, the candidaté®®"dis accepted or rejected by comparing the ratio

(5cand’6 0WZ,Y )

= e 2, y) (63)

to a uniform random number € [0, 1) that is generated independently. rlf< ¢, the
candidates?®" is accepted as a new value &§f Otherwise, ifr > ¢, the candidate is
rejected and we keep the current valye= 6;"". Note thatd_, in Eq. (6.3) indicates

Here, we derive the ratig of our Bayesian model; the right side of Eq. (6.3) is calcu-
lated as follows

p(6P6_;,z,y)  p(6P" 8 5, z,y)  p(ylz, 62" 8 ;)p(052"% 6_;)p(z)
p(6Md_s,z,y)  p(6™ b iz y)  plylz, 68, 6_)p(6t", 8_;)p(z)

yl‘z (5cano>p 5cand)
(yl|z75;:urr) (5Z;urr) )

(6.4)

where we use definition of conditional probability and joint probability of our model. Using
the likelihood defined by Eq. (5.13) and the priorépfdefined by Eq. (5.15), the ratio is
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expressed as

1 1 ggan
q = exp{ — 5 (U= 25 = (1 - 5¢and) — log(1 — 652
1 L e
b= s+ () o - ). (69

The termsy/@ andy;*'" are defined by Eq. (5.12); the term&"and 2" are thei-th
component of the vectoiS((652"4 §_;))z and E((68"", §_;))z, respectively.

Summary of the MCMC algorithm

The summary of the MCMC algorithm is described as follows:
1. Initializez andéd. Set a counteNy,c = 0.
2. Updatez.

e Compute the Cholesky decomposition of the maijX.

e Draw a new value of the random numbeaccording to the normal distribution
defined byu, and> .

3. Update).

e Choose randomly.
e Drawe ~ N(0, x?) and define the candidate B§" = 5" + ¢, whereds" is
the current value of;.

e Compute the ratiq by Eq. (6.3).
e Draw a uniform random numbere [0, 1).
Set the value of; to 5¢"if r < q.

* |tis possible to define a modification where this step is repeated multiple times.

4. SetNyc = Nuc + 1. If Nyc is smaller than the prescribed value, return to step 2.
Otherwise, terminate the procedure.

These steps define an ergodic Markov chain with stationary dexsity|y). By simu-
lating the Markov chain, we can draw sampleg @hdé according to the posterior density
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p(z,d|y). These samples are correlated but can be used for computing posterior averages.
Details of the general theory of MCMC can be found in books by [Robert and Casella,
2004, Gilks et al., 1995, MacKay, 2003, Gelman et al., 2003]; some examples of applica-
tions of MCMC to models with errors in explanatory variables are found in [Berry et al.,
2002, Caroll et al., 2006, Gilks et al., 1995].

Example

Here, we test this basic MCMC algorithm with artificial data generated by a neuron model.
We employ the noisy Morris-Lecar equation [Morris and Lecar, 1981] as a source of artifi-
cial data; the details of the numerical experiments are discussed in appendix B.

The points in Fig. 6.1 represent the artificial data, which contair 100 samples.
Here, the levek of the noise i9).3 (see appendix B). The estimates of mean and variance
of periods ard’ = 44.2 and’r = 6.4. The result of the method is compared with the true
PRC (the broken curve in Fig. 6.1) estimated with noiseless experiments.

The red curves in Fig. 6.1 shows the PRCs estimated with the basic MCMC algorithm;
each red curve is different about the initial poiit d) of the method. All estimated curves
are not close to the true curve. This means that more sophisticated method is necessary for
faster convergence to the stationary density.

The details of the algorithm used in computing the above result are as follows. We set
hyperparameterg ~ 0.09 andr ~ 90. The numbern of the pieces of the discretized
curve Z(-) is 100 and the periodic boundary condition is assumed. The numigr of
iterations is10°. The variance, of the proposal distribution i8.01.

6.2 Extension to replica exchange methods

Transformation of hyperparameters

The procedure explained in the previous section is a standard example of MCMC methods
used in Bayesian statistics. It works if the number of iterations is sufficiently large. How-
ever, the number of iterations necessary to obtain stable results using such an algorithm
can be very large in a complicated problem, which is known as “slow mixing” or “slow re-
laxation”. We found that our problem of estimating PRCs from data with correlated errors
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basicMCMC —

1 data
PRC - - |

Figure 6.1: Result of applying the basic MCMC algorithm using artificial data. The estimated PRCs
(red curves) are different about the initial poi(¥ §) of the method.

gives a typical example of slow mixing; this is partially supported by the example of the
previous section. In a range of hyperparameters, we can barely get stable results using a
naive MCMC algorithm.

To deal with this difficulty, we use the replica exchange Monte Carlo (REM) method
discussed in Sec. 4.2.2, where we discussed a generic algorithm. When REM is used in
statistical physics, the parametgrin the generic algorithm usually corresponds to the
temperature of a system. How can we choose the paramieitethe present example of
posterior sampling?

A basic observation is that the values of hyperparaméteesd 1 /7> become larger,
the variance of the posterior also becomes larger. Keeping this in mind, we transform the
set(f, 7) of hyperparameters t@v, 3) with

a =0T, g=0/t (6.6)

Here, the hyperparametér corresponds to the temperature in statistical physics. In a
Gaussian model where the errors in the explanatory variable is ignored [Ota et al., 2009b,
Aonishi and Ota, 2006}y determines the shape of the estimated curve whdetermines
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the variance around the curve. In the proposed model, however, both hyperparameters
affects the estimated PRC.

Then, the hyperparametgiis the natural choice for the role ¢f; the density., (6, ]y)
in the generic algorithm is replaced with, (z, é|y), which defines the REM for the pro-
posed model.

Replica exchange Monte Carlo

To implement the REM, we preparé copies of the systems (replicas). Each replica cor-
responds to a posterior density (z;, ;|y) parameterized by, wherep; < g, <--- <

Bn. We assume that the hyperparametérand 5y correspond to the hyperparameters
where the slowest and fastest mixing is observed, respectively. The REM is implemented
with occasional swaps of the states, d;.) and(z,. 1, dx.1) Of the replicas with the neigh-
boring parameters, andg;, ;. The swap is performed as follows:

e Choose the indek of a replica randomly.

e Swap the pair with the probability

Z 0 Zj, O
Dsy, (y’ Zy, 6k)pﬁk+1 (y> Zk+1, 5k+1)

The entire algorithm of REM consists of a basic MCMC algorithm applied to each replica
and the swap of replicas defined in Sec. 6.1. The details of the REM are explained in
Chap. 4

Here, we derive the probability of our Bayesian model under a value of hyperparam-
etera. Using Eq. (5.7), the ratio in Eq. (6.7) is calculated as follows:

Pg, (Y, Zrt1, 6k+1)p5k+1 (¥, 2k, O) _ Pg, (¥, Zk+1|5k+1)p(5k+1)p5k+1 (v, zi|6k)p(0k)
Dg, (Y7 Zj, 6k)p5k+1 <Y7 Zg41, 6k+1) Dy, (Y7 Zk‘ék)p(ék)pﬁkﬂ (}’7 Zj41 |6k+1)p<5k+1)

o Psy <Y7 Zk+1‘6k+1)pﬁk+1 (y7 Zj |5k>

= , (6.8)
Pg, (v, Zk|5k:)p6k+1 (¥, Zrt1]0541)
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where we use the independence between the p(idrand the hyperparametgr= 0r.
The probabilityps(y, z|d) are expressed as

ps(y218) = palylz, 8)ps(z)  exp {—%Iﬂz, 6)} , 6.9)

where the functiorf{ (z,6) is defined as
, 1
H(z,8) = ally'(d) — E(8)z||” + —|| Dz]|". (6.10)

Using this expression gf;(y, z|d), we obtain the following probability:

r = min {exp {—% (ﬁklﬂ — é) (H(zy,0r) — H(zg11, 5k+1))} , 1} ) (6.11)

Design of replica exchange Monte Carlo

To design an efficient REM, the variangé of the proposal distribution used in the basic
algorithm should depend on the indéxof replicas. In Chap. 7, we use the following

formula
KN — K1

N -1
for the valuex, of x in the kth replica. This formula gives larger value efwhen s is
large. The constants; andxy are determined to keep the acceptance ratios in the basic
algorithm within a reasonable range; this is usually arouric)%

Using REM with these remarks, the mixing of MCMC for large or middle values of
« becomes fast enough for the practical use of the method proposed in this part. It is,
however, still difficult to treat the problem with smaller valueaqfwhere MCMC does
not mix well. Here, we employ the following trick that realizes a kind of annealing by
decreasingv: First we run MCMC with the largest value af using REM that consists of
parallel runs with different values ¢f Then, we decrease the valuexo$equentially using
the same set of, where each run of MCMC is initialized by a sample from the previous
run with a largei.

Although an artificial choice of initial conditions in this scheme is not fully justified
from the spirit of MCMC, this method gives reasonable results in the following sections
and is considered as a practical approach to the problem. A better founded solution may be

x (k — 1) + k1, (6.12)

R =
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obtained with some improved version of REM, which is left for future studies.

6.3 Estimation of hyperparameters

Estimation using log-derivatives of marginal likelihood

Here, we explain how to utilize the output of MCMC to estimate hyperparameters. In
an empirical Bayes procedure, hyperparameters are estimated through a maximization of
the marginal likelihood Eg. (5.20). The marginal likelihood cannot be directly computed
with samples from the posterior distributigniz, §|y). Log-derivatives of the marginal
likelihood by hyperparameters, however, can be computed using MCMC, which is usually
enough when searching for hyperparameters that maximize the marginal likelihood.

Taking log-derivatives of Eq. (5.20), we obtain

Oll(yld,7) 1 ) m
) - QEDOS[HDZH ]+ 9.2 (6.13)
Olnli(yld,7) 1 sy , L, nb?
o sen el IY(0) = EG(@)z T+ =5 (6.14)
whereE,.J f] denotes the posterior average of a functfoof z andé as
Bxodf] = [ [ 7(2.8)0(s.8ly) dads, 6.15)

Thus, computing the log-derivatives of the marginal likelihood is reduced to calculating the
posterior averages, which can be treated by MCMC.

Log-derivatives of marginal likelihood with respect to« and 5

As discussed in the previous section, it is natural to use the hyperparamateds defined
by Eq. (6.6), instead df andr. To maximize the marginal likelihood with respecti@nd
5, we can use the relations

Olnl(yl6,7) _ 10Ini(yld,7) 1 0lni(yl|d,7)

dox B0(r2) a8 0(1/67) (6.16)
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Oll(yld,7)  adhli(yld,r) 1 9lnl(yld,7) (6.17)
o5 B o) e 91 |

An example of estimation of hyperparameters using Egs. (6.13) — (6.17) will be shown in
Sec.7.1.1.







Chapter 7

Numerical experiments and analysis of
experimental data

7.1 Numerical experiments

7.1.1 Examples
Designs of numerical experiments

In this section, we test the proposed method with artificial data generated by a neuron
model. Here we employ the noisy Morris-Lecar equation [Morris and Lecar, 1981] as a
source of artificial data; this is a bivariate stochastic differential equation widely used in
neural science. The details of the numerical experiments are discussed in appendix B.

we show two examples of the estimation of PRC from sets of artificial data through the
method in this part. The result of the method in this part is compared with the true PRC
estimated with noiseless experiments.

The result is also compared with that of conventional Bayesian regression [Tanabe and
Tanaka, 1983] with a smoothness prior, where the errors in the explanatory variable is
ignored. This algorithm employs the same representation and smoothness pfio¥, of
but assumes the normal regression model (Eq.(3.2))

yi = Z(2;) + &1, € ~ N(0,0%).

It is similar to that proposed by the regression method [Ota et al., 2009b, Aonishi and

77
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Ota, 2006], as discussed in Chap. 3. We call this algorithm as “spline regression”. We
also compare the method in part Il with Fourier regressiong@ait al., 2005], which is
discussed in Chap. 3. In this thesis, the spline regression and the Fourier regression are
called conventional regression.

To apply the conventional regression, the valyef the explanatory variable should
satisfy the relationr; < 27. This means that we should discard samples wjth> 27
when we apply the conventional regression. In the following experiments using artificial
data, we remove such samples from the input of the conventional regression; to keep the
number of samples and make the comparison fair, an equal number of new samples that
satisfyingx; < 2w is generated and added to the input data.

The sets of artificial data used here contain= 100 samples, where the timing of
perturbation{t;}”_; is randomly chosen. The levelof the noise aré.3 (high) and0.1
(low); details are explained in appendix B). The estimates of mean and variance of periods
areT = 44.2 andor = 6.4 for the high noise leve$ = 0.3, and7 = 45.3 anddr = 2.3
for the low noise levek = 0.1, respectively. These are estimated with a simulation with
the noisy neuron model where we do not input perturbations.

Estimation of hyperparameters

Let us start with estimation of the hyperparameterand 3. First, the log-derivative
Eq. (6.17) of the marginal likelihood with respect fos plotted with a set of values of
3, as shown in the left panel of Fig. 7.1 for the high noise level 0.3 and Fig. 7.2 for the
low noise levels = 0.1. Each curve corresponds to a valuexah a given sef«;}. Then,
we estimate the zero crossing of each curve, which we detiote). Next, for each value
of 5*(«y), we plot the log-derivative Eq. (6.16) of the marginal likelihood with respeat to
for the values ofv € {«;}, as shown in the right panel of Fig. 7.1 and Fig. 7.2. The zero
crossing of this curve gives the estimatef . The estimates of 3 is also obtained as
p*(a&). In the right panel of Fig. 7.1, the zero crossing is located near7, and we choose
& = 8 as a rough estimate of among the five values that we have tested here. In the right
panel of Fig. 7.2, the zero crossing of the curve is located-at4.5. The values of for
the low and high noise levels are estimated as the sames*(8) ~ 0.00074.

In the above procedure, we assume that the zero point is unique. It is possible to intro-
duce more sophisticated iterative procedures to find zeros, a rough estinnagadf; is
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usually enough for the purpose estimating the PRO.

0 0.005 0.01 0.015 0.02 P YUY
p o
Figure 7.1: Log derivatives of marginal likelihood for artificial data (high noise lewvel0.3) with

respect to hyperparametexsand 5. Details are explained in the text. The five curves in the left
panel correspond ta = 1,4.5,8,11.5, and15.
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Figure 7.2: Log derivatives of marginal likelihood for artificial data (high noise level0.1) with
respect to hyperparametexsand 8. Details are explained in the text. The five curves in the left
panel correspond ta = 1,4.5,8,11.5, and15.

Estimation of PRCs

The upper left panels of Fig. 7.3 for the high noise levet 0.3 and Fig. 7.4 for the low

noise levels = 0.1 show the PRCs estimated with the method in this part using the hyper-
parameters: and 3 as defined above. For comparison, the upper right panels of Fig. 7.3
and Fig. 7.4 show the PRCs estimated with the spline regression. The hyperparameters
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of the spline regression are also determined by maximizing the corresponding marginal
likelihood, wheref? is analytically optimized and: = 40 is found by a grid search (see

Appendix. A). The result with the Fourier regression is also shown in the lower panel; the
dataset used in the Fourier regression are the same as that used in the spline regression.

. method:in part II — - sglinc(}xi;@g}rlcssi'on)—
Lt data (high noi . P S ata (high noise) - |
ML et ey (Gt m;:;? o T2 -, I | PRC -
>’ DTS
NG Z(¢) 0 Frr i S —
/2 —/2
0 T é 2n 3n 0 T ¢ 21 3n
. Fourier régression —_
.. ..t . data(highnoise) -
/2 |, ZaNs " PRC --
) B e e— S
—/2
0 T ¢ 2n 3n

Figure 7.3: Comparison between the method in this part and conventional methods using artificial
data (high noise level= 0.3). In this example, the data poift;, y;) whose valuer; > 27 does

not exist. The solid curve corresponds to the PRC estimated from samples shown by black dots, and
the broken curve shows the true PRC estimated with noiseless simulation. The upper left and upper
right panels correspond to the method in this part and the spline regression, respectively; the result
with the Fourier regression is also shown in the lower panel. Differences in the samples shown in
the upper left and upper right (or lower) panels are explained in the text.

In each panel of Fig. 7.3 and Fig. 7.4, a solid curve shows the estimate, while a broken
curve shows the true PRC. In Fig. 7.3 (high noise level), the solid curve is closer to the
broken curve in the upper left panels than the one in the upper right panel. On the other
hand, in Fig. 7.4 (low noise level), all solid curves are close to the broken curves. These
suggest that the method in this part outperforms the spline regression for this set of data for
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method in part I —" e spline regression —

data (low noise) -« . data (low noise) -
PRC --- PRC ---
0 T ) 27 0 T b 21
/2

Fourier regression —
data (low noise)
PRC ---

0 T 2n

Figure 7.4. Comparison between the method in this part and conventional methods using artificial
data (low noise levael= 0.1). In this example, the data points;, y;) whose values:; > 27 exist;

we remove the data points in case of the spline and Fourier regressions. The details are explained in
the text.

the high noise levet = 0.3. The method is also better than the Fourier regression in this
example.

The details of the algorithm used in computing the above result are as follows. The
numberm of the pieces of the discretized curv&-) is 100 and the periodic boundary
condition is assumed. The number of replidasised in REM is 32, and the numb&¥,c
of iterations per replica is0°. We try to exchange neighboring pairs of replicas once within
20 iterations. The variancey, of the proposal distribution in theth replica is defined by
Eq. (6.12), where:; = 0.01 andxy = 0.07; this is independent af.

We make use of the advantage of REM in parallel computation. Computation time on 32
cores(16CPU) of AMD Opteron 252(2.6GHz) is about 6 hours for each dafdseti00),
including hyperparameter search oA & 32 grid on the(a, 8) plane; it reduces to about
1/3 on faster hardware with 32 cores(4CPU) of Intel Xeon X5570(2.93GHz). Intel C++
compiler, MPI and LAPACK are used for the computation.
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7.1.2 Statistical comparison using averagé? error

In Sec. 7.1.1, we apply the method in this part to two sets of artificial data. Here, we con-
sider sets of simulation data and compare the method in this part with the spline regression
and the Fourier regression using the averagerror defined by

Np 1/2

21
) ( |z - 2eras) 7.1)
w=1
where the number of the datasetsNis and the curve estimated from théh dataset is
denoted byZ[!(¢).

We consider seven sets of data with different levels of external noise0.1,0.15,
0.2,0.25,0.3,0.35, and0.4. For each value of, we consider the average ov8 = 100
sets of artificial data for the method in this part, avg = 500 sets of artificial data for
the spline regression and the Fourier regression, respectively. Each set is generated by a
simulation with a different random number sequence. The estimateands; are shown
in Table 7.1 with the leved of noise.

s T ér 61T
0.1 453 23 0.05
0.15 449 36 0.07
02 450 48 0.11
025 446 54 0.12
03 442 64 0.15
035 442 75 0.17
04 437 7.8 0.18

Table 7.1:7 andor from artificial data.

The hyperparameters and $ are estimated from each set of data by the method ex-
plained in the previous sections. The parameters used for the method are the same as those
defined in the previous subsection, except that the estimated valuasotonsiderably
large ats = 0.35, 0.4 and search in a larger hyperparameter space is required in the case.

Figure 7.5 shows the averadé errors for the method in this part (solid curve), for the
spline regression (broken curve), and for the Fourier regression (chain curve); the horizontal
axis corresponds to the normalized standard efiotT’, which gives a measure of the
fluctuation of inter-spike intervals. The figure shows that the method in this part produces
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better results in the regidh15 < o7 /7.

0.25¢ Fourier regression —-— ya
spline regression === "/
method in part II — ‘.-/" 1
0.2} ‘ /]
L* error
0.15}
0.1
0.05 4
0.05

Figure 7.5: Comparison of the averaf&errors.

7.1.3 Detail analysis withLZ? errors

Scatter plots

In this section, we present a detailed comparison between the method in part Il and the
spline or Fourier regression using tihé errors. To see raw data of tHé errors in the
previous section, scatter plots of thé errors are presented in Fig. 7.6 and Fig 7.7. The
horizontal axes in the panels correspond to feerrors by the method in part Il; the
vertical axes in the panels of Fig. 7.6 and Fig. 7.7 correspond thleerors by the spline
regression and Fourier regression, respectively. The panels in each figure correspond to the
noise levelss = 0.1,0.15,0.2,0.25, 0.3, 0.35 and0.4, respectively. The point in the panels
represents a set of artificial data; we pldp = 100 points obtained by the datasets of a
noise level in each panel.
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Figure 7.6: Scatter plots af? errors by the method in part Il (horizontal axis) and the spline

regression (vertical axis).



7.1. NUMERICAL EXPERIMENTS
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Figure 7.7: Scatter plots aof? errors by the method in part Il (horizontal axis) and the Fourier

regression (vertical axis).
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Win rates

To compare the differences of tlié accuracy, we estimate win rates of the method in part
Il to conventional regressions using the datasets. Here, we défife .2, as

v 1 the method in part Il outperforms another methodifeth dataset,
0 otherwise,

(7.2)
and assume that, follows an i.i.d. binomial distribution. The win rate corresponds to
the population rate of the binomial distribution where the estimaiés >, _, Y,,/Np.
Using the normal approximation, we calculate the 95 % confidence interyahsfp —
1.96+/p(1 — p)/Np,p + 1.96,/p(1 — p)/Np]. Note that the approximation is valid when
pis near0.5 and N, is sufficently large.

In Fig. 7.8, we present the estimates of the win rates and the confidence intervals with
respect to the normalized variar@g/T. The left and right panels represent the win rates
of the method in part Il to the spline and Fourier regressions, respectively.

The left panel shows that the method in part Il outperforms the spline regressions sig-
nificantly above chance fQﬁ'T/T > 0.17; the right panel shows that the method in part I
outperforms Fourier regressions significantly above chance exce@ﬂ(ﬁ' = 0.05 and
0.11. Whené,/T is 0.05 in the left and right panels, the win rateis smaller tharo.5.

This is possibly because of rough estimation of the hyperparametard 5 in the method
in part II.

Box and whisker plots

Here, we show the difference between the method in part Il and the conventional meth-
ods in more detail. We show box and whisker plots [Tukey, 1977] of differences from
the L? errors by the spline regression to those by the method in part Il in the left panel of
Fig. 7.9. The vertical and horizontal axes correspond to the difference and the normalized
variances /T in the previous section, respectively. Each box and whisker plot represents
five-number summaries of the differences: sample minimum, lower quantile, median, up-
per quantile, and sample maximum. Note that lower and upper edges of the box do not
represent confidence interval of the median but lower and upper quantiles, respectively.
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method in part II v.s. spline regression method in part II v.s. Fourier regression

g

0.05 01 015 0.05 01 015
ar/T or/T

Figure 7.8: Estimates of the win rates of the method in part Il to the spline (left panel) and Fourier
(right panel) regressions with respecttp/7. The error bars represent the 95 % confidence inter-
vals by normal approximation.

When the median of the differences is above zero, the method in part Il outperforms the
spline regression for over half of the datasets. The box and whisker plots in the left panel
of Fig. 7.9 suggest it wheaT/T > 0.15; this result is consistent with the result through
the averagd.? error in the previous section.

The right panel of Fig. 7.9 represents box and whisker plots of differences frofit the
errors by Fourier regression to those by the method in part Il. This panel means that the
method in part Il outperforms Fourier regression for over half of the datasets except for
&T/T = 0.05. The quantiles of the box and whisker plots suggest that the method in part
Il outperforms Fourier regression for abaiit%of the datasets when, /T >0.15

7.2 Analysis of experimental data

7.2.1 Experimental data

We test the method with experimental data recorded from the pyramidal cells of in rat
motor cortex. Two sets of data, hereafter denoted by A and B, are obtained using whole-
cell patch-clamp recordings at the somata of layer-5 pyramidal neurons in rat motor cortex.
Details of the experiments are found in the paper [Tsubo et al., 2007a]. The paraineters
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difference of L’errors difference of L’errors
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Figure 7.9: Box and whisker plots of the differencesIof errors with respect t(ﬁrT/T. The
differences from the spline and Fourier regressions to the method in part Il are presented in the
left and right panels, respectively. The line, upper edge and lower edge in each box represent the
median, upper quantile and lower quantile, respectively. The upper and lower edges of each whisker
represent the sample minimum and maximum, respectively.

andor estimated from the experimental data are shown in Table 7.2 as well as the number
n of samples.

dataset n T (ms) &r(ms) or / T
A 435 349 2.8 0.08
B 440 643 94 0.15

Table 7.2:1 ando’r from experimental data.

We use parameters for the algorithm that are essentially the same as those used in
Sec. 7.1.1. In this analysis of experimental data, however, we add the coréjtipr= 0
and use the prior Eq. (5.19) instead of Eq. (5.17), for both the method in this part and the
spline regression. Unlike as in the case of artificial data, the poeints 27 are merely
removed when the spline regression or the Fourier regression is applied.

The hyperparameteks and g are estimated in the same manner as that explained in
Sec. 7.1.1. In the left panels of Fig. 7.10, the log-derivative Eq. (6.17) of the marginal
likelihood with respect t@3 is plotted with the values of. Each curve corresponds to a
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value ofa. The zero crossing is almost independent of in the range oft < a < 15

in both datasets. Fixing the value 6fto /3, we then plot the log-derivative Eq. (6.16) of
the marginal likelihood with respect @ as shown in the right panels of Fig. 7.10. The
resultant estimates of hyperparametersare 4.5 and 3 = 0.00058 for dataset A and

& = 4.5 and3 = 0.00074 for dataset B. The hyperparameters of the spline regression are
also estimated by maximizing marginal likelihood.

0 0.005 0.01 203 4 6 § 10 12 14 16
5 «
4x10° ‘
Qlogl Wl ]
a8
-4x103
-8x103
-12x10° ‘ ‘ ‘ ‘
0 . . . . 4 6 8 10 12 1
0.005 Ooﬁl 0015 0.02 0 2 4 6 8 10 12 14 16
(0%

Figure 7.10: Log derivatives of the marginal likelihood with respect to hyperparametznsl 3
(experimental data). Details are explained in the text. The five curves in the left panel correspond
toa = 1,4.5,8,11.5, and15. The upper and lower panels correspond to the datasets A and B,
respectively.

The PRCs estimated with these hyperparameters are shown in Fig. 7.11. The left and
right panels of Fig. 7.11 correspond to the datasets A and B, respectively. In each panel,
the solid curve shows the PRC estimated with the method in this part, and the broken curve
shows the PRC estimated with the spline regression or the Fourier regression. Samples
in the datasets are shown by black dots. Computation time on 32cores(16CPU) of AMD
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Opteron 252(2.6GHz) is about 49 hours for each dataset(435), including hyperpa-
rameter search on the, 5) plane.

%

_n/z dataset A i J _7'5/2 .. -_'.::.- - dataset%B .

method in part II —‘ SR “method in part n—
spline regression === spline regression ===
0 T % 2n 0 L 27

dataset A - i .-::."::.'. R :
—T/2 | method in part I — 1 -m/2t ' S e C!atasct B
Fourier regression =-- method in part :II —
: : _Fourier regressign ==~

0 T 27 0 i ¢ 27

Figure 7.11: Comparison between the method in this part and conventional methods using exper-
imental data. The upper panels show comparison to the spline regression, while the lower panels
show comparison to the Fourier regression. The left and right panels correspond to the datasets A
and B, respectively. In each panel, the solid curve shows the result of the method in this part and
the broken curve shows the result of a conventional method; both are almost overlapped in the left
panels. The black dots are samples.

The results shown in the left panels of Fig. 7.11 indicate that there is no significant
improvement with the method in this part for dataset A, where the value/df is small.
On the other hand, in the right panels, where the value}dff is larger, considerable
differences are observed. This result implies the utility of the method in this part when the
normalized variancéT/T is large.
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7.2.2 Analysis of synchronization property

Finally, we compare synchronization properties based on the estimates of the PRC from
the experimental data. As discussed in Sec. 2.2, we analyze a system of two symmetrically
connected neurons whose PRCs are the same. Using the fulictioh= I'(¢) — I'(—¢),

we can determine stabilities of in-phase, anti-phase and out-of-phase synchronization be-
tween the two neurons. The coupling functiofy) is defined by Eq. (2.14)

1
o1

2
P(0) = 5 [ 210) {amn(i” (9) = v+ )} .
where the estimate of the PRC of the neurof (8), the estimate of the normalized activity
of the voltage i9*(¢), and the normalized effect of spikes from another neuraer}.ig) =
ar(0/wy) defined by Eq. (2.13). Here, we sgj, = 1, vsyn = 0, andr = 2 in the function
a(0) because we assume the excitatory connection between the two neurons. We estimate
the normalized voltage*(6) by averaging time series of the voltage in inter-spike intervals,
whose periods are normalized framo 27. The normalized voltages for dataset A and B
are shown in the left and right panel in Fig. 7.12, respectively.

30
30| dataset A dataset B

0
V(o) V)
-30 L\\ ) _‘——J
0 (I) 21t 0 (I) 2

Figure 7.12: Normalized voltag€ (¢) estimated from the time series of the voltage in experiments.
The left and right panel represents the normalized voltage of the neuron for datasdtdataset
B, respectively.

For dataset A, we show the functioh’s (A¢) computed from the estimates through
the method proposed in part Il, the spline regression, and Fourier regression in the upper-
left, upper-right and lower panels of Fig. 7.13, respectively. The points and the circles
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mean the stabilities and the instabilities of equilibrium points of the phase diffefepce

01 — ¢ between the two neurons, respectively. Figure. 7.13 shows that two neurons are
synchronized at out-of-phase for all these estimates. This result is consistent with the fact
that these estimates of the PRC for dataset A are considered as Type-l PRCs.

For dataset B, we show the functiohis (A¢) computed from these estimates of the
PRC in Fig. 7.14. The points and the circles also represent the stabilities and the instabili-
ties. The upper-left panel, which corresponds to the estimate through the method in part Il,
shows that the two neurons are synchronized at out-of-phase. This result is also consistent
with the facts that the estimates through the method in part 1l is considered as the Type-|
PRC. The upper-right panel, which corresponds to the estimate through the spline regres-
sion, shows that the two neurons are synchronized at in-phase. The lower panel, which
corresponds to the estimate through Fourier regression, shows that the two neurons are
synchronized at out-of-phase. It seems strange that synchronization properties computed
form the estimates are different, although the estimates of the spline and Fourier regression
are close. This is because we do not assuff® = 0 in the Fourier regression; on the
other hand, we assun#0) = 0 in the spline regression and the proposed method.
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Figure 7.13: The functiofi— (¢) for analyzing synchronicity of two symmetric connected neurons.
The upper-left, upper-right and lower panels represents the function obtained through the PRCs
estimated by Fourier regression, spline regression and the method in part 1l for dataset A. The point
and the circle shows that the equilibrium points are stable and unstable.
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Figure 7.14: The functiofi— (¢) for analyzing synchronicity of two symmetric connected neurons.
The upper-left, upper-right and lower panels represents the function obtained through the PRCs
estimated by Fourier regression, spline regression and the method in part Il for dataset B. The point
and the circle shows that the equilibrium points are stable and unstable.
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Statistical estimation of phase response
curves using data transformation
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Chapter 8

Estimation using data transformation

8.1 Introduction

The method proposed in part Il deals with a correlation between errors in the PRC ex-
planatory and response variables. The correlation is neglected in the previous studies, as
discussed in Chap. 3. We showed that the method in part Il gives a better accuracy than the
conventional regression for the data generated by the Morris-Lecar equations.

However, parallel computing environments are necessary for actual use of the method in
part II. Without parallel computing, computation time of the method will be aBput2 =
64 hours for the examplen(= 100) in Sec. 7.1.1, because computation time3@rcores
is approximately2 hours. Even now, everyone can not use massive parallel computing
environments. For actual use, we need more efficient method to deal with the correlation.

In this part, we propose a novel method that deals with the correlation and takes consid-
erably lesser time than the method in part Il. To achieve this, we introduce a transformation
that mixes the explanatory and response variables. After the data are transformed, no error
exists in the explanatory variable and the correlation is removed in the transformed data.
Hence, an estimation of the PRC is reduced to a normal regression.
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8.2 Statistical model in part Il

In part I, the correlation is represented by the observation model Egs. (5.5) and (5.6)

T = ¢; + 05, (8.1)
inZ(¢i)+(yi—27T)5i+§i, 1=1,...,n, (82)

where¢; follows a normal distribution. In Eq.(5.3), the err@ris a function of a realization

T; of the period, where, = (T; — T)/E-. Using a prior Eq.(5.14), we assumgd ~ a
truncated normal distribution in part Il.

Here, we define; = (1 — ¢;)~!, and rewrite the observational model as

T = iV, (8.3)
yi = (Z(¢y) + & — 2m)v; + 2, i=1,...,n. (8.4)

To simplify the model, we assungg = 0 and obtain

T = Qi (8.5)
yi = (Z(¢;) — 2m)v; + 2, i=1,...,n. (8.6)

In this part, we assumé&; ~ a log normal distribution. Here, the distribution lofy; is
represented by
Inv; ~ N(0,\?), (8.7)

where the variance dfi ; is denoted by\?. In this part, we estimate the PRG ¢) based
on the model Egs. (8.5), (8.6), and (8.7).

A graphical interpretation of this model is shown in the left panel of Fig. 8.1. The
solid curve represents the PR ¢) of the model. The model indicates that the data point
(x;,y;) is generated from the poifid;, Z(¢;)) by shifting the broken line.

The model also indicates that the broken line passes the (oiht) for all data point
(x;,1;); i.e. three points0, 27), (z;,y;) and(¢;, Z(¢;)) lie on the line. Using Egs. (8.5)
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and (8.6), the slope of the straight line joinifly 27) and(z;, y;) is calculated as

2 —y; 2w — {(Z(¢s) — 2m)v; + 27} _2m— Z(¢)
00—z — Qv o 0—¢

(8.8)

Therefore, the slope is equal to that of the straight line joiriing~) and(¢;, Z(¢)). This
means that the three points lies on the same straight line.

2 RSN (fn/(jt) ¢

@, () o

(Cﬁiyyi) °
(¢i7 Z(Qz)) °

Figure 8.1: Procedure of estimating the PRC by using the transformationhe left panel shows
how the data poinfz;, y;) is generated from the PRC represented by the solid curve. Using the
transformationy, we can show that the pointg;, ;) in the right panel are generated from the
circle (z;, Z(z;)) through the broken line parallel to the vertical axis.

8.3 Rough sketch of the estimation using data transformation

Here, we give a rough sketch of the data transformation using Fig. 8.1. We discuss the
details of this method in the next section.
First, we define the transformation

Ye(x,y) = (377::?5:16,111 ;::Z) : (8.9)

which is parameterized by = Z(0). The tuning parameteris fixed in this and the next
sections, and is estimated in Sec. 8.6.

When the data pointz;, y;), the circle(¢;, Z(¢;)) and the broken line in the left panel
are transformed by, we obtain the pointéz;, 7;), the circle(z;, Z(;)), and the broken
line parallel to the vertical axis in the right panel. This implies the eliminations of an
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error in the explanatory variable and a correlation between the explanatory and response
variables in the right panel. As a result, we can easily estimate a fun&tiop which is

shown as the solid curve in the right panel from the transformed(datg;). Finally, the
PRCZ(¢) is determined to transform the functiaf(z) by the inverse of,.

8.4 Details of the estimation using the data transformation

In the following section, we explain the details of the estimation based on the model in this
part (Egs. (8.5), (8.6), and (8.7)).

When we transform both sides of Egs. (8.5) and (8.6)bythe transformed model is
given by

. 2n=C

Ty = m¢za (8-10)
=l 2S¢ 8.11
yl—n%_—z(@)—nw, (8.11)

where(z;, y;) is the transformed data.(x;,y;). The deterministic equation (Eq. (8.10))
indicates that a smooth functidn which satisfie); = h(z;), exists under the condition

Vo € [0,27), 2 — Z(¢) + ¢ Z'(¢) > 0. (8.12)

We substitutes;, = h(z;) in Eq. (8.11), which is reduced to the normal regression model

i = Z(;) + 1, 7 ~ N(0,)?), (8.13)
where o ¢
7)) = In —" 5 5~ _lnw
Z(z) =In 27— Z(h(@) v, =—1Iny,. (8.14)

We call the functionZ(z) a transformed PRC in the following sections. Note that the
transformed PRZ () satisfies the three conditions:(z) has the fixed boundary point
Z(0) = 0, Z(z) is periodic in the domaifD, 27), andZ(z) is smooth except = 0.

We estimate the transformed PRCz) from the transformed datf(z;, 7;)} based on
the normal regression model (8.13). Details of the estimation are explained in the next
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section and appendix A. The transformed PRC is assumed to be estimated from the trans-
formed data in this section.
Finally, the PRCZ(¢) is estimated to transform the estimateAifr) using the inverse
of ¢
e (z,) = (ze ¥, 21 — (2m — Q)e7). (8.15)

The equatiorwc‘l(ii, 7Z(%;)) = (¢4, Z(¢;)) derived from Egs. (8.10) and (8.14) suggests
that the estimate of the PRC is equal to the true PRC if the estimates of the transformed
PRC is equal to the true transformed PRC.

Note that the estimate of PRC may be a multi-valued function, although PRC is not
a multi-valued function. This is because of the mixing of the variablesdy in the
componente~? in Eq. (8.15).

8.5 Estimation of the transformed phase response curve

In this section, the transformed PR& z) is estimated for three condition:(z) has the
fixed boundary poinZ (0) = 0, Z(z) is periodic in the domaifb, 27), andZ(z) is smooth
in the region0, 27). The last condition is inconsistent with the previous assumption that the
transformed PR (z) is smooth except fat = 0, but we simply neglect the inconsistency
for a decrease in the computation time of the method in this part.
Bayesian frameworks are appropriate to deal with the three conditions. We can choose
a prior distribution of the transformed PRZ(z), which satisfies the conditions. When
we definey as(yi, . .., y.)T, the likelihood functiom(y|Z(-), \) is derived by Eq. (8.13).
Then a posterior distributiop( Z(-)|y, A, 7) is derived using the Bayes’ theorem

W20 = 3120 NZOIT) 6.16)

wherep(Z(-)|7) is a density function of the smoothing prior [Aonishi and Ota, 2006, Ota
et al., 2009b, Tanabe and Tanaka, 1983, Nakae et al., 2010] defined in appendix A. The
tuning parameter in the prior controls the degree of smoothness of the transformed PRC
Z(x). Whenf is larger, the estimated curve becomes smoother.

In the Bayesian framework, the estimate of the transformed PRCis an expectation

of the posterior. The details of the estimation are discussed in appendix A.
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8.6 Choice of the tuning parameters\,7 and ¢

The tuning parameters 7 and¢ of the model, which we call “hyperparameters”, are fixed
in the previous sections. The hyperparameters are estimated to maximize the log marginal
likelihood

lnpe(y0 1) =n [ pel¥1Z0), Np(Z() i)z, (8.17)

wherep:(¥|Z(-), \) is the likelihood in Eq. (8.16), which is dependent©e Z(0).
When the hyperparametexs7, and¢ are changed to the new hyperparamekersand
¢, wherea = A7, the estimate of is analytically derived a&(y, @, ¢). To substitute\ into
the log marginal likelihood, we consider only a maximizationof (y|a, 5\) over a plane
of the hyperparametefs;, ). The details of the derivation are presented in appendix A.
We numerically maximizén p.(y|a, 5\) over a regionamin, @max X [Cmin, Cmaxl- The
values of the maximum poirt, f) are estimates of the hyperparametei@d(.
Here,(min is determined by the equation

(in = max { 2l + 4 — 2m) } (8.18)

X

, Which is derived on the assumption that all of the ddta, y;) } is generated by the model
in this part (Egs. (8.5), (8.6), and (8.7)).



Chapter 9

Numerical experiment

9.1 Examples

Here, the method in this part is applied to the déta;,y;)} generated with the noisy
Morris-Lecar equations in appendix B. The numerical experiment in this part is the same
condition as that in part Il.

We show two examples of the estimates of the PRCs from the same datasets discussed in
Sec. 7.1.1, where a sample sizés 100 and timings of the perturbatiods;;: = 1,...,n}
are randomly chosen. The noise levelslefined in appendix B, of the two examples are
0.3 (high) and0.1 (low). The number of parameters that represent the transformed PRC
Z(z)ism = 99 (see Appendix A).

Let us begin with the estimation of the hyperparameteaad(. For the dataset with the
high noise levels = 0.3) , we set the range of the hyperparameterggs = 1, amax =
200, Cmin ~ —7.3x 1072 and(max = 0.2. For the dataset with the low noise level= 0.1),
we Setimin = 1, amax= 200, Cmin ~ —1.4x1072 and(max = 0.2, where(mi, is determined
from the data{ (z;, y;)} using Eq.(8.18). The marginal likelihootisp, (¥|a@, A) defined in
Sec. 8.6 are numerically optimized ori@ x 30 grid in the plane of the hyperparameters
(a,¢). As a result, pairs of the estimates of the hyperparan{étef) for the datasets
with the high noise leve(s = 0.3) and the low noise levels = 0.1) are about(6.1 x
101, —7.3 x 1073) and (1.7 x 10',3.5 x 1072), respectively. The left and right panels of
Fig. 9.1 show regions of level curveslafp (y|a, ) over the hyperparameters for= 0.3
ando.1, respectively. The maximum points, é) are shown as the points in Fig. 9.1.
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00—

Figure 9.1: Level curves dh p¢(y |, 5\) OVer [@min, Mmax) X [Cmin; (max|- The point on the region
represents the maximum poifit, ¢). The left and right panels correspond to the level curves with
the high noise levet = 0.3 and the low noise level = 0.1, respectively.

‘. oy Y A —— N
transf?rmetd d?.tta (hl%h noﬁ?R(g” 7) . .." transformed data (low noise) (Z;,¥;) -
-04 cstimate Ot transtorme - estimate of transformed PRC —
o’ 21 0 _T 271
0 T z

Figure 9.2: Transformed data and the estimate of the transformed PRC. The noise levels of the
datasets in the left and right panels are high= 0.3) and low(s = 0.1), respectively.
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The left and right panels of Fig 9.2 show the transformed dlata ¢;)} and the esti-
mates of the transformed PRC%z) on the hyperparameteﬁsandf for the high noise
level s = 0.3 and the low noise level = 0.1, respectively.

e rr:iettho&l@nﬁ)art.lﬂ) — -. . Fourier regression —
.. . ' . data(highnoise) - .. .+ *7" . data (high noi ;
w2 | 5w e PRC /2 I Syl ata ( :ﬁlenﬁ)ﬁsg) 7777777
Z(¢) 0 1= Z(¢) O
—T/2 —/2
0 T ¢ 2n 3n 0 T ¢ 2n 3n
- . spline regression — ... method in part Il —
I + [ i - data (highnoise) - | .. ° " . data (high noise) * |
/2 N true PRC - m/2 t . :,.““'\_, - true PRC

Figure 9.3: Comparison between the method in this part (upper—left panel), Fourier regression
(upper—right panel), spline regression (lower—left panel) and the methods in part Il (lower—right
panel) using a set of data. The solid curve corresponds to the PRC estimated from the samples
shown by the points, and the broken curve shows the true PRC estimated with noiseless simulation.
These panels (except for the upper-left panel) are cited in our previous study.

Then, we show the estimate of the PRC¢) through the method in this part. The
estimates of the PRZ(¢) for the datasets with = 0.3 ands = 0.1 are shown as the solid
curve in the upper left panel of Fig. 9.3 and Fig. 9.4, respectively. In the examples, both
estimates of the PRC are not multi-valued functions, as discussed in Sec. 8.4. They are
compared with the true PRC estimated in noiseless experiments. We discuss how to obtain
the true PRC in appendix B. The true PRCs are shown as the broken curve in the upper left
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method in part III — e spline regression —

data (low noise) - . data (low noise) -
PRC --- PRC -~

"o

method in part II - Lo Fourier regression —
data (low noise) - data (low noise) -
PRC -- PRC ---
0 T ¢ 2n 0 T Qb o

Figure 9.4: Comparison between the method in this part and conventional methods using artificial
data. The solid curve corresponds to the PRC estimated from samples shown by black dots, and
the broken curve shows the true PRC estimated with noiseless simulation. The upper left and upper
right panels correspond to the method in this part and the spline regression, respectively; the result
with the Fourier regression is also shown in the lower panel. Differences in the samples shown in
the upper left and upper right (or lower) panels are explained in the text.

panel of Fig. 9.3 and Fig. 9.4. Note that the true PRC satisfies the condition in Eq. (8.12).

Finally, we compared the estimate of the PRC through the method in this part with
three estimates through the Fourier regression and the spline regression and the method in
part 1. The results are shown as the solid curve in the other three panels of Fig. 9.3 and
Fig. 9.4. The true PRC is also shown as the broken curve. In Fig. 9.4 (high noise level), the
solid curves by the method in this part and part Il are closer to the true PRC than the ones
generated by Fourier regression and spline regression. In Fig. 9.4 (low noise level), on the
other hand, all solid curves estimated by these methods are close to the true PRC.
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9.2 Statistical comparison using averagé? error

Here, we consider sets of data and compare the accuracy of the estimates. We use the
measure of the accuracy as the averagerror

AL

Np
w=1

( [z - Z[w]<¢>>2d¢) " (9.1)

where the number of datasets is expressel;aand the estimate from the th dataset is
defined byZ!"!(¢). We consider seven datasets, which are different levels of the external
noise:s = 0.1,0.15,0.2,0.25,0.3,0.35 and0.4. For each value of, we considerN, =

500 data sets in the cases of Fourier regression, spline regression and the method in this
part, andNp, = 100 data sets in the case of the method in part Il.

The result of the comparison is shown in Fig. 9.5. The horizontal axis represents the
noise levels and the vertical axis represents the averadeerror defined by Eq. (9.1).
Fourier regression (red), spline regression (blue), the method in part Il (green) and the
method in this part (black) are represented by the lines anédifieconfidence intervals
in Fig. 9.5. The result shows that the estimator of the method in this part is more accurate
than that of Fourier regression and spline regression far. &lg. 9.5 also shows that the
accuracy of the estimate of the method in this part is the same as that of the method in part
Il when s is small.

Note that the estimates of the PRC for all of the datasets are one-valued function, as
discussed in Sec. 8.4.

9.3 Detail analysis withL? errors

9.3.1 Comparison to conventional regressions
Scatter plots

In this section, we present a detailed comparison oftherrors between the method in part
[l and the conventional regressions. To see raw data of trerors, we show scatter plots
of the L? errors in Fig. 9.6 and Fig 9.7. The horizontal axes in the panels correspond to the
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| — Fourier regression
0251 _ spline regression
— method in part 111

02} — method in part IT
L’ error
0.15¢
0.1}
005651 02 ¢ 03 0.4

Figure 9.5: Comparison of the averafjgerrors with respect to the noise level

L? errors by the method in part Ill; the vertical axes in the panels of Fig. 9.6 and Fig. 9.7 cor-
respond to the.? errors by the spline regression and Fourier regression, respectively. The
panels in these figures are different with the noise levels0.1,0.15,0.2,0.25,0.3,0.35
and0.4. The point in the panels represents a set of artificial data; we\plot= 500 points
obtained by the datasets of a noise level in each panel.

Win rates

To compare the differences of tlié accuracy, we estimate win rates of the method in part
Il to conventional regressions using the datasets. Here, we dgfifie 2, as

v 1 the method in part Il outperforms another method#eth dataset,
B 0 otherwise,
(9.2)

and assume that, follows an i.i.d. binomial distribution. The win rate corresponds to
the population rate of the binomial distribution where the estimaiés >, _ Y, /Np.
Using the normal approximation, we calculate the 95 % confidence interyahsfp —
1.96+/p(1 — p)/Np, p + 1.96/p(1 — p)/Np]. Note that the approximation is valid when
p is near0.5 and N, is sufficently large.

In Fig. 9.8, we present the estimates of the win rates and the confidence intervals with
respect to the noise level The left and right panel represents the win rates of the method
in part Ill to the spline and Fourier regressions, respectively. The left and right panels show
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Figure 9.6: Scatter plots af? errors by the method in part Il (horizontal axis) and the spline
regression (vertical axis).
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Figure 9.7: Scatter plots of? errors by the method in part Ill (horizontal axis) and the Fourier
regression (vertical axis).
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that the method in part Il outperforms the spline and Fourier regressions significantly
above chance for all noise levelsrespectively.

method in paft 111 v.s. Fourier regressioﬁ method in paft I vs. spliﬁe regression |

) Mp
L B S SIS s S

0.5 0.5

0.1 02

Figure 9.8: Estimates of the win rates of the method in part lll to the spline (left panel) and Fourier
(right panel) regressions with respectstoThe error bars represent the 95 % confidence intervals
by normal approximation.

Box and whisker plots

Here, we show the difference between the method in part Il and the conventional methods
in more detail. We show box and whisker plots [Tukey, 1977] of differences fronithe
errors by the spline regression to those by the method in part Il in the left panel of Fig. 9.9.
The vertical and horizontal axes correspond to the difference and the noise, lmsbec-

tively. Each box and whisker plot represents five-number summaries of the differences:
sample minimum, lower quantile, median, upper quantile, and sample maximum. Note
that lower and upper edges of the box do not represent confidence interval of the median
but lower and upper quantiles, respectively.

When the median of the differences is above zero, the method in part Il outperforms
the spline regression for over half of the datasets. The box and whisker plots in the left
panel of Fig. 9.9 suggest the outperformance for all noise lavels

The right panel of Fig. 7.9 represents box and whisker plots of differences froft the
errors by Fourier regression to those by the method in part 1ll. This panel also indicates
that the method in part Il outperforms Fourier regression for over half of the datasets for
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all noise levels;. Furthermore, the quantiles of the box and whisker plots in the right panel
suggest that the method in part 1l outperforms Fourier regression for gbdiiof the
datasets whern > 0.15.

difference of L’errors difference of L’errors
0.2 T 0.3 L
! ! ! 3 24 ‘
0.1+ _ f ' ' 1 , 0
0.1 ! !
0 - --{ 7777777 — e o
HAE ; ol esmaI I
-0.14 o ' : 1
L ! -0.17 ! I
-0.2 B L e
T T T T T T T T T T T T
01 015 02 025 03 035 04 01 015 02 025 03 035 04
S S

Figure 9.9: Box and whisker plots of the differenceddferrors with respect te. The differences

from the spline and Fourier regressions to the method in part Il are presented in the left and right
panels, respectively. The line, upper edge and lower edge in each box represent the median, upper
guantile and lower quantile, respectively. The upper and lower edges of each whisker represent the
sample minimum and maximum, respectively.

9.3.2 Comparison to method in part Il
Scatter plots

In this section, we present a detailed comparison of/therrors between the methods in
part Il and part Il. In Fig. 9.10, we show scatter plots of theerrors obtained by the
method in part lll (horizontal axis) and part Il (vertical axis). The panels correspond to the
noise levelss = 0.1,0.15,0.2,0.25, 0.3, 0.35 and0.4, respectively. The point in the panels
represents a set of artificial data; we plép = 100 points obtained by the datasets of a
noise level in each panel.
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Figure 9.10: Scatter plots df? errors by the method in part lll (horizontal axis) and in part II

LZerror by method in part III

(vertical axis) with respect to the noise levels
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Win rates

To compare the differences of tiié accuracy, we estimate win rates of the method in part
[l to the method in part Il. As explained in the previous section, we estimate the wip rate
and the95% confidence interval using a binomial distribution. The estimates of them with
respect to the noise levelare shown in Fig. 9.11; the vertical axis corresponds to the win
rate. The method in part Il outperforms the method in part Il significantly above chance
whens < 0.25.

method in paf*t I1I v.s. method in part 11 |

0.5 11}

0.1 02 ¢ 03 0.4

Figure 9.11: Estimates of the win rates of the method in part 11l to the method in part Il with respect
to s. The error bars represent the 95 % confidence intervals by normal approximation.

Box and whisker plots

Here, we show the difference between the method in part Il and the conventional methods
in more detail. We show box and whisker plots of differences fromitherrors by the
method in part Il to those by the method in part 11l in Fig. 9.12. The vertical and horizontal
axes correspond to the difference and the noise levelspectively.

When the median of the differences is above zero, the method in part Il outperforms
the method in part Il for over half of the datasets. The box and whisker plots suggest the
outperformance except for the noise levek 0.4. By the quantiles of the box and whisker
plots, the method in part Il outperforms the method in part Il for ali6¥oof the datasets
whens = 0.1.
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Figure 9.12: Box and whisker plots of the differenced.dferrors with respect ts. The differences
from the method in part Il to the method in part Il are presented.

9.4 Computation time

The Computation times of Fourier regression, spline regression, the methods in this part
and part Il for the datasets are compared. The computation times are obtained on a Fujitsu
PRIMERGY RX200 S5, whose CPU is Intel Xeon X5570 (2.93GHz, 8 core). The methods
are implemented using C++ code with LAPACK. The estimate of the method in part Il is
calculated with parallel computing, where we use 4 CPUs (32 core) and implement the
method in part Il using MPI.

We show the averages of the computation times over the datasets in Table. 9.1. This
suggests that the computation time of the method in part IB () is considerably longer
than that of other methods (1 min or less).

The computation times without the method in part Il are mostly determined by the num-
ber of iterationgV;, of a linear computation, such as Egs. (A.7) and (A.10) in appendix A,
and the number of parametel$ of the linear computation. The time complexities of the
methods without the method in part Il afE M3 Ny), because all linear computations in
this thesis are implemented using direct methods [Press et al., 2007], which do not consider
sparsity of matrices.
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method computation time (sec) M Ny,
Fourier regression 2.4 x107° 7 1
spline regression 1.5 x 10° 100 2 x 10?
method in part Il 4.5 x 101 99 6 x 10°
method in part II 8.8 x 103 * *

Table 9.1: Averages of computation times, the number of parametensd the number of iterations
Ny,

We also list the number of parametevs and the number of iteration¥;, of a linear
computation performed using all methods mentioned above except the method in part Il in
Table. 9.1. This suggests that the computation times of these methods are roughly consis-
tent with their time complexities. The consistency explains the difference in the computa-
tion times between Fourier regression, spline regression and the method in this part. The
large difference in the computation times between Fourier regression and spline regression
mainly arises from the difference in the number of parametérsThe difference in the
computation times between spline regression and the method in this part arises from differ-
ence in the number of hyperparameters. The spline regression has one hyperparameter. On
the other hand, the method in this part has two hyperparametesd(.

9.5 On the choice of hyperparameters

Unbiasedness of the estimaté

Here, we compute averages and confidence intervals of the estjrmtelidate the use

of Inp.(y|a, 5\) in Sec. 8.6. The result is plotted in Fig. 9.13, where the horizontal axis
represents the value ef and the vertical axis represents the average of the estimate of

¢ = Z(0). The solid line in Fig. 9.13 represents the method in this part, the broken line
represents spline regression, and the dotted line represents Fourier regression. We ignore
the results of the method in part I, because the confidence interval is too large for a small
size of datasets. The trdeis zero in the case of the Morris-Lecar equations. The results
show that the estimataf defined in Sec. 8.6 seem to be unbiased for the dataset when

s <0.3.
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Figure 9.14: Level curves dfi p: (y|a, 5\). The details are presented in the text.

Multi-valued functions induced by missing choice of hyperparameters

As discussed in Sec. 8.4, the estimate of PRC through the method in part Il may be a
multi-valued function; for all datasets used in this thesis, the estimates are not multi-valued
functions. In this section, we show a example that the estimate is a multi-valued function
because of missing the choice of the hyperparaméters). For the dataset presented

in Fig. 9.3, we again plot the level curves mfpc(ym}) in Fig. 9.14. The point is a

maximum point ofin p.(¥|@, A). The cross means that the estimate of PRC is a multi-

valued function on the corresponding values of hyperparameters.

To confirm this, we show the estimate on the values of hyperparamete($ ~
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Figure 9.15: Estimate of transformed PRC (left panel) and estimate of PRC (right panel) on wrong
values of hyperparameters.

(15,0.1) corresponding to the red point of the Fig. 9.14. The transformed data and the
estimate of transformed PRC are represented by the points and curve in the left panel of
Fig. 9.15, respectively. The estimate of PRC is obtained through the inverse transformation
Y. as shown in the right panel of Fig. 9.15. The estimate of PRC piear2r has multi

values.



Chapter 10

Summary and future problems

10.1 Summary

Two statistical methods are proposed for estimating the phase response curve (PRC). The
novelty of these methods is that they take into account the correlation between errors in the
explanatory and response variables of PRC.

In part Il, we formulated the method in a Bayesian framework with a smoothness prior,
and implemented using the replica exchange Monte Carlo (REM) method, which enables
efficient sampling from multimodal posterior distributions. We tested the method in part I
both with artificial data generated by the noisy Morris-Lecar equations and real experimen-
tal data recorded from the pyramidal cells of in rat motor cortex. The test with artificial data
shows that the the method in part Il is advantageous over conventional regressian [Gal
et al., 2005, Ota et al., 2009b] when the level of noise is high. In the analysis of the real
experimental data with large fluctuation of spike intervals, there is considerable difference
compared to the conventional regression, which only allow for the errors in the response
variable.

In part Ill, we propose more computationally efficient method, which also take into
account the correlation. We slightly modify the model in part I, and show that the modified
model is reduced to a normal regression model by using a transformation that removes the
correlation. Thus, PRC is estimated through the normal regression. The method in part
Il is tested using data generated with the noisy Morris-Lecar equations in part 1. We
compare the method in part Il with the method in part Il and conventional regression. This
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comparison shows that the method in part 11l is advantageous to the conventional regression
in terms of accuracy, while it is better than the method in part Il in terms of computation
times.

10.2 Future problems

PRCs estimated from experimental data are useful for simulating large-scale neural net-
works such as the blue brain project [Markram, 2006]. PRCs are concise representation of
the dynamical systems of neurons; mathematical neuron models in the neural networks
such as the Hodgkin-Huxley equations [Hodgkin and Huxley, 1952] and Morris-Lecar
equations [Morris and Lecar, 1981] can be replaced to PRCs.

In the methods in part Il and part Ill, we assume that the period follows a truncated
normal and a log normal distributions, respectively. In neuroscience, various distributions
of periods are considered: for example, a exponential distribution [Dayan and Abbott,
2001, Rieke and Warland, 1999], a gamma distribution [Kuffler et al., 1957, Shimokawa
and Shinomoto, 2009], an inverse Gaussian distribution [Tuckwell, 1988, Chhikara and
Folks, 1989]. Our method can be easily extended to deal with these distributions and a
nonparametric distribution estimated from periods in experiments. For example, we can use
kernel density estimation [Parzen, 1962, Silverman, 1998] as the nonparametric method.

In part 1, we introduce a “phenomenological” hypothesis that noises in the data essen-
tially correspond to fluctuation of periods, which lead to a correlation between errors in
explanatory and response variables. In future, the correlation will be studied from “theo-
retical” viewpoint ; such a study will elucidate the origin of the fluctuation of period and
replace it with a different mechanism that effectively generates a similar correlation. Such
considerations may lead to a more realistic model of errors and better algorithms based on
the model.

In part lll, we assume that the erroy follows the log normal distribution represented
by

Iny; ~ N(0,\?).

The mean ofn v; is zero; this indicates that the medianpis Z(¢;) in Eq.(8.6). Therefore,
the method in part Il are considered as a version of quantile (median) regression [Koenker,
2005] under a log normal distribution. To change the mealm of, we can estimate the
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PRCs from the data whose expectation or mode is assumed4gbe We will investigate
which the best estimator is.

As mentioned in Sec. 3.2, methods using different types of experiments are proposed,
where white noise [Ermentrout et al., 2007], correlated noise [Ota et al., 2009a], or arbitrary
input [Aonishi and Ota, 2006, Ota et al., 2009b] is injected to a neuron. Our approach in
part Il will be extended to deal with data generated with the experiments.






Appendix A

Bayesian regression with a boundary
condition

In Sec. 8.5, we briefly introduce a Bayesian framework to estimate the transformed PRC
Z(7) based on the normal regression model (8.13) under the conditions: the transformed
PRCZ(z) has the fixed boundary poitt(0) = 0, Z(z) is periodic in the domaifD, 2),
and Z(z) is smooth. A detail of the estimation is explained in this appendix. We also
explain how to estimate the hyperparameiend( using the log marginal likelihood rep-
resented by Eq.(8.17). The framework discussed in this appendix is based on a framework
proposed by Tanabe and Tanaka [1983].

Here, we explain a discrete representation of the transformedRR); whose domain
is from 0 to 27. The region0, 27) alongz-axis is divided inton + 1 successive intervals
{[#,%54);5 = 0,...,m}, wherez; = 0 andz;,,, = 27. The transformed PRC is
represented by a piecewise constant funcfi¢n) indexed withz = (zy, .. ., z,,)*, where
z = Z(z) for z € [z;,7},,). These definitions are illustrated in Fig. A.1. Note that we
do not considetz, = Z(0), %, ..., z,»)T but considet for the fixed boundary condition
Z(0) = 0.

To calculate the posterior abaubased on the Bayes’ theorem, a likelihood and a prior
aboutz is necessary. The likelihood is derived by Eq. (8.13) and the discrete representation

of the transformed PRZ (), and defined below

i 1 1 ,_ _
p(y|z,\) = WGXP {—ﬁHY - EZHQ} ; (A1)
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Figure A.1: Representation of the transformed PRG)

whereFE is then x m matrix, whosg(i, j) component is given by

1 z; ez, %
E;j = > T) . (A.2)
0 otherwise

A density function of the prior o, which describe the periodicity and the smoothness of

Z(z) is expressed as

L R Y o

p(Z|T) o< exp {—? jz%(zj_l —2Z; + zj+1)2} (A.3)
where we assume the periodic and fixed boundary conditipr= z,, andz, = z,,,1 = 0.
Then, a matrix form of the density function is expressed as

Fm 7—_2 o
plElr) = e { = DAl | (A9
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whereD is the(m + 1) x m matrix, whos€gi, j) component is given by
-2 i=j
Diy=4q1 [li—jl=1 or (i,j)=(m+11) . (A.5)
0 otherwise
The factorr controls a degree of a smoothness of the transformed PREC When7 is
larger, the estimated curve becomes smoother.

Using the Bayes’ theorem, the posterior distributioz c&n be analytically derived as

2|y, A, 7~ N(pz, Az), (A.6)

where
Hz = )\ZETS’7 (A7)
Xz = (ETE + \*7?DT'D)~". (A.8)

As a result, the estimate of the transformed PR@G) from the transformed data is gotten
by the calculation of Eq. (A.7).

In the above discussion, the tuning parameteasid 7, which is called “hyperparame-
ters”, are fixed. We estimate the hyperparameters to maximize the log marginal likelihood
defined by Eq. (8.17).

When the hyperparametexsandr are changed to new hyperparametesnda, where
a = AT, a zero point of a derivative of the log marginal likelihood with respect éan be
derived analytically. As a result, the estimate\dé expressed as

. 1
A= \/ﬁ(ll}_’—EuzlP+042\|Duz||2)- (A.9)

Substituting) to the log marginal likelihood, we only consider a maximization of a log
marginal likelihood defined below

Inp(y|@, A) = In|det A\;| — 2mIna + 2n1n A + const (A.10)
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over the hyperparametedis

In Sec. 8.6, the additional hyperparameies contained in the log marginal likelihood.
However, the above derivation is valid, and we can use Egs.(A.9) and (A.10) without mod-
ification.



Appendix B

Conductance based neuron models

B.1 Morris-Lecar equations

In this section, we explain how to generate artificial data used in part Il and Ill. Here we
employ the noisy Morris-Lecar equations [Morris and Lecar, 1981] as a source of artificial
data; this is a bivariate stochastic differential equation widely used in neural science. This
neuron model is defined by a set of equations

dv .

o = 7 9oartMoo(V) (U = Vgt ) = gicr (U = Uict) = Greak (U — Vieak) + &(2) +1(2),
dn  ne(v) —n

A AV B.1
at — Fa(v) (B.1)

where the variables andn represent the voltage of the neuron and the ratio of dpéen
channels, respectively. The functioms, (v), n.(v) and7,(v) are defined by
1+ tanh{(v — vy)/va} oo (0) = 1 + tanh{(v — v3) /v4}
2 T 2 ’
1
cosh{(v —v3)/(2v4)}

The values of parameters used in this study are as follows:+ = 1.1, gx+ = 2.0,
Greak = 0.5, ve2+ = 100, vg+ = =70, Vieax = —50, v1 = —1.0, vo = 15.0, v3 = 10.0, and
vy = 14.5.
The termé(t) represents white noise added to the voltage component, which satisfies

Moo (V)

(B.2)

To(v) =
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the relations

E()] =0,  E[E(t)E(t)] = s*0(t —¢), (B.3)
whereo denotes the Dirac’s-function. The current(t), which comes from the outside of
a neuron, is assumed to be given by

i(t) = do +iy0(t — 1), (B.4)

where the values aof and:, are8 and2 respectively.

To solve the stochastic differential equation and generate artificial data, we use the
Euler-Maruyama method [Kloeden and Platen, 2000]. The “true” PRCs shown in the fol-
lowing section are calculated by linear interpolation of points given by simulations of the
noiseless Morris-Lecar equatiofis= 0).

B.2 Hodgkin-Huxley equations

In this section, we explain the details of Hodgkin-Huxley equations, which are used for
showing the example of the PRE(¢) in Chap. 1. The Hodgkin-Huxley equations is
described as

g Inat PRV — Ut ) — gt (U — vkt ) — Greak (V — Vieak) + (1),

o =an(0)(1 = m) — (o),

dh

pn =ap(v)(1 = h) — Br(v)h,

Ccll—?z =a,(v)(1 —n) — Bu(v)n, (B.5)

where the variables, m®h andn represent the voltage of the neuron, the open probabil-
ity of the Na™ channel, and the open probability of the channels, respectively. The
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functions in Egs. (B.5) are defined by

B 0.1(25 — v) — -

(V) = exp{(25 — 0)/10} = 1 B (v) —46Xp{_ﬁ}a

an(v) = 0.07 exp {2—0} : Bu(v) = exp{(30 — v)/10} + 1’
0.01(10 — v)

(V) Ba(v) = 0.125 exp {—8”—0} .

"~ exp{(10 — v)/10} — 1’

The values of parameters used in this study are as follgys: = 120, gx+ = 36, Gleax =
0.3, Una+ = DB, v+ = —72, andux = —49.387. The termi(¢) = 8 is a constant for the
periodic activity of the neuron.
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