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Abstract

Resource Description Framework (RDF for short) is an assertional language intended to be used

to express propositions using precise formal vocabularies, and its syntax is applicable to the World

Wide Webs. RDF Schema (RDFS) is a semantic extension of RDF and it provides a minimum

type system to describe web ontologies. OWL Web Ontology Language is a language for defining

and instantiating Web ontologies. These three languages for Semantic Webs are intended to be

integrated in Semantic Web Layered Architecture, namely OWL was designed to be realized on top

of RDF and RDFS. However, this intention is not accomplished and it seems to be coming apart

more and more. The objective of this doctoral study is recovering the language integration and

provides a unified language system for Semantic Webs.

In this study, firstly, the semantics of RDF, RDFS, and OWL are investigated in common de-

scription based on Tarskian denotational semantics, whereas the formal way of describing semantics

in W3C Recommendations is different between RDF(S) and OWL. RDF semantics is formalized

based on Tarskian denotational model theory and RDFS is extended in the same framework, but

OWL semantics is mainly described in the way called Direct Model-Theoretic Semantics, which

is appropriate for describing Description Logics and OWL DL. However, due to these two differ-

ent styles, it has become difficult to understand both languages in the common view, and it has

amounted to that OWL has become apart from RDF and RDFS. In this dissertation, an overview of

RDF semantics is given in the way described in the RDF documents of W3C Recommendations.

Then, OWL semantics is also investigated and formalized based in the same way as RDF, making

reference to the OWL specifications in OWL Direct-Model Semantics in the documents of W3C

Recommendations. Since our semantic web language system is built on top of Common Lisp Ob-

ject System, CLOS semantics and its computational model is also discussed. The semantic gap

between OWL and object oriented languages are also pointed out.

Secondly, RDF semantics is realized on top of CLOS by straightforward mapping of RDF graph,

which is uni-directional labeled graph, to CLOS objects, so that a start node of edge to a CLOS
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object, an edge in graph to a slot-name, and an end node of edge to a slot-value. RDFS class/instance

relationship is mapped to that in CLOS, and RDFS class/superclass relationship is mapped to that

in CLOS, because the semantics of RDFS is analogous to the semantics of CLOS type system. The

problems arising from such straightforward mapping for RDF and RDFS are discussed and solved in

the realization of our language system for Semantic Webs. Then, all OWL features are implemented

on top of RDF(S) by CLOS with preserving RDF(S) semantics. We distinguish substantial sorts and

non-substantial sorts in ontology description, and procedural subsumption computation algorithm

for OWL Full is developed. The system is named SWCLOS from the acronym of Semantic Web

Common Lisp Object System.

Thirdly, the efficiency of SWCLOS implementation was tested by the Lehigh University Bench-

mark (LUBM) test, and SWCLOS showed the comparable performance to other OWL reasoners,

which are reported in the LUBM report. SWCLOS returned correct answers for all LUBM queries,

whereas two reasoners out of three returned wrong answers for some queries in the benchmark re-

port. Distinctive benchmark results of SWCLOS were analyzed and improvements of efficiency

were achieved by several different engineering methods. The metamodeling capability of SWCLOS

was also demonstrated in some examples of SWCLOS metamodeling programming.

Through this study, we obtained deep understanding of semantics on RDF, RDFS, and OWL,

because it was necessary to realize the integration of semantic web language, namely, OWL Full, in

order to solve the semantic disparity between RDF(S) and OWL DL. For example, the subsumption

in class hierarchy is weak in RDFS but it is strong in OWL DL. The semantics of OWL DL class is

akin to set theory, but the semantics of RDFS class is based on but different from set theory, rather

it is close to frame systems. The semantics of RDF(S) is basically categorized into higher order

logic but OWL DL is notably a subset of first order logic. RDFS allows the membership loop and

enables metamodeling of ontology but OWL DL cannot accept the membership loop and does not

allow metamodeling. Entities in RDF universe stand in the Unique Name Assumption (UNA) for

graph nodes but entities in OWL universe does not stand in UNA for objects in ontology. RDF

semantics is not developed up to Open World but OWL semantics assumes it for WWWs. These

highly conceptual and technical issues must be discussed and settled in order to integrate RDF(S)

and OWL. The solution for membership loop, weak/strong subsumption, and non-Unique Name

Assumption, Open World Assumption are proposed and implemented in SWCLOS.

In addition to these differences of semantic foundation of languages, what is worse, a misunder-

standing on the interpretation of RDF semantics involved the community in the theoretical disorder

against the discussion of RDF compatibility of OWL. Excessive materialization of RDF entities in
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OWL was coached after the argument over ‘comprehension principle’, and RDF semantics has be-

come the focus of criticism under the pretense that ‘comprehension principle’ allows the paradox to

invade upon systems. Such theoretical disorders in Semantic Web community are also discussed in

order to rescue OWL Full theory from the theoretic disorder. It deserves to know that OWL 2 spec-

ifications of W3C Recommendations retracted the term ‘comprehension principle’ with no account

from the documentation of W3C in the end.

As its name implies, SWCLOS is not based on a logic system but based on Common Lisp Ob-

ject System. It is semantically an amalgamation of CLOS and OWL on top of RDF; nevertheless it

still conforms to object-oriented paradigm as programming language. It is the reason why we call

it object-oriented semantic web language. The ground of enabling SWCLOS can be summarized as

follows. First, the subsumption of CLOS is the same as the subsumption of RDF(S), and the struc-

ture of hierarchy and orders of CLOS classes is the same as ones of RDF(S). The dynamic property

of CLOS programming and the Meta-Object Protocol of CLOS enabled to tailor the semantics of

language within the realms of CLOS language. In fact, it was easy to realize RDF semantics on

top of CLOS, because the semantics is almost same except property-centric or object-centric. Then,

OWL Full level capability is obtained in OWL by pursuing the compatibility to RDF and preserving

it.
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Preface

After the first International Semantic Web Conference at 2002 Sardinia, which I attended with the

purpose of surveying the feasibility of Semantic Technology for an ICT project started at FY 2002 in

Japan, in which I engaged myself, Semantic Webs have been becoming reality more and more year

by year. However, it is still far from the goal Tim Berners-Lee intended, and many problems are left

to be solved. The most urgent issue on Semantic Webs to be solved is, in my opinion, to establish

OWL Full language, which is a unified language of OWL and RDF(S). Whereas the integration

of Semantic Web languages of RDF, RDFS, and OWL is the course laid by Tim Berners-Lee in

order to establish Semantic Webs, the possibility of OWL Full seems to be rather decreased in W3C

along with the publication of the recommendations of OWL 1 at 2004 to the new recommendation

of OWL 2 at 2009. It may have been owing to the semantic gaps between RDF and OWL or owing

to some historical accidents.

There have been arguments up to now between two camps in Semantic Web community. One

side often criticizes the undecidability contained in RDF(S) from the standpoint of first order logic,

more precisely Description Logics. The most arguable point was the membership loop of classes,

or broadly speaking self-referencing nature of the semantics. It threatens ones like vicious circle.

However, the study of reflective systems has been one of the most attractive themes for researchers

in Artificial Intelligence over three decades, and then many reflective systems have been proposed

and developed mainly in two computer languages, Lisp and Prolog. Common Lisp Object System

(CLOS) is the first result in a practical view as a reflective object oriented programming system.

The Meta-Object Protocol (MOP) of CLOS facilitates programmers to change the behavior of a

CLOS language system within the realms of itself. Needless to say, recursive programming is the

most elemental programming way in Lisp. Lisp programmers are familiar with the idea of self-

reference and do not have any bewilderment on reflection systems. Thus, it was obvious for lisp

programmers who are accustomed to MOP programming that OWL Full was realizable through

MOP by implementing the membership loop of rdfs:Class and changing the language semantics to
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RDF(S) and OWL.

This study is on the theory of OWL Full language and its implementation on top of CLOS.

OWL semantics is re-organized here according to Tarskian denotational model theory in the same

way of RDF semantics for the sake of compatibility to RDF semantics, and it is integrated to RDF

semantics. OWL on top of RDF(S) is actually realized using MOP of CLOS. Then, the system has

been called SWCLOS.

SWCLOS is unique among several plausible realizations of OWL system. It is neither logic-

based nor rule-based, rather an object-based system. Every entity of RDF(S) and OWL and user-

defined entity in SWCLOS is an object of CLOS. Furthermore, it still conforms to object oriented

programming paradigm. It is not a specific application system dedicated for Semantic Webs, rather

it is a programming language system for semantic web applications. Programmers can build their

owl applications for Semantic Webs using SWCLOS. It is an amalgamation of OWL and an object

oriented programming language CLOS.

On the soundness and completeness of the system, SWCLOS may be sound if it does not in-

clude bugs, but it is difficult to prove on the completeness of computation. Many entailment and

axiomatic rules of RDF(S) and OWL are procedurally implemented in program code as parts of

methods in object oriented programming. More precisely, some of them are partly implemented as

default reasoning, some of entailment rules are partly implemented as inconsistency checking, but

all of them are separately scattered as procedural program in SWCLOS. However, it deserves to

know that critiques on undecidability of RDF(S) are often not valid from the viewpoint of engineer-

ing. Concrete examples raised as evidence that shows the undecidability are always sick and make

no sense. In SWCLOS, the criteria for metamodeling and membership loop are proposed. They

assure the soundness of metamodeling from the view of engineering, and it is compatible to CLOS

metamodeling facility.

Obviously, RDF and OWL are legitimate successors of Knowledge Representation (KR) sys-

tems that were enthusiastically studied in late 1970s and early 1980s as a kind of Artificial Intel-

ligence systems. Even in today, the study of RDF and OWL belongs, as the predecessors did, to

the KR discipline as a subfield of Artificial Intelligence. Therefore, the study includes many di-

vergent aspects, i.e., not only symbol logic but also philosophy, cognition, set theory, theory of

computation, semantic theory, inference technique, system building engineering, etc. Though Ob-

ject Oriented Language (OOL) might not be regarded as one of KR languages today, the study of

KR systems once helped to form OOLs and also contributed to the formalization of KR languages,

from which RDF and OWL inherited the legacy. The inheritance of the KR study still lives in a
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large number of today’s OOLs as well as in RDF and OWL. Thus, it is plausible to use OOLs in

order to represent ontology.

OWL ontology has been showing its potential as normative description of class modeling in

object oriented programming. Object Management Group (OMG) has recently issued the adoption

of OWL ontology for Model Driven Architecture, and then OWL has become to be unified into

UML. However, the systematization of Ontology Driven Architecture with UML is not realized yet.

SWCLOS is the first full-fledged language system as OWL Full processor. The OWL Full

metaclass is formalized using by RDF(S) axioms, and the OWL universe is formalized as subset

of the RDF universe. The membership loop at the universal class rdfs:Resource is properly im-

plemented under the CLOS metamodeling semantics. The membership loop of rdfs:Class is also

properly implemented by introducing a proxy of it in CLOS. Non-Unique Name Assumption in

OWL is superimposed onto RDF graph, and the novel algorithm for Unique Name Assumption for

atomic objects in the non-UNA condition is invented in order to integrate OWL non-Unique Name

Assumption to RDF graph.

This dissertation is structured as follows. Chapter 1 introduces the ground of Semantic Webs

and makes clear the motivation of this study. Chapter 2 describes basic semantics of RDF, OWL,

and CLOS, mainly with reference of the documents from W3C. The semantic gaps between RDF(S)

and OWL are described by Tarskian semantics, which is applied for RDF Semantics, according to

the outline of the Direct Model-Theoretic Semantics. This part in Chapter 2 is an original contribu-

tion for the denotational semantics of OWL theory. It is also intended to be prepared for Chapter 6

OWL Full theory. Chapter 3 describes an implementation of RDF(S) and OWL on top of CLOS. A

benchmark test of SWCLOS is reported in Chapter 4. The criteria for metamodeling using SWC-

LOS is addressed in Chapter 5, and the example of metamodeling using SWCLOS is also described

in Chapter 5. Chapter 6 presents advanced and nicer discussion of OWL Full theory. In this chapter,

several kinds of set theories and the comprehension principle in set theories are reviewed from the

standpoint of ontology description. Then, it is emphasized that those set theories are not appropri-

ate to ontology description, and it is stated that Russell’s Paradox is not applicable for RDF and

OWL semantics, rather Russell’s Ramified Type Theory is appropriate for class notion in ontology.

The problem of combining non-Unique Name Assumption in OWL to RDF graph is also discussed,

and a solution is addressed with focusing on graph equality and default reasoning for primitive ob-

jects. Chapter 7 pursues Open World Assumption and disjointness of classes in ontologies, then a

drawback of the current OWL for ontology description language is pointed out and the direction of

solution is suggested. Chapter 8 discusses the related work as overall description of this dissertation.
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Chapter 9 makes summary of this dissertation and discusses the future of OWL and SWCLOS. It

makes several remarks about the potential of ISO standard Common Logic as ontology description

language with the desire of going beyond RDF and OWL.

For readers who matured at Semantic Web theory and practice, it is recommended to pick up

Section 2.2 and Chapter 6 through 7. These parts are our original contribution to OWL Full theory.

For readers as practitioner of system developers, it is recommended to directly jump into Chapter

3, and pick up Section 2.3 and 2.4. However, the description assumes that readers have some

prerequisite knowledge about the reflection and Meta-Object Protocol. Readers who want to know

the skill and practice of the reflection, these parts and source codes of SWCLOS are a plenty of the

source deserving to dig it.
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List of Notations

Notation Meaning

⟨.⟩ Expression for a tuple.

{.} Expression for a set.

I Interpretation that maps a set of URLs to a set of nodes in graph or objects in logics.

EXTI(.) A mapping from properties in universe of discourse into the powerset of binary pairs

of resources in the universe of discourse. It is called an extension of property.

CEXTI(.) A mapping from classes in universe of discourse into the resources in the universe of

discourse. It is called an extension of class.

R Universe of discourse or RDF universe.

R Russell’s class

R(.,.) Relation

P A set of property in universe of discourse.

℘(.) Power set

V vocabulary.

ω Transfinite ordinal number

∈ Expression for membership.x ∈ A meansx is a member of a setA or a classA.

⊓ Intersection of concepts.

⊑ Relationship between subconcept and superconcept.

⊤ Top of concepts.

⊥ Bottom of concepts.

≡ Identical objects.

≼ Subclass/superclass relationship in CLOS or RDFS.

≃ Equivalent classes in owl:FunctionalProperty and owl:InverseFunctionalProperty.

≍ Relationship of complement and disjoint concepts.

� Individual equivalence in OWL.
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Glossary of Abbreviations

Abbreviations Stands for

ABox Assertional Box. See also TBox.

CLCE Common Logic Controlled English

CGIF Conceptual Graph Interchange Format

CLIF Common Logic Interchange Format

CLOS Common Lisp Object System.

CWA Closed World Assumption. In CWA, NaF is usually utilized for inference.

See also OWA.

DAML DARPA Agent Markup Language.

DL Description Logic.

KAON2 KArlsruhe ONtology version 2.

KIF Knowledge Knowledge Interchange Format

KR Knowledge Representation.

KRL Knowledge Representation Language.

LCWA Local Closed World Assumption.

LUBM Lehigh University Benchmark.

MDA Model-Driven Architecture.

MKNF Minimal knowledge and negation as failure

MOF Meta-Object Facility.

MOP Meta-Object Protocol.

NaF Negation as Failure, the presumption that ifP is not derived,

thenP is false.

NF New Foundation

NBG von Neuman-Bernays-Gödel Set Theory
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Abbreviations Stands for

ODA Ontology Driven Architecture.

ODM Ontology Definition Metamodel.

OIL Ontology Inference Layer.

OMG Object Management Group.

OOL Object-Oriented Language.

OOP Object-Oriented Programming.

OOPL Object-Oriented Programming Language.

OWA Open World Assumption, the presumption that if neitherP nor notP

is derived, thenP is neither true nor false. See also CWA.

OWL Web Ontology Language.

OWL 1 OWL version 1.

OWL 2 OWL version 2.

OWL-S Semantic Markup for Web Services.

OWL DL OWL by Description Logic.

OWL Full OWL in full flexibility on syntax and semantics.

OWL Lite OWL for easy implementation and usage.

PM Principia Mathematica

RDF Resource Description Framework.

RDFS RDF Schema.

RDF(S) RDF and RDFS.

RTT Russell’s Type Theory

SETF Software Engineering Task Force.

SPARQL SPARQL Protocol and RDF Query Language.

SWCLOS Semantic Web CLOS

TBox Terminological Box. See also ABox.

UNA unique name assumption, the presumption that if two names or URLs

are different, then those denotation are different.

XCL XML Common Logic

XML Extensible Markup Language.

ZF Zermelo-Fraenkel Set Theory

ZFC Zermelo-Fraenkel Set Theory with the axiom of Choice
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Chapter 1

Introduction

“I have left open the discussion as to what inference power and algorithms will be

useful on the semantic web precisely because it will always be an open question. When

a language is sufficiently expressive to be able to express the state of the real world and

real problems then there will be no one query engine which will be able to solve real

problems.” (Engines of the future in ‘Evolvability’, Tim Berners-Lee)

The goal of this doctoral study is a unified language of RDF(S) and OWL for Semantic Webs,

namely, the development of an OWL Full language system. Obstacles to achieve this goal must

be discovered and removed. In this chapter, in order to make the problems clear for the sake of

achieving this goal, we pose an overview of discrepancies between the original goal for Semantic

Webs and the current reality. Especially, in addition to the notable discrepancy of metamodeling,

we point out the problematic non-Unique Name Assumption and Open World Assumption in OWL.

However, the precise discussions of these problems are described after Chapter 6.

1.1 Semantic Web Languages and their Layering

RDF is an acronym of Resource Description Framework and “RDF is an assertional language in-

tended to be used to express propositions using precise formal vocabularies” (RDF Semantics, [25]),

and its syntax is applicable to the World Wide Webs (WWWs) with the components such as URI

references, literals, and XML schema typed literals.

RDF Schema (RDFS for short) is an semantic extension of RDF and it provides a minimum

type system to describe web ontologies on top of RDF. The most remarkable feature of RDFS type

1
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system is the metamodeling capability for ontology description. Namely, using RDFS, ones can

treat a class simultaneously as a collection of objects and as an object in its own right.

“The OWL Web Ontology Language is a language for defining and instantiating Web ontolo-

gies” (OWL Guide [65]) Due to the design for representing the web content as ontology, it can

facilitate greatermachine interpretabilitythan is supported by XML, RDF, or RDFS, by providing

additional vocabulary for concepts. It was intended to be an extension of RDF and RDFS.

This language layering is originally proposed by Tim Berners-Lee.Fig.1.1shows the image of

such layering called Semantic Layer Cake. In this figure, the layer named ‘ontology vocabulary’

corresponds to the current OWL.

Fig. 1.1: Semantic Web Layer Cake, Original Version.

“The OWL language provides three increasingly expressive sublanguages designed for use by

specific communities of implementers and users.” (OWL Guide [65]) OWL Lite is the simplest

sublanguage and it supports those users primarily needing a classification hierarchy and simple con-

straint features. “OWL DL was designed to support the existing Description Logic business segment

and has desirable computational properties for reasoning systems.” (OWL Guide [65]) OWL Lite

and DL specifications and its semantics are described in a number of OWL documents [65, 49, 57].

OWL Lite and OWL DL, however, do not support RDF semantics. “OWL Full is meant for users

who want maximum expressiveness and the syntactic freedom of RDF” (OWL Guide [65]), but it

is not fully developed yet in theory and practice.

As mentioned above, the semantics of OWL DL is not laid on top of RDF semantics. The most

remarkable discrepancy, publicly admitted in the community, is the metamodeling capability [19,

27]. For example, in an ontology for the Red Data Book, RDFS and OWL Full can classify a

species as a class of creature into the concept of endangered species, but OWL DL cannot perform
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such classification, because such metamodeling goes beyond Description Logics and OWL DL. In

the followings,ex:EngangeredSpecies should be a metaclass due toex:Eagle is a class.

<owl:Class rdf:about="&ex;Eagle">
<rdf:type rdf:resource="&ex;EndangeredSpecies" />

</owl:Class>

<owl:Thing rdf:about="&ex;Harry">
<rdf:type rdf:resource="&ex;Eagle />

</owl:Thing>

The problem of OWL DL that is based on Description Logics is the strict separation between the

class and the individual in ontology. Borgida et al. pointed out that one must create a ‘meta-

individual’ [6] in order to work around such a problem in Description Logics. The OWL Working

Group in W3C had made efforts to introduce into OWL the metamodeling facility with the terminol-

ogy ofpunning1, and it was formally recommended at OWL 22. However, the detail of specification

for punning is removed from OWL 2 [27] and no logic based modeling language system appears

yet that allows OWL Full metamodeling.

The syntactic freedom of RDF is also strictly limited in OWL DL. RDF and OWL Full can

annotate an entity of property using the property itself as follows, but OWL DL cannot perform

such annotation, because OWL individuals, classes, and properties are pairwise disjoint [58]. See

the following example, which is taken from RDF definition file, 22-rdf-syntax-ns.rdf.

<rdf:Property rdf:about="&rdfs;label">
<rdfs:label>label</rdfs:label>

</rdf:Property>

1.2 Intensional Model and Extensional Model

RDF semantics utilizes the notion of set in set theory to formalize its denotational semantics. How-

ever, “the use of set-theoretic language here is not supposed to imply that the things in the universe

are set-theoretic in nature.” (RDF Semantics [25]) On the other hand, the class notion in OWL DL

semantics is the same as set in set theory. In the RDF semantics, an extension of a property and an

extension of class are formalized using Tarskian denotational model theory. “The use of the explicit

extension mapping also makes it possible for two properties to have exactly the same values, or two

classes to contain the same instances, and still be distinct entities.” (RDF Semantics [25]) Namely,
1http://www.w3.org/2007/OWL/wiki/Punning
2http://www.w3.org/TR/owl2-new-features/#F12:_Punning
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we can hold two different classes that have the same set as class extension. On the other hand, two

classes that have the same set as individuals are regarded as equivalent in OWL DL semantics. This

different semantics often causes confusion of the interpretation on rdfs:subClassOf or subsumption.

For example, whilevin:RedWine in Wine Ontology is defined as below.

<owl:Class rdf:ID="RedWine">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Wine" />
<owl:Restriction>
<owl:onProperty rdf:resource="#hasColor" />
<owl:hasValue rdf:resource="#Red" />

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

The following description does not cause any difference as a result in OWL DL semantics, but it

causes the different interpretation in RDF semantics.

<owl:Class rdf:ID="RedWine">
<rdfs:subClassOf rdf:parseType="Collection">
<owl:Class rdf:about="#Wine" />
<owl:Restriction>
<owl:onProperty rdf:resource="#hasColor" />
<owl:hasValue rdf:resource="#Red" />

</owl:Restriction>
</owl:subClassOf>

</owl:Class>

“This means that RDFS classes can be considered to be rather more than simple sets; they can

be thought of as ‘classifications’ or ‘concepts’ which have a robust notion of identity which goes

beyond a simple extensional correspondence.” (RDF Semantics [25]) However, this statement is not

applicable to OWL DL. Thus, the combination of ‘extensional’ RDF and ‘intensional’ OWL was a

basic question to be solved for the realization of OWL Full.

1.3 Non-Unique Name Assumption and Open World Assumption

OWL is equipped with two properties owl:sameAS and owl:differentFrom for individuals. It implies

that OWL assumes that an identical name stand for an identical object but different names may or

may not stand for the same object in ontology. It is unusual convention for computer languages and

predicate calculus. Even if we have two different names for individuals in OWL ontology, say, Bush
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and Obama, we cannot distinguish both if we have no other information to determine the same-

ness or differentness. It is problematic in ontology description in OWL. In order to obtain useful

interpretations in OWL, we must describe the sameness/differentness information for individuals.

On the other hand, different URI references in RDF denote different nodes in RDF graph in

RDF semantics. However, there were no theory and no practical solutions how to superimpose the

non-Unique Name Assumption (non-UNA) in OWL onto the RDF graph. It was also a question to

be solved for the realization of OWL Full.

In addition to the denotational ambiguity for individuals with respect to the non-UNA, we con-

sider Semantic Webs open in the sense that no one can exhaustively scrape all of the World Wide

Webs. It also amounts to a problematic situation. For example, although owl:someValuesFrom

restriction requires that the property value exists such that satisfies the restriction on the property

for individuals of a class restricted by owl:someValuesFrom, we cannot perform this requirement if

we adopt and interpret Open World Assumption (OWA) rigorously, because someone might have de-

fined it somewhere in the WWWs. If so, we cannot conclude the unsatisfiability for owl:someValuesFrom

restriction. In fact, Description Logics, which assumes OWA, it is not thorough enough from the

viewpoint of semantics in Semantic Webs, and most reasoners for OWL DL seems to be loose of

owl:someValuesFrom on OWA3.

The class notion in OWL DL is the same as set in set theory. Then, the equivalence and disjoit-

ness on classes are rather simple in OWL semantics, in case that we can check ABox. However, in

case that we have an empty or poor ABox, it is difficult to conclude useful results from TBox, if

there is no explicit description with owl:disjointWith or owl:equivalentWith. Thus, OWL ontology

of TBox requires to write down that Artifact is disjoint with LivingThing, Aminal is disjoint with

Plant, Person is disjoint with Horse, Monkey is disjoint with Ape, Bacteria is disjoint with Virus,

etc. This amounts to huge number of lines about disjointness on classes in ontology description.4

In the RDF Semantics document [25], there is no description on class disjointness. Simply,

if two classes are not related in rdfs:subClassOf and also does not share any subclass, then both

can be captured disjoint. However, it does not negate the possibility of entering superclass/subclass

relationship or sharing a subclass. Obviously, the semantics in RDFS and OWL on class disjointness

are different. So, how to combine both of disjointness in RDFS and OWL was a question to be

solved.

3This question is discussed in Chapter 8.
4Actually, 58% is for class disjointness in lines of pizza.owl for only 23 pizza and 29 pizza toppings. The number of

lines for disjointness will explode with the number of classes.
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1.4 Perspective of Semantic Web from Object Oriented Programming

1.4.1 UML and Reflection

The work of ontology building is similar to the work of class design in Object-Oriented Program-

ming (OOP). Therefore, it is natural to regard the domain modeling of OOP asobject-centered

modeling[6] in ontology development. Aiming the integration of OWL with OOP, which we ex-

pect to produce valid, sound, and reusable OOP software programs on the solid base of OWL, the

Software Engineering Task Force (SETF)5 in W3C Semantic Web Best Practices and Deployment

Working Group had been started to promote synergies between the semantic web technology and

domains associated with software engineering [35]. Sharing the goal and taking over the work, Ob-

ject Management Group (OMG) recently standardized Ontology Definition Metamodel (ODM)[1]

of the method of software development based on RDF and OWL as the foundation of Model-Driven

Architecture (MDA) for Meta-Object Facility (MOF)6.

The main objective of such activities is to establish the ontology driven software engineer-

ing, in which ones expect benefits of unambiguous domain models, consistency checking facilities,

validated model sharing, and automatic code generation in software development. However, the

realization of the Ontology Driven Architecture (ODA) by SETF [73] requires to reconstruct the

framework of the object oriented modeling of software engineering based on Semantic Web, in

particular, OWL.

There were two ways to enable OOP upon OWL. One was to establish the class design by UML,

which is independent of specific languages, on the framework of OWL [36, 11, 14]. In this case, the

metamodeling structure of RDF(S) and OWL must be mapped onto the four layered architecture of

the OMG’s MOF [4]. “RDFS differs from many conventional ontology frameworks such as UML

which assume a more structured hierarchy of individuals, sets of individuals, etc., or which draw a

sharp distinction between data and meta-data. However, while RDFS does not assume the existence

of such structure, it does not prohibit it.” (OWL Semantics [25]) The other way was to enable OWL

metamodeling by a specific reflective computer language that allows ones meta-programming within

the language [39, 38, 40, 41, 42] instead of separated metamodeling layers with distinct language

systems like MOF. With respect to static Object-Oriented Programming Languages (OOPLs) such

as C# and Java, it is difficult to change the semantics of languages to meet OWL and then inevitably

we cannot but choose the former approach. However, it was feasible that a dynamic and reflective

5http://www.w3.org/2001/sw/BestPractices/SE/
6http://www.omg.org/mof/
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language like Common Lisp Object System (CLOS) [69, 56], in which the CLOS native semantics

may be changed to OWL semantics using Meta-Object Protocol (MOP) [31], enables to realize

OWL within CLOS.

The OWL Full language was designed to inherit ontology metamodeling characteristics of

RDFS. The OWL Guide [65] states that the choice between OWL DL and OWL Full mainly de-

pends on the extent to which users require the metamodeling facilities of RDFS, i.e., defining a class

of classes.7 However, in software engineering, the decision whether as a class or as an instance ones

capture an entity depends upon the characteristics of the application domain and modeler’s intention.

For example, a wine product such as Elyse Zinfandel may be an instance for wine expert systems,

but it should be a class in logistics software of wine wholesalers. Thus, an ontology modeling

language must allow ones to encode metamodeling ontology due to the requirement of ontology

reusability.

CLOS is a reflective OOPL that allows meta-programming in OOP by MOP. Therefore, we

expected that the integration of OWL with CLOS that provides metamodeling facilities produced

OWL Full capability with OOP metamodeling facilities. In CLOS, a class is not only an object

schema to define instances but also an object calledmetaobject. CLOS programmers can encode

the metamodeling software with CLOS. Therefore, it was plausible that the performance of OWL

Full was obtained by using CLOS meta-programming facilities with SWCLOS.

1.4.2 Type Theory and Metamodeling Criteria

The class hierarchy of CLOS is integrated to Common Lisp type system. The class structure for

inheritance mechanism in CLOS is very similar to the notion of RDFS subsumption. Thus, mapping

from RDFS classes to CLOS classes is adopted in SWCLOS. Due to this straightforward mapping,

the subsumption computation of RDFS is automatically performed by the machinery of CLOS class

inheritance. The semantics of RDF types is also implemented as tailored type system of CLOS.

Furthermore, the relationship between rdfs:Resource and rdfs:Class is analogous to cl:standard-

object and cl:standard-class in CLOS. The semantics contained in this relationship is the same

between CLOS and RDFS. As a result, the realization of RDF(S) on top of CLOS was very easy.

On the other hand, such isomorphic mapping has amounted to make the metamodeling in RDF(S)

enlightened on CLOS metamodeling semantics and capability. Thus, the metamodeling criteria in

SWCLOS has been elaborated from the metamodeling semantics of CLOS.

7http://www.w3.org/TR/owl-guide#OwlVarieties
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1.5 A Realistic Solution with Moderate Semantic Web Conditions

It seems that OWL has successfully established itself as ade factostandard of ontology description

language not only in the Semantic Web community but also in diverse disciplines and engineering

fields, e.g., ontology, linguistics, modeling in software engineering, enterprise business patterns,

etc. We developed SWCLOS [41], and attempted to apply it in several applications. Then, we saw

how such language that is firmly underpinned by formal logic and denotational semantics is useful

to software engineering so as to assure formal descriptions of system specification of applications.

However, in the process of developing SWCLOS we encountered a few subtle and basic prob-

lems of semantic distinction between RDF and OWL. We found that full setting of non-UNA and

OWA for Semantic Webs amount to either very few viable interpretations with less common knowl-

edge otherwise excessive need of common knowledge for models on class disjointness and indi-

vidual differentiation in several Semantic Web applications. Hence, we refactored SWCLOS with

introducing new moderate settings based oncontext dependent role and disjointness of substance

classes, auto-epistemic local closed world assumption, ternary truth valuesthat allow unknown

value, andUNA for atomic objects in non-UNA environment. Such experience of developing SWC-

LOS and the subsequent applications brought us to deeper understanding on the theory and relations

of RDF(S)/OWL, logics, and Object-Oriented semantics.

Along with the diffusion of OWL systems and the progress of OWL deployment, it is true that

many people have been noticed the limitation of OWL DL specification, and they are becoming

to suffer from drawbacks of OWL DL in building ontology. The goal of this doctoral study is to

develop an OWL Full language system and recover the original intention for Semantic Webs. We

believe this goal is basically accomplished in SWCLOS, a CLOS-based object oriented program-

ming language for Semantic Webs.

1.6 Guide to Readers

It is convenient to suppose typical reader’s types in order to make a guidance. For readers who

matured at Semantic Web theory and practice, it is recommended to pick up Section 2.2 and Chapter

6 through 7. These parts are our original contribution to OWL Full theory. If someone who is

interested in set theories in ontology, which are described in Chapter 6, Appendix A and B will be

a good guide for progressing to this domain.

For readers as practitioner of system developers, it is recommended to directly jump into Chapter



1.6. GUIDE TO READERS 9

3, and pick up Section 2.3 and 2.4. However, the description assumes that readers have some

prerequisite knowledge about reflection and Meta-Object Protocol. Readers who are unfamiliar

with these notions might feel difficulties. However, readers who want to know the skill and practice

of reflection, these parts and source codes of SWCLOS are a plenty source of deserving to dig it.

Unfortunately, for readers as users who are seeking convenient tools for Semantic Webs, SWC-

LOS is not the case. It is a programming language for Semantic Webs. Users are required to encode

their own program that they want to realize their application. This dissertation is also not the case.

However, for all who are widely interested in Semantic Webs, we believe this dissertation gives very

unique views in Semantic Web languages.
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Chapter 2

Semantics of RDF, OWL, and CLOS

“Every scientific theory is a system of sentences which are accepted as true and

which may be called [. . . ] asserted statements or, for short, simply statements.”(Alfred

Tarski, [71], p.3)

In this chapter, the semantics of RDF, RDFS, and OWL are studied based on Tarskian denota-

tional semantics. Firstly, an overview of RDF semantics in Tarskian denotational model theory are

given in the way described at the RDF documents of W3C Recommendation. Secondly, in order to

develop OWL Full theory, OWL semantics is also studied based on Tarskian denotational semantics

with the reference of the OWL specifications in the OWL Direct-Model Semantics. Thirdly, CLOS

semantics and its computational model are investigated, and the semantic gap between OWL and

object oriented languages are pointed out.

2.1 RDF Semantics

2.1.1 Denotational Semantics in RDF

The foundation of formal language is laid by Alfred Tarski [71] along with the concept of deno-

tational semantics. Drew McDermott unreservedly stressed the important role of the denotational

semantics in language specification on his paper titled “Tarskian Semantics, or No Notation Without

Denotation!” [48] In his paper, he described the basic feature of the denotational semantics as “The

method is called as ‘denotational’ because it specified the meanings of a notation in terms of what

its expressions denote.” In a typical predicate calculus, we have no problem to represent knowledge

11
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so long as we treat only number theory and mathematical concepts. However, when we use sym-

bols such ashorse, car, city, and so forth, in sentences of predicate calculus, we are required to

make the meanings of such symbols clear in virtue of predicate calculus. Undoubtedly, the effort

to represent general knowledge by predicate calculus involved the problem that exceeded the pred-

icate calculus for mathematical propositions started by Gottlob Frege. In Tarskian Semantics, “we

assign to primitive symbols denotations which consist of objects, functions, or predicates. Then the

meaning of more complex expressions are defined by rules which define their meanings in terms of

the meanings of their parts.” (McDermott [48])

In Tarskian Semantics, a symbol (as atomic term) in statements is usually captured as it denotes

a factual or hypothesized thing in the world. It is the same usage in everyday languages. For

example, in the following sentence,New Yorkdenotes a city in U.S. named “New York”.

New York is a large city.

However, a symbol itself in statements must be distinguished from a thing denoted by the symbol in

order to deduce the truth value of asserted statements using rules for terms of symbol in statements.

Tarski [71] described the distinction through the usage of quotation for a term as shown below.

*well consists of four letters.

*Mary is a proper name.

“well” consists of four letters.

“Mary” is a proper name.

While the first two sentences do not convey the truth value, the last two sentences allow ones to

interpret them and bear the truth value. Here, quoted“well” and quoted“Mary” do not denote

anything as object in the world, rather they represent the symbols themselves. In the formal semantic

theory of knowledge representation languages, the relations between symbols and their denotations

must be interpreted according to rules in a given formal way, as well as relations among denotations

in the world. RDF semantics [25] is also specified based on suchTarskianSemantics.

2.1.2 Model Theory and Interpretation

RDF semantics uses a basic technique calledmodel theoryfor specifying the semantics of language.

Model theory is a formal semantic theory “that the language refers to a world”, in which “the mini-

mal conditions that a world must satisfy” is specified “in order to assign an appropriate meaning” of

symbols (RDF Semantics [25]). Such minimal conditions are calledsemantic conditions. Generally
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speaking, for a set of given semantic conditions, there are a number of concrete possible worlds that

satisfy all semantic conditions and provide the truth value to statements. While the mapping from

symbols to their denotations is calledinterpretationmapping, a particular realization of the world in

model theory is also calledinterpretation. In other words, theinterpretationmapping allows us to

interpret statements and let them turn out a set ofinterpretationsof the world in model theory. Thus,

interpretationmeans a minimal formal description of a world which is just sufficient to establish the

truth value of any expression in logic.

2.1.3 Resources and Properties in RDF Universe

RDF semantics in the RDF document [25] of W3C specifies several precise mappings or interpreta-

tions touniverse of discourse1 from the description of which the syntax is specified in the document

of RDF syntax [34]. In RDF model theory, RDF does model the world as labeled directed graph. A

graph is syntactically expressed as a set of triples. A triple⟨s, p,o⟩ consists ofsubject, predicate,

andobject. Herein a subjects, a predicatep, and an objecto corresponds to a start node, an arc,

and an end node of directed graph, respectively. A subject is expressed by either aURI reference

or a blanknodeID. A URI reference can be replaced by the correspondingQName, if the URI has a

namespace. A blank node has no URI reference and may be designated by a blank nodeID instead

of a URI reference. A predicate is expressed by a URI reference. An object is expressed by either a

URI reference, a blank nodeID, or aliteral. A literal is aplane literal(a quoted string with/without

optional language tag), or an XML datatype expression calledtyped literal. A URI reference that

is assigned to an arc of labeled graph is calledproperty. Every URI reference and every literal

in triples denote a thing in the universe of discourse, and then the denotation is calledresourcein

the universe, but “resourceis treated here as synonymous with ‘entity’, i.e. as a generic term for

anything in the universe of discourse.” (RDF Semantics [25])

For a given set of triples, a set of rules and a set of consistent interpretation mappings from a

vocabulary to the universe of discourse determine the truth value of each triple and the whole set

of triples, namely, the RDF graph represented. An RDF graph may include blank nodes. An RDF

graph that does not include blank nodes is called aground graph. In the document of RDF seman-

tics [25], following interpretation and conditions are firstly addressed as RDF simple interpretation
1Tarski explained the concept ofuniverse of discoursein his book [71] for a particular mathematical theory. If we

rephrase it by substituting the mathematical theory with RDF theory, it is said that “Instead of using the general logical
concept of individual within [RDF theory], it is sometimes more convenient to specify exactly what is considered an
individual thing within the framework of this theory; the class of all those things will then be denoted again by [RI]
and will be called the universe of discourse of the theory.” The advanced discussion is held at Chapter 6. Note that the
universe of discourse is specified in set theory asRI ≡ {x ∈ a | x = x}. See also Appendix A.
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and semantic conditions for ground graphs.

Hereafter an interpretation mapping is expressed by mappingI. Thus, a resource that is denoted

by a URI referencex in interpretationI is expressed asI(x) or xI.2 The signature of interpretation

I in RDF is a tuple of⟨RI, PI,EXTI,SI, LI, LV⟩. Each element in this tuple is described as

follows.

RDF simple interpretation

RDF simple interpretation of vocabularyV is,

1. A non-empty setRI of entities, called the domain or universe ofI.

2. A set PI, called the set of properties ofI.

3. A mappingEXTI from PI into the powerset ofRI × RI, i.e., a set of sets of pairs⟨xI, yI⟩
with xI andyI in RI.

∀pI∃xI∃yI[ pI ∈ PI ∧ xI ∈ RI ∧ yI ∈ RI ⇔ {⟨xI, yI⟩ ∈ A | EXTI(pI) = ℘(A)} ]

4. A mappingSI from URI references inV into RI ∪ PI.

5. A mappingLI from typed literals inV into RI.

6. A distinguished subsetLV of RI, called the set of literal values, which contains all the plain

literals inV.

Here,RI, a set of all entities in discussion, is called the universe of discourse.EXTI(pI) is called

property extensionof pI. A property can make a set of the binary relation on the property between

entities in the universe of discourse.

Semantic conditions for ground graph

A ground RDF graph inI denotes a truth value and it is computed by recursively applying the

following conditions for ground triples.

2Due to the explicit discrimination between a URI reference and its denotation in this dissertation, such an expres-
sion as variable “x” expresses a URI reference, and “xI” represents a resource in the universe of discourse: a URI
reference or QName like “rdf:Property” for “http://www.w3.org/1999/02/22-rdf-syntax-ns#Property” stands for the URI
reference itself, and the denotation through an interpretationI is represented by the expression likerdf : PropertyI or
ex:New_YorkI.
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{ “ aaa” ∈ V | “aaa” is a plane literal without language tag}⇒ I(“aaa”) = aaa

{ “ aaa”@ttt ∈ V | “aaa”@ttt is a plane literal with language tag }⇒ I(“aaa”@ttt) = ⟨aaa, ttt⟩
{ e ∈ V | e is a typed literal }⇒ I(e) = LI(e)

{ e ∈ V | e is a URI reference }⇒ I(e) = SI(e)

{ E = ⟨s, p,o⟩ | s ∈ V, p ∈ V, o ∈ V }

⇒ I(E) = true, if pI ∈ PI ∧ ⟨sI, oI⟩ ∈ EXTI(pI), otherwiseI(E) = false

{ E | E is a ground RDF graph }

⇒ I(E) = false, if∃E′I{ E′I = false| E′I ∈ EI }, otherwiseI(E) = true.

The last condition means the truth value of an RDF graph is a conjunction of truth values of triples of

the RDF graph. The condition before the last one simply claims that every triple within vocabulary

V may make a property extension on a property inPI.

Semantic conditions for blank nodes

SupposingA is an interpretation mapping toRI of I from blank nodes that appear in triples for an

RDF graphE, additional semantic conditions for unground graph is described as follows.

{ e | e is a blank node }∧ A(e)⇒ [I +A](e) = A(e)

{ E | E is an RDF graph }

⇒ I(E) = true, if∃A′{ [ I +A′](E) | EI ∈ EI } = true, otherwiseI(E) = false

The first condition claims that the interpretation mappingA for a blank node does not change the

interpretation for ground graphI. “It simply extends the rules for defining denotations under an

interpretation, so that the same interpretation that provides a truth-value for ground graphs also as-

signs truth-values to graphs with blank nodes, even though it provides no denotation for the blank

nodes themselves.” (RDF Semantics [25]) The second condition simply requires that such an in-

terpretation exists consistently for a subset of triples that include blank nodes. Thus, the extended

interpretation [I +A] supports the instance lemma, that is, a graph is entailed by any of its instances

(note that an instance of graphG is obtained from a graphG by replacing some or all of the blank

nodes inG with non-blank nodes).

The role of blank node is important to make a scope of variable into ontology and to make

individuals that hold the same properties and values. For example, the statement of triplets of cat
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that are born by an identical parent cat is described as follows.3

<ex:aParentCat> rdf:type <ex:Cat> .
<ex:aParentCat> <ex:hasChild> _:b001 .
_:b001 rdf:type rdf:Bag .
_:b001 rdf:_1 _:c001 .
_:b001 rdf:_2 _:c002 .
_:b001 rdf:_3 _:c003 .
_:c001 rdf:type <ex:Cat> .
_:c001 rdf:type <ex:Child> .
_:c001 <ex:look> <ex:Cute> .
_:c002 rdf:type <ex:Cat> .
_:c002 rdf:type <ex:Child> .
_:c002 <ex:look> <ex:Cute> .
_:c003 rdf:type <ex:Cat> .
_:c003 rdf:type <ex:Child> .
_:c003 <ex:look> <ex:Cute> .

In this case, three blank nodes are denoted by three blank nodeID from_:c001, _:c002, and

_:c003, while every blank nodes has the same structure as subgraph.4

For another example on blank nodes, suppose that we have everyday temperatures and sum-

marize them later, it is convenient to wrap up everyday temperature using blank nodes in order to

make a summary, otherwise we will be involved in troublesome situation such that we must totally

reorganize ontologies.

Supposing in some day we have,

_:t010 rdf:type <ex:temperature> .
_:t010 <ex:date> "2011-04-01"^^xsd:date .
_:t010 <ex:value> _:t011 .
_:t011 rdf:value "22"^^xsd:integer .
_:t011 <ex:unit> <ex:Centigrade> .

and in another day we have similarly,

_:t010 rdf:type <ex:temperature> .
_:t010 <ex:date> "2011-04-02"^^xsd:date .
_:t010 <ex:value> _:t011 .
_:t011 rdf:value "23"^^xsd:integer .
_:t011 <ex:unit> <ex:Centigrade> .

3This syntax is relaxed N-Triples, which is used in [25].
4This simple example, in reality, contains the counting problem in ontology. It is clear that the counting problem is

beyond the scope of Description Logics and OWL DL, although they provide a device forcounting quantifier.
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Then, we can merge them easily in the way suggested in the document of RDF Semantics [25],

_:t010 rdf:type <ex:temperature> .
_:t010 <ex:date> "2011-04-01"^^xsd:date .
_:t010 <ex:value> _:t011 .
_:t011 rdf:value "22"^^xsd:integer .
_:t011 <ex:unit> <ex:Centigrade> .
_:t020 rdf:type <ex:temperature> .
_:t020 <ex:date> "2011-04-02"^^xsd:date .
_:t020 <ex:value> _:t021 .
_:t021 rdf:value "23"^^xsd:integer .
_:t021 <ex:unit> <ex:Centigrade> .

In this case, each of blank nodes_:t010 and_:t020 makes a boundary of scoping date and

temperature, so that the consistency of date and temperature is preserved in the simple way of

merging graphs.

Rdf-interpretation for rdf-vocabulary

In addition to the RDF simple interpretation and the extended interpretation for blank node de-

scribed above, rdf-interpretation provides basic meanings to built-in rdf-vocabulary, which contains

rdf:type, rdf:Property, rdf:XMLLiteral, etc., all of them have the prefix ‘rdf’. Especially among

them, the set of properties and the notion of property that is previously introduced by the RDF simple

interpretation is redefined in RDF semantic conditions using two terminologies in rdf-vocabulary,

rdf:Property and rdf:type.

Definition of property (a part of RDF semantic conditions)

If an entity is a member of a set of properties ofI, then the entity itself makes a pair withrdf :

PropertyI, and then the pair is a member of property extension ofrdf : typeI, and vice versa:

xI ∈ PI ⇔ ⟨xI, rdf :PropertyI⟩ ∈ EXTI(rdf : typeI) (2.1)

This definition also entails that anyxI in PI andrdf : PropertyI belong toRI along with the RDF

simple interpretation.

Proof. From the RDF simple interpretation 3,⟨xI, rdf : PropertyI⟩ is a member of a power set of

RI × RI. Then,⟨xI, rdf : PropertyI⟩ is a member ofRI × RI. Then,xI andrdf : PropertyI is a

member ofRI.
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Therefore, it is possible to state thatp (as predicate) ofp (as property resource) iso. For example,

it can be stated such as⟨rdfs : commentI, “A description of the subject resource.”⟩ ∈ EXTI(rdfs :

commentI), and it could be expressed in logical expression of predicate calculus as follows,

rdfs:comment(rdfs:comment, “A description of the subject resource.”).

Obviously, such self-referential statements are problematic in first order logic and Description Log-

ics. Note thatPI ⊂ RI in RDF, butPI andRI are disjoint in OWL DL.

2.1.4 Semantics of Class in RDF Schema

RDF Schema (RDFS) is a semantic extension of RDF so as to provide mechanisms for describing

ontology using the notion ofclassandinstance. In RDFS, “Resources may be divided into groups

called classes. The members of a class are known as instances of the class. [. . . ] The rdf:type

property may be used to state that a resource is an instance of a class.” (RDF Schema [7]) A set of

instances of a particular class is called aclass extensionof the class in RDF semantics.

There are two serious problems on the class notion and the class/instance relationship. Firstly,

although the same terminology of ‘class’ is used in several different disciplines, all the semantics

are different each other among set theory, Semantic Web, and object oriented languages. In RDFS,

a class is distinguished from a set of instances, while sets of resources are associated with classes in

the universe of discourse. “Two classes may have the same set of instances but be different classes.”

(RDF Schema [7]) So, the class in RDFS enables ones to capture different aspects of an identical

set of objects in the world and can categorize them in ontology. However, in OWL, the class is

identical to a set. Meanwhile, a class (called proper class) in set theory is not a set. Thus, the

concept of class is a confounding and disputable issue among those disciplines5 Moreover, non-

Unique Name Assumption for individuals in OWL gives impetus to the confusion on the notion of

the sameness of individuals6.

Secondly, in RDFS, “a class may be a member of its own class extension and may be an instance

of itself.” (RDF Schema [7]), while Description Logics and OWL DL cannot accept suchmember-

ship loopof class and instance, because it goes beyond the scope of first order logic and Description

Logics.7 In this subsection on RDFS, the concept of class and instance in RDFS is formally intro-

duced, precisely on concepts for terms,membership, membership loop, andsubsumption.
5See also Chapter 6.
6Some part of this issue is discussed at Section 6.4.
7What is worse, there is a misunderstanding in a part of Semantic Web community about ‘comprehension principle’

and ‘Russell’s paradox’. The discussion is held at Chapter 6.
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Class and instance relation in RDFS semantic conditions

If an entity is a member of class extension of another entity, then a pair of both becomes a member

of property extension ofrdf : typeI, and vice versa.

xI ∈ CEXTI(yI) ⇔ ⟨xI, yI⟩ ∈ EXTI(rdf : typeI) (2.2)

Here,CEXTI is a mapping ofI from CI, a set of all classes in the universe, to a set of subsets of

entities in the universeRI. CEXTI(yI) represents the class extension ofyI calledinstancesof yI.

We callyI aclassin this context.

After obtaining such concept of class and instance, it is obvious that every property inPI turns

out an instance ofrdf :PropertyI.

PI = CEXTI(rdf :PropertyI). (2.3)

Proof. SubstitutingyI with rdf : PropertyI in (2.2) yields the right-hand side of (2.1). Therefore,

for everyx that satisfies (2.1) and (2.2), (2.3) holds.

Note thatrdf : typeI can be also redefined as an instance ofrdf :PropertyI.

⟨rdf : typeI, rdf :PropertyI⟩ ∈ EXTI(rdf : typeI) (2.4)

This definition goes again beyond the scope of first order logic and Description Logics. The first

occurrence ofrdf : typeI in (2.4) is a node in RDF graph, and the second occurrence stands for an

edge namedrdf : type.

Universal class

Furthermore, using new terminology in rdfs-vocabulary we can name several basic classes in the

universe of discourse. Firstly, the universeRI itself is named as the class extension ofrdfs :

ResourceI.

RI = CEXTI(rdfs:ResourceI) (2.5)
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This entity rdfs:Resource is called the universal class, to which every entities in the universe is

classified and of which every class in the universe is a subclass.8

The combination of RDF semantic condition (2.2) and RDF simple interpretation entails that

not only every member ofrdfs: ResourceI is an entity as a resource but alsordfs: ResourceI itself

is in the universe of discourse.

rdfs:ResourceI ∈ RI = CEXTI(rdfs:ResourceI) (2.6)

Proof. By substitutingyI in (2.2) with rdfs : ResourceI, we obtain⟨xI, rdfs : ResourceI⟩ ∈
EXTI(rdf : typeI). Then,rdfs:ResourceI belong to the universeRI, because⟨xI, rdfs:ResourceI⟩
are members of a powerset ofRI × RI by RDF simple interpretation 3, then they are also members

of a set ofRI × RI.

Note that (2.6) represents the membership loop of rdfs:Resource, and it goes beyond the scope of

first order predicate calculus, Description Logics and OWL DL.

Literal class

The resources for literalLV is named as the class extension ofrdfs:LiteralI.

LV = CEXTI(rdfs:LiteralI) (2.7)

As well as rdfs:Resource, rdfs:Literal also belongs to the universe of discourse.

rdfs:LiteralI ∈ RI (2.8)

Universal metaclass

With respect toCEXTI we consideredCI, which is the set of all classes in an interpretationI.

Lastly for naming several basic classes in the universe, the universal metaclass is introduced by

naming the set of all classes defined in the universe, using new terminology ‘rdfs:Class’.

CI = CEXTI(rdfs:ClassI) (2.9)
8Pat Hayes explained in his emailhttp://lists.w3.org/Archives/Public/www-tag/2007Sep/0168.html,

“The class of which all classes are subclasses is the universal class, which contains everything. Also called the ’universe’,
also sometimes called the ’domain of discourse’, which draws attention to the fact that ’anything’ here means anything
that can be referred to or talked about, whether it is real or imaginary: any possible topic of any kind of meaningful
discourse.”
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As well asPI andLV do,CI also turns out a subset of the resource in the universe. Namely,

CI ⊂ RI. (2.10)

Simultaneously, as well asrdf : PropertyI andrdfs: LiteralI do, rdfs:ClassI itself turns out a

resource in the universe. Namely,

rdfs:ClassI ∈ RI. (2.11)

In addition,rdfs:ClassI is also inCI, becauserdfs:ClassI ∈ RI andCI is the set of all classes

in the universe.

rdfs:ClassI ∈ CI = CEXTI(rdfs:ClassI). (2.12)

Note that the universal class and the universal metaclass has the membership loop, (2.6) and

(2.12), respectively. These membership loop caused strong alienation from RDF and RDFS se-

mantic theory in a part of Semantic Web community, although Patrick Hayes and Brian McBride

preventively stated in the document of RDF Semantics [25] as “In particular, this use of a class

extension mapping allows classes to contain themselves. For example, it is quite OK for (the exten-

sion of) a ‘universal’ class to contain the class itself as a member, a convention that is often adopted

at the top of a classification hierarchy.” Here,rdfs : ResourceI sits at the top ofclass hierarchy,

andrdfs : ClassI exists at the top ofclass orders9 in the universe. Chapter 6 discusses OWL Full

theory and formally deduces the membership loop again, based on only RDF and RDFS semantic

conditions.

Superclass and subclass relation in RDFS semantic conditions

As described above, a class extension is a set of a subset of entities in the universe. This fact leads

us the notion of super-sub relationship of classes associated to the notion of super set and sub set in

set theory. The class super-sub relationship is specified with terminology ‘rdfs:subClassOf’ as the

inclusiveness of the class extensions of classes as follows. This concept of super-sub relationship of

classes is calledsubsumption.

9In this dissertation, “class hierarchy” is used to designate the super-sub relationship in classification orsubsumption.
On the other hand, “class orders” is used to designate the class-metaclass relationship after Russell’s type theory.
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(Subsumption) If a pair of two entities is a member of property extensions ofrdfs:subClassOfI,

then the both entities are instances ofrdfs:ClassI and the class extension of the predecessor in the

pair is included by the class extension of the successor.

⟨xI, yI⟩ ∈ EXTI(rdfs:subClassOfI)⇒ xI ∈ CI ∧ yI ∈ CI ∧CEXTI(xI) ⊆ CEXTI(yI) (2.13)

This condition may be calledweak subsumption, because it is not ‘if and only if’ construct10.

The reflection and transitivity on rdfs:subClassOf relation is trivially true from the notion of sub

set on the class extension.

(Reflection) rdfs:subClassOf is self-reflective.

xI ∈ CI ⇒ ⟨xI, xI⟩ ∈ EXTI(rdfs:subClassOfI) (2.14)

(Transitivity) rdfs:subClassOf is transitive.

⟨xI, yI⟩ ∈ EXTI(rdfs:subClassOfI) ∧ ⟨yI, zI⟩ ∈ EXTI(rdfs:subClassOfI)

⇒ ⟨xI, zI⟩ ∈ EXTI(rdfs:subClassOfI) (2.15)

In RDF semantics, every class in the universe is a subclass of rdfs:Resource.

(Top) rdfs:Resource is the top class of class hierarchy.

xI ∈ CI ⇒ ⟨xI, rdfs:ResourceI⟩ ∈ EXTI(rdfs:subClassOfI) (2.16)

These rdf:type and rdfs:subClassOf relations between rdfs:Resource and rdfs:Class is depicted

in Fig. 2.1together with all other entities in the universe.

Domain and range constraints for property

The RDF class-instance system may appear to be similar to type systems of object-oriented pro-

gramming languages. However, RDF language is, precisely, not object-oriented, rather property-

oriented. “RDF differs from many such systems in that instead of defining a class in terms of the

properties its instances may have, the RDF vocabulary description language describes properties

in terms of the classes of resource to which they apply. This is the role of the domain and range

10Oppositely, the subsumption rule with ‘if and only if’ construct may be calledstrong subsumption. In OWL DL
semantics, the strong subsumption is used. See Section 2.2 for the detail.
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rdf:_1
rdfs:subClassOf rdfs:subPropertyOf rdf:type rdf:predicaterdfs:domain rdfs:range rdfs:label rdf:object rdfs:comment rdf:firstrdf:rest

rdfs:subClassOfrdfs:subPropertyOfrdf:type classinstance

rdfs:seeAlso rdfs:isDefinedBy rdf:value rdf:subject rdfs:member rdf:_2rdf:_3
rdf:Property rdfs:ContainerMembershipPropertyrdf:nil rdfs:Resourcerdf:List rdf:Statement rdfs:Container rdf:Altrdf:Seqrdf:Bagrdfs:Literal rdf:XMLLiteralrdfs:Class rdfs:Datatype

Fig. 2.1: RDF Resources and their Relations.

mechanisms described in this specification.” (RDFSchema [7]) Using this RDF approach, it is easy

for ones to subsequently define additional properties onto an ontology that is made by other people.

It can be done without the need to redefine the original description of these classes. “One benefit

of the RDF property-centric approach is that it allows anyone to extend the description of existing

resources”. (RDFSchema [7])

As described above, a property is a resource in the universe. Thus, a property may have its own

properties, namely domain and range constraints in the case of RDFS.

(Domain) A subject in triple must satisfy the class restriction that is defined as domain constraint

on the property.

⟨xI, yI⟩ ∈ EXTI(rdfs:domainI) ∧ ⟨uI, vI⟩ ∈ EXTI(xI)⇒ uI ∈ EXTI(yI) (2.17)

(Range) An object in triple must satisfy the class restriction that is defined as range constraint on

the property.

⟨xI, yI⟩ ∈ EXTI(rdfs: rangeI) ∧ ⟨uI, vI⟩ ∈ EXTI(xI)⇒ vI ∈ EXTI(yI) (2.18)
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Superproperty and subproperty in RDFS

As the inclusiveness of the class extension settles the notion of super-sub relationship on class, the

inclusiveness of the property extension settles the notion of super-sub relationship on property. This

super-sub property supports the inheritance of domain and range attributes on property.

(PropSubsumption)

⟨xI, yI⟩ ∈ EXTI(rdfs:subPropertyOfI)⇒ xI ∈ PI ∧ yI ∈ PI ∧ EXTI(xI) ⊆ EXTI(yI) (2.19)

(PropReflection) rdfs:subPropertyOf is self-reflexive.

xI ∈ PI ⇒ ⟨xI, xI⟩ ∈ EXTI(rdfs:subPropertyOfI) (2.20)

(PropTransitive) rdfs:subPropertyOf is transitive.

⟨xI, yI⟩ ∈ EXTI(rdfs:subPropertyOfI) ∧ ⟨yI, zI⟩ ∈ EXTI(rdfs:subPropertyOfI)

⇒ ⟨xI, zI⟩ ∈ EXTI(rdfs:subPropertyOfI) (2.21)

RDF Graph and Monotonicity

In semantic theory, it is critical to determine whether or not an additional piece of knowledge

changes the previous interpretation. In order to know meanings of a set of pieces of knowledge,

we must know all pieces of knowledge including what is implicitly contained. With a given set

of triples and its interpretation, if a new additional triple within the given vocabulary and semantic

conditions does not change the interpretation, it can be phrased ‘the given set of triples and its in-

terpretationentail the new triple’, and the new triple is called anentailment. For example, in the

case that we have a given triple⟨s, p, o⟩, even if a triple⟨s, rdf : type, rdfs:Resource⟩, which is not

explicitly stated so far, is added, it does not change the previous interpretation, because every entity

in the universe is a member of classrdfs:Resource. Adding new triples within the given vocabulary

and semantic conditions, however, can make an interpretation more complex, more precise, and

richer, with preserving the previous interpretation holds. For example, adding⟨s, rdf : type, o′⟩
such as⟨o′, rdfs : subClassOf, o⟩ for ⟨s, p, o⟩ makes the previous interpretation more detailed

without contradicting the interpretation held before.

Furthermore, adding new tripes with a new vocabulary and new semantic conditions can extend
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the interpretation with preserving the previous interpretation holds.

“Given a set of RDF graphs, there are various ways in which one can ‘add’ infor-

mation to it. Any of the graphs may have some triples added to it; the set of graphs

may be extended by extra graphs; or the vocabulary of the graph may be interpreted

relative to a stronger notion of vocabulary entailment, i.e. with a larger set of semantic

conditions understood to be imposed on the interpretations. All of these can be thought

of as an addition of information, and may make more entailments hold than held before

the change. All of these additions are monotonic, in the sense that entailments which

hold before the addition of information, also hold after it.” (RDF Semantics [25])

In Semantic Web theory, knowledge must be formalized to meet the requirement of mono-

tonicity of knowledge. Under thismonotonicity principle, the primitive world that has less triples

is extended more precisely and richer along with additional triples with/without new vocabulary

and extended interpretation rules. Thus, rdf-vocabulary and rdf-interpretation are superimposed

to the simple interpretation, and rdfs-vocabulary and rdfs-interpretation are superimposed to rdf-

vocabulary and rdf-interpretation. As well, owl-vocabulary and owl-interpretation must be super-

imposed to rdfs-vocabulary and rdfs-interpretation.

Entailment rules in RDF(S)

As shown in several semantic conditions so far, there are many entailment rules in RDF and RDFS.

All of them are summarized at Table 2.1 through Table 2.5, which are taken from RDF Seman-

tics [25]. Note that “uuu aaa xxx.” in tables represents a triple, which is previously expressed

⟨uuu,aaa, xxx⟩ or ⟨uuuI, xxxI⟩ ∈ EXTI(aaaI). Whereas these rules might look to be trivially

true, but it is, in reality, not trivial. It is a sort ofword to the wise. We can use these rules in many

ways. For example,rdf4a. rdf4b , andrdf1 allow us to defineuuuI andvvvI as a resource and

aaaI as a property. Such entailments are utilized in SWCLOS for forward reference of ontology

along with the monotonicity principle. See Chapter 3.

2.2 OWL Semantics

OWL can facilitate more precise ontology description than RDFS. The OWL specifications contain

many features and capabilities that are useful to describe Web ontologies. For example, using OWL,

ontologists can explicitly describe more precise and complex concepts on equivalence, disjointness,
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Table 2.1: Simple Entailment Rules in RDF

Rule name If E contains then add note
se1 uuu aaa xxx. uuu aaa_:nnn. where _:nnn identifies a blank node allocated to

xxxby rule se1 or se2.
se2 uuu aaa xxx. _:nnn aaa xxx. where _:nnn identifies blank node allocated to

uuuby rule se1 or se2.

Table 2.2: Literal generalization rule

Rule name If E contains then add note
lg uuu aaa lll. uuu aaa_:nnn. where _:nnn identifies a blank node allocated to

the literallll by this rule.

Table 2.3: Literal instantiation rule

Rule name If E contains then add note
gl uuu aaa_:nnn. uuu aaa lll. where _:nnn identifies a blank node allocated to

the literallll by rule lg.

Table 2.4: RDF entailment rules

Rule name If E contains then add note
rdf1 uuu aaa yyy. aaardf:type rdf:Property .
rdf2 uuu aaa lll. _:nnnrdf:type rdf:XMLLiteral . where _:nnn identifies a blank

node allocated to lll by rule lg.
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Table 2.5: RDFS entailment rules

Rule If E contains then add note
wherelll is a plane literal w/o ltag.

rdfs1 uuu aaa lll. _:nnnrdf:type rdfs:Literal . where _:nnn identifies a blank node
allocated to lll by rule lg.

rdfs2 aaardfs:domainxxx . uuurdf:typexxx . domain constraint
uuu aaa yyy.

rdfs3 aaardfs:rangexxx . vvvrdf:typexxx . range constraint
uuu aaa vvv.

rdfs4a uuu aaa xxx. uuurdf:type rdfs:Resource. resource membership
rdfs4b uuu aaa vvv. vvvrdf:type rdfs:Resource. resource membership
rdfs5 uuurdfs:subPropertyOfvvv. uuurdfs:subPropertyOfxxx . transitivity of properties

vvvrdfs:subPropertyOfxxx .
rdfs6 uuurdf:type rdf:Property . uuurdfs:subPropertyOfuuu. reflection of properties
rdfs7 aaardfs:subPropertyOfbbb. uuu bbb yyy. super property

uuu aaa yyy.
rdfs8 uuurdf:type rdfs:Class . uuurdfs:subClassOf rdfs:Resource.top class
rdfs9 uuurdfs:subClassOfxxx . vvvrdf:typexxx . subsumption

vvvrdf:typeuuu.
rdfs10 uuurdf:type rdfs:Class . uuurdfs:subClassOfuuu. reflection of classes
rdfs11 uuurdfs:subClassOfvvv. uuurdfs:subClassOfxxx . transitivity of classes

vvvrdfs:subClassOfxxx .
rdfs12 uuurdf:type uuurdfs:subPropertyOf ordinal property

rdfs:ContainerMembershipProperty. rdfs:member .
rdfs13 uuurdf:type rdfs:Datatype . uuurdfs:subClassOf rdfs:Literal . top datatype
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intersection, and union of concepts. However, W3C specified OWL semantics in two ways, i.e.,

Direct Model-Theoretic Semantics [59] and RDF-Compatible Model-Theoretic Semantics [58], and

then it is stated that Direct Model-Theoretic Semantics takes precedence over RDF-Compatible

Model-Theoretic Semantics, if the description of specifications contains contradictions.

In this section, for the sake of the unification of RDF semantics and OWL semantics, OWL

semantics is described according to Tarskian denotational model semantics as well as RDF Se-

mantics [25], while the description in Direct Model-Theoretic Semantics and other OWL docu-

ments [65, 49] are referred to.

2.2.1 OWL in Denotational Semantics

OWL vocabulary

In the Direct Model-Theoretic Semantics [59], OWL vocabularyV consists of vocabularies for

literals and for eight kinds of URI references as follows:

V = VL ∪VC ∪VD ∪VI ∪VO ∪VDP ∪VIP ∪VAP∪VOP

VL : literals, i.e., plane literals and typed literals

VC : class names, e.g., owl :Thing, owl :Nothing, etc.

VD : datatype names, e.g., xsd:string, xsd: integer, etc.

VI : individual names

VO : ontology names

VDP : data valued property names, e.g., vin :yearValue.

VIP : individual property names, e.g., owl :sameAs, etc.

VAP : annotation property names, e.g., owl :versionInfo, rdfs : label, rdfs :comment, etc.

VOP : ontology property names

Here,VC andVD are disjoint, andVDP,VIP,VAP, andVOP are pairwise disjoint.

Note that in OWL DL,VC andVI are disjoint, but OWL Full does not distinguish them.
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OWL interpretation

The denotational interpretation for OWL can be formalized as follows11:

1. A non-empty setOTI of entities such thatOTI ⊂ RI, called OWL universe ofI.

OTI is disjoint fromLV.

2. A setOPID such thatOPID ⊂ PI, called a set of denotations of datatype properties.

3. A setOPII such thatOPII ⊂ PI, called a set of denotations of individual properties.

4. A setOPIA such thatOPIA ⊂ PI, called a set of denotations of annotation properties.

5. A setOPIO such thatOPIO ⊂ PI, called a set of denotations of ontology properties.

6. A mappingEXTI from OPID into the powerset ofOTI × LV.

7. A mappingEXTI from OPII into the powerset ofOTI ×OTI.

8. A mappingEXTI from OPIA into the powerset ofRI × RI.

9. A mappingEXTI from OPIO into the powerset ofOI ×OI.

10. A mappingLI from typed literals inVL into LV.

11. A mappingSI from URI references inVI into OTI.

Note that the semantics of property extensionEXTI in OWL is the same as one in RDF (2.1).

Namely, the definitions such thatOPID ⊂ PI, OPII ⊂ PI, OPIA ⊂ PI, andOPIO ⊂ PI enable the

interpretation coincident with RDF semantics along with the definitionOTI ⊂ RI.

Proof. With applying (2.1) toOPII andOPIO, RDF simple interpretation 3 and OWL interpretation

7 and 9 yieldOTI ⊂ RI andOI ⊂ RI.

Class and instance relation in OWL

The semantics of membership in OWL is the same as RDF, namely, the definition (2.2) also holds

in OWL. Thus, the definitionsOTI ⊂ RI implies that every entity in OWL is also a resource of the

universe of discourse in RDF. Hereafter, let us callOTI OWL universe, andRI RDF universe. The

OWL universe is a subset of RDF universe.
11These descriptions are derived as they simulate the way of formalization in RDF Semantics. However, the descrip-

tions are almost same as the RDF-Compatible Model-Theoretic Semantics [58] but extended to contain the description of
RDF universe.
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Strong subsumption in OWL

While the super-sub relationship in RDF classes isweak subsumptioncondition (2.13), that in OWL

universe isstrong subsumptioncondition. (OWL Semantics [58], OWL2 [9] Table 5.8) See the

following formula.

⟨xI, yI⟩ ∈ EXTI(rdfs:subClassOfI)

⇔ xI ∈ OCI ∧ yI ∈ OCI ∧CEXTI(xI) ⊆ CEXTI(yI) (2.22)

WhereOC is a set of all classes in OWL universe. This formula means in the direction of the right

hand side to the left hand side; if we find that a class extensionCEXTI(CI) of classCI is a subset

of a class extensionCEXTI(DI) of classDI whereCI is not related toDI on rdfs:subClassOf,

CI is not a subclass ofDI in RDF semantics but it is so in OWL semantics. In other words, if two

classes are in super-sub relationship of classes of RDF semantics, then it is so in OWL semantics

(from the left hand side to the right hand side), but not vice versa.12

This strong condition allows ones to decide that a class that has a class extension as a subset

included another set is a subclass of another class that has a class extension as its superset, even

though both classes are not connected in RDF graph. It also implies that the class notion in OWL is

regarded the same as set. The super/subset relationship in set theory coincides with super/subclass

relationship of OWL classes. Therefore, the intensional definition for OWL classes substantially

coincides with the extensional definition of classes like set theory13.

Top class and bottom class in OWL

The OWL universeOTI is a powerset that contains all individuals in OWL, and then it is named as

an extension of a classowl:ThingI. On the other hand, we may have a bottom class as an empty set

in the OWL universe, and it is named as an extension ofowl:NothingI.

1. CEXTI(owl:ThingI) = OTI

2. CEXTI(owl:NothingI) = ∅, empty set

12SWCLOS, which is object oriented OWL processor in OWL Full level, adopts the weak subsumption not only in
RDF universe but also in OWL universe, whereas the complete relationship (iff relationship) for owl:intersectionOf,
owl:unionOf, and owl:oneOf is adopted and computed ingx:subsumed-p in OWL universe.

13This condition is too strong for object-oriented languages that are coupled with OWL semantics. In this semantics,
we cannot distinguish two distinct sets which contains twin objects that hold completely the same slot values. Therefore,
the weak condition for subsumption on rdfs:subClassOf is preserved in SWCLOS.
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Obviously by set theory, owl:Thing is a superclass of any other class, and owl:Nothing is a subclass

of any other classes in OWL universe.

Class extension in OWL

Supposing a collection of all classes in OWL universe, namelyOCI, and name it as an class exten-

sion ofowl : ClassI. Note that the OWL universe is a subset of the RDF universe,OTI ⊆ RI, and

the semantics of rdf:type and the membership is the same between RDF and OWL, then it is derived

that every class in OWL universe belongs to RDF universe, namelyOCI ⊆ CI.

Specialized interpretation for OWL universe

The followings are a specialized version of RDF simple interpretation for OWL universe.

1. A non-empty setOCI such thatOCI ⊆ CI, called a set of denotations of OWL classes.

2. A mappingCEXTI from OCI into the powerset ofOTI.

3. A mappingCEXTI from ODI into the powerset ofLV.

4. A mappingSI from URI references inVC into OCI.

5. A mappingSI from URI references inVD into ODI.

6. CEXTI(owl:ClassI) = OCI

Class property in OWL

It might sound strange but any property extension of classes for class vocabularyVC is not defined

in the Direct Model-Theoretic Semantics [59]. The reason is that the relationship among classes

falls into a category of higher order logic. The Direct Model-Theoretic Semantics is for OWL

DL, which is based on Description Logic, a subset of first order logic. Therefore, the extension of

classes for class vocabulary goes beyond the scope of first order logic and DL. We introduce here a

vocabulary for class propertyVCP and the notion of property extension for classesOPIC as well as

the vocabulary for individual propertyVIP and the property extension for individualsOPII
14

14In case that we consider owl:intersectionOf or owl:unionOf are words inVCP, the definition ofOPIC does not match
the discussion in the RDF-Compatible Model-Theoretic Semantics [58], because those class properties take a sequence
of classes and every range of them is rdf:List. However, rdf:List as construct of sequence of classes is problematic so
that it makes it easy to fall into a trap of misunderstanding ‘comprehension principle’. In this section, we stay clear of
disputes on rdf:List for sequences of classes. See the detailed discussion in Chapter 6.
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1. A setOPIC such thatOPIC ⊆ PI.

2. A mappingEXTI from OPIC into the powerset ofOCI ×OCI.

Apart from the restriction that arises from first order logic, the relationship around individuals

and classes in OWL universe are emerging in homo-morphological image between the interpretation

for individuals and the interpretation for classes in the front of our eyes. The following conditions

are the result of rearrangement of those conditions mentioned above.

For individuals;

1. A non-empty setOTI of entities such thatOTI ⊆ RI.

2. A setOPII such thatOPII ⊆ PI.

3. A mappingEXTI from OPII into the powerset ofOTI ×OTI.

4. A mappingSI from URI references inVI into OTI.

For classes;

1. A non-empty setOCI such thatOCI ⊆ CI.

2. A setOPIC such thatOPIC ⊆ PI.

3. A mappingEXTI from OPIC into the powerset ofOCI ×OCI.

4. A mappingSI from URI references inVC into OCI.

These homo-morphological semantic conditions between individuals and classes ensure a con-

text dependent subsumption algorithm. Namely, the same algorithm does work well for both in-

dividuals (and to their classes) and classes (and to their metaclasses). Thus, it enablespunningin

context and the object oriented method programming, of which program code will work for indi-

viduals with their classes and classes with their metaclasses.

Equivalent OWL classes

In OWL, the meaning of the property extension of owl:equivalentClass is that the two classes de-

scribed have exactly the same class extension. See the following definition.

⟨xI, yI⟩ ∈ EXTI(owl:equivalentClassI)⇔

xI ∈ OCI ∧ yI ∈ OCI ∧ CEXTI(xI) = CEXTI(yI)
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Complement of concept

Among OWL properties, three properties, i.e., owl:complementOf, owl:intersectionOf, and owl:unionOf

make a complete relation between the left-hand side and the right-hand side without using owl:equivalentClass.

The description with owl:complementOf states that a class extension of one class is complement of

another in OWL universe.

⟨xI, yI⟩ ∈ EXTI(owl:complementOfI)⇔

xI ∈ OCI ∧ yI ∈ OCI ∧ CEXTI(xI) = OT \ CEXTI(yI)

Intersection and union of concepts

Both owl:intersectionOf and owl:unionOf take a collection of classes as their object in triple, and

owl:intersectionOf makes a subconcept and owl:unionOf makes superconcept of collection mem-

bers.

⟨xI, {yI1 , yI2 , . . . , yIn }⟩ ∈ EXTI(owl: intersectionOfI)⇔

xI ∈ OCI
∧

i=1,...,n

yIi ∈ OCI ∧ CEXTI(xI) =
∩

i=1,...,n

CEXTI(yIi )
(2.23)

⟨xI, {yI1 , yI2 , . . . , yIn }⟩ ∈ EXTI(owl:unionOfI)⇔

xI ∈ OCI
∧

i=1,...,n

yIi ∈ OCI ∧ CEXTI(xI) =
∪

i=1,...,n

CEXTI(yIi )
(2.24)

Note that this entailment rules are modified from RDF and OWL semantics written in W3C rec-

ommendations. The domain constraint of owl:intersectionOf and owl:unionOf is owl:Class, but the

range constraint is rdf:List. However, this range constraint is problematic so that it tends to confuse

the interpretation of collection or rdf:List in the discussion of the RDF compatibility of OWL DL.

Therefore, we do not use rdf:first and rdf:rest in order to embody a collection. Instead we make

a list in Lisp and handle directly a list and its members in SWCLOS. This interpretation basically

does not contradict to form an RDF graph as collection of classes that compatible to a sequence of

classes. The details with respect tocomprehension principleand collections for owl:intersectionOf

and owl:unionOf are discussed in Chapter 6.
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Disjoint classes

In OWL, the disjoint relationship of two classes may be explicitly described as follows.

⟨xI, yI⟩ ∈ EXTI(owl:disjointWithI)⇒ xI ∈ OCI ∧ yI ∈ OCI ∧ CEXTI(xI) ∩ CEXTI(yI) = ∅

The discussion on disjoint classes is problematic. See the discussion at Chapter 7.

OneOf property

owl:oneOf makes axiomatic complete assertions.

⟨xI, {yI1 , yI2 , . . . , yIn }⟩ ∈ EXTI(owl:oneOfI)⇔

xI ∈ CI
∧

i=1,...,n

yIi ∈ RI ∧ CEXTI(xI) = {yI1 , yI2 , . . . , yIn }

Individuals and non-Unique Name Assumption

According to the Tarskian denotational semantics, the semantics of owl:sameAs and owl:differentFrom

can be formalized as follows.

(owl:sameAs) Ifx andy are different URIs and the both references make a pair that is an extension

of owl: sameAsI, then the denotation ofx andy are the same one.

{x , y | x ∈ VI , y ∈ VI } ∧ ⟨xI, yI⟩ ∈ EXTI(owl:sameAsI)⇒ xI = yI (2.25)

(owl:differentFrom) Ifx andy are different URIs and the both references make a pair that is an

extension ofowl:differentFromI, then the denotation ofx andy are different.

{x , y | x ∈ VI , y ∈ VI } ∧ ⟨xI, yI⟩ ∈ EXTI(owl:differentFromI)⇒ xI , yI (2.26)

These conditions are callednon-Unique Name Assumption. It is, however, unusual for predicate cal-

culus, programming languages, and other most mathematical branches and computer applications,

even though it is a common usage like nicknames in everyday languages.

The non Unique Name Assumption implies that we need to decide the sameness of denotations

of symbols or names in order to obtain useful results from knowledge or ontologies. There are two

basic questions arising. Firstly, what we should do in case that we do not have sufficient information

to decide the sameness or differentness of denotations. Secondly, different URIs denote different
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graph nodes in RDF semantics. So, how we should treat owl:sameAs and owl:differentFrom in

RDF semantics and in the combination of RDF semantics and OWL semantics, namely OWL Full.

Section 6.4 discusses these questions and addresses a solution that is implemented in SWCLOS.

Property restriction

The domain constraint and range constraint of property in RDF is global upon a property, and they

restrict the subject class and the object class of a predicate in a triple. Therefore, the range constraint

has an effect for any subject of triples. On the other hand, property restrictions in OWL are applied

to subjects to which and predicates on which owl:onProperty is designated. There are three kinds

of value constraints and three kinds of cardinality constraints.

⟨xI, yI⟩ ∈ EXTI(owl:allValuesFromI) ∧ ⟨xI, pI⟩ ∈ EXTI(owl:onPropertyI)⇒

{uI ∈ OTI | ⟨uI, vI⟩ ∈ EXTI(pI)→ vI ∈ CEXTI(yI)}
(2.27)

⟨xI, yI⟩ ∈ EXTI(owl:someValuesFromI) ∧ ⟨xI, pI⟩ ∈ EXTI(owl:onPropertyI)⇒

{uI ∈ OTI | ∃⟨uI, vI⟩ ∈ EXTI(pI) ∧ vI ∈ CEXTI(yI)}

⟨xI, yI⟩ ∈ EXTI(owl:hasValueI) ∧ ⟨xI, pI⟩ ∈ EXTI(owl:onPropertyI)⇒

{uI ∈ OTI | ∃⟨uI, yI⟩ ∈ EXTI(pI)}

⟨xI,n⟩ ∈ EXTI(owl:minCardinalityI) ∧ ⟨xI, pI⟩ ∈ EXTI(owl:onPropertyI)⇒

{uI ∈ OTI | | {vI ∈ OTI ∪ LV} ∧ ⟨uI, vI⟩ ∈ EXTI(pI) | ≥ n }

⟨xI,n⟩ ∈ EXTI(owl:maxCardinalityI) ∧ ⟨xI, pI⟩ ∈ EXTI(owl:onPropertyI)⇒

{uI ∈ OTI | | {vI ∈ OTI ∪ LV} ∧ ⟨uI, vI⟩ ∈ EXTI(pI) | ≤ n }
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⟨xI, n⟩ ∈ EXTI(owl:cardinalityI) ∧ ⟨xI, pI⟩ ∈ EXTI(owl:onPropertyI)⇒

{uI ∈ OTI | | {vI ∈ OTI ∪ LV} ∧ ⟨uI, vI⟩ ∈ EXTI(pI) | = n }

2.2.2 OWL Entailment Rules

Since OWL provides many facilities for ontology description [49] and the combination of these

features bears many numbers of entailment rules, all of possible entailment rules are not exhausted.

Some of them are disclosed by ter Horst [72]. Table 2.6 lists a set of OWL entailment rules by ter

Horst. Note that additional rules are found by us (See Table 3.3) and implemented into SWCLOS

together with ones by ter Horst.

2.3 CLOS Semantics

Common Lisp [68, 69] is a dialect of lisp languages, which is produced by the activity of ANSI stan-

dardization on lisp dialects in U.S. Many applications are programmed in Common Lisp languages

and they are running from academia to industry today. Common Lisp Object System (CLOS) is an

object oriented extension of Common Lisp, which was born as a result of the work of introducing an

object oriented programming paradigm into Common Lisp by unifying mainly two object oriented

languages at that time, Common Loops and Flavors, which ran on two major lisp machines. The

CLOS specification has been integrated to Common Lisp in ANSI Common Lisp version 2 [69].

Note that Common Lisp is a specification of a list language, and not a name for actual language

systems. There are several Common Lisp systems from open source programs to commercial-based

systems.

2.3.1 CLOS View of Object Oriented Programming

Compared to today’s major OOP languages like Java or C#, CLOS has unique features. The funda-

mentals of CLOS areclasses, instances, generic functions, andmethods[69].

Class and instance. A class in CLOS is an object that determines the structure and behavior of

other objects, namely its instances. Every object in CLOS is an instance of a class. Thus, any class

object is also an instance of another class.
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Table 2.6: OWL Entailment Rules

Rule If E contains then add note
p type FunctionalProperty .

rdfp1 u p v. v sameAsw . functional property
u p w.
p type InverseFunctionalProperty

rdfp2 u p w. u sameAsv . inverse functional property
v p w.

rdfp3 p type SymmetricProperty . w p v . symmetric property
v p w.
p type TransitiveProperty .

rdfp4 u p v. u p w. transitive property
v p w.

rdfp5a v p w. v sameAsv . self-evident sameAs
rdfp5b v p w. w sameAsw .
rdfp6 v sameAsw . w sameAsv . reflective sameAs
rdfp7 u sameAsv . u sameAsw . transitive sameAs

v sameAsw .
rdfp8ax p inverseOfq . w q v . inverse of property

v p w.
rdfp8bx p inverseOfq . w p v . symmetric inverse

v q w.
rdfp9 v type Class . v subClassOfw . subsumption on

v sameAsw . same classes
rdfp10 p type Property . p subPropertyOfq . subsumption on

p sameAsq . same properties
u p v. property extension

rdfp11 u sameAsu′ . u′ p v′ . through sameAs
v sameAsv′ .

rdfp12a v equivalentClassw . v subClassOfw . subsumption on equivalentClass
rdfp12b v equivalentClassw . w subClassOfv .
rdfp12c v subClassOfw . equivalency from

w subClassOfv . v equivalentClassw . subsumption classes
rdfp13a v equivalentPropetyw . v subPropertyOfw . subsumption on equivalent property
rdfp13b v equivalentPropetyw . w subPropertyOfv . ditto
rdfp13c v subPropertyOfw . equivalency from

w subPropertyOfv . v equivalentPropertyw . subsumption properties
rdfp14a v hasValuew .

v onPropertyp . u typev . filler restriction entailment
u p w.
v hasValuew .

rdfp14bx v onPropertyp . u p w. hasValue definition
u typev .
v someValuesFromw .

rdfp15 v onPropertyp . u typev . full existential restriction entailment
u p x .
x typew .
v allValuesFromw .

rdfp16 v onPropertyp . x typew . allvaluesfrom definition
u typev .
u p x .
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Generic function and method. A generic function is an extension of function whose behavior

depends on the classes of the arguments supplied to it. A generic function is an aggregation or

abstraction of specialized methods that have an identical name and the same number of function

parameters but each method has the parameters associated to different classes. An actual method

to be invoked is determined at run time by matching classes specified for parameters against ac-

tual classes of arguments supplied to the parameters. This method invocation mechanism is called

method dispatching. The object oriented paradigm in CLOS is based on this method dispatching

mechanism rather than on message-passing to objects that is invented by Smalltalk. It facilitates

flexible context dependent programming. CLOS does not provide the facility of the encapsulation

of object data.

Multiple inheritance. The structure and behavior of objects are inherited from superclasses of

the class of an object. Whereas classes in Java and C# has a single direct superclass to inherit the

structure and behavior, a CLOS class may have more than one direct superclass, and an object can

inherit the structure and behavior from all of multiple superclasses of the class.

Method combination. In CLOS standard method combination, there are four kinds of methods,

primary, before, afterandaround method. The before method is a sort of prologue for the primary

method in order to make preparations, and the after method is a sort of epilogue that performs

housekeeping or clearing. The around method can change values of supplied arguments before

primary method invocation. The most specific primary method in the combination of argument’s

classes among methods matched by method dispatching is invoked, and a programmer can encode

in primary methods to pass a part of work to more abstract methods or delegate it to another method.

In addition to the standard method combination, a programmer can change the method combi-

nation strategy from the standard one to another one.

First-class objects. In CLOS, generic functions and classes are first-class objects. Namely, they

can be arguments for function calling. It is possible to create an anonymous function (lambda

function) and anonymous class, and then they can be manipulated as object in the system as well as

named objects.
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2.3.2 Class Based System and Miscellaneous

CLOS is a class based system. A class in CLOS is a mother prototype of its instances, and inevitably

an instance belongs to only one direct class. A class must be defined before making its instance.

Class precedence list. In CLOS realization, all superclasses of a class are collected and cached

into the slot namedmop:class-precedence-list. The value of class precedence lists of a class

are computed at the time of the first creation of its instance.

Slot inheritance. Each class has its own slot definitions for instances. It is calleddirect slot

definition. Each class also has the slot definitions that are inherited from all superclasses of the

class. It is calledeffective slot definitions. The effective slot definitions provides a source of making

slots of instances. [31]

Slot value type option. The direct slot definition and the effective slot definition can hold a speci-

fier of class constraint for slot value. It can play a role of constraint of slot value in instance. The slot

definition inheritance mechanism is equipped with the mechanism of retrieving and accumulating

the inherited slot value type option.

Changing a class of instance. CLOS provides the functionality of changing a class of an instance

at run time. The slot structure of the instance may be modified by changing the class.

Redefinition of class. CLOS provides the functionality of redefining a class at run time. It in-

volves redefining the slot structure of instance objects. Redefining a class causes the effects on its

all instances. The effect of redefining class automatically propagates to its subclasses and instances

of subclasses. A programmer can control this propagation.

2.3.3 Meta-circularity in CLOS and Meta-Object Protocol

The most remarkable feature of CLOS is the openness of language specification for users. “The ba-

sic idea of the CLOS design is to specify a model for the language implementation and to standardize

it. The inner workings of the implementation thereby become manipulable in a controlled manner.

This internal model is called the CLOS Metaobject Protocol (MOP).” (Andreas Paepcke [56]) CLOS

itself is written in CLOS. This unity of language is calledmeta-circularityof language. It is usual

way in computer languages. The compiler of C is programmed in C, and the compiler of Common



40 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

Lisp is programmed in Common Lisp. The feature of CLOS is that it is opened to programmers

through MOP. Users of CLOS can tailor the specification of CLOS using MOP. Ordinary object

oriented languages like Java or C# are not equipped with MOP, the compiling machinery of classes

and methods are ordinarily built in compiler systems and closed to users, although modern ob-

ject oriented languages have recently become to provide the way of retrieving class information of

objects at run time by the name of ‘reflection’. However, precisely “The ability to modify the lan-

guage’s implementation without leaving the realm of the languages is calledreflection.” (Andreas

Paepcke [56])

Generally speaking, the following conditions are required for any computational systems to be

reflective. [64][46]．

1. A computational system represents and exposes the components and the state of itself and

they are manipulable.

2. There is acausalitybetween the target system for computation and the computational system.

Thus, the results of computation in one system level may propagate to other levels.

3. Inevitably, the reflective system must be infinitely layered so that a target system is controlled

by the computational system, then the computational system must be realized and controlled

another system, and then the system for the computational system must be realized by another

system,· · · and so forth. Thus, some trick is needed to suppress this infinite layering into finite

machinery.

These requirements for reflective system are realized as follows for reflective object oriented lan-

guage CLOS.

1. Every class in CLOS is realized as an object in CLOS, and it is manipulated through CLOS

standardized Meta-Object Protocol for metaobjects. [31]．

2. There is no difference in semantics and realizations among built-in metaobjects for CLOS

realization and user defined metaobjects for target systems, and they exist in the unity of

system.

3. The class of cl:standard-class is cl:standard-class itself (meta-circularity and membership-

loop), whereby infinite meta-circularity in reflective object systems is virtually realized.

Where the following demonstration shows the meta-circularity of systems by the membership loop

of cl:standard-class.
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(defclass C1 (standard-class) ()
(:metaclass standard-class))

-> #<standard-class C1>
(defclass C2 (standard-class) ()
(:metaclass C1))

-> #<C1 C2>
(defclass C3 (standard-class) ()
(:metaclass C2))
-> #<C2 C3>

In this simple demonstration, note thatC3 is a metaclass at the same level of cl:standard-class,

C2 has become to be a meta-metaclass at the same level of cl:standard-class,C1 has become to

be a meta-meta-metaclass at the same level of cl:standard-class. Notably, the membership loop

at cl:standard-class enabled such meta-level layering amongC3, C2, andC1. Note that the first

definition onC1 does not designate it as a meta-meta-metaclass. It is defined as meta-class firsly,

but it is forced to play a role of meta-metaclass whenC2 is defined, and it is also forced to play a

role of meta-meta-metaclass whenC3 is defined.

All slot definitions and methods defined at cl:standard-class can be inherited to classC3, C2, and

C1, and methods can be modified and specialized differently at each class at each meta-level. Thus,

the standard specification of CLOS which is implemented at cl:standard-class can be tailored using

this Meta-Object Protocol that is enabled by the membership loop of cl:standard-class. Also note

that cl:standard-object is a superclass of cl:standard-class and it is an instance of cl:standard-class.

Namely, ordinary classes as subclass of cl:standard-object can be treated as instance of cl:standard-

class, and simultaneously slots and behavior of cl:standard-object are inherited to cl:standard-class

and its subclasses. It is critical to know the relationship between rdfs:Resource and rdfs:Class in

RDF(S) is analogous to such relationship between cl:standard-object and cl:standard-class in CLOS.

We call this specific relationshiptwisted, and it is formally discussed in Chapter 6

2.3.4 Computational Models of Lisps

In this subsection, the category of models on computer languages are discussed with emphasizing

the specialty of lisps as computer language, according to the semantics that was addressed by Brian

Smith for the first reflective lisp system 3-lisp [64].

In a lisp system like early lisp system Lisp 1.5, which is equipped with symbol, function, and

list, and without any other structural devices like object in object oriented programming, a syntactic

lisp expression (S-expression) is reduced to a syntactic nominal form that is semantically equivalent

to the original non-nominal form inλ-calculus. For example, an expression “(+ 1 2)” is reduced to
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“3”. However, we can quote an expression to suppress the reduction, and then we can change expres-

sions and construct another lisp form, such as “(cons (quote *) (cdr (quote (+ 1 2))))”

produces “(* 1 2)”. This specific feature of lisp family languages is recently calledhomoiconic.

In this first computational model, lexical expressions are not discriminated from the denotations. In

other words, we have no notion of denotation.Fig. 2.2pictures this model. In the figure, the map-

ping from notations to objects is carried out in human brains. The reductionψ in lambda calculus

or entailmentψ in logic must follow the relationship of objects in the world. The theory of ordinary

predicate calculus and set theories falls into this computational model.

Notation N1 Notation N2

Object O1 Object O2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ψ

Fig. 2.2: The First Computation Model.

The second computational model discriminates symbols in expression from the denotations. A

lexical expression “3” denotes number 3, and a lexical expression “t” and “nil”, which are reduced

to “t” and “nil”, respectively, denote true and falsity, respectively, in the universe of discourse.

However, an undefined symbol denotes nothing until it is defined in lisp systems among the network

of denotations. Namely, we recognize the denotations as some computational object in a lisp system.

SeeFig. 2.3. This mappingϕ from a lexical expression to the denotation as computational object

is analogous to that in RDF semantics, in which a URI reference denotes a node in RDF graph. In

this model, a denotation denotes an object in the world, and then rules that follow the world must

be superimposed onto the reduction or entailment rulesψ.

Notation N1 Notation N2

Denotation D1 Denotation D2

Ф Ф

Object O1 Object O2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ψ

Fig. 2.3: The Second Computation Model.
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In the third computational model, a symbol refers a structure as internal structured device in a

modern computer language as well as the external list structure in the first lisp model. In this case,

a symbol can be used to refer a referent that denotes an entity in the universe. SeeFig. 2.4.

Notation N1 Notation N2

Structure S1 Structure S2

Denotation D1 Denotation D2

O O-1

Ф Ф

Object O1 Object O2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ψ

Fig. 2.4: The Third Computation Model.

Brian Smith called the mappingO internalization, and the inverse operationO−1 externaliza-

tion. [64] He also noted thatO (andO−1) is usually ignored in logic. Theϕ is the interpretation

function, which is analogous to the interpretation in denotational semantics, and the reductionψ,

which is, Smith says, the relationship among symbols, corresponds entailment rules and rule ap-

plication in logic. Smith pointed out that the lisp evaluator crosses semantical levels, and therefore

obscures the difference between the simplificationψ and the interpretationϕ. Smith called this lisp

specific naturede-reference(ϕ = ψ). It has become the theoretic base of his work on the reflective

language 3-Lisp.

Assumptions and axioms in domain knowledge can be syntactically represented by a set of

symbols and structures expressed among them. Those expressions of assumptions are reduced to

entailed assertions by the entailment rulesψ. It must follow rules in the world.

The model of SWCLOS is appropriate to this third model. Every URI reference or QName

is internalized to a CLOS object. The CLOS objects for RDF embody nodes in RDF graph by

RDF semantics. Theψ is organized to match RDF(S) entailment rules. RDFS subsumption rule is

almost same as CLOS subsumption rule. OWL entailment rules must be superimposed to RDF(S)

entailment rulesψ such follow the rules in the world.
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2.4 Semantic Gaps between OWL and OOPLs

The Software Engineering Task Force (SETF) of W3C compared OWL features with ordinary

Object-Oriented Programming Languages (OOPLs), and pointed out the serious semantic discrep-

ancies asTable 2.7[35]. Note that here the class in OOPLs is compared to the OWL class, and the

instance in OOPLs is compared to the OWL individual. The slot or the member variable of objects

corresponds to the property and its value (role and filler) in OWL.

Nevertheless, some of these items are not issued to dynamic OOPLs such as CLOS as described

above. The dynamic features of CLOS are summarized as follows.

Multiple Class Inheritance: Methods and slot definitions are inherited from multiple classes.15

Dynamic Programming: CLOS provides the means to redefine a class at runtime.

Metaobject: A class in CLOS is the first-class entity as object; thus a class in CLOS is called

metaobject.

Metaclass: A metaclass or a class of classes allows ones to modify methods for classes including

intrinsic methods in the system by using MOP. Specifically, the instance creation method

is customizable in CLOS through metaclasses.

Reflective Programming: A programmer can alter behaviors of CLOS system using MOP.

Thus, it was plausible to implement RDF and OWL semantics leveraging CLOS dynamic features

and MOP.

2.5 Concluding Remarks

In this chapter, firstly, RDF semantics are overviewed according to the description of RDF Seman-

tics [25] of W3C Recommendation. The brief explanation on Tarskian denotational semantics is

also presented. Secondly, OWL semantics is formalized in Tarskian denotational semantics as well

as RDF Semantics, with focusing mainly membership and subsumption of entities. The semantic

disparity between RDF(S) and OWL on membership and subsumption are made clear in detail. Due

to no formalization so far on OWL semantics by Tarskian denotational semantics, this part is our

original contribution for Semantic Webs. The semantic similarity between RDFS and CLOS is also
15This item does not relate to RDF(S) and OWL semantics directly but indirectly relates to the implementation of

multiple classing in SWCLOS, See Subsection 3.1.6
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Table 2.7: A Comparison of OWL/RDF and Object-Oriented Languages (by SETF [35])

Object-Oriented Languages OWL and RDF
Domain models consist of classes, properties and instances (individuals). Classes can be arranged in a subclass
hierarchy with inheritance. Properties can take objects or primitive values(literals) as values.

Classes and Instances
Classes are regarded as types for instances. Classes are regarded as sets of individuals.
Each instance has one class as its type. Classes cannot
share instances.

Each individual can belong to multiple classes.

Instances can not change their type at runtime. Class membership may change at runtime.
The list of classes is fully known at compile-time and
cannot change after that.

Classes can be created and changed at runtime.

Compilers are used at build-time. Reasoners can be used for classification and
Compile-time errors indicate problems. consistency checkingat runtime or build-time.

Properties, Attributes and Values
Properties are defined locally to a class Properties are stand-alone entities that can exist
(and its subclasses through inheritance). without specific classes.
Instances can have values only for the attached Instances can have arbitrary values for any property.
properties. Values must be correctly typed. Range and domain constraints can be used for type
Range constraints are used for type checking. checking and type inference.
Classes encode much of their meaning and behavior Classes make their meaning explicit in terms of OWL
through imperative functions and methods. statements. No imperative code can be attached.
Classes can encapsulate their members to private All parts of an OWL/RDF file are public and can be
access. linked to from anywhere else.
Closed world: If there is not enough information to Open world: If there is not enough information to
prove a statement true, then it is assumed to be false.prove a statement true, then it may be true or false.

Role in the Design Process
Some generic APIs are shared among applications. RDF and OWL have been designed from the ground
Few (if any) UML diagrams are shared. up for the Web. Domain models can be shared online.
Domain models are designed as part of a software Domain models are designed to represent knowledge
architecture. about a domain, and for information integration.
UML, Java, C# etc. are mature technologies The Semantic Web is an emerging technology with
supported by many commercial and open-source some open-source tools and a handful of commercial
tools. vendors.

Miscellaneous Features
Instances are anonymous insofar that they cannot easilyAll named RDF and OWL resources have a unique
be addressed from outside of an executing program. URI under which they can be referenced.
UML models can be serialized in XMI, which is gearedRDF and OWL objects have a standard serialization
for exchange among tools but not really Web-based. based on XML, with unique URIs for each resource
Java objects can be serialized into various XML-based
or native intermediate formats.

inside the file.
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pointed out clearly. Whereas general semantic discrepancy between RDF(S) and OWL that is well

known in Semantic Web community is addressed here, nicer discussions on non-Unique Name As-

sumption and Open World Assumption of OWL and their problems with respect to RDF semantics

are postponed until Section 6.4 and Chapter 7. Thirdly, CLOS semantics and its computational

model are discussed based on the model addressed by Brian Smith, and finally the semantic gap

between OWL and object oriented languages addressed by SETF of W3C are pointed out.

All presented in this chapter is theoretical preparations to implement object-oriented language

for Semantic Web on top of CLOS. The details of the implementation are described in the next

chapter.



Chapter 3

Implementation of RDF, RDFS, and

OWL on CLOS

“You think you know when you learn, are more sure when you can write, even more

when you can teach, but certain when you can program.”(Alan Perlis, Epigrams on

Programming (1982))

In this chapter, firstly RDF and RDFS is realized on top of CLOS by straightforward mapping of

RDF graph such that a start node of graph to a CLOS object, an edge in graph to a slot-name, and an

end node to a slot-value. RDFS class-instance relationship is mapped to CLOS class-instance rela-

tionship. The problems arising from such mapping are discussed and solved. Secondly, all of OWL

features are realized on top of RDF(S) with preserving RDF(S) semantics. We distinguish substan-

tial sorts and non-substantial sorts, and procedural subsumption computation algorithm for OWL

Full is developed. Several OWL specific features are explained with SWCLOS demonstrations.

3.1 Implementation of RDF(S)

3.1.1 Mapping Triples to CLOS Objects

In RDF semantics, a set of triples models a labeled graph called RDF graph.Fig. 3.1 shows an

example of RDF graph1, and it can be expressed by pure CLOS as follows, using a straightforward

1This is taken from the obsolete W3C Working Drafthttp://www.w3.org/TR/2002/
WD-rdf-schema-20021112/.

47
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Fig. 3.1: An Example of RDF Graph

mapping such that a triple ofsubject/predicate/object is mapped to CLOS object/slot-name/slot-

value.

(defpackage rdf
(:documentation "http://www.w3.org/1999/02/22-rdf-syntax-ns"))

(defpackage rdfs
(:documentation "http://www.w3.org/2000/01/rdf-schema"))

(defpackage eg
(:documentation "http://somewhere-for-eg/eg"))

(defpackage dc
(:documentation "http://dublincore.org/2002/08/13/dces"))

(defclass rdfs::Resource ( ) ((rdf::about :initarg :about)))
(defclass eg::Work (rdfs::Resource) ( ))
(defclass eg::Agent (rdfs::Resource) ( ))
(defclass eg::Person (eg::Agent)
((eg::name :initarg :name)))

(defclass eg::Document (eg::Work)
((eg::author :initarg :author :type eg::Person)
(dc::title :initarg :title)))

(defvar eg::Proposal
(make-instance ’eg::Document
:author (make-instance ’eg::Person :name "Tim Berners-Lee")
:title "Information Management: A Proposal"
:about "http:/…/Proposal/"))
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In this example, graph nodes are represented by CLOS objects, that is,rdfs::Resource,

eg::Work, etc. for RDF classes are as metaobjects, andeg::Proposal and a blank node as in-

stance objects. Graph edges are represented by a slot name, e.g.,eg::author anddc::title.

Namely, a triplesubject/predicate/objectin RDF is represented an object, and its pair of slot-name

and slot-value.

QName to lisp symbol and namespace to lisp package

Since URI references are inconveniently long, QName is often used to represent elements and at-

tributes in XML documents instead of the URI reference. The appearance of QName is the same as

exported lisp symbol2. Therefore, a QName in RDF is expressed by a lisp symbol in SWCLOS and

a namespace is mapped to a lisp package. At the example demonstration above, packages named

rdf, rdfs, eg, anddc are defined to implement namespaces with a prefix URI reference in the

document option of package, and lisp symbols are used to express QNames. However, note that

rdf:type relation is replaced with instance-class relation in CLOS, and rdfs:subClassOf relation is

replaced with class-superclass relation in CLOS, because rdf:type and rdfs:subClassOf relations are

analogous to the instance-class and class-superclass relations in CLOS, respectively. This issue is

discussed more precisely later on.

A resource object for property

However, there are some semantic gaps left by this mapping. CLOS is object-centric but RDF is

property-centric. The slot name is not an object in CLOS, but the property in RDF is an instance

of rdf:Property. This question is solved by automatically creating a CLOS object of a property

resource in RDF universe using RDF entailment rulerdf1 (See Table 2.4). Namely, a property

object is automatically created, the instant SWCLOS finds a slot name undefined as CLOS object.

See the following demonstration in SWCLOS.3

gx-user(2): (addObject rdfs:Resource ’((:name yyy)))
#<rdfs:Resource yyy>
gx-user(3): (addObject rdfs:Resource ’((:name uuu) (aaa yyy)))
Warning: Entail by rdfs1: aaa rdf:type rdf:Property.
#<rdfs:Resource uuu>
gx-user(4): aaa
#<rdf:Property aaa>

2A lisp symbol with double colons is internal in a package, and an exported symbol from the package is printed with
a single colon.

3APIs and their calling sequences of SWCLOS are written at SWCLOS User’s Manual [37].
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instance O1

class C

(p v1)

property P

slot-definition pd

instance O2

(p v2)

(subject-type C)

(slotds … …)

(a b) : slot of slot name a and value b

rdf:type

: member of property extension

another slot definition 
for another class on P

Fig. 3.2: Slot Definition and Slot Extension

Property extension and slot definition

A property as a predicate in triple notation represents a binary relation between two resource objects,

or subjectandobject. A set of binary relations between subjects and objects on a particular property

p is called theextensionof the propertyp in RDF, i.e.,EXTI(pI). On the other hand, whereas slots

in CLOS objects are not objects in CLOS semantics but mere placeholders in object memory, a class

has slot definitions for its instances. From the viewpoint of RDF, the slot-definition object in CLOS

coincides with what represents one of mutually disjoint subsets of a property extension which is

partitioned by classes of subjective CLOS objects on a particular property. A slot-definition object

is an instance of themop:slot-definition class in CLOS, and it provides the information about

slot definitions for instances of the class. SeeFig. 3.2. ClassC has a slot-definitionpd for C’s

instances,O1 andO2.

By leveraging this CLOS native slot-definition facility, we created a machinery that collects all

elements of the property extension of a particular property. First of all, we newly designed an extra

slot option namedsubject-type in the slot-definition object, so that it holds a pointer to the self

class of subjective objects on this property. In addition, we designed that all slot definitions for a

particular property are booked inslotds slot of that property resource. Thus, via slotds value in

propertyP, all property extensions of propertyP can be collected, retrieving every pair of subject

and object on the slot definition forP through the pointer to the subject class ofsubject-type

slot. See the following demonstration in SWCLOS.

gx-user(7): (collect-all-extensions-of rdfs:comment)
((#<rdfs:Datatype rdf:XMLLiteral> "The class of XML literal values.")
(#<rdfsClass rdfs:Class> "The class of classes.")
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(#<rdfs:Class rdfs:Resource> "The class resource, everything.")
(#<rdfs:Class rdf:Property> "The class of RDF properties.")
(#<rdfs:Class rdf:Statement> "The class of RDF statements.")
(#<rdfs:Class rdfs:Datatype> "The class of RDF datatypes.")
(#<rdfs:Class rdf:List> "The class of RDF Lists.")
(#<rdfs:Class rdfs:Container> "The class of RDF containers." ...)

3.1.2 Type in CLOS and Membership in RDF

Similarity in class transitivity and subsumption between RDFS and CLOS

The role of the class-instance relationship in CLOS is different from that in RDFS. A class in

CLOS is a type of instance, and an object of which instances share methods and slot definitions.

For instance, a classC in CLOS inherits methods and slot definitions from its superclassD and

other superclasses. The semantics of CLOS is underpinned by the framework of object method

inheritance and slot definition inheritance. On the other hand, a class in RDF(S) represents a set to

which the instances are classified, and the set is called theclass extensionof the class. The class-

superclass relationship in RDFS is the inclusiveness of the class extensions. Namely, the statement

that a classC is a subclass ofD means that the class extension of the denotation ofD, CEXTI(DI),

includes the class extension of the denotation ofC, CEXTI(CI). See the subsumption rule 2.13 in

Chapter 2.

While the semantics of CLOS class-instance is different from that of RDF(S), the class-superclass

relationship and class-instance relationship in CLOS work in the same way as RDF(S) with re-

spect to the transitivity of classes and the subsumption. In practice, the RDF subsumption rule

rdfs94(See Table 2.5) and the transitivity rulerdfs115 (ibid.) are natively realized in CLOS. There-

fore, rdfs:subClassOf relation may be straightforwardly mapped to the class-superclass relation in

CLOS, and rdf:type relation may be mapped to the class-instance relation. Then, RDFS instances

are mapped to CLOS instances, and RDFS classes are mapped to CLOS classes without the viola-

tion of the subsumption and transitivity rules in RDF(S). See the following examples in pure CLOS

language and compare them withrdfs9 andrdfs11. Wherecl:typep is a type testing function,

andcl:subtypep is a class-superclass testing function in Common Lisp;t means boolean true,

and a form such as#<standard-class xxx> is a print form of an object in CLOS.

(defclass xxx () ()) -> #<standard-class xxx>
(defclass vvv (xxx) ()) -> #<standard-class vvv>

4http://www.w3.org/TR/rdf-mt/#rulerdfs9
5http://www.w3.org/TR/rdf-mt/#rulerdfs11
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(defclass uuu (vvv) ()) -> #<standard-class uuu>
(cl:subtypep ’uuu ’xxx) -> t

(defclass xxx () ()) -> #<standard-class xxx>
(defclass uuu (xxx) ()) -> #<standard-class uuu>
(setq vvv (make-instance ’uuu)) -> #<uuu @ #x2126cc9a>
(cl:typep vvv ’uuu) -> t
(cl:typep vvv ’xxx) -> t

Metaclasses in RDFS

The straightforward mapping between RDFS class-instance and CLOS class-instance involves that

rdfs:Class and rdfs:Datatype in RDFS correspond to the metaclass in CLOS. In the manner of CLOS

meta-programming, a class that is a subclass ofcl:standard-class becomes a metaclass. There-

fore, we defined rdfs:Class as a subclass ofcl:standard-class, then rdfs:Datatype also becomes

a CLOS metaclass, because it is a subclass of rdfs:Class.

Realization of rdfs:Class membership loop

As described so far, RDFS classes are realized by CLOS classes, and RDFS metaclasses are real-

ized CLOS metaclasses. However, there was one big obstacle to actually realize them, that is the

membership loop of rdfs:Class. As shown in Subsection 2.3.3, the membership loop at cl:standard-

class is the key for the realization of reflective object oriented systems. However, Allegro Common

Lisp, which is used for realization of SWCLOS, do not permit to set up another membership loop

for any other classes. As a result of our effort, a trick for virtually implementing the membership

loop for a class is found and utilized within the realms of Allegro Common Lisp. The following

demonstration andFig. 3.3shows the essence of this trick.

(defclass meta-node (cl:standard-class) ())
(defclass gnode () ; strict class
() (:metaclass meta-node))

(defclass rdfsClass (meta-node) ; proxy
() (:metaclass meta-node))

(defclass rdfs:Class (meta-node) ; meta
() (:metaclass rdfsClass))

(defclass rdfsClass (rdfs:Class)
() (:metaclass meta-node)) ; now twisted

(defclass rdfs:Resource (gnode)
() (:metaclass rdfs:Class))

(defclass rdfs:Class (meta-node rdfs:Resource) ; final
() (:metaclass rdfsClass))
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rdfs:Class

rdfsClass

gnode

meta-node

rdfs:Resource

Fig. 3.3: A Trick for Membership Loop for rdfs:Class

Surprisingly the relationship between rdfs:Class and its proxy rdfsClass is the same as the relation-

ship between rdfs:Resource and rdfs:Class in RDF, furthermore cl:standard-object and cl:standard-

class, then we particularly named ittwistedrelation.6 Thereby not only in the semantics of RDF but

also in the semantics of CLOS, the membership loop at rdfs:Class is properly implemented. Thus,

a method that is defined to rdfs:Class has become applicable to rdfs:Class itself.

(class-of rdfs:Class) -> #<meta-node rdfsClass>
(cl:subtypep (class-of rdfs:Class) rdfs:Class) -> t
(cl:typep rdfs:Class rdfs:Class) -> t

3.1.3 Subsumption of Properties and Domain/Range inheritance

There is a notion of subsumption on property in RDFS, and the domain/range attributes of a property

are inherited according to the super-sub relation of properties. However, CLOS is not equipped with

subsumption facility among instances7, as well as ordinary OOPLs are not. Therefore, we realized

subsumption notion of the property in RDFS. Furthermore, we put the domain/range constraint and

their inheritance in the property subsumption. See the following examples in SWCLOS on the

domain constraint, in whichrdfs58, rdfs79, andrdfs210 are expressed here.

(defProperty aaa (rdfs:subPropertyOf bbb)) -> #<rdf:Property aaa>
(defProperty bbb (rdfs:domain xxx)) -> #<rdf:Property bbb>
(defIndividual uuu (aaa yyy)) -> #<xxx uuu>
(cl:typep uuu xxx) -> t

To embody the range constraint, the range information that exists in a property object as a resource

is transferred to the type option in the relevant slot-definition object. The system checks the range
6This issue is described more in detail in Chapter 6.
7Properties are instances of rdfs:Property.
8http://www.w3.org/TR/rdf-mt/#rulerdfs5
9http://www.w3.org/TR/rdf-mt/#rulerdfs7

10http://www.w3.org/TR/rdf-mt/#rulerdfs2
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constraint for objects in the slot-definition at the class when an instance of class is created. The

following shows the realization ofrdfs5, rdfs7, andrdfs311.

(defProperty aaa (rdfs:subPropertyOf bbb)) -> #<rdf:Property aaa>
(defProperty bbb (rdfs:range zzz)) -> #<rdf:Property bbb>
(defIndividual uuu (aaa yyy)) -> #<xxx uuu>
(cl:typep yyy zzz) -> t

3.1.4 Tailored Slot Specification

A class in CLOS is also an object calledmetaobject. A metaobject for class is equipped with a

special slot for slot-definitions that specify slot structures of its own instances. Furthermore, the slot

definition per seis also a CLOS object (slot-definition-object) that is equipped with slots for slot

definition data. A slot definition datum in a slot of the slot definition object is calledslot option.

As described at Subsection 2.3.1, in the instance creation process, all slot definitions of the direct

class of an instance and its superclasses are collected, then the collection turns out an instance of

mop:standard-effective-slot-definition and it is stored in a slot namedmop:slots in the

class to which the slot is defined.

To distinguish slot definitions for RDF/OWL objects in RDF universe and OWL universe from

CLOS slot definitions for standard CLOS objects, we newly definedProperty-direct-slot-definition

andOwlProperty-direct-slot-definition as a subclass ofmop:standard-direct-slot-

definition, as well asProperty-effective-slot-definition andOwlProperty-effective-

slot-definition as a subclass ofmop:standard-effective-slot-definition, and then we

tailored the definition of slots.Fig. 3.4depicts the new slot definitions that are defined for RDF and

OWL.

We designed that the class constraint by rdfs:range and owl:onProperty for slot value is stored

into the CLOS native type option of slot definition, then we additionally set extra two options for car-

dinality constraintmaxcardinality andmincardinality in the instance ofOwlProperty-direct-

slot-definition. In the MOP process for making effect slot definition objects at instance cre-

ation, the most specific class are stored into the type option, Therefore, we adapted this facility to

compute inherited rdfs:range and owl:onProperty type constraints for the slot value, and minimum

value among owl:maxCardinality constraints and the maximum value among owl:minCardinality

constraints are also computed and stored intomaxcardinality option andmincardinality, re-

spectively.

11http://www.w3.org/TR/rdf-mt/#rulerdfs3
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mop:standard-direct-slot-definitionmop:standard-effective-slot-definition Property-direct-slot-definitionProperty-effective-slot-definition OwlProperty-direct-slot-definitionOwlProperty-effective-slot-definitionsuperclass
Fig. 3.4: Slot Definitions Dedicated to RDF and OWL

The slot optionsubject-type is used for book-keeping the class of triple subjects to which

this slot is allocated.

3.1.5 Slot Definition On-Demand from Instance Objects

CLOS is a class-based system. Namely, a class must be defined before its instance creation. A slot

definition is needed at a class before setting slot value to an instance of a class. However, from

the viewpoint of graph based model like RDF, it is desirable that it is able to add a slot with slot

value into an object anytime and anywhere. So, we implemented the machinery of such slot adding

functionality. A slot definition is automatically generated and attached to a class on demand, if it

is required at an instance of the class and when the class has no corresponding slot definitions. See

the following demonstration.

gx-user(3): (defResource uuu (rdf:type rdfs:Class))
#<rdfs:Class uuu>
gx-user(4): (defResource aaa (rdf:type uuu)

(hasSomething "Wonderful!"))
Warning: Entail by rdf1: hasSomething rdf:type rdf:Property.
#<uuu aaa>
gx-user(5): (slot-value aaa ’hasSomething)
"Wonderful!"

In this demonstration, a slot namehasSomething was given to an instance ofuuu without its slot

definition onuuu. The system automatically created the definition of slot namedhasSomething

on uuu, then the instance namedaaa was made. Note that slot definitions are also defined when

rdfs:domain is defined to a property, and when owl:onProperty restriction is defined to a class and a

property.

3.1.6 Single Class in CLOS and Multiple Classes in RDF(S)

In the RDF graph model, an object may be typed to more than one class through rdf:type property.

However, a CLOS object cannot belong to multiple classes. A CLOS class is a prototype to create
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its instances; therefore instances must inevitably belong to a single class. To solve this problem,

we introduced invisible classesshadowed-classthat may be a subclass of visible multiple classes

from the RDF viewpoint. For example, a vintage wine vin:SaucelitoCanyonZinfandel1998, which is

classified to vin:Vintage and vin:Zinfandel in Wine Ontology12, is an instance of vin:Zinfandel.2 in

CLOS, which is invisible in OWL and a subclass of vin:Vintage and vin:Zinfandel. When an object

belongs to multiple classes, SWCLOS sets up ashadowed-classthat has multiple classes in its

superclass list, and the object is classified to the shadowed-class. See the following demonstration.

gx-user(2): (defResource ItalianWine (rdf:type rdfs:Class))
#<rdfs:Class ItalianWine>
gx-user(3): (defResource RedWine (rdf:type rdfs:Class))
#<rdfs:Class RedWine>
gx-user(4): (defResource MyFavoriteWine (rdf:type ItalianWine)

(rdf:type RedWine))
Warning: Multiple classing with (#<rdfs:Class ItalianWine> #<rdfs:Class RedWine>)

for #<ItalianWine MyFavoriteWine>
#<ItalianWine.0 MyFavoriteWine>
gx-user(5): (typep MyFavoriteWine ItalianWine)
t
t
gx-user(6): (typep MyFavoriteWine RedWine)
t
t

3.1.7 Forward Reference and Proactive Entailment

The forward reference was enabled by means of proactive entailments in which undefined resources

are defined without human intervention using entailment rules. In CLOS original functionality,

CLOS creates an undefined but referred class as a class undermop:forward-referenced-class

in order to enable the forward reference. However, an attempt to make an instance of a forward ref-

erence class causes an alarm in CLOS. The forward referenced class in CLOS must be defined by the

time of its instance creation. This function is insufficient for RDF forward reference. Fortunately,

there are a number of RDF (Table 2.1 though 2.4) and RDFS rules (Table 2.5) and OWL entailment

rules (Table 2.6) in addition to the monotonicity principle in Semantic Web. Therefore, if we en-

counter an undefined class reference in reading an RDF/OWL file, we can create the undefined class

as the most specific concept in the context by applying various RDF(S) and OWL entailment rules

for the context without the contradiction in definitions that will appear later on. For instance, rule

12http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf
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rdf113 can be utilized for an undefined predicate to be created as an instance of rdf:Property, and rule

rdfs414 assures for a subject and an object in triple to be defined as an instance of rdfs:Resource.

Needles to say, domain constraints, range constraints, and onProperty/owl:allValuesFrom restric-

tions are also available to such forward reference entailing. Such entailments in run time are en-

abled by lisp dynamic programming characteristics represented by changing class and reinitializing

object facilities of CLOS.

The proper definition may be used to refine forward referenced classes and objects more pre-

cisely. For instance, a class inCI is changed inOCI, if it is found that the class has a slot of

owl:unionOf or owl:intersectionOf.

The following demonstrates that undefined three resources in a statement of triple, one property

and two resources are actually defined using entailment rulesrdf1 , rdfs4a, andrdfs4b．

gx-user(2): (defIndividual uuu (aaa yyy))
Warning: Entail by rdf1: aaa rdf:type rdf:Property.
#<|rdfs:Resource| uuu>
gx-user(3): aaa
#<rdf:Property aaa>
gx-user(4): yyy
#<|rdfs:Resource| yyy>

Where|rdfs:Resource| is an alternative to rdfs:Resource, whereby a proper rdfs:Resource in

CLOS are treated as an abstract class that do not directly hold any instances.

3.2 RDF(S) Demonstration in SWCLOS

The semantics of domain constraint (2.17) and range constraint (2.18) is demonstrated below.15

gx-user(2): (defProperty hasColor
(rdfs:domain Wine)
(rdfs:range Color))

Warning: Range entailX3 by rdfs:domain: Wine rdf:type rdfs:Class.
Warning: Range entailX3 by rdfs:range: Color rdf:type rdfs:Class.
#<rdf:Property hasColor>
gx-user(3): (defIndividual ElyseZinfandel

(hasColor Red))
Warning: Range entailX3 by hasColor: Red rdf:type Color.
#<Wine ElyseZinfandel>
gx-user(4): Red
#<Color Red>

13http://www.w3.org/TR/rdf-mt/#rulerdf1
14http://www.w3.org/TR/rdf-mt/#rulerdfs4
15BNF syntax is described in SWCLOS User’s Manual [37].



58 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

In this example,Wine andColor are defined as class (an instance of rdfs:Class) using range en-

tailment in the form ofhasColor definition. Then,ElyseZinfandel is defined as an instance of

Wine because of the domain constraint ofhasColor with the range constraint that entailedRed is

an instance ofColor.

3.3 OWL Full on Top of RDF(S)

As mentioned at Section 2.1 and 2.2, OWL DL is not compatible to RDF. This section describes

how OWL is realized on top of RDF(S).

3.3.1 RDF Compatibility of OWL

RDF compatibility of OWL is discussed at OWL Semantics Documentation Chapter 5 [58]. In

this documentation, it is clearly stated in the table titled “Conditions concerning the parts of OWL

universe and syntactic categories” that i) the class extension of owl:Thing is included in the class

extension of rdfs:Resource, ii) the class extension of owl:Class is included in the class extension

of rdfs:Class, and iii) four kinds property extensions are included in the property extension of

rdf:Property. Namely, the statements are formalized as follows. See also Section 2.2.

OTI = CEXTI(owl:ThingI) ⊂ RI = CEXTI(rdfs:ResourceI) (3.1)

OCI = CEXTI(owl:ClassI) ⊂ CI = CEXTI(rdfs:ClassI) (3.2)

OPII = CEXTI(owl:Ob jectPropertyI) ⊂ PI = CEXTI(rdf :PropertyI) (3.3)

OPID = CEXTI(owl:DatatypePropertyI) ⊂ PI (3.4)

OPIA = CEXTI(owl:AnnotationPropertyI) ⊂ PI (3.5)

OPIO = CEXTI(owl:OntologyPropertyI) ⊂ PI (3.6)

However, the document continues to state the following statement;

“There are two different styles of using OWL. In the more free-wheeling style, called

OWL Full, the three parts of OWL universe are identified with their RDF counterparts,

namely the class extensions of rdfs:Resource, rdfs:Class, and rdf:Property. In OWL

Full, as in RDF, elements of OWL universe can be both an individual and a class, or,

in fact, even an individual, a class, and a property. In the more restrictive style, called

OWL DL here, the three parts are different from their RDF counterparts and, moreover,
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pairwise disjoint. The more-restrictive OWL DL style gives up some expressive power

in return for decidability of entailment. Both styles of OWL provide entailments that

are missing in a naive translation of the DAML+OIL model-theoretic semantics into

the RDF semantics.”(OWL Semantics Chapter 5, [58])

Namely, it follows axioms in OWL Full;

OTI = RI (3.7)

OCI = CI (3.8)

OPII ∪OPID ∪OPIA ∪OPIO = PI. (3.9)

Whereas it follows axioms in OWL DL;

OTI * RI (3.10)

OCI * CI (3.11)

OPII ∪OPID ∪OPIA ∪OPIO * PI (3.12)

OTI ∩OCI = ∅ (3.13)

OTI ∩ (OPII ∪OPID ∪OPIA ∪OPIO) = ∅ (3.14)

OCI ∩ (OPII ∪OPID ∪OPIA ∪OPIO) = ∅. (3.15)

However, we adopted the third way in order to realize OWL Full on top of RDF. Namely, as de-

scribed in OWL Semantics Chapter 5, [58] and Section 2.2, OWL universe is included in RDF

universe. See above equations, (3.1), (3.2), and (3.3) through (3.6). OWL semantics is superim-

posed to entities in OWL universe that is ruled by RDF semantics.

In fact, it is possible to realize the following axioms just by means of reading the OWL definition

file 16 in the RDF semantics and the RDF universe using RDFS module in SWCLOS.

16http://www.w3.org/2002/07/owl.rdf
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owl:ClassI ∈ CI (3.16)

OCI ⊂ CI (3.17)

owl:RestrictionI ∈ OCI (3.18)

ORI = CEXTI(owl:RestrictionI) ⊂ CI (3.19)

owl:ThingI ∈ OCI (3.20)

OTI ⊂ RI (3.21)

owl:Ob jectPropertyI ∈ CI (3.22)

OPII = CEXTI(owl:Ob jectPropertyI) ⊂ PI (3.23)

owl:DatatypePropertyI ∈ CI (3.24)

OPID = CEXTI(owl:DatatypePropertyI) ⊂ PI (3.25)

owl:AnnotationPropertyI ∈ CI (3.26)

OPIA = CEXTI(owl:AnnotationPropertyI) ⊂ PI (3.27)

owl:OntologyPropertyI ∈ CI (3.28)

OPIO = CEXTI(owl:OntologyPropertyI) ⊂ PI (3.29)

Note thatOTI ⊂ RI (3.1) or (3.21) is entailed by RDF entailment rulerdfs4a17.

Thus, SWCLOS is able to distinguish and control both resources that are ruled by RDF se-

mantics and objects that are ruled by OWL semantics18, whereas OWL Full style by W3C cannot

distinguishOCI againstCI, OTI againstRI.

In addition, we added the followings axiom in order to make OWL classes belong to OWL

universe, because such axiom is not defined in the OWL definition file.19

Axiom 1.

OCI ⊂ OTI (3.30)

Namely, the class extension of the denotation of owl:Class URI reference is a subset of the class

extension of the denotation of owl:Thing URI reference. Note that this is the same as the relationship
17http://www.w3.org/TR/rdf-mt/#rulerdfs4
18Actually, every RDF resources is an instance of rdfs:Resource, and every OWL object is an instance of owl:Thing.
19Note that the document [58] actually describes (3.30).
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between rdfs:Class and rdfs:Resource. Thus, this axiom makes vin:Zinfandel and vin:Wine belong

to OWL universe as well as their individuals in Wine Ontology.

This axiom is written as follows in SWCLOS S-expression.

(defResource owl:Class (rdfs:subClassOf owl:Thing))

From the object oriented view, this axiom implies that every class in OWL universe inherits

properties defined at owl:Thing for individuals. Thus, classes in OWL universe are enabled to have

owl:sameAs and owl:differentFrom properties, then enabled to be treated classes as individuals.

3.3.2 Anonymous Restriction Classes for Properties

While OWL object-centric expressions look like object expressions in OOPLs rather than RDF

graphs, they still obey RDF syntax and semantics in OWL Full. Therefore, the property restric-

tions in OWL become anonymous classes as instances of owl:Restriction20. Thus, the subjective

CLOS object in the expression is defined as a subclass of the anonymous restriction classes that

appears within rdfs:subClassOf or owl:intersectionOf representations. For example, in the defini-

tion of vin:Wine in the Wine Ontology, vin:Wine has two anonymous classes, the restriction for the

cardinality and the value restriction of vin:Winery, on the vin:hasMaker property.

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">
1

</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:allValuesFrom rdf:resource="#Winery" />

</owl:Restriction>
</rdfs:subClassOf>

...
</owl:Class>

20As mentioned earlier, every class in CLOS is an object called metaobject. Furthermore, class metaobject may have
no name in CLOS. See also the demonstration in Section 6.2
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As described in Subsection 2.3.1, multiple pieces of information that exist among superclasses

upon a particular property with different values for the same restriction are collected and the most

special concepts or the strictest constraints are computed for the value restriction or existential

restriction. Thus, those facilities enabled the satisfiability-checking for the slot-value against con-

straints in the instance creation. For instance, after loading the Wine Ontology and the Food Ontol-

ogy, an attempt at creating an instance of the unsatisifiable conceptTheSpecialCourse causes a

satisfiability error.

(defResource TheSpecialCourse (rdf:type owl:Class)
(owl:intersectionOf
food:RedMeatCourse
(owl:Restriction (owl:onProperty food:hasFood)

(owl:allValuesFrom food:Fruit))))

(defIndividual No1SpecialCourse (rdf:type TheSpecialCourse)
(food:hasFood food:Meat food:Bananas))

Error: Unsatisfiable by disjoint pair in
(#<owl:Class food:Fruit> #<owl:Class food:RedMeat>) for
TheSpecialCourse food:hasFood

Here, the value restrictionfood:RedMeat is inherited fromfood:RedMeatCourse and the value

restrictionfood:Fruit is defined at the conceptTheSpecialCourse. The satisfiability error hap-

pened at the creation ofNo1SpecialCourse, an instance ofTheSpecialCourse.

The property constraints in OWL on owl:onProperty generate anonymous classes as instances

of owl:Restriction (owl:Restriction is a metaclass), a restriction that is attached to a class in the

description of rdfs:subClassOf or owl:intersectionOf turns out in CLOS a superclass of the class to

which the restriction is attached, then the restriction value that is transferred into the type option

in the slot definition object of the anonymous restriction class is inherited by the class that the

restriction is attached and all of its subclasses. Thus, CLOS inheritance machinery is reasonable

from the viewpoint of the property restriction in OWL semantics.

3.3.3 Axiomatic Complete Relations

Among the many OWL properties, only four, i.e., owl:intersectionOf, owl:unionOf, owl:complementOf,

and owl:oneOf make axiomatic complete assertions without using the owl:equivalentClass.21 In

21http://www.w3.org/TR/owl-ref/#DescriptionAxiom
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other words, these properties define complete equivalency upon the binary relation of concepts.

For example, the following asserts the definition ofWhiteBordeaux. If something is known as

Bordeaux andWhiteWine, it is concluded to be aWhiteBordeaux.

<owl:Class rdf:ID="WhiteBordeaux">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Bordeaux" />
<owl:Class rdf:about="#WhiteWine" />

</owl:intersectionOf>
</owl:Class>

Similarly, the following assertion definesWineColor, which has the enumerative membership of

White, Rose, andRed, so that the instance ofWineColor is exactly one of the three, and not any

of others.

<owl:Class rdf:ID="WineColor">
<rdfs:subClassOf rdf:resource="#WineDescriptor" />
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#White" />
<owl:Thing rdf:about="#Rose" />
<owl:Thing rdf:about="#Red" />

</owl:oneOf>
</owl:Class>

Therefore, it is not necessary to place the open world assumption upon such axiomatic complete

relational properties. If we find the right-hand side (body of object-centered expression) of such

an equation (object-centered expression) matches the database, then we may conclude the left-hand

side (subjective term) without worry about other statements. Conversely, we must assert consistent

knowledge of a subject in one assertion with respect to these four properties.

Suppose the following example for owl:intersectionOf. The system concludes thatQueenElizabethII

should be a woman, because it is asserted that a person who has gender female is a woman, and it

is also asserted thatQueenElizabethII is an instance ofPerson andhasGender Female. Here

note that the system proactively made the entailment without demand or query from users.

(defIndividual Female (rdf:type Gender) (owl:differentFrom Male))
-> #<Gender Female>
(defResource Person (rdf:type owl:Class)
(owl:intersectionOf
Human
(owl:Restriction (owl:onProperty hasGender)

(owl:cardinality 1))))
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-> #<owl:Class Person>
(defResource Woman (rdf:type owl:Class)
(owl:intersectionOf
Person
(owl:Restriction (owl:onProperty hasGender)

(owl:hasValue Female))))
-> #<owl:Class Woman>
(defIndividual QueenElizabethII (rdf:type Person)
(hasGender Female))
-> #<Woman QueenElizabethII>

3.3.4 Substantial Properties and Non-Substantial Properties

OWL has many properties that rule the inclusiveness of concepts, i.e., rdfs:subClassOf, owl:intersectionOf,

owl:unionOf, owl:equivalentProperty, etc. From the viewpoint of DL, they have same strength for

subsumption decidability. However, from the viewpoint of ontology engineering and software en-

gineering, we must discriminate substantial ones and non-substantial ones for ruling subsumption.

Borgida [6] argued that one should deal with individual objects that remain related rather than

volatile references. Mizoguchi [52, 53] claimed that the IS-A relation (substantial sort) should com-

ply with single inheritance from the viewpoint of Ontology Engineering, whereas an object may

have multiple roles (non-substantial sort). Kaneiwa and Mizoguchi [29] developed a formal ontol-

ogy for property classification and extended Order-Sorted Logic to the property classification.

It is also important for the ontology and database maintainability to distinguish persistent re-

lations and temporal relations. In SWCLOS, the rdfs:subClassOf relation in the RDF universe

is mapped onto the class-superclass relation in CLOS, and a CLOS object as an rdfs:subClassOf

property value is placed in thedirect-superclasses-list slot of the subjective class object.

However, when a propertyp1 in OWL universe is a subproperty of or equivalent property to

rdfs:subClassOf, should we placep1’s value into the direct-superclasses slot in the class? Note

that a superclass in CLOS affects the slot structure of its instances. In other words, what property in

OWL may affect the structural variation in CLOS due to the slot inheritance, and what property must

not affect the structural variation in CLOS? We specified that rdfs:subClass, owl:intersectionOf, and

owl:unionOf should affect the variation, but owl:equivalentClass, owl:equivalentProperty and other

properties, including subproperties and equivalent properties of rdfs:subClass, owl:intersectionOf,

or owl:unionOf, should affect subsumption reasoning but not the structural variation.

Conversely, we should define the substantial and persistent subsumption with rdfs:subClassOf,

owl:intersectionOf, and owl:unionOf, and the non-substantial subsumption should be defined through

other properties. The substantial subsumption may cause proactive entailment, but the non-substantial
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subsumption should not cause any structural variation in the entailment. Thus, such discrimination

of substantial and non-substantial subsumptions allows us to add and delete relations and makes it

easy to maintain ontologies.

3.3.5 Extended Structural Subsumption Algorithm

We extended thestructural subsumption algorithmin theFL0 level [5], which is applicable only to

conjunction (owl:intersectionOf) of concepts and value restriction (owl:allValuesFrom), so as to in-

clude disjunction (owl:unionOf), disjointness (owl:disjointWith), negation (owl:complementOf) of

concepts; equivalency (owl:sameAs, owl:equivalentClass, owl:equivalentProperty); symmetric rela-

tion (owl:SymmetricProperty), functional relation (owl:InverseFunctionalProperty), inverse-functional

relation (owl:FunctionalProperty); full existential restriction (owl:someValuesFrom), filler restric-

tion (owl:hasValue), and cardinality restriction (owl:maxCardinality, owl:minCardinality, owl:cardinality).

This original structural subsumption is described as follows [5].

Let Bi andA j be distinct names of atomic or complex concepts,Rj andSi be distinct names of

roles,C j andDi beFL0-concept descriptions, and let

A1 ⊓ · · · ⊓ Am⊓ ∀R1.C1 ⊓ · · · ⊓ ∀Rn.Cn

be the normal form of theFL0-concept description ofC, and let

B1 ⊓ · · · ⊓ Bk ⊓ ∀S1.D1 ⊓ · · · ⊓ ∀Sl .Dl

be the normal form of theFL0-concept description ofD. Here,⊓ represents the intersection of

concepts. ThenC ⊑ D (inclusiveness of concepts) holds iff the following two conditions hold:

(1) For all i in 1 ≤ i ≤ k, there existsj in 1 ≤ j ≤ m such thatA j ⊑ Bi .

(2) For all i in 1 ≤ i ≤ l, there existsj in 1 ≤ j ≤ n such thatSi = Rj andC j ⊑ Di .

The computation of the class-superclass relation in CLOS conveys the semantics of weak sub-

sumption in RDF universe. However, owl:intersectionOf and owl:unionOf relation show the strong

subsumption in OWL universe, and owl:equivalentWith and owl:oneOf relation also have iff rela-

tion. To compute the strong subsumption in OWL universe, functionsubsumed-p computes the

inclusiveness of the class extensions between two concepts according to the OWL semantics using

ternary truth value. Note that direct relation of owl:intersectionOf and owl:unionOf are computed

firstly in the RDF graph links or CLOS, because the direct relations of them are replaced into su-

per/subclass relation in CLOS. However,subsumed-p secondly computes the strong subsumption
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of class extensions, even if two classes are not directly connected. The weak subsumption in the

substantial properties (rdfs:subClassOf, owl:intersectionOf, owl:unionOf) is computed through the

CLOS class-superclass relationship, and the non-substantial subsumption is calculated with this

extended structural subsumption algorithm.

In this algorithm, the top concept⊤ (owl:ThingI) substantially subsumes every concept of

CEXTI(owl:ClassI) in the CLOS class-subclass relation, but the bottom concept⊥ (owl:NothingI)

is virtually subsumed by other concepts through this extended structural subsumption algorithm.

For classes in OWL universe, the following algorithm returns one of true/false/unknown as truth

value.

Where symbol≡ is used for the equivalency of Lisp objects (equal22). First, the top and the bot-

tom are checked. Next, all equivalent classes onC andD is retrieved and checked. The subsumption

of classes for owl:oneOf is firstly checked before ordinary computation.≼ designates the subsump-

tion in CLOS, then it checks the direct relation of owl:intersectionOf and owl:unionOf in additon

to rdfs:subClassOf. Then, indirect subsumption in owl:intersectionOf and owl:unionOf is checked.

≃means class equivalency considering owl:FunctionalProperty and owl:InverseFunctionalProperty,

and≍ designates the relationship of complement and disjoint.

on C, D ∈ CEXTI(owl:ClassI)

if C ≡ D then return true

if D ≡ ⊤ then return true

if C ≡ ⊥ then return true

if D ≡ ⊥ then return false

if C ≡ ⊤ then return false

for someC̄ in equivalent-classes-of(C)

for someD̄ in equivalent-classes-of(D)

if oneOf(C̄) and oneOf(D̄) then

if oneOf(C̄)⊆oneOf(D̄) then

return trueelse return false

else ifC̄ ≼ D̄ then return true

else ifD̄ ≼ C̄ then return false

else if intersect-subsumed(̄C,D̄) then return true

else ifunion-subsumed(̄C,D̄) then return true

else ifC̄ ≃ D̄ then return true

else ifC̄ ≍ D̄ then return false

else returnunknown

22It is for string equivalency in Lisp.
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As shown in Subsection 3.3.3, on the relation of owl:intersectionOf and owl:unionOf, two classes

of which the components (the right hand sides) are equivalent are equivalent (in the left hand sides).

The subsumption computation algorithm for owl:intersectionOf is described as follows.

DD← unfold(intersects-of(̄D))

for every Dcls ∈ collect-concepts-in(DD)

if for some Ccls ∈ all-superconcepts-of(̄C)

Ccls ⊑ Dcls then

if restrictions-of(DD)= ∅ then return true

else if for everyR ∈ roles(restrictions-of(DD))

cslot← slot-definition(Ccls,R)

modelsList← generate-models(cslot)

for somemodelsin modelsList

if for every modelin models

satisfy(model,restrictions-of(DD,R))

then return true

else return false

DD is a set of unfolded classes for̄D on owl:intersectionOf. So, all components inDD are atomic.

Dcls is a part of non property restriction inDD. Ccls is a collection of non property restriction

from all superclasses ofC. In this computation, firstly the subsumption for concepts, secondly

property constraints are performed. Here, symbol⊑ stands for inclusiveness of class extensions

(namely checking bysubsumed-p itself). In case of property constraints, satisfiability is checked

by seeing models. Here,cslot is slot definitions on propertyR for Ccls. As mentioned so far, this

slot definition holds all inherited cardinality and type restrictions. According to these restriction,

all possible models are generated. Firstly, plausible models are generated based on existence of

individuals by owl:hasValue and owl:someValuesFrom. By owl:hasValues the value can be one of

interpretation models, and by owl:someValuesFrom the instance of constraint can be one of models.

Note that instance of owl:someValuesFrom is a variable over the owl:someValuesFrom value class.

In case of max cardinality restriction given, the possible models are generated up to the numbers of

cardinality restriction, after that, the next existent constraint is superimposed onto one of models so

as to map all existing models. Thus, generally, a set of possible sets of models are obtained. The

restriction of owl:allValuesFrom is applied onto every possible models. Then, the number of models

may be reduced by unsatisfiability. In a very simple case, say, max cardinality is one, the value of

owl:hasValue isv, typeA for owl:someValuesFrom, typeB for owl:allValuesFrom, thenv becomes

an instance of the most specific concepts ofA, B, and its original class, and the satisfiable model is
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one. At the last, the generated models are checked againstD whether or not it satisfiesD’s property

constraints.

Obviously, this algorithm includes self-recursion. However, this computation is terminated,

because CLOS does not accept direct and indirect loop in super-subclass relationship, and the

class precedence list for̄C and unfolding classes for̄D prevents the occurrence of loop in trac-

ing rdfs:subClassOf and owl:unionOf definition (e.g.,B is a subclass ofC andC is a union ofA and

B)23.

In SWCLOS, all individuals (including classes as individual) can be checked for subsumption

with respect to owl:TransitiveProperty and owl:sameAs. See the followings.

on C, D in CEXTI(owl:ThingI)

if C � D then return true

for some prop in intersection(all-transitive-props-of(C), all-transitive-props-of(D))

for someDx in same-things-of(D)

for someCx in same-things-of(C)

if transitively-sub-on(prop, Dx , Dx) then return true

else return false

Where symbol� means the equality as OWL individual (owl:sameAs).

3.3.6 Satisfiability Check

Proactive entailment reduces the load of the satisfiability check. For example, when users attempt to

define an object ambiguously (to define an object in a more abstract class), if the domain and range

constraints are available, the system defines an object more specifically (defines an object in a more

special class), by fitting the domain and range restriction. Nevertheless, the satisfiability check is

useful to prevent ones from importing bugs into ontologies. We implemented satisfiability checking

on the domain and range, value restriction, filler restriction, cardinality, disjoint-pair, etc., and Table

3.1 summarized additional unsatisfiability rules in the OWL definition for SWCLOS.

3.3.7 OWL Entailment Rules

The total number of OWL entailment rules is not known yet. In addition to the entailment rules

which ter Horst disclosed [72](See Table 2.6), SWCLOS added five axioms shown in Table 3.2, and

18 entailment rules shown in Table 3.3.

23Note that SWCLOS does not accept cyclic loop in RDF graph for other properties.
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Table 3.1: Unsatisfiability in OWL added to SWCLOS

Unsatisfiability Conditions

unsatisfiability1 C oneOf { xi . . . }
y type C
y differentFrom some xi

unsatisfiability2 x differentFrom y
x sameAs y

unsatisfiability3 C disjointWith D
D equivalentClass C

unsatisfiability4 C disjointWith D
x type C
x type D

Table 3.2: Additional OWL Axioms for SWCLOS

axiom1 owl:Thing rdfs:subClassOf rdfs:Resource .
axiom2 owl:Class rdfs:subClassOf owl:Thing .
axiom3 owl:FunctionalProperty rdf:type owl:Class .
axiom4 owl:InverseFunctionalProperty rdf:type owl:Class .
axiom5 owl:FunctionalProperty owl:disjointWith owl:InverseFunctionalProperty .

In this subsection and succeeding sections,rdf* andrdfs** means one of RDF entailment rules

and RDFS entailment rules, respectively. A description ofrdfp** means one of entailment rules by

ter Horst. Ifrule* found, it means one of entailement rules in Table 3.3.

Since SWCLOS is a procedural reasoning system, all of entailment rules are implemented

into SWCLOS programming code. Therefore, we might miss to find out a proper position where

premises of rules match context and to insert entailment procedures. However, note that the Tableau

Algorithms are insufficient for implementing proactive entailment. The work of Tableau is to test

the membership of individuals and the subsumption relation among classes by means of refutation.

The prover based on refutation does work with given refutation. So, to implement proactive entail-

ments, we must find out refutation when and where we think entailments are required. In order to

perform proactive entailments, we need to sense the situation that matches the premise of entailment

rules and in which an entailment is deductive.

Hereafter, we introduce many entailment rules in OWL and discuss how these rules are imple-

mented in our system.
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SameAs Group, EquivalentClass Group, EquivalentProperty Group

The owl:sameAs relation is reflexive (rdfp6 ) and transitive (rdfp7 ). Thus, all related individu-

als make one group upon owl:sameAs. The group information that is a collection of related in-

dividuals in owl:samaAs is registered to each individual of the group. The owl:equivalentClass

owl:equivalentProperty is also reflexive (rdfp12a, rule9) and transitive (rdfp12c, rule10), respec-

tively. Therefore, the same machinery is adopted for them. The equivalency information is used in

the extended structural subsumption algorithm as explained in Subsection 3.3.5. In this computa-

tion, the relation of subsumption of class/property individual is expanded to the equivalent group of

the class/property.

DifferentFrom Pairs and DisjointWith Pairs

On the other hand, owl:differentFrom is reflexive but not transitive. Therefore, the pairwise relation

is not resolved into one group. Each of a pair is registered to the other individual. The symbol≍ in

the subsumption algorithm uses this information. Such machinery is the same for the class relation

of owl:disjointWith.

If a class is disjoint with another class, the subclasses of the class are also disjoint with the

subclasses of the other disjoint class. Seerule4 in Table 3.3, which is implemented in the function

owl-disjoint-p. If disjoint classes are specified as multiple classes in an instance definition, the

system signals an alarm of unsatisfiability. Seeunsatisfiability3 and4 in Table 3.1.

Functional Property

The entailment rule for an instance of owl:FunctionalProperty is described byrdfp1 in [72]. The

system maintains the bookkeeping of the inverse relation of a functional property in addition to the

functional property itself. Then, the functionowl-same-p, which is denoted as� in the explana-

tion of the extended structural subsumption algorithm in Subsection 3.3.5, infers this equality of

individuals.

The following shows an example of this entailments. See also≃ in the subsumption algorithm.

gx-user(2): (defProperty hasband
(rdf:type owl:FunctionalProperty)

(rdfs:domain Woman)
(rdfs:range Man))

Warning: Range entailX3 by rdfs:domain: Woman rdf:type rdfs:Class.
Warning: Range entailX3 by rdfs:range: Man rdf:type rdfs:Class.
#<owl:FunctionalProperty hasband>
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gx-user(3): (defIndividual MarieTherese (hasband LouisXIVdeFrance))
Warning: Range entailX3 by hasband: LouisXIVdeFrance rdf:type Man.
#<Woman MarieTherese>
gx-user(4): (defIndividual MarieTherese (hasband Roi-Soleil))
Warning: Range entailX3 by hasband: Roi-Soleil rdf:type Man.
#<Woman MarieTherese>
gx-user(5): (-> MarieTherese hasband)
(#<Man LouisXIVdeFrance> #<Man Roi-Soleil>)
gx-user(6): (owl-same-p LouisXIVdeFrance Roi-Soleil)
t

In this demonstration,LouisXIVdeFrance andRoi-Soleil are explicitly not stated as the same,

but it is entailed by a propertyhasband, which is an instance of owl:FunctionalProperty.

Inverse Functional Property

For owl:InverseFunctionalProperty, the same machinery for entailment computation is made. See

rdfp2 . See also≃ in subsumption algorithm.

The following shows an entailment example of owl:InverseFunctionalProperty.

gx-user(7): (defProperty hasWife (rdf:type owl:InverseFunctionalProperty)
(rdfs:domain Man)
(rdfs:range Woman))

#<owl:InverseFunctionalProperty hasWife>
gx-user(8): (defIndividual Obama (hasWife Michelle))
Warning: Range entailX3 by hasWife: Michelle rdf:type Woman.
#<Man Obama>
gx-user(9): (defIndividual The44thPresidentOfUnitedStates

(hasWife Michelle))
#<Man The44thPresidentOfUnitedStates>
gx-user(10): (owl-same-p Obama The44thPresidentOfUnitedStates)
t

WhereObama andThe44thPresidentOfUnitedStates is not same explicitly, but SWCLOS en-

tailed it because an inverse functional propertyhasWife supports it.

Symmetric Property

The symmetric property implicitly defines the same relation between an object and a subject as well

as between the subject and the object. The system registers the symmetric relation to both ends

upon one assertion. See alsorule8.

The following shows an example of owl:SymmetricProperty.
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gx-user(11): (defProperty spouse
(rdf:type owl:SymmetricProperty))

#<owl:SymmetricProperty spouse>
gx-user(12): (defIndividual Bill (spouse Hillary))
#<|rdfs:Resource| Bill>
gx-user(13): (-> Bill spouse)
#<|rdfs:Resource| Hillary>
gx-user(14): (-> Hillary spouse)
#<|rdfs:Resource| Bill>

Intersection of Concepts

The intersection of concepts turns out a subclass of each component. Namely, ifA ≡ C1 ⊓ · · · ⊓Cn

(wherei = 1, . . . ,n), thenA ⊑ Ci . The system adds every classCi to thedirect-superclasses list

of classA in CLOS from owl:intersectionOf assertions. Therefore, the subsumption computation

is primarily performed by CLOS. In addition, the strong subsumption is computed bysubsumed-p

procedure. Note that if there is another classB that partly shares the component of the intersection,

the CLOS class-superclass relation betweenA and the classB is adjusted (A ≼ B or B ≼ A according

to the inclusiveness of the intersection sets).

Union of Concepts

Inversely, the union of concepts turns out a superclass of each component. Namely, ifA ≡ C1 ⊔
· · · ⊔Cn (wherei = 1, . . . ,n), thenCi ⊑ A. The system adds classA to the direct-superclasses list of

every classCi in CLOS from owl:unionOf assertions. Therefore, the subsumption computation of

owl:unionOf is performed by CLOS as well as of owl:intersectionOf. In addition, if there is another

classB that partly shares the component of the union, the CLOS class-superclass relation between

A and the classB is adjusted (A ≼ B or B ≼ A according to the inclusiveness of the union sets).

Complement of Concept

The complement relation is reflexive (seerule5) and entails disjointedness (rule6). The system

registers each of the complement pair with the other for complementness and disjointness.
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3.4 OWL Demonstration in SWCLOS

Cardinality checking

The following shows an example of entailments by the restriction of owl:allValuesFrom and owl:cardinality.

(defResource Wine
(rdfs:subClassOf
owl:Thing
(owl:Restriction
(owl:onProperty hasMaker)
(owl:allValuesFrom Winery))

(owl:Restriction
(owl:onProperty hasColor)
(owl:cardinality 1))))

-> #<rdfs:Class Wine>

(defResource Color (rdf:type owl:Class)
(rdfs:subClassOf owl:Thing))

-> #<owl:Class Color>
(defIndividual Red (rdf:type Color))
-> #<Color Red>
(defIndividual White (rdf:type Color))
-> #<Color White>
(defIndividual MyHomeMadeWine
(rdf:type Wine)
(hasMaker MyHome))

-> #<Wine MyHomeMadeWine>
MyHome
-> #<Winery MyHome>
(defIndividual MyBlendedWine
(rdf:type Wine)
(hasColor Red White))

Error: cardinality constraint condition
unsatisfiable: hasColor’s max
cardinality 1 unsatisfiable with
(#<Color Red> #<Color White>).

WhereMyHome is entailed as instance ofWinery, because a value forhasMaker must be so by

owl:allValuesFrom restriction, as defined inWine definition. On the other hand, the definition of

MyBlendedWine caused an error, because the cardinality restriction is inherited fromhasColor.
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3.5 Concluding Remarks

In this chapter, the semantic gap between object-centric CLOS and property-centric RDF(S) was

filled by setting property resource objects in CLOS and inventing the collection mechanism for the

property extension in RDF(S) through CLOS native slot-definition facilities. Although the CLOS

type system is very close to RDFS semantics, the problem of membership loop at rdfs:Class aris-

ing from straightforward mapping of class/instance relationship was solved by inventing a proxy of

rdfs:Class that has a twisted relation to rdfs:Class. The flexible implicit slot definition on demand

was embodied in the class-based CLOS system. In order to accept forward-reference for entities, the

novel functionality calledproactive entailmentwas realized using RDF/OWL entailments. The do-

main and range constraint were developed with the property inheritance mechanism and embodied

into SWCLOS.

It should be noted for readers unfamiliar with the practice of Semantic Web tools that the char-

acteristics of SWCLOS is very different from other tools. SWCLOS was built so as to match the

characteristics of interactive lisps. Programmers or ontologists can build ontologies interactively

on top of lisp’s Read-Eval-Print Loop (REPL) mode. Thus, if users input a piece of ontology into

SWCLOS, SWCLOS immediately evaluates it, and performs default reasoning and satisfiability

checking, whereas most of other tools read ontology files in batch mode with no warning for unsat-

isfiability, and then validation checking is invoked by users. It often results that most of people will

suffer bunch of errors.

In order to realize the OWL universe in the RDF universe, only one axiom that owl:Class have

to be a subclass of owl:Thing was added into the set of axioms, which are not stated in the OWL

description file. All semantics and functionality of OWL specification was implemented on top of

RDF(S) subsystem along with housekeeping facilities for OWL.

The efficiency of implementation is described the next chapter, and OWL Full programming is

demonstrated after the next chapter.
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Table 3.3: Entailment Rules added in OWL for SWCLOS

If Then
rule1a v p w

v type Class v subtype Thing

rule1b v p w
w type Class w subtype Thing

rule2a u intersectionOf { v j . . . } v j type Class

rule2b u unionOf { v j . . . } v j type Class

rule3 x distinctMembers { x j . . . } x j type Thing

rule4 u disjointWith v
u′ subClassOf u u′ disjointWith v′

v′ subClassOf v

rule5 u complementOf v v complementOf u

rule6 u complementOf v v disjointWith u

rule7 u oneOf { x j . . . } x j type u

rule8 v allValuesFrom w
v onProperty p w subtype u
p range u

rule9 p type SymmetricProperty
p domain C C equivalentClass D
p range D

rule10 p equivalentProperty q qequivalentProperty p

rule11 p equivalentProperty q
q equivalentProperty r p equivalentProperty r

rule12a p equivalentProperty q
p domain u q domain u

rule12b p equivalentProperty q
p range u q range u

rule13a p inverseOf q
p domain u q range u

rule13b p inverseOf q
p range u q domain u

rule14 u disjointWith v
a type u a differentFrom b
b type v
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Chapter 4

Benchmark Test by LUBM

The efficiency of implementation is tested by Lehigh University Benchmark (LUBM)1, and SWC-

LOS showed the comparable performance to other OWL reasoners reported in Guo et al. [22].

SWCLOS replied with correct answers to all LUBM queries, whereas no other reasoners but OWL-

JessKB replied correctly to all queries. It should be noted that SWCLOS is not an application

system for OWL ontology repository. It is an object oriented language for OWL modeling. All of

ontology data are maintained on memory in SWCLOS. The results also showed the requirement of

persistentization for instance objects for the purpose of the usage of ontology repository.

The rationale and elemental problems of benchmark tests for Semantic Web tools are also dis-

cussed in the discussion of related work in this chapter.

4.1 Characteristics of Lehigh University Benchmark

Generally, systems that are applicable to complex problems tends to be massive and complex.

Therefore, it is difficult to manage ontologies against both complexity and scalability, but coping

with them has been recently becoming a critical problem in Semantic Webs.

LUBM is designed to test the scalability of ABox or a set of instances. The ontology of univer-

sity domain in LUBM is categorized to OWL Lite level, whereas the ABox, which can be artificially

generated by a program, may be large and the sizes can be varied. Therefore, it is suitable to test

ABox scalability for variable sizes of ABox as database where the underlying class schema (TBox)

is shared by all sets of ABox test data. Therefore, it is not available to test the scalability of TBox.

1http://swat.cse.lehigh.edu/projects/lubm/
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Thus, LUBM is not suitable to tableaux based systems like Racer2 and Pellet3, and other Descrip-

tion Logic based systems like KAON24, whereas these tools were tested and reported for LUBM

by tool’s developer themselves. As well, it should be noted that the aim of LUBM is not suitable to

test SWCLOS, an object-oriented programming language for Semantic Webs. However, it is worth

comparing SWCLOS to memory-based OWL reasoners reported by Guo, et al. [22] for two reasons.

First, there is no other appropriate benchmark test reports yet, and second, it suggests the way of

improvement of SWCLOS language system.

4.1.1 Characteristics of University Domain in LUBM

As mentioned above, LUBM domain ontology falls into OWL Lite. However, there is no entry for

owl:sameAs and no owl:hasValue restriction. There are some OWL specific features as follows.

owl:TransitiveProperty: ub:subOrganizationOf is a transitive property.

owl:inverseOf: There are two inverse property relationships,<ub:hasAlumnus, ub:degreeFrom>

and<ub:memberOf, ub:member>.

In addition, there are five subproperty relationships as follows.

1. ub:doctoralDegreeFrom is a subproperty ofub:degreeFrom.

2. ub:mastersDegreeFrom is a subproperty ofub:degreeFrom.

3. ub:undergraduateDegreeFrom is a subproperty ofub:degreeFrom.

4. ub:headOf is a subproperty ofub:worksFor.

5. ub:worksFor is a subproperty ofub:memberOf.

Therefore, the treatment of these properties is critical to obtain right answers for queries.

4.2 Queries for Benchmark Test in LUBM

Guo, et al. set up 14 queries for a university domain ontology. Most of them are for testing the

extensionality, that is, queries for instances that satisfy some conditions. Each of queries are de-

scribed below in simple SPARQL5 forms and SWCLOS query programs, which are encoded so as
2http://www.racer-systems.com/products/racerpro/index.phtml
3http://www.mindswap.org/2003/pellet/index.shtml
4http://kaon2.semanticweb.org/
5http://www.w3.org/TR/rdf-sparql-query/
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Guo, et al. set up 14 queries for a university domain ontology. Most of them are for testing the

extensionality, that is, queries for instances that satisfy some conditions. Each of queries are de-

scribed below in simple SPARQL5 forms and SWCLOS query programs, which are encoded so as
2http://www.racer-systems.com/products/racerpro/index.phtml
3http://www.mindswap.org/2003/pellet/index.shtml
4http://kaon2.semanticweb.org/
5http://www.w3.org/TR/rdf-sparql-query/
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to simulate the behavior of SPARQL query language as much as possible.

Query 1. This query simply retrieves graduate students who takeGraduateCourse0 in Department0

of University0. The computational time is less thanO(gurduatestudents). The number of grad-

uate students are large but the selection condition is highly selective. In SPARQL and SWCLOS,

this query is written as follows.

SELECT ?X
WHERE
{?X rdf:type ub:GraduateStudent.
?X ub:takesCourse http://www.Department0.University0.edu/GraduateCourse0}

(defun q1 ()
(loop for student in (collect-all-instances-of ub::GraduateStudent) with results

when (member ub::Department0.University0.GraduateCourse0
(mklist (get-value student ub::takesCourse)))

do (push student results)
finally (return results)))

Query 2. This query requires a specific triangle relationship among three kinds of entities. In

this case, the computational time in simple encoding will beO(graduatestudents× universities×
departments). It amounts up toO(1874×979×15)= O(0.275×108) even in LUBM(1,0). Therefore,

the lisp code is modified simply to reduce the computational time.

SELECT ?X, ?Y, ?Z
WHERE
{?X rdf:type ub:GraduateStudent.
?Y rdf:type ub:University.
?Z rdf:type ub:Department.
?X ub:memberOf ?Z.
?Z ub:subOrganizationOf ?Y.
?X ub:undergraduateDegreeFrom ?Y}

(defun q2.1 ()
(let ((students (collect-all-instances-of ub::GraduateStudent))

(universities (collect-all-instances-of ub::University)))
(loop for student in students with results

do
(loop for department in (mklist (get-value student ub::memberOf))

when (typep department ub::Department)
do
(loop for university in universities

when (and (member university
(mklist (get-value student
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ub::undergraduateDegreeFrom)))
(member university

(mklist (get-value department
ub::subOrganizationOf))))

do (push (list student university department) results)))
finally (return results))))

Query 3. This is analogous to Query 1 but the input data are rather small and the selection condi-

tion is broad.

SELECT ?X
WHERE
{?X rdf:type ub:Publication.
?X ub:publicationAuthor http://www.Department0.University0.edu/AssistantProfessor0}

(defun q3 ()
(loop for publication in (collect-all-instances-of ub::Publication) with results

when (member ub::Department0.University0.AssistantProfessor0
(mklist (get-value publication ub::publicationAuthor)))

do (push publication results)
finally (return results)))

Query 4. This question looks like requiring large amount of computational time ofO(pro f essors×
names×emailaddresses× telephones). However, supposing the number of names, emailaddresses,

and telephones are one, it becomesO(pro f essors). Note that this question assumes rdfs:subClassOf

relationship betweenub:Professor and its subclasses.

SELECT ?X, ?Y1, ?Y2, ?Y3
WHERE
{?X rdf:type ub:Professor.
?X ub:worksFor <http://www.Department0.University0.edu>.
?X ub:name ?Y1.
?X ub:emailAddress ?Y2.
?X ub:telephone ?Y3}

(defun q4 ()
(loop for professor in (collect-all-instances-of ub::Professor) with results

when (member ub::Department0.University0.
(mklist (get-value professor ub::worksFor)))

do (loop for name in (mklist (get-value professor ub::name))
do
(loop for email in (mklist (get-value professor ub::emailAddress))

do
(loop for tel in (mklist (get-value professor ub::telephone))

do (push (list professor name email tel)
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results))))
finally (return results)))

Query 5. This question looks simple. However, it assumes the combination of class hierarchy of

ub:Person and property hierarchy ofub:memberOf. So, it is internally complex in inference.

SELECT ?X
WHERE
{?X rdf:type ub:Person.
?X ub:memberOf <http://www.Department0.University0.edu>}

(defun q5 ()
(loop for person in (collect-all-instances-of ub::Person) with results

when (member ub::Department0.University0.
(mklist (get-value person ub:memberOf)))

do (push person results)
finally (return results)))

Query 6. This question looks quite simple described below.

SELECT ?X
WHERE
{?X rdf:type ub:Student}

(defun q6 ()
(collect-all-instances-of ub::Student))

However, it assumes the implicit super/subclass relation betweenub:GraduateStudent and

ub:Student in addition to the explicit one betweenub:UndergraduateStudent andub:Student.

ub:Student is defined as an intersection ofub:Person and the restriction ofub:Course on

ub:takesCourse. By contrast,ub:GraduateStudent is defined as a subclass of bothub:Person

and restriction ofub:GraduateCourse onub:takesCourse. See the following definitions.

(owl:Class ub:Student (rdfs:label "student")
(owl:intersectionOf ub:Person

(owl:Restriction (owl:onProperty ub:takesCourse)
(owl:someValuesFrom ub:Course))))

(owl:Class ub:GraduateStudent (rdfs:label "graduate student")
(rdfs:subClassOf ub:Person

(owl:Restriction (owl:onProperty ub:takesCourse)
(owl:someValuesFrom ub:GraduateCourse))))
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Although there are no explicit relation betweenub:Student andub:GraduateStudent in the

semantics of RDF, in OWLub:Student is a superclass ofub:GraduateStudent, because a per-

son who takes aub:Course is a student due toowl:intersectionOf complete relation, and

ub:GraduateStudent is a person who takesub:GraduateCourse that is a subclass ofub:Course.

See the following demonstration example in SWCLOS. The systems must infer these implicit sub-

sumption combined with another super/subclass relation.

gx-user(4): (rdf-subtypep ub:GraduateStudent ub:Student)
nil
t
gx-user(5): (subsumed-p ub:GraduateStudent ub:Student)
t
t

Query 7. This query is for students who take courses byAssociateProfessor0 of Department0

in University0. This query includes a query for matching a constant subject in triple.

SELECT ?X, ?Y
WHERE
{?X rdf:type ub:Student.
?Y rdf:type ub:Course.
?X ub:takesCourse ?Y.
<http://www.Department0.University0.edu/AssociateProfessor0> ub:teacherOf ?Y}

(defun q7 ()
(loop for student in (collect-all-instances-of ub::Student) with results

and courses = (mklist (get-value
ub::Department0.University0.AssociateProfessor0
ub::teacherOf))

do
(loop for course in courses

when (member course (mklist (get-value student ub::takesCourse)))
do (push (list student course) results))

finally (return results)))

Query 8. This question is similar Query 7 rather than Query 2, and more complex than Query 7

by adding one more property. However, SWCLOS results very differently than other reasoners as

shown below. The analysis of this distinction will be presented at a subsection below.

SELECT ?X, ?Y, ?Z
WHERE
{?X rdf:type ub:Student.
?Y rdf:type ub:Department.
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?X ub:memberOf ?Y.
?Y ub:subOrganizationOF <http://www.University0.edu>.
?X ub:emailAddress ?Z}

(defun q8 ()
(let ((students (collect-all-instances-of ub::Student)

(departments (collect-all-instances-of ub::Department))))
(loop for department in departments with results

when (member ub::University0.
(mklist (get-value department ub::subOrganizationOf)))

do
(loop for student in students

when (member department
(mklist (get-value student ub::memberOf)))

do
(loop for email in (mklist (get-value student ub::emailAddress))

do (push (list student department email)
results)))

finally (return results))))

Query 9. This query handles a triangle relationship among three kinds of entities like Query 2.

In this case, the straightforward encoding from the SPARQL query form producesO(students×
f aculties×courses). Even in LUBM(1,0) it is up toO(7790×1627×540)= O(0.68×1010). How-

ever, refactoring the straightforward encoding for student’s advisor is easy to obtain the efficiency.

Therefore, the lisp code is modified apart from straightforward mapping from SPARQL.

SELECT ?X, ?Y, ?Z
WHERE
{?X rdf:type ub:Student.
?Y rdf:type ub:Faculty.
?Z rdf:type ub:Course.
?X ub:advisor ?Y.
?Y ub:teacherOf ?Z.
?X ub:takesCourse ?Z}

(defun q9.1 ()
(loop for student in (collect-all-instances-of ub::Student) with results

do
(loop for faculty in (mklist (get-value student ub:advisor))

when (typep faculty ub:Faculty)
do
(loop for course in (mklist (get-value faculty ub:teacherOf))

when (and (typep course ub:Course)
(member course

(mklist
(get-value student ub:takesCourse))))
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do (push (list student faculty course)
results)))

finally (return results)))

Query 10. This query is simpler than Query 7, but it requires the implicit super/subclass relation-

ship betweenub:GraduateStudent andub:Student as well as Query 6. Additionally, it is more

complex than Query 6 by query for one more property.

SELECT ?X
WHERE
{?X rdf:type ub:Student.
?X ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>}

(defun q10 ()
(loop for student in (collect-all-instances-of ub::Student)

when (member ub::Department0.University0.GraduateCourse0
(mklist (get-value student ub::takesCourse)))

collect student))

Query 11. This query form is similar to Query 1. The number of entities are small, but this query

assumes the transitive property ofub:subOrganizationOf. Note thatsubsumed-p in SWCLOS

computes the transitivity of individuals on transitive properties. See Subsection 3.3.5.

SELECT ?X
WHERE
{?X rdf:type ub:ResearchGroup.
?X ub:subOrganizationOf <http://www.University0.edu>}

(defun q11 ()
(loop for research-group in (collect-all-instances-of ub::ResearchGroup)

when (some #’(lambda (x) (subsumed-p x ub::University0.))
(mklist (get-value research-group ub::subOrganizationOf)))

collect research-group))

Query 12. This query is highly OWL specific.ub:Chair has no direct instances and no direct

subclasses. Therefore, the class extension is implicit. Note thatub:Chair is defined as a subclass

of ub:Professor and it is defined such as a chair is a professor who has a propertyub:headOf

for someub:Department. Thus, the system must infer that a professor who has a head property of

some department is an instance of classub:Chair.

SELECT ?X, ?Y
WHERE
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{?X rdf:type ub:Chair.
?Y rdf:type ub:Department.
?X ub:worksFor ?Y.
?Y ub:subOrganizationOf <http://www.Department0.edu>}

(defun q12 ()
(loop for chair in (collect-all-instances-of ub::Chair) with results

do
(loop for department in (mklist (get-value chair ub::worksFor))

when (and (typep department ub::Department)
(member ub::University0.

(mklist
(get-value department ub::subOrganizationOf))))

do (push (list chair department) results))
finally (return results)))

Query 13. This query assumes the combination of owl:inverseOf and rdfs:subPropertyOf con-

structs. Note that there is no explicit property extensions ofub:hasAlumnus. However,ub:hasAlumnus

is an inverse ofub:degreeFrom. Furthermore,ub:degreeFrom is a superproperty of three proper-

ties,ub:doctoralDegreeFrom, ub:mastersDegreeFrom, andub:undergraduateDegreeFrom.

The system must infer these relationship correctly.

SELECT ?X
WHERE
{?X rdf:type ub:Person.
<http://www.University0.edu> ub:hasAlumnus ?X}

(defun q13 ()
(loop for person in (collect-all-instances-of ub:Person) with results

and values = (mklist (get-value ub::University0. ub::hasAlumnus))
do
(loop for val in values

when (rdf-equalp person val)
do (push person results))

finally (return results)))

Query 14. This query is the simplest in the test query set. It assumes no OWL specific fea-

tures and no RDFS hierarchical structures. Note thatub:UndergraduateStudent has no sub-

classes. Thus, in this case, SWCLOS only retrieve the pointer to the list of direct instances of

ub:UndergraduateStudent.

SELECT ?X
WHERE
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Table 4.1: LUBM Benchmark Loading Time (dd:hh:mm:ss)

- Triples # OWLJessKB-NP SWCLOS CPU1 SWCLOS CPU2 SWCLOS CPU3 SWCLOS CPU4
LUBM(1,0) 103,397 00:02:19:18 00:00:11:31 00:00:06:36 00:00:03:06 00:00:01:43
LUBM(5,0) 646,128 - 00:27:14:00 00:15:26:00 00:08:42:00 00:04:54:00
LUBM(10,0) 1,316,993 - 08:13:00:00 05:03:00:00 02:18:00:00 01:13:00:00

OWLJessKB-NP: Pentium 4 CPU 1.8GHz, 256MB RAM, Windows XP Professional
SWCLOS CPU1: Pentium 4 CPU 1.50GHz, 256MB RAM, Windows XP Home Edition SP2

SWCLOS CPU2: Celeron CPU 2.53GHz, 512MB RAM, Windows XP Professional SP3
SWCLOS CPU3: Core 2 1.66+1.66GHz, 0.99GB RAM, Windows XP Professional SP3
SWCLOS CPU4: Core 2 2.93+2.93GHz, 1.94GB RAM, Windows XP Professional SP3

{?X rdf:type ub:UndergraduateStudent}

(defun q14 ()
(collect-all-instances-of ub::UndergraduateStudent))

4.3 Experimental Results

4.3.1 Loading of LUBM

The loading times of LUBM are summarized in Table 4.1 with the size of LUBM ontologies and

the loading time of OWLJessKB-NP, which is a non-persistent version of OWLJessKB. Note that

OWLJessKB is only one that replied correct answers for all queries in the LUBM report [22] and

also note that the CPU clock and memory size for OWLJessKB-NP is different from SWCLOS

CPU1, CPU2, CPU3, and CPU4. However, it is reasonable to compare the performance of OWL-

JessKB to an intermediate value between CPU1 and CPU2 by reason of their clock and memory

size.

OWLJessKB-NP takes approximately 10 times to load LUBM(1,0) ontology than SWCLOS.

Furthermore, OWLJessKB cannot load LUBM(5,0) and LUBM(10,0). The other reasoners than

OWLJessKB in the LUBM report can load larger ontologies, LUBM(10,0) and LUBM(20,0), but

all of them cannot answer correctly for some queries. See the detail in Guo et al. [22]. In case of

SWCLOS, LUBM(5,0), and LUBM(10,0) are also loadable even for CPU1.
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4.3.2 Results for Queries

The results for queries are listed at Table 4.2 for LUBM(1,0), Table 4.3 for LUBM(5,0), and Table

4.4 for LUBM(10,0) with the report data in [22] for the comparison. Sesami fails to answer for

Query 6 to 13. It suggests that Sesami cannot be equipped for highly OWL specific functionalities

such as implicit extensionality. DLDB-OWL fails to answer for Query 11 to 13. It might implies

that inference on transitive property and super/sub property are not correctly devised.

Note that generally DLDB-OWL (databased) and Sesami (memory-based and databased) are

faster than OWLJessKB, but those systems do not reply correctly for queries. It deserves to note

that the computational capability generally shows tradeoff relationship to computational efficiency.

Therefore, OWLJessKB-NP (memory-based) is suitable to compare the efficiency with SWCLOS,

because both are fully equipped for inference that LUBM requires. The CPU speed of the machine

used in the tests is different among SWCLOS and [22], but it is reasonable that Guo’s numbers is

compared to an intermediate value between SWCLOS CPU1 and CPU2 by their CPU clock and

memory size.

Roughly speaking, the test results showed the computational efficiency of SWCLOS is compara-

ble to other tools, especially in comparison to OWLJessKB-NP. For LUBM(5.0) and LUBM(10,0),

OWLJessKB was not tested, since it failed to load test data. Note that at the time of [22] reported

Racer cannot load LUBM data.6 Note that we had no expansion of heap memory of Allegro Com-

mon Lisp 8.1.

Meanwhile, the results of SWCLOS showed some distinctive results about Query 2, 5, 8, and

13 in comparison with other queries. We analyze the reason of the distinctive behavior of SWCLOS

in the next subsection.

4.3.3 Analysis of Distinctive Results

Refactoring query codes

Generally, more query variables in SPARQL forms, more complex query codes. However, in case

no dependency among query variables, it amounts to actually simple codes, even if the code includes

many loops like Query 4. Exactly, the complexity of query form in Query 4 is the same as Query

1. In both, substantial task is finding out ?x’s bound values that satisfy the given conditions. By

contrast, higher dependent relations such as Query 2 and Query 9, which show the triangle relations

among query variables, are exactly more complex.

6It was tested for Racer by developer themselves. See the section 4.5 and Haarslev et al. [23]
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Table 4.2: LUBM(1,0) Benchmark Test Results

Query unit DLDB Sesame Sesame OWL OWL SWCLOS SWCLOS SWCLOS SWCLOS
-OWL -DB -Memory JessKB-P JessKB-NP CPU1 CPU2 CPU3 CPU4

1 ms 59 46 15 9,203 200 83 63 27 16
ans 4 4 4 4 4 4 4 4 4

2 ms 181 51,878 87 11,6297 3,978 75,154 54,818 21,328 12,047
ans 0 0 0 0 0 0 0 0 0

3 ms 218 40 0 13,990 164 250 187 73 31
ans 6 6 6 6 6 6 6 6 6

4 ms 506 768 6 211,514 8,929 547 412 177 109
ans 34 34 34 34 34 34 34 34 34

5 ms 617 2,945 17 5,929 475 22,146 14,281 9,063 5,125
ans 719 719 719 719 719 719 719 719 719

6 ms 481 253 48 1,271 112 52 47 21 16
ans 7,790 5,916 5,916 7,790 7,790 7,790 7,790 7,790 7,790

7 ms 478 603 3 128,115 67 1,583 1,141 432 250
ans 67 59 59 67 67 67 67 67 67

8 ms 765 105,026 273 164,106 4,953 285,291 182,922 120,370 68,109
ans 7,790 5,916 5,916 7,790 7,790 7,790 7,790 7,790 7,790

9 ms 634 3,4034 89 87,475 2,525 974 703 281 156
ans 208 103 103 208 208 208 208 208 208

10 ms 98 20 1 141 4 443 323 130 78
ans 4 0 0 4 4 4 4 4 4

11 ms 48 65 1 1,592 45 62 41 16 16
ans 0 0 0 224 224 224 224 224 224

12 ms 62 4,484 12 11,266 162 521 381 172 94
ans 0 0 0 15 15 15 15 15 15

13 ms 200 4 1 90 1 15,427 11,875 5,021 2,812
ans 0 0 0 1 1 1 1 1 1

14 ms 187 218 42 811 20 5 0 0 0
ans 5,916 5,916 5,916 5,916 5,916 5,916 5,916 5,916 5,916

ms: milli-second, ans: number of answers
SWCLOS CPU1: Pentium 4 CPU 1.50GHz, 256MB RAM, Windows XP Home Edition SP2

SWCLOS CPU2: Celeron CPU 2.53GHz, 512MB RAM, Windows XP Professional SP3
SWCLOS CPU3: Intel Core 2 1.66+1.66GHz, 0.99GB RAM, Windows XP Professional SP3
SWCLOS CPU4: Intel Core 2 2.93+2.93GHz, 1.94GB RAM, Windows XP Professional SP3

not SWCLOS: Pentium4 CPU 1.80GHz, 256MB RAM, Windows XP Professional
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Table 4.3: LUBM(5,0) BenchMark Test Results

Query unit DLDB Sesame Sesame SWCLOS SWCLOS SWCLOS SWCLOS
-OWL -DB -Memory CPU1 CPU2 CPU3 CPU4

1 ms 226 43 37 765 438 188 109
ans 4 4 4 4 4 4 4

2 ms 2,320 368,423 495 484,172 345,032 129,375 72,703
ans 9 9 9 9 9 9 9

3 ms 2,545 53 1 1,515 1,093 375 219
ans 6 6 6 6 6 6 6

4 ms 2,498 823 4 3,296 2,391 1,063 609
ans 34 34 34 34 34 34 34

5 ms 4,642 3,039 17 238,735 154,562 95,641 53,704
ans 719 719 719 719 719 719 719

6 ms 4,365 1,517 251 391 266 125 63
ans 48,582 36,682 36,682 48,582 48,582 48,582 48,582

7 ms 2,639 636 4 9,234 6,797 2,375 1,344
ans 67 59 59 67 67 67 67

8 ms 3,004 108,384 262 3,179,687 2,050,579 1,294,375 737,453
ans 7,790 5,916 5,916 7,790 7,790 7,790 7,790

9 ms 7,751 256,770 534 5,782 4,407 1,484 859
ans 1,245 600 600 1,245 1,245 1,245 1,245

10 ms 1,051 36 0 2,594 1,921 735 406
ans 4 0 0 4 4 4 4

11 ms 51 73 1 422 297 110 63
ans 0 0 0 224 224 224 224

12 ms 78 4,659 14 3,156 2,375 1,016 594
ans 0 0 0 15 15 15 15

13 ms 2,389 9 1 333,969 210,843 94,484 52,344
ans 0 0 0 1 1 1 1

14 ms 2,937 1,398 257 31 31 0 16
ans 36,682 36,682 36,682 36,682 36,682 36,682 36,682

ms: milli-second, ans: number of answers
SWCLOS CPU1:ibid.
SWCLOS CPU2:ibid.
SWCLOS CPU3:ibid.
SWCLOS CPU4:ibid.

not SWCLOS:ibid.
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Table 4.4: LUBM(10,0) BenchMark Test Results

Query unit DLDB Sesame Sesame SWCLOS SWCLOS SWCLOS SWCLOS
-OWL -DB -Memory CPU1 CPU2 CPU3 CPU4

1 ms 412 40 106 1,172 922 344 203
ans 4 4 4 4 4 4 4

2 ms 14,556 711,678 1,068 1,009,563 710,781 280,141 154,516
ans 28 28 28 28 28 28 28

3 ms 5,540 59 0 3,079 2,156 734 407
ans 6 6 6 6 6 6 6

4 ms 5,615 762 4 6,610 4,937 2,094 1,203
ans 34 34 34 34 34 34 34

5 ms 11,511 3,214 17 758,391 472,328 302,953 167,250
ans 719 719 719 719 719 719 719

6 ms 11,158 3,539 543 781 546 235 125
ans 99,566 75,547 75,547 99,566 99,566 99,566 99,566

7 ms 7,028 5,916 4 18,656 13,437 4,516 2,531
ans 67 59 59 67 67 67 67

8 ms 5,937 108851 264 10,084,219 6,391,422 4,229,938 2,322,890
ans 7,790 5,916 5,916 7,790 7,790 7,790 7,790

9 ms 19,971 460,267 1,123 11,344 8,421 2,953 1,657
ans 2,540 1,233 1,233 2,540 2,540 2,540 2,540

10 ms 2,339 40 0 5,750 3,812 1,344 765
ans 4 0 0 4 4 4 4

11 ms 61 84 3 875 562 281 125
ans 0 0 0 224 224 224 224

12 ms 123 4,703 12 6,469 4,719 2,062 1,171
ans 0 0 0 15 15 15 15

13 ms 5,173 12 1 1,953,141 764,141 363,000 197,406
ans 0 0 0 1 1 1 1

14 ms 7,870 3,831 515 78 63 31 15
ans 75,547 75,547 75,547 75,547 75,547 75,547 75,547

ms: milli-second, ans: number of answers
SWCLOS CPU1:ibid.
SWCLOS CPU2:ibid.
SWCLOS CPU3:ibid.
SWCLOS CPU4:ibid.

not SWCLOS:ibid.
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In the experiment of benchmarking described above, the straightforward mapping from SPARQL

forms may cause huge amount of computational time. Therefore, such codes are simply modified

by looking the textual expressions. For example, Suppose we obtained an code such that;

(defun query ()
(let ((xx (collect-all-instances-of ClassX))

(yy (collect-all-instances-of ClassY))
(zz (collect-all-instances-of ClassZ)))

(loop for x in xx with results
do (loop for y in yy

do (loop for z in zz
do (when (and --satisify-given-condition-for-x--

--satisify-given-condition-for-y--
--satisify-given-condition-for-z-- )

(push (list x y z) results))))
finally (return results)))).

In case of findingyy only dependsxx in –satisify-given-condition-for-y–, it may be tai-

lored such as;

(defun query ()
(let ((xx (collect-all-instances-of ClassX))

(zz (collect-all-instances-of ClassZ)))
(loop for x in xx with results
do (loop for y in --satisify-given-condition-for-y--

do (loop for z in zz
do (when (and --satisify-given-condition-for-x--

--satisify-given-condition-for-z-- )
(push (list x y z) results))))

finally (return results)))).

This tailoring reduces the computational time toO(n1×n′2×n3) from O(n1×n2×n3), wheren1, n2,

andn3 is a number of entities of three kinds, respectively, andn′2 is a number of satisfiable entities

for the given condition. Thus, the lisp codes of Query 2 and 9 are simply modified in order to reduce

the computational time. See two lisp codesq2.1 andq9.1 described above.

For Query 2, we might be able to furthermore improve the efficiency. Fig.4.1 depicts the triangle

structure in Query 2. As shown here, an instance ofub:GraduateStudent will be a subject for not

only ub:memberOf triple but alsoub:underGraduateFrom triple, and there is a dependency of a

student to a department+ a department to a university. Therefore, we can make a match between

two computational values for universities against a student and a department. The following code

q2.2 is a newly modified code for Query 2 for pursuing the dependency.
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a graduate  student

a university a department

undergraduateDegreeFrom memberOf

subOrganizationOf

Fig. 4.1: Triangle Structure of Q2.

(defun q2.2 ()
(loop for student in (collect-all-instances-of ub::GraduateStudent) with results

do
(loop for department in (gx::mklist (get-value student ub::memberOf))

when (typep department ub::Department)
do
(loop for university in (gx::mklist (get-value department ub::subOrganizationOf))

do
(when (member university

(gx::mklist (get-value student ub::undergraduateDegreeFrom)))
(push (list student university department) results))))

finally (return results)))

As well as Query 2, Query 8 can be analyzed from the data dependency. The codeq8 listed

above for Query 8 was distorted from straightforward encoding. The structure of Query 8 is depicted

in Fig. 4.2. Then, we could improve the efficiency by pursuing regularly dependency from students

to departments. The following shows the dependency code for Query 8.

a graduate  student

University0 a department

emailAddress

memberOf

subOrganizationOf

an emailAddress

Fig. 4.2: Triangle Structure of Q8.

(defun q8.1 ()
(let ((students (collect-all-instances-of ub::Student))

(departments (collect-all-instances-of ub::Department)))
(loop for student in students with results

do
(loop for department in (gx::mklist (get-value student ub::memberOf))

when (typep department ub::Department)
do
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Table 4.5: Results of Refactoring Lisp Query Code for LUBM(1,0)

Query unit DLDB Sesame Sesame OWL OWL SWCLOS SWCLOS SWCLOS SWCLOS
-OWL -DB -Memory JessKB-P JessKB-NP CPU1 CPU2 CPU3 CPU4

2 ms 181 51,878 87 11,6297 3,978 4,844 3,328 2,062 1,321
ans 0 0 0 0 0 0 0 0 0

8 ms 765 105,026 273 164,106 4,953 19,500 13,297 8,781 5,407
ans 7,790 5,916 5,916 7,790 7,790 7,790 7,790 7,790 7,790

ms: milli-second, ans: number of answers
SWCLOS CPU1: Pentium 4 CPU 1.50GHz, 256MB RAM, Windows XP Home Edition SP2

SWCLOS CPU2: Celeron CPU 2.53GHz, 512MB RAM, Windows XP Professional SP3
SWCLOS CPU3: Core 2 1.66+1.66GHz, 0.99GB RAM, Windows XP Professional SP3
SWCLOS CPU4: Core 2 2.93+2.93GHz, 1.94GB RAM, Windows XP Professional SP3

not SWCLOS: Pentium4 CPU 1.80GHz, 256MB RAM, Windows XP Professional

(when (member ub::University0.
(gx::mklist (get-value department ub::subOrganizationOf)))

(loop for email in (gx::mklist (get-value student ub::emailAddress))
do (push (list student department email) results))))

finally (return results))))

The results of this refactoring for LUBM(1,0) are summarized in Table 4.5. The computational

time is reduced more than 10 times in comparison with Table 4.2.

Backpointers of predicates and objects

As described above, the improvement for efficiency was obtained by manual refactoring for Query

2 and 8 by pursuing the data dependency in triples. However, it is difficult that machines analyze

structures of SPARQL query forms and automatically compile them and produce efficient lisp codes.

In case of Query 2 and 8, if we have backpointers on subject/predicate/object triples, machines

can easily compile SPARQL query forms without dependency analysis, since we can obtain any

subject values associated to any objects with respect to some predicate. Eventually, it makes easy

to produce efficient codes. The following code of CLOS method automatically adds backpointers

from an object to subjects in SWCLOS with respect to every predicate that points the object from

the subjects. Then,q2 andq8 may be changed toqq2 andqq8, respectively by leveraging these

backpointers.

(defmethod shared-initialize :after ((instance gnode) slot-names &rest initargs)
(declare (ignore slot-names initargs))
(typecase instance
(rdfs:Datatype nil)
(rdfs:Literal nil)



94 CHAPTER 4. BENCHMARK TEST BY LUBM

(owl:Restriction nil)
(rdfs:Resource
(let* ((class (class-of instance))

(slotds (mop:class-slots class)))
(dolist (slotd slotds)
(let ((slot-name (mop:slot-definition-name slotd)))
(when (slot-boundp instance slot-name)
(let ((val (slot-value instance slot-name)))
(typecase val
(rdfs:Datatype nil)
(rdfs:Literal nil)
(owl:Restriction nil)
(rdfs:Resource
(let* ((inv-plist (slot-value val ’inv-plist))

(inv-vals (getf inv-plist slot-name)))
(cond (inv-vals (pushnew instance inv-vals))

(t (setq inv-vals (list instance))))
(setf (getf inv-plist slot-name) inv-vals)
(setf (slot-value val ’inv-plist) inv-plist))))))))))))

(defun qq2 ()
(loop for university in (collect-all-instances-of ub::University)

as students =
(remove-if-not #’(lambda (x) (typep x ub::GraduateStudent))

(getf (slot-value university ’gx::inv-plist)
’ub::undergraduateDegreeFrom))

as departments =
(remove-if-not #’(lambda (x) (typep x ub::Department))

(getf (slot-value university ’gx::inv-plist)
’ub::subOrganizationOf))

append
(loop for student in students

as belong = (get-value student ub:memberOf)
when (member belong departments)
collect (list student university belong))))

(defun qq8 ()
(let ((departments

(remove-if-not #’(lambda (x) (typep x ub::Department))
(getf (slot-value ub::University0. ’gx::inv-plist) ’ub::subOrganizationOf))))

(loop for department in departments
append
(let ((students

(remove-if-not #’(lambda (x) (typep x ub::Student))
(getf (slot-value department ’gx::inv-plist) ’ub::memberOf))))

(loop for student in students
append
(loop for email in (gx::mklist (get-value student ub::emailAddress))
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Table 4.6: Query Results by Backpointer for LUBM(1,0)

Query unit DLDB Sesame Sesame OWL OWL SWCLOS SWCLOS SWCLOS SWCLOS
-OWL -DB -Memory JessKB-P JessKB-NP CPU1 CPU2 CPU3 CPU4

2 ms 181 51,878 87 11,6297 3,978 4,688 3,172 1,906 1,125
ans 0 0 0 0 0 0 0 0 0

8 ms 765 105,026 273 164,106 4,953 390 250 94 63
ans 7,790 5,916 5,916 7,790 7,790 7,790 7,790 7,790 7,790

ms: milli-second, ans: number of answers
SWCLOS CPU1: Pentium 4 CPU 1.50GHz, 256MB RAM, Windows XP Home Edition SP2

SWCLOS CPU2: Celeron CPU 2.53GHz, 512MB RAM, Windows XP Professional SP3
SWCLOS CPU3: Core 2 1.66+1.66GHz, 0.99GB RAM, Windows XP Professional SP3
SWCLOS CPU4: Core 2 2.93+2.93GHz, 1.94GB RAM, Windows XP Professional SP3

not SWCLOS: Pentium4 CPU 1.80GHz, 256MB RAM, Windows XP Professional

collect (list student department email)))))))

These codes,qq2 andqq8, might look messy but they are actually simple and may be rearranged

by introducing appropriate internal functions. It is easier for machines to produce such lisp codes

from SPARQL forms. The results of these queries by leveraging the backpointers are summarized in

Table 4.6. As you can see, it is approximately 1000 times efficient for Query 8 than Table 4.2. This

drastic efficiency improvement is obtained by firstly getting the subject value associated to constant

objectub:University0. In such a case, generallyO(n1 × n2′ × n3) is reduced toO(n1 × 1× n3).

Memoization for Data Caching

In case such that query forms are simple but the inferences are complex, refactoring is not effective.

Fig. 4.3 shows the result of analysis of Query 5 by Allegro Common Lisp Code Analyzer. As shown

here, 90% of computational time is spent for the execution ofcollect-all-extensions-of. We

know that LUBM ontology does not change in the query process. Therefore, memoization7(caching

results of function execution) will be effective. The memoization process is very simple. It only

needs to invoke functionmemoize for the function to be memoized before the function execution.

The result of memoization of functioncollect-all-extensions-of is summarized in Table 4.7

for all of queries in LUBM(1,0). The query execution was carried out twice successively. The

execution time of Query 5 is drastically reduced in comparison with Table 4.2. The time for Query

13 is drastically reduced from the 1st execution to 2nd execution.

7Not memorization. For example, see“Paradigms of Artificial Intelligence Programming: Case Studies in Common
Lisp” (Peter Norvig).
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Table 4.7: Results of Memoization ofcollect-all-extensions-of for LUBM(1,0)

Query unit OWL CPU1 CPU2 CPU3 CPU4
JessKB-NP (1st/2nd) (1st/2nd) (1st/2nd) (1st/2nd)

1 ms 200 78/78 78/63 15/15 0/16
ans 4 4 4 4 4

2 ms 3,978 69,468/69,531 53,469/54,391 19,563/19,562 10,750/10,828
ans 0 0 0 0 0

3 ms 164 250/250 188/172 63/78 47/47
ans 6 6 6 6 6

4 ms 8,929 531/547 406/422 172/188 94/109
ans 34 34 34 34 34

5 ms 475 2,546/2,531 2,031/2,000 843/829 469/469
ans 719 719 719 719 719

6 ms 112 47/47 47/47 31/15 0/16
ans 7,790 7,790 7,790 7,790 7,790

7 ms 67 1,547/1,547 1,204/1,219 422/453 250/250
ans 67 67 67 67 67

8 ms 4,953 11,235/11,204 8,734/8,797 3,360/3,360 1,875/1,875
ans 7,790 7,790 7,790 7,790 7,790

9 ms 2,525 953/953 750/782 281/297 156/157
ans 208 208 208 208 208

10 ms 4 422/422 343/375 125/141 78/78
ans 4 4 4 4 4

11 ms 45 62/62 31/47 16/16 15/15
ans 224 224 224 224 224

12 ms 162 515/515 375/390 156/172 93/94
ans 15 15 15 15 15

13 ms 1 15,312/1,860 11,157/1,453 5,032/625 2,859/359
ans 1 1 1 1 1

14 ms 20 0/0 0/0 16/0 0/0
ans 5,916 5,916 5,916 5,916 5,916

ms: mili-second, ans: number of answers
SWCLOS CPU1:ibid.
SWCLOS CPU2:ibid.
SWCLOS CPU3:ibid.
SWCLOS CPU4:ibid.

not SWCLOS:ibid.
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Fig. 4.3: Code Analysis of Query 5

Table 4.8: Summary of Analysis and Improvements

Improvement Q2 Q5 Q8 Q13 note
refactoring ⃝ - ⃝ - Effective SPARQL implementation is needed.
backpointer ⃝ - ⃝ - Larger memory size is needed.
memoization - ⃝ ⃝ ⃝ Applicable only for immutable ontologies

4.4 Summary of Analysis and Improvement for LUBM

The results of analysis and improvement of efficiency can be summarized at Table 4.8, which shows

the effectiveness of improvements for Query 2, 5, 8 and 13, which initially demonstrated distinctive

behaviors in computational efficiency.

Manual refactoring is effective for queries such as involve combinatorial explosions in SPARQL

query forms. However, refactoring is not generally applicable for all queries and it is difficult to

automatically produce efficient codes for SPARQL queries.

Backpointer is an alternative solution for combinatorial explosions but it requires larger memory

size instead of obtaining drastically efficient results. For example, in LUBM(10,0), additional 10MB

memory is required for backpointer memory cells, since one backpointer requires two cons cells of

4 memory words.
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Memoization is widely effective from inferential complexity problems for OWL reasoning to

combinatorial complexity problems in query forms, but it is not applicable to mutable ontologies,

and it will require a special code to clear the memoized data. It is also difficult to appropriately

perform the clearance against dynamic change for ontologies.

In practice, it is obvious that the improvement of performance should be reflective for the aim

of applications and the characteristics of problems. It should be very engineering solution.

4.5 Related Work

So far, the efficiency of implementation of SWCLOS is compared with some reasoners which were

reported in the LUBM paper by Guo et al. [22]. After the first LUBM reports at ISWC 2004, the

LUBM Test has become thede factstandard for testing Semantic Web reasoners, and succeeding

studies in Semantic Web community were carried out in two directions, that is, developing RDF

stores for huge RDF or OWL Lite level ontology repositories, and the extending the LUBM test set

to OWL DL or more comprehensive test suites. Virtuoso8 and AllegroGraph9 are examples of the

former, and the efforts by Ma, et al. [45] and Weithöner et al. [76] are for the latter. In this section,

the impact of early LUBM Test and the related work after LUBM are discussed.

4.5.1 Supplementary LUBM Test Reports

In the LUBM paper by Guo et al. [22], three reasoners, that is, DLDB-OWL, Sesami, and OWL-

JessKB, were tested and other reasoners or tools were not adopted by various reasons. Then, sup-

plementary reports were made for RacerPro, Pellet, and KAON2 by developer themselves of those

tools.

RacerPro report

At the time of Guo’s report, Racer failed to load the LUBM test dataset due to the inferior per-

formance of connection to ABox. After that, the RacerPro was updated for the improvement of

handling large ABoxes and the result was published on the HomePage10 with the new trial version

of RacerPro and data sets. It reports the time for loading, ABox preparation, consistency checking,

8http://virtuoso.openlinksw.com/
9http://www.franz.com/agraph/allegrograph/

10http://www.sts.tu-harburg.de/~r.f.moeller/racer/lubm.html
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and index structuring is 13.87+ 1.38+ 0.00+ 7.87 sec for LUBM(1,0). The times for answering

queries were varied from millisecond to a few seconds. It took 2.39 sec for Query 8.

Pellet report

Pellet is an OWL DL level reasoner in open source license. In Pellet, the tableaux-based reasoner

searches for interpretation models in order to construct a completion graph of tableaux starting from

ABox. The query form is strictly restricted within first order logic. However, owl:differentFrom is

effective as well as rdf:type and owl:sameIndividualAs. Pellet can accept very restricted OWL

Full descriptions that are accidentally described by users due to incomplete knowledge or careless

miss in spite of aiming OWL DL, if they are “DLizable”. Subproperties of rdf:type and cardinality

restrictions on transitive properties are ignored by Pellet.

Pellet reports results of LUBM(1,0), LUBM(3,0), and LUBM(5,0) [63]. It seems that Pellet

showed better performance than RacerPro.

KAON2 report

KAON2 seems to be tested for LUBM(1,0), LUBM(2,0), LUBM(3,0), and LUBM(4,0) together

with other ontologies in report [54]. However, the performance data of queries are disclosed only

on three queries, that is, Query1, 2 and 3, although the report states, “As our results show, LUBM

does not pose significant problems for KAON2."

4.5.2 Towards Complete Benchmark Suits

There are several pitfalls with respect to Benchmark Testing. Firstly, although benchmarking is

basically useful to find out points of remedy on reasoners, excessive adaptation easily happens in

trying to obtain a good performance with respect to materialized benchmark tests, because it is easy

to adapt their systems to concrete test sets. It may be a problem if benchmark test sets are not

matured and does not cover full range of problems, or in the case that the limitation of applicability

stays ambiguous.

Secondly, creating benchmark test sets for ABox scalability is rather easy, but creating ones

for TBox scalability is difficult. It should be noted that the complexity of TBoxes rises from the

complexity of ontologies themselves. Thus, how to generate test sets for ontological complexity is

left as a question to be solved.
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Thirdly, we does not share common image of standardized OWL ontologies. There are many

expressions to represent an ontology. People from OWL DL tend to use owl:equivalentClass to-

gether with owl:intersectonOf or owl:unionOf, although it is not necessary by OWL syntax rules.

Some ontology has deeply nested RDF/XML expressions in which new entities appear only in the

middle of a tree, and another ontology has a set of many shallow RDF/XML trees. Furthermore,

ontologies seldom perfect on their syntax and semantics.

UOBM test sets

Ma et al. [45] pointed that LUBM does not provide test data on cardinality and allValuesFrom, and

also pointed that it supports only a subset of OWL Lite. In fact, LUBM only covers 10/23 parts

with respect to OWL Lite constructs. Aiming a complete benchmark test sets for OWL DL, Ma et

al. extended LUBM to University Ontology Benchmark (UOBM).

In Ma’s report [45], three reasoners, that is, OWLIM, DLDB-OWL, and Minerva were tested

for UOBM test data. OWLIM11 is a newly developed repository as a Storage and Interface Layer

for Sesami. Minerva12 is an ontology toolkit for a storage and the inference performed by Pellet at

backend.

They also pointed out that LUBM has another limitation such that instances in ABox form

multiple isolated graphs and the graphs lack links among them. This point was not important so far,

but it has been becoming critical with recently spreading expectations for Linked Data.

ABox complexity vs. TBox complexity

Weithöner et al. [76] investigated the effects of the scalability of ABox onto the complexity of TBox.

They claimed, “We are convinced that an ABox benchmark cannot be conducted without scaling

the TBox size too. Inevitably this will also increase TBox reasoning complexity which again might

influence ABox reasoning performance.” Aiming to evaluate the scalability linkage between ABox

and TBox, they created a new benchmark, and found the different behavior between RacerPro and

KAON2 with respect to the size change of both TBox and ABox. However, it seems that scalability

and complexity of TBoxes are vague.

11http://www.ontotext.com/owlim/
12http://www.alphaworks.ibm.com/tech/semanticstk/
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Probabilistic ontology generation

To reduce required time and labor for generation of benchmarking datasets, the LUBM team studied

how to rapidly generate the datasets, and generated Lehigh BibTeX Benchmark [75]. This direction

of study seems to be important in order to produce complex TBoxes rather than ABoxes. However,

there is no ontological consideration in Wang, et al. [75].

4.6 Concluding Remarks

The efficiency of SWCLOS implementation is tested by LUBM Benchmark Test Sets from hundreds

thousand to one million triples. As a result, we conclude the following remarks.

1. SWCLOS showed the comparative performance in loading time and reasoning time to tools

reported in Guo et al.

2. SWCLOS replied correctly to all queries of LUBM, whereas no reasoners but OWLJessKB

in the reports could reply.

3. Refactoring by pursuing data dependency in triples was effective for complex query forms.

4. Backpointers are effective for complex query forms in order to produce effective code by

pursuing data dependency.

5. Function memoization is also effective for efficient execution of reasoning and complex query

forms.

6. We recognized that loading for LUBM takes long time in comparison of answering queries.

There is a room of improvement for large-scale ABox loading. Persistentization of ABox and

late evaluation for instances will be recommended.

It is obvious that ABox should be persistentized at least for a repository of ontologies. This result

for LUBM Benchmark Test and discussion of related work indicated useful suggestions for building

repositories, whereas SWCLOS is a language for Semantic Web application.
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Chapter 5

Demonstration of OWL Full

Metamodeling

"Demo or Die"(The MIT Media Lab’s motto)

SWCLOS is the first full-fledged language system as OWL Full processor, in which the capa-

bility of metamodeling objects is borrowed from the power of the dynamic and reflective features of

Lisp and metamodeling capability of CLOS. We implemented many OWL axioms into CLOS using

Meta-Object Protocol (MOP) of CLOS.

Although unrestricted freedom of metamodeling certainly results in undecidability, most exam-

ples demonstrated as OWL Full undecidability are unreasonably extreme and make no sense from

the view of engineering. In this chapter, several metamodeling examples of SWCLOS are shown

within the understandable rationale of metamodeling from our practical experience, and a set of

metamodeling criteria that enables SWCLOS to perform ontology metamodeling is addressed.

5.1 Tractability on Metamodeling and Metamodeling Criteria

5.1.1 Untractable Metamodeling

In SWCLOS, RDF(S) semantics is preserved in the OWL universe. Thus, it is critical to distinguish

individuals, strict classes, and metaclasses according to the metamodeling manner of RDFS1. How-

ever, there some ontologies do not distinguish them such as shown in SUMO2, and include direct

1See Section 6.3.
2http://www.ontologyportal.org/
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SetOrCollection

SetOrCollectionType

VariedOrderCollection

Collection

FixedOrderCollection

FirstOrderCollection

SecondOrderCollection

ThirdOrderCollection

FourthOrderCollection

CollectionTypeTypeCollectionType

super/subclass relation

class/instance relation

Fig. 5.1: Membership Loop in Cyc on Collections

and indirect infinte loops on membership such as shown in OpenCyc3. For example, as shown in

Fig. 5.1, OpenCyc includes direct and indirect membership loops around the definitions of various

kinds of collections (see the bold and broken curve lines). Such complex membership loops violate

the metamodeling criteria which conform to the semantics of RDF(S) and SWCLOS.

In SUMO, althoughsumo:UnitOfMeasure andsumo:SystemeInternationalUnit are classes

of classsumo:Meter, it does not satisfy the metaclass condition 6.16 (see Chapter 6).Fig. 5.2de-

picts this improper relation.

According to the semantics of RDFS and CLOS, SWCLOS does not process such unprincipled

metamodeling. Thus, we addressed metamodeling criteria that conform to RDF(S) semantics and

allow SWCLOS to perform metamodeling.

5.1.2 Metamodeling Criteria from RDF(S) Semantics

We settled criteria for ontology metamodeling that support the well-formedness of metamodeling

with respect to the semantics of RDFS and SWCLOS. It is calledCLOS cleanor RDF cleanmeta-

modeling criteria.Fig. 5.3depicts some examples of CLOS clean metamodeling.

1. Ontology must be clearly layered in the base-object layer, the strict-class layer, and the meta-

class layer. Every entity must be in only one layer and does not belong to more than one layer

of them. In other words, it must be decidable for every entity in the universe which layer an

entity belongs.
3http://www.opencyc.org/
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rdfs:Resource

LengthMeasure Meter
PhysicalQuantity ConstantQuantity

rdfs:Class SystemeInternationalUnit
QuantityAbstractEntity UnitOfMeasure

rdfs:subClassOfrdf:type
rdfs:subClassOf rdf:type

Fig. 5.2: A Part of SUMO Ontology

rdfs:subClassOfrdf:type
rdfs:Resource c2

rdfs:Class
c1 c3

m1 m2 m3k1
Fig. 5.3: Examples of CLOS Clean Metamodeling
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2. There is no direct/indirect loop among superclass-subclass relation.

3. There is no direct/indirect membership loop except rdfs:Class.4

4. There may exist anywhere parallel relationship between superclass-subclass relation and mem-

bership relation. Seem1 andm2, andm1 andk1 in Fig. 5.3. It may be calledstratified.5 This

parallel relation bears a metaclassing bifurcation in metaclass layers but it cannot make a

closed universe in ontology.

5. There may exist anywhere twisted relation between class super-subclass relation and mem-

bership relation. Seec2 andm2 in Fig. 5.3. Such twisted relation makes a closed sub universe

in the super universe.

6. A class of classes must have rdfs:Class in its superclasses. (metaclass condition)

Thus, in order to remedy SUMO ontology from the viewpoint of CLOS clean criteria,sumo:Systeme-

InternationalUnit itself orsumo:UnitOfMeasure must be a subclass of rdfs:Class.

5.2 Demonstration of Metamodeling Programming

5.2.1 Treating a Class as Individual

Several usecases for metamodeling ontology are shown by W3C OWL Working Group.6 All of

them are easily programmed by SWCLOS. For example, for a classa:Eagle and an individual

a:Harry defined as follows;

(/. a::Eagle rdf:type owl:Class)

(/. a::Harry rdf:type a::Eagle)

in order to define a classa:Eagle as instance ofa:EndangeredSpecies,

(/. a:Eagle rdf:type a::Species)

(/. a:Eagle rdf:type a::EndangeredSpecies)

4Despite this criterion, we can set up substantially membership loops with subsumption usingtwisted relationor
proxy. A twisted relation makes a subdomain that is completely included by a superdomain by making it between a
universal class and a universal metaclass for the subdomain.

5In stratification of New Foundations (NF) set theory, for a given any formulaφ(xn), the formula∃An+1∀xn[(xn ∈
An+1)⇔ φ(xn)] is an axiom whereAn+1 represents the set such that{xn | φ(xn)}n+1. If the order ofm2 andm3 in Fig. 5.3 is
two, then the order ofm1 andk1 is three.

6http://www.w3.org/2007/OWL/wiki/Punning
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makinga::Species a metaclass enables such metamodeling as follows.

(/. a:Species rdfs:subClassOf owl:Class)

(/. a:EndangeredSpecies rdfs:subClassOf a:Species)

5.2.2 Adding a Role Filler to a Class

Suppose the case such that wine brands must identify through ID-numbers byInternational Wine

Society. Since there are brand wine concepts such as vin:Zinfandel mixed together with non-brand

wine concepts such as vin:CaliforniaWine in Wine Ontology, we must distinguish them at first. Even

if we introduce two new classes as a subclass of vin:Wine, namely BrandWine of which instances

have an ID-number and NonBrandWine that does not have an ID-number, we cannot attach an ID-

number to wine concepts such as vin:Zinfandel (in such case an ID-number is attached to wine

instances such as vin:ElyseZinfandel), because in order to attach a role and filler to a class, a class

of the class is required. The solution in SWCLOS is shown below.

(defConcept BrandWine (rdf:type owl:Class)

(rdfs:subClassOf vin:Wine owl:Class)) -> #<owl:Class BrandWine>

(defConcept NonBrandWineConcept (rdf:type owl:Class)

(rdfs:subClassOf vin:Wine owl:Class)) -> #<owl:Class NonBrandWineConcept>

(defProperty hasIDNumber (rdf:type owl:ObjectProperty)

(rdfs:domain BrandWine)

(rdfs:range xsd:positiveInteger)) -> #<owl:ObjectProperty hasIDNumber>

(defResource vin:Zinfandel (rdf:type BrandWine)

(hasIDNumber 12345)) -> #<BrandWine vin:Zinfandel>

(get-form vin:Zinfandel)

-> (BrandWine vin:Zinfandel (rdf:about #<uri http://www.w3.org/TR ...

(rdfs:subClassOf (owl:hasValueRestriction ...

...

(owl:intersectionOf vin:Wine

(owl:hasValueRestriction ...

(owl:cardinalityRestriction ...

(hasIDNumber 12345))
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5.2.3 Treating an Individual as Class

In Semantic Web Service by OWL (OWL-S) [47]7, the range of propertyprocess:hasPrecondition

isexpr:Condition, and an instance ofexpr:Conditionmay have a value ofexpr:expressionBody.

Ordinary logics do not have a notion of class for logical expression, but suppose here that we

have many kinds of conditions as definition and need to classify actual conditional occurrences

to one of these condition classes. For example, we have many operational modes in the rocket

launch operation [51], and each operational mode selects applicable services through precondi-

tions. Note that anexpr:expressionBody is different each other by operational modes and it

identifies each condition class. Here we need to attachexpr:expressionBody value to class-

like preconditions, in order to classify actual conditions in operation and store them as instances

of each operational condition classes. Recall thatexpr:expressionBody value may be attached

to an instance of, but cannot be attached to,expr:Condition per se. In SWCLOS, the problem

is solved as follows. We defined a new metaclassgxprcs:Precondition that inherits properties

of expr:Condition, and then specific conditions,PipeCoolDownMode-，TankCoolDownMode-，

andRocketTankingMode-Precondition were defined as instance ofexpr:Condition. As a re-

sult, actual occurrences are classified to three conditions, and similar but different services could be

invoked according to the service precondition classes, within the boundary of the schema of OWL-S

1.1.

(defResource gxprocess::Precondition (rdf:type owl:Class)

(rdfs:comment "This is a meta-class for precondition.")

(rdfs:subClassOf owl:Class expr:Condition))

(defResource gxprocess::OperationModePrecondition

(rdf:type gxprocess::Precondition)

(rdfs:label :en "operation mode precondition")

(rdfs:subClassOf expr:Condition gxdomain::OperationMode)

(expr:expressionBody ... ))

(defResource gxprocess::PipeCoolDownModePrecondition

(rdf:type gxprocess::Precondition)

(rdfs:label :en "pipe cool-down mode precondition")

(rdfs:subClassOf gxprocess::OperationModePrecondition

gxdomain::PipeCoolDownMode)

(expr:expressionBody ... ))

(defResource gxprocess::TankCoolDownModePrecondition

7http://www.daml.org/services/owl-s/1.1/
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(rdf:type gxprocess::Precondition)

(rdfs:label :en "tank cool-down mode precondition")

(rdfs:subClassOf gxprocess::OperationModePrecondition

gxdomain::TankCoolDownMode)

(expr:expressionBody ... ))

(defResource gxprocess::RocketTankingModePrecondition

(rdf:type gxprocess::Precondition)

(rdfs:label :en "rocket tanking mode precondition")

(rdfs:subClassOf gxprocess::OperationModePrecondition

gxdomain::RocketTankingMode)

(expr:expressionBody ... ))

5.3 Concluding Remarks

In this chapter, firstly we saw examples for untractable metamodeling from the viewpoint of RDFS

and CLOS metamodeling, and then the criteria for tractable metamodeling that is elaborated from

the CLOS metamodeling capability and conforms to RDFS axioms8 are addressed. According to

the criteria of metamodeling, three typical metamodeling examples are demonstrated in SWCLOS.

The theoretical rationale of these metamodeling criteria and the foundation of OWL Full theory

is discussed in the next chapter.

8See the next chapter.
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Chapter 6

OWL Full Theory

“The most comprehensive formal systems that have been set up hitherto are the

system of ‘Principia mathemathica’ (PM) on the one hand and the Zermelo-Fraenkel

axiom system of set theory (further developed by J. von Neumann) on the other. These

two systems are so comprehensive that in them all methods of proof today used in

mathematics are formalized, that is, reduced to a few axioms and rules of inference.

One might therefore conjecture that these axioms and rules of inference are sufficient

to decide any mathematical question that can at all be formally expressed in these

systems. It will be shown below that this is not the case, that on the contrary there are

in the two systems mentioned relatively simple problems in the theory of integers that

cannot be decided on the basis of the axioms.”(On Formally Undecidable Propositions

of Principia Mathematica and Related Systems I, Kurt Gödel)

In this chapter, OWL Full theory is developed with rearranging and rephrasing previously pre-

sented descriptions for RDF, RDFS, CLOS, and OWL in W3C documentations and Chapter 2.

Properly speaking, we do not believe that set theories are prerequisite to develop OWL Full

Theory. However, futile arguments lasted about the foundation of semantic theory in Semantic

Web community on the pretext of Russell’s Paradox. The W3C recommendation of RDF semantics

mentions Zermelo-Fraenkel set theory on one hand, and the other hand the W3C recommendation of

OWL semantics mentionscomprehensive principlethat is a foundation ofnaiveset theory by Georg

Cantor. Set theories are the foundation of Semantic Web theory as well as they are the foundation

of mathematical theory. Therefore, there is no choice but to discuss about set theories in order to

rescue OWL Full from theoretic disorder, and then we discuss OWL Full theory.

111
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6.1 Set Theory and Russell’s Paradox

6.1.1 Comprehension Principle and Russell’s Paradox

“In 1902, Ruessell wrote a letter to Frege, in which he informed Frege that he had discovered a

paradox in Frege’sBegriffsschrift. [. . . ] Only six days later, Frege answered Russell that Russell’s

derivation of the paradox was incorrect. He explained that the self-applicationf ( f ) is not possible

in the Begriffsschrift. f (x) is a function, which requires anobjectas an argument, and a function

cannot be an object in theBegriffsschrift.” (Kamareddine et al. [28] p.15)

A set can be extensionally defined by writing down all members of the set, or intensionally

defined by designating a property that all members of the set satisfy. We usually use the latter to

describe a set, because it is convenient to define an abstract set that has many or infinite number

of members. For any given well-formed formulaφ(x), it is likely that a set such that satisfies the

formula exists.

(Unrestricted comprehension) For an open well-formed formulaφ,

∃A∀x[(x ∈ A)⇔ φ(x)] whereφ(x) hasx free and has no freeA. (6.1)

The unrestricted comprehension principle states that any formulaφ(x) such thatA is not free inφ(x)

may be used for determining any setx. However, if we takeφ(x) to bex < x1, which intends a set

that does not have itself as a member, it causes a contradiction.

Suppose thatA = {x | x < x} exists. Then∀x[(x ∈ A)⇔ x < x] from (6.1), therefore in particular

A for x, A ∈ A⇔ A < A. This is called Russell’s Paradox, since a contradiction is derived from a

system in which all of elements are plausible as individual.

There two workarounds followed Russell’s Paradox. One, which is invented as Separation Prin-

ciple by Ernst Zermelo, is to restrict the formula so that it does not involve the paradox, and the

other is to introduce Russell’s Ramified Type Theory.

6.1.2 Zermelo-Fraenkel Set Theory

In set theory, the uniqueness of sets are defined as extentionality principle:

1It is calledRussell’s Class. See Appendix A
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Axiom 1 (Extensionality).

∀A∀B[∀x(x ∈ A⇔ x ∈ B)⇒ A = B] (6.2)

Zermelo weakened Cantor’s Comprehension Principle (6.1) to his Separation Axiom.

Axiom 2 (Separation, Aussonderung).For an open well-formed formulaφ,

∀Z∃A∀x[(x ∈ A)⇔ (x ∈ Z ∧ φ(x))] whereA does not occure inφ(x). (6.3)

Then, the setA in the Separation Axiom (6.3) is uniquely determined byZ andφ(x) with (6.2).

It is expressed in the usual notation as follows.

A = {x ∈ Z | φ(x)}

If φ(x) is a property of sets such that a setA exists, then the members ofA exactly satisfiesφ.

Namely,

x ∈ A⇔ φ(x).

then this setA is denoted by{x | φ(x)}. Separation Axiom (6.3) separates a subsetA from Z by

formulaφ(x). Then, the member of setA satisfies a propertyφ(x). It sounds like tautology and does

not seem to be productive itself. Michael Potter [60] described on Separation Axiom that ifZ is a

set, then{x ∈ Z | φ(x)} is a set. We do not have any useful information to constructA andZ from

Separation Axiom itself, but it does not involve any paradox and useful as a template to support

theorems and lemmas with other axioms.

In addition to the Separation Axiom, Axiom of Choice by Zermelo, Substitution Axiom by

Abraham Fraenkel, and several other axioms have become a base of axiomatic set theory, and it is

called Zermelo-Fraenkel Set Theory. See Appendix A.

Transfinite set theory

The set theory by Georg Cantor has been a mathematical foundation of the theory on natural number.

Mathematicians have no interest in concepts of things in the world or ontology. They are interested

only in mathematical concepts. They attempted to generate the concept of natural numbers by

devising only sets of which members are also only sets.

Hereafter, we overview Zermelo-Fraenkel Set Theory according to the description by H.C.



114 CHAPTER 6. OWL FULL THEORY

Doets [15]2. Let us start with axioms that (i) there exists at least one thing. and (ii) every thing

is a set. We have already Extensionality Axiom (6.2) and Separation Axiom (6.3). Then, the empty

set can be defined as follows.

Axiom 3 (Empty set).

∅ = {x ∈ A | x , x}

Note that this definition does not depend on the choice ofA.

We define a successor operationS that takes a set and produces another set.

S(x) = x∪ {x}

These stipulations ensure to provide us the infinite number of sets.

S(∅) = ∅ ∪ {∅} = {∅}

S({∅}) = {∅} ∪ {{∅}} = {∅, {∅}}

S({∅, {∅}}) = {∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅}, {∅, {∅}}}

S({∅, {∅}, {∅, {∅}}}) = {∅, {∅}, {∅, {∅}}} ∪ {{∅, {∅}, {∅, {∅}}}} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

. . . = . . .

S({∅, {∅}, {∅, {∅}}}, . . . ) = {∅, {∅}, {∅, {∅}}, . . . } ∪ {{∅, {∅}, {∅, {∅}}}, . . . } = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . . }

Axiom 4 (Infinity). There exists a setA such that

∅ ∈ A

∀x ∈ A[x∪ {x} ∈ A].

Notably such setA is closed to this axiom, and it has infinite members.

By making a map from the empty set to integer 0, and the successorS to a integer successor,

2The two chapters in [15] is summarized at Appendix A.
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we obtain natural numbers due to two Peano systems with isomorphic.

∅ = 0

S(∅) = {∅} = 1

S({∅}) = {∅, {∅}} = 2

S({∅, {∅}}) = {∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅}, {∅, {∅}}} = 3

S({∅, {∅}, {∅, {∅}}}) = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}} = 4

. . . = . . .

Theorem 1. The natural numbers form a set.

Thus, the concept of set of infinite number of natural number is obtained, Numbers that include

ω is calledtransfinite numberor transfinite ordinal number.

ω = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . . }

The successor operation can be applied toω, then we obtain a series of transfinite numbers.

S(ω) = ω + 1

S(ω + 1) = ω + 2

. . . = . . .

S(ω + ω) = ω · 2

. . . = . . .

S(ω + ω + . . . ) = ω × ω = ω2

. . . = . . .

Obviously, the magnitude of any transfinite number is bigger than the magnitude of any natural

number, including a set of infinite members. Therefore, it is calledbig.

We strongly claim that we do not need to understand suchbig number to build any kind of

ontologies that contain classes and instances of things in the real world. Namely, we do not need

Zermelo-Fraenkel Set Theory and other axiomatic set theories developed for mathematical concepts,

whereas the W3C Recommendation of RDF Semantics [25] states;



116 CHAPTER 6. OWL FULL THEORY

When classes are introduced in RDFS, they may contain themselves. Such ‘mem-

bership loops’ might seem to violate the axiom of foundation, one of the axioms of

standard (Zermelo-Fraenkel) set theory, which forbids infinitely descending chains of

membership. However, the semantic model given here distinguishes [. . . ] classes con-

sidered as objects from their extensions - [. . . ] things that are ’in’ the class - thereby

allowing the extension of a [. . . ] class to contain the [. . . ] class itself without violating

the axiom of foundation. (RDF Semantics [25])

Any set in Zermelo-Fraenkel Set Theory that satisfies the axiom of regularity3 forbids the infinitely

descending chains of membership. However, in proof it is far from the axiom of foundation to

reach the forbidden chains of membership. Furthermore, it is not clear that the membership loop

at the universal class does not violate the infinity of the descending chains of membership loop4,

whereas the recommendation states that the semantic model in RDF distinguishes classes as objects

from their extensions. See (2.12). Rather we claim that it is appropriate to introduce the concept

of type order in Ramified Type Theory in order to distinguish higher order rdfs:Class and lower

order rdfs:Class for the sake of the prohibition on infinitely descending chains of membership on

rdfs:Class. It is discussed later on.

Infinite descending chains of membership are also forbidden by KIF 3.0 Set Theory, and KIF Set

Theory is appropriate to discuss Russell’s Paradox in ontology, because the set is initially composed

of ontological individuals.

6.1.3 KIF Set Theory

Knowledge Interchange Format (KIF) is a language designed for use in the interchange of knowl-

edge among disparate computer systems. The universe of discourse in KIF is defined as the set of all

objects presumed or hypothesized to exist in the world. If we start from a finite set of base entities

that exist as individuals of a set but does not exists as a set, and construct a higher order class as a

set of lower order objects, then we are never involved in Russell’s Paradox, even if we have a class

which has a member of itself. In fact, it is the way adopted in KIF [18], in whichbounded setis

distinguished fromunbounded set5.

The section on “Paradox” in KIF 3.0 Manual6 states;

3See Appendix A
4Note that Zermelo-Fraenkel Set Theory does not include such auniversal class.
5See also Appendix B.
6http://logic.stanford.edu/kif/Hypertext/node25.html#SECTION00074000000000000000
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“It is crucial that the paradoxes of set theory be avoided. One of the goals in the design

of KIF is that it have a clearly specified model-theoretic semantics in terms of which

the concepts of entailment, equivalence, consistency, soundness and completeness can

be defined. If the paradoxes are allowed to persist in principle, even if they are easy to

avoid in practice, the consequence would be that no KIF theory would be true in any

model. Definitions couched in terms of models would be trivialized, becoming useless.

All sentences would be entailed by any theory, any two theories would be equivalent,

no theory would be consistent, every possible inference rule would be sound, and so

on.

In the von-Neuman-Godel-Bernays version of set theory, these paradoxes are avoided

by replacing the principle of unrestricted set abstraction with the principle of restricted

set abstraction given above. ” (KIF 3.0 Manual)

An overview of such Set Theory is given in Appendix B. Whereas Russell’s Paradox in ontology is

forbidden in KIF Sets.

Russell’s Ramified Type Theory is suitable to discuss metamodeling of ontology, because it

includes the discussion about the order of types.

6.1.4 Ramified Type Theory

When Russell pointed out the inconsistency in his letter to Frege, he was just at the point of finishing

his work. Then, he developed a type theory in order to work around the paradox which arose from

unrestricted comprehension principle. His basic idea on type theory is to distinguish order of logical

variables and predicates. If the order of arguments as variable in predicate calculus is zero, then the

order of its predicate is one. If a variable as arguments in predicate calculus over first order objects in

the domain, then the order of its predicate is two. Thus, it is critical to distinguish a variablenth order

variablexn from n+1th order variablexn+1. A set of 0th order objects (individuals) is discriminated

from a set of 1st order objects (predicates), and a set ofnth order objects is discriminated from

n+ 1th order objects.

Gilles Dowek [17] summarized the logic foundation of type theory as follows.

To avoid Russell’s paradox, and to get a (hopefully) consistent theory of sets, we can

restrict naive set theory in two ways. The first method is to restrict the comprehension

scheme to some particular propositions (for instance Zermelo’s set theory permits four

constructions : pairs, unions, power sets and subsets), the other is to move to a many
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sorted theory with a sort (called 0) for atoms a sort (called 1) for sets of atoms, a sort

(called 2) for sets of sets of atoms, etc. and allow propositions of the formt ∈n u only

whent is of sortn andu of sortn + 1 (which permits to construct unions, power sets

and subsets but disallows arbitrary pairs). The formalism obtained this way is called

higher-order logicor simple type theory. The original formulation of A.N. Whitehead

and B. Russell [...] has been modified by L. Chwistek, F. Ramsey and finally by A.

Church [...].

Thus, it is obvious the substitution must be performed among the same order variables. In this

theory self-referential typing does not occur within the discrimination among entities in different

orders. See also Appendix C.

6.2 What is Comprehension Principle?

In the W3C recommendation of OWL semantics, the RDF-Compatible Model-Theoretic Semantics

at Chapter 5 [58] describes the difference between the abstract syntax, which is developed in Chapter

3, and RDF compatible OWL DL as follows.

“In OWL DL, localizing information must be provided for many of the URI refer-

ences used. These localizing assumptions are all trivially true in OWL Full, and can

also be ignored when one uses the OWL abstract syntax, which corresponds closely to

OWL DL. But when writing OWL DL in triples, however, close attention must be paid

to which elements of the vocabulary belong to which part of the OWL universe.”(OWL

Semantics Chapter 5 [58])

The ‘localizing assumptions’ are actually written in Chapter 5 of the W3C recommendation for

blank nodes as instances of owl:Restriction for owl:onProperty restrictions, and blank nodes as

instances of owl:Class for property owl:complementOf. Furthermore the notion of sequence for

owl:oneOf, owl:intersectionOf, owl:unionOf, and owl:distinctMembers is introduced and the se-

quence is embodied as an instance of rdf:List. However, such ‘localizing assumptions’ are not

required in OWL Full. For instance, we formalized owl:allValuesFrom restriction in formula (2.27).

In RDF semantics, such a blank node for owl:allValuesFrom restriction actually can exist because

of the entailment rulerdfs4a or the domain rule for owl:allValuesFrom.

For example, with an expression in the XML/RDF form for owl:Restriction such as;
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<owl:Restriction>

<owl:onProperty rdf:resource="#x" />

<owl:allValuesFrom rdf:resource="#w">

</owl:Restriction>.

the following is a demonstration in SWCLOS for such case.

gx-user(2): (addForm ’(owl:Restriction (owl:onProperty x)

(owl:allValuesFrom w)))

Warning: Range entailX3 by owl:onProperty: x rdf:type rdf:Property.

Warning: Range entailX3 by owl:allValuesFrom: w rdf:type rdfs:Class.

#<∀ x.w>

In the case of owl:oneOf, owl:intersectionOf, owl:unionOf, and owl:distinctMembers, we do not

use range constraints of these properties, that is, rdf:List. Instead we directly embody the sequence

as a list of Common Lisp as described in Subsection 2.2.1.

By the nature of RDF syntax and semantics, we can describe the same meanings in different

ways using different RDF graphs. For example, we can describe vin:RedWine in Wine Ontology in

the following two ways.

As one way with rdf:List;

vin:RedWine rdf:type owl:Class .

vin:RedWine owl:intersectionOf _:lst1 .

_:lst1 rdf:type rdf:List .

_:lst1 rdf:first vin:Wine .

_:lst1 rdf:rest _:lst2 .

_:lst2 rdf:type rdf:List .

_:lst2 rdf:first _:gx3 .

_:lst2 rdf:rest rdf:nil .

_:gx3 rdf:type owl:Restriction .

_:gx3 owl:onProperty vin:hasColor .

_:gx3 owl:hasValue vin:Red .

Then, as another way without rdf:List;

vin:RedWine rdf:type owl:Class .

vin:RedWine owl:intersectionOf vin:Wine .

vin:RedWine owl:intersectionOf _:gx4 .

_:gx4 rdf:type owl:Restriction .
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_:gx4 owl:onProperty vin:hasColor .

_:gx4 owl:hasValue vin:Red .

The collection of objects that are indicated as a predicate value of a subject node can be simply

represented a bunch of pairs of edges with an identical property name and objective graph nodes,

without rdf:List. In comparison that each of container properties, i.e. rdf:Seq, rdf:Bag, rdf:Alt has

clearly each semantics in their usage, respectively, there is no semantics in the usage of rdf:List and

we have no motivation to use rdf:List in the usage for RDF graphs.

The document of RDF-Compatible Model-Theoretic Semantics [58] justifies the existence of

a blank node using terminology ‘comprehension principle’. However, this wording is misuse. As

shown above, ‘comprehension principle’ means axiom (6.1) in set theories. On the other hand,

‘comprehension principle’ in OWL Semantics seems to mean a principle that requires the existence

of individuals in several entailment rules7. We can find the same misuse on the terminology ‘list

comprehension’ in some programming languages8. However, the function of the ‘list comprehen-

sion’ in those programming languages should be called ‘separation principle’, because the function

is exactly the same as the meanings of ‘separation principle’ in ZF. To make matters worse, the word

‘comprehension principle’ is used on the pretext that RDF semantics involves Russell’s Paradox. As

described previous sections, Zermelo-Fraenkel Set Theory adopted the Separation Principle instead

of comprehension principle in order to avoid the paradox. In KIF ontological Set Theory, Rus-

sell’s Paradox is forbidden by the settlement of bounded sets (see Appendix B), and Russell himself

developed Russell’s Ramified Type Theory in order to avoid the paradox (see Appendix C).

Even if the universal class and the universal metaclass have a membership loop, we can get rid

of the possibility of the infinitely descending chains of membership by distinguishing the orders of

the universal class in descending process. We distinguishrdfs : ClassIn andrdfs : ClassIn−1. The

descending of orders never happens fromrdfs : ClassIn to rdfs : ClassIn or rdfs : ClassIn+1. The

ontology metamodeling must be performed so that the descending of orders always happens from

rdfs:ClassIn to rdfs:ClassIn−1.

rd f s:ClassIn−1 ∈ CEXTI(rd f s:ClassIn)⇔

⟨rd f s:ClassIn−1, rd f s:ClassIn⟩ ∈ EXTI(rdf : typeI) (6.4)

7It is the same in OWL 2. Seehttp://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
#Appendix:_Comprehension_Conditions_.28Informative.29.

8http://en.wikipedia.org/wiki/List_comprehension



6.3. OWL FULL METACLASSING 121

Therefore, if we start from a finite set of base entities that exist as individuals of a set but does not

exists as a set, and construct a higher order class as a set of lower order objects, then we are never

involved in Russell’s Paradox, even if we have a class which has a member of its extension.

6.3 OWL Full Metaclassing

In Chapter 2, we derived the membership loop at the universal class and the universal metaclass

from the characteristics of them. Namely, the universe class stands for the universe of discourse and

the universal metaclass denotes all of classes in the universe of discourse. In this subsection, we

show that their membership loops are derived from RDF axioms and consistent with axioms in RDF,

by using the twisted relation between the universal class and the universal metaclass. Furthermore,

we derive the metaclass condition.

6.3.1 Membership Loop at rdfs:Class and Twisted Relation with rdfs:Resource

Definition 1 (Class membership).

xI ∈ CEXTI(yI) ≡ ⟨xI, yI⟩ ∈ EXTI(rdf : typeI) (6.5)

Definition 2 (Universal metaclass).

CI ≡ CEXTI(rdfs:ClassI) (6.6)

Definition 3 (Universal class, Twist1).

rdfs:ResourceI ∈ CI (6.7)

Definition 4 (Twist2).

⟨rdfs:ClassI, rdfs:ResourceI⟩ ∈ EXTI(rdfs:subClassOfI) (6.8)

Axiom 1 (Subsumption).See also (2.13).

⟨xI, yI⟩ ∈ EXTI(rdfs:subClassOfI)⇒ xI ∈ CI ∧ yI ∈ CI ∧CEXTI(xI) ⊆ CEXTI(yI) (6.9)
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Axiom 2 (Reflection).See also (2.14).

xI ∈ CI ⇒ ⟨xI, xI⟩ ∈ EXTI(rdfs:subClassOfI) (6.10)

Axiom 3 (Top). See also (2.16).

xI ∈ CI ⇒ ⟨xI, rdfs:ResourceI⟩ ∈ EXTI(rdfs:subClassOfI) (6.11)

Axiom 4 (Meta).

xI ∈ CI ⇒ ⟨xI, rdfs:ClassI⟩ ∈ EXTI(rdf : typeI) (6.12)

Lemma 1 (Membership loop at universal metaclass).

rdfs:ClassI ∈ C ≡ CEXTI(rdfs:ClassI) (6.13)

Proof. By the definition of (6.8) and the subsumption axiom (6.9), we obtainrdfs:ClassI ∈ C.

Lemma 2 (Membership loop at universal class).

rdfs:ResourceI ∈ CEXTI(rdfs:ResouceI) (6.14)

Proof. By the definition of the universal class (6.7) and the subsumption axiom (6.9), we obtain

rdfs:ResourceI ∈ CEXTI(rdfs:ResouceI).

Making a conjunction of (6.7) and (6.8), we obtained the following.

rdfs:ResourceI ∈ CEXTI(rdfs:Class)I ∧ CEXTI(rdfs:Class)I ⊆ CEXTI(rdfs:Resource)I (6.15)

We call it twisted relationbetween rdfs:Resource and rdfs:Class. Note that this is resulted by the

definitions of rdfs:Class and rdfs:Resource, in which the semantics of the universal class and the

universal metaclass is applied to themselves.

Here, if we substituteyI in Subsumption (6.9) byrdfs:ClassI, then we obtained the following.

⟨x, rdfs:ClassI⟩ ∈ EXTI(rdfs:subClassOf)⇒ x ∈ CI ∧ CEXTI(x) ⊆ CI (6.16)
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This means a class that is a subclass of rdfs:Class is an instance of rdfs:Class and its class extension

is also a subclass of the set of classes in the universe. Namely, this semantic condition is the same as

that in CLOS semantics. In CLOS, it is very critical to distinguish base objects (individuals), strict

classes (first order classes), and metaclasses (higher order classes). Then, we distinguish them by

conditions;

1. x < CI (for base objects),

2. x ∈ CI ∧ CEXTI(x) * CI (for first order classes), and

3. x ∈ CI ∧ CEXTI(x) ⊆ CI (for metaclasses).

We call them, respectively,base object condition, strict class condition, andmetaclass condition.

6.3.2 OWL Metaclassing

This subsection contains the re-arrangement of contents in Subsection 2.2.1.

Definition 5.

owl:ClassI ∈ CI (6.17)

OCI = CEXTI(owl:ClassI) ⊂ C (6.18)

owl:ThingI ∈ OCI (6.19)

OTI = CEXTI(owl:ThingI) ⊂ R (6.20)

owl:RestrictionI ∈ CI (6.21)

ORI = CEXTI(owl:RestrictionI) ⊂ OC (6.22)

owl:ObjectPropertyI ∈ CI (6.23)

OPII = CEXTI(owl:ObjectPropertyI) ⊂ P (6.24)

The following is rephrasing of (3.30).

Axiom 5.

OCI ⊂ OTI (6.25)

From (6.17) and (6.18), we see that owl:Class is a metaclass in RDF universe. From (6.21) and

(6.22), we see that owl:Restriction is also a metaclass in RDF universe.
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Furthermore, we obtain the following conjunction from (6.19) and (6.25)

owl:ThingI ∈ OCI ∧ OCI ⊆ OTI (6.26)

This is the same twisted relation as rdfs:Resource and rdfs:Class in RDF universe, so we can call

it twisted relation for OWL. Fig.6.1 shows the relationship between the two twisted relation. Therdfs:subClassOfrdf:type
rdfs:Resource owl:Thing

rdfs:Class owl:Class
Fig. 6.1: RDF Universe and OWL Universe Connection

axiom (6.25) is required in order to let OWL classes be in the OWL universe. Namely, such twisted

relation of (6.15) and (6.26) is effective so as to make a closed universe including classes. Notably,

by connecting two universes of RDF and OWL such as depicted in Fig.6.1, OWL universe is con-

structed as a subset of RDF universe, and then OWL universe can be facilitated not only in OWL

semantics but also in RDF semantics. Note that owl:Class and owl:Restriction are not in OWL

universe rather in RDF universe.

6.4 Non-Unique Name Assumption and Equality

6.4.1 Equality of Individuals

Unique Name Assumption (by which different names always denote different entities), which is

usually adopted into computer languages, is not adopted in Semantic Webs. In RDF, different URI

references denote different graph nodes. However, in OWL language, owl:sameAs property may

be applied to different URIs to indicate that two different URI references denote the same entity

as individual in the OWL universe. Oppositely, the owl:differentFrom property (and the combina-

tion of owl:AllDifferent and owl:distinctMembers, too) may be used to indicate two different URI

references denote different entities in OWL universe.

The followings are the same as the description in Subsection 2.2.1.

(owl:sameAs) Ifx andy is different URIs and the both references makes a pair that is an extension
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of owl: sameAsI, then the denotation ofx andy are the same one.

{x , y | x ∈ VI , y ∈ VI } ∧ ⟨xI, yI⟩ ∈ EXTI(owl:sameAsI)⇒ xI = yI

(owl:differentFrom) Ifx and y is different URIs and the both references makes a pair that is an

extension ofowl:differentFromI, then the denotation ofx andy are different.

{x , y | x ∈ VI , y ∈ VI } ∧ ⟨xI, yI⟩ ∈ EXTI(owl:differentFromI)⇒ xI , yI

Thus, in case of no information on the equality in OWL, the equality of two entities is not

determined9, then, the decision of the equality of entity must be performed in the RDF universe.

To discuss the equality of entities in RDF semantics, it is appropriate to discuss the equality of two

subgraphs that the two entities are in position ofsubject.

The algorithm for the equality computation in the RDF universe is explained as follows10.

Two RDF graphsG andG′ are equivalent if there is a bijectionM between the sets of triples

for the two graphs, such that:

1. M maps blank nodes to blank nodes.

2. M(lit ) = lit for all RDF literalslit which are nodes ofG.

3. M(uri) = uri for all RDF URI referencesuri which are nodes ofG.

4. The triples/p/o is in G if and only if the tripleM(s)/p/M(o) is in G′.

Note that these are not described in denotational semantics. The document of RDF Semantics [25]

state;

Any instance of a graph in which a blank node is mapped to a new blank node not

in the original graph is an instance of the original and also has it as an instance, and

this process can be iterated so that any 1:1 mapping between blank nodes defines an

instance of a graph which has the original graph as an instance. Two such graphs, each

an instance of the other but neither a proper instance, which differ only in the identity

of their blank nodes, are considered to be equivalent.

9Instance properties of owl:FunctionalProperty and owl:InverseFunctionalProperty also affect the equality as individ-
ual.

10http://www.w3.org/TR/rdf-concepts/#section-graph-equality
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For the discussion of equality under the non-UNA condition, we superimpose owl:sameAs and

owl:differentFrom properties onto the above algorithm. RDF is property-centric but OWL is object-

centric (it means a subject node and linked nodes with one hop predicates are regarded as an object

like object-oriented language). Then, we modify the above algorithm to meet OWL object-centric

paradigm. For each subgraph composed of a subject node and one-hop linked nodes inG andG′,

1. M maps blank nodes to blank nodes.

2. M(lit ) = lit for all RDF literalslit which are nodes ofG.

3. M(uriI) = uriI for all RDF URI referencesuri which denote nodes ofG.

4. For everys of triple s/p/o for G, ⟨sI, oI⟩ ∈ EXTI(pI) if and only if ⟨M(sI),M(oI)⟩ ∈
EXTI(M(pI)) is in G′.

In case thatsI in G and s′I in G′ are blank nodes in a bijectionM, ⟨sI, oI⟩ ∈ EXTI(pI) is

equivalent to⟨M(sI),M(oI)⟩ ∈ EXTI(M(pI)), if oI = M(o′I) in OWL semantics. We apply

the same algorithm for non-blank node in non-UNA condition. In case thatsI ands′I are named

with different names and we cannot determine the equality by the names, our approach determines

the equality betweensI and s′
I

through the subgraphs of the both. Namely, we checkpI and

the equality ofoI and o′I. This algorithm traverses two graphs, until the decision is obtained.

Note that RDF graph is a directed graph. In this graph equality checking, if two nodes have sub-

trees, the corresponding sub-trees on both graphs are recursively checked for the equality. Thus,

if we reach at terminal nodes (atomic nodes that do not have edges any more) but no information

is obtained, we fall into a troublesome situation. For example, in comparison of ex:Y/ex:p/ex:A

and ex:Z/ex:p/ex:B, if ex:A and ex:B are both atomic, the non-UNA computation cannot conclude

whether or not ex:Y is equivalent to ex:Z. In such condition, in order to derive useful computational

results, we must define the equality or difference among every atomic individual. It is very laborious

work to describe common knowledge such as Bill is different from George, Barack, Al, and so on.

Therefore, we devised a flag for non-UNA and set up falsity to the flag as default. Note that the

equality of two blank nodes is checked both in UNA and in non-UNA. In the default condition, we

stand in UNA as well as for ordinary computer languages, then two nodes that have different URI

references are different, and then two blank node trees are distinct if we cannot find the correspond-

ing edges of graphs or we find the lexically different URI references at the corresponding positions

in the trees. In non-UNA condition with the flag setting, the graph equality checking is performed

even though two URIs at the corresponding positions are different, until we find either the difference
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of graph structures or the difference of nodes that are explicitly stated in OWL statements. In our

approach, two atomic nodes with different names are regarded as different in the equality check-

ing, even though the flag indicates non-UNA. Thus, this algorithm is paraphrasedUNA for atomic

objects in the non-UNA condition.

6.5 Concluding Remarks

In this chapter, we gave an overview of Zermelo-Fraenkel Set Theory, which is the standard set

theory in the number theory of mathematics and does not involve Russell’s Paradox in system. We

strongly claimed that we do not need suchbig number set theory for ontology construction. The

overview of KIF Set Theory is also given, and it is confirmed that Russell’s Paradox is avoided

by bounded sets in KIF. As the other way for avoiding Russell’s Paradox, Ramified Type Theory

by Whitehead and Russell is also mentioned and it is stressed that it is critical to discriminate an

identical entity in syntax by its order in semantics. The position in which an entity appears with

respect to membership (in set theory) and predicate or terms (in higher order logic) is critical. The

problem of ‘localizing assumptions’ described in the RDF-Compatible Model-Theoretic Semantics

in W3C Recommendation is discussed, and the misuse of word ‘comprehension principle’ is pointed

out.

OWL Full metaclassing is re-formalized using by RDF(S) Axioms, and OWL universe is for-

malized as subset of RDF universe. The membership loop at the universal class rdfs:Resource and

the universal metaclass rdfs:Class is also discussed using RDF(S) Axioms.

Finally, non-Unique Name Assumption in OWL is superimposed onto RDF graph, and the novel

algorithm for Unique Name Assumption for atomic objects in the non-UNA condition is invented

in order to integrate OWL non-Unique Name Assumption to RDF graph.
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Chapter 7

Open World Assumption and Class

Disjointness

“There are more things in heaven and earth, Horatio, than are dreamt of in your

philosophy.” (Shakespeare, Hamlet)

Concerned with the existential restriction of property or owl:someValuesFrom, the full Open World

Assumption (OWA) is meaningless from the viewpoint of ontology building, since the existential

restriction under the OWA means the possibility that a satisfiable value may be defined somewhere

in WWWs or someone in the team members may add a proper constraint tomorrow or after. The full

OWA implies that ontology builders cannot know all for target ontologies. However, this assumption

is not enjoyable in actual fact in personal and collaborative ontology building process. Thus, we

settled more mild setting for the problem of Open World Assumption.

7.1 Auto Epistemic Closed World Assumption

It is natural to distinguish the local world for target ontologies and the given general WWW. Hence,

we have introduced the notion ofauto-epistemic local closed world assumption. In this idea, agents

can introspectively check their knowledge within their extent of capabilities.

An agent sits in locally closed world as environments around it. The flag for auto-epistemic local

closed world assumption is set true as default in SWCLOS, and the satisfiability for slot value is

aggressively checked even in case of the existential restriction. Namely, if an existential restriction

is not satisfied, then the interpretation is not satisfied. Setting the flag false means the completely
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full OWA. In this case, no alarm is signaled for the existential restrictions.

7.2 Complete Relation for Class Equivalency and Disjoint Relation

In OWL, owl:equivalentClass is applicable to indicate the equivalency of two objects as class. For

example, food:Wine in Food Ontology1 is equivalent to vin:Wine in Wine Ontology2 with the state-

ment of owl:equivalentClass. In addition, the other three complete relations3, i.e., owl:intersectionOf,

owl:unionOf, and owl:oneOf also decide the equivalency of classes. In case that two concepts

(classes) have equivalent values for these complete relational properties, the two concepts must be

conceived to be equivalent. For example, vin:DryWine and vin:TableWine in Wine Ontology are

equivalent as class in OWL semantics (they share the same class extensions), because the both have

the same value for owl:intersectionOf property.

Meanwhile, we can actively apply the statement of owl:disjointWith to classes that we consider

they are disjoint each other. In addition, owl:complementOf property explicitly state that two con-

cepts are definitely different as class. Thus, in case of no declaration of equivalency and disjointness

of classes, we cannot determine the equality as classes immediately.

However, the complete relations except owl:equivalentClass decide not only the equality but also

the disjointness of classes. For example, even though we have no direct statement of disjointness

for vin:RedWine and vin:WhiteWine, the disjoint relationship between them is deduced through

property owl:intersectionOf and owl:hasValue restriction vin:Red of vin:RedWine and vin:White of

vin:WhiteWine, because it is explicitly stated that vin:Red is different from vin:White. Furthermore,

we can also conclude some useful results by resorting to RDF graph checking mentioned at the

previous chapter. For example, we can find that vin:CaliforniaWine is not equal to vin:ItalianWine

in spite of no explicit information of disjointness, because the graph equality checking deduces that

vin:CaliforniaRegion, in which vin:CaliforniaWine is located, is different from in:ItalianRegion, in

which vin:ItalianWine is located, even if we are in non-UNA.

However, for atomic concepts that have no edges except being pointed as superclass, we cannot

conclude that Man is disjoint to Woman, if those concepts are atomic in non-UNA. Thus, we are

forced to do very laborious work to describe common knowledge such as Man and Woman are

disjoint, Plant and Animal are disjoint, Ape and Monkey are disjoint, Virus and Bacteria are disjoint,

1http://www.w3.org/TR/2004/REC-owl-guide-20040210/food.rdf
2http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf
3http://www.w3.org/TR/owl-ref/#DescriptionAxiom
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and so on4.

ANSI Common Lisp specifies that CLOS classes are pairwise disjoint if they have no common

subclass and one class is not a subclass of the other. Namely, each class is disjoint to the others as

default until we connect them in superclass relation or set a common subclass. This agreement is

supported by the premise that an object in CLOS is typed to only one class. In the RDF universe, an

entity may be typed to more than one class. So, the nature of disjointness in CLOS is not applicable

in the RDF universe in theory. However, in SWCLOS, the pseudo multiple-classing machinery5

is implemented using the CLOS class and multiple inheritance mechanism. Therefore, from the

viewpoint of CLOS, the algorithm of disjointness for CLOS is still valid in the RDF universe in

virtue of CLOS. In the next section, we introduce an idea of role concept that is divided from

substantial concept with the premise of pairwise disjointness.

As described in Chapter 2, the subsumption (2.13) in RDF semantics is weak but the sub-

sumption (2.22) in OWL semantics is strong. Therefore, we must pay attention to determine class

disjointness which semantics we are talking about as OWL Full Theory.

Note that if two classes are implicitly or explicitly stated as disjoint in OWL semantics. Then,

both must be disjoint in RDF semantics. In such a case, the error must be signaled, if the non-disjoint

relation is given later on. Similarly, in case that two classes are in the non-disjoint relation in RDF

semantics, the error must be signaled, if the implicit or explicit disjoint relation is given later on.

Oppositely, if we have some evidence of subsumption in OWL semantics, it must be interpreted not

disjoint even if there is no relation in RDF semantics. Thus, if we have no evidence of disjointness

and subsumption in OWL semantics and no evidence of subsumption in RDF semantics, we interpret

it disjoint as default. However, this default disjointness accepts the change later on when new

statements are inputted.

7.3 Pairwise Disjoint Datatype

In SWCLOS, we defined XML datatype wrappers as mapping XML Schema descriptions to lisp

datatypes in lisp value space. We defined xsd datatypes in lisp space and the same datatypes are also

defined as CLOS classes in the RDF universe in order to treat them in the RDF universe. Therefore,

independent XML Schema datatypes in SWCLOS are pairwise disjoint by the implicit disjointness

of CLOS classes, e.g., xsd:float is disjoint with xsd:integer, xsd:URI, xsd:string, xsd:boolean, etc.

4As mentioned in Chapter 1, 58% is for class disjointness in lines of pizza.owl for only 23 pizza and 29 pizza toppings.
The number of lines for disjointness will explode with the number of classes.

5See Subsection 3.1.6.
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7.4 Ontological Categories and Disjointness

OWL provided the description of class disjointness and forced us labor-intensive work as described

above. W3C new recommendation for OWL, namely OWL 2 specification [9], attempts to solve

the disjointness problems without ontological consideration in depth. In OWL 2, Person may be de-

scribed as owl:disjointUnionOf Man and Woman. However, we are still forced to describe explicitly

disjointness for all disjoint classes, or basic atomic concepts. We strongly claim that the approach

to describe disjointness must be well-founded on ontological consideration.

Sowa [66, 67] showed a lattice of the top-level ontological categories of things. Each of the

twelve elemental concepts in the top ontology has different characteristics and those combinations,

i.e., independent, physical, relative, abstract, andmediating. The concepts of the independent exist

itself and they show the firstness. The concepts of the relative orrole only live with the firstness

and they show the secondness. The mediating describes concepts that mediate the firstness and the

secondness.

Guarino [20] parted ontology into two categories, i.e.,particular that represents substantial

entities anduniversalthat is the category of entities required to describe the particulars. Physical

objects, abstract processes, phenomena, quality, and materials fall into the particular, and attributes,

relations are categorized into the universal.

Mizoguchi, et al., developed an ontology building tool called Hozo [53, 43] based on ontological

deep discussion and have utilized Hozo for many application field of ontology building. Using

Hozo, ontology builders can easily construct complex concepts that are composed of substantial

sorts and non-substantial roles. For example, Wife is a part of Family and composed of Woman

and Wife-role. The concept Woman is a substantial and may have slots of gender, age, etc. The

role concept Wife-role is not a substantial, in other words, it always requires substantial concepts to

work, but may have its own slots such as married-year, partner, etc. In a sense, it is regarded that

the concept Family represents the context in which the concept Wife is activated from Woman with

Wife-role.

Takeda, et al., also proposedAspect Theoryof ontology in the study ofKnowledgeable Commu-

nity [70], which is a framework of knowledge sharing and reuse based on a multi-agent architecture.

In this framework, while ontologies are the minimum requirement for each agent to join the commu-

nity, each of heterogeneous ontologies describes an aspect of an entity and knowledge. A mediator

agent that embodied knowledge for mediation helps other agents to communicate each other. In this
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theory, the aspect may be rephrased as a context on which an agent focused for discourse. For ex-

ample, a concept Temple is an aggregation of concepts in aspect of religion, cultural asset, building

architecture, corporate body, and so on. In most case without communication, we usually focus on

one aspect of entity and do not need to take care of the other aspects in a particular context. How-

ever, for agents in a particular discourse, the mediator translates heterogeneous ontologies from one

to another and mediates agent’s speech acts that are broad-casted in the community.

7.5 Introduction of Role Concepts

In order to solve the labor-intensive disjointness problem, we propose two ontological categories

according to Kozaki, et al. [43], i.e., substantial concepts and role concepts, and realize them on

top of RDF and extended OWL semantics. The substantial concepts are described in OWL, but

we adopt the assumption of implicit disjointness for substantial concepts in the same way as CLOS

described above. On the other hand, a role concept is an extension of owl:Restriction. Neither

owl:disjointUnionOf nor owl:AllDisjointClasses in OWL 2 are introduced. Instead, we extend

owl:Restriction, which has property-value restrictions but usually no name and no super restric-

tions in OWL, to the role concept that is able to have a name and supers. The instance of role

is attached to an instance of substantial classes in the same way as owl:Restriction provides the

definition of predicate/objectat subjector an instance of substantial class. A complex concept is

composed of a substantial class and role concepts. For example, a complex concept Husband is

composed of Man and Husband-Role that has spouse and marriage-date properties, and Teacher is

composed of Person and Teacher-Role that has subject and classInCharge property. The discussion

of disjointness on role concept is meaningless, because the role concept cannot have any instance by

itself as well as owl:Restriction. Husband and Teacher can share individuals, but those individuals

should be interpreted as instances of Man in Husband and Person in Teacher.

7.6 Concluding Remarks

In this chapter, the problem of full setting on Open World Assumption is pointed out, and more

practical and useful setting of auto-epistemic local closed world assumption is introduced. If this

flag is set, owl:somevaluesFrom restriction is aggressively checked against loaded ontologies into

SWCLOS. In order to avoid wasteful alarming by forward referencing, the flag is set as false in

batch loading mode, but it is set as default in interactive mode.
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Secondly, the difference of semantics of disjointness in RDF semantics and OWL semantics is

described. The algorithms for the disjointness described here are embodied in SWCLOS.

Thirdly, the problematic OWL disjointness is pointed and the novel approach is proposed un-

der the consideration of ontological sorts of substantial (disjoint each other in nature) and non-

substantial sort (role concepts). It is suggested that these two sorts can be realized as the extension

of OWL 1 semantics.
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Related Work

8.1 Frame-based and Object-Oriented OWL Systems

In this doctoral study, an OWL Full system is realized by the object oriented system in Common

Lisp language. However, this is not the first case of OWL realization of object oriented systems.

Meditskos and Bassiliades presented a deductive object-oriented system O-DEVICE for reasoning

over OWL [50]. This system is based on CLIPS Object-Oriented Language (COOL). This system

intends to extend to Rule language based on CLIPS.

F-OWL is an ontology inference engine for the Web Ontology Language OWL by Harry Chen,

Youyong Zou, Lalana Kagal and Tim Finin1. The ontology inference mechanism in F-OWL is im-

plemented using Flora-2, an object-oriented knowledge base language and application development

platform that translates a unified language of F-logic, HiLog, and Transaction Logic into the XSB

deductive engine. The ability to support knowledge consistency checking using axiomatic rules

defined in Flora-2. It is also stated that F-OWL is still in its early stage of development.

F-logic is a frame system of object oriented logic programming [33, 32], and Heiko Kattenstroth

studied the combination of OWL DL and F-logic and realized the knowledge-management system

using Jena and Florid (F-Logic Reasoning in Databases) [30] as a result of PhD thesis. However, it

is based on OWL DL and not OWL Full. Therefore, there is no discussion for OWL Full theory in

this study.

Recently, Puleston, et al. [61] made efforts to integrate Java language to OWL for the purpose of

developing Semantic Web application in the domain of Health Care and the Life Science. However,

it is very difficult in this approach to extend the system to OWL Full, because Java language is

1http://fowl.sourceforge.net/about.html
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strictly limited to the functionality of reflection and no Meta-Object Protocol. We think it is hopeful

that the UML framework by OMG will be extended to allow OWL Full metamodeling.

8.2 RDF and OWL Theory

8.2.1 RDF Semantic Theory

Bruijn et al. presented logical analyses of RDF reasoning and complexity [12, 13]. In these paper,

they pointed out that the triple construct and class membership in RDF is close to the attribute

value construct in F-Logic [32]. They also discussed blank nodes, domain constraints, andclass

positionandindividual positionof term. It is concluded that complete RDF, which includes blank

nodes and some of rdfs:Resource, rdfs:Class, rdf:Property, rdfs:ContainerMembershipProperty, and

rdfs:Datatype, has the complexity of NP-complete.

The Close World and Open World in RDF semantics was discussed in Analyti et al. [3]. In

this paper, they extended RDF graph to what allows explicit strong negation, and then created new

termserd f :TotoalPropertyanderd f :TotoalClassthat represent metaclasses, on which the Open

World Assumtpion applies. They defined ERDF models and Herbrand interpretations. However,

we consider that it is important to contribute the progress of OWL itself and OWL Full according

to the original idea for Semantic Webs by Tim Berners-Lee.

8.2.2 OWL Semantic Theory

Since achieving OWL 1 of W3C Recommendation, the shortage of the OWL specifications has

been widely recognized through many practical experience of applying OWL language, and then

the effort of the improvement has resulted in new W3C recommendation of OWL 2. The affairs of

OWL 2, motivations, conditions, objectives, etc. were reported in Grau et al. [19].

ODM team also tackled OWL DL and OWL Full for the integration to UML [8]. In this paper,

they discussed the integration of OWL DL and OWL Full onto UML profile.

The efforts to computation of OWL Full is also continued by Jena team, and two important con-

tributions are performed. Turner and Carroll [74] found many minor errors in the specification of the

semantics of OWL, using interactive theorem proverIsabelle. Successively Carroll and Turner [10]

discussed OWL Full theory and ‘comprehension principle’, and then concluded that OWL Full can

be consistent without ‘comprehension principle’. However, it is wonder that these contributions

seems to be not evaluated in Semantic Web community.



8.3. OTHER WORK 137
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Fig. 8.1: Membership Loop in Cyc by foxvog [16]

8.2.3 Criteria for Metamodeling

We proposed the criteria for well-founded metamodeling in OWL Full. We believe this proposal

is very critical to establish OWL Full, and in our best knowledge at this time there is no similar

proposal. Foxfog [16] reported rules for sound membership loop in Cyc. The complex membership

loops in Cyc are depicted inFig. 8.1which is taken from [16]. However, the rationale of the Cyc

membership loop and the membership rules is not reported.

8.3 Other Work

Recently, with the progression of research on Linked Open Data, the ambiguity of the semantics on

owl:sameAs is coming to be closed up. Halpin et al. has pointed the problems on owl:sameAs with

respect to Linked Data in [24]. The problematic Open World Assumption is also becoming known

gradually. In SWCLOS, we simply settled the flag for auto-epistemic closed world assumption,

Pellet also has equipped with a flag for CWA. Alferes, et al. [2] introduced the logic of MKNF

(minimal knowledge and negation as failure) into query for the purpose of combining OWA and

CWA. We think hopefully this direction is a legitimate direction as the solution in logic theory.
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8.4 Concluding Remarks

In this section, related work is described from the survey on recent work with respect to the OWL

system realization, especially focusing frame systems and object-oriented systems. The research

results on OWL DL and Description Logics are omitted in this dissertation, but some system real-

izations in OWL DL are reported in the chapter of LUBM 4.

RDF and OWL theory also investigated and the contributions from HP Jena Team is admitted.

We also found a few reflections on individual sameness and the problematic Open World Assump-

tion, which are recently closed up as problems.
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Conclusion

In this doctoral study, OWL semantics is formalized in Tarskian denotational semantics as well as

RDF Semantics according to the description of RDF Semantics [25] of W3C Recommendation,

with focusing mainly membership and subsumption of entities. Due to no formalization so far

on OWL semantics by Tarskian denotational semantics, this part is our original contribution for

Semantic Webs. CLOS semantics and its computational model are also discussed based on the

model addressed by Brian Smith, and the semantic gap between OWL and object oriented languages

addressed by SETF of W3C are pointed out.

The semantics of RDF(S) is very close to that in CLOS. Then, the RDFS type structure is

straightforwardly mapped onto the type system of CLOS. The semantic gap between object-centric

CLOS and property-centric RDF(S) is filled up by setting property resource objects in CLOS and

inventing the collection mechanism for the property extension in RDF(S) through CLOS native

slot-definition facilities. The flexible implicit slot definition on demand is embodied in the class-

based CLOS system. In order to accept forward-reference for entities, the novel functionality called

proactive entailmentis realized using RDF/OWL entailments. The domain and range constraint

were developed with the property inheritance mechanism and embodied into SWCLOS.

In order to realize OWL universe in RDF universe, only one axiom that owl:Class have to be

a subclass of owl:Thing was added into the set of OWL axioms, which are described in the OWL

description file. All semantics and functionality of OWL specification was implemented on top of

RDF(S) subsystem with preserving RDF(S) semantics.

The efficiency of SWCLOS implementation is tested by LUBM Benchmark Test Sets. As a

result, SWCLOS showed the comparative performance in loading time and reasoning time to tools

reported in Guo et al., and SWCLOS replied correctly to all queries, whereas no reasoners but
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OWLJessKB in the reports could reply.

Several examples of metamodeling in OWL Full is presented with the criteria for tractable

metamodeling that is elaborated from the CLOS metamodeling capability and confirms to RDFS

axioms are addressed.

OWL Full theory is presented in metaclassing formalization based on RDF(S) Axioms, and

integration of RDF universe and OWL universe is described based on this metaclassing theory. The

non-Unique Name Assumption in OWL is superimposed onto RDF graph, and the novel algorithm

for Unique Name Assumption for atomic objects in the non-UNA condition is invented in order to

integrate OWL non-Unique Name Assumption to RDF graph. The mild settings for Open World

Assumption is indicated as auto-epistemic closed world assumption, and the introduction of role

concepts is suggested as the extension of the OWL specification in order to solve the problematic

disjointness of OWL classes.

The overview of set theories on Zermelo-Fraenkel and KIF are given for the purpose of avoiding

futile arguments on membership loop and Russell’s Paradox.

As a result of this study, SWCLOS has become the first full-fledged language as OWL Full

processor, in which the capability of metamodeling objects is borrowed from the power of the

dynamic and reflective features of Lisp and metamodeling capability of CLOS.

We hopefully desire that the initial goal of Semantic Webs that indicated by the Semantic

Web Layered Architecture will be achieved in the near future. Simultaneously, Common Logic1

is emerged as alternative language that targets Semantic Web domain. Although the detail of the

specification is still open and to be fixed as soon as possible, it is already established as an abstract

language of ISO standard in a logic framework intended for information exchange and transmis-

sion. The framework allows a variety of different syntactic forms, called dialects, all expressible

within a common XML-based syntax and all sharing a single semantics. The dialects, which have

different syntax but interchangeable from one to another, include Common Logic Interchange For-

mat (CLIF)2, Conceptual Graph Interchange Format (CGIF)3, XML Common Logic (XCL)4, and

Common Logic Controlled English (CLCE)5. CLIF may be conceived to be a modernized version

of Knowledge Interchange Format (KIF)6[26]. Table 9.1summarizes the basic computational as-

sumptions underlying Common Lisp, Description Logic, OWL, and Common Logic.

1http://common-logic.org/
2http://www.ihmc.us/users/phayes/CLIF.html
3http://conceptualgraphs.org/
4http://www.altheim.com/specs/xcl/1.0/
5http://www.jfsowa.com/clce/specs.htm
6http://www-ksl.stanford.edu/knowledge-sharing/kif /
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Table 9.1: Basic Computational Features of Languages.
UNA/nonUNA CWA/OWA Truth Value arity

Common Lisp UNA CWA Ternary n
Description Logic UNA (OWA) Binery 2
RDF(S) UNA (CWA) Binery 2
OWL nonUNA OWA Binery 2
Common Logic nonUNA OWA Ternary? n

The abstract syntax model of Common Logic is analogous to polymorphism in object oriented

programming and no fixed arity like Common Lisp (polyadic). As shown in Table 9.1, the arity of

RDF and OWL is strictly constrained to 2. Not only Common Logic allowsn-ary, but also the arity

is not fixed for a predicate or property. Guha and Hayes initially proposed such features as the RDF

syntax for a common base language of Semantic Web languages [21]. In their initial proposal for

the candidate of RDF, they expected a base language for Semantic Web languages, and claimed the

basic language, calledLbase, that supports basic inference and semantics, and then allows RDF and

extending different semantics at the upper layers in the Semantic Web stack. They imagined that

LbaseprovidesLi language ini-th layer of Semantic Web language stack. However, the history of

Semantic Web languages did not developed as Tim Berners-Lee intended.

Common Logic also permits ‘higher-order’ constructions such as quantification over classes or

relations while preserving a first-order model theory. The semantics allows theories to describe

intensional entities such as classes and properties. The first solution of this ‘higher-order’ construc-

tions will bemetamodelingin Common Logic.

It seems that the modernized features of Common Logic are a reflection of the progress of mod-

ern computer languages. For example, the semantics of Common Logic introduced a new term,

universe of reference, in addition to the universe of discourse in denotational semantics. A dialect

is calledsegregatedin which some names arenon-discourse names, namely the denotations of the

non-discourse names are in the universe of reference, but not in the universe of discourse in an in-

terpretation. “Segregated dialects are commonly described to have a universe of discourse, without

mentioning the universe of reference; and for non-segregated dialects the universes of discourse and

of reference are identical. The distinction makes it possible to provide a single semantics which

can cover both styles of dialect”. The motivation of introducing the universe of reference and non-

discourse names is likely to be for the provision against people who do not want to concern some

terminologies out of concerning ontologies.7 However, this notion is very akin to Smith’s reference

7from private discussion on [55] at the conference.
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and de-reference framework in Section 2.3. See Subsection 2.3.4. Therefore, we might be able to

rephrase that the second language model of Common Lisp is non-segregated, and the third is seg-

regated, in which symbols and internal structures are segregated. This language model will support

to develop logic systems using objects in imperative computer languages which include symbols

or variable names, structures, objects, whereas the meaning of “segregated” may be misunderstood

from its introductory usage in Common Logic.

We claim that today’s OWL, including OWL 2, embraces some drawbacks for the practical

usage. It seems to lead people into a blind alley without thinking what ontology is and how it

should be represented as ontology description languages. Common Logic intends to be a common

framework of concrete knowledge representation languages that are compatible with World Wide

Web. Although actual dialect implementation of Common Logic is not emerging yet and no one

can foresee the future of Common Logic, but we also hopefully desire that our experience for

SWCLOS can contribute to establish Common Logic as one of practical knowledge representation

and exchange language in the ISO standard.



Appendix A

Zermelo-Fraenkel Set Theory

The purpose of this appendix is to introduce Zermelo-Fraenkel Set Theory (ZF for short), which is

considered the foundation of mathematical number theory today, to readers who are unfamiliar with

it. The most part of the description is taken from a lecture of set theory at University of Amsterdam,

“Zermelo-Fraenkel Set Theory” (H.C. Doets, 2002[15]) Chapter 1 and 2. However, readers must

note that ZF is completed as a theory for mathematics, specifically for natural number, and does not

presume any elements of ontology. The set theory in KIF ontology is introduced at Appendix B.

A Definitions and Axioms

Primitives. The axioms listed below use only two primitives:setandmembership, namely∈.

Axiom 0. Note that we discuss only sets on ZF in this appendix. We start the discussion from the

following two basic axioms.

(i) There exists at least one thing (in the universe).

(ii) Every thing is a set (in the universe).

Axiom 1 (Extensionality). Sets are completely determined by their elements, and it is expressed

as:

∀a∀b[∀x(x ∈ a⇔ x ∈ b)⇒ a = b] (A.1)

This axiom means that for anya and for anyb if every element ofa is an element ofb and vice

versa, thena andb are equal. This axiom provides the definition of equality on sets.
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Axiom 2 (Separation, Aussonderung). For an open well-formed formulaφ,

∀a∃b∀x[(x ∈ b)⇔ (x ∈ a∧ φ(x))] whereb does not occure inφ(x). (A.2)

Zermelo weakened Cantor’s Comprehension Principle (6.1) to this Separation Axiom by postulating

another seta for a setb in question. Note that, by Extensionality, the setb defined by the Separation

Axiom is uniquely determined by postulateda andφ. It is written in usual notation as

b = {x ∈ a | φ(x)}. (A.3)

If φ is a property of sets such that a setb exists, (unique setb by Extensionality), the elements of

which are exactly the sets satisfyingφ :

x ∈ b⇔ φ(x), (A.4)

then this setb is denoted by an expression{x | φ(x)}.

Classes. The concept of classes in ZF means a mere construct of the form{x | φ(x)}, whereφ is a

formula. In particular, sets are classes, but all classes are not sets.

Readers should note that this terminologyclassis unique in set theory and different from OWL

and object oriented languages.

Proper Classes. There may be no set consisting exactly of the entities satisfyingφ. In that case,

the class{x | φ(x)} is calledproper in ZF.

Russell’s class(the class of sets that do not belong to themselves) is an example of the proper class.

Theuniversal classis also a proper class in ZF but it is a set in Quine’s New Foundations Set Theory

(NF).

Universal Class. R = {x | x = x}.

Russell’s Class. R = {x | x < x}.

By “a set{x | E(x)}” we mean there is a seta such that∀x[x ∈ a⇔ E(x)].
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Note that, by Axiom0 (ii) in ZF, proper classes simply don’t exist, and so the use of abstractions

{x | φ(x)} must be regarded as a mere way of speech.

Empty Set. ∅ = {x ∈ a | x , x}.
Note that, the empty set{x | x , x} does not depend on the choice of a postulated seta.

Intersection. a∩ b = {x ∈ a | x ∈ b} = {x | x ∈ a∧ x ∈ b}.

Pairing. ∀a∀b∃c∀x (x ∈ c⇔ x = a∨ x = b).

Namely, paring defines a setc such that{x | x = a ∨ x = b}. An unordered pairof a andb is

postulated by this axiom, and it is denoted asc = {a,b}. Note that{a, b} = {b, a} by this axiom.

Singleton. In casea = b, we obtain{a} = {a,a}.
Thesingletonis a special case ofunordered pair.

Sumset. ∀a∃b∀x[x ∈ b⇔ ∃y(x ∈ y∧ y ∈ a)].

Sumset ofa is a set such that contains all elements of sets that are elements ofa. That is a set such

that{x | ∃y ∈ a(x ∈ y)} and denoted as
∪

a.

Union. a∪ b =
∪{a, b} = {x | x ∈ a∨ x ∈ b} is called theunionof a andb.

Note that{a0, . . . ,an} = {a0} ∪ · · · ∪ {an}.

Subset. If ∀y(y ∈ x⇒ y ∈ a), x is called a subset ofa and it is denoted byx ⊂ a.

Powerset. ∀a∃b∀x(x ∈ b⇔ x ⊆ a).

Here,b is called a powerset ofa, and it is denoted in ZF byb = ℘(a).

Infinity. ∃a[∅ ∈ a∧ (∀x ∈ a(x∪ {x} ∈ a))].

There exists a set such that has initially the empty set as element, and composed of an element

and the singleton of the element for every element. Obviously, this definition involves a recursive

description, and it amounts to infinite number of elements. This axiom is also defined as another

form for a seta, namely∃a[∅ ∈ a∧ ∀x(x ∈ a⇒ ∃y(y ∈ a∧ ∀z(z ∈ y⇔ z ∈ x∨ z= x)))].
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Regularity, Foundation. ∀a[a , ∅ ⇒ ∃x(x ∈ a∧ (x∩ a = ∅))].
This axiom means that any non-empty set has at least one element such that is disjoint with the set

itself. This axiom ensures to forbid infinitely descending chains of membership. Note thatx , {x}
in ZF.

B Remarks for ZF Set Theory from Ontology

The point of Zermelo-Fraenkel Set Theory is to avoid Russell’s Paradox by weakening too power-

ful unrestrictive comprehension principle, which allows us to make too big sets such as Cantor’s

transfinite ordinal number, to Separation Axiom, which separates sets from classes in ZF such as

universalor Russell’sclass. In the form of Separation Axiom,A in (6.3) ora in (A.2) may be a set

or a class butZ in (6.3) orb in (A.2) that can be constructed by using Separation Axiom with an ap-

propriate formula must be a set. In order to ensure the existence of such a set, Zermelo axiomatized

the existence of only sets including the empty set with presuming to use the Infinite Axiom. From

the viewpoint of ontology, Zermelo’s sets are big enough, because it can handle sets that include

a set of infinite number of members. However, it cannot handle any individuals in the universe of

discourse. [62][60]

By contrast, from the viewpoint of mathematics, due to the unavailability of transfinite ordinal

numbersω, ω · 2, . . . , etc., Zermelo’s theory was regarded too weak. Fraenkel solved this prob-

lem by introducing Replacement Axiom with the Axiom of Choice. The Axiom of Choice was

invented by Zermelo. Thus, the set theory for mathematical foundation by Zermelo and Fraenkel

is called Zermelo-Fraenkel Set Theory (ZF) or Zermelo-Fraenkel Set Theory with Choice (ZFC),

today. However, we do not need such extremely big sets for ontology.
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Sets in KIF

The purpose of this appendix is to introduce KIF Set Theory, which is developed at KIF 3.0 [18]

Chapter 7. In this theory, an ontologically basic set is composed of concrete objects rather than sets,

whereas any set in ZF is composed of only sets including the empty set. Furthermore, a set in KIF

is categorized into two distinct set categories,boundedset andunboundedset, and this distinction

is critical to avoid Russell’s Paradox.

A Rationale of Set Theory in KIF

Knowledge Interchange Format (KIF) is a language designed for use in the interchange of knowl-

edge among disparate computer systems. The universe of discourse in KIF is defined as the set of

all objects presumed or hypothesized to exist in the world in their own right. In Chapter 7 of KIF

3.0 [18], the description of KIF Sets starts as follows.

“The formalization of sets of simple objects is a simple matter; but, when we begin

to talk about sets of sets, the job becomes difficult due to the threat of paradoxes (like

Russell’s hypothesized set of all sets that do not contain themselves).”

It is obvious that KIF Set Theory has been developed in order to avoid the threat of Russell’s Para-

dox. Then, it states that KIF adopted the set theory of von Neuman-Bernays-Gödel (NBG for short).

“Fortunately, there is no shortage of mathematical theories for our use in KIF – vari-

ous higher order logics, Zermelo-Fraenkel set theory, von Neuman-Bernays-Gödel set

theory, Quine’s variants on the previous two approaches, the more recently elaborated
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proposals by Feferman and Aczel, and so forth. In KIF, we have adopted a version of

the von Neumann-Bernays-Gödel set theory.”

The NBG is a conservative extension of ‘Zermelo Fraenkel Set Thoery with the axiom of Choice’

(ZFC). NBG distinguishes sets and classes as well as ZFC, and then the expressions of axioms

are presented as a two-sorted theory for sets and classes, with lower case letters denoting variables

ranging over sets, and upper case letters denoting variables ranging over classes. The four axioms

in NBG, e.g., Paring, Union, Powerset, and Infinity, are identical to their ZFC counterparts. The

Extensionality for sets is also identical to ZFC, and Extensionality for classes is similar to the

Extensionality for sets and the Foundation is applied to classes.

KIF discusses how the set theory avoids the paradox. However, it should be noted here that the

standard notion ofproper classin set theories (ZF and NBG) is replaced by termunboundedset,

and the standard notion ofclassis replaced by termsetin KIF 3.0 documentation [18].

B Basic Concepts

“In KIF, a fundamental distinction is drawn betweenindividualsandsets. A set is a collection of

objects. An individual is any object that is not a set.” [18] This statement is important to understand

the difference between a set in mathematical set theories and a set in ontology. As shown at Axiom

0 in Appendix A, everything in the universe for a set theory is a set. By contrast, objects in KIF are

individuals, sets of individuals, and sets of sets.

Sets and Individuals. The sentenceindividual(x) is true if and only if the object denoted byx is

an individual. The sentenceset(x) is true if and only if the object denoted byx is a set. Individuals

and sets are exhaustive and mutually disjoint. That is;

∀x(set(x)⇔ ¬individual(x)) (B.1)

∀x(individual(x)⇔ ¬set(x)) (B.2)

∀x∀s({x | individual(x)} ∪ {s | set(s)}) = R (B.3)

∀x∀s({x | individual(x)} ∩ {s | set(s)}) = ∅. (B.4)

In addition to distinguishingindividualsandsets, the category ofboundedandunboundedob-

jects are introduced.
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“A distinction is also drawn between objects that areboundedand those that areun-

bounded. This distinction is orthogonal to the distinction between individuals and sets.

There are bounded individuals and unbounded individuals. There are bounded sets and

unbounded sets.”

Bounded and Unbounded. The sentencebounded(x) is true if and only if the object denoted byx

is bounded. The sentenceunbounded(x) is true if and only if the object denoted byx is unbounded.

Boundedness and unboundedness are exhaustive and mutually disjoint.

∀x(bounded(x)⇔ ¬unbounded(x)) (B.5)

∀x(unbounded(x)⇔ ¬bounded(x)) (B.6)

∀x1∀x2[{x1 | bounded(x1)} ∪ {x2 | unbounded(x2)}] = R (B.7)

∀x1∀x2[{x1 | bounded(x1)} ∩ {x2 | unbounded(x2)}] = ∅ (B.8)

A set can have members, but an individual cannot. A bounded objects can be a member of sets,

but an unbounded object cannot. The finite sets are bounded as shown below. So, a finite set and

a bounded individual can be a member of sets. Thus, an interesting thing in the ontological view

is what individual is bounded and what individual is unbounded. However, the KIF documentation

did not state anything about it. Instead it just provides a unary predicatebounded andunbounded

as well asset andindividual.

As mentioned above, an object can be a member of another object if and only if the former is

bounded and the latter is a set.

Axiom 1 (Membership).

∀x∃s[x ∈ s⇔ bounded(x) ∧ set(s)] (B.9)

C Sets

Many axioms in ZF and NBG are also axiomatized for sets in KIF. In addition, theaxiom of choice

is modified for KIF. The Axiom of Choice in ZF is described in the following statement (Chapter 5

in [15]).

Every set has a choice function.

Supposing in ZF letA be a set (of sets), a choice functionf for A is a mapping from domainA−∅ (for

a non-empty element) to a set such that every element satisfiesf (x) ∈ x (choose one representative
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from each elemental set ofA). The choice function in KIF chooses every element that is uniquely

associated to each bounded element, and it asserts that there is a set that associates every bounded

set with a distinguished element of that set.

Axiom 2 (Choice).

∃s[∀τ∃x∃y(τ ∈ s⇒ {x, y})

∧ ∀x∀y∀z(({x, y} ∈ s∧ {x, z} ∈ s)⇒ y = z)

∧ ∀u(bounded(u) ∧ u , ∅ ⇒ ∃v(v ∈ u∧ {u, v} ∈ s))] (B.10)

D Boundedness

The key difference between bounded and unbounded objects is that the former can be members of

other sets while the latter cannot. This fact establishes a necessary and sufficient test for bounded-

ness – an object is bounded just in case it is a member of a set. However, this is not very helpful

to determine whether or not an object is bounded based on other properties. The following axioms

and description is useful to decide the boundedness.

Axiom 3 (Bounded Finite Set).Any finite set of bounded sets is itself a bounded set.

∀s0 . . .∀sk(
∧

i=0,...,k

bounded(si)⇒ bounded({s0, . . . , sk}) (B.11)

Axiom 4 (Bounded Subset).The set of all subsets of a bounded set is also a bounded set.

∀v[bounded(v)⇒ ∀u(bounded({u | u ⊂ v})] (B.12)

Axiom 5 (Bounded Union).The sumset of any bounded set of bounded sets is also a bounded set.

∀u[bounded(u) ∧ ∀x(x ∈ u⇒ bounded(x))⇒ bounded(
∪

u)] (B.13)

Here, the notation
∪

represents a sumset, see Appendix A. Since every finite set is bounded, this

allows us to conclude that the union of any finite number of bounded sets is a bounded set.

Axiom 6 (Bounded Intersection).The intersection of a bounded set and any other set is a bounded

set.

∀u∀s∀x[bounded(u) ∧ x ∈ s⇒ bounded({x | x ∈ u∧ x ∈ s})] (B.14)
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So long as one of the sets defining the intersection is bounded, the resulting set is bounded.

Axiom 7 (Bounded Infinity). There is a bounded set containing a set, then a set that properly

contains that set, and then a third set that properly contains the second set, and so forth. In short,

there is at least one bounded set of infinite cardinality.

∃u[bounded(u) ∧ u , ∅ ∧ ∀x(x ∈ u⇒ ∃y(x ⊂ y∧ y ∈ u))] (B.15)

E Paradoxes

The paradoxes appear only when we try to define set primitives that are too big and too powerful.

We might consider defining the term{x | φ(x)} to mean simply the set of all objects denoted byx

for any assignment of the free variables ofx that satisfiesφ(x). Unfortunately, these two definitions

quickly lead to paradoxes, as mentioned earlier in Section 6.1.

KIF describes the harmful influence of paradoxes as:

“One of the goals in the design of KIF is that it has a clearly specified model-theoretic

semantics in terms of which the concepts of entailment, equivalence, consistency, sound-

ness and completeness can be defined. If the paradoxes are allowed to persist in prin-

ciple, even if they are easy to avoid in practice, the consequence would be that no KIF

theory would be true in any model. Definitions couched in terms of models would be

trivialized, becoming useless. All sentences would be entailed by any theory, any two

theories would be equivalent, no theory would be consistent, every possible inference

rule would be sound, and so on.”

In the NGB version of KIF, these paradoxes are avoided by replacing the principle of unre-

stricted set abstraction with theprinciple of restricted set abstractionby bounded objects as follows.

x ∈ {ν | φ(ν)} ⇔ bounded(x) ∧ φν/x (B.16)

whereφν/x stands for the result of substitution of termx for all free occurrences ofν in φ(ν).

Thus, eventually KIF can avoid Russell’s Paradox by introducing boundedness and combining

it with any formula. The KIF document concludes as follows in Chapter 7.

“With this principle, there are two reasons why something may be excluded from a

set {ν | φ(ν)}. It may fail to be a member because it does not satisfy the defining
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conditionφ(ν), or it may be excluded because it is an unbounded object. Conditioning

the membership of objects in this set on their boundedness effectively eliminates the

paradoxes.”



Appendix C

Ramified Type Theory

The purpose of this appendix is to introduce Russell’s Ramified Type Theory (RTT), which is the

first genuine type theory developed in ‘Principia Mathematica’ (PM) for the purpose of avoiding

Russell’s paradox in case of the axiomatization of mathematical system. In this appendix, we spe-

cialize the description of Laan [44] and Kamareddine et al. [28] for RTT into unary predicate (for

class extension) and binary predicate (for property extension) of higher order logic along with the

definition of RDF Semantic Theory.

A Vicious Circle Principle

Bertrand Russell and Alfred N. Whitehead conceived that the so-called Russell’s Paradox is one of

many paradoxes all of which are caused by vicious circle.

An analysis of the paradoxes to be avoided shows that they all result from a certain

kind of vicious circle. (Principia Mathematica [77], pp.39)

Therefore, they settledvicious circle principlein order to avoid the paradoxes.

[. . . ] “Whatever involvesall of a collection must not be one of the collection”; or,

conversely: “If, provided a certain collection had a total, it would have members only

definable in terms of that total, then the said collection has no total.” We shall call this

the “vicious-circle principle,” [. . . ] (PM [77], pp.39)

The universe of discourse is exactly ‘a total’ and ‘no total’ mentioned in PM, and the universal

class or rdfs:Resource is a class that denotes the totality. Russell invented Ramified Type Theory
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in order to avoid the Russell’s Paradox and take the totality into account. However, obscurities in

their formalization remained in the description from the today’s viewpoint that is mathematically

rigorous, and then researchers re-formulated and re-interpreted more precisely the Ramified Type

Theory later1.

In the following sections, according to the description by Kamareddine et al. [28], we sim-

plify the Ramified Type Theory only into unary and binary predicate, adapting the theory to RDF

Semantic Theory.

B Propositional Function

In PM, the concept ofpropositional functionwas introduced onto the logic by Frege instead of set

theories.

“By a ‘propositional function’ we mean something which contains a variablex, and

expresses apropositionas soon as a value is assigned tox." (PM, pp.41)

For example, “Obama is Human” or “Human(Obama)” is a proposition. “Human(x)” and “x(Obama)”

is a propositional function, respectively.

The following metavariables for individuals, variables, and functions are distinctive as symbol.

However, actual vocabulary of individuals, variables, and functions are not distinctive, and function

arguments, i.e.,i, j andk, are metavariables that run over individuals, variables, and functions.

• A is a vocabulary ofindividuals. a,a1,a2, . . . andb, b1,b2, . . . are symbols for vocabulary

A. aIi andbIi is an expression for the denotation ofai andbi , respectively.

• V is a vocabulary ofvariables. x, x1, x2, . . . andy, y1, y2, . . . are symbols for vocabularyV.

xIi andyIi is an expression for the denotation ofxi andyi , respectively.

• C is a vocabulary ofunary predicates. R is a vocabulary ofbinary predicates. C,C1,C2, . . .

are symbols for vocabularyC. R,R1,R2, . . . are symbols for vocabularyR. CIi is an expres-

sion for the denotation ofCi . RIi is an expression for the denotation ofRi .

(Atomic Proposition)C(a) is called (unary) atomic proposition.R(a, b) is called (binary) atomic

proposition.I(C(a)) = CI(aI) denotes an interpretationI of C(a). I(R(a,b)) = RI(aI, bI) denotes

an interpretationI of R(a,b).

1See Kamareddine et al. [28], pp.21.
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Propositional functions in PM are generated from atomic propositions by two means, namely, i)

the use of logical connectives and quantifiers, and ii) abstraction from earlier generated propositional

functions, using the abstraction principle.

(Propositional function) We define a collection of propositional functions,P. Such as:

1. If i, j ∈ A ∪V, thenC(i),R(i, j) ∈ P.

2. If f , g ∈ P, then f ∨ g ∈ P and¬ f ∈ P.

3. If f ∈ P andx is free in f , then∀x[ f ] ∈ P.

4. If k1, k2 ∈ A ∪V ∪ P, thenC(k1),R(k1, k2) ∈ P.

5. All propositional functions can be constructed by using the construction rules 1, 2, 3 and 4

above.

Note that rule 2 and 3 above allow us to describe not only disjunction (∨) but also conjunction (∧)

due to the negation (¬)2. In case of rule 1 through 3, we stay in first order logic, rule 4 allows us to

expand propositional functions to higher order.

(Proposition) A propositional functionf is apropositionif there is no free variable inf .

So far, we do not setvicious circle principleyet. For example, we can define the so-called

Russell’s set¬z(z)3 as propositional function.

C Ramified Type

Here, in order to avoid the paradox, ramified types are introduced. while there is no definitions of

“type” in PM, Kamareddine et al. pointed out that the definition of “the same type” in∗9·131 in

PM.

∗9·131Definition of “being of the same type.”The following is a step-by-step defini-

tion, the definition for higher types presupposing that for lower types. We say thatu

andv “are of the same type” if (1) both are individuals, (2) both are elementary func-

tions taking arguments of the same type, (3)u is a function andv is its negation, (4)

u is ϕx̂4 or ψx̂, andv is ψx̂ ∨ ψx̂, whereϕx̂ andψx̂ are elementary functions, (5)u is
2We assume the law of excluded middle.
3It corresponds tox < x, which causes Russell’s Paradox.
4The notationϕx̂ in PM denotes a propositional function that hasx as a free variable. Similary,ϕ(x̂, ŷ) is used for the

representation of a propositional functionϕ that has two free variablesx andy amongst its free variables.
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∀y[ϕ(x̂, y)] andv is ∀z[ψ(x̂, z)], whereϕ(x̂, ŷ) andψ(x̂, ŷ) are of the same type, (6) both

are elementary propositions, (7)u is a proposition andv is ¬u, or (8)u is ∀x[ϕx] andv

is ∀y[ψy], whereϕx̂ andψx̂ are of the same type. (PM [77],Vol.1,pp.138)

Here, an elementary function is a propositional function that takes only elemental propositions as its

value. An elemental proposition is a proposition that does not involve any variables. See [77],pp.95.

According to these rules for “the same type”, Kamareddine et al. pointed out thatz() ∨ ¬z() is

not of the same type asz().

(Simple type) firstly simple type is defined such as:

1. 0 is a simple type;

2. If t1, . . . , tn are simple types, then also (t1, . . . , tn) is a simple type.n = 0 is allowed: then we

obtain the simple type ();

3. All imple types can be constructed using above rules 1 and 2.

The type () stands for the type of the proposition, and the type 0 stands for the type of the individuals.

Then, the unary propositional function that takes one individual as argument should have type (0).

It is also pointed thatC(a) and∀z: ()[z() ∨ ¬z()] are of a different level, because the former is

an atomic proposition, while the latter is based on the propositional functionz() ∨ ¬z(). Note that

the expression of propositional functionz() ∨ ¬z() involves an arbitrary propositionsz, therefore

∀z : ()[z() ∨ ¬z()] denotes all interpretations quantified over the universe of discourse. However,

according to the vicious circle principle,∀z: ()[z() ∨ ¬z()] itself cannot belong to this collection of

propositions. This problem is solved by dividing types intoorders. We startramified typesfrom

type 0 with order 0 for individuals.

1. 00 is a ramified type;

2. If tm1
1 , . . . , tmn

n are ramified types, then (tm1
1 , . . . , tmn

n )N is a ramified type, whereN > max(m1, . . . ,mn);

3. All ramified types can be constructed using rules 1 and 2.

If tm is a ramified type, thenm is called theorderof tm.

Amongst the ramified types, ones ofN = max(m1, . . . ,mn)+1 is calledpredicative. For example,

for Obama∈ A, individualObamaI has type 00, thenHumanI(ObamaI) has type (00)1. Therefore,

rdfs:ClassI(HumanI) has type ((00)1)2.
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We conceive that RDF classes in RDF Semantics are equivalent to the unary predicates and they

have a predicative type. Thus,xI ∈ CEXTI(CI) is equivalent toCI(xI), and if the order ofxI is

n, then the order ofCI is n+ 1. Thus, for the equation on the universal metaclass (2.12) or (6.13),

if the order ofrdfs : ClassI at the left hand side isn, then the order ofrdfs : ClassI at the right

hand side isn+ 1. Both are the same in appearance, but they must be distinguished by the orders in

Ramified Type Theory. Therefore, the descendant of membership on rdfs:Class is terminated from

an arbitraryn to the bottom order 2 of rdfs:Class such asn→ n− 1→ n− 2→ · · · → 2, because

RDF properties, e.g.,rdfs: commentI andrdfs: labelI, have type 00, and thenrdf : PropertyI has

type (00)1, thenrdfs:ClassI(rdf :PropertyI) has type ((00)1)2.
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