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Abstract

Phase response curve (PRC) describes the response of an oscillator to external perturbation;

it is useful to predict and understand synchronized dynamics of oscillators. In recent years,

neuroscientists have focused on neurons’ PRCs, and measured them experimentally. This

originates from the leading hypotheses that the synchronization of neurons has a functional

meaning in the brain.

In this thesis, we propose two statistical methods for estimating PRCs from data; it

allows for the correlation of errors in explanatory and response variables of the PRC. This

correlation is neglected in previous studies.

The first method is implemented with a replica exchange Monte Carlo technique; this

avoids local minima and enables efficient calculation of posterior averages. A test with arti-

ficial data generated by noisy Morris-Lecar equations shows that, in terms of accuracy, this

method outperforms conventional regression that ignores errors in the explanatory variable.

Experimental data from the pyramidal cells in the rat motor cortex is also analyzed; a case

is found where the result with the first method is considerably different from that obtained

by conventional regression.

The second method is developed using a transformation that mixes the variables; it

effectively removes the correlation. The computation time of this method is considerably

less than that of the first method. The same test using the noisy Morris-Lecar equations

shows that the second method also outperforms than convectional regression in terms of

accuracy.
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Overview of this thesis

This thesis is divided into 3 parts and consists of 10 chapters. Part I (Chap. 1–4) provides

the background and motivation of this thesis. In part II (Chap. 5–7), we propose a Bayesian

method for estimating PRCs, where we consider a correlation between the explanatory and

response variables. This method is implemented with replica exchange Monte Carlo meth-

ods. In part III (Chap. 8–10), we propose another statistical method, which also consider

the correlation. A transformation that removes the correlation plays an essential role in this

part. In Chap. 10, we summarize this thesis and discuss future problems.

The details of each part are as follows:

Part I In Chap. 1, we briefly discuss motivations of this thesis and concepts of syn-

chronization and phase response curve. The detail of the concept is discussed in Chap. 2.

In Chap. 3, we review methods for estimating PRCs including that proposed in my master

thesis. We discuss drawbacks of these methods, and discuss our approach of this thesis.

In Chap. 4, we briefly discuss a Bayesian framework used in this thesis, and introduce

Metropolis-Hastings methods and replica exchange Monte Carlo methods used in part II.

Part II In Chap. 5, we derive a Bayesian model, which describes a correlation be-

tween errors in PRC explanatory and response variables. In Chap. 6, we propose a Bayesian

method for estimating PRCs using replica exchange Monte Carlo methods. In Chap. 7, this

proposed method is tested with artificial data generated by noisy Morris-Lecar equations.

We compare the method with conventional regression in terms of accuracy for the data. We

also analyze experimental data from the pyramidal cells in the rat motor cortex.

Part III In Chap. 8, we propose a statistical method using a data transformation that

mixes the PRC explanatory and response variables. This method is based on a modification

of the model in part II. In Chap. 9, the method in part III is compared with the method in

II and conventional regression in terms of accuracy and computation time. In Chap. 10,

7
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summary and future problems are presented.
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Chapter 1

Introduction

1.1 Synchronization

Synchronization is observed everywhere in nature [Pikovsky et al., 2002, Strogatz, 2004].

For example, beating of the heart is a result of the synchronization of the cell activities of

the heart muscles [Reemtsen and Rueckmann, 1983]. Fireflies in an area of Southeast Asia

flash periodically and simultaneously [Smith, 1935, Buck and Buck, 1968, Ermentrout and

Rinzel, 1984], which is first reported by E. Kaempfer in 18-th century. Synchronizations

are also observed in chirps of the snowy tree crickets [Walker, 1969] and in croaking of the

neighboring two tree frogs [Aihara et al., 2007, Aihara, 2009]. We encounter synchroniza-

tion phenomena in biology [Aschoff et al., 1982, Dano et al., 1999, Elowitz and Leibler,

2000], in chemistry [Toth et al., 2006, Mikhailov and Showalter, 2006], and in physics [Si-

monet et al., 1994, Pantaleone, 2002, Eckhardt et al., 2007, Kitahata et al., 2009].

In the brain, we also observe synchronization between neurons and its result [Salinas

and Sejnowski, 2001, Varela et al., 2001]. For example, gamma frequency oscillations ob-

served in the local field potential of the mammalian olfactory bulbs is considered to be the

result of synchronous activities of the neurons [Adrian, 1950, Freeman, 1972, Schoppa,

2006]. A periodic activity of electroencephalogram is also the result of the synchroniza-

tion [Eccles, 1951, Singer, 1999, Whittingstall and Logothetis, 2009]. Epilepsy is caused

by an abnormal synchronization between neurons [Engel et al., 2007, Lehnertz et al., 2009].

In these examples, oscillatory phenomena are often observed as the result of the synchro-

nization of neurons.
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In recent years, we have directly observed the synchronization between neurons because

of the developments of systems for recoding the neural population [Nicolelis et al., 1999].

For example, activities of neurons are measured by multi electrodes systems [Thomas et al.,

1972, Taketani et al., 2006], calcium imaging [Grynkiewicz et al., 1985, Stosiek et al.,

2003], and voltage sensitive dye imaging [Cohen and Salzberg, 1978, Zochowski et al.,

2000] of the neurons. Using them, the synchronization are experimentally detected in

various areas of the brain: for example, motor cortex [Riehle et al., 1997, Baker et al.,

2001], somatosensory cortex [Steinmetz et al., 2000, Roy et al., 2001], visual cortex [Fries

et al., 2001, Freiwald et al., 2001] and basal ganglia [Goldberg et al., 2004].

Neuroscientists have been focusing functions of synchronization in the brain [Buzsáki,

2006]. This is because some hypotheses are proposed that the synchronization is essential

for understanding information processing of the brain [Malsburg and Schneider, 1986, Gray

and Singer, 1989, Fries, 2005, Engel et al., 2001, Hopfield and Brody, 2001, Aoki and

Aoyagi, 2007]. These hypotheses argue that coherence in neural activities induced by

synchronization is not a side effect but essential for understanding brain functions.

Here, we briefly explain one of the hypotheses proposed by Malsburg and Schneider

[1986] that the synchronization is closely related to the “binding problem” of cognitive

neuroscience. To understand the binding problem and the hypothesis, we present an ex-

ample where a person looks a brown disc as shown in Fig. 1.1. According to the studies

in neuroscience [Gazzaniga, 2004], it is known that the information of the shape and the

color of the disc is distributed in different regions in visual cortex of the brain. Through

an unknown information processing, the person bind the information of the shape and the

color, and recognize “This is a brown disc”. In this example, the binding problem is a

question: What is the unknown information processing? Gray and Singer [1989] try to

answer the question through the hypothesis that binding of information occurs because of

the synchronizations between the spikes of neurons in the corresponding areas. Many re-

searchers have tried to investigate the binding problem and this hypothesis from various

aspects [Revonsuo and Newman, 1999, Thiele and Stoner, 2003, Bartels and Zeki, 2006,

Dong et al., 2008].
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observation

color

shape

This is a brown disc. spikes

synchronization

recognition

Figure 1.1: A example of the binding problem and the hypothesis proposed by Malsburg and Schnei-
der [1986].

1.2 Phase response curves and coupled phase oscillators

Phase response curves

To deal with synchronization from the theoretical viewpoint, Kuramoto [1984] developed

a theory based on phase reduction from interacting nonlinear oscillators to “coupled phase

oscillators”; see also [Malkin, 1949, 1959, Winfree, 1967, 2001, Kopell and Ermentrout,

1990, Hansel et al., 1995, Ermentrout, 1996, Izhikevich, 2007, Kuramoto and Kawamura,

2010] and recent surveys [Strogatz, 2000, Acebron et al., 2005]. A key concept of this

theory is a phase response curve (PRC), which describes the response of an isolated os-

cillator to external perturbations. The PRCs are usually defined from the viewpoint of the

dynamical systems; here, we assume that the oscillator has a stable limit cycle. This means

that no closed orbit exists near the limit cycle, and it attracts all neighboring trajectories.

Here, we explain an definition of the PRCs, where we assume ad-dimensional dynam-

ical systemu(t) has a stable limit cycleC as shown in the upper-left panel of Fig. 1.2. The

procedure consists of the following three steps:

1. We define a smooth and bijective function on the limit cycleψ : C → S1, which

corresponds to a phase variable from0 to 2π of the oscillator, as shown in the upper-

left panel.
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2. Under regularity conditions [Coddington and Levinson, 1955, Guckenheimer, 1975],

the domain ofψ is appropriately1 extended to a neighborhoodN(C) of the limit

cycle; i.e. the extended functionψe : N(C) → S1 satisfiesψe|C = ψ. Thed − 1

dimensional manifoldI(ϕ) = {u ∈ N(C)|ψe(u) = ϕ} is called an isochron, which

is shown as the curve of the upper-right panel.

3. Finally, we obtain the phase response curves (PRCs)Z(ϕ) = gradu(ϕ)∈Cψ
e(u), which

is ad-dimensional periodic vector function. The right side of this equation means a

normal vector atu(ϕ) := ψ−1(ϕ) on the isochronI(ϕ). The red arrows in the lower

panel show the normal vectors.

Thed-dimensional dynamics of the oscillator can be reduced to a one-dimensional dy-

namics of the phase variableϕ where phase shifts by external perturbations are described

by the PRCs. In this thesis, we call this reduction “phase reduction of the oscillator”.

Another definition of phase response curves

Here, we explain an operational definition of the PRCs, which is more intuitive and use-

ful for understanding experiments. Its correspondence to the definition based on phase

description of the dynamical systems is explained in the next section.

We define PRCZ(ϕ) of a nonlinear oscillator from an operational viewpoint. PRC

Z(ϕ) = (Z(1)(ϕ), . . . , Z(d)(ϕ)) is a periodicd-dimensional vector function in the domain

[0, 2π), when the dynamical system of the oscillator hasd-dimensional state.

As an example of the nonlinear oscillator, we consider a neuron, whose activity is peri-

odic. The state of the neuron has various components, which correspond to the activities of

the voltage, the potassium channel, the sodium channel and so on. Here, we operationally

define the voltage component of PRCZ(ϕ); it is denoted byZ(ϕ). This is because other

components of PRC can be defined in the same manner, and the voltage component of

the PRC gives sufficient information to analyze the synchronization of neurons. The latter

reason will be explained in Sec. 2.2

We assume that the activity of a neuron is periodic and the period isT . The solid curve

in the left panel of Fig. 1.3 represents a time-series of the voltage for the neuron. We
1In an asymptotic sense (t → ∞), we can identify a pointu′ on the limit cycle as points at which values ofψe are

equal to the phase of the pointu′; the set of the identifiable points is and − 1-dimensional manifold “isochron”, which
is shown as the curves in the upper-right panel.
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ψ=π
ψ=3π/4

ψ  =0
ψ  =π/2

ψ  =π
ψ  =3π/4

C

N(C)

ψ  =0
ψ  =π/2

ψ  =π
ψ  =3π/4

N(C)
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u(φ)

u (1) u (1)

u (1)

u (2) u (2)

u (2)

I(π/2)

isochron

Step 1 Step 2

Step 3

Figure 1.2: Three steps of defining the PRCs ofd = 2 dimensional dynamical system.

consider a set of trials indexed byi. The neuron is assumed to fire at the origint = 0.

For theith trial, a perturbation is added at timet = ti. The neuron then fires again at time

t = T ′
i as shown by the dotted curve in the Fig. 1.3. We repeat this procedure a number of

times and plot the points(ϕi, Zi), i = 1, · · · , n, defined by

ϕi = 2π
ti
T
, Zi = 2π

T − T ′
i

T
. (1.1)

A smooth and periodic curveZ(ϕ) interpolating these points in the domain[0, 2π) is the

voltage component of the PRC of the neuron. The example of the curve is shown by the

solid curve in the right panel of Fig. 1.3.
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voltage

current

0 2π

0

Figure 1.3: Measurement of a phase response curve. A trial with a perturbation att = ti is illustrated
in the left panel. The solid curve indicates the voltage for the neuron without perturbation, while
the dotted curve indicates that with perturbation. Each point(ϕi, Zi) in the right panel corresponds
to a trial with timingti. PRC is defined by interpolating these points.

Connection to the definition through dynamical systems

In the previous section, we explain an operational definition of PRC of a nonlinear oscilla-

tor. Conventionally, the PRC is defined through phase reduction of the dynamical system

of the oscillator. Here, we discuss a correspondence between two definitions of the PRC.

Details of the phase reduction can be found in the book [Kuramoto, 1984].

Here, we revisit the phase reduction of the oscillator from the viewpoint of dynamical

system. Let us represent the state of the oscillator by the vectoru = (u(1), . . . , u(d)) ∈ Rm.

An equation that describes dynamics of the oscillator is assumed as

du

dt
= f(u) + p(t), (1.2)

where the vector fieldf(u) has a stable limit cycleC as shown in the left panel of Fig. 1.4.

The vectorp(t) = (p(1)(t), · · · , p(d)(t)) represents an external perturbation. Whenf(u)

satisfies regular conditions [Coddington and Levinson, 1955, Guckenheimer, 1975] and
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p(t) is sufficiently small, Eq. (1.2) is reduced to the dynamics

dϕ

dt
= ω + Z(ϕ) · p(t), (1.3)

where the natural frequencyω is 2π/T and a point onC is indicated by the phase vari-

ableϕ ∈ [0, 2π) [Kuramoto, 1984]. The smooth and periodic vector functionZ(ϕ) =

(Z(1)(ϕ), . . . , Z(d)(ϕ)) represents a response of the oscillator to the perturbationp(t). As

shown in Fig. 1.4, the dynamics of the stateu(t) on the limit cycleC is reduced to the

dynamics of the angleϕ(t) of the unit circle. This reduction from Eq.(1.2) to Eq.(1.3) is

called the phase reduction of the oscillator.

C S
1

u(t)
φ(t)

phase reduction

Figure 1.4: Phase reduction of a dynamical system that has a limit cycleC.

To show a correspondence to the operational definition, we assume that the first com-

ponentu(1) of the state is the voltage of the neuron discussed in the previous section. When

the perturbationp(t) is added to the first componentu(1) only and the functional form of

p(1)(t) is the Dirac’s delta functionδ(t − ti), Eqs. (1.2) and (1.3) correspond to the ex-

periment defining PRCZ(ϕ) from the operational viewpoint. Thus, we can identify the

functionZ(1)(ϕ) in Eq. (1.3) with a PRCZ(ϕ) defined operationally. This can be seen

by integrating Eq. (1.3) in the regions[0, ti) and [0, Ti). As a result, we derive the two

equations

ϕ(ti) = 2π
ti
T
, Z(1)(ϕ(ti)) = 2π

T − T ′
i

T
, (1.4)

which correspond the left and right equations in Eq. (1.1) respectively.
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Coupled phase oscillators

In the theory developed by Kuramoto [1984], we deal with synchronization of the dynamics

ofN interacting nonlinear oscillators. Phase reduction of each oscillator reduces theN×d-

dimensional dynamics of all oscillators to that ofN -dimensional dynamics of their phase

variables as shown in the left and middle panels of Fig. 1.5.

Coupled phase oscillators are defined through averaging of the interactions and the

PRCs in thisN -dimensional dynamical system; the average is considered as an effective

interaction called a coupling function. Coupled phase oscillators provide a concise descrip-

tion of the original interacting nonlinear oscillators. In Fig. 1.5, we illustrate the above

procedure that derives the coupled phase oscillators. Details of the procedure are explained

in Chap. 2.

phase reduction

interaction

u  (t)1

u  (t)2

u  (t)3

u  (t)4

u  (t)5

N x d -dimensional dynamics of 

interacting nonlinear oscillators

interaction

N-dimensional dynamics of 

phase variables

φ  (t)2φ  (t)1

φ  (t)3

φ  (t)4
φ  (t)5

averaging

effective interaction

N-dimensional dynamics of 

coupled phase oscillators

φ  (t)2φ  (t)1

φ  (t)3

φ  (t)4
φ  (t)5

Figure 1.5: Phase reduction from interacting nonlinear oscillators to coupled phase oscillators.

From a viewpoint of statistical physics, Kuramoto [1975] studied coupled phase oscilla-

tors (Kuramoto model) where all coupling functions are the same sine function, and natural

frequencies of the oscillators follow a Cauchy distribution. Using an analytical technique,

he found a transition from synchrony to asynchrony state of the coupled phase oscillators

whenN → ∞. Being motivated by this study, many researcher investigate synchronization

properties of various types of coupled phase oscillators and dynamics of coupled phase os-

cillators [Hansel et al., 1993, Kori and Kuramoto, 2001, Strogatz and Mirollo, 1991, Daido,

1994, 1996, Crawford, 1995, Sakaguchi et al., 1987, Hong et al., 2005, Ichinomiya, 2004,

Kuramoto and Battogtokh, 2002].
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These theoretical results refresh scientists for studying synchronization phenomena in

biology [Aihara et al., 2007, Aihara, 2009], chemistry [Kiss et al., 2002, Zhai et al., 2004]

and physics [Wiesenfeld et al., 1996, Strogatz et al., 2005]. They apply this theory to these

phenomena and obtain successful results.

1.3 Phase response curves in neuroscience

Theoretical results

Here, we briefly discuss theoretical results about PRCs of neurons in this section, and show

experimental data of the PRCs in the next section.

The PRCsZ(ϕ) of a neuron have many components. For example, Hodgkin-Huxley

equations [Hodgkin and Huxley, 1952], which is widely used for a mathematical neuron

model, are described as a four-dimensional dynamical system; the components of the state

are denoted by the activities of the voltagev, the potassium channeln, and the sodium chan-

nelm,h (the details are explained in Appendix. B). Thus, the PRCs has four corresponding

componentsZv(ϕ), Zn(ϕ), Zm(ϕ) andZh(ϕ) as shown in the upper-left, upper-right, lower-

left and lower-right panels of Fig. 1.6, respectively.

Many neuroscientists discuss only a voltage component of the PRCs of a neuron. This

is because the voltage componentZv(ϕ) of the PRCs gives sufficient information to analyze

the synchronization of neurons, as we discuss in Sec. 2.2. This means that the component

Zv(ϕ) is an essential representation of the dynamics of the neuron; hereafter, we call it the

PRCZ(ϕ) of the neuron.

From theoretical viewpoints, synchronization properties of neurons can be predicted

using their PRCsZ(ϕ). According to the study by Hansel et al. [1995], two types of PRCs

of neurons are classified:

1. Forall phasesϕ ∈ [0, 2π), the value of the PRCZ(ϕ) is positive as shown in the left

panel of Fig. 1.7; it is called a type-I PRC.

2. Fora phaseϕ ∈ [0, 2π), the value of the PRC is negative as shown in the right panel

of Fig. 1.7; it is called a type-II PRC.

They conclude that neurons which have type-II PRCs are easier to synchronize than neurons

which have type-I PRCs. This result is supported by these successive studies [Nomura and
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Figure 1.6: PRCs of Hodgkin-Huxley equations.

Aoyagi, 2005, Gaĺan et al., 2007a,b, Marella and Ermentrout, 2008, Abouzeid and Ermen-

trout, 2009]. Based on the classification Tsubo et al. [2007b] predict the synchronization

properties of neurons in rat motor cortex using the PRCs estimated from experimental data.

This analysis shows that activities of neurons in the layer II/III of the cortex are easier to

synchronize than that in the layer V.
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Figure 1.7: Type-I and Type-II PRCs.
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PRCs are useful for not only predicting but also understanding synchronization phe-

nomena in neural populations. For example, experimental results by Mainen and Sejnowski

[1995] indicates that neurons synchronize when common noises input to them. Such a

“noise induced synchronization” can be explained by the dynamical system based on the

PRCs of neurons [Teramae and Fukai, 2008, Lin et al., 2009, Garcı́a-Álvarez et al., 2009].

Experimental data

Many researchers have recently tried to estimate neuron’s PRCZ(ϕ) from experimental

data in various areas of the brain [Reyes and Fetz, 1993a,b, Dorval et al., 2001, Oprisan

et al., 2003, 2004, Galán et al., 2005, Gutkin et al., 2005, Lengyel et al., 2005, Netoff

et al., 2005a,b, Preyer and Butera, 2005, Ermentrout and Saunders, 2006, Ermentrout et al.,

2007, Goldberg et al., 2007, Mancilla et al., 2007, Tateno and Robinson, 2007, Tsubo et al.,

2007a, Ota et al., 2009a, Ota, 2010, Phoka et al., 2010]. In Fig. 1.8, we present some

examples of the data (the black or colored points) and the estimated PRCs (the black or

colored curve). The data in the upper-left and upper-right panels are measured by neurons

in rat somatosensory cortex [Tateno and Robinson, 2007] and in the abdominal ganglia of

Aplysia californica [Preyer and Butera, 2005], respectively. The data in the lower-left and

lower-right panels are measured by neurons in rat neocortex [Goldberg et al., 2007] and in

rat motor cortex [Tsubo et al., 2007a], respectively.

In these examples, a sample(x, y) is obtained by adding an external perturbation to a

neuron. The explanatory variablex correspond to timing of the perturbation. The response

variabley corresponds the difference between neuron’s period and the inter-spike interval

when adding the perturbation. Details of the experiments are explained in Chap. 3. Note

that all PRCs of Fig. 1.8 are estimated using regression analysis where errors in the response

variable are only considered.

1.4 Motivation of this thesis

As shown in these examples, noise in the PRC measurements is often very large, and so-

phisticated statistical techniques are necessary for efficient estimation. In Chap. 3, we

discuss the following two facts:

• A data point(x, y) whose valuex ≥ 2π can exist in experiments.
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Figure 1.8: Experimental data (black or colored points) and estimated PRCs (black or colored
curves).

• All data points are in the regionK = {(x, y) ∈ R2|x ≥ 0, x+ y ≤ 2π}.

To see these facts, we present experimental data measured in rat motor cortex, which are

shown as the points of Fig. 1.9; the data are provided by my coworkers Yasuhiro Tsubo.

Actually, a data point(x, y) whose valuex ≥ 2π exists, and all data points are in the region

K shown as the mesh region of Fig. 1.9. In the conventional regression analysis, the data

point whose valuex ≥ 2π are neglected, because PRC is a periodic in the region[0, 2π).

These facts can be explained by existences of the errors in the PRC explanatory vari-

ables and the correlation between errors in the explanatory and response variables, which

are discussed in Chap. 3. The role of errors in explanatory variables for regression has been

considered in the literature on statistics [Amari and Kawanabe, 1997, Cheng and Ness,
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Figure 1.9: Experimental data and the regionK = {(x, y) ∈ R2|x ≥ 0, x+ y ≤ 2π}.

1999, Berry et al., 2002, Fuller, 2006, Caroll et al., 2006]. The correlation between errors

in the explanatory and response variables is also treated in some textbooks, for example,

[Cheng and Ness, 1999], but it seems a less known subject; its appearance in the present

problem of estimating PRCs will be interesting in terms of statistical science.

This study is devoted to developing two new methods that can deal with these errors and

the correlation. In part II, we propose a Bayesian model accounting for them, and estimate

PRCs using replica exchange Monte Carlo methods [Hukushima and Nemoto, 1996, Geyer

and Thompson, 1995, Iba, 2001]. In part III, the correlation is effectively removed using a

transformation that mixes the explanatory and response variables.

Using the proposed methods, we successfully improved the estimation precision for

PRCs in examples of simulated data. The method proposed in part II is also applied to

experimental data from the pyramidal cells in rat motor cortex.

The proposed methods for PRC estimation are useful for any kind of nonlinear oscillator

that permits the phase description. Although our current interest is in applications for brain

science, the method can also be used in other fields of biology, chemistry, and physics.





Chapter 2

Theory of synchronization

Kuramoto [1984] developed a theory based on collective dynamics of interacting nonlinear

oscillators; it explains various examples of the synchronization phenomena. In this chapter,

we explain this theory and its application in neuroscience. We first explain dynamics of

coupled phase oscillators and analyze the synchronicity of two coupled phase oscillators in

Sec. 2.1. An application of the theory to neuroscience discussed in Sec. 2.2.

2.1 Coupled phase oscillators

2.1.1 Phase reduction and averaging of interacting nonlinear oscillators

Coupled phase oscillators are derived from interacting nonlinear oscillators by applying

the phase reduction and an averaging technique. Here, the dynamics of theN interacting

nonlinear oscillators are given by

duk

dt
= f0(uk) + δfk(uk) +

N∑
l=1

Vkl(uk,ul), k = 1, . . . , N, (2.1)

where thed-dimensional state of thek-th oscillator is represented by the vectoruk =

(u
(1)
k , . . . , u

(d)
k ). The vector filed of thek-th oscillator is represented byf0(uk) + δfk(uk),

which has a limit cycle whose natural frequency isωk. The effect from thek-th oscillator

to thel-th oscillator is represented byVkl(uk,ul).

Here, the vector fieldf0(u) also has a limit cycleC0 and the natural frequency isω0. The

29
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solution on the limit cycleC0 derived from the vector filedf0(u) is represented byu0(t).

Since the vector filedδfk(u) denotes a small perturbation, we obtain(ωk − ω0)/ω0 ≪ 1.

Using the phase reduction of each oscillator, Eq.(2.1) can be reduced to

dϕk

dt
= ωk + Zk(ϕk) ·

N∑
l=1

Vkl(u
∗
0(ϕk),u

∗
0(ϕl)), k = 1, . . . , N, (2.2)

whereu∗
0(θ) = u0(θ/ω0). Note that the vector filedf0(uk)+δfk(uk) satisfies the regularity

conditions and the interactionVkl(uk,ul) are sufficiently small for allk andl. As Eq. (1.2)

in the previous section, a point on the limit cycle of thek-th oscillator is denoted byϕk ∈
[0, 2π).

Here, we define a new variableψk = ϕk−ω0t for all k = 1, . . . , N . Using the variables

{ψk}, Eq. (2.2) can be written as

dψk

dt
= (ωk − ω0) + Zk(ψk + ω0t) ·

N∑
l=1

Vkl(u
∗
0(ψk + ω0t),u

∗
0(ψl + ω0t)). (2.3)

Since(ωk − ω0)/ω0 ≪ 1 and |Vkl| ≪ 1, both term in the right side of Eq. (2.3) are

sufficiently small; i.e. the dynamics ofψk is “slower” than that ofϕk. Thus, we approximate

the right side by a time average of the right side fromt = 0 to t = T . We call this procedure

“averaging” of Eq.(2.2).

Finally, we obtain the dynamics of coupled phase oscillators

dϕk

dt
= ωk +

N∑
l=1

Γkl(ϕk − ϕl), k = 1, . . . , N, (2.4)

Γkl(ϕ) =
1

2π

∫ 2π

0

Zk(θ) ·Vkl(u
∗
0(θ),u

∗
0(θ + ϕ))dθ. (2.5)

where we restore the original variables{ϕk}. The functionΓkl(ϕ) is called coupling func-

tion. Based on the coupled phase oscillator defined by Eq.(2.4), we can explore the syn-

chronization more easily than that based on the interacting nonlinear oscillators defined by

Eq.(2.1).
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2.1.2 Analysis of two coupled phase oscillators

Here, we discuss synchronization properties of two coupled phase oscillators, where the

natural frequencies are equal (ω1 = ω2) and the coupling functions between the two os-

cillators are symmetric (Γ12(ϕ) = Γ21(ϕ) = Γ(ϕ)). We illustrated this coupled phase

oscillators in Fig. 2.1.

Γ(φ − φ  )

φ  (t)1
φ  (t)2

12

Γ(φ − φ  )1 2

Figure 2.1: Two coupled phase oscillators.

The dynamics of the phase difference between the oscillators∆ϕ = ϕ1 − ϕ2 is repre-

sented by
d∆ϕ

dt
= Γ−(∆ϕ), (2.6)

whereΓ−(ϕ) = Γ12(ϕ) − Γ12(−ϕ). Equilibrium point∆ϕe satisfiesΓ−(∆ϕe) = 0. When

the derivative ofΓ−(ϕ) atϕ = ∆ϕe is negative, the equilibrium point is stable. In Eq. (2.6),

the points∆ϕ = 0 andπ are equilibrium points, because the functionΓ−(ϕ) is periodic and

odd. We show three types of the functionsΓ−(ϕ) in Fig. 2.2. The solid curve represents the

functionΓ−(ϕ), the point denotes the stable point, and the circle means the unstable point.

The upper left and upper right panels indicate a in-phase and an anti-phase synchronization

of the two oscillators, respectively. On the other hand, two oscillators are synchronized

with a phase shift in[0, 2π) in case of the lower panel. This type of synchronization is

called out-of-phase synchronization.
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- Γ  (∆φ)-

Γ  (∆φ)-

Figure 2.2: Equilibrium points and their stabilities. The solid curve indicate the functionsΓ−(ϕ) =
Γ(ϕ)−Γ(−ϕ) and its zero-crossing means the equilibrium point of Eq.(2.6). The point and the circle
shows that the equilibrium points are stable and unstable, respectively. Two symmetric connected
oscillators are synchronized at in-phase, anti-phase and out-of-phase as shown in the upper-left
panel, the upper-right panel and the lower panel, respectively.

2.2 Application in neuroscience

2.2.1 Mathematical model of neuron and synaptic transmission

To apply this theory to neuroscience, we discuss a system given by two neurons, which is

synaptically inputted from neuron B to neuron A as shown in Fig. 2.3. Here, we assume

that activities of both neurons are represented by the same nonlinear oscillator. Thus, the

connected neurons can be considered as a example of coupled phase oscillators. In this

section, we explain how to derive the coupling functionΓ(ϕ) between the two neurons.

The discussion in this section is easily extend toN synaptically connected neurons.
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Figure 2.3: Synaptic connection from neuron A to neuron B.

For simplicity, neurons are assumed to be represented by conductance-based mod-

els [Koch and Schutter, 1999], which include Hodgkin-Huxley model [Hodgkin and Hux-

ley, 1952] and Morris-Lecar model [Morris and Lecar, 1981]. The dynamics of neuron B

connected from neuron A is described by the equations for the membrane potentialv and

the activities of ionic channelsu(1), . . . , u(d−1):

c
dv

dt
=

d−1∑
i=1

gi(u
(i))(v − vi) + iext + isyn, (2.7)

du(j)

dt
= f (j)(v, u(1), . . . , u(d−1)), j = 1, . . . , d− 1, (2.8)

wherec is the membrane capacitance,gi is the voltage-dependent conductance of thei-th

ionic current, andvi is its reversal potential. The currentiext represents external inputs

besides that from neuron A. The synaptic currentisyn from neuron A is usually modeled as

isyn = −gsyn(v − vsyn)

Npre∑
j=0

α(t− tspike
j ), (2.9)

wheregsyn is the maximal synaptic conductance andvsyn is the reversal potential of the

synapse. The summation in Eq. (2.9) means the total effect of all the spikes from neuron A,
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wheretspike
j is the timing of each spike, andNpre is the number of the spikes. The function

α(t), which is called alpha function, is defined by

α(t) =

 t
τ
exp

{
− t−τ

τ

}
, t ≥ 0,

0, t < 0.
(2.10)

In Eqs.(2.7) and (2.8), the interaction between the two neurons is represented by the

synaptic currentisyn; i.e. we can assume the form of the interaction in Eq.(2.1) isV1,2 =

(isyn, 0, . . . , 0). The dynamics of coupling oscillators defined by Eq.(2.4) are affected from

the interactionV1,2 through the form of the inner productV1,2 ·Z(ϕ) in Eq.(2.5). Thus, all

components without the voltage componentZ(ϕ) of the PRCZ(ϕ) can be neglected. This

is why the voltage componentZ(ϕ) of the PRC gives sufficient information to analyze the

synchronization of neurons.

2.2.2 Coupling function between neurons

To compute the coupling functionΓ(ϕ) between the two neurons, we assume that the sum-

mation in Eq.(2.9) is approximated as

αT (t) =
−∞∑
n=0

α(t− nT ), (2.11)

because the activity of neuron A is periodic and its period isT [Vreeswijk et al., 1994].

Using these two formulas

∞∑
n=0

rn =
1

1− r
,

∞∑
n=0

nrn =
r

(1− r)2
, |r| < 1, (2.12)

the periodic functionαT (t) is expressed as

αT (t) =
1

τ
exp

{
−t− τ

τ

}
t(1− e−T/τ )− Te−T/τ

(1− e−T/τ )2
. (2.13)

The coupling function defined by Eq.(2.5) is
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Γ(ϕ) =
1

2π

∫ 2π

0

Z(θ) {−gsyn(v
∗(θ)− vsyn)α

∗
T (θ + ϕ)} dθ, (2.14)

,whereZ(θ) is the voltage component of the PRC of neuron B,v∗(θ) = v(θ/ω0), and

α∗
T (θ) = αT (θ/ω0).

Here, we show the example of the computation of the coupling functionΓ(ϕ), when

neuron B is represented by Morris-Lecar equations. Using the operational definition in

Sec. 1.2, the PRC of neuron B is derived as shown in the upper-left panel of Fig. 2.4. The

normalized voltagev∗(ϕ) and the periodic functionα∗
T (ϕ) are shown in the upper-right and

lower-left panels, respectively. By numerically integrating Eq.(2.14), the coupling function

is computed as the lower-right panel.

 0  2π
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-30

 0

 30

 0  2πφ

(φ)v*

 0

 1

 0  2πφ

α (φ)
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Figure 2.4: The voltage componentZ(ϕ) of the PRC of Morris-Lecar equations is shown as the
curve in the upper-left panel. The curves in the upper-right panel and the lower-left panel are the
normalized voltagev∗(ϕ) and the functionα∗(ϕ), respectively. The coupling functionΓ(ϕ) as
shown in the lower-right panel is computed using the Eq. (2.14).

By using the functionΓ−(ϕ) = Γ(ϕ) − Γ(−ϕ), we can analyze the synchronization
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property of the two neurons as discussed in Sec. 2.1. Here, we assume neuron A and neu-

ron B have the same PRCs and are symmetrically connected. When the coupling function

is expressed as the lower-right panel in Fig. 2.4, the functionΓ−(∆ϕ) is shown in Fig. 2.5.

The circle and the point in Fig. 2.5 represent the instability and the stability of equilib-

rium points of the phase difference∆ϕ = ϕ1 − ϕ2 between the two neurons, respectively.

Figure 2.5 shows that the two neurons are synchronized at anti-phase.

 0  π -π

Γ  (∆φ)-

∆φ

Figure 2.5: The functionΓ−(∆ϕ)

2.2.3 Type-I and Type-II phase response curves

Using the functionΓ−(ϕ), Hansel et al. [1995], et al. discuss a synchronization property

of two symmetrically connected neurons, whose periods and PRCs are the same. By their

analysis, the following two types of PRCs are classified:

• in Type I, the value of the PRCZ(ϕ) is positive for all phasesϕ ∈ [0, 2π) as shown

in the left panel of Fig. 2.6, whereas

• in Type II, the value of the PRC is negative for a phase as shown in the right panel of

Fig. 2.6.

They conclude that the two neurons arenot synchronized at in-phase, when the PRCs of

the neurons are Type I.
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Figure 2.6: The Type-I and Type-II PRCs.

2.2.4 Usages of phase response curves in neuroscience

Here, we explain why PRCs are used in neuroscience. From the theoretical viewpoint,

the dynamical system defined by Eq.(2.4) is easier for analyzing synchronizations than

that defined by Eq.(2.1). Many mathematical models of a neuron are proposed to define

the vector fieldf(u) in Eq.(1.2). For example, the leaky integrate-and-fire model [Koch

and Schutter, 1999], Hodgkin-Huxley model [Hodgkin and Huxley, 1952], and Morris-

Lecar equations [Morris and Lecar, 1981] are widely used in computational neuroscience.

However, mathematical analysis based on the models is difficult, because the vector field

f(u) is complicated (except for the leaky integrate-and-fire model). On the other hand,

the dynamical system defined by Eq.(2.4) is usually simpler than the original dynamics.

Actually, a lot of mathematical analysis is done based on Eq.(2.4) [Kuramoto, 1984, Tsubo

et al., 2007a].

Moreover, computer simulations based on Eq.(2.4) are easier than that based on Eq.(2.1)

[Galán et al., 2006], because the number of the dimension of the state(ϕ1, . . . , ϕN) in

Eq.(2.4) is1/d times of that of the state(u1, . . . ,uN) in Eq.(2.1).





Chapter 3

Estimation of phase response curves

3.1 Measurement of phase response curves

Measurements of PRCs are conventionally based on the operational definition of Sec.??.

However, in experiments, inter-spike intervals fluctuate stochastically [Mainen and Se-

jnowski, 1995] as shown in the upper-left panel of Fig. 3.1. The periodT in Eq. (1.1)

is conventionally replaced by the averageT̂ of the inter-spike intervals. The data point

(xi, yi) from the measurement is expressed as

xi = 2π
ti

T̂
, yi = 2π

T̂ − T ′
i

T̂
i = 1, . . . , n. (3.1)

The data points{(xi, yi)} in the upper-right panel are generated with noisy Morris-Lecar

equations explained in Appendix. B. The data in the lower panel are experimentally mea-

sured, which we discuss in Sec. 7.2.1. Note that the data point whose valuexi ≥ 2π exist

in the example. This is one of key observations in this chapter.

39
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Figure 3.1: The left panel shows fluctuation of the periods. Theith inter-spike interval is denoted
by Ti for i = 1, 2, 3, 4. Examples of the data is in the middle and right panels.

3.2 Previous studies

Fourier regression

In most existing studies, the PRC is estimated from the data{(xi, yi)} in Sec. 3.1 based on

the normal regression model

yi = Z(xi) + εi, εi ∼ N (0, σ2), , i = 1, . . . , n (3.2)

where the error in the response variable is represented byεi, and the variance of the error is

σ2. In the regression model, the valuexi is assumed to be less than2π, because the domain

of the PRC is[0, 2π). R. F. Gaĺan and his collaborators [Galán et al., 2005] proposed a
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representation of the PRCZ(ϕ) as the finite Fourier series

Z(ϕ) =
a0
2

+
3∑

k=1

ak cos(kϕ) + bk sin(kϕ). (3.3)

We call this method “Fourier regression” in this thesis. An example of the estimate is

shown in Fig. 3.2, where the data points whose valuexi ≥ 2π are removed.

   Fourier regression
data

Figure 3.2: An example of the estimate obtained through Fourier regression

Spline regression

For estimating PRCs, Ke. Ota and his collaborators proposed a Bayesian method [Aonishi

and Ota, 2006, Ota et al., 2009b] with a smoothing prior, where the representation of the

PRC is based on high order Fourier series. Their method can deal with data generated

with various types of experiments, where arbitrary input is injected to a neuron. When the

injection is a pulse, their method essentially corresponds to Bayesian regression based on

the normal regression model.

In this thesis, we introduce another Bayesian regression with a smoothing prior (see

Secs. 5.3 and 5.3), the framework of which is proposed by Tanabe and Tanaka [1983]. It is

convenient for our method proposed in part II. This Bayesian regression is also based on the

normal regression model. Hereafter, we call the Bayesian regression “spline regression”.

The estimate through the spline regression is shown in Fig. 3.3.
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In this thesis, “conventional regression” means the method based on the normal regres-

sion model Eq.(3.2), where no errors exist in explanatory variable. The Fourier regression

and the spline regression are the examples of the conventional regression.

 spline regression
data

Figure 3.3: An example of the estimate obtained through spline regression

Other methods for different types of data

Recently, some methods are proposed for estimating PRCs using different types of data

discussed in Sec. 3.1.

Phoka et al. [2010] proposes that supplemental data are added to the data explained in

Sec. 3.1 using inter-spike intervals before and after the input of a neuron. The drawback of

this method is that the estimated PRCs can not be a periodic function.

Ermentrout et al. [2007] and Ota et al. [2009a] propose that white and correlated noises

are injected to a neuron, respectively. These experiments can be alternatives to the conven-

tional experiments supposed in this thesis, although there are applications that would be

difficult to treat with this approach, e.g., circadian rhythm.

Oprisan et al. [2003] estimates PRCs using the limit cycle reconstructed from mem-

brane potential of a neuron. The PRCs estimated by this method correspond to PRCs

where the strength of inputs are large in the operational definition of Sec.??; however, the

strength should be small because of the definition from dynamical viewpoints in this thesis.
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3.3 Measurement error model

The existence of the data point whose valuexi ≥ 2π implies errors in the explanatory

variable. In my master thesis [Nakae, 2008], we discuss a measurement error model, where

both errors in the explanatory and response variables are considered [Amari and Kawanabe,

1997, Cheng and Ness, 1999, Berry et al., 2002, Fuller, 2006, Caroll et al., 2006]. The

measurement error model is expressed as

xi = ϕi + (εx)i, (εx)i ∼ N (0, (σ2
x)i), (3.4)

yi = Z(ϕi) + (εy)i, (εy)i ∼ N (0, σ2
y), , i = 1, . . . , n, (3.5)

where we assume that the variance(σ2
x)i is proportional toxi. The representation of the

PRCZ(ϕ) in this model is that of the spline regression. In this model, the error(εx)i in the

explanatory variable and the error(εx)i in the response variable areindependenteach other;

the errors are not correlated. Unfortunately, we did not achieve a significant improvement

over conventional regression in terms of accuracy.

3.4 Characteristics of errors in the data

In this section, we discuss two characteristics of errors in the data{(xi, yi)} as follows:

1. The data point(xi, yi) whose valuexi ≥ 2π exist.

2. All data points are in the regionK = {(x, y) ∈ R2|x ≥ 0, x+ y ≤ 2π}; as shown in

the right panel of Fig. 3.4.

Characteristic 1 is caused by a perturbation inputted at the timingti > T̂ as shown in

the left panel of Fig. 3.4. Conventional regression can not deal with such data, because the

domain of PRC is[0, 2π).

Characteristic 2 is a consequence of the two inequalities for alli = 1, . . . , n

xi = 2π
ti

T̂
≥ 0, (3.6)



44 CHAPTER 3. ESTIMATION OF PHASE RESPONSE CURVES

xi + yi = 2π
ti

T̂
+ 2π

T̂ − T ′
i

T̂
= 2π − 2π

T̂
(T ′

i − ti) ≤ 2π, (3.7)

which are derived by the definition of the data point Eq.(3.1) and the trivial two inequalities

ti ≥ 0 andti ≤ T ′
i .

The measurement error model Eqs. (3.4) and (3.5) is not sufficient; it generates the data

points outsideK, especially above the linex+ y = 2π. This is because the error(εx)i and

the error(εy)i are independent each other.

voltage

current

i i

x

y

K

Figure 3.4: Two characteristics of the data.

3.5 Our Approach

The discussion in the previous section implies that the errors in the explanatory and re-

sponse variables are not independent each other; the errors are correlated. Our motivation

in this thesis is developing a statistical method dealing with the correlation.

In part II, we propose a statistical model, which represents a correlation between the

explanatory and response variables. Based on the model, we provide a Bayesian method

for estimating the PRCs using replica exchange Monte Carlo methods. In numerical exper-

iments, we show that estimates obtained through the proposed method are more accurate

than those obtained through conventional regressions.

Unfortunately, massive parallel computing environments are necessary for actual use
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of the proposed method. Without parallel computing, computation time of the proposed

method is about3 days for a sample sizen = 100. On the other hand, computation time

with parallel computing is reduced to approximately2 hours for the same sample size. Our

motivation of part III is developing a more efficient method based on the model proposed

in part II.

In part III, the correlation is effectively removed using a transformation that mixes the

explanatory and response variables. We show that the method through the transformation

gives more accurate estimator than conventional regressions and the computation time is

considerably less than that of the method in part II.





Chapter 4

Bayesian estimation and Markov chain

Monte Carlo methods

4.1 Bayesian framework

In this section, we briefly explain a Bayesian framework used in this thesis. Suppose that

observationsy = {yi|i = 1, . . . , n} are independent and identically distributed; the distri-

bution of the observations is depend onM -dimensional variablesγ = (γ(1), . . . , γ(M)) ∈ Γ

andM ′-dimensional variablesθ ∈ Θ. The density function of the observation is repre-

sented bypγ(y|θ). Here, the variablesθ called “parameters” are assumed to be random

variables, while the variablesγ called “hyperparameters” are assumed to benot random

variables. The prior density ofθ is denoted bypγ(θ). The joint density ofy andθ is

defined as

pγ(y,θ) = pγ(y|θ)pγ(θ). (4.1)

We estimate the hyperparametersγ and the parameterθ from the observationsy. The

hyperparametersγ is estimated by an empirical Bayesian method [Good, 1965, Akaike,

1980, Titterington, 1985, MacKay, 1992] that maximizes the marginal likelihood

lγ(y) =

∫
θ∈Θ

pγ(y,θ)dθ (4.2)

overΓ. Once the estimatêγ are obtained, the posterior densitypγ̂(θ|y) is derived by the
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Bayes’ theorem

pγ̂(θ|y) =
pγ̂(y|θ)pγ̂(θ)

lγ̂(y)
. (4.3)

In the following sections, the parameterθ is estimated by the expectation ofθ over the

posterior distribution

Epos[θ] =

∫
θ∈Θ

θpγ̂(θ|y)dθ. (4.4)

The estimate is denoted bŷθ.

4.2 Markov chain Monte Carlo methods

4.2.1 Metropolis-Hastings method

The estimateŝγ andθ̂ are automatically derived using the framework in the previous sec-

tion. It is, however, difficult to give analytical representations of the marginal likelihood

in Eq. (4.2) and the posterior expectation in Eq. (4.4), when the likelihoodpγ(y|θ) and

the priorpγ(θ) are complicated. In this section, we explain a Metropolis-Hastings method

[Hastings, 1970], which is one of Markov chain Monte Carlo (MCMC) methods, for ap-

proximating the integral in Eq. (4.4). The Metropolis-Hastings (MH) method is extended

to a replica exchange Monte Carlo (REM) method [Geyer, 1991, Hukushima and Nemoto,

1996, Iba, 2001] in the next section. In Chap. 6, we will explain how to maximize the

marginal likelihood in Eq. (4.2) based on the MCMC methods.

In the MCMC methods, the posterior expectation ofθ is approximated by the average

of samples from the MCMC methods

Epos[θ] ≈
1

NMC

NMC∑
j=1

θj, (4.5)

whereNMC is the number of the samples, andθj is jth sample. These samples are gen-

erated by the following procedure called Metropolis-Hastings methods. Here, we define a

conditional distribution as a proposal distribution, whose density is represented byq(θ′|θ).

• Chooseθ1 in the regionΘ.

For j = 1, . . . , NMC−1
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• Generate a candidateθcand∼ q(θ′|θj)

• Take

θj+1 =

θcand with the probabilityr,

θj otherwise,
(4.6)

where

r = min

{
pγ(y,θ

cand)q(θcand|θj)

pγ(y,θ
j)q(θj|θcand)

, 1

}
. (4.7)

Note thatθj+1 = θj, when the candidateθcand is out of the regionΘ.

This procedure defines a Markov chain with the stationary densitypγ(θ|y) on some

convergence properties [Robert and Casella, 2004]. By simulating the Markov chain, we

can draw samples ofθ according to the posterior density. Details of the general theory of

MCMC can be found in books by [Robert and Casella, 2004, Gilks et al., 1995, MacKay,

2003, Gelman et al., 2003].

4.2.2 Replica exchange Monte Carlo method

The procedure explained in the previous section is a standard example of MCMC methods

used in Bayesian statistics. It works if the number of iterations is sufficiently large. How-

ever, the number of iterations necessary to obtain stable results using such an algorithm

can be very large in a complicated problem, which is known as “slow mixing” or “slow

relaxation”. We will encounter the problem in part II of this thesis, where we can barely

get stable results using a MH method in a range of hyperparameters.

To deal with this difficulty, we introduce the replica exchange Monte Carlo (REM)

method, which is also known as parallel tempering or Metropolis coupled MCMC [Geyer,

1991, Hukushima and Nemoto, 1996, Iba, 2001].

REM is designed to increase the efficiency of MCMC method by connecting a fast mix-

ing “easy” region to the slow mixing “difficult” region. The REM shares this idea with the

simulated annealing algorithm for optimization, but there is an important difference. While

simulated annealing is designed for obtaining an optimal solution and does not necessarily

reproduce correct averages of statistics with a given distribution, the REM is designed for

correct sampling and calculation of averages.
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To implement the REM, we prepareN copies of the systems (replicas). Each replica

corresponds to a posterior densitypγ′
k
(θk|y) parameterized byγ′k. Here,γ′k is usually a

component ofγk; i.e. we denotep(γ(1),...,γ′
k,...,γ

(M))(θk|y) aspγk(θk|y). The state of thekth

replica is represented byθk. We assume thatγ′1 ≤ γ′2 ≤ · · · ≤ γ′N , and the hyperparameters

γ′1 andγ′N correspond to the hyperparameters where the slowest and fastest mixing is ob-

served, respectively. The idea of REM is to introduce occasional swaps of the statesθk and

θk+1 of the replicas with the neighboring parametersγ′k andγ′k+1. The swap is performed

as follows:

• Choose the indexk of a replica randomly.

• Swap the pair with the probability

r = min

{
pγ′

k
(y,θk+1)pγ′

k+1
(y,θk)

pγ′
k
(y,θk)pγ′

k+1
(y,θk+1)

, 1

}
. (4.8)

The entire algorithm of REM consists of a basic MCMC algorithm applied to each replica

and the swap of replicas defined in the above.

An essential property of the swapping procedure of the REM is that it is designed for

making the simultaneous density.

p(θ1, · · · ,θN) =
N∏
k=1

pγ′
k
(θk|y) (4.9)

stationary. Through the swapping procedure, the states of the replicas in the fast mixing

region propagate to the slow mixing region, which realizes an annealing effect as shown

in Fig. 4.1. Even with such a propagation of states, we can reproduce the correct averages

at all values{γ′k} of the parameterγ′; this is because the simultaneous density Eq. (4.9)

represents the stationary distribution of the REM.
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Figure 4.1: Schematic view of replica exchange Monte Carlo. For each valueγ′k of γ′, the landscape
sampled by MCMC is shown by the curve that represents− ln pγ′

k
(·|y). A case with 3 replicas is

shown in the figure, while32 replicas are used in examples in part II.





Part II

Bayesian estimation of phase response

curves using replica exchange Monte

Carlo methods
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Chapter 5

Bayesian model of phase response curves

5.1 Introduction

As discussed in Chap. 3, a common weakness of previous studies for estimating PRCs is

that they neglect the correlation between errors in the PRC explanatory and response vari-

ables. The significance of this correlation is discussed in Sec. 5.2. This part is devoted

to developing a new method that can deal with the correlation, which is realized by a sys-

tematic use of Bayesian methods. Using the method proposed in this part, we successfully

improved the estimation accuracy for PRCs in examples of simulated data. The method is

also applied to experimental data from the pyramidal cells in rat motor cortex.

The Bayesian model proposed in this part is non-linear and non-Gaussian; a stan-

dard way to treat such a model is by using Markov chain Monte Carlo (MCMC) meth-

ods [Gilks et al., 1995, MacKay, 2003, Gelman et al., 2003, Robert and Casella, 2004]

such as Metropolis-Hastings methods in Chap. 4. For the current problem, however, a

direct application of standard MCMC methods is difficult due to the slow convergence of

MCMC. To deal with this difficulty, we introduce the replica exchange Monte Carlo (REM)

method [Geyer, 1991, Hukushima and Nemoto, 1996, Iba, 2001] discussed in Chap. 4.

REM is widely used in statistical physics and biomolecular simulations, and also applied

to statistical inference [Geyer and Thompson, 1995, Huelsenbeck and Ronquist, 2001, Jasra

et al., 2007]. Using REM, the difficulty is reduced, and we can get results within a reason-

able amount of time.

This proposed method for PRC estimation is useful for any kind of nonlinear oscillator
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that permits the phase description. Although our current interest is in applications for brain

science, the method can also be used in other fields of biology, chemistry, and physics.

The organization of this part is as follows. In this section, we propose a Bayesian model

where we consider both the correlation of errors and smoothness of PRCs. In Chap. 6,

we discuss how to estimate the PRC from data using REM. In Chap. 7, we test the pro-

posed procedure with artificial data generated using the Morris-Lecar equations [Morris

and Lecar, 1981] and data from a real experiment.

5.2 Derivation of the model

Effect of fluctuation of period T

As explained in Sec. 3.1, inter-spike intervals fluctuate stochastically in an experiment [Mainen

and Sejnowski, 1995]; this suggests that periodT itself should be considered as a random

variable.

In conventional analysis, the periodT in Eq. (1.1) is replaced by the averageT̂ of the

inter-spike intervals of the neuron, which corresponds to the expectation of the random

variableT . The resultant estimatesxi andyi of ϕi andZ(ϕi) are represented by Eq. (3.1)

xi = 2π
ti

T̂
, yi = 2π

T̂ − T ′
i

T̂
.

In most existing studies, statistical analysis, such as fitting by trigonometric or spline func-

tions, is performed after the data are normalized by Eq. (3.1) as discussed in Chap. 3.

We observed that this approach seems not optimal for our purposes. To explain the idea,

we tentatively assume that we know the timingTi of the next spike when the perturbation

does notexist. The valueTi can be regarded as a realization of the random variableT in

theith trial. We can then define ani dependent normalization as

x′i = 2π
ti
Ti
, y′i = 2π

Ti − T ′
i

Ti
, (5.1)

which leads to different estimates(x′i, y
′
i) of (ϕi, Z(ϕi)). Direct use of Eq. (5.1) is usually

impossible in analysis of a real experiment where we cannot observeTi. However, it will

give results better than those from Eq. (3.1) when we knowTi.
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To confirm this, we design the following numerical experiment. When we simulate a

mathematical neuron model with noise on a computer, we can generate pairs of “perturbed”

and “unperturbed” time-series of spikes using the same random number sequences. For the

ith pair, a perturbation is added att = ti for only the “perturbed” series. In this case, we

can regard the inter-spike interval in theith “unperturbed” series asTi, which cannot be

measured in a real experiment. Thus, we can realize the normalization with Eq. (5.1) and

compare it to the results using Eq. (3.1).

Figure 5.1 shows the results of the experiment where the data is generated by the noisy

Morris-Lecar equations (see appendix B). The values(x′i, y
′
i) of the variable normalized by

Eq. (5.1) are plotted in the right panel, while the values(xi, yi) of the variable normalized

by Eq. (3.1) are plotted in the left panel. The solid curve common to the panels corresponds

to the true PRC estimated by numerical experiments without the noise term. The points

(x′i, y
′
i) give a better approximation for the PRC, which supports our conjecture.

PRC

i i

PRC

i i

Figure 5.1: Comparison of the different normalization schemes. The left and right panels correspond
to Eqs. (3.1) and (5.1), respectively.

An important observation is that the fluctuation ofTi causes a correlation betweenxi
andyi as defined by Eq. (3.1). From Eqs. (3.1) and (5.1), the difference between(xi, yi)

and(x′i, y
′
i) is written as

xi − x′i = xiδi,

yi − y′i = (yi − 2π)δi, (5.2)
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whereδi is defined by

δi =
Ti − T̂

Ti
. (5.3)

If we assume that a point(ϕi, Z(ϕi)) on the true PRC is approximated well by the improved

estimate(x′i, y
′
i), the difference(xi − x′i, yi − y′i) can be regarded as the error of the naive

estimate(xi, yi). Equation (5.2) indicates that the errors in the explanatory variable is not

negligible and that there is a strong correlation between the errors in the explanatory and

response variables.

Figure 5.2 visualizes the correlation in the data of Fig. 5.1. Each arrow in Fig. 5.2

represents the vector(xi − x′i, yi − y′i), where the starting point of the arrow is(x′i, y
′
i) and

the endpoint is(xi, yi). The solid curve is the true PRC of the Morris-Lecar equations.

The correlation is shown by the systematic distribution of the lengths and directions of the

arrows, and is clearly seen in the data.

PRC

i i

i i

Figure 5.2: Correlated errors in an estimated PRC. The arrows showing the correlation never exceed
the broken line, which corresponds to the constraintti ≤ T ′

i .

Estimation of UnobservedTi

In real experiments, we cannot identifyTi directly. Our strategy in this part is to estimate

both Z(·) and {Ti} simultaneously. We give here a rough sketch of the concept. The

method proposed in this part will be gone over in more details in Sec. 5.3 and Chap. 6.

In the previous section, we identified the points{(x′i, y′i)} to {(ϕi, Z(ϕi))}, but there
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are actually some observational noises, i.e., we can write

x′i = ϕi + ηi,

y′i = Z(ϕi) + ξi, (5.4)

whereηi andξi are small residual terms. Hereafter, we setηi = 0. Later, in the analysis

detailed in Sec. 5.3, we will assume that{ξi} are samples from the normal distribution

N (0, θ2).

Using Eq. (5.2) and Eq. (5.4) withηi = 0, we have the relation

xi = ϕi + xiδi, (5.5)

yi = Z(ϕi) + (yi − 2π)δi + ξi. (5.6)

Note thatδi in Eqs. (5.5) and (5.6) is defined fromTi by Eq. (5.3), and the data(xi, yi) is

the output of an experiment normalized by the conventional Eq. (3.1). Given the function

Z(·) and a prior distribution ofδis, we can estimate{δi} (or equivalently{Ti}) by using

Eqs. (5.5) and (5.6). On the other hand, given a set of{δi}, Eqs. (5.5) and (5.6) are reduced

to a functional regression problem of estimatingZ(·), which can be treated by assuming

some parametric form or smoothness of the functionZ(·).
Roughly speaking, our goal of estimating bothZ(·) and{δi} simultaneously can be at-

tained by solving undetermined stochastic equations Eqs. (5.5) and (5.6) with assumptions

for Z(·) and{δi}. However, it is not so obvious as to how to formulate such a complicated

problem and solve it. In this study, a combination of a Bayesian framework and MCMC is

proposed as a systematic solution to the problem, which will be explained in the following

sections.

5.3 Bayesian model in part II

Bayesian framework

As we discussed in the previous section, our task can be summarized as a simultaneous

estimation ofZ(·) and{δi} from the data{(xi, yi)} defined by Eq. (3.1). In a Bayesian

framework, we begin with writing down the simultaneous density of relevant variables.



60 CHAPTER 5. BAYESIAN MODEL OF PHASE RESPONSE CURVES

Given δi, we can eraseϕi using the deterministic relation Eq. (5.5) and data{xi}. The

simultaneous density ofy, Z andδ is then written as

p(y, Z, δ) = p(y|Z, δ) p(Z) p(δ). (5.7)

Our Bayesian model now consists of three components; the likelihood functionp(y|Z, δ),
and the prior distributionsp(Z) andp(δ), which will be defined in Secs. 5.3 – 5.3. Once

these components are defined, the simultaneous density Eq. (5.7) is explicitly given, and

the Bayes’ theorem provides the posterior density

p(Z, δ|y) = p(y|Z, δ) p(Z) p(δ)∫ ∫
p(y|Z, δ) p(Z) p(δ) dδ dZ

(5.8)

of Z and δ. In the Bayesian framework, estimators of any quantity are derived from

Eq. (5.8). For example, we can estimate the curveZ(·) that minimizes the posterior expec-

tation of mean square loss as an average ofZ over the distribution defined by the density

Eq. (5.8).

In Eq. (5.8), the symbols
∫
· · · dδ and

∫
· · · dZ denote multiple integration and inte-

gration in a function space, respectively; the latter is approximated by finite dimensional

integrals in an actual computation. Even with such an approximation, the sampling and

calculation of averages with the posterior distribution Eq. (5.8) is far from trivial. This will

be treated by MCMC in Chap. 6.

Representation ofZ(·)

Before defining the factors on the right hand side of Eq. (5.7), let us fix a representation of

the functionZ(·). We use a naive discretization ofZ(·); this representation is convenient

for our problem, where{x′i} are not uniformly separated and should be estimated from

data.

We divide theϕ axis intom successive intervals{[ϕ∗
j , ϕ

∗
j+1), j = 1, · · · ,m} of equal

lengths. The piecewise constant curveZ(·) indexed withz = (z1, · · · , zm)T is then defined

by Z(ϕ) = zj for ϕ ∈ [ϕ∗
j , ϕ

∗
j+1). Here( )T denotes the transpose of a vector. These

definitions are illustrated in the Fig. 5.3.

When we use the discretized representation ofZ(·) defined here, it is convenient to
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m

m

Figure 5.3: Representation of the functionZ(·).

define then × m matrix functionE(v) of v = (v1, . . . , vn), whose(i, j) component is

given by

Eij(v) =

1 vi ∈ [ϕ∗
j , ϕ

∗
j+1)

0 vi /∈ [ϕ∗
j , ϕ

∗
j+1),

(5.9)

which we will use in Sec. 5.3.

Likelihood p(y|Z, δ)

Let us begin with Eq. (5.4) in Sec. 5.2. Assuming that{ξi} are independently distributed

with the normal distributionN (0, θ2), the probability densityp(y′|Z) of y′ is written as

p(y′|z) = 1√
2πθ2

exp

{
− 1

2θ2
||y′ − E(x′)z||2

}
, (5.10)

wherex′ andy′ are defined as a vector whoseith component is given byx′i and y′i in

Eq. (5.1) respectively. Herez is the discretized representation ofZ(·) and we use the

n×m matrixE(x′) defined by Eq. (5.9).

To obtain an explicit form of the densityp(y|z, δ), the stochastic variabley′ in Eq. (5.10)

should be changed toy). In addition, the variablex′ should be represented byxi andδi.
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This can be done with the following relation,

x′i =(1− δi)xi, (5.11)

y′i =(1− δi)yi + 2πδi, (5.12)

which is derived from Eq. (5.2). Using Eq. (5.11), the densityp(y|z, δ) can be expressed

in the matrix form

p(y|z, δ) =

{
n∏

i=1

(1− δi)√
2πθ2

}
exp

{
− 1

2θ2
||y′(δ)− E(x′(δ))z||2

}
, (5.13)

wherex′(δ) andy′(δ) are defined as vectors whoseith component is given byx′i(δ) =

(1 − δi)xi andy′i(δ) = (1 − δi)yi + 2πδi, respectively. Note that the variance ofyi is

computed asθ2/(1 − δi)
2, which corresponds to the normalization factor(1 − δi)/

√
2πθ2

in Eq. (5.13).

The Prior p(δ)

A simple choice for the prior distribution ofTi is a normal distribution. However, it is

reasonable to assume thatti ≤ Ti, because a neuron should fire after the perturbation is

added. Thus, it is better to assume a truncated normal distributionN[ti,∞)(T̂ , σ̂T ) as the

prior distribution ofTi, whose density is given by

p(Ti) =


1

ιi
exp

{
−(Ti − T̂ )2

2σ̂T
2

}
, ti ≤ Ti,

0, otherwise,

(5.14)

whereT̂ andσ̂T are the sample average and the sample variance of inter-spike intervals of

the neuron, respectively.

When we change the variable fromTi to δi = (Ti− T̂ )/Ti, it is transformed to the prior
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density ofδi

p(δi) =


1

ι′i

1

(1− δi)2
exp

{
− 1

2(σ̂T/T̂ )2
δ2i

(1− δi)2

}
, 1− 2π

xi
≤ δi < 1.

0, otherwise.

(5.15)

Hereιi andι′i are the normalization constants. The priorp(δ) is expressed as
∏n

i=1 p(δi)

with p(δi) defined by Eq. (5.15).

The Prior p(Z(·))

We assume that the phase response curves are smooth and periodic functions. To represent

this, a smoothness prior ofZ(·) is introduced. Using the discretized representation ofZ(·),
it is expressed as

p(z) =
1

ι(τ)
exp

{
−τ

2

2

m∑
j=1

(zj−1 − 2zj + zj+1)
2

}
, (5.16)

where we assume the periodic boundary conditionz0 = zm, zm+1 = z1. Equation (5.16)

can also be expressed in the matrix form

p(z) =
1

ι(τ)
exp

(
−τ

2

2
||Dz||2

)
, (5.17)

where them×m matrixD is defined by

D =



−2 1 0 . . . 0 0 1

1 −2 1 0 . . . 0 0

0 1 −2 1 . . . 0 0

0 0 1 −2 . . . 0 0
...

...
...

.. . . . .
...

...

0 0 0 . . . 1 −2 1

1 0 0 . . . 0 1 −2


. (5.18)

The term(zj−1−2zj+zj+1)
2 in Eq. (5.16) represents the smoothness of the curveZ(·).
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When the hyperparameterτ is larger, the estimated PRCZ(·) becomes smoother. This

prior is essentially the same as the one introduced by [Aonishi and Ota, 2006], but here we

utilize the discretized representation{zj} of the PRCZ(·) defined in Sec. 5.3. Smoothness

priors in statistical science and machine learning have been discussed in the literature,e.g.,

[Titterington, 1985, Wahba, 1990, Kitagawa and Gersch, 1996, MacKay, 1992]; regression

using discretized representation and a smoothness prior is also considered as a version of

spline regression [Wahba, 1990].

Precisely speaking, Eq. (5.16) defines an improper prior ofz, that is, we cannot give a

finite normalization constantι(τ) without some additional regularization term. However, it

is harmless for our purpose of estimatingz and hyperparameters. The latter is because we

can separate a finite part ofι(τ) that reproduces the correct dependence ofι(τ) on τ .

An alternative choice for the prior comes from the use of the fixed boundary condition

Z(0) = 0, which is a consequence of the refractory period of a neuron and biologically

plausible. In this case, the matrix form of the prior becomes

p(z) =
1

ῑ(τ)
exp

(
−τ

2

2
||D̄z||2

)
, (5.19)

whereD̄ is given by deleting the first row of the matrixD. In this case, the prior Eq. (5.19)

is proper.

Hyperparameters

The Bayesian model defined in this chapter contains the tunable parametersσ̂T , T̂ , θ, and

τ . Among them,σ̂T andT̂ can be measured in a preliminary experiment without pertur-

bations. On the other hand,θ andτ are difficult to determine from auxiliary information

and should be estimated from the present data{(xi, yi)}. In this part, these two parame-

ters are treated as “hyperparameters” of the model and estimated by an empirical Bayesian

method [Good, 1965, Akaike, 1980, Titterington, 1985, MacKay, 1992] that maximizes

their marginal likelihood

l(y|θ, τ) =
∫ ∫

pθ(y|z, δ)pτ (z)p(δ) dδdz (5.20)
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of these hyperparametersθ andτ . Here we explicitly show the dependence ofp(y|z, δ) and

p(z) on the hyperparameters aspθ(y|z, δ) andpτ (z). How to utilize the output of MCMC

for maximizing Eq. (5.20) will be discussed in the next chapter.





Chapter 6

Estimation of the model using MCMC

methods

6.1 Basic Markov chain Monte Carlo method

As explained in Sec. 5.3, once we define a Bayesian model, the posterior distribution

p(z, δ|y) is automatically derived by the Bayes’ theorem. It is, however, difficult to give

an analytical representation of posterior averages because our likelihood and prior are very

complicated. Here, we introduce a Markov chain Monte Carlo (MCMC) algorithm that

consists of alternate sampling ofz andδ.

Sampling ofz

The sampling ofz is defined by drawing a new value ofz according to the conditional

densityp(z|δ,y), which is given by the normal density with the mean

µz = (ETE + θ2τ 2DTD)−1ETy′, (6.1)

and variance

Σz =

(
1

θ2
ETE + τ 2DTD

)−1

, (6.2)

whereE andy′ are shortened forms ofE(x′(δ)) andy′(δ), respectively. The matrices

E(x′(δ)) andD and the vector functiony′(δ) used here are defined in Secs. 5.3, 5.3,
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and 5.3. Using the Cholesky decomposition of the matrixΣ−1
z , all components ofz are

generated simultaneously by a standard method (see, for example, [Gelman et al., 2003]).

Sampling ofδ

Sampling ofδ is a little difficult because the distribution ofδ conditional onz is compli-

cated and direct sampling is impossible. Here, we use the Metropolis method [Metropolis

et al., 1953], which is a version of Markov chain Monte Carlo methods. Our implementa-

tion of the Metropolis method is as follows. First, we randomly select a componentδi of δ.

A candidateδcand
i for a new value ofδi is then generated near the current valueδcurr

i of δi, as

δcand
i = δcurr

i + ϵ, whereϵ ∼ N (0, κ2) and the constantκ2 is a parameter of the algorithm.

Finally, the candidateδcand
i is accepted or rejected by comparing the ratio

q =
p(δcand

i |δ−i, z,y)

p(δcurr
i |δ−i, z,y)

(6.3)

to a uniform random numberr ∈ [0, 1) that is generated independently. Ifr ≤ q, the

candidateδcand
i is accepted as a new value ofδi. Otherwise, ifr > q, the candidate is

rejected and we keep the current valueδi = δcurr
i . Note thatδ−i in Eq. (6.3) indicates

{δj}, j ̸= i.

Here, we derive the ratioq of our Bayesian model; the right side of Eq. (6.3) is calcu-

lated as follows

p(δcand
i |δ−i, z,y)

p(δcurr
i |δ−i, z,y)

=
p(δcand

i , δ−i, z,y)

p(δcurr
i , δ−i, z,y)

=
p(y|z, δcand

i , δ−i)p(δ
cand
i , δ−i)p(z)

p(y|z, δcurr
i , δ−i)p(δ

curr
i , δ−i)p(z)

=
p(yi|z, δcand

i )p(δcand
i )

p(yi|z, δcurr
i )p(δcurr

i )
, (6.4)

where we use definition of conditional probability and joint probability of our model. Using

the likelihood defined by Eq. (5.13) and the prior ofδi defined by Eq. (5.15), the ratio is
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expressed as

q = exp{ − 1

2θ2
(y′cand

i − zcand
j )2 − 1

2σ2
T

(
δcand
i

1− δcand
i

)
− log(1− δcand

i )

+
1

2θ2
(y′curr

i − zcurr
j )2 +

1

2σ2
T

(
δcurr
i

1− δcurr
i

)
+ log(1− δcurr

i )}. (6.5)

The termsy′cand
i andy′curr

i are defined by Eq. (5.12); the termszcand
j andz′curr

j are thei-th

component of the vectorsE((δcand
i , δ−i))z andE((δcurr

i , δ−i))z, respectively.

Summary of the MCMC algorithm

The summary of the MCMC algorithm is described as follows:

1. Initializez andδ. Set a counterNMC = 0.

2. Updatez.

• Compute the Cholesky decomposition of the matrixΣ−1
z .

• Draw a new value of the random numberz according to the normal distribution

defined byµz andΣ−1
z .

3. Updateδ.

• Choosei randomly.

• Draw ϵ ∼ N (0, κ2) and define the candidate byδcand
i = δcurr

i + ϵ, whereδcurr
i is

the current value ofδi.

• Compute the ratioq by Eq. (6.3).

• Draw a uniform random numberr ∈ [0, 1).

Set the value ofδi to δcand
i if r ≤ q.

* It is possible to define a modification where this step is repeated multiple times.

4. SetNMC = NMC + 1. If NMC is smaller than the prescribed value, return to step 2.

Otherwise, terminate the procedure.

These steps define an ergodic Markov chain with stationary densityp(z, δ|y). By simu-

lating the Markov chain, we can draw samples ofz andδ according to the posterior density
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p(z, δ|y). These samples are correlated but can be used for computing posterior averages.

Details of the general theory of MCMC can be found in books by [Robert and Casella,

2004, Gilks et al., 1995, MacKay, 2003, Gelman et al., 2003]; some examples of applica-

tions of MCMC to models with errors in explanatory variables are found in [Berry et al.,

2002, Caroll et al., 2006, Gilks et al., 1995].

Example

Here, we test this basic MCMC algorithm with artificial data generated by a neuron model.

We employ the noisy Morris-Lecar equation [Morris and Lecar, 1981] as a source of artifi-

cial data; the details of the numerical experiments are discussed in appendix B.

The points in Fig. 6.1 represent the artificial data, which containn = 100 samples.

Here, the levels of the noise is0.3 (see appendix B). The estimates of mean and variance

of periods arêT = 44.2 andσ̂T = 6.4. The result of the method is compared with the true

PRC (the broken curve in Fig. 6.1) estimated with noiseless experiments.

The red curves in Fig. 6.1 shows the PRCs estimated with the basic MCMC algorithm;

each red curve is different about the initial point(Z, δ) of the method. All estimated curves

are not close to the true curve. This means that more sophisticated method is necessary for

faster convergence to the stationary density.

The details of the algorithm used in computing the above result are as follows. We set

hyperparametersθ ≈ 0.09 andτ ≈ 90. The numberm of the pieces of the discretized

curveZ(·) is 100 and the periodic boundary condition is assumed. The numberNMC of

iterations is106. The varianceκk of the proposal distribution is0.01.

6.2 Extension to replica exchange methods

Transformation of hyperparameters

The procedure explained in the previous section is a standard example of MCMC methods

used in Bayesian statistics. It works if the number of iterations is sufficiently large. How-

ever, the number of iterations necessary to obtain stable results using such an algorithm

can be very large in a complicated problem, which is known as “slow mixing” or “slow re-

laxation”. We found that our problem of estimating PRCs from data with correlated errors
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basic MCMC

PRC

data

Figure 6.1: Result of applying the basic MCMC algorithm using artificial data. The estimated PRCs
(red curves) are different about the initial points(Z, δ) of the method.

gives a typical example of slow mixing; this is partially supported by the example of the

previous section. In a range of hyperparameters, we can barely get stable results using a

naive MCMC algorithm.

To deal with this difficulty, we use the replica exchange Monte Carlo (REM) method

discussed in Sec. 4.2.2, where we discussed a generic algorithm. When REM is used in

statistical physics, the parameterγ′ in the generic algorithm usually corresponds to the

temperature of a system. How can we choose the parameterγ′ in the present example of

posterior sampling?

A basic observation is that the values of hyperparametersθ2 and1/τ 2 become larger,

the variance of the posterior also becomes larger. Keeping this in mind, we transform the

set(θ, τ) of hyperparameters to(α, β) with

α = θτ, β = θ/τ (6.6)

Here, the hyperparameterβ corresponds to the temperature in statistical physics. In a

Gaussian model where the errors in the explanatory variable is ignored [Ota et al., 2009b,

Aonishi and Ota, 2006],α determines the shape of the estimated curve whileβ determines
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the variance around the curve. In the proposed model, however, both hyperparameters

affects the estimated PRC.

Then, the hyperparameterβ is the natural choice for the role ofγ′; the densitypγ′
k
(θk|y)

in the generic algorithm is replaced withpβk
(z, δ|y), which defines the REM for the pro-

posed model.

Replica exchange Monte Carlo

To implement the REM, we prepareN copies of the systems (replicas). Each replica cor-

responds to a posterior densitypβk
(zk, δk|y) parameterized byβk, whereβ1 ≤ β2 ≤ · · · ≤

βN . We assume that the hyperparametersβ1 andβN correspond to the hyperparameters

where the slowest and fastest mixing is observed, respectively. The REM is implemented

with occasional swaps of the states(zk, δk) and(zk+1, δk+1) of the replicas with the neigh-

boring parametersβk andβk+1. The swap is performed as follows:

• Choose the indexk of a replica randomly.

• Swap the pair with the probability

r = min

{
pβk

(y, zk+1, δk+1)pβk+1
(y, zk, δk)

pβk
(y, zk, δk)pβk+1

(y, zk+1, δk+1)
, 1

}
. (6.7)

The entire algorithm of REM consists of a basic MCMC algorithm applied to each replica

and the swap of replicas defined in Sec. 6.1. The details of the REM are explained in

Chap. 4

Here, we derive the probabilityr of our Bayesian model under a value of hyperparam-

eterα. Using Eq. (5.7), the ratio in Eq. (6.7) is calculated as follows:

pβk
(y, zk+1, δk+1)pβk+1

(y, zk, δk)

pβk
(y, zk, δk)pβk+1

(y, zk+1, δk+1)
=
pβk

(y, zk+1|δk+1)p(δk+1)pβk+1
(y, zk|δk)p(δk)

pβk
(y, zk|δk)p(δk)pβk+1

(y, zk+1|δk+1)p(δk+1)

=
pβk

(y, zk+1|δk+1)pβk+1
(y, zk|δk)

pβk
(y, zk|δk)pβk+1

(y, zk+1|δk+1)
, (6.8)
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where we use the independence between the priorp(δ) and the hyperparameterβ = θτ .

The probabilitypβ(y, z|δ) are expressed as

pβ(y, z|δ) = pβ(y|z, δ)pβ(z) ∝ exp

{
− 1

2β
H(z, δ)

}
, (6.9)

where the functionH(z,δ) is defined as

H(z, δ) = α||y′(δ)− E(δ)z||2 + 1

α
||Dz||2. (6.10)

Using this expression ofpβ(y, z|δ), we obtain the following probability:

r = min

{
exp

{
−1

2

(
1

βk+1

− 1

βk

)
(H(zk, δk)−H(zk+1, δk+1))

}
, 1

}
. (6.11)

Design of replica exchange Monte Carlo

To design an efficient REM, the varianceκ2 of the proposal distribution used in the basic

algorithm should depend on the indexk of replicas. In Chap. 7, we use the following

formula

κk =
κN − κ1
N − 1

× (k − 1) + κ1, (6.12)

for the valueκk of κ in the kth replica. This formula gives larger value ofκ whenβ is

large. The constantsκ1 andκN are determined to keep the acceptance ratios in the basic

algorithm within a reasonable range; this is usually around∼ 50%.

Using REM with these remarks, the mixing of MCMC for large or middle values of

α becomes fast enough for the practical use of the method proposed in this part. It is,

however, still difficult to treat the problem with smaller value ofα, where MCMC does

not mix well. Here, we employ the following trick that realizes a kind of annealing by

decreasingα: First we run MCMC with the largest value ofα, using REM that consists of

parallel runs with different values ofβ. Then, we decrease the value ofα sequentially using

the same set ofβ, where each run of MCMC is initialized by a sample from the previous

run with a largerα.

Although an artificial choice of initial conditions in this scheme is not fully justified

from the spirit of MCMC, this method gives reasonable results in the following sections

and is considered as a practical approach to the problem. A better founded solution may be



74 CHAPTER 6. ESTIMATION OF THE MODEL USING MCMC METHODS

obtained with some improved version of REM, which is left for future studies.

6.3 Estimation of hyperparameters

Estimation using log-derivatives of marginal likelihood

Here, we explain how to utilize the output of MCMC to estimate hyperparameters. In

an empirical Bayes procedure, hyperparameters are estimated through a maximization of

the marginal likelihood Eq. (5.20). The marginal likelihood cannot be directly computed

with samples from the posterior distributionp(z, δ|y). Log-derivatives of the marginal

likelihood by hyperparameters, however, can be computed using MCMC, which is usually

enough when searching for hyperparameters that maximize the marginal likelihood.

Taking log-derivatives of Eq. (5.20), we obtain

∂ ln l(y|θ, τ)
∂(τ 2)

= −1

2
Epos[||Dz||2] + m

2τ 2
, (6.13)

∂ ln l(y|θ, τ)
∂(1/θ2)

= −1

2
Epos[ ||y′(δ)− E(x′(δ))z ||2] + nθ2

2
, (6.14)

whereEpos[f ] denotes the posterior average of a functionf of z andδ as

Epos[f ] =

∫ ∫
f(z, δ)p(z, δ|y) dzdδ. (6.15)

Thus, computing the log-derivatives of the marginal likelihood is reduced to calculating the

posterior averages, which can be treated by MCMC.

Log-derivatives of marginal likelihood with respect toα and β

As discussed in the previous section, it is natural to use the hyperparametersα andβ defined

by Eq. (6.6), instead ofθ andτ . To maximize the marginal likelihood with respect toα and

β, we can use the relations

∂ ln l(y|θ, τ)
∂α

=
1

β

∂ ln l(y|θ, τ)
∂(τ 2)

− 1

α2β

∂ ln l(y|θ, τ)
∂(1/θ2)

, (6.16)
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∂ ln l(y|θ, τ)
∂β

= − α

β2

∂ ln l(y|θ, τ)
∂(τ 2)

− 1

αβ2

∂ ln l(y|θ, τ)
∂(1/θ2)

. (6.17)

An example of estimation of hyperparameters using Eqs. (6.13) – (6.17) will be shown in

Sec. 7.1.1.





Chapter 7

Numerical experiments and analysis of

experimental data

7.1 Numerical experiments

7.1.1 Examples

Designs of numerical experiments

In this section, we test the proposed method with artificial data generated by a neuron

model. Here we employ the noisy Morris-Lecar equation [Morris and Lecar, 1981] as a

source of artificial data; this is a bivariate stochastic differential equation widely used in

neural science. The details of the numerical experiments are discussed in appendix B.

we show two examples of the estimation of PRC from sets of artificial data through the

method in this part. The result of the method in this part is compared with the true PRC

estimated with noiseless experiments.

The result is also compared with that of conventional Bayesian regression [Tanabe and

Tanaka, 1983] with a smoothness prior, where the errors in the explanatory variable is

ignored. This algorithm employs the same representation and smoothness prior ofZ(·),
but assumes the normal regression model (Eq.(3.2))

yi = Z(xi) + εi, εi ∼ N (0, σ2).

It is similar to that proposed by the regression method [Ota et al., 2009b, Aonishi and

77
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Ota, 2006], as discussed in Chap. 3. We call this algorithm as “spline regression”. We

also compare the method in part II with Fourier regression [Galán et al., 2005], which is

discussed in Chap. 3. In this thesis, the spline regression and the Fourier regression are

called conventional regression.

To apply the conventional regression, the valuexi of the explanatory variable should

satisfy the relationxi < 2π. This means that we should discard samples withxi ≥ 2π

when we apply the conventional regression. In the following experiments using artificial

data, we remove such samples from the input of the conventional regression; to keep the

number of samples and make the comparison fair, an equal number of new samples that

satisfyingxi < 2π is generated and added to the input data.

The sets of artificial data used here containn = 100 samples, where the timing of

perturbation{ti}ni=1 is randomly chosen. The levels of the noise are0.3 (high) and0.1

(low); details are explained in appendix B). The estimates of mean and variance of periods

areT̂ = 44.2 andσ̂T = 6.4 for the high noise levels = 0.3, andT̂ = 45.3 andσ̂T = 2.3

for the low noise levels = 0.1, respectively. These are estimated with a simulation with

the noisy neuron model where we do not input perturbations.

Estimation of hyperparameters

Let us start with estimation of the hyperparametersα and β. First, the log-derivative

Eq. (6.17) of the marginal likelihood with respect toβ is plotted with a set of values of

β, as shown in the left panel of Fig. 7.1 for the high noise levels = 0.3 and Fig. 7.2 for the

low noise levels = 0.1. Each curve corresponds to a value ofα in a given set{αl}. Then,

we estimate the zero crossing of each curve, which we denoteβ∗(αl). Next, for each value

of β∗(αl), we plot the log-derivative Eq. (6.16) of the marginal likelihood with respect toα

for the values ofα ∈ {αl}, as shown in the right panel of Fig. 7.1 and Fig. 7.2. The zero

crossing of this curve gives the estimateα̂ of α. The estimatêβ of β is also obtained as

β∗(α̂). In the right panel of Fig. 7.1, the zero crossing is located nearα = 7, and we choose

α̂ = 8 as a rough estimate ofα among the five values that we have tested here. In the right

panel of Fig. 7.2, the zero crossing of the curve is located atα = 4.5. The values ofβ for

the low and high noise levels are estimated as the sameβ̂ = β∗(8) ≃ 0.00074.

In the above procedure, we assume that the zero point is unique. It is possible to intro-

duce more sophisticated iterative procedures to find zeros, a rough estimate ofα andβ is
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usually enough for the purpose estimating the PRCZ(·).

0

Figure 7.1: Log derivatives of marginal likelihood for artificial data (high noise levels = 0.3) with
respect to hyperparametersα andβ. Details are explained in the text. The five curves in the left
panel correspond toα = 1, 4.5, 8, 11.5, and15.

 0  0.01  0.02
-4x10

4x10

Figure 7.2: Log derivatives of marginal likelihood for artificial data (high noise levels = 0.1) with
respect to hyperparametersα andβ. Details are explained in the text. The five curves in the left
panel correspond toα = 1, 4.5, 8, 11.5, and15.

Estimation of PRCs

The upper left panels of Fig. 7.3 for the high noise levels = 0.3 and Fig. 7.4 for the low

noise levels = 0.1 show the PRCs estimated with the method in this part using the hyper-

parameterŝα andβ̂ as defined above. For comparison, the upper right panels of Fig. 7.3

and Fig. 7.4 show the PRCs estimated with the spline regression. The hyperparameters



80CHAPTER 7. NUMERICAL EXPERIMENTS AND ANALYSIS OF EXPERIMENTAL DATA

of the spline regression are also determined by maximizing the corresponding marginal

likelihood, whereθ2 is analytically optimized and̂α = 40 is found by a grid search (see

Appendix. A). The result with the Fourier regression is also shown in the lower panel; the

dataset used in the Fourier regression are the same as that used in the spline regression.

method in part II

PRC

data (high noise)
PRC

 spline regression
data (high noise)

PRC

   Fourier regression
data (high noise)

Figure 7.3: Comparison between the method in this part and conventional methods using artificial
data (high noise levels = 0.3). In this example, the data point(xi, yi) whose valuexi ≥ 2π does
not exist. The solid curve corresponds to the PRC estimated from samples shown by black dots, and
the broken curve shows the true PRC estimated with noiseless simulation. The upper left and upper
right panels correspond to the method in this part and the spline regression, respectively; the result
with the Fourier regression is also shown in the lower panel. Differences in the samples shown in
the upper left and upper right (or lower) panels are explained in the text.

In each panel of Fig. 7.3 and Fig. 7.4, a solid curve shows the estimate, while a broken

curve shows the true PRC. In Fig. 7.3 (high noise level), the solid curve is closer to the

broken curve in the upper left panels than the one in the upper right panel. On the other

hand, in Fig. 7.4 (low noise level), all solid curves are close to the broken curves. These

suggest that the method in this part outperforms the spline regression for this set of data for
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method in part II

PRC

data (low noise)

spline regression

PRC

data (low noise)

Fourier regression

PRC

data (low noise)

Figure 7.4: Comparison between the method in this part and conventional methods using artificial
data (low noise levels = 0.1). In this example, the data points(xi, yi) whose valuesxi ≥ 2π exist;
we remove the data points in case of the spline and Fourier regressions. The details are explained in
the text.

the high noise levels = 0.3. The method is also better than the Fourier regression in this

example.

The details of the algorithm used in computing the above result are as follows. The

numberm of the pieces of the discretized curveZ(·) is 100 and the periodic boundary

condition is assumed. The number of replicasN used in REM is 32, and the numberNMC

of iterations per replica is106. We try to exchange neighboring pairs of replicas once within

20 iterations. The varianceκk of the proposal distribution in thekth replica is defined by

Eq. (6.12), whereκ1 = 0.01 andκN = 0.07; this is independent ofα.

We make use of the advantage of REM in parallel computation. Computation time on 32

cores(16CPU) of AMD Opteron 252(2.6GHz) is about 6 hours for each dataset (N = 100),

including hyperparameter search on a5 × 32 grid on the(α, β) plane; it reduces to about

1/3 on faster hardware with 32 cores(4CPU) of Intel Xeon X5570(2.93GHz). Intel C++

compiler, MPI and LAPACK are used for the computation.
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7.1.2 Statistical comparison using averageL2 error

In Sec. 7.1.1, we apply the method in this part to two sets of artificial data. Here, we con-

sider sets of simulation data and compare the method in this part with the spline regression

and the Fourier regression using the averageL2 error defined by

ND∑
w=1

(∫ 2π

0

(Z(ϕ)− Z [w](ϕ))2dϕ

)1/2

, (7.1)

where the number of the datasets isND and the curve estimated from thewth dataset is

denoted byZ [w](ϕ).

We consider seven sets of data with different levels of external noises = 0.1, 0.15,

0.2, 0.25, 0.3, 0.35, and0.4. For each value ofs, we consider the average overND = 100

sets of artificial data for the method in this part, andND = 500 sets of artificial data for

the spline regression and the Fourier regression, respectively. Each set is generated by a

simulation with a different random number sequence. The estimates ofT̂ andσ̂T are shown

in Table 7.1 with the levels of noise.

Table 7.1:T̂ andσ̂T from artificial data.

The hyperparametersα andβ are estimated from each set of data by the method ex-

plained in the previous sections. The parameters used for the method are the same as those

defined in the previous subsection, except that the estimated value ofα is considerably

large ats = 0.35, 0.4 and search in a larger hyperparameter space is required in the case.

Figure 7.5 shows the averageL2 errors for the method in this part (solid curve), for the

spline regression (broken curve), and for the Fourier regression (chain curve); the horizontal

axis corresponds to the normalized standard errorσ̂T/T̂ , which gives a measure of the

fluctuation of inter-spike intervals. The figure shows that the method in this part produces
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better results in the region0.15 ≤ σ̂T/T̂ .

 0.05

 0.1

 0.15

 0.2

 0.25

 0.05  0.1  0.15

 method in part II

spline regression

Fourier regression

L  error
2

Figure 7.5: Comparison of the averageL2 errors.

7.1.3 Detail analysis withL2 errors

Scatter plots

In this section, we present a detailed comparison between the method in part II and the

spline or Fourier regression using theL2 errors. To see raw data of theL2 errors in the

previous section, scatter plots of theL2 errors are presented in Fig. 7.6 and Fig 7.7. The

horizontal axes in the panels correspond to theL2 errors by the method in part II; the

vertical axes in the panels of Fig. 7.6 and Fig. 7.7 correspond to theL2 errors by the spline

regression and Fourier regression, respectively. The panels in each figure correspond to the

noise levelss = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and0.4, respectively. The point in the panels

represents a set of artificial data; we plotND = 100 points obtained by the datasets of a

noise level in each panel.
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Figure 7.6: Scatter plots ofL2 errors by the method in part II (horizontal axis) and the spline
regression (vertical axis).



7.1. NUMERICAL EXPERIMENTS 85

 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5

L error by Fourier regression
2

L error by method in part II2

  = 0.05
 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5

L error by Fourier regression
2

L error by method in part II2

  = 0.07
 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5

L error by Fourier regression
2

L error by method in part II2

  = 0.11

 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5

L error by Fourier regression
2

L error by method in part II2

  = 0.12
 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5

L error by Fourier regression
2

L error by method in part II2

  = 0.15
 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5

L error by Fourier regression
2

L error by method in part II2

  = 0.17

 0.1

 0.2

 0.3

 0.4

 0.5

 0.1  0.2  0.3  0.4  0.5

L error by Fourier regression
2

L error by method in part II2

  = 0.18

Figure 7.7: Scatter plots ofL2 errors by the method in part II (horizontal axis) and the Fourier
regression (vertical axis).
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Win rates

To compare the differences of theL2 accuracy, we estimate win rates of the method in part

II to conventional regressions using the datasets. Here, we define{Yw}ND
w=1 as

Yw =

 1 the method in part II outperforms another method forw-th dataset,

0 otherwise,
(7.2)

and assume thatYw follows an i.i.d. binomial distribution. The win rate corresponds to

the population ratep of the binomial distribution where the estimatep̂ is
∑

w=1 Yw/ND.

Using the normal approximation, we calculate the 95 % confidence interval ofp̂ as [p̂ −
1.96

√
p̂(1− p̂)/ND, p̂ + 1.96

√
p̂(1− p̂)/ND]. Note that the approximation is valid when

p is near0.5 andND is sufficently large.

In Fig. 7.8, we present the estimates of the win rates and the confidence intervals with

respect to the normalized varianceσ̂T/T̂ . The left and right panels represent the win rates

of the method in part II to the spline and Fourier regressions, respectively.

The left panel shows that the method in part II outperforms the spline regressions sig-

nificantly above chance for̂σT/T̂ ≥ 0.17; the right panel shows that the method in part II

outperforms Fourier regressions significantly above chance except forσ̂T/T̂ = 0.05 and

0.11. Whenσ̂T/T̂ is 0.05 in the left and right panels, the win ratep is smaller than0.5.

This is possibly because of rough estimation of the hyperparametersα andβ in the method

in part II.

Box and whisker plots

Here, we show the difference between the method in part II and the conventional meth-

ods in more detail. We show box and whisker plots [Tukey, 1977] of differences from

theL2 errors by the spline regression to those by the method in part II in the left panel of

Fig. 7.9. The vertical and horizontal axes correspond to the difference and the normalized

varianceσ̂T/T̂ in the previous section, respectively. Each box and whisker plot represents

five-number summaries of the differences: sample minimum, lower quantile, median, up-

per quantile, and sample maximum. Note that lower and upper edges of the box do not

represent confidence interval of the median but lower and upper quantiles, respectively.
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method in part II v.s. spline regression
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Figure 7.8: Estimates of the win rates of the method in part II to the spline (left panel) and Fourier
(right panel) regressions with respect toσ̂T /T̂ . The error bars represent the 95 % confidence inter-
vals by normal approximation.

When the median of the differences is above zero, the method in part II outperforms the

spline regression for over half of the datasets. The box and whisker plots in the left panel

of Fig. 7.9 suggest it when̂σT/T̂ ≥ 0.15; this result is consistent with the result through

the averageL2 error in the previous section.

The right panel of Fig. 7.9 represents box and whisker plots of differences from theL2

errors by Fourier regression to those by the method in part II. This panel means that the

method in part II outperforms Fourier regression for over half of the datasets except for

σ̂T/T̂ = 0.05. The quantiles of the box and whisker plots suggest that the method in part

II outperforms Fourier regression for about75 %of the datasets when̂σT/T̂ ≥ 0.15

7.2 Analysis of experimental data

7.2.1 Experimental data

We test the method with experimental data recorded from the pyramidal cells of in rat

motor cortex. Two sets of data, hereafter denoted by A and B, are obtained using whole-

cell patch-clamp recordings at the somata of layer-5 pyramidal neurons in rat motor cortex.

Details of the experiments are found in the paper [Tsubo et al., 2007a]. The parametersT̂
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Figure 7.9: Box and whisker plots of the differences ofL2 errors with respect tôσT /T̂ . The
differences from the spline and Fourier regressions to the method in part II are presented in the
left and right panels, respectively. The line, upper edge and lower edge in each box represent the
median, upper quantile and lower quantile, respectively. The upper and lower edges of each whisker
represent the sample minimum and maximum, respectively.

andσ̂T estimated from the experimental data are shown in Table 7.2 as well as the number

n of samples.

Table 7.2:T̂ andσ̂T from experimental data.

We use parameters for the algorithm that are essentially the same as those used in

Sec. 7.1.1. In this analysis of experimental data, however, we add the conditionZ(0) = 0

and use the prior Eq. (5.19) instead of Eq. (5.17), for both the method in this part and the

spline regression. Unlike as in the case of artificial data, the pointsxi ≥ 2π are merely

removed when the spline regression or the Fourier regression is applied.

The hyperparametersα andβ are estimated in the same manner as that explained in

Sec. 7.1.1. In the left panels of Fig. 7.10, the log-derivative Eq. (6.17) of the marginal

likelihood with respect toβ is plotted with the values ofβ. Each curve corresponds to a



7.2. ANALYSIS OF EXPERIMENTAL DATA 89

value ofα. The zero crossinĝβ is almost independent ofα in the range of1 ≤ α ≤ 15

in both datasets. Fixing the value ofβ to β̂, we then plot the log-derivative Eq. (6.16) of

the marginal likelihood with respect toα as shown in the right panels of Fig. 7.10. The

resultant estimates of hyperparameters areα̂ = 4.5 and β̂ = 0.00058 for dataset A and

α̂ = 4.5 andβ̂ = 0.00074 for dataset B. The hyperparameters of the spline regression are

also estimated by maximizing marginal likelihood.

Figure 7.10: Log derivatives of the marginal likelihood with respect to hyperparametersα andβ
(experimental data). Details are explained in the text. The five curves in the left panel correspond
to α = 1, 4.5, 8, 11.5, and15. The upper and lower panels correspond to the datasets A and B,
respectively.

The PRCs estimated with these hyperparameters are shown in Fig. 7.11. The left and

right panels of Fig. 7.11 correspond to the datasets A and B, respectively. In each panel,

the solid curve shows the PRC estimated with the method in this part, and the broken curve

shows the PRC estimated with the spline regression or the Fourier regression. Samples

in the datasets are shown by black dots. Computation time on 32cores(16CPU) of AMD
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Opteron 252(2.6GHz) is about 49 hours for each dataset (N = 435), including hyperpa-

rameter search on the(α, β) plane.

method in part II
spline regression

dataset A

method in part II
 spline regression

dataset B

method in part II
Fourier regression

dataset A

method in part II

Fourier regression

dataset B

Figure 7.11: Comparison between the method in this part and conventional methods using exper-
imental data. The upper panels show comparison to the spline regression, while the lower panels
show comparison to the Fourier regression. The left and right panels correspond to the datasets A
and B, respectively. In each panel, the solid curve shows the result of the method in this part and
the broken curve shows the result of a conventional method; both are almost overlapped in the left
panels. The black dots are samples.

The results shown in the left panels of Fig. 7.11 indicate that there is no significant

improvement with the method in this part for dataset A, where the value ofσ̂T/T̂ is small.

On the other hand, in the right panels, where the value ofσ̂T/T̂ is larger, considerable

differences are observed. This result implies the utility of the method in this part when the

normalized variancêσT/T̂ is large.



7.2. ANALYSIS OF EXPERIMENTAL DATA 91

7.2.2 Analysis of synchronization property

Finally, we compare synchronization properties based on the estimates of the PRC from

the experimental data. As discussed in Sec. 2.2, we analyze a system of two symmetrically

connected neurons whose PRCs are the same. Using the functionΓ−(ϕ) = Γ(ϕ)−Γ(−ϕ),
we can determine stabilities of in-phase, anti-phase and out-of-phase synchronization be-

tween the two neurons. The coupling functionΓ(ϕ) is defined by Eq. (2.14)

Γ(ϕ) =
1

2π

∫ 2π

0

Ẑ(θ) {−gsyn(v̂
∗(θ)− vsyn)α

∗
T (θ + ϕ)} dθ,

where the estimate of the PRC of the neuron isẐ(θ), the estimate of the normalized activity

of the voltage iŝv∗(θ), and the normalized effect of spikes from another neuron isα∗
T (θ) =

αT (θ/ω0) defined by Eq. (2.13). Here, we setgsyn = 1, vsyn = 0, andτ = 2 in the function

α∗
T (θ) because we assume the excitatory connection between the two neurons. We estimate

the normalized voltagev∗(θ) by averaging time series of the voltage in inter-spike intervals,

whose periods are normalized from0 to 2π. The normalized voltages for dataset A and B

are shown in the left and right panel in Fig. 7.12, respectively.

-30

 0

 30

 0 2π

 dataset A

(φ)v*

φ

-30

 0

 30

 0 2π

 dataset B

(φ)v*

φ

Figure 7.12: Normalized voltagev∗(ϕ) estimated from the time series of the voltage in experiments.
The left and right panel represents the normalized voltage of the neuron for datasetA and dataset
B, respectively.

For dataset A, we show the functionsΓ−(∆ϕ) computed from the estimates through

the method proposed in part II, the spline regression, and Fourier regression in the upper-

left, upper-right and lower panels of Fig. 7.13, respectively. The points and the circles
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mean the stabilities and the instabilities of equilibrium points of the phase difference∆ϕ =

ϕ1 − ϕ2 between the two neurons, respectively. Figure. 7.13 shows that two neurons are

synchronized at out-of-phase for all these estimates. This result is consistent with the fact

that these estimates of the PRC for dataset A are considered as Type-I PRCs.

For dataset B, we show the functionsΓ−(∆ϕ) computed from these estimates of the

PRC in Fig. 7.14. The points and the circles also represent the stabilities and the instabili-

ties. The upper-left panel, which corresponds to the estimate through the method in part II,

shows that the two neurons are synchronized at out-of-phase. This result is also consistent

with the facts that the estimates through the method in part II is considered as the Type-I

PRC. The upper-right panel, which corresponds to the estimate through the spline regres-

sion, shows that the two neurons are synchronized at in-phase. The lower panel, which

corresponds to the estimate through Fourier regression, shows that the two neurons are

synchronized at out-of-phase. It seems strange that synchronization properties computed

form the estimates are different, although the estimates of the spline and Fourier regression

are close. This is because we do not assumeZ(0) = 0 in the Fourier regression; on the

other hand, we assumeZ(0) = 0 in the spline regression and the proposed method.
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Figure 7.13: The functionΓ−(ϕ) for analyzing synchronicity of two symmetric connected neurons.
The upper-left, upper-right and lower panels represents the function obtained through the PRCs
estimated by Fourier regression, spline regression and the method in part II for dataset A. The point
and the circle shows that the equilibrium points are stable and unstable.
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Figure 7.14: The functionΓ−(ϕ) for analyzing synchronicity of two symmetric connected neurons.
The upper-left, upper-right and lower panels represents the function obtained through the PRCs
estimated by Fourier regression, spline regression and the method in part II for dataset B. The point
and the circle shows that the equilibrium points are stable and unstable.



Part III

Statistical estimation of phase response

curves using data transformation
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Chapter 8

Estimation using data transformation

8.1 Introduction

The method proposed in part II deals with a correlation between errors in the PRC ex-

planatory and response variables. The correlation is neglected in the previous studies, as

discussed in Chap. 3. We showed that the method in part II gives a better accuracy than the

conventional regression for the data generated by the Morris-Lecar equations.

However, parallel computing environments are necessary for actual use of the method in

part II. Without parallel computing, computation time of the method will be about32×2 =

64 hours for the example (n = 100) in Sec. 7.1.1, because computation time on32 cores

is approximately2 hours. Even now, everyone can not use massive parallel computing

environments. For actual use, we need more efficient method to deal with the correlation.

In this part, we propose a novel method that deals with the correlation and takes consid-

erably lesser time than the method in part II. To achieve this, we introduce a transformation

that mixes the explanatory and response variables. After the data are transformed, no error

exists in the explanatory variable and the correlation is removed in the transformed data.

Hence, an estimation of the PRC is reduced to a normal regression.

97
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8.2 Statistical model in part III

In part II, the correlation is represented by the observation model Eqs. (5.5) and (5.6)

xi = ϕi + xiδi, (8.1)

yi = Z(ϕi) + (yi − 2π)δi + ξi, i = 1, . . . , n, (8.2)

whereξi follows a normal distribution. In Eq.(5.3), the errorδi is a function of a realization

Ti of the period, whereδi = (Ti − T̂ )/Ti. Using a prior Eq.(5.14), we assumedTi ∼ a

truncated normal distribution in part II.

Here, we defineνi = (1− δi)
−1, and rewrite the observational model as

xi = ϕiνi, (8.3)

yi = (Z(ϕi) + ξi − 2π)νi + 2π, i = 1, . . . , n. (8.4)

To simplify the model, we assumeξi = 0 and obtain

xi = ϕiνi, (8.5)

yi = (Z(ϕi)− 2π)νi + 2π, i = 1, . . . , n. (8.6)

In this part, we assumeTi ∼ a log normal distribution. Here, the distribution ofln νi is

represented by

ln νi ∼ N (0, λ2), (8.7)

where the variance ofln νi is denoted byλ2. In this part, we estimate the PRCZ(ϕ) based

on the model Eqs. (8.5), (8.6), and (8.7).

A graphical interpretation of this model is shown in the left panel of Fig. 8.1. The

solid curve represents the PRCZ(ϕ) of the model. The model indicates that the data point

(xi, yi) is generated from the point(ϕi, Z(ϕi)) by shifting the broken line.

The model also indicates that the broken line passes the point(0, 2π) for all data point

(xi, yi); i.e. three points(0, 2π), (xi, yi) and(ϕi, Z(ϕi)) lie on the line. Using Eqs. (8.5)
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and (8.6), the slope of the straight line joining(0, 2π) and(xi, yi) is calculated as

2π − yi
0− xi

=
2π − {(Z(ϕi)− 2π)νi + 2π}

−ϕiνi
=

2π − Z(ϕ)

0− ϕi

. (8.8)

Therefore, the slope is equal to that of the straight line joining(0, 2π) and(ϕi, Z(ϕ)). This

means that the three points lies on the same straight line.

i i

i i

i i

i i

ψ
ζ

ψ
ζ
−1

Figure 8.1: Procedure of estimating the PRC by using the transformationψζ . The left panel shows
how the data point(xi, yi) is generated from the PRC represented by the solid curve. Using the
transformationψζ , we can show that the points(x̄i, ȳi) in the right panel are generated from the
circle (x̄i, Z̄(x̄i)) through the broken line parallel to the vertical axis.

8.3 Rough sketch of the estimation using data transformation

Here, we give a rough sketch of the data transformation using Fig. 8.1. We discuss the

details of this method in the next section.

First, we define the transformation

ψζ(x, y) =

(
2π − ζ

2π − y
x, ln

2π − ζ

2π − y

)
, (8.9)

which is parameterized byζ = Z(0). The tuning parameterζ is fixed in this and the next

sections, and is estimated in Sec. 8.6.

When the data point(xi, yi), the circle(ϕi, Z(ϕi)) and the broken line in the left panel

are transformed byψζ , we obtain the points(x̄i, ȳi), the circle(x̄i, Z̄(x̄i)), and the broken

line parallel to the vertical axis in the right panel. This implies the eliminations of an
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error in the explanatory variable and a correlation between the explanatory and response

variables in the right panel. As a result, we can easily estimate a functionZ̄(x̄), which is

shown as the solid curve in the right panel from the transformed data(x̄i, ȳi). Finally, the

PRCZ(ϕ) is determined to transform the function̄Z(x̄) by the inverse ofψζ .

8.4 Details of the estimation using the data transformation

In the following section, we explain the details of the estimation based on the model in this

part (Eqs. (8.5), (8.6), and (8.7)).

When we transform both sides of Eqs. (8.5) and (8.6) byψζ , the transformed model is

given by

x̄i =
2π − ζ

2π − Z(ϕi)
ϕi, (8.10)

ȳi = ln
2π − ζ

2π − Z(ϕi)
− ln νi, (8.11)

where(x̄i, ȳi) is the transformed dataψζ(xi, yi). The deterministic equation (Eq. (8.10))

indicates that a smooth functionh, which satisfiesϕi = h(x̄i), exists under the condition

∀ϕ ∈ [0, 2π), 2π − Z(ϕ) + ϕZ ′(ϕ) > 0. (8.12)

We substituteϕi = h(x̄i) in Eq. (8.11), which is reduced to the normal regression model

ȳi = Z̄(x̄i) + ν̄i, ν̄i ∼ N (0, λ2), (8.13)

where

Z̄(x̄) = ln
2π − ζ

2π − Z(h(x̄))
, ν̄i = − ln νi. (8.14)

We call the functionZ̄(x̄) a transformed PRC in the following sections. Note that the

transformed PRC̄Z(x̄) satisfies the three conditions:̄Z(x̄) has the fixed boundary point

Z̄(0) = 0, Z̄(x̄) is periodic in the domain[0, 2π), andZ̄(x̄) is smooth except̄x = 0.

We estimate the transformed PRC̄Z(x̄) from the transformed data{(x̄i, ȳi)} based on

the normal regression model (8.13). Details of the estimation are explained in the next
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section and appendix A. The transformed PRC is assumed to be estimated from the trans-

formed data in this section.

Finally, the PRCZ(ϕ) is estimated to transform the estimate ofZ̄(x̄) using the inverse

of ψζ

ψ−1
ζ (x̄, ȳ) =

(
x̄e−ȳ, 2π − (2π − ζ)e−ȳ

)
. (8.15)

The equationψ−1
ζ (x̄i, Z̄(x̄i)) = (ϕi, Z(ϕi)) derived from Eqs. (8.10) and (8.14) suggests

that the estimate of the PRC is equal to the true PRC if the estimates of the transformed

PRC is equal to the true transformed PRC.

Note that the estimate of PRC may be a multi-valued function, although PRC is not

a multi-valued function. This is because of the mixing of the variablesx̄ and ȳ in the

component̄xe−ȳ in Eq. (8.15).

8.5 Estimation of the transformed phase response curve

In this section, the transformed PRC̄Z(x̄) is estimated for three conditions:̄Z(x̄) has the

fixed boundary point̄Z(0) = 0, Z̄(x̄) is periodic in the domain[0, 2π), andZ̄(x̄) is smooth

in the region[0, 2π). The last condition is inconsistent with the previous assumption that the

transformed PRC̄Z(x̄) is smooth except for̄x = 0, but we simply neglect the inconsistency

for a decrease in the computation time of the method in this part.

Bayesian frameworks are appropriate to deal with the three conditions. We can choose

a prior distribution of the transformed PRC̄Z(x̄), which satisfies the conditions. When

we defineȳ as(y1, . . . , yn)T , the likelihood functionp(ȳ|Z̄(·), λ) is derived by Eq. (8.13).

Then a posterior distributionp(Z̄(·)|ȳ, λ, τ̄) is derived using the Bayes’ theorem

p(Z̄(·)|ȳ, λ, τ̄) = p(ȳ|Z̄(·), λ)p(Z̄(·)|τ̄)∫
p(ȳ|Z̄(·), λ)p(Z̄(·)|τ̄)dZ̄

, (8.16)

wherep(Z̄(·)|τ̄) is a density function of the smoothing prior [Aonishi and Ota, 2006, Ota

et al., 2009b, Tanabe and Tanaka, 1983, Nakae et al., 2010] defined in appendix A. The

tuning parameter̄τ in the prior controls the degree of smoothness of the transformed PRC

Z̄(x̄). Whenτ̄ is larger, the estimated curve becomes smoother.

In the Bayesian framework, the estimate of the transformed PRCZ̄(x̄) is an expectation

of the posterior. The details of the estimation are discussed in appendix A.
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8.6 Choice of the tuning parametersλ,τ̄ and ζ

The tuning parametersλ, τ̄ andζ of the model, which we call “hyperparameters”, are fixed

in the previous sections. The hyperparameters are estimated to maximize the log marginal

likelihood

ln pζ(ȳ|λ, τ̄) = ln

∫
pζ(ȳ|Z̄(·), λ)p(Z̄(·)|τ̄)dZ̄, (8.17)

wherepζ(ȳ|Z̄(·), λ) is the likelihood in Eq. (8.16), which is dependent onζ = Z(0).

When the hyperparametersλ, τ̄ , andζ are changed to the new hyperparametersλ, ᾱ and

ζ, whereᾱ = λτ̄ , the estimate ofλ is analytically derived aŝλ(ȳ, ᾱ, ζ). To substitutêλ into

the log marginal likelihood, we consider only a maximization ofln pζ(ȳ|ᾱ, λ̂) over a plane

of the hyperparameters(ᾱ, ζ). The details of the derivation are presented in appendix A.

We numerically maximizeln pζ(ȳ|ᾱ, λ̂) over a region[ᾱmin, ᾱmax] × [ζmin, ζmax]. The

values of the maximum point( ˆ̄α, ζ̂) are estimates of the hyperparametersᾱ andζ.

Here,ζmin is determined by the equation

ζmin = max
i

{
2π(xi + yi − 2π)

xi

}
(8.18)

, which is derived on the assumption that all of the data{(xi, yi)} is generated by the model

in this part (Eqs. (8.5), (8.6), and (8.7)).
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Numerical experiment

9.1 Examples

Here, the method in this part is applied to the data{(xi, yi)} generated with the noisy

Morris-Lecar equations in appendix B. The numerical experiment in this part is the same

condition as that in part II.

We show two examples of the estimates of the PRCs from the same datasets discussed in

Sec. 7.1.1, where a sample sizen is 100 and timings of the perturbations{ti; i = 1, . . . , n}
are randomly chosen. The noise levelss, defined in appendix B, of the two examples are

0.3 (high) and0.1 (low). The number of parameters that represent the transformed PRC

Z̄(x̄) ism = 99 (see Appendix A).

Let us begin with the estimation of the hyperparametersᾱ andζ. For the dataset with the

high noise level(s = 0.3) , we set the range of the hyperparameters asᾱmin = 1, ᾱmax =

200, ζmin ≈ −7.3×10−3 andζmax = 0.2. For the dataset with the low noise level(s = 0.1),

we setᾱmin = 1, ᾱmax = 200, ζmin ≈ −1.4×10−2 andζmax = 0.2, whereζmin is determined

from the data{(xi, yi)} using Eq.(8.18). The marginal likelihoodsln pζ(ȳ|ᾱ, λ̂) defined in

Sec. 8.6 are numerically optimized on a100× 30 grid in the plane of the hyperparameters

(ᾱ, ζ). As a result, pairs of the estimates of the hyperparameter( ˆ̄α, ζ̂) for the datasets

with the high noise level(s = 0.3) and the low noise level(s = 0.1) are about(6.1 ×
101,−7.3 × 10−3) and(1.7 × 101, 3.5 × 10−2), respectively. The left and right panels of

Fig. 9.1 show regions of level curves ofln pζ(ȳ|ᾱ, λ̂) over the hyperparameters fors = 0.3

and0.1, respectively. The maximum points( ˆ̄α, ζ̂) are shown as the points in Fig. 9.1.
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Figure 9.1: Level curves ofln pζ(ȳ|ᾱ, λ̂) over[ᾱmin, ᾱmax]× [ζmin, ζmax]. The point on the region
represents the maximum point( ˆ̄α, ζ̂). The left and right panels correspond to the level curves with
the high noise levels = 0.3 and the low noise levels = 0.1, respectively.
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Figure 9.2: Transformed data and the estimate of the transformed PRC. The noise levels of the
datasets in the left and right panels are high(s = 0.3) and low(s = 0.1), respectively.
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The left and right panels of Fig 9.2 show the transformed data{(x̄i, ȳi)} and the esti-

mates of the transformed PRCs̄Z(x̄) on the hyperparameters̄̂α and ζ̂ for the high noise

levels = 0.3 and the low noise levels = 0.1, respectively.

true PRC

spline regression

data (high noise)

true PRC

method in part III

data (high noise)

 method in part II

true PRC

data (high noise)

true PRC

   Fourier regression

data (high noise)

Figure 9.3: Comparison between the method in this part (upper–left panel), Fourier regression
(upper–right panel), spline regression (lower–left panel) and the methods in part II (lower–right
panel) using a set of data. The solid curve corresponds to the PRC estimated from the samples
shown by the points, and the broken curve shows the true PRC estimated with noiseless simulation.
These panels (except for the upper-left panel) are cited in our previous study.

Then, we show the estimate of the PRCZ(ϕ) through the method in this part. The

estimates of the PRCZ(ϕ) for the datasets withs = 0.3 ands = 0.1 are shown as the solid

curve in the upper left panel of Fig. 9.3 and Fig. 9.4, respectively. In the examples, both

estimates of the PRC are not multi-valued functions, as discussed in Sec. 8.4. They are

compared with the true PRC estimated in noiseless experiments. We discuss how to obtain

the true PRC in appendix B. The true PRCs are shown as the broken curve in the upper left
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method in part III

PRC

data (low noise)

spline regression

PRC

data (low noise)

method in part II

PRC

data (low noise)

Fourier regression

PRC

data (low noise)

Figure 9.4: Comparison between the method in this part and conventional methods using artificial
data. The solid curve corresponds to the PRC estimated from samples shown by black dots, and
the broken curve shows the true PRC estimated with noiseless simulation. The upper left and upper
right panels correspond to the method in this part and the spline regression, respectively; the result
with the Fourier regression is also shown in the lower panel. Differences in the samples shown in
the upper left and upper right (or lower) panels are explained in the text.

panel of Fig. 9.3 and Fig. 9.4. Note that the true PRC satisfies the condition in Eq. (8.12).

Finally, we compared the estimate of the PRC through the method in this part with

three estimates through the Fourier regression and the spline regression and the method in

part II. The results are shown as the solid curve in the other three panels of Fig. 9.3 and

Fig. 9.4. The true PRC is also shown as the broken curve. In Fig. 9.4 (high noise level), the

solid curves by the method in this part and part II are closer to the true PRC than the ones

generated by Fourier regression and spline regression. In Fig. 9.4 (low noise level), on the

other hand, all solid curves estimated by these methods are close to the true PRC.
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9.2 Statistical comparison using averageL2 error

Here, we consider sets of data and compare the accuracy of the estimates. We use the

measure of the accuracy as the averageL2 error

1

ND

ND∑
w=1

(∫
(Z(ϕ)− Ẑ [w](ϕ))2dϕ

)1/2

, (9.1)

where the number of datasets is expressed asND and the estimate from thew th dataset is

defined byẐ [w](ϕ). We consider seven datasets, which are different levels of the external

noise: s = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and0.4. For each value ofs, we considerND =

500 data sets in the cases of Fourier regression, spline regression and the method in this

part, andND = 100 data sets in the case of the method in part II.

The result of the comparison is shown in Fig. 9.5. The horizontal axis represents the

noise levels and the vertical axis represents the averageL2 error defined by Eq. (9.1).

Fourier regression (red), spline regression (blue), the method in part II (green) and the

method in this part (black) are represented by the lines and the95% confidence intervals

in Fig. 9.5. The result shows that the estimator of the method in this part is more accurate

than that of Fourier regression and spline regression for alls. Fig. 9.5 also shows that the

accuracy of the estimate of the method in this part is the same as that of the method in part

II whens is small.

Note that the estimates of the PRC for all of the datasets are one-valued function, as

discussed in Sec. 8.4.

9.3 Detail analysis withL2 errors

9.3.1 Comparison to conventional regressions

Scatter plots

In this section, we present a detailed comparison of theL2 errors between the method in part

III and the conventional regressions. To see raw data of theL2 errors, we show scatter plots

of theL2 errors in Fig. 9.6 and Fig 9.7. The horizontal axes in the panels correspond to the
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Fourier regression

spline regression
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Figure 9.5: Comparison of the averageL2 errors with respect to the noise levels.

L2 errors by the method in part III; the vertical axes in the panels of Fig. 9.6 and Fig. 9.7 cor-

respond to theL2 errors by the spline regression and Fourier regression, respectively. The

panels in these figures are different with the noise levelss = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35

and0.4. The point in the panels represents a set of artificial data; we plotND = 500 points

obtained by the datasets of a noise level in each panel.

Win rates

To compare the differences of theL2 accuracy, we estimate win rates of the method in part

III to conventional regressions using the datasets. Here, we define{Yw}ND
w=1 as

Yw =

 1 the method in part III outperforms another method forw-th dataset,

0 otherwise,
(9.2)

and assume thatYw follows an i.i.d. binomial distribution. The win rate corresponds to

the population ratep of the binomial distribution where the estimatep̂ is
∑

w=1 Yw/ND.

Using the normal approximation, we calculate the 95 % confidence interval ofp̂ as [p̂ −
1.96

√
p̂(1− p̂)/ND, p̂ + 1.96

√
p̂(1− p̂)/ND]. Note that the approximation is valid when

p is near0.5 andND is sufficently large.

In Fig. 9.8, we present the estimates of the win rates and the confidence intervals with

respect to the noise levels. The left and right panel represents the win rates of the method

in part III to the spline and Fourier regressions, respectively. The left and right panels show
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Figure 9.6: Scatter plots ofL2 errors by the method in part III (horizontal axis) and the spline
regression (vertical axis).
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Figure 9.7: Scatter plots ofL2 errors by the method in part III (horizontal axis) and the Fourier
regression (vertical axis).
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that the method in part III outperforms the spline and Fourier regressions significantly

above chance for all noise levelss, respectively.

 0

 0.5

 1

 0.1  0.2  0.3  0.4

method in part III v.s. Fourier regression

s

p

 0

 0.5

 1

 0.1  0.2  0.3  0.4

method in part III v.s. spline regression

s

p

Figure 9.8: Estimates of the win rates of the method in part III to the spline (left panel) and Fourier
(right panel) regressions with respect tos. The error bars represent the 95 % confidence intervals
by normal approximation.

Box and whisker plots

Here, we show the difference between the method in part III and the conventional methods

in more detail. We show box and whisker plots [Tukey, 1977] of differences from theL2

errors by the spline regression to those by the method in part III in the left panel of Fig. 9.9.

The vertical and horizontal axes correspond to the difference and the noise levels, respec-

tively. Each box and whisker plot represents five-number summaries of the differences:

sample minimum, lower quantile, median, upper quantile, and sample maximum. Note

that lower and upper edges of the box do not represent confidence interval of the median

but lower and upper quantiles, respectively.

When the median of the differences is above zero, the method in part III outperforms

the spline regression for over half of the datasets. The box and whisker plots in the left

panel of Fig. 9.9 suggest the outperformance for all noise levelss.

The right panel of Fig. 7.9 represents box and whisker plots of differences from theL2

errors by Fourier regression to those by the method in part III. This panel also indicates

that the method in part III outperforms Fourier regression for over half of the datasets for
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all noise levelss. Furthermore, the quantiles of the box and whisker plots in the right panel

suggest that the method in part III outperforms Fourier regression for about75 %of the

datasets whens ≥ 0.15.

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
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difference of  L errors
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0.2

-0.1

0.3

difference of  L errors
2

s

Figure 9.9: Box and whisker plots of the differences ofL2 errors with respect tos. The differences
from the spline and Fourier regressions to the method in part III are presented in the left and right
panels, respectively. The line, upper edge and lower edge in each box represent the median, upper
quantile and lower quantile, respectively. The upper and lower edges of each whisker represent the
sample minimum and maximum, respectively.

9.3.2 Comparison to method in part II

Scatter plots

In this section, we present a detailed comparison of theL2 errors between the methods in

part III and part II. In Fig. 9.10, we show scatter plots of theL2 errors obtained by the

method in part III (horizontal axis) and part II (vertical axis). The panels correspond to the

noise levelss = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and0.4, respectively. The point in the panels

represents a set of artificial data; we plotND = 100 points obtained by the datasets of a

noise level in each panel.
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Figure 9.10: Scatter plots ofL2 errors by the method in part III (horizontal axis) and in part II
(vertical axis) with respect to the noise levelss.
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Win rates

To compare the differences of theL2 accuracy, we estimate win rates of the method in part

III to the method in part II. As explained in the previous section, we estimate the win ratep

and the95% confidence interval using a binomial distribution. The estimates of them with

respect to the noise levels are shown in Fig. 9.11; the vertical axis corresponds to the win

rate. The method in part III outperforms the method in part II significantly above chance

whens ≤ 0.25.

 0

 0.5

 1

 0.1  0.2  0.3  0.4

method in part III v.s. method in part II

s

p

Figure 9.11: Estimates of the win rates of the method in part III to the method in part II with respect
to s. The error bars represent the 95 % confidence intervals by normal approximation.

Box and whisker plots

Here, we show the difference between the method in part II and the conventional methods

in more detail. We show box and whisker plots of differences from theL2 errors by the

method in part II to those by the method in part III in Fig. 9.12. The vertical and horizontal

axes correspond to the difference and the noise levels, respectively.

When the median of the differences is above zero, the method in part III outperforms

the method in part II for over half of the datasets. The box and whisker plots suggest the

outperformance except for the noise levels = 0.4. By the quantiles of the box and whisker

plots, the method in part III outperforms the method in part II for about75 %of the datasets

whens = 0.1.
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Figure 9.12: Box and whisker plots of the differences ofL2 errors with respect tos. The differences
from the method in part II to the method in part III are presented.

9.4 Computation time

The Computation times of Fourier regression, spline regression, the methods in this part

and part II for the datasets are compared. The computation times are obtained on a Fujitsu

PRIMERGY RX200 S5, whose CPU is Intel Xeon X5570 (2.93GHz, 8 core). The methods

are implemented using C++ code with LAPACK. The estimate of the method in part II is

calculated with parallel computing, where we use 4 CPUs (32 core) and implement the

method in part II using MPI.

We show the averages of the computation times over the datasets in Table. 9.1. This

suggests that the computation time of the method in part II (≈ 3 h) is considerably longer

than that of other methods (1 min or less).

The computation times without the method in part II are mostly determined by the num-

ber of iterationsNL of a linear computation, such as Eqs. (A.7) and (A.10) in appendix A,

and the number of parametersM of the linear computation. The time complexities of the

methods without the method in part II areO(M3NL), because all linear computations in

this thesis are implemented using direct methods [Press et al., 2007], which do not consider

sparsity of matrices.
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method computation time (sec) M NL

Fourier regression 2.4× 10−5 7 1
spline regression 1.5× 100 100 2× 102

method in part III 4.5× 101 99 6× 103

method in part II 8.8× 103 * *

Table 9.1: Averages of computation times, the number of parametersM and the number of iterations
NL

We also list the number of parametersM and the number of iterationsNL of a linear

computation performed using all methods mentioned above except the method in part II in

Table. 9.1. This suggests that the computation times of these methods are roughly consis-

tent with their time complexities. The consistency explains the difference in the computa-

tion times between Fourier regression, spline regression and the method in this part. The

large difference in the computation times between Fourier regression and spline regression

mainly arises from the difference in the number of parametersM . The difference in the

computation times between spline regression and the method in this part arises from differ-

ence in the number of hyperparameters. The spline regression has one hyperparameter. On

the other hand, the method in this part has two hyperparameters:ᾱ andζ.

9.5 On the choice of hyperparameters

Unbiasedness of the estimatêζ

Here, we compute averages and confidence intervals of the estimateζ̂ to validate the use

of ln pζ(ȳ|ᾱ, λ̂) in Sec. 8.6. The result is plotted in Fig. 9.13, where the horizontal axis

represents the value ofs, and the vertical axis represents the average of the estimate of

ζ = Z(0). The solid line in Fig. 9.13 represents the method in this part, the broken line

represents spline regression, and the dotted line represents Fourier regression. We ignore

the results of the method in part II, because the confidence interval is too large for a small

size of datasets. The trueζ is zero in the case of the Morris-Lecar equations. The results

show that the estimator̂ζ defined in Sec. 8.6 seem to be unbiased for the dataset when

s ≤ 0.3.
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Figure 9.13: Comparison of the averages of the estimatesζ̂
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Figure 9.14: Level curves ofln pζ(ȳ|ᾱ, λ̂). The details are presented in the text.

Multi-valued functions induced by missing choice of hyperparameters

As discussed in Sec. 8.4, the estimate of PRC through the method in part III may be a

multi-valued function; for all datasets used in this thesis, the estimates are not multi-valued

functions. In this section, we show a example that the estimate is a multi-valued function

because of missing the choice of the hyperparameters(ᾱ, ζ). For the dataset presented

in Fig. 9.3, we again plot the level curves ofln pζ(ȳ|ᾱ, λ̂) in Fig. 9.14. The point is a

maximum point ofln pζ(ȳ|ᾱ, λ̂). The cross means that the estimate of PRC is a multi-

valued function on the corresponding values of hyperparameters.

To confirm this, we show the estimate on the values of hyperparameters(ᾱ, ζ) ≈
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Figure 9.15: Estimate of transformed PRC (left panel) and estimate of PRC (right panel) on wrong
values of hyperparameters.

(15, 0.1) corresponding to the red point of the Fig. 9.14. The transformed data and the

estimate of transformed PRC are represented by the points and curve in the left panel of

Fig. 9.15, respectively. The estimate of PRC is obtained through the inverse transformation

ψζ as shown in the right panel of Fig. 9.15. The estimate of PRC nearϕ ≈ 2π has multi

values.



Chapter 10

Summary and future problems

10.1 Summary

Two statistical methods are proposed for estimating the phase response curve (PRC). The

novelty of these methods is that they take into account the correlation between errors in the

explanatory and response variables of PRC.

In part II, we formulated the method in a Bayesian framework with a smoothness prior,

and implemented using the replica exchange Monte Carlo (REM) method, which enables

efficient sampling from multimodal posterior distributions. We tested the method in part II

both with artificial data generated by the noisy Morris-Lecar equations and real experimen-

tal data recorded from the pyramidal cells of in rat motor cortex. The test with artificial data

shows that the the method in part II is advantageous over conventional regression [Galán

et al., 2005, Ota et al., 2009b] when the level of noise is high. In the analysis of the real

experimental data with large fluctuation of spike intervals, there is considerable difference

compared to the conventional regression, which only allow for the errors in the response

variable.

In part III, we propose more computationally efficient method, which also take into

account the correlation. We slightly modify the model in part II, and show that the modified

model is reduced to a normal regression model by using a transformation that removes the

correlation. Thus, PRC is estimated through the normal regression. The method in part

III is tested using data generated with the noisy Morris-Lecar equations in part II. We

compare the method in part III with the method in part II and conventional regression. This

119
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comparison shows that the method in part III is advantageous to the conventional regression

in terms of accuracy, while it is better than the method in part II in terms of computation

times.

10.2 Future problems

PRCs estimated from experimental data are useful for simulating large-scale neural net-

works such as the blue brain project [Markram, 2006]. PRCs are concise representation of

the dynamical systems of neurons; mathematical neuron models in the neural networks

such as the Hodgkin-Huxley equations [Hodgkin and Huxley, 1952] and Morris-Lecar

equations [Morris and Lecar, 1981] can be replaced to PRCs.

In the methods in part II and part III, we assume that the period follows a truncated

normal and a log normal distributions, respectively. In neuroscience, various distributions

of periods are considered: for example, a exponential distribution [Dayan and Abbott,

2001, Rieke and Warland, 1999], a gamma distribution [Kuffler et al., 1957, Shimokawa

and Shinomoto, 2009], an inverse Gaussian distribution [Tuckwell, 1988, Chhikara and

Folks, 1989]. Our method can be easily extended to deal with these distributions and a

nonparametric distribution estimated from periods in experiments. For example, we can use

kernel density estimation [Parzen, 1962, Silverman, 1998] as the nonparametric method.

In part II, we introduce a “phenomenological” hypothesis that noises in the data essen-

tially correspond to fluctuation of periods, which lead to a correlation between errors in

explanatory and response variables. In future, the correlation will be studied from “theo-

retical” viewpoint ; such a study will elucidate the origin of the fluctuation of period and

replace it with a different mechanism that effectively generates a similar correlation. Such

considerations may lead to a more realistic model of errors and better algorithms based on

the model.

In part III, we assume that the errorνi follows the log normal distribution represented

by

ln νi ∼ N (0, λ2).

The mean ofln νi is zero; this indicates that the median ofyi isZ(ϕi) in Eq.(8.6). Therefore,

the method in part III are considered as a version of quantile (median) regression [Koenker,

2005] under a log normal distribution. To change the mean ofln νi, we can estimate the
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PRCs from the data whose expectation or mode is assumed to beZ(ϕi). We will investigate

which the best estimator is.

As mentioned in Sec. 3.2, methods using different types of experiments are proposed,

where white noise [Ermentrout et al., 2007], correlated noise [Ota et al., 2009a], or arbitrary

input [Aonishi and Ota, 2006, Ota et al., 2009b] is injected to a neuron. Our approach in

part II will be extended to deal with data generated with the experiments.





Appendix A

Bayesian regression with a boundary

condition

In Sec. 8.5, we briefly introduce a Bayesian framework to estimate the transformed PRC

Z̄(x̄) based on the normal regression model (8.13) under the conditions: the transformed

PRCZ̄(x̄) has the fixed boundary point̄Z(0) = 0, Z̄(x̄) is periodic in the domain[0, 2π),

and Z̄(x̄) is smooth. A detail of the estimation is explained in this appendix. We also

explain how to estimate the hyperparameterᾱ andζ using the log marginal likelihood rep-

resented by Eq.(8.17). The framework discussed in this appendix is based on a framework

proposed by Tanabe and Tanaka [1983].

Here, we explain a discrete representation of the transformed PRCZ̄(x̄), whose domain

is from 0 to 2π. The region[0, 2π) alongx̄-axis is divided intom + 1 successive intervals

{[x̄∗j , x̄∗j+1); j = 0, . . . ,m}, wherex̄∗0 = 0 and x̄∗m+1 = 2π. The transformed PRC is

represented by a piecewise constant functionZ̄(x̄) indexed withz̄ = (z̄1, . . . , z̄m)
T , where

z̄i = Z̄(x̄) for x̄ ∈ [x̄∗i , x̄
∗
i+1). These definitions are illustrated in Fig. A.1. Note that we

do not consider(z̄0 = Z̄(0), z̄1, . . . , z̄m)
T but consider̄z for the fixed boundary condition

Z̄(0) = 0.

To calculate the posterior aboutz̄ based on the Bayes’ theorem, a likelihood and a prior

about̄z is necessary. The likelihood is derived by Eq. (8.13) and the discrete representation

of the transformed PRC̄Z(x̄), and defined below

p(ȳ|z̄, λ) = 1

(2πλ2)n/2
exp

{
− 1

2λ2
||ȳ − Ez̄||2

}
, (A.1)
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m
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Figure A.1: Representation of the transformed PRCZ̄(x̄)

whereE is then×m matrix, whose(i, j) component is given by

Eij =

1 x̄i ∈ [x̄∗j , x̄
∗
j+1)

0 otherwise
. (A.2)

A density function of the prior of̄z, which describe the periodicity and the smoothness of

Z̄(x̄) is expressed as

p(z̄|τ̄) ∝ exp

{
− τ̄

2

2

m∑
j=0

(z̄j−1 − 2z̄j + z̄j+1)
2

}
(A.3)

where we assume the periodic and fixed boundary conditionz̄−1 = z̄m andz̄0 = z̄m+1 = 0.

Then, a matrix form of the density function is expressed as

p(z̄|τ̄) = τ̄m

(2π)m/2
√
| det(DTD)|

exp

{
− τ̄

2

2
||Dz̄||2

}
, (A.4)
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whereD is the(m+ 1)×m matrix, whose(i, j) component is given by

Dij =


−2 i = j

1 |i− j| = 1 or (i, j) = (m+ 1, 1)

0 otherwise

. (A.5)

The factorτ̄ controls a degree of a smoothness of the transformed PRCZ̄(x̄). Whenτ̄ is

larger, the estimated curve becomes smoother.

Using the Bayes’ theorem, the posterior distribution ofz̄ can be analytically derived as

z̄|ȳ, λ, τ̄ ∼ N (µz̄, λz̄), (A.6)

where

µz̄ = λz̄E
T ȳ, (A.7)

λz̄ = (ETE + λ2τ̄ 2DTD)−1. (A.8)

As a result, the estimate of the transformed PRCZ̄(x̄) from the transformed data is gotten

by the calculation of Eq. (A.7).

In the above discussion, the tuning parametersλ andτ̄ , which is called “hyperparame-

ters”, are fixed. We estimate the hyperparameters to maximize the log marginal likelihood

defined by Eq. (8.17).

When the hyperparametersλ andτ̄ are changed to new hyperparametersλ andᾱ, where

ᾱ = λτ̄ , a zero point of a derivative of the log marginal likelihood with respect toλ can be

derived analytically. As a result, the estimate ofλ is expressed as

λ̂ =

√
1

n
(||ȳ − Eµz̄||2 + ᾱ2||Dµz̄||2). (A.9)

Substitutinĝλ to the log marginal likelihood, we only consider a maximization of a log

marginal likelihood defined below

ln p(ȳ|ᾱ, λ̂) = ln | detλz̄| − 2m ln ᾱ + 2n ln λ̂+ const, (A.10)
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over the hyperparameters̄α.

In Sec. 8.6, the additional hyperparameterζ is contained in the log marginal likelihood.

However, the above derivation is valid, and we can use Eqs.(A.9) and (A.10) without mod-

ification.



Appendix B

Conductance based neuron models

B.1 Morris-Lecar equations

In this section, we explain how to generate artificial data used in part II and III. Here we

employ the noisy Morris-Lecar equations [Morris and Lecar, 1981] as a source of artificial

data; this is a bivariate stochastic differential equation widely used in neural science. This

neuron model is defined by a set of equations

dv

dt
=− gCa2+m∞(v)(v − vCa2+)− gK+n(v − vK+)− gleak(v − vleak) + ξ(t) + i(t),

dn

dt
=
n∞(v)− n

τ̄n(v)
, (B.1)

where the variablesv andn represent the voltage of the neuron and the ratio of openK+

channels, respectively. The functionsm∞(v), n∞(v) andτ̄n(v) are defined by

m∞(v) =
1 + tanh{(v − v1)/v2}

2
, n∞(v) =

1 + tanh{(v − v3)/v4}
2

,

τ̄n(v) =
1

cosh{(v − v3)/(2v4)}
. (B.2)

The values of parameters used in this study are as follows:gCa2+ = 1.1, gK+ = 2.0,

gleak = 0.5, vCa2+ = 100, vK+ = −70, vleak = −50, v1 = −1.0, v2 = 15.0, v3 = 10.0, and

v4 = 14.5.

The termξ(t) represents white noise added to the voltage component, which satisfies
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the relations

E[ξ(t)] = 0, E[ξ(t)ξ(t′)] = s2δ(t− t′), (B.3)

whereδ denotes the Dirac’sδ-function. The currenti(t), which comes from the outside of

a neuron, is assumed to be given by

i(t) = ic + ipδ(t− ti), (B.4)

where the values ofic andip are8 and2 respectively.

To solve the stochastic differential equation and generate artificial data, we use the

Euler-Maruyama method [Kloeden and Platen, 2000]. The “true” PRCs shown in the fol-

lowing section are calculated by linear interpolation of points given by simulations of the

noiseless Morris-Lecar equations(s = 0).

B.2 Hodgkin-Huxley equations

In this section, we explain the details of Hodgkin-Huxley equations, which are used for

showing the example of the PRCZ(ϕ) in Chap. 1. The Hodgkin-Huxley equations is

described as

dv

dt
=− gNa+m

3h(v − vNa+)− gK+n4(v − vK+)− gleak(v − vleak) + i(t),

dm

dt
=αm(v)(1−m)− βm(v)m,

dh

dt
=αh(v)(1− h)− βh(v)h,

dn

dt
=αn(v)(1− n)− βn(v)n, (B.5)

where the variablesv, m3h andn represent the voltage of the neuron, the open probabil-

ity of the Na+ channel, and the open probability of theK+ channels, respectively. The
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functions in Eqs. (B.5) are defined by

αm(v) =
0.1(25− v)

exp{(25− v)/10} − 1
, βm(v) = 4 exp

{
− v

18

}
,

αh(v) = 0.07 exp

{
−v
20

}
, βh(v) =

1

exp{(30− v)/10}+ 1
,

αn(v) =
0.01(10− v)

exp{(10− v)/10} − 1
, βn(v) = 0.125 exp

{
− v

80

}
.

The values of parameters used in this study are as follows:gNa+ = 120, gK+ = 36, gleak =

0.3, vNa+ = 55, vK+ = −72, andvleak = −49.387. The termi(t) = 8 is a constant for the

periodic activity of the neuron.
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