THEORY AND IMPLEMENTATION OF
OBJECT ORIENTED SEMANTIC WEB LANGUAGE

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF INFORMATICS
AND THE COMMITTEE ON GRADUATE STUDIES
OF THE GRADUATE UNIVERSITY FOR ADVANCED STUDIES (SOKENDAI)
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Seiji Koide
2010

© Copyright by Seiji Koide 2010
All Rights Reserved

MEMBER OF DOCTORAL COMMITTEE

Hideaki Takeda National Institute of Informatics
Ken Satoh National Institute of Informatics
Nigel Collier National Institute of Informatics
Ikki Ohmukai National Institute of Informatics

Takahira Yamaguchi Keio University

Approved for the University Committee on Graduate Studies.

Abstract

Resource Description Framework (RDF for short) is an assertional language intended to be used
to express propositions using precise formal vocabularies, and its syntax is applicable to the World
Wide Webs. RDF Schema (RDFS) is a semantic extension of RDF and it provides a minimum
type system to describe web ontologies. OWL Web Ontology Language is a language for defining
and instantiating Web ontologies. These three languages for Semantic Webs are intended to be
integrated in Semantic Web Layered Architecture, namely OWL was designed to be realized on top
of RDF and RDFS. However, this intention is not accomplished and it seems to be coming apart
more and more. The objective of this doctoral study is recovering the language integration and
provides a unified language system for Semantic Webs.

In this study, firstly, the semantics of RDF, RDFS, and OWL are investigated in common de-
scription based on Tarskian denotational semantics, whereas the formal way of describing semantics
in W3C Recommendations isftérent between RDF(S) and OWL. RDF semantics is formalized
based on Tarskian denotational model theory and RDFS is extended in the same framework, but
OWL semantics is mainly described in the way called Direct Model-Theoretic Semantics, which
is appropriate for describing Description Logics and OWL DL. However, due to these figo-di
ent styles, it has becomeflitult to understand both languages in the common view, and it has
amounted to that OWL has become apart from RDF and RDFS. In this dissertation, an overview of
RDF semantics is given in the way described in the RDF documents of W3C Recommendations.
Then, OWL semantics is also investigated and formalized based in the same way as RDF, making
reference to the OWL specifications in OWL Direct-Model Semantics in the documents of W3C
Recommendations. Since our semantic web language system is built on top of Common Lisp Ob-
ject System, CLOS semantics and its computational model is also discussed. The semantic gap
between OWL and object oriented languages are also pointed out.

Secondly, RDF semantics is realized on top of CLOS by straightforward mapping of RDF graph,
which is uni-directional labeled graph, to CLOS obijects, so that a start node of edge to a CLOS

object, an edge in graph to a slot-name, and an end node of edge to a slot-value. RDFStelase
relationship is mapped to that in CLOS, and RDFS ¢agserclass relationship is mapped to that

in CLOS, because the semantics of RDFS is analogous to the semantics of CLOS type system. The
problems arising from such straightforward mapping for RDF and RDFS are discussed and solved in
the realization of our language system for Semantic Webs. Then, all OWL features are implemented
on top of RDF(S) by CLOS with preserving RDF(S) semantics. We distinguish substantial sorts and
non-substantial sorts in ontology description, and procedural subsumption computation algorithm
for OWL Full is developed. The system is named SWCLOS from the acronym of Semantic Web
Common Lisp Object System.

Thirdly, the dficiency of SWCLOS implementation was tested by the Lehigh University Bench-
mark (LUBM) test, and SWCLOS showed the comparable performance to other OWL reasoners,
which are reported in the LUBM report. SWCLOS returned correct answers for all LUBM queries,
whereas two reasoners out of three returned wrong answers for some queries in the benchmark re-
port. Distinctive benchmark results of SWCLOS were analyzed and improvementfiscefrey
were achieved by severalffiirent engineering methods. The metamodeling capability of SWCLOS
was also demonstrated in some examples of SWCLOS metamodeling programming.

Through this study, we obtained deep understanding of semantics on RDF, RDFS, and OWL,
because it was necessary to realize the integration of semantic web language, namely, OWL Full, in
order to solve the semantic disparity between RDF(S) and OWL DL. For example, the subsumption
in class hierarchy is weak in RDFS but it is strong in OWL DL. The semantics of OWL DL class is
akin to set theory, but the semantics of RDFS class is based onffaredi from set theory, rather
it is close to frame systems. The semantics of RDF(S) is basically categorized into higher order
logic but OWL DL is notably a subset of first order logic. RDFS allows the membership loop and
enables metamodeling of ontology but OWL DL cannot accept the membership loop and does not
allow metamodeling. Entities in RDF universe stand in the Unique Name Assumption (UNA) for
graph nodes but entities in OWL universe does not stand in UNA for objects in ontology. RDF
semantics is not developed up to Open World but OWL semantics assumes it for WWWs. These
highly conceptual and technical issues must be discussed and settled in order to integrate RDF(S)
and OWL. The solution for membership loop, wgstkong subsumption, and non-Unique Name
Assumption, Open World Assumption are proposed and implemented in SWCLOS.

In addition to these dierences of semantic foundation of languages, what is worse, a misunder-
standing on the interpretation of RDF semantics involved the community in the theoretical disorder
against the discussion of RDF compatibility of OWL. Excessive materialization of RDF entities in

vi

OWL was coached after the argument over ‘comprehension principle’, and RDF semantics has be-
come the focus of criticism under the pretense that ‘comprehension principle’ allows the paradox to
invade upon systems. Such theoretical disorders in Semantic Web community are also discussed in
order to rescue OWL Full theory from the theoretic disorder. It deserves to know that OWL 2 spec-
ifications of W3C Recommendations retracted the term ‘comprehension principle’ with no account
from the documentation of W3C in the end.

As its name implies, SWCLOS is not based on a logic system but based on Common Lisp Ob-
ject System. It is semantically an amalgamation of CLOS and OWL on top of RDF; nevertheless it
still conforms to object-oriented paradigm as programming language. It is the reason why we call
it object-oriented semantic web language. The ground of enabling SWCLOS can be summarized as
follows. First, the subsumption of CLOS is the same as the subsumption of RDF(S), and the struc-
ture of hierarchy and orders of CLOS classes is the same as ones of RDF(S). The dynamic property
of CLOS programming and the Meta-Object Protocol of CLOS enabled to tailor the semantics of
language within the realms of CLOS language. In fact, it was easy to realize RDF semantics on
top of CLOS, because the semantics is almost same except property-centric or object-centric. Then,
OWL Full level capability is obtained in OWL by pursuing the compatibility to RDF and preserving
it.

Vii

[This page intentionally left blank]

Preface

After the first International Semantic Web Conference at 2002 Sardinia, which | attended with the
purpose of surveying the feasibility of Semantic Technology for an ICT project started at FY 2002 in
Japan, in which | engaged myself, Semantic Webs have been becoming reality more and more year
by year. However, it is still far from the goal Tim Berners-Lee intended, and many problems are left
to be solved. The most urgent issue on Semantic Webs to be solved is, in my opinion, to establish
OWL Full language, which is a unified language of OWL and RDF(S). Whereas the integration
of Semantic Web languages of RDF, RDFS, and OWL is the course laid by Tim Berners-Lee in
order to establish Semantic Webs, the possibility of OWL Full seems to be rather decreased in W3C
along with the publication of the recommendations of OWL 1 at 2004 to the new recommendation
of OWL 2 at 2009. It may have been owing to the semantic gaps between RDF and OWL or owing
to some historical accidents.

There have been arguments up to now between two camps in Semantic Web community. One
side often criticizes the undecidability contained in RDF(S) from the standpoint of first order logic,
more precisely Description Logics. The most arguable point was the membership loop of classes,
or broadly speaking self-referencing nature of the semantics. It threatens ones like vicious circle.
However, the study of reflective systems has been one of the most attractive themes for researchers
in Artificial Intelligence over three decades, and then many reflective systems have been proposed
and developed mainly in two computer languages, Lisp and Prolog. Common Lisp Object System
(CLOS) is the first result in a practical view as a reflective object oriented programming system.
The Meta-Object Protocol (MOP) of CLOS facilitates programmers to change the behavior of a
CLOS language system within the realms of itself. Needless to say, recursive programming is the
most elemental programming way in Lisp. Lisp programmers are familiar with the idea of self-
reference and do not have any bewilderment on reflection systems. Thus, it was obvious for lisp
programmers who are accustomed to MOP programming that OWL Full was realizable through
MOP by implementing the membership loop of rdfs:Class and changing the language semantics to

iX

RDF(S) and OWL.

This study is on the theory of OWL Full language and its implementation on top of CLOS.
OWL semantics is re-organized here according to Tarskian denotational model theory in the same
way of RDF semantics for the sake of compatibility to RDF semantics, and it is integrated to RDF
semantics. OWL on top of RDF(S) is actually realized using MOP of CLOS. Then, the system has
been called SWCLOS.

SWCLOS is unique among several plausible realizations of OWL system. It is neither logic-
based nor rule-based, rather an object-based system. Every entity of RDF(S) and OWL and user-
defined entity in SWCLOS is an object of CLOS. Furthermore, it still conforms to object oriented
programming paradigm. It is not a specific application system dedicated for Semantic Webs, rather
it is a programming language system for semantic web applications. Programmers can build their
owl applications for Semantic Webs using SWCLOS. It is an amalgamation of OWL and an object
oriented programming language CLOS.

On the soundness and completeness of the system, SWCLOS may be sound if it does not in-
clude bugs, but it is diicult to prove on the completeness of computation. Many entailment and
axiomatic rules of RDF(S) and OWL are procedurally implemented in program code as parts of
methods in object oriented programming. More precisely, some of them are partly implemented as
default reasoning, some of entailment rules are partly implemented as inconsistency checking, but
all of them are separately scattered as procedural program in SWCLOS. However, it deserves to
know that critiques on undecidability of RDF(S) are often not valid from the viewpoint of engineer-
ing. Concrete examples raised as evidence that shows the undecidability are always sick and make
no sense. In SWCLQOS, the criteria for metamodeling and membership loop are proposed. They
assure the soundness of metamodeling from the view of engineering, and it is compatible to CLOS
metamodeling facility.

Obviously, RDF and OWL are legitimate successors of Knowledge Representation (KR) sys-
tems that were enthusiastically studied in late 1970s and early 1980s as a kind of Artificial Intel-
ligence systems. Even in today, the study of RDF and OWL belongs, as the predecessors did, to
the KR discipline as a subfield of Artificial Intelligence. Therefore, the study includes many di-
vergent aspects, i.e., not only symbol logic but also philosophy, cognition, set theory, theory of
computation, semantic theory, inference technique, system building engineering, etc. Though Ob-
ject Oriented Language (OOL) might not be regarded as one of KR languages today, the study of
KR systems once helped to form OOLs and also contributed to the formalization of KR languages,
from which RDF and OWL inherited the legacy. The inheritance of the KR study still lives in a

large number of today’s OOLs as well as in RDF and OWL. Thus, it is plausible to use OOLs in
order to represent ontology.

OWL ontology has been showing its potential as normative description of class modeling in
object oriented programming. Object Management Group (OMG) has recently issued the adoption
of OWL ontology for Model Driven Architecture, and then OWL has become to be unified into
UML. However, the systematization of Ontology Driven Architecture with UML is not realized yet.

SWCLOS is the first full-fledged language system as OWL Full processor. The OWL Full
metaclass is formalized using by RDF(S) axioms, and the OWL universe is formalized as subset
of the RDF universe. The membership loop at the universal class rdfs:Resource is properly im-
plemented under the CLOS metamodeling semantics. The membership loop of rdfs:Class is also
properly implemented by introducing a proxy of it in CLOS. Non-Unique Name Assumption in
OWL is superimposed onto RDF graph, and the novel algorithm for Unique Name Assumption for
atomic objects in the non-UNA condition is invented in order to integrate OWL non-Unique Name
Assumption to RDF graph.

This dissertation is structured as follows. Chapter 1 introduces the ground of Semantic Webs
and makes clear the motivation of this study. Chapter 2 describes basic semantics of RDF, OWL,
and CLOS, mainly with reference of the documents from W3C. The semantic gaps between RDF(S)
and OWL are described by Tarskian semantics, which is applied for RDF Semantics, according to
the outline of the Direct Model-Theoretic Semantics. This part in Chapter 2 is an original contribu-
tion for the denotational semantics of OWL theory. It is also intended to be prepared for Chapter 6
OWL Full theory. Chapter 3 describes an implementation of RDF(S) and OWL on top of CLOS. A
benchmark test of SWCLOS is reported in Chapter 4. The criteria for metamodeling using SWC-
LOS is addressed in Chapter 5, and the example of metamodeling using SWCLOS is also described
in Chapter 5. Chapter 6 presents advanced and nicer discussion of OWL Full theory. In this chapter,
several kinds of set theories and the comprehension principle in set theories are reviewed from the
standpoint of ontology description. Then, it is emphasized that those set theories are not appropri-
ate to ontology description, and it is stated that Russell's Paradox is not applicable for RDF and
OWL semantics, rather Russell’s Ramified Type Theory is appropriate for class notion in ontology.
The problem of combining non-Unigue Name Assumption in OWL to RDF graph is also discussed,
and a solution is addressed with focusing on graph equality and default reasoning for primitive ob-
jects. Chapter 7 pursues Open World Assumption and disjointness of classes in ontologies, then a
drawback of the current OWL for ontology description language is pointed out and the direction of
solution is suggested. Chapter 8 discusses the related work as overall description of this dissertation.

Xi

Chapter 9 makes summary of this dissertation and discusses the future of OWL and SWCLOS. It
makes several remarks about the potential of ISO standard Common Logic as ontology description
language with the desire of going beyond RDF and OWL.

For readers who matured at Semantic Web theory and practice, it is recommended to pick up
Section 2.2 and Chapter 6 through 7. These parts are our original contribution to OWL Full theory.
For readers as practitioner of system developers, it is recommended to directly jump into Chapter
3, and pick up Section 2.3 and 2.4. However, the description assumes that readers have some
prerequisite knowledge about the reflection and Meta-Object Protocol. Readers who want to know
the skill and practice of the reflection, these parts and source codes of SWCLOS are a plenty of the
source deserving to dig it.

Xii

Acknowledgment

The half of the work of this doctoral study was initially done as a part of the Japanese IT project
titled ‘Building a Support System for the Large-Scale Operation System using Information Tech-
nology’ under the contract of Galaxy Express Corporation with the Ministry of Education, Culture,
Sports, and Technology (MEXT) from FY 2002 through FY 2005. | appreciate two project leaders,
Pres. Yukio Kitamura and Pres. Susumu Nagano of Galaxy Express Corporation. After closing
the project, Pres. Nagano and Vice Pres. Yoshirou Kondou kindly supported me to continue my
work for Semantic Web Technology as Ph.D. student. | thank Emeritus Prof. Setsuo Ohsuga at
Tokyo University, who was the chairperson of the Technology Evaluation Committee of the project.
| also thank Prof. Riichiro Mizoguchi at Osaka University, who was a co-researcher in the project.
Whereas | played the role of supervisor in the project, | worked with competent colleagues, Mr.
Norikazu Shimada, Mr. Shohei Misono, and Mr. Masanori Kawamura. All of these experienced
colleagues were very helpful for me to achieve the goal of the project. | also appreciate Dr. Ken
Kaneiwa, who was not related to the project but the private discussion with him via email on Se-
mantic Web and Wine Ontology was very helpful to understand OWL semantics.

From the viewpoint of engineering, the MEXT project was successfully completed, but | saw
that my work was not completed from the viewpoint of academic study. | understood the lack of
theoretical generality in my work. The half of this study was carried out as doctoral study at the
Graduate University for Advanced Studies (SOKENDAI). The study at SOKENDAI brought the
theoretical depth to my work, and then | evolved my work in theory and | achieved the complete
realization of object oriented semantic web language in the end, not only in practice but also in
theory. The advisor Prof. Hideaki Takeda always stimulated and helped me with his wide-ranged
scientific knowledge. | shall be truly grateful to Prof. Takeda. At the meeting, | always enjoyed
the discussion with him, and he always gave me a great suggestion when | encourffendtias,
even if he was not aware of it.

| also appreciate CEO of Franz Inc. Jans Aasman and scientist Steve Haflich. As a part of the

Xiii

ICT project, we worked together twice in a very short term. And it resulted in that | helped Franz
to add Semantic Technology into the Franz product line.

Lastly, I would like to ask pardon for disclosing my acknowledgment to my wife Keiko. She is
my marvelous partner in my long life and co-fighter of everyday life. Due to my doctoral study at
SOKENDAI and the full-time work at Galaxy Express earlier and at IHI Corporation later, | could
not help me spending my private time at home to the study. She accepted everything and supported
me. This dissertation is dedicated to her.

Xiv

List of Notations

Notation Meaning

) Expression for a tuple.

{.} Expression for a set.

I Interpretation that maps a set of URLSs to a set of nodes in graph or objects in logics.

EXTZ() A mapping from properties in universe of discourse into the powerset of binary pairs
of resources in the universe of discourse. It is called an extension of property.

CEXT () A mapping from classes in universe of discourse into the resources in the universe of
discourse. It is called an extension of class.

R Universe of discourse or RDF universe.

R Russell’'s class

R(.,.) Relation

P A set of property in universe of discourse.

9(.) Power set

vV vocabulary.

w Transfinite ordinal number

€ Expression for membership.e A meansxis a member of a s&f or a classA.
M Intersection of concepts.

c Relationship between subconcept and superconcept.
T Top of concepts.

1 Bottom of concepts.

= Identical objects.

< Subclassuperclass relationship in CLOS or RDFS.

1

Equivalent classes in owl:FunctionalProperty and owl:InverseFunctionalProperty.

X

Relationship of complement and disjoint concepts.
= Individual equivalence in OWL.

XV

Glossary of Abbreviations

Abbreviations Stands for

ABox Assertional Box. See also TBox.

CLCE Common Logic Controlled English

CGIF Conceptual Graph Interchange Format

CLIF Common Logic Interchange Format

CLOS Common Lisp Object System.

CWA Closed World Assumption. In CWA, NaF is usually utilized for inference.
See also OWA.

DAML DARPA Agent Markup Language.

DL Description Logic.

KAON2 KArlsruhe ONtology version 2.

KIF Knowledge Knowledge Interchange Format

KR Knowledge Representation.

KRL Knowledge Representation Language.

LCWA Local Closed World Assumption.

LUBM Lehigh University Benchmark.

MDA Model-Driven Architecture.

MKNF Minimal knowledge and negation as failure

MOF Meta-Obiject Facility.

MOP Meta-Obiject Protocol.

NaF Negation as Failure, the presumption tha® i not derived,
thenP is false.

NF New Foundation

NBG von Neuman-Bernays-Goédel Set Theory

XVii

Abbreviations Stands for

ODA
ODM
OIL
OMG
ooL
OOP
OOPL
OWA

OwL
OwL 1
OWL 2
OWL-S
OWL DL
OWL Full
OWL Lite
PM

RDF
RDFS
RDF(S)
RTT
SETF
SPARQL
SWCLOS
TBox
UNA

XCL
XML
ZF

ZFC

Ontology Driven Architecture.

Ontology Definition Metamodel.

Ontology Inference Layer.

Object Management Group.

Object-Oriented Language.

Object-Oriented Programming.

Object-Oriented Programming Language.

Open World Assumption, the presumption that if neitReror notP
is derived, therP is neither true nor false. See also CWA.
Web Ontology Language.

OWL version 1.

OWL version 2.

Semantic Markup for Web Services.

OWL by Description Logic.

OWL in full flexibility on syntax and semantics.

OWL for easy implementation and usage.

Principia Mathematica

Resource Description Framework.

RDF Schema.

RDF and RDFS.

Russell's Type Theory

Software Engineering Task Force.

SPARQL Protocol and RDF Query Language.
Semantic Web CLOS

Terminological Box. See also ABox.

unique name assumption, the presumption that if two names or URLs
are diferent, then those denotation aréelient.

XML Common Logic

Extensible Markup Language.

Zermelo-Fraenkel Set Theory

Zermelo-Fraenkel Set Theory with the axiom of Choice

XVviii

Table of Contents

Abstract \%
Preface iX
Acknowledgment Xiii
List of Notations XV
Glossary of Abbreviations XVii
1 Introduction 1
1.1 Semantic Web Languages and their Layering 1
1.2 Intensional Model and ExtensionalModel 3
1.3 Non-Unique Name Assumption and Open World Assumption 4
1.4 Perspective of Semantic Web from Object Oriented Programming 5
1.41 UMLandReflection e 5
1.4.2 Type Theory and Metamodeling Criteria. 7
1.5 A Realistic Solution with Moderate Semantic Web Conditions 7
1.6 GuidetoReaders 8
2 Semantics of RDF, OWL, and CLOS 11
2.1 RDFSemanticCs e e e 11
2.1.1 Denotational SemanticsinRDF 11
2.1.2 Model Theory and Interpretation 12
2.1.3 Resources and Propertiesin RDF Universe 13
2.1.4 Semanticsof ClassinRDF Schema 18

XiX

2.2 OWLSEemantiCS v e e e e e e e 27

2.2.1 OWL in Denotational Semantics 27
222 OWLEnNtailmentRules 35
2.3 CLOSSemantiCs i i e 35
2.3.1 CLOS View of Object Oriented Programming 37
2.3.2 Class Based System and Miscellaneous 38
2.3.3 Meta-circularity in CLOS and Meta-Object Protocol 39
2.3.4 Computational ModelsofLisps 41
2.4 Semantic Gaps betweenOWLand OOPLs 42
25 ConcludingRemarks e 44
Implementation of RDF, RDFS, and OWL on CLOS 45
3.1 Implementationof RDF(S) 45
3.1.1 Mapping Triplesto CLOSObjects 45
3.1.2 Typein CLOS and MembershipinRDF 48
3.1.3 Subsumption of Properties and Dorjlgenge inheritance 50
3.1.4 Tailored Slot Specification 51
3.1.5 Slot Definition On-Demand from Instance Objects 52
3.1.6 Single Class in CLOS and Multiple Classes inRDF(S) 53
3.1.7 Forward Reference and Proactive Entailment 53
3.2 RDF(S) DemonstrationinSWCLOS 54
3.3 OWLFullonTopof RDF(S) o e e 55
3.3.1 RDF Compatibility of OWL 55
3.3.2 Anonymous Restriction Classes for Properties. 58
3.3.3 Axiomatic Complete Relations 59
3.3.4 Substantial Properties and Non-Substantial Properties. 61
3.3.5 Extended Structural Subsumption Algorithm 62
3.3.6 Satisfiability Check 65
3.3.7 OWLEntailmentRules 65
3.4 OWL Demonstrationin SWCLOS 70
3.5 ConcludingRemarks 71

XX

4 Benchmark Test by LUBM 75

4.1 Characteristics of Lehigh University Benchmark 75
4.1.1 Characteristics of University DomaininLUBM 76
4.2 Queries forBenchmark TestinLUBM 76
4.3 ExperimentalResults 84
43.1 Loadingof LUBM 84
4.3.2 ResultsforQueries e 85
4.3.3 Analysis of Distinctive Results 85
4.4 Summary of Analysis and Improvementfor LUBM 93
45 RelatedWork e 95
45.1 Supplementary LUBM TestReports 95
4.5.2 Towards Complete Benchmark Suits 96
4.6 ConcludingRemarks e 98
5 Demonstration of OWL Full Metamodeling 101
5.1 Tractability on Metamodeling and Metamodeling Criteria 101
5.1.1 Untractable Metamodeling 101
5.1.2 Metamodeling Criteria from RDF(S) Semantics 102
5.2 Demonstration of Metamodeling Programming 103
5.2.1 TreatingaClassas Individual 103
5.2.2 AddingaRoleFillertoaClass. 104
5.2.3 TreatinganIndividualasClass 104
5.3 ConcludingRemarks 106
6 OWL Full Theory 109
6.1 SetTheoryand Russell'sParadox 110
6.1.1 Comprehension Principle and Russell's Paradox 110
6.1.2 Zermelo-Fraenkel SetTheory 110
6.1.3 KIFSetTheory 114
6.1.4 Ramified Type Theory, 115
6.2 Whatis Comprehension Principle?, 116
6.3 OWLFullMetaclassing i 119
6.3.1 Membership Loop at rdfs:Class and Twisted Relation with rdfs:Resource . 119
6.3.2 OWLMetaclassing i 121

XXi

6.4 Non-Unique Name Assumptionand Equality 122
6.4.1 Equalityofindividuals, 122
6.5 ConcludingRemarks e 125
Open World Assumption and Class Disjointness 127
7.1 Auto Epistemic Closed World Assumption 127
7.2 Complete Relation for Class Equivalency and Disjoint Relation 128
7.3 Pairwise Disjoint Datatype 129
7.4 Ontological Categories and Disjointness 130
7.5 Introductionof Role Concepts 131
7.6 ConcludingRemarks 131
Related Work 133
8.1 Frame-based and Object-Oriented OWL Systems 133
8.2 RDFandOWLTheory e e 134
8.2.1 RDFSemanticTheory 134
8.2.2 OWLSemanticTheory 134
8.2.3 Criteriafor Metamodeling 135
8.3 OtherWork 135
8.4 ConcludingRemarks 135
Conclusion 137
Zermelo-Fraenkel Set Theory 141
A Definitionsand AXIOMS e 141
B Remarks for ZF Set Theory fromOntology 144
Sets in KIF 145
A Rationaleof Set Theory inKIF 145
B BasicConcepts 146
C Sets . . . 147
D Boundedness 148
E Paradoxes 149

C Ramified Type Theory 151

A Vicious Circle Principle e 151

B Propositional Function 152

C RamifiedType. e e 153
D List of Published Papers 157
Bibliography 159

XXxiii

List of Tables

2.1
2.2
2.3
2.4
25
2.6
2.7

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

9.1

Simple EntailmentRulesinRDF
Literal generalizationrule
Literal instantiationrule
RDF entailmentrules
RDFS entailmentrules
OWL EntailmentRules e
A Comparison of OWIRDF and Object-Oriented Languages (by SETF [35]) . . .

Unsatisfiability in OWL addedto SWCLOS
Additional OWL Axioms for SWCLOS i it i
Entailment Rules added in OWL for SWCLOS

LUBM Benchmark Loading Time (dd:hh:mm:ss)
LUBM(1,0) Benchmark TestResults
LUBM(5,0) BenchMark TestResults
LUBM(10,0) BenchMark TestResults
Results of Refactoring Lisp Query Code for LUBM(1,0)
Query Results by Backpointer for LUBM(1,0)

Results of Memoization @follect-all-extensions-of for LUBM(1,0) 94

Summary of Analysis and Improvements..

Basic Computational Features of Languages.

XXV

List of Figures

1.1

21
2.2
2.3
2.4

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3

6.1

8.1

Semantic Web Layer Cake, Original Version. 2
RDF Resources and their Relations. 22
The First ComputationModel. 41
The Second Computation Model., 41
The Third ComputationModel., 42
An Example of RDF Graph 46
Slot Definition and Slot Extension o oL 48
A Trick for Membership Loop forrdfs:Class 50
Slot Definitions Dedicatedto RDFand OWL 52
Triangle Structure of Q2. 90
Triangle Structure of Q8. 90
Code Analysisof Query 5. 93
Membership Loop in Cycon Collections 102
APartof SUMOOntology 102
Examples of CLOS Clean Metamodeling 102
RDF Universe and OWL Universe Connection 122
Membership Loop in Cyc by foxvog [16] 135

XXVil

Chapter 1

Introduction

“I have left open the discussion as to what inference power and algorithms will be
useful on the semantic web precisely because it will always be an open question. When
alanguage is sfficiently expressive to be able to express the state of the real world and
real problems then there will be no one query engine which will be able to solve real
problems.” (Engines of the future in ‘Evolvability’, Tim Berners-Lee)

The goal of this doctoral study is a unified language of RDF(S) and OWL for Semantic Webs,
namely, the development of an OWL Full language system. Obstacles to achieve this goal must
be discovered and removed. In this chapter, in order to make the problems clear for the sake of
achieving this goal, we pose an overview of discrepancies between the original goal for Semantic
Webs and the current reality. Especially, in addition to the notable discrepancy of metamodeling,
we point out the problematic non-Unique Name Assumption and Open World Assumption in OWL.
However, the precise discussions of these problems are described after Chapter 6.

1.1 Semantic Web Languages and their Layering

RDF is an acronym of Resource Description Framework and “RDF is an assertional language in-
tended to be used to express propositions using precise formal vocabularies” (RDF Semantics, [25]),
and its syntax is applicable to the World Wide Webs (WWWs) with the components such as URI
references, literals, and XML schema typed literals.

RDF Schema (RDFS for short) is an semantic extension of RDF and it provides a minimum
type system to describe web ontologies on top of RDF. The most remarkable feature of RDFS type

2 CHAPTER 1. INTRODUCTION

system is the metamodeling capability for ontology description. Namely, using RDFS, ones can
treat a class simultaneously as a collection of objects and as an object in its own right.

“The OWL Web Ontology Language is a language for defining and instantiating Web ontolo-
gies” (OWL Guide [65]) Due to the design for representing the web content as ontology, it can
facilitate greatemachine interpretabilitghan is supported by XML, RDF, or RDFS, by providing
additional vocabulary for concepts. It was intended to be an extension of RDF and RDFS.

This language layering is originally proposed by Tim Berners-lkég.1.1shows the image of
such layering called Semantic Layer Cake. In this figure, the layer named ‘ontology vocabulary’
corresponds to the current OWL.

-
Rules Trust

Proof g

— =

Logic %

Self- L

desc, Ontology vocabulary ‘g‘

doc. 2

RDF + rdfschema

XML + NS + xmlschema

Unicode

Fig. 1.1: Semantic Web Layer Cake, Original Version.

“The OWL language provides three increasingly expressive sublanguages designed for use by
specific communities of implementers and users.” (OWL Guide [65]) OWL Lite is the simplest
sublanguage and it supports those users primarily needing a classification hierarchy and simple con-
straint features. “OWL DL was designed to support the existing Description Logic business segment
and has desirable computational properties for reasoning systems.” (OWL Guide [65]) OWL Lite
and DL specifications and its semantics are described in a number of OWL documents [65, 49, 57].
OWL Lite and OWL DL, however, do not support RDF semantics. “OWL Full is meant for users
who want maximum expressiveness and the syntactic freedom of RDF” (OWL Guide [65]), but it
is not fully developed yet in theory and practice.

As mentioned above, the semantics of OWL DL is not laid on top of RDF semantics. The most
remarkable discrepancy, publicly admitted in the community, is the metamodeling capability [19,
27]. For example, in an ontology for the Red Data Book, RDFS and OWL Full can classify a
species as a class of creature into the concept of endangered species, but OWL DL cannot perform

1.2. INTENSIONAL MODEL AND EXTENSIONAL MODEL 3

such classification, because such metamodeling goes beyond Description Logics and OWL DL. In
the followings,ex : EngangeredSpecies should be a metaclass dueeto: Eagle is a class.

<owl:Class rdf:about="&ex;Eagle">
<rdf:type rdf:resource="&ex;EndangeredSpecies" />
</owl:Class>

<owl:Thing rdf:about="&ex;Harry">
<rdf:type rdf:resource="&ex;Eagle />
</owl:Thing>

The problem of OWL DL that is based on Description Logics is the strict separation between the
class and the individual in ontology. Borgida et al. pointed out that one must create a ‘meta-
individual’ [6] in order to work around such a problem in Description Logics. The OWL Working
Group in W3C had maddierts to introduce into OWL the metamodeling facility with the terminol-
ogy of punning, and it was formally recommended at OW£. However, the detail of specification

for punning is removed from OWL 2 [27] and no logic based modeling language system appears
yet that allows OWL Full metamodeling.

The syntactic freedom of RDF is also strictly limited in OWL DL. RDF and OWL Full can
annotate an entity of property using the property itself as follows, but OWL DL cannot perform
such annotation, because OWL individuals, classes, and properties are pairwise disjoint [58]. See
the following example, which is taken from RDF definition file, 22-rdf-syntax-ns.rdf.

<rdf:Property rdf:about="&rdfs;label">
<rdfs:label>label</rdfs:1label>
</rdf:Property>

1.2 Intensional Model and Extensional Model

RDF semantics utilizes the notion of set in set theory to formalize its denotational semantics. How-
ever, “the use of set-theoretic language here is not supposed to imply that the things in the universe
are set-theoretic in nature.” (RDF Semantics [25]) On the other hand, the class notion in OWL DL
semantics is the same as set in set theory. In the RDF semantics, an extension of a property and an
extension of class are formalized using Tarskian denotational model theory. “The use of the explicit
extension mapping also makes it possible for two properties to have exactly the same values, or two
classes to contain the same instances, and still be distinct entities.” (RDF Semantics [25]) Namely,

Thttp://vwww.w3. org/2007/0WL/wiki/Punning
*http://www.w3.org/TR/owl2-new- features/#F12:_Punning

4 CHAPTER 1. INTRODUCTION

we can hold two dferent classes that have the same set as class extension. On the other hand, two
classes that have the same set as individuals are regarded as equivalent in OWL DL semantics. This
different semantics often causes confusion of the interpretation on rdfs:subClassOf or subsumption.
For example, whilerzin:RedWine in Wine Ontology is defined as below.

<owl:Class rdf:ID="RedWine">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Wine" />
<owl:Restriction>
<owl:onProperty rdf:resource="#hasColor" />
<owl:hasValue rdf:resource="#Red" />
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

The following description does not cause anffefience as a result in OWL DL semantics, but it
causes the flierent interpretation in RDF semantics.

<owl:Class rdf:ID="RedWine">
<rdfs:subClassOf rdf:parseType="Collection'">
<owl:Class rdf:about="#Wine" />
<owl:Restriction>
<owl:onProperty rdf:resource="#hasColor" />
<owl:hasValue rdf:resource="#Red" />
</owl:Restriction>
</owl:subClassOf>
</owl:Class>

“This means that RDFS classes can be considered to be rather more than simple sets; they can
be thought of as ‘classifications’ or ‘concepts’ which have a robust notion of identity which goes
beyond a simple extensional correspondence.” (RDF Semantics [25]) However, this statement is not
applicable to OWL DL. Thus, the combination of ‘extensional’ RDF and ‘intensional’ OWL was a
basic question to be solved for the realization of OWL Full.

1.3 Non-Unique Name Assumption and Open World Assumption

OWL is equipped with two properties owl:sameAS and ovifedentFrom for individuals. It implies

that OWL assumes that an identical name stand for an identical objectffaredi names may or

may not stand for the same object in ontology. It is unusual convention for computer languages and
predicate calculus. Even if we have twdidrent names for individuals in OWL ontology, say, Bush

1.3. NON-UNIQUE NAME ASSUMPTION AND OPEN WORLD ASSUMPTION 5

and Obama, we cannot distinguish both if we have no other information to determine the same-
ness or dferentness. It is problematic in ontology description in OWL. In order to obtain useful
interpretations in OWL, we must describe the samedé&bsrentness information for individuals.

On the other hand, flerent URI references in RDF denotdtdrent nodes in RDF graph in
RDF semantics. However, there were no theory and no practical solutions how to superimpose the
non-Unigue Name Assumption (non-UNA) in OWL onto the RDF graph. It was also a question to
be solved for the realization of OWL Full.

In addition to the denotational ambiguity for individuals with respect to the non-UNA, we con-
sider Semantic Webs open in the sense that no one can exhaustively scrape all of the World Wide
Webs. It also amounts to a problematic situation. For example, although owl:someValuesFrom
restriction requires that the property value exists such that satisfies the restriction on the property
for individuals of a class restricted by owl:someValuesFrom, we cannot perform this requirement if
we adopt and interpret Open World Assumption (OWA) rigorously, because someone might have de-
fined it somewhere in the WWWs. If so, we cannot conclude the unsatisfiability for owl:someValuesFron
restriction. In fact, Description Logics, which assumes OWA, it is not thorough enough from the
viewpoint of semantics in Semantic Webs, and most reasoners for OWL DL seems to be loose of
owl:someValuesFrom on OWA

The class notion in OWL DL is the same as set in set theory. Then, the equivalence and disjoit-
ness on classes are rather simple in OWL semantics, in case that we can check ABox. However, in
case that we have an empty or poor ABox, it iffidult to conclude useful results from TBox, if
there is no explicit description with owl:disjointWith or owl:equivalentWith. Thus, OWL ontology
of TBox requires to write down that Artifact is disjoint with LivingThing, Aminal is disjoint with
Plant, Person is disjoint with Horse, Monkey is disjoint with Ape, Bacteria is disjoint with Virus,
etc. This amounts to huge number of lines about disjointness on classes in ontology destription.

In the RDF Semantics document [25], there is no description on class disjointness. Simply,
if two classes are not related in rdfs:subClassOf and also does not share any subclass, then both
can be captured disjoint. However, it does not negate the possibility of entering supgsutielsss
relationship or sharing a subclass. Obviously, the semantics in RDFS and OWL on class disjointness
are diferent. So, how to combine both of disjointness in RDFS and OWL was a question to be
solved.

3This question is discussed in Chapter 8.
“Actually, 58% is for class disjointness in lines of pizza.owl for only 23 pizza and 29 pizza toppings. The number of
lines for disjointness will explode with the number of classes.

6 CHAPTER 1. INTRODUCTION

1.4 Perspective of Semantic Web from Object Oriented Programming

1.4.1 UML and Reflection

The work of ontology building is similar to the work of class design in Object-Oriented Program-
ming (OOP). Therefore, it is natural to regard the domain modeling of OO#bjst-centered
modeling[6] in ontology development. Aiming the integration of OWL with OOP, which we ex-
pect to produce valid, sound, and reusable OOP software programs on the solid base of OWL, the
Software Engineering Task Force (SETH) W3C Semantic Web Best Practices and Deployment
Working Group had been started to promote synergies between the semantic web technology and
domains associated with software engineering [35]. Sharing the goal and taking over the work, Ob-
ject Management Group (OMG) recently standardized Ontology Definition Metamodel (ODM)[1]
of the method of software development based on RDF and OWL as the foundation of Model-Driven
Architecture (MDA) for Meta-Object Facility (MOF)

The main objective of such activities is to establish the ontology driven software engineer-
ing, in which ones expect benefits of unambiguous domain models, consistency checking facilities,
validated model sharing, and automatic code generation in software development. However, the
realization of the Ontology Driven Architecture (ODA) by SETF [73] requires to reconstruct the
framework of the object oriented modeling of software engineering based on Semantic Web, in
particular, OWL.

There were two ways to enable OOP upon OWL. One was to establish the class design by UML,
which is independent of specific languages, on the framework of OWL [36, 11, 14]. In this case, the
metamodeling structure of RDF(S) and OWL must be mapped onto the four layered architecture of
the OMG’s MOF [4]. “RDFS diters from many conventional ontology frameworks such as UML
which assume a more structured hierarchy of individuals, sets of individuals, etc., or which draw a
sharp distinction between data and meta-data. However, while RDFS does not assume the existence
of such structure, it does not prohibit it.” (OWL Semantics [25]) The other way was to enable OWL
metamodeling by a specific reflective computer language that allows ones meta-programming within
the language [39, 38, 40, 41, 42] instead of separated metamodeling layers with distinct language
systems like MOF. With respect to static Object-Oriented Programming Languages (OOPLs) such
as C# and Java, it isfliicult to change the semantics of languages to meet OWL and then inevitably
we cannot but choose the former approach. However, it was feasible that a dynamic and reflective

Shttp://www.w3.0org/2001/sw/BestPractices/SE/
Shttp://www.omg.org/mof/

1.4. PERSPECTIVE OF SEMANTIC WEB FROM OBJECT ORIENTED PROGRAMMING

language like Common Lisp Object System (CLOS) [69, 56], in which the CLOS native semantics
may be changed to OWL semantics using Meta-Object Protocol (MOP) [31], enables to realize
OWL within CLOS.

The OWL Full language was designed to inherit ontology metamodeling characteristics of
RDFS. The OWL Guide [65] states that the choice between OWL DL and OWL Full mainly de-
pends on the extent to which users require the metamodeling facilities of RDFS, i.e., defining a class
of classe<. However, in software engineering, the decision whether as a class or as an instance ones
capture an entity depends upon the characteristics of the application domain and modeler’s intention.
For example, a wine product such as Elyse Zinfandel may be an instance for wine expert systems,
but it should be a class in logistics software of wine wholesalers. Thus, an ontology modeling
language must allow ones to encode metamodeling ontology due to the requirement of ontology
reusability.

CLOS is a reflective OOPL that allows meta-programming in OOP by MOP. Therefore, we
expected that the integration of OWL with CLOS that provides metamodeling facilities produced
OWL Full capability with OOP metamodeling facilities. In CLOS, a class is not only an object
schema to define instances but also an object caflethobject CLOS programmers can encode
the metamodeling software with CLOS. Therefore, it was plausible that the performance of OWL
Full was obtained by using CLOS meta-programming facilities with SWCLOS.

1.4.2 Type Theory and Metamodeling Criteria

The class hierarchy of CLOS is integrated to Common Lisp type system. The class structure for
inheritance mechanism in CLOS is very similar to the notion of RDFS subsumption. Thus, mapping
from RDFS classes to CLOS classes is adopted in SWCLOS. Due to this straightforward mapping,
the subsumption computation of RDFS is automatically performed by the machinery of CLOS class
inheritance. The semantics of RDF types is also implemented as tailored type system of CLOS.
Furthermore, the relationship between rdfs:Resource and rdfs:Class is analogous to cl:standard-
object and cl:standard-class in CLOS. The semantics contained in this relationship is the same
between CLOS and RDFS. As a result, the realization of RDF(S) on top of CLOS was very easy.
On the other hand, such isomorphic mapping has amounted to make the metamodeling in RDF(S)
enlightened on CLOS metamodeling semantics and capability. Thus, the metamodeling criteria in
SWCLOS has been elaborated from the metamodeling semantics of CLOS.

"http://www.w3.org/TR/owl-guide#OwlVarieties

8 CHAPTER 1. INTRODUCTION

1.5 A Realistic Solution with Moderate Semantic Web Conditions

It seems that OWL has successfully established itselfdesfactostandard of ontology description
language not only in the Semantic Web community but also in diverse disciplines and engineering
fields, e.g., ontology, linguistics, modeling in software engineering, enterprise business patterns,
etc. We developed SWCLOS [41], and attempted to apply it in several applications. Then, we saw
how such language that is firmly underpinned by formal logic and denotational semantics is useful
to software engineering so as to assure formal descriptions of system specification of applications.

However, in the process of developing SWCLOS we encountered a few subtle and basic prob-
lems of semantic distinction between RDF and OWL. We found that full setting of non-UNA and
OWA for Semantic Webs amount to either very few viable interpretations with less common knowl-
edge otherwise excessive need of common knowledge for models on class disjointness and indi-
vidual differentiation in several Semantic Web applications. Hence, we refactored SWCLOS with
introducing new moderate settings basedcontext dependent role and disjointness of substance
classes auto-epistemic local closed world assumptidernary truth valueghat allow unknown
value, andJNA for atomic objects in non-UNA environme8uch experience of developing SWC-
LOS and the subsequent applications brought us to deeper understanding on the theory and relations
of RDF(SYOWL, logics, and Object-Oriented semantics.

Along with the difusion of OWL systems and the progress of OWL deployment, it is true that
many people have been noticed the limitation of OWL DL specification, and they are becoming
to suter from drawbacks of OWL DL in building ontology. The goal of this doctoral study is to
develop an OWL Full language system and recover the original intention for Semantic Webs. We
believe this goal is basically accomplished in SWCLOS, a CLOS-based object oriented program-
ming language for Semantic Webs.

1.6 Guide to Readers

It is convenient to suppose typical reader’s types in order to make a guidance. For readers who
matured at Semantic Web theory and practice, it is recommended to pick up Section 2.2 and Chapter
6 through 7. These parts are our original contribution to OWL Full theory. If someone who is
interested in set theories in ontology, which are described in Chapter 6, Appendix A and B will be

a good guide for progressing to this domain.

For readers as practitioner of system developers, itis recommended to directly jump into Chapter

1.6. GUIDE TO READERS 9

3, and pick up Section 2.3 and 2.4. However, the description assumes that readers have some
prerequisite knowledge about reflection and Meta-Object Protocol. Readers who are unfamiliar
with these notions might feel flliculties. However, readers who want to know the skill and practice
of reflection, these parts and source codes of SWCLOS are a plenty source of deserving to dig it.
Unfortunately, for readers as users who are seeking convenient tools for Semantic Webs, SWC-
LOS is not the case. Itis a programming language for Semantic Webs. Users are required to encode
their own program that they want to realize their application. This dissertation is also not the case.
However, for all who are widely interested in Semantic Webs, we believe this dissertation gives very
unique views in Semantic Web languages.

[This page intentionally left blank]

Chapter 2

Semantics of RDF, OWL, and CLOS

“Every scientific theory is a system of sentences which are accepted as true and
which may be called [...] asserted statements or, for short, simply stateméhifséd
Tarski, [71], p.3)

In this chapter, the semantics of RDF, RDFS, and OWL are studied based on Tarskian denota-
tional semantics. Firstly, an overview of RDF semantics in Tarskian denotational model theory are
given in the way described at the RDF documents of W3C Recommendation. Secondly, in order to
develop OWL Full theory, OWL semantics is also studied based on Tarskian denotational semantics
with the reference of the OWL specifications in the OWL Direct-Model Semantics. Thirdly, CLOS
semantics and its computational model are investigated, and the semantic gap between OWL and
object oriented languages are pointed out.

2.1 RDF Semantics

2.1.1 Denotational Semantics in RDF

The foundation of formal language is laid by Alfred Tarski [71] along with the concept of deno-
tational semantics. Drew McDermott unreservedly stressed the important role of the denotational
semantics in language specification on his paper titled “Tarskian Semantics, or No Notation Without
Denotation!” [48] In his paper, he described the basic feature of the denotational semantics as “The
method is called as ‘denotational’ because it specified the meanings of a notation in terms of what
its expressions denote.” In a typical predicate calculus, we have no problem to represent knowledge

11

12 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

so long as we treat only number theory and mathematical concepts. However, when we use sym-
bols such a$orse car, city, and so forth, in sentences of predicate calculus, we are required to
make the meanings of such symbols clear in virtue of predicate calculus. Undoubtedli§pthe e
to represent general knowledge by predicate calculus involved the problem that exceeded the pred-
icate calculus for mathematical propositions started by Gottlob Frege. In Tarskian Semantics, “we
assign to primitive symbols denotations which consist of objects, functions, or predicates. Then the
meaning of more complex expressions are defined by rules which define their meanings in terms of
the meanings of their parts.” (McDermott [48])

In Tarskian Semantics, a symbol (as atomic term) in statements is usually captured as it denotes
a factual or hypothesized thing in the world. It is the same usage in everyday languages. For
example, in the following sentenddew Yorkdenotes a city in U.S. named “New York”.

New York is a large city.

However, a symbol itself in statements must be distinguished from a thing denoted by the symbol in
order to deduce the truth value of asserted statements using rules for terms of symbol in statements.
Tarski [71] described the distinction through the usage of quotation for a term as shown below.

*well consists of four letters.
*Mary is a proper name.
“well” consists of four letters.
“Mary” is a proper name.

While the first two sentences do not convey the truth value, the last two sentences allow ones to
interpret them and bear the truth value. Here, quétesll” and quoted’Mary” do not denote
anything as object in the world, rather they represent the symbols themselves. In the formal semantic
theory of knowledge representation languages, the relations between symbols and their denotations
must be interpreted according to rules in a given formal way, as well as relations among denotations
in the world. RDF semantics [25] is also specified based on $adkianSemantics.

2.1.2 Model Theory and Interpretation

RDF semantics uses a basic technique catiedel theoryfor specifying the semantics of language.
Model theory is a formal semantic theory “that the language refers to a world”, in which “the mini-
mal conditions that a world must satisfy” is specified “in order to assign an appropriate meaning” of
symbols (RDF Semantics [25]). Such minimal conditions are caldantic conditiongGenerally

2.1. RDF SEMANTICS 13

speaking, for a set of given semantic conditions, there are a number of concrete possible worlds that
satisfy all semantic conditions and provide the truth value to statements. While the mapping from
symbols to their denotations is callederpretationmapping, a particular realization of the world in
model theory is also calleiditerpretation In other words, thénterpretationmapping allows us to
interpret statements and let them turn out a settefpretationsof the world in model theory. Thus,
interpretationmeans a minimal formal description of a world which is judfisient to establish the

truth value of any expression in logic.

2.1.3 Resources and Properties in RDF Universe

RDF semantics in the RDF document [25] of W3C specifies several precise mappings or interpreta-
tions touniverse of discoursdérom the description of which the syntax is specified in the document

of RDF syntax [34]. In RDF model theory, RDF does model the world as labeled directed graph. A
graph is syntactically expressed as a set of triples. A tKigle, 0) consists olsubject predicate
andobject Herein a subjecs, a predicatep, and an objecb corresponds to a start node, an arc,

and an end node of directed graph, respectively. A subject is expressed by ditR¢reference

or a blanknodelD A URI reference can be replaced by the correspon@Ngme if the URI has a
namespace. A blank node has no URI reference and may be designated by a blank nodelD instead
of a URI reference. A predicate is expressed by a URI reference. An object is expressed by either a
URI reference, a blank nodelD, ofliteral. A literal is aplane literal (a quoted string witlwithout
optional language tag), or an XML datatype expression cajlpdd literal A URI reference that

is assigned to an arc of labeled graph is cajpeoperty Every URI reference and every literal

in triples denote a thing in the universe of discourse, and then the denotation isreathedcein

the universe, butrésourceis treated here as synonymous with ‘entity’, i.e. as a generic term for
anything in the universe of discourse.” (RDF Semantics [25])

For a given set of triples, a set of rules and a set of consistent interpretation mappings from a
vocabulary to the universe of discourse determine the truth value of each triple and the whole set
of triples, namely, the RDF graph represented. An RDF graph may include blank nodes. An RDF
graph that does not include blank nodes is callgdoaind graph In the document of RDF seman-
tics [25], following interpretation and conditions are firstly addressed as RDF simple interpretation

1Tarski explained the concept ahiverse of discoursi his book [71] for a particular mathematical theory. If we
rephrase it by substituting the mathematical theory with RDF theory, it is said that “Instead of using the general logical
concept of individual within [RDF theory], it is sometimes more convenient to specify exactly what is considered an
individual thing within the framework of this theory; the class of all those things will then be denoted agaif by [
and will be called the universe of discourse of the theory.” The advanced discussion is held at Chapter 6. Note that the
universe of discourse is specified in set theorfRas= {x € a| x = x}. See also Appendix A.

14 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

and semantic conditions for ground graphs.

Hereafter an interpretation mapping is expressed by maphifidpus, a resource that is denoted
by a URI reference in interpretation? is expressed aB(x) or x’ .2 The signature of interpretation
7 in RDF is a tuple o RZ, P, EXT?,S?, LY, LV). Each element in this tuple is described as
follows.

RDF simple interpretation
RDF simple interpretation of vocabulafy is,
1. A non-empty seR’ of entities, called the domain or universeiof
2. AsetP?, called the set of properties &t
3. A mappingEXT? from PZ into the powerset oR’ x R’, i.e., a set of sets of paits’, y’)

with x/ andy’ in R?.

vplaxkayl[pf e PPax eRIAYy e R o ((X,y') e A|EXT(p)) = p(A)}]

4. A mappingS? from URI references i into R U P,
5. A mappingL’ from typed literals itV into R”.

6. A distinguished subsétV of R?, called the set of literal values, which contains all the plain
literals inV.

Here,RZ, a set of all entities in discussion, is called the universe of discoErXé‘?(p[) is called
property extensioof p?. A property can make a set of the binary relation on the property between
entities in the universe of discourse.

Semantic conditions for ground graph

A ground RDF graph inf denotes a truth value and it is computed by recursively applying the
following conditions for ground triples.

2Due to the explicit discrimination between a URI reference and its denotation in this dissertation, such an expres-
sion as variable ¥’ expresses a URI reference, ankf ™ represents a resource in the universe of discourse: a URI
reference or QName like “rdf:Property” for “htjpwww.w3.0rg199902/22-rdf-syntax-ns#Property” stands for the URI
reference itself, and the denotation through an interpretafimrepresented by the expression likié : Property or
ex:New York'.

2.1. RDF SEMANTICS 15

{“aad €V |“aad is a plane literal without language tagp 7 (“aad) = aaa
{" aad @ttt € V | “aad' @ttt is a plane literal with language tags 7 (“aad @ttt) = (aaa ttt)
{ eeV|eisatyped literal }= 7(e) = L’ (e)
{ ee V|eisaURIreference » 7(e) = S’ (e)
{E=(spoy|seV,peV,0eV}
= I(E) =true, if p’ € PL A (s, 0f)y e EXTY(p?), otherwisel (E) = false
{ E| Eis aground RDF graph }
= I(E) = false, ifAE"*{ E'Y =false| E’/ € E’ }, otherwiseZ(E) = true.

The last condition means the truth value of an RDF graph is a conjunction of truth values of triples of
the RDF graph. The condition before the last one simply claims that every triple within vocabulary
¥ may make a property extension on a propertPin

Semantic conditions for blank nodes

SupposingA is an interpretation mapping ®’ of 7 from blank nodes that appear in triples for an
RDF graphE, additional semantic conditions for unground graph is described as follows.

{ e| eisablank node \ A(e) = [1 + A(e) = A(e)
{ E| Eisan RDF graph}
= I(E) =true, if 3A'{[T + A')(E) | EL € E? } = true, otherwise (E) = false

The first condition claims that the interpretation mappifigor a blank node does not change the
interpretation for ground graph. “It simply extends the rules for defining denotations under an
interpretation, so that the same interpretation that provides a truth-value for ground graphs also as-
signs truth-values to graphs with blank nodes, even though it provides no denotation for the blank
nodes themselves.” (RDF Semantics [25]) The second condition simply requires that such an in-
terpretation exists consistently for a subset of triples that include blank nodes. Thus, the extended
interpretation ' + AJ supports the instance lemma, that is, a graph is entailed by any of its instances
(note that an instance of graghis obtained from a grap® by replacing some or all of the blank
nodes inG with non-blank nodes).

The role of blank node is important to make a scope of variable into ontology and to make
individuals that hold the same properties and values. For example, the statement of triplets of cat

16 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

that are born by an identical parent cat is described as foffows.

<ex:aParentCat> rdf:type <ex:Cat> .
<ex:aParentCat> <ex:hasChild> _:b001 .
:b001 rdf:type rdf:Bag .

:b001 rdf:_1 _:c001 .

:b®01 rdf:_2 _:c002 .

_:b001 rdf:_3 _:c003 .
_:c001 rdf:type <ex:Cat> .
_:c001 rdf:type <ex:Child> .
:c001 <ex:look> <ex:Cute> .
:c002 rdf:type <ex:Cat> .
:c002 rdf:type <ex:Child> .
:c002 <ex:look> <ex:Cute> .
_:c003 rdf:type <ex:Cat> .
:c003 rdf:type <ex:Child> .
:c003 <ex:look> <ex:Cute> .

In this case, three blank nodes are denoted by three blank nodelD_frod01, _: c062, and
_:¢c003, while every blank nodes has the same structure as sub§raph.

For another example on blank nodes, suppose that we have everyday temperatures and sum-
marize them later, it is convenient to wrap up everyday temperature using blank nodes in order to
make a summary, otherwise we will be involved in troublesome situation such that we must totally
reorganize ontologies.

Supposing in some day we have,

_:t010 rdf:type <ex:temperature> .

_:t010 <ex:date> "2011-04-01"+Axsd:date .
_:t010 <ex:value> _:t011 .

_:t011 rdf:value "22"AAxsd:integer .
_:1011 <ex:unit> <ex:Centigrade> .

and in another day we have similarly,

:t010 rdf:type <ex:temperature> .
_:1t010 <ex:date> "2011-04-02"+Axsd:date .
_:1010 <ex:value> _:t011 .

_:t011 rdf:value "23"AAxsd:integer .
_:1011 <ex:unit> <ex:Centigrade> .

3This syntax is relaxed N-Triples, which is used in [25].
4This simple example, in reality, contains the counting problem in ontology. It is clear that the counting problem is
beyond the scope of Description Logics and OWL DL, although they provide a devicedating quantifier

2.1. RDF SEMANTICS 17

Then, we can merge them easily in the way suggested in the document of RDF Semantics [25],

11010
11010
11010
11011
11011
11020
11020
11020
11021
11021

rdf:
<ex
<ex:
rdf:
<ex:
rdf:
<ex:
<ex:
rdf:
<ex:

type <ex:temperature> .

:date> "2011-04-01"AAxsd:date .

value> _:t011 .

value "22"AAxsd:integer .
unit> <ex:Centigrade> .

type <ex:temperature> .

date> "2011-04-02"++xsd:date .
value> _:t021 .

value "23"AAxsd:integer .
unit> <ex:Centigrade> .

In this case, each of blank nodest®10 and_: t820 makes a boundary of scoping date and

temperature, so that the consistency of date and temperature is preserved in the simple way of

merging graphs.

Rdf-interpretation for rdf-vocabulary

In addition to the RDF simple interpretation and the extended interpretation for blank node de-

scribed above, rdf-interpretation provides basic meanings to built-in rdf-vocabulary, which contains

rdf:type, rdf:Property, rdf:XMLLiteral, etc., all of them have the prefix ‘rdf’. Especially among

them, the set of properties and the notion of property that is previously introduced by the RDF simple

interpretation is redefined in RDF semantic conditions using two terminologies in rdf-vocabulary,

rdf:Property and rdf:type.

Definition of property (a part of RDF semantic conditions)

If an entity is a member of a set of propertiesigfthen the entity itself makes a pair wittf :

Property , and then the pair is a member of property extensionlbftype’, and vice versa:

X! e Pl o (X, rdf:Property) e EXT (rdf : typée) (2.1)

This definition also entails that any in P/ andrdf : Property’ belong toR? along with the RDF
simple interpretation.

Proof. From the RDF simple interpretation 8, rdf : Property) is a member of a power set of
R x RY. Then,(x’, rdf : Property’) is a member oR? x RZ. Then,x andrdf : Property is a

member ofR’.

18 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

Therefore, it is possible to state thatas predicate) op (as property resource) & For example,
it can be stated such &slfs: comment, “A description of the subject resource? EXT? (rdfs:
comment), and it could be expressed in logical expression of predicate calculus as follows,

rdfs: commentrdfs: comment“A description of the subject resource.”).

Obviously, such self-referential statements are problematic in first order logic and Description Log-
ics. Note thatP? ¢ R? in RDF, butP? andR? are disjoint in OWL DL.

2.1.4 Semantics of Class in RDF Schema

RDF Schema (RDFS) is a semantic extension of RDF so as to provide mechanisms for describing
ontology using the notion aflassandinstance In RDFS, “Resources may be divided into groups
called classes. The members of a class are known as instances of the class. [...] The rdf:type
property may be used to state that a resource is an instance of a class.” (RDF Schema [7]) A set of
instances of a particular class is calledass extensioof the class in RDF semantics.

There are two serious problems on the class notion and th¢iokiaace relationship. Firstly,
although the same terminology of ‘class’ is used in sevetf@dint disciplines, all the semantics
are diferent each other among set theory, Semantic Web, and object oriented languages. In RDFS,
a class is distinguished from a set of instances, while sets of resources are associated with classes in
the universe of discourse. “Two classes may have the same set of instances Higrbetdilasses.”
(RDF Schema [7]) So, the class in RDFS enables ones to capfieeedi aspects of an identical
set of objects in the world and can categorize them in ontology. However, in OWL, the class is
identical to a set. Meanwhile, a class (called proper class) in set theory is not a set. Thus, the
concept of class is a confounding and disputable issue among those diséipioesover, non-
Unique Name Assumption for individuals in OWL gives impetus to the confusion on the notion of
the sameness of individuéls

Secondly, in RDFS, “a class may be a member of its own class extension and may be an instance
of itself.” (RDF Schema [7]), while Description Logics and OWL DL cannot accept suember-
ship loopof class and instance, because it goes beyond the scope of first order logic and Description
Logics! In this subsection on RDFS, the concept of class and instance in RDFS is formally intro-
duced, precisely on concepts for termmembershipmembership logpandsubsumption

5See also Chapter 6.

6Some part of this issue is discussed at Section 6.4.

"What is worse, there is a misunderstanding in a part of Semantic Web community about ‘comprehension principle’
and ‘Russell’'s paradox’. The discussion is held at Chapter 6.

2.1. RDF SEMANTICS 19

Class and instance relation in RDFS semantic conditions

If an entity is a member of class extension of another entity, then a pair of both becomes a member
of property extension afif :type’, and vice versa.

xl e CEXT () o X,y e EXT (rdf :typé) (2.2)

Here, CEXT is a mapping off from C, a set of all classes in the universe, to a set of subsets of
entities in the univers®’. CEXT (y!) represents the class extensiorybfcalledinstancesf y..
We cally’ aclassin this context.

After obtaining such concept of class and instance, it is obvious that every prop&rhytimns
out an instance aflf : Property .

P/ = CEXT (rdf : Property). (2.3)

Proof. Substitutingy’ with rdf : Property’ in (2.2) yields the right-hand side of (2.1). Therefore,
for everyx that satisfies (2.1) and (2.2), (2.3) holds.

Note thatrdf :type’ can be also redefined as an instanceif Property’ .
(rdf :typé, rdf : Property) € EXT? (rdf :typée) (2.4)

This definition goes again beyond the scope of first order logic and Description Logics. The first
occurrence ofdf :typée in (2.4) is a node in RDF graph, and the second occurrence stands for an
edge nameddf :type

Universal class

Furthermore, using new terminology in rdfs-vocabulary we can name several basic classes in the
universe of discourse. Firstly, the univerBé itself is named as the class extensionrdfs :
Resourcé.

R = CEXT (rdfs:Resourcé) (2.5)

20 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

This entity rdfs:Resource is called the universal class, to which every entities in the universe is
classified and of which every class in the universe is a subglass.

The combination of RDF semantic condition (2.2) and RDF simple interpretation entails that
not only every member afifs: Resourcé is an entity as a resource but alsifis: Resourcé itself
is in the universe of discourse.

rdfs:Resourcé e R! = CEXT (rdfs: Resourcé) (2.6)

Proof. By substitutingy” in (2.2) with rdfs : Resourcé, we obtain(x?, rdfs : Resourcé) e
EXT (rdf : typé’). Then,rdfs: Resourcé belong to the universB?, becauséx?, rdfs: Resourcé)

are members of a powersetRf x R? by RDF simple interpretation 3, then they are also members
of a set ofRY x RL.

Note that (2.6) represents the membership loop of rdfs:Resource, and it goes beyond the scope of
first order predicate calculus, Description Logics and OWL DL.

Literal class

The resources for literdlV is named as the class extensiondft: Literal” .
LV = CEXT (rdfs:Literal’) (2.7)
As well as rdfs:Resource, rdfs:Literal also belongs to the universe of discourse.

rdfs: Litera/ e R’ (2.8)

Universal metaclass

With respect taCEXT? we consideredC?, which is the set of all classes in an interpretatiin
Lastly for naming several basic classes in the universe, the universal metaclass is introduced by
naming the set of all classes defined in the universe, using new terminology ‘rdfs:Class’.

c! = CEXT(rdfs:Clasd) (2.9)

8Pat Hayes explained in his emaittp://lists.w3.org/Archives/Public/www-tag/2007Sep/0168.html,
“The class of which all classes are subclasses is the universal class, which contains everything. Also called the 'universe’,
also sometimes called the 'domain of discourse’, which draws attention to the fact that 'anything’ here means anything
that can be referred to or talked about, whether it is real or imaginary: any possible topic of any kind of meaningful
discourse.”

2.1. RDF SEMANTICS 21

As well asP? andLV do, C? also turns out a subset of the resource in the universe. Namely,
cl c R (2.10)

Simultaneously, as well asf : Property’ andrdfs: Literal? do, rdfs: Clasd itself turns out a
resource in the universe. Namely,

rdfs:Clasd e R’. (2.11)

In addition,rdfs: Clas¥ is also inCZ, becausedfs: Clasd € RY andC? is the set of all classes
in the universe.

rdfs:Clas§ e C! = CEXT (rdfs:Clas¥). (2.12)

Note that the universal class and the universal metaclass has the membership loop, (2.6) and
(2.12), respectively. These membership loop caused strong alienation from RDF and RDFS se-
mantic theory in a part of Semantic Web community, although Patrick Hayes and Brian McBride
preventively stated in the document of RDF Semantics [25] as “In particular, this use of a class
extension mapping allows classes to contain themselves. For example, it is quite OK for (the exten-
sion of) a ‘universal’ class to contain the class itself as a member, a convention that is often adopted
at the top of a classification hierarchy.” Herdfs : Resourcé sits at the top otlass hierarchy
andrdfs: Clasd exists at the top oflass orderd in the universe. Chapter 6 discusses OWL Full
theory and formally deduces the membership loop again, based on only RDF and RDFS semantic
conditions.

Superclass and subclass relation in RDFS semantic conditions

As described above, a class extension is a set of a subset of entities in the universe. This fact leads
us the notion of super-sub relationship of classes associated to the notion of super set and sub set in
set theory. The class super-sub relationship is specified with terminology ‘rdfs:subClassOf’ as the
inclusiveness of the class extensions of classes as follows. This concept of super-sub relationship of
classes is calledubsumption

%In this dissertation, “class hierarchy” is used to designate the super-sub relationship in classificattosuanption
On the other hand, “class orders” is used to designate the class-metaclass relationship after Russell’s type theory.

22 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

(Subsumption) If a pair of two entities is a member of property extensiomdfsifsubClassOf,
then the both entities are instancegdft:Clasg and the class extension of the predecessor in the
pair is included by the class extension of the successor.

(XL, y"y € EXT (rdfs: subClassOf) = x e Cf Ay e Cf ACEXT (X)) c CEXT (YY) (2.13)

This condition may be callesreak subsumptigiecause it is noif and only if construct®.
The reflection and transitivity on rdfs:subClassOf relation is trivially true from the notion of sub
set on the class extension.

(Reflection) rdfs:subClassOf is self-reflective.
xl e ¢! = (X!, xIy e EXTY (rdfs: subClassOf) (2.14)
(Transitivity) rdfs:subClassOf is transitive.

2, y"y € EXT (rdfs: subClassOf) A (y?, Z') € EXT? (rdfs: subClassOf)
= (x},Z'y e EXT(rdfs:subClassOf) (2.15)

In RDF semantics, every class in the universe is a subclass of rdfs:Resource.
(Top) rdfs:Resource is the top class of class hierarchy.

x! e ¢! = (X, rdfs: Resourcé) € EXT (rdfs: subClassOf) (2.16)

These rdf:type and rdfs:subClassOf relations between rdfs:Resource and rdfs:Class is depicted
in Fig. 2.1together with all other entities in the universe.

Domain and range constraints for property

The RDF class-instance system may appear to be similar to type systems of object-oriented pro-
gramming languages. However, RDF language is, precisely, not object-oriented, rather property-
oriented. “RDF difers from many such systems in that instead of defining a class in terms of the
properties its instances may have, the RDF vocabulary description language describes properties
in terms of the classes of resource to which they apply. This is the role of the domain and range

00ppositely, the subsumption rule with and only if construct may be calledtrong subsumptionin OWL DL
semantics, the strong subsumption is used. See Section 2.2 for the detail.

2.1. RDF SEMANTICS 23

-

\‘:' <«—— rdfs:subClassOf
- rdfs subPropenyOf

Q class

JPPtag: z instance

’/

/ ﬂ
-
.
s
3
A
.

\

'

' ~x.
! [l >~
] ' -

rdfs: dom,am w rdfs:label v rdf object ‘~
rdfs subClassOf rdfs subPropertyOf - w ‘

Fig. 2.1: RDF Resources and their Relations.

mechanisms described in this specification.” (RDFSchema [7]) Using this RDF approach, it is easy
for ones to subsequently define additional properties onto an ontology that is made by other people.
It can be done without the need to redefine the original description of these classes. “One benefit
of the RDF property-centric approach is that it allows anyone to extend the description of existing
resources”. (RDFSchema [7])

As described above, a property is a resource in the universe. Thus, a property may have its own
properties, namely domain and range constraints in the case of RDFS.

(Domain) A subject in triple must satisfy the class restriction that is defined as domain constraint
on the property.

(XL, y'y e EXT (rdfs:domairf) A (u? V') € EXT (X)) = uf € EXT! (yY) (2.17)
(Range) An object in triple must satisfy the class restriction that is defined as range constraint on
the property.

(XE,yPy e EXT (rdfs:rangé) A (uf,vh) € EXTE (X)) = V! € EXTE (YY) (2.18)

24 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

Superproperty and subproperty in RDFS

As the inclusiveness of the class extension settles the notion of super-sub relationship on class, the
inclusiveness of the property extension settles the notion of super-sub relationship on property. This
super-sub property supports the inheritance of domain and range attributes on property.

(PropSubsumption)
(XL, y"y e EXT (rdfs: subPropertyOf) = x? € PZ Ay € P A EXT (XY) c EXT () (2.19)
(PropReflection) rdfs:subPropertyOf is self-reflexive.
x! e PY = (X!, x!'y e EXT(rdfs: subPropertyOf) (2.20)
(PropTransitive) rdfs:subPropertyOf is transitive.

(XL, y"y e EXT (rdfs: subPropertyOf) A (y?, 2’y e EXT? (rdfs: subPropertyOf)
= (x},Z'y € EXT(rdfs: subPropertyOf) (2.21)

RDF Graph and Monotonicity

In semantic theory, it is critical to determine whether or not an additional piece of knowledge
changes the previous interpretation. In order to know meanings of a set of pieces of knowledge,
we must know all pieces of knowledge including what is implicitly contained. With a given set
of triples and its interpretation, if a new additional triple within the given vocabulary and semantic
conditions does not change the interpretation, it can be phrased ‘the given set of triples and its in-
terpretationentail the new triple’, and the new triple is called antailment For example, in the
case that we have a given triglg p, o), even if a triple(s, rdf :type rdfs: Resourcg which is not
explicitly stated so far, is added, it does not change the previous interpretation, because every entity
in the universe is a member of clasis: Resource Adding new triples within the given vocabulary
and semantic conditions, however, can make an interpretation more complex, more precise, and
richer, with preserving the previous interpretation holds. For example, addingf : type o)
such ag(o’, rdfs: subClassOf o) for (s, p, o) makes the previous interpretation more detailed
without contradicting the interpretation held before.

Furthermore, adding new tripes with a new vocabulary and new semantic conditions can extend

2.2. OWL SEMANTICS 25

the interpretation with preserving the previous interpretation holds.

“Given a set of RDF graphs, there are various ways in which one can ‘add’ infor-
mation to it. Any of the graphs may have some triples added to it; the set of graphs
may be extended by extra graphs; or the vocabulary of the graph may be interpreted
relative to a stronger notion of vocabulary entailment, i.e. with a larger set of semantic
conditions understood to be imposed on the interpretations. All of these can be thought
of as an addition of information, and may make more entailments hold than held before
the change. All of these additions are monotonic, in the sense that entailments which
hold before the addition of information, also hold after it.” (RDF Semantics [25])

In Semantic Web theory, knowledge must be formalized to meet the requirement of mono-
tonicity of knowledge. Under thimmonotonicity principlethe primitive world that has less triples
is extended more precisely and richer along with additional triples/wiittout new vocabulary
and extended interpretation rules. Thus, rdf-vocabulary and rdf-interpretation are superimposed
to the simple interpretation, and rdfs-vocabulary and rdfs-interpretation are superimposed to rdf-
vocabulary and rdf-interpretation. As well, owl-vocabulary and owl-interpretation must be super-
imposed to rdfs-vocabulary and rdfs-interpretation.

Entailment rules in RDF(S)

As shown in several semantic conditions so far, there are many entailment rules in RDF and RDFS.
All of them are summarized at Table 2.1 through Table 2.5, which are taken from RDF Seman-
tics [25]. Note that luu aaa xxx” in tables represents a triple, which is previously expressed
(uuu aaa xxx or (uulf, xxx') e EXT?(aaa’). Whereas these rules might look to be trivially
true, but it is, in reality, not trivial. It is a sort afford to the wise We can use these rules in many
ways. For examplerdf4a. rdf4b, andrdfl allow us to defineuuu’ andvwW as a resource and

aaa’ as a property. Such entailments are utilized in SWCLOS for forward reference of ontology
along with the monotonicity principle. See Chapter 3.

2.2 OWL Semantics

OWL can facilitate more precise ontology description than RDFS. The OWL specifications contain
many features and capabilities that are useful to describe Web ontologies. For example, using OWL,
ontologists can explicitly describe more precise and complex concepts on equivalence, disjointness,

26

CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

Table 2.1: Simple Entailment Rules in RDF

Rule name| If E contains | then add note
sel uuu aaa xxx | uuuaaa_:nnn. | where _nnnidentifies a blank node allocated to
xxxby rule sel or se2.
se2 uuu aaa Xxxx | _:nnnaaa xxx | where _nnn identifies blank node allocated tp
uuuby rule sel or se2.

Table 2.2: Literal generalization rule

Rule name| If E contains| then add note

Ig uuu aaalll. | uuuaaa_:nnn. | where _nnnidentifies a blank node allocated o
the literallll by this rule.

Table 2.3: Literal instantiation rule

Rule name| If E contains then add note

gl uuu aaa_:nnn. | uuu aaalll. | where _nnnidentifies a blank node allocated to
the literallll by rule Ig.

Table 2.4: RDF entailment rules

Rule name| If E contains | then add note
rdfl uuu aaayyy | aaardf:type rdf:Property .
rdf2 uuu aaa lll. _nnnrdf:type rdf:XMLLiteral . | where _nnn identifies a blank
node allocated to lll by rule Ig.

2.2. OWL SEMANTICS

Table 2.5: RDFS entailment rules

27

Rule | If E contains then add note
wherelll is a plane literal o Itag.
rdfsl | uuu aaalll. _:nnnrdf:type rdfs:Literal . where _nnnidentifies a blank node
allocated to lll by rule Ig.
rdfs2 | aaardfs:domainxxx. uuurdf:type xxx. domain constraint
uuu aaa yyy
rdfs3 | aaardfs:rangexxx. vvvrdfitype xxx. range constraint
uuu aaa vwv
rdfsda | uuu aaa xxx uuurdf:type rdfs:Resource. resource membership
rdfsdb | uuu aaa vvv vvvrdf:type rdfs:Resource. resource membership
rdfs5 | uuurdfs:subPropertyOfvv. uuurdfs:subPropertyOfxx. transitivity of properties
vvvrdfs:subPropertyOkxx.
rdfsé | uuurdf:type rdf:Property . uuurdfs:subPropertyOfiuu. reflection of properties
rdfs7 | aaardfs:subPropertyOlfbb. uuu bbb yyy super property
uuu aaa yyy
rdfs8 | uuurdf:type rdfs:Class . uuurdfs:subClassOf rdfs:Resource.top class
rdfs9 | uuurdfs:subClassOkxx. vvvrdf:itype xxx. subsumption
vvvrdf:typeuuu.
rdfs10 | uuurdf:type rdfs:Class . uuurdfs:subClassOfiuu. reflection of classes
rdfsll | uuurdfs:subClassOfvv. uuurdfs:subClassOfxx. transitivity of classes
vvvrdfs:subClassORxx.
rdfs12 | uuurdfitype uuurdfs:subPropertyOf ordinal property
rdfs:ContainerMembershipProperty| rdfs:member .
rdfs13 | uuurdf:type rdfs:Datatype . uuurdfs:subClassOf rdfs:Literal . | top datatype

28 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

intersection, and union of concepts. However, W3C specified OWL semantics in two ways, i.e.,
Direct Model-Theoretic Semantics [59] and RDF-Compatible Model-Theoretic Semantics [58], and
then it is stated that Direct Model-Theoretic Semantics takes precedence over RDF-Compatible
Model-Theoretic Semantics, if the description of specifications contains contradictions.

In this section, for the sake of the unification of RDF semantics and OWL semantics, OWL
semantics is described according to Tarskian denotational model semantics as well as RDF Se-
mantics [25], while the description in Direct Model-Theoretic Semantics and other OWL docu-
ments [65, 49] are referred to.

2.2.1 OWL in Denotational Semantics
OWL vocabulary

In the Direct Model-Theoretic Semantics [59], OWL vocabuldryconsists of vocabularies for
literals and for eight kinds of URI references as follows:

V=VYLUVcUVpUVUVoUVppUVipUVapUVop

V. : literals i.e, plane literals and typed literals
Ve : class nameseg., owl:Thing, owl:Nothing etc
Vp : datatype names.g., xsd:string xsd:integer etc
YV, : individual names
Vo : ontology names
Vpp : datavalued property namesg., vin:yearValue
Vip : individual property namese.g., owl:sameAs etc
“Vap : annotation property namese.g., owl:versioninfq rdfs:labe) rdfs:commentetc

YVop : ontology property names

Here, V¢ andVp are disjoint, andVpp, Vip, Vap, andVop are pairwise disjoint.

Note that in OWL DL, V¢ andV, are disjoint, but OWL Full does not distinguish them.

2.2. OWL SEMANTICS 29

OWL interpretation
The denotational interpretation for OWL can be formalized as folléws

1. A non-empty seOT of entities such thadT? c R’, called OWL universe of .
OT! is disjoint fromLV.

2. A setOPZ such thaDP] c P/, called a set of denotations of datatype properties.
3. AsetOP! such thaDP/ c P7, called a set of denotations of individual properties.
4. A setOP4 such thaDP4 c P, called a set of denotations of annotation properties.
5 A setOPé such tha’OPé c PZ, called a set of denotations of ontology properties.
6. A mappingEXT? from OPY into the powerset 0T x LV.
7. A mappingEXT? from OP/ into the powerset 0®T? x OTZ.
8. A mappingEXT’ from OP4 into the powerset oR’ x R”.
9. A mappingEXT? from OPJ into the powerset 0®” x O7.

10. A mappingL? from typed literals iy’ into LV.

11. A mappingS? from URI references i) into OTY.

Note that the semantics of property extensEXT’ in OWL is the same as one in RDF (2.1).
Namely, the definitions such th&@P] c P/, OPf c P/, OP4 c P/, andOPL c P’ enable the
interpretation coincident with RDF semantics along with the defini®dd c R’.

Proof. With applying (2.1) toOP,Z andO Pé, RDF simple interpretation 3 and OWL interpretation
7 and 9 yieldOT? ¢ Rf andO! c R?.

Class and instance relation in OWL

The semantics of membership in OWL is the same as RDF, namely, the definition (2.2) also holds
in OWL. Thus, the definition®T? ¢ R’ implies that every entity in OWL is also a resource of the
universe of discourse in RDF. Hereafter, let us €¥ OWL universe, andR! RDF universe. The

OWL universe is a subset of RDF universe.

1 These descriptions are derived as they simulate the way of formalization in RDF Semantics. However, the descrip-
tions are almost same as the RDF-Compatible Model-Theoretic Semantics [58] but extended to contain the description of
RDF universe.

30 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

Strong subsumption in OWL

While the super-sub relationship in RDF classasésk subsumptiocondition (2.13), that in OWL
universe isstrong subsumptiogondition. (OWL Semantics [58], OWL2 [9] Table 5.8) See the
following formula.

(X, y"y e EXT (rdfs: subClassOf)
o xl eoC Ay e OCT ACEXT (X)) cCEXT (YY) (2.22)

WhereOC s a set of all classes in OWL universe. This formula means in the direction of the right
hand side to the left hand side; if we find that a class exter@BX T (C’) of classC’ is a subset

of a class extensio@ EXT (DY) of classD? whereC? is not related td>? on rdfs:subClassOf,

C! is not a subclass dd’ in RDF semantics but it is so in OWL semantics. In other words, if two
classes are in super-sub relationship of classes of RDF semantics, then it is so in OWL semantics
(from the left hand side to the right hand side), but not vice v&fsa.

This strong condition allows ones to decide that a class that has a class extension as a subset
included another set is a subclass of another class that has a class extension as its superset, even
though both classes are not connected in RDF graph. It also implies that the class notion in OWL is
regarded the same as set. The s(gudrset relationship in set theory coincides with s{gudrclass
relationship of OWL classes. Therefore, the intensional definition for OWL classes substantially
coincides with the extensional definition of classes like set tHéory

Top class and bottom class in OWL

The OWL universéDT? is a powerset that contains all individuals in OWL, and then it is named as
an extension of a clagsvl: Thing’ . On the other hand, we may have a bottom class as an empty set
in the OWL universe, and it is named as an extensiomvﬂfNothingI.

1. CEXT (owl: Thing’) = OT?

2. CEXT (owl: Nothind’) = 0, empty set

12SWCLOS, which is object oriented OWL processor in OWL Full level, adopts the weak subsumption not only in
RDF universe but also in OWL universe, whereas the complete relationshiglétionship) for owl:intersectionOf,
owl:unionOf, and owl:oneOf is adopted and computedsinsubsumed-p in OWL universe.

13This condition is too strong for object-oriented languages that are coupled with OWL semantics. In this semantics,
we cannot distinguish two distinct sets which contains twin objects that hold completely the same slot values. Therefore,
the weak condition for subsumption on rdfs:subClassOf is preserved in SWCLOS.

2.2. OWL SEMANTICS 31

Obviously by set theory, owl:Thing is a superclass of any other class, and owl:Nothing is a subclass
of any other classes in OWL universe.
Class extension in OWL

Supposing a collection of all classes in OWL universe, nar@ly, and name it as an class exten-

sion ofowl: Clasg . Note that the OWL universe is a subset of the RDF unive®dé, ¢ R?, and

the semantics of rdf:type and the membership is the same between RDF and OWL, then it is derived
that every class in OWL universe belongs to RDF universe, na@éefyc C’.

Specialized interpretation for OWL universe

The followings are a specialized version of RDF simple interpretation for OWL universe.
1. A non-empty seDC’ such thatDC! c C/, called a set of denotations of OWL classes.
2. A mappingCEXT from OC! into the powerset 0O T,
3. A mappingCEXT from OD? into the powerset of V.
4. A mappingS? from URI references ifVc into OC’.
5. A mappingS? from URI references ifV/p into OD’.

6. CEXT (owl:Clas¥) = OC’

Class property in OWL

It might sound strange but any property extension of classes for class vocabigasynot defined

in the Direct Model-Theoretic Semantics [59]. The reason is that the relationship among classes
falls into a category of higher order logic. The Direct Model-Theoretic Semantics is for OWL
DL, which is based on Description Logic, a subset of first order logic. Therefore, the extension of
classes for class vocabulary goes beyond the scope of first order logic and DL. We introduce here a
vocabulary for class propert¥’cp and the notion of property extension for clas@d?[t as well as

the vocabulary for individual property;p and the property extension for individuallsF’lf14

14 case that we consider owl:intersectionOf or owl:unionOf are wordgdp, the definition ofOPé does not match
the discussion in the RDF-Compatible Model-Theoretic Semantics [58], because those class properties take a sequence
of classes and every range of them is rdf:List. However, rdf:List as construct of sequence of classes is problematic so
that it makes it easy to fall into a trap of misunderstanding ‘comprehension principle’. In this section, we stay clear of
disputes on rdf:List for sequences of classes. See the detailed discussion in Chapter 6.

32 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

1. A setOPL such thaOPL c P..
2. A mappingEXT? from OP{ into the powerset 0®C! x OC’.

Apart from the restriction that arises from first order logic, the relationship around individuals
and classes in OWL universe are emerging in homo-morphological image between the interpretation
for individuals and the interpretation for classes in the front of our eyes. The following conditions
are the result of rearrangement of those conditions mentioned above.

For individuals;

1. A non-empty seOT? of entities such thadT c R’.
2. AsetOP! such thaOP! c P.
3. A mappingEXT? from OP/ into the powerset o®T x OT-.
4. A mappingS? from URI references irV; into OTZ.
For classes;
1. A non-empty seOC! such thalOC’ c C’.
2. AsetOPL such thaOPL c P/,
3. A mappingEXT? from OP{ into the powerset 0®C’ x OC’.
4. A mappingS’ from URI references if/c into OC’.

These homo-morphological semantic conditions between individuals and classes ensure a con-
text dependent subsumption algorithm. Namely, the same algorithm does work well for both in-
dividuals (and to their classes) and classes (and to their metaclasses). Thus, it paabiegin
context and the object oriented method programming, of which program code will work for indi-
viduals with their classes and classes with their metaclasses.

Equivalent OWL classes

In OWL, the meaning of the property extension of owl:equivalentClass is that the two classes de-
scribed have exactly the same class extension. See the following definition.

(XE, y'y e EXTY (owl: equivalentClas®) <
x! e OCT Ayf € OCT A CEXT (XF) = CEXT (y))

2.2. OWL SEMANTICS 33

Complement of concept

Among OWL properties, three properties, i.e., owl:complementOf, owl:intersectionOf, and owl:unionOf
make a complete relation between the left-hand side and the right-hand side without using owl:equivaler
The description with owl:complementOf states that a class extension of one class is complement of
another in OWL universe.

(xf, y'y e EXT? (owl: complementOf) &
x! e OC Ayf € OC! A CEXT (Xf) = OT \ CEXT (/)

Intersection and union of concepts

Both owl:intersectionOf and owl:unionOf take a collection of classes as their object in triple, and
owl:intersectionOf makes a subconcept and owl:unionOf makes superconcept of collection mem-
bers.

<yl ya, .., Vi) € EXTY (owl:intersectionOf)
x'eoc! /\ yleOC ACEXT(x)= () CEXT(y)) (2.23)
i=1,...,n i=1,...,n
X yL, v, oo, YEYY € EXTE (owl: unionOF) &
x'eoc /\ yl eOoC’ ACEXT(X)= | | CEXT(y)

i=1,...,n i=1,...,n

(2.24)

Note that this entailment rules are modified from RDF and OWL semantics written in W3C rec-
ommendations. The domain constraint of owl:intersectionOf and owl:unionOf is owl:Class, but the
range constraint is rdf:List. However, this range constraint is problematic so that it tends to confuse
the interpretation of collection or rdf:List in the discussion of the RDF compatibility of OWL DL.
Therefore, we do not use rdf:first and rdf:rest in order to embody a collection. Instead we make
a list in Lisp and handle directly a list and its members in SWCLQOS. This interpretation basically
does not contradict to form an RDF graph as collection of classes that compatible to a sequence of
classes. The details with respecttwmprehension principland collections for owl:intersectionOf

and owl:unionOf are discussed in Chapter 6.

34 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

Disjoint classes

In OWL, the disjoint relationship of two classes may be explicitly described as follows.
(XL, yby e EXT (owl: disjointWithf) = x? € OC Ay? € OCY A CEXT (/) n CEXT (y!) = 0
The discussion on disjoint classes is problematic. See the discussion at Chapter 7.

OneOf property

owl:.oneOf makes axiomatic complete assertions.

Loyl vk, L yI>eEXT](0WI oneof)

Individuals and non-Unique Name Assumption

According to the Tarskian denotational semantics, the semantics of owl:sameAs antdexghdrom
can be formalized as follows.

(owl:sameAs) Ifx andy are diferent URIs and the both references make a pair that is an extension
of owl: sameAS, then the denotation ofandy are the same one.

(xzylxeV, yeVi)ax, y'y e EXT (owl:sameA$) = x! = y/ (2.25)

(owl:differentFrom) Ifx andy are diferent URIs and the both references make a pair that is an
extension obwl: differentFrond, then the denotation of andy are diferent.

(x£y|xeV, yeVi}ax, y'y e EXT! (owl: differentFronf) = xX =y’ (2.26)

These conditions are calledn-Unique Name Assumptioihis, however, unusual for predicate cal-
culus, programming languages, and other most mathematical branches and computer applications,
even though it is a common usage like nicknames in everyday languages.

The non Unique Name Assumption implies that we need to decide the sameness of denotations
of symbols or names in order to obtain useful results from knowledge or ontologies. There are two
basic questions arising. Firstly, what we should do in case that we do not Hagesatinformation
to decide the sameness offdirentness of denotations. Secondlyfadent URIs denote fferent

2.2. OWL SEMANTICS 35

graph nodes in RDF semantics. So, how we should treat owl:sameAs andfi@ndigiFrom in
RDF semantics and in the combination of RDF semantics and OWL semantics, namely OWL Full.
Section 6.4 discusses these questions and addresses a solution that is implemented in SWCLOS.

Property restriction

The domain constraint and range constraint of property in RDF is global upon a property, and they
restrict the subject class and the object class of a predicate in a triple. Therefore, the range constraint
has an fect for any subject of triples. On the other hand, property restrictions in OWL are applied

to subjects to which and predicates on which owl.onProperty is designated. There are three kinds
of value constraints and three kinds of cardinality constraints.

L, y"y e EXTY (owl: allValuesFromd) A (x!, p’) € EXT (owl: onProperty) = 2.27

(” € OT! | (! Wy e EXT!(p!) > V) e CEXT (y')}

(xf,y"y e EXT (owl: someValuesFrof) A (x’, p’) € EXT (owl: onProperty) =
(' e oT? | !, vy € EXTE(pY) A V! € CEXT. (v))

(xf,y"y e EXT? (owl:hasValué) A (X%, p’) € EXT? (owl: onProperty) =
(uf e OT? | (U, ¥y € EXTE (PP}

(X, ny e EXT (owl: minCardinality’) A (x?, p’) € EXT (owl: onProperty) =
(uf eoT?| | (v eoTf uLVyA W V)Y e EXTY ()| >n)

(xf,ny e EXTY (owl: maxCardinality) A (x!, p*) € EXT (owl: onProperty) =
W eoT? | |(vf eOTL ULV) AW V) e EXTL(pY) | <n}

36 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

(XX, ny e EXTY (owl: cardinality?) A (x!, p’)y € EXT (owl: onProperty) =
(uf eoT?| | (v eOTP ULVIA W VY e EXT ()| =n)

2.2.2 OWL Entailment Rules

Since OWL provides many facilities for ontology description [49] and the combination of these
features bears many numbers of entailment rules, all of possible entailment rules are not exhausted.
Some of them are disclosed by ter Horst [72]. Table 2.6 lists a set of OWL entailment rules by ter
Horst. Note that additional rules are found by us (See Table 3.3) and implemented into SWCLOS
together with ones by ter Horst.

2.3 CLOS Semantics

Common Lisp [68, 69] is a dialect of lisp languages, which is produced by the activity of ANSI stan-
dardization on lisp dialects in U.S. Many applications are programmed in Common Lisp languages
and they are running from academia to industry today. Common Lisp Object System (CLOS) is an
object oriented extension of Common Lisp, which was born as a result of the work of introducing an
object oriented programming paradigm into Common Lisp by unifying mainly two object oriented
languages at that time, Common Loops and Flavors, which ran on two major lisp machines. The
CLOS specification has been integrated to Common Lisp in ANSI Common Lisp version 2 [69].

Note that Common Lisp is a specification of a list language, and not a name for actual language
systems. There are several Common Lisp systems from open source programs to commercial-based
systems.

2.3.1 CLOS View of Object Oriented Programming
Compared to today’s major OOP languages like Java or C#, CLOS has unique features. The funda-

mentals of CLOS arelassesinstancesgeneric functionsandmethodg69].

Class and instance. A class in CLOS is an object that determines the structure and behavior of
other objects, namely its instances. Every object in CLOS is an instance of a class. Thus, any class
object is also an instance of another class.

2.3. CLOS SEMANTICS

37

Table 2.6: OWL Entailment Rules

[

Rule If E contains then add note
p type FunctionalProperty .
rdfpl upv. v sameAsw . functional property
upw.
p type InverseFunctionalProperty
rdfp2 upw. usameAs/. inverse functional property
Vpw.
rdfp3 p type SymmetricProperty . wpV. symmetric property
Vpw.
p type TransitiveProperty .
rdfp4 upv. upw. transitive property
Vpw.
rdfpa | vpw. v sameAs/. self-evident sameAs
rdfpSb | v pw. wsameAsw .
rdfp6 vV sameAsw . w sameAsy . reflective sameAs
rdfp7 usameAs/. usameAsw . transitive sameAs
v sameAsw .
rdfp8ax | pinverseOfy. wqv. inverse of property
Vpw.
rdfp8bx | pinverseOfg. wpV. symmetric inverse
vqw.
rdfp9 vtype Class . v subClassOW . subsumption on
v sameAsw . same classes
rdfpl0 | ptype Property . p subPropertyOf . subsumption on
p sameAy . same properties
upv. property extension
rdfpll | usameAqs . upv. through sameAs
v sameAs/ .
rdfpl2a | vequivalentClass . v subClassOWw . subsumption on equivalentClass
rdfp12b | vequivalentClass . w subClassO¥ .
rdfpl2c | vsubClassOiv. equivalency from
w subClassOf . v equivalentClasw . subsumption classes
rdfpl3a | vequivalentPropety. v subPropertyOtv . subsumption on equivalent propert
rdfpl3b | vequivalentPropetw . w subPropertyO¥ . ditto
rdfp13c | vsubPropertyOfv. equivalency from
w subPropertyO¥ . v equivalentPropertw . | subsumption properties
rdfpl4a | vhasValuew.
v onPropertyp . utypev. filler restriction entailment
upw.
v hasValuew .
rdfpl4bx | vonPropertyp. upw. hasValue definition
utypev.
v someValuesFrom .
rdfpl5 | vonPropertyp. utypev. full existential restriction entailmen
upXx.
xtypew .
v allValuesFromw .
rdfpl6 | vonPropertyp. Xtypew . allvaluesfrom definition
utypev.
upXx.

38 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

Generic function and method. A generic function is an extension of function whose behavior
depends on the classes of the arguments supplied to it. A generic function is an aggregation or
abstraction of specialized methods that have an identical name and the same number of function
parameters but each method has the parameters associaté@@nentliclasses. An actual method

to be invoked is determined at run time by matching classes specified for parameters against ac-
tual classes of arguments supplied to the parameters. This method invocation mechanism is called
method dispatchingThe object oriented paradigm in CLOS is based on this method dispatching
mechanism rather than on message-passing to objects that is invented by Smalltalk. It facilitates
flexible context dependent programming. CLOS does not provide the facility of the encapsulation
of object data.

Multiple inheritance. The structure and behavior of objects are inherited from superclasses of
the class of an object. Whereas classes in Java and C# has a single direct superclass to inherit the
structure and behavior, a CLOS class may have more than one direct superclass, and an object can
inherit the structure and behavior from all of multiple superclasses of the class.

Method combination. In CLOS standard method combination, there are four kinds of methods,
primary, before, afterandaround methodThe before method is a sort of prologue for the primary
method in order to make preparations, and the after method is a sort of epilogue that performs
housekeeping or clearing. The around method can change values of supplied arguments before
primary method invocation. The most specific primary method in the combination of argument’s
classes among methods matched by method dispatching is invoked, and a programmer can encode
in primary methods to pass a part of work to more abstract methods or delegate it to another method.

In addition to the standard method combination, a programmer can change the method combi-
nation strategy from the standard one to another one.

First-class objects. In CLOS, generic functions and classes are first-class objects. Namely, they
can be arguments for function calling. It is possible to create an anonymous function (lambda
function) and anonymous class, and then they can be manipulated as object in the system as well as
named objects.

2.3. CLOS SEMANTICS 39

2.3.2 Class Based System and Miscellaneous

CLOS is aclass based system. A class in CLOS is a mother prototype of its instances, and inevitably
an instance belongs to only one direct class. A class must be defined before making its instance.

Class precedence list. In CLOS realization, all superclasses of a class are collected and cached
into the slot namedop: class-precedence-1ist. The value of class precedence lists of a class
are computed at the time of the first creation of its instance.

Slot inheritance. Each class has its own slot definitions for instances. It is calleztt slot
definition Each class also has the slot definitions that are inherited from all superclasses of the
class. It is calle@ffective slot definitionsThe dfective slot definitions provides a source of making
slots of instances. [31]

Slot value type option. The direct slot definition and thedfective slot definition can hold a speci-

fier of class constraint for slot value. It can play a role of constraint of slot value in instance. The slot
definition inheritance mechanism is equipped with the mechanism of retrieving and accumulating
the inherited slot value type option.

Changing a class of instance. CLOS provides the functionality of changing a class of an instance
at run time. The slot structure of the instance may be modified by changing the class.

Redefinition of class. CLOS provides the functionality of redefining a class at run time. It in-
volves redefining the slot structure of instance objects. Redefining a class causésdiseoa its

all instances. Theftect of redefining class automatically propagates to its subclasses and instances
of subclasses. A programmer can control this propagation.

2.3.3 Meta-circularity in CLOS and Meta-Object Protocol

The most remarkable feature of CLOS is the openness of language specification for users. “The ba-
sic idea of the CLOS design is to specify a model for the language implementation and to standardize
it. The inner workings of the implementation thereby become manipulable in a controlled manner.
This internal model is called the CLOS Metaobject Protocol (MOP).” (Andreas Paepcke [56]) CLOS
itself is written in CLOS. This unity of language is calletkta-circularityof language. It is usual

way in computer languages. The compiler of C is programmed in C, and the compiler of Common

40 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

Lisp is programmed in Common Lisp. The feature of CLOS is that it is opened to programmers
through MOP. Users of CLOS can tailor the specification of CLOS using MOP. Ordinary object
oriented languages like Java or C# are not equipped with MOP, the compiling machinery of classes
and methods are ordinarily built in compiler systems and closed to users, although modern ob-
ject oriented languages have recently become to provide the way of retrieving class information of
objects at run time by the name of ‘reflection’. However, precisely “The ability to modify the lan-
guage’s implementation without leaving the realm of the languages is cefledtion” (Andreas
Paepcke [56])

Generally speaking, the following conditions are required for any computational systems to be
reflective. [64][46]

1. A computational system represents and exposes the components and the state of itself and
they are manipulable.

2. There is acausalitybetween the target system for computation and the computational system.
Thus, the results of computation in one system level may propagate to other levels.

3. Inevitably, the reflective system must be infinitely layered so that a target system is controlled
by the computational system, then the computational system must be realized and controlled
another system, and then the system for the computational system must be realized by another
system; - - and so forth. Thus, some trick is needed to suppress this infinite layering into finite
machinery.

These requirements for reflective system are realized as follows for reflective object oriented lan-
guage CLOS.

1. Every class in CLOS is realized as an object in CLOS, and it is manipulated through CLOS
standardized Meta-Object Protocol for metaobjects..[31]

2. There is no dierence in semantics and realizations among built-in metaobjects for CLOS
realization and user defined metaobjects for target systems, and they exist in the unity of
system.

3. The class of cl:standard-class is cl:standard-class itself (meta-circularity and membership-
loop), whereby infinite meta-circularity in reflective object systems is virtually realized.

Where the following demonstration shows the meta-circularity of systems by the membership loop
of cl:standard-class.

2.3. CLOS SEMANTICS 41

(defclass Cl1 (standard-class) (O
(:metaclass standard-class))

-> #<standard-class Cl>

(defclass C2 (standard-class) ()
(:metaclass C1))

-> #<C1 C2>

(defclass C3 (standard-class) (O
(:metaclass (C2))

-> #<C2 C3>

In this simple demonstration, note th@ is a metaclass at the same level of cl:standard-class,
C2 has become to be a meta-metaclass at the same level of cl:standard:tlaas, become to
be a meta-meta-metaclass at the same level of cl:standard-class. Notably, the membership loop
at cl:standard-class enabled such meta-level layering ar@®ng2, andC1. Note that the first
definition onC1 does not designate it as a meta-meta-metaclass. It is defined as meta-class firsly,
but it is forced to play a role of meta-metaclass wid@ris defined, and it is also forced to play a
role of meta-meta-metaclass whehis defined.

All slot definitions and methods defined at cl:standard-class can be inherited tG3;l@3sand
C1, and methods can be modified and specializ@@éintly at each class at each meta-level. Thus,
the standard specification of CLOS which is implemented at cl:standard-class can be tailored using
this Meta-Object Protocol that is enabled by the membership loop of cl:standard-class. Also note
that cl:standard-object is a superclass of cl:standard-class and it is an instance of cl:standard-class.
Namely, ordinary classes as subclass of cl:standard-object can be treated as instance of cl:standard-
class, and simultaneously slots and behavior of cl:standard-object are inherited to cl:standard-class
and its subclasses. It is critical to know the relationship between rdfs:Resource and rdfs:Class in
RDF(S) is analogous to such relationship between cl:standard-object and cl:standard-class in CLOS.
We call this specific relationshivisted and it is formally discussed in Chapter 6

2.3.4 Computational Models of Lisps

In this subsection, the category of models on computer languages are discussed with emphasizing
the specialty of lisps as computer language, according to the semantics that was addressed by Brian
Smith for the first reflective lisp system 3-lisp [64].

In a lisp system like early lisp system Lisp 1.5, which is equipped with symbol, function, and
list, and without any other structural devices like object in object oriented programming, a syntactic
lisp expression (S-expression) is reduced to a syntactic nominal form that is semantically equivalent
to the original non-nominal form in-calculus. For example, an expressi@a“1 2)”is reduced to

42 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

“3". However, we can quote an expression to suppress the reduction, and then we can change expres-
sions and construct another lisp form, such ésohs (quote *) (cdr (quote (+ 1 2))))”

produces {* 1 2)”. This specific feature of lisp family languages is recently caliledhoiconic

In this first computational model, lexical expressions are not discriminated from the denotations. In
other words, we have no notion of denotatiéig. 2.2 pictures this model. In the figure, the map-

ping from notations to objects is carried out in human brains. The redugtiodambda calculus

or entailmenty in logic must follow the relationship of objects in the world. The theory of ordinary
predicate calculus and set theories falls into this computational model.

Notation N1 ki Notation N2
Object O1 Object O2

Fig. 2.2: The First Computation Model.

The second computational model discriminates symbols in expression from the denotations. A
lexical expression “3” denotes number 3, and a lexical expression “t” and “nil”, which are reduced
to “t” and “nil”, respectively, denote true and falsity, respectively, in the universe of discourse.
However, an undefined symbol denotes nothing until it is defined in lisp systems among the network
of denotations. Namely, we recognize the denotations as some computational object in a lisp system.
SeeFig. 2.3 This mappingp from a lexical expression to the denotation as computational object
is analogous to that in RDF semantics, in which a URI reference denotes a node in RDF graph. In
this model, a denotation denotes an object in the world, and then rules that follow the world must
be superimposed onto the reduction or entailment rles

Notation N1 ki Notation N2

())
v

’ Denota;ti onD1 ‘ ’ Denotation D2 ‘

Object O1 Object 02

Fig. 2.3: The Second Computation Model.

2.3. CLOS SEMANTICS 43

In the third computational model, a symbol refers a structure as internal structured device in a
modern computer language as well as the external list structure in the first lisp model. In this case,
a symbol can be used to refer a referent that denotes an entity in the universég.Szé

Notation N1 Notation N2
Ol
Structure SL Structure 2

O] O]
y v

Denotation D1 Denotation D2

Object O1 Object 02

Fig. 2.4: The Third Computation Model.

Brian Smith called the mappin@ internalization and the inverse operatidd ! externaliza-
tion. [64] He also noted thad (andO™1) is usually ignored in logic. The is the interpretation
function, which is analogous to the interpretation in denotational semantics, and the reguction
which is, Smith says, the relationship among symbols, corresponds entailment rules and rule ap-
plication in logic. Smith pointed out that the lisp evaluator crosses semantical levels, and therefore
obscures the flierence between the simplificatignand the interpretatiop. Smith called this lisp
specific naturele-referencé¢ =). It has become the theoretic base of his work on the reflective
language 3-Lisp.

Assumptions and axioms in domain knowledge can be syntactically represented by a set of
symbols and structures expressed among them. Those expressions of assumptions are reduced to
entailed assertions by the entailment ruledt must follow rules in the world.

The model of SWCLOS is appropriate to this third model. Every URI reference or QName
is internalized to a CLOS object. The CLOS objects for RDF embody nodes in RDF graph by
RDF semantics. The is organized to match RDF(S) entailment rules. RDFS subsumption rule is
almost same as CLOS subsumption rule. OWL entailment rules must be superimposed to RDF(S)
entailment ruleg such follow the rules in the world.

44 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

2.4 Semantic Gaps between OWL and OOPLs

The Software Engineering Task Force (SETF) of W3C compared OWL features with ordinary
Object-Oriented Programming Languages (OOPLs), and pointed out the serious semantic discrep-
ancies aJable 2.7[35]. Note that here the class in OOPLs is compared to the OWL class, and the
instance in OOPLs is compared to the OWL individual. The slot or the member variable of objects
corresponds to the property and its value (role and filler) in OWL.

Nevertheless, some of these items are not issued to dynamic OOPLs such as CLOS as described
above. The dynamic features of CLOS are summarized as follows.

Multiple Class Inheritance Methods and slot definitions are inherited from multiple cladses.
Dynamic Programming CLOS provides the means to redefine a class at runtime.

Metaobject A class in CLOS is the first-class entity as object; thus a class in CLOS is called
metaobject

Metaclass A metaclass or a class of classes allows ones to modify methods for classes including
intrinsic methods in the system by using MOP. Specifically, the instance creation method
is customizable in CLOS through metaclasses.

Reflective ProgrammingA programmer can alter behaviors of CLOS system using MOP.

Thus, it was plausible to implement RDF and OWL semantics leveraging CLOS dynamic features
and MOP.

2.5 Concluding Remarks

In this chapter, firstly, RDF semantics are overviewed according to the description of RDF Seman-
tics [25] of W3C Recommendation. The brief explanation on Tarskian denotational semantics is
also presented. Secondly, OWL semantics is formalized in Tarskian denotational semantics as well
as RDF Semantics, with focusing mainly membership and subsumption of entities. The semantic
disparity between RDF(S) and OWL on membership and subsumption are made clear in detail. Due
to no formalization so far on OWL semantics by Tarskian denotational semantics, this part is our
original contribution for Semantic Webs. The semantic similarity between RDFS and CLOS is also

15This item does not relate to RDF(S) and OWL semantics directly but indirectly relates to the implementation of
multiple classing in SWCLOS, See Subsection 3.1.6

2.5. CONCLUDING REMARKS

45

Table 2.7: A Comparison of OWRDF and Object-Oriented Languages (by SETF [35])

Object-Oriented Languages

OWL and RDF

Domain models consist of classes, properties and in

stances (individuals). Classes can be arranged in a

hierarchy with inheritance. Properties can take objects or primitive values(literals) as values.

Classes an

d Instances

Classes are regarded as types for instances.

Classes are regarded as sets of individuals.

Each instance has one class as its type. Classes cg
share instances.

anBath individual can belong to multiple classes.

Instances can not change their type at runtime.

Class membership may change at runtime.

The list of classes is fully known at compile-time andClasses can be created and changed at runtime.

cannot change after that.

Compilers are used at build-time.
Compile-time errors indicate problems.

Reasoners can be used for classification and
consistency checkingat runtime or build-time.

Properties, Attribl

utes and Values

Properties are defined locally to a class
(and its subclasses through inheritance).

Properties are stand-alone entities that can exist
without specific classes.

Instances can have values only for the attached
properties. Values must be correctly typed.
Range constraints are used for type checking.

Instances can have arbitrary values for any propert
Range and domain constraints can be used for typ
checking and type inference.

Classes encode much of their meaning and behavio,
through imperative functions and methods.

r Classes make their meaning explicit in terms of OV
statements. No imperative code can be attached.

Classes can encapsulate their members to private
access.

All parts of an OWI/RDF file are public and can be
linked to from anywhere else.

Closed world: If there is not enough information to
prove a statement true, then it is assumed to be fals

Open world: If there is not enough information to
£.prove a statement true, then it may be true or false

Role in the Design Process

Some generic APIs are shared among applications.
Few (if any) UML diagrams are shared.

RDF and OWL have been designed from the groun
up for the Web. Domain models can be shared onli

Domain models are designed as part of a software
architecture.

Domain models are designed to represent knowled
about a domain, and for information integration.

UML, Java, C# etc. are mature technologies
supported by many commercial and open-source
tools.

The Semantic Web is an emerging technology with
some open-source tools and a handful of commerg
vendors.

Miscellaneo

us Features

Instances are anonymous insofar that they cannot e
be addressed from outside of an executing program

astil named RDF and OWL resources have a unique
URI under which they can be referenced.

UML models can be serialized in XMI, which is geare
for exchange among tools but not really Web-based.
Java objects can be serialized into various XML-bag
or native intermediate formats.

>dRDF and OWL objects have a standard serializatio
based on XML, with unique URIs for each resource
seidside the file.

subclass

[$°]

VL

d
ne.

ge

ial

46 CHAPTER 2. SEMANTICS OF RDF, OWL, AND CLOS

pointed out clearly. Whereas general semantic discrepancy between RDF(S) and OWL that is well
known in Semantic Web community is addressed here, nicer discussions on hon-Unique Name As-
sumption and Open World Assumption of OWL and their problems with respect to RDF semantics
are postponed until Section 6.4 and Chapter 7. Thirdly, CLOS semantics and its computational
model are discussed based on the model addressed by Brian Smith, and finally the semantic gap
between OWL and object oriented languages addressed by SETF of W3C are pointed out.

All presented in this chapter is theoretical preparations to implement object-oriented language
for Semantic Web on top of CLOS. The details of the implementation are described in the next
chapter.

Chapter 3

Implementation of RDF, RDFS, and
OWL on CLOS

“You think you know when you learn, are more sure when you can write, even more
when you can teach, but certain when you can prografAlan Perlis, Epigrams on
Programming (1982))

In this chapter, firstly RDF and RDFS is realized on top of CLOS by straightforward mapping of
RDF graph such that a start node of graph to a CLOS object, an edge in graph to a slot-name, and an
end node to a slot-value. RDFS class-instance relationship is mapped to CLOS class-instance rela-
tionship. The problems arising from such mapping are discussed and solved. Secondly, all of OWL
features are realized on top of RDF(S) with preserving RDF(S) semantics. We distinguish substan-
tial sorts and non-substantial sorts, and procedural subsumption computation algorithm for OWL
Full is developed. Several OWL specific features are explained with SWCLOS demonstrations.

3.1 Implementation of RDF(S)

3.1.1 Mapping Triples to CLOS Objects

In RDF semantics, a set of triples models a labeled graph called RDF gFagh3.1 shows an
example of RDF graph and it can be expressed by pure CLOS as follows, using a straightforward

1This is taken from the obsolete W3C Working Drafthttp://www.w3.org/TR/2002/
WD-rdf-schema-20021112/.

47

48 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

rdfs:Resource

rdfs:subClassOf

rdf:Property

]
rdf:type rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

eq:Agent

4
rdfs:subClassOf

rdfs:domain

A
rdf:type

rdfs:range

hitp</.../Proposalf

Information Management: A Propasal ‘

Fig. 3.1: An Example of RDF Graph

mapping such that a triple afubjecpredicatgobjectis mapped to CLOS objestot-namgs|ot-
value.

(defpackage rdf

(:documentation "http://www.w3.0rg/1999/02/22-rdf-syntax-ns"))
(defpackage rdfs

(:documentation "http://www.w3.org/2000/01/rdf-schema"))
(defpackage eg

(:documentation "http://somewhere-for-eg/eg"))
(defpackage dc

(:documentation "http://dublincore.org/2002/08/13/dces"))

(defclass rdfs::Resource () ((rdf::about :initarg :about)))
(defclass eg::Work (rdfs::Resource) ())
(defclass eg::Agent (rdfs::Resource) ())
(defclass eg::Person (eg::Agent)
((eg::name :initarg :name)))
(defclass eg::Document (eg::Work)
((eg::author :initarg :author :type eg::Person)
(dc::title :initarg :title)))

(defvar eg::Proposal
(make-instance ’eg::Document
rauthor (make-instance ’eg::Person :name "Tim Berners-Lee")
:title "Information Management: A Proposal"
:about "http:/:--/Proposal/"))

3.1. IMPLEMENTATION OF RDF(S) 49

In this example, graph nodes are represented by CLOS objects, thatfis; :Resource,
eg: :Work, etc. for RDF classes are as metaobjects, énd Proposal and a blank node as in-
stance objects. Graph edges are represented by a slot namege:guthor anddc: :title.
Namely, a triplesubjecipredicatgobjectin RDF is represented an object, and its pair of slot-name
and slot-value.

QName to lisp symbol and namespace to lisp package

Since URI references are inconveniently long, QName is often used to represent elements and at-
tributes in XML documents instead of the URI reference. The appearance of QName is the same as
exported lisp symbdl Therefore, a QName in RDF is expressed by a lisp symbol in SWCLOS and

a namespace is mapped to a lisp package. At the example demonstration above, packages named
rdf, rdfs, eg, anddc are defined to implement namespaces with a prefix URI reference in the
document option of package, and lisp symbols are used to express QNames. However, note that
rdf:type relation is replaced with instance-class relation in CLOS, and rdfs:subClassOf relation is
replaced with class-superclass relation in CLOS, because rdf:type and rdfs:subClassOf relations are
analogous to the instance-class and class-superclass relations in CLOS, respectively. This issue is
discussed more precisely later on.

A resource object for property

However, there are some semantic gaps left by this mapping. CLOS is object-centric but RDF is
property-centric. The slot name is not an object in CLOS, but the property in RDF is an instance
of rdf:Property. This question is solved by automatically creating a CLOS object of a property
resource in RDF universe using RDF entailment ma& (See Table 2.4). Namely, a property
object is automatically created, the instant SWCLOS finds a slot name undefined as CLOS object.
See the following demonstration in SWCLGS.

gx-user(2): (addObject rdfs:Resource ’((:name yyy)))
#<rdfs:Resource yyy>

gx-user(3): (addObject rdfs:Resource ’((:name uuu) (aaa yyy)))
Warning: Entail by rdfsl: aaa rdf:type rdf:Property.
#<rdfs:Resource uuu>

gx-user(4): aaa

#<rdf:Property aaa>

2A lisp symbol with double colons is internal in a package, and an exported symbol from the package is printed with
a single colon.
3APIs and their calling sequences of SWCLOS are written at SWCLOS User’s Manual [37].

50 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

propertyP
— (slotds)
classC / \
rdftype * r slot-definitionpd another slot definition
s | SR | (subject-typeC) for another classon P
e BT |
mstancei)l 4 \
(pvl) instanceOZE (ab) : slat of slot name a and value b
b» (p 1/2) —— : member of property extension

Fig. 3.2: Slot Definition and Slot Extension

Property extension and slot definition

A property as a predicate in triple notation represents a binary relation between two resource objects,
or subjectandobject A set of binary relations between subjects and objects on a particular property
pis called theextensiorof the propertyp in RDF, i.e.,EXT(p?). On the other hand, whereas slots

in CLOS objects are not objects in CLOS semantics but mere placeholders in object memory, a class
has slot definitions for its instances. From the viewpoint of RDF, the slot-definition object in CLOS
coincides with what represents one of mutually disjoint subsets of a property extension which is
partitioned by classes of subjective CLOS objects on a particular property. A slot-definition object
is an instance of thmop:slot-definition class in CLOS, and it provides the information about

slot definitions for instances of the class. $eg. 3.2 ClassC has a slot-definitiorpd for C’s
instancesP1 andO2.

By leveraging this CLOS native slot-definition facility, we created a machinery that collects all
elements of the property extension of a particular property. First of all, we newly designed an extra
slot option namedubject-type in the slot-definition object, so that it holds a pointer to the self
class of subjective objects on this property. In addition, we designed that all slot definitions for a
particular property are booked Blotds slot of that property resource. Thus, via slotds value in
propertyP, all property extensions of properB/can be collected, retrieving every pair of subject
and object on the slot definition fd® through the pointer to the subject classsobject-type
slot. See the following demonstration in SWCLOS.

gx-user(7): (collect-all-extensions-of rdfs:comment)
((#<rdfs:Datatype rdf:XMLLiteral> "The class of XML literal values.™")
(#<rdfsClass rdfs:Class> "The class of classes.")

3.1. IMPLEMENTATION OF RDF(S) 51

(#<rdfs:Class rdfs:Resource> "The class resource, everything.™)
(#<rdfs:Class rdf:Property> "The class of RDF properties.")
(#<rdfs:Class rdf:Statement> "The class of RDF statements.")
(#<rdfs:Class rdfs:Datatype> "The class of RDF datatypes.'")
(#<rdfs:Class rdf:List> "The class of RDF Lists.")

(#<rdfs:Class rdfs:Container> "The class of RDF containers.”" ...)

3.1.2 Typein CLOS and Membership in RDF
Similarity in class transitivity and subsumption between RDFS and CLOS

The role of the class-instance relationship in CLOS i$edént from that in RDFS. A class in

CLOS is a type of instance, and an object of which instances share methods and slot definitions.
For instance, a class in CLOS inherits methods and slot definitions from its superci2snd

other superclasses. The semantics of CLOS is underpinned by the framework of object method
inheritance and slot definition inheritance. On the other hand, a class in RDF(S) represents a set to
which the instances are classified, and the set is calledldss extensionf the class. The class-
superclass relationship in RDFS is the inclusiveness of the class extensions. Namely, the statement
that a clas€ is a subclass dD means that the class extension of the denotaticm,mEXT](Df),

includes the class extension of the denotatio€ o€EEXT (C!). See the subsumption rule 2.13 in
Chapter 2.

While the semantics of CLOS class-instance fiedént from that of RDF(S), the class-superclass
relationship and class-instance relationship in CLOS work in the same way as RDF(S) with re-
spect to the transitivity of classes and the subsumption. In practice, the RDF subsumption rule
rdfs9%(See Table 2.5) and the transitivity rutdfs11° (ibid.) are natively realized in CLOS. There-
fore, rdfs:subClassOf relation may be straightforwardly mapped to the class-superclass relation in
CLOS, and rdf:type relation may be mapped to the class-instance relation. Then, RDFS instances
are mapped to CLOS instances, and RDFS classes are mapped to CLOS classes without the viola-
tion of the subsumption and transitivity rules in RDF(S). See the following examples in pure CLOS
language and compare them witlfs9 andrdfs1l. Wherecl:typep is a type testing function,
andcl:subtypep is a class-superclass testing function in Common Lispjeans boolean true,
and a form such a#<standard-class xxx> is a print form of an object in CLOS.

(defclass xxx OO O) -> #<standard-class xxx>
(defclass vvv (xxx)) -> #<standard-class vvv>

‘http://www.w3. org/TR/rdf-mt/#rulerdfs9
Shttp://www.w3.org/TR/rdf-mt/#rulerdfs1l

CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

(defclass uuu (vvv) Q) ->
(cl:subtypep ’uuu ’xxX)

(defclass xxx OO)

(defclass uuu (xxx) O)

(setq vvv (make-instance ’uuu))
(cl:typep vvv ’uuu)

(cl:typep vvv ’XxXX)

#<standard-class uuu>
t

#<standard-class xxx>
#<standard-class uuu>
#<uuu @ #x2126cc9a>

t

t

Metaclasses in RDFS

The straightforward mapping between RDFS class-instance and CLOS class-instance involves that
rdfs:Class and rdfs:Datatype in RDFS correspond to the metaclass in CLOS. In the manner of CLOS
meta-programming, a class that is a subclasd obtandard-class becomes a metaclass. There-

fore, we defined rdfs:Class as a subclasslafstandard-class, then rdfs:Datatype also becomes

a CLOS metaclass, because it is a subclass of rdfs:Class.

Realization of rdfs:Class membership loop

As described so far, RDFS classes are realized by CLOS classes, and RDFS metaclasses are real-
ized CLOS metaclasses. However, there was one big obstacle to actually realize them, that is the
membership loop of rdfs:Class. As shown in Subsection 2.3.3, the membership loop at cl:standard-
class is the key for the realization of reflective object oriented systems. However, Allegro Common
Lisp, which is used for realization of SWCLQOS, do not permit to set up another membership loop

for any other classes. As a result of otifogt, a trick for virtually implementing the membership

loop for a class is found and utilized within the realms of Allegro Common Lisp. The following
demonstration anBig. 3.3shows the essence of this trick.

(defclass meta-node (cl:standard-class) ())
(defclass gnode () ; strict class
(O (:metaclass meta-node))

(defclass rdfsClass (meta-node) ; Proxy
() (:metaclass meta-node))
(defclass rdfs:Class (meta-node) ; meta

(O (:metaclass rdfsClass))
(defclass rdfsClass (rdfs:Class)
(O (:metaclass meta-node))
(defclass rdfs:Resource (gnode)
(O (:metaclass rdfs:Class))
(defclass rdfs:Class (meta-node rdfs:Resource) ;
(O (:metaclass rdfsClass))

; now twisted

final

3.1. IMPLEMENTATION OF RDF(S) 53

rdfsClass
ll V4
meta-node -Ydfs Class
A T A
gnode rdfs:Resource

Fig. 3.3: A Trick for Membership Loop for rdfs:Class

Surprisingly the relationship between rdfs:Class and its proxy rdfsClass is the same as the relation-
ship between rdfs:Resource and rdfs:Class in RDF, furthermore cl:standard-object and cl:standard-
class, then we particularly nameditistedrelation® Thereby not only in the semantics of RDF but

also in the semantics of CLOS, the membership loop at rdfs:Class is properly implemented. Thus,
a method that is defined to rdfs:Class has become applicable to rdfs:Class itself.

(class-of rdfs:Class) -> #<meta-node rdfsClass>
(cl:subtypep (class-of rdfs:Class) rdfs:Class) -> t
(cl:typep rdfs:Class rdfs:Class) -> t

3.1.3 Subsumption of Properties and DomaifRange inheritance

There is a notion of subsumption on property in RDFS, and the dgraage attributes of a property

are inherited according to the super-sub relation of properties. However, CLOS is not equipped with
subsumption facility among instandess well as ordinary OOPLs are not. Therefore, we realized
subsumption notion of the property in RDFS. Furthermore, we put the d¢nawadgie constraint and

their inheritance in the property subsumption. See the following examples in SWCLOS on the
domain constraint, in whicrhdfs58, rdfs7°, andrdfs21C are expressed here.

(defProperty aaa (rdfs:subPropertyOf bbb)) -> #<rdf:Property aaa>

(defProperty bbb (rdfs:domain xxx)) -> #<rdf:Property bbb>
(defIndividual uuu (aaa yyy)) -> #<xxX uuu>
(cl:typep uuu xxx) -> t

To embody the range constraint, the range information that exists in a property object as a resource
is transferred to the type option in the relevant slot-definition object. The system checks the range

6This issue is described more in detail in Chapter 6.
"Properties are instances of rdfs:Property.
Shttp://www.w3.org/TR/rdf-mt/#rulerdfss
‘http://www.w3. org/TR/rdf-mt/#rulerdfs?
Ohttp: //www.w3.org/TR/rdf-mt/#rulerdfs2

54 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

constraint for objects in the slot-definition at the class when an instance of class is created. The
following shows the realization afifs5, rdfs7, andrdfs31L,

(defProperty aaa (rdfs:subPropertyOf bbb)) -> #<rdf:Property aaa>

(defProperty bbb (rdfs:range zzz)) -> #<rdf:Property bbb>
(defIndividual uuu (aaa yyy)) -> #<XXX uuu>
(cl:typep yyy zzz) -> t

3.1.4 Tailored Slot Specification

A class in CLOS is also an object callegetaobject A metaobject for class is equipped with a
special slot for slot-definitions that specify slot structures of its own instances. Furthermore, the slot
definition per seis also a CLOS objects(ot-definition-objeqgtthat is equipped with slots for slot
definition data. A slot definition datum in a slot of the slot definition object is calletioption

As described at Subsection 2.3.1, in the instance creation process, all slot definitions of the direct
class of an instance and its superclasses are collected, then the collection turns out an instance of
mop: standard-effective-slot-definition and itis stored in a slot namewp:slots in the

class to which the slot is defined.

To distinguish slot definitions for RDBWL objects in RDF universe and OWL universe from
CLOS slot definitions for standard CLOS objects, we newly defiregherty-direct-slot-definition
andOwlProperty-direct-slot-definition as a subclass afop:standard-direct-slot-
definition, aswell a®Property-effective-slot-definition andOwlProperty-effective-
slot-definition as a subclass abp:standard-effective-slot-definition, and then we
tailored the definition of slotdig. 3.4depicts the new slot definitions that are defined for RDF and
OWL.

We designed that the class constraint by rdfs:range and owl:onProperty for slot value is stored
into the CLOS native type option of slot definition, then we additionally set extra two options for car-
dinality constraintnaxcardinality andmincardinality inthe instance odwlProperty-direct-
slot-definition. In the MOP process for makingfect slot definition objects at instance cre-
ation, the most specific class are stored into the type option, Therefore, we adapted this facility to
compute inherited rdfs:range and owl:onProperty type constraints for the slot value, and minimum
value among owl:maxCardinality constraints and the maximum value among owl:minCardinality
constraints are also computed and storediatocardinality option andnincardinality, re-
spectively.

Uhttp: //www.w3.org/TR/rdf-mt/#rulerdfs3

3.1. IMPLEMENTATION OF RDF(S) 55

<+— superclass

mop:standard-direct-slot-definition 4—' Property-direct-slot-definition H OwlProperty-direct-slot-definition ‘

mop:standard-effective-slot-definition 4—' Property-effective-slot-definition H OwlProperty-effective-slot-definition ‘

Fig. 3.4: Slot Definitions Dedicated to RDF and OWL

The slot optionsubject-type is used for book-keeping the class of triple subjects to which
this slot is allocated.

3.1.5 Slot Definition On-Demand from Instance Objects

CLOS is a class-based system. Namely, a class must be defined before its instance creation. A slot
definition is needed at a class before setting slot value to an instance of a class. However, from
the viewpoint of graph based model like RDF, it is desirable that it is able to add a slot with slot
value into an object anytime and anywhere. So, we implemented the machinery of such slot adding
functionality. A slot definition is automatically generated and attached to a class on demand, if it

is required at an instance of the class and when the class has no corresponding slot definitions. See
the following demonstration.

gx-user(3): (defResource uuu (rdf:type rdfs:Class))
#<rdfs:Class uuu>
gx-user(4): (defResource aaa (rdf:type uuu)
(hasSomething "Wonderful!™))
Warning: Entail by rdfl: hasSomething rdf:type rdf:Property.
#<uuu aaa>
gx-user(5): (slot-value aaa ’'hasSomething)
"Wonderful!"

In this demonstration, a slot narhasSomething was given to an instance afiu without its slot
definition onuuu. The system automatically created the definition of slot nahe$omething

on uuu, then the instance nameda was made. Note that slot definitions are also defined when
rdfs:domain is defined to a property, and when owl:onProperty restriction is defined to a class and a

property.
3.1.6 Single Class in CLOS and Multiple Classes in RDF(S)

In the RDF graph model, an object may be typed to more than one class through rdf:type property.
However, a CLOS object cannot belong to multiple classes. A CLOS class is a prototype to create

56 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

its instances; therefore instances must inevitably belong to a single class. To solve this problem,
we introduced invisible classehadowed-clasthat may be a subclass of visible multiple classes
from the RDF viewpoint. For example, a vintage wine vin:SaucelitoCanyonZinfandel1998, which is
classified to vin:Vintage and vin:Zinfandel in Wine Ontoldgyis an instance of vin:Zinfandel.2 in
CLOS, which is invisible in OWL and a subclass of vin:Vintage and vin:Zinfandel. When an object
belongs to multiple classes, SWCLOS sets ughadowed-clasghat has multiple classes in its
superclass list, and the object is classified to the shadowed-class. See the following demonstration.

gx-user(2): (defResource ItalianWine (rdf:type rdfs:Class))

#<rdfs:Class ItalianWine>

gx-user(3): (defResource RedWine (rdf:type rdfs:Class))

#<rdfs:Class RedWine>

gx-user(4): (defResource MyFavoriteWine (rdf:type ItalianWine)

(rdf:type RedWine))

Warning: Multiple classing with (#<rdfs:Class ItalianWine> #<rdfs:Class RedWine>)
for #<ItalianWine MyFavoriteWine>

#<ItalianWine.® MyFavoriteWine>

gx-user(5): (typep MyFavoritelWine ItalianWine)

t

t

gx-user(6): (typep MyFavoriteWine RedWine)

t

t

3.1.7 Forward Reference and Proactive Entailment

The forward reference was enabled by means of proactive entailments in which undefined resources
are defined without human intervention using entailment rules. In CLOS original functionality,
CLOS creates an undefined but referred class as a classmomtefforward-referenced-class

in order to enable the forward reference. However, an attempt to make an instance of a forward ref-
erence class causes an alarm in CLOS. The forward referenced class in CLOS must be defined by the
time of its instance creation. This function is ifiscient for RDF forward reference. Fortunately,

there are a number of RDF (Table 2.1 though 2.4) and RDFS rules (Table 2.5) and OWL entailment
rules (Table 2.6) in addition to the monotonicity principle in Semantic Web. Therefore, if we en-
counter an undefined class reference in reading ary@DE file, we can create the undefined class

as the most specific concept in the context by applying various RDF(S) and OWL entailment rules
for the context without the contradiction in definitions that will appear later on. For instance, rule

Phttp://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

3.2. RDF(S) DEMONSTRATION IN SWCLOS 57

rdf113 can be utilized for an undefined predicate to be created as an instance of rdf:Property, and rule
rdfs41* assures for a subject and an object in triple to be defined as an instance of rdfs:Resource.
Needles to say, domain constraints, range constraints, and onPfoptei\ValuesFrom restric-

tions are also available to such forward reference entailing. Such entailments in run time are en-
abled by lisp dynamic programming characteristics represented by changing class and reinitializing
object facilities of CLOS.

The proper definition may be used to refine forward referenced classes and objects more pre-
cisely. For instance, a class @& is changed inOC/, if it is found that the class has a slot of
owl:unionOf or owl:intersectionOf.

The following demonstrates that undefined three resources in a statement of triple, one property
and two resources are actually defined using entailment rdfésrdfs4a, andrdfs4b.

gx-user(2): (defIndividual uuu (aaa yyy))

Warning: Entail by rdfl: aaa rdf:type rdf:Property.
#<|rdfs:Resource| uuu>

gx-user(3): aaa

#<rdf:Property aaa>

gx-user(4): yyy

#<|rdfs:Resource| yyy>

Where | rdfs:Resource]| is an alternative to rdfs:Resource, whereby a proper rdfs:Resource in
CLOS are treated as an abstract class that do not directly hold any instances.

3.2 RDF(S) Demonstration in SWCLOS

The semantics of domain constraint (2.17) and range constraint (2.18) is demonstratet? below.

gx-user(2): (defProperty hasColor
(rdfs:domain Wine)
(rdfs:range Color))
Warning: Range entailX3 by rdfs:domain: Wine rdf:type rdfs:Class.
Warning: Range entailX3 by rdfs:range: Color rdf:type rdfs:Class.
#<rdf:Property hasColor>
gx-user(3): (defIndividual ElyseZinfandel
(hasColor Red))
Warning: Range entailX3 by hasColor: Red rdf:type Color.
#<Wine ElyseZinfandel>
gx-user(4): Red
#<Color Red>

Bnttp://www.w3.org/TR/rdf-mt/#rulerdfl
Yhttp: //wuw.w3. org/TR/rdf-mt/#rulerdfs4
SBNF syntax is described in SWCLOS User’'s Manual [37].

58 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

In this exampleline andColor are defined as class (an instance of rdfs:Class) using range en-
tailment in the form ohasColor definition. ThenElyseZinfandel is defined as an instance of
Wine because of the domain constrainthafsColor with the range constraint that entailRdd is

an instance ofolor.

3.3 OWL Full on Top of RDF(S)

As mentioned at Section 2.1 and 2.2, OWL DL is not compatible to RDF. This section describes
how OWL is realized on top of RDF(S).

3.3.1 RDF Compatibility of OWL

RDF compatibility of OWL is discussed at OWL Semantics Documentation Chapter 5 [58]. In
this documentation, it is clearly stated in the table titled “Conditions concerning the parts of OWL
universe and syntactic categories” that i) the class extension of owl:Thing is included in the class
extension of rdfs:Resource, ii) the class extension of owl:Class is included in the class extension
of rdfs:Class, and iii) four kinds property extensions are included in the property extension of
rdf:Property. Namely, the statements are formalized as follows. See also Section 2.2.

OT? = CEXT (owl: Thing’) ¢ R’ = CEXT (rdfs:Resourcéd) (3.1)

oc! = CEXT (owl:Clas¥d) c Cf = CEXT (rdfs:Class) (3.2)

OP/ = CEXT (owl:ObjectProperty) < P’ = CEXT (rdf :Property) (3.3)
OPL = CEXT (owl: DatatypeProperty) c P’ (3.4)
OP4 = CEXT (owl: AnnotationProperty) < P/ (3.5)
OPS = CEXT (owl: OntologyProperty) < P/ (3.6)

However, the document continues to state the following statement;

“There are two dferent styles of using OWL. In the more free-wheeling style, called
OWL Full, the three parts of OWL universe are identified with their RDF counterparts,
namely the class extensions of rdfs:Resource, rdfs:Class, and rdf:Property. In OWL
Full, as in RDF, elements of OWL universe can be both an individual and a class, or,
in fact, even an individual, a class, and a property. In the more restrictive style, called
OWL DL here, the three parts areffdirent from their RDF counterparts and, moreover,

3.3. OWL FULL ON TOP OF RDF(S)

59

pairwise disjoint. The more-restrictive OWL DL style gives up some expressive power
in return for decidability of entailment. Both styles of OWL provide entailments that

are missing in a naive translation of the DAMODIL model-theoretic semantics into
the RDF semantics.”(OWL Semantics Chapter 5, [58])

Namely, it follows axioms in OWL Full;

oT’ =
ocl =
OP/ UOPL,UOPLUOP] =

Whereas it follows axioms in OWL DL;

o1’

oc!

OP/ UOPL UOP, UOPS

oTf noc!

OT! n(OP/ UOP, UOP; UOPY)
OC’ n (OPf UOPL UOP, U OPL)

However, we adopted the third way in order to realize OWL Full on top of RDF. Namely, as de-
scribed in OWL Semantics Chapter 5, [58] and Section 2.2, OWL universe is included in RDF
universe. See above equations, (3.1), (3.2), and (3.3) through (3.6). OWL semantics is superim-

C[

_R RN

s = s

posed to entities in OWL universe that is ruled by RDF semantics.

In fact, itis possible to realize the following axioms just by means of reading the OWL definition
file 16 in the RDF semantics and the RDF universe using RDFS module in SWCLOS.

Bhttp://wuw.w3.0rg/2002/07 /owl.rdf

(3.7)
(3.8)
(3.9)

(3.10)
(3.11)
(3.12)
(3.13)
(3.14)
(3.15)

60 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

owl:Clas§ e C’ (3.16)

ocl c cf (3.17)

owl:Restrictiod e OC’ (3.18)

OR! = CEXT (owl: Restrictiof) < C7 (3.19)
owl:Thingg e OC! (3.20)

ot ¢ R (3.21)

owl:ObjectProperty e C’ (3.22)

OP! = CEXT (owl:ObjectProperty) c P’ (3.23)
owl: DatatypeProperty e C’ (3.24)

OPL = CEXT (owl: DatatypeProperty) c P’ (3.25)
owl: AnnotationProperty e C? (3.26)

OP. = CEXT (owl: AnnotationProperty) < P’ (3.27)
owl:OntologyProperty € Cf (3.28)

OP§ = CEXT (owl: OntologyProperty) < P/ (3.29)

Note thatOT? ¢ R (3.1) or (3.21) is entailed by RDF entailment rutés4al’.

Thus, SWCLOS is able to distinguish and control both resources that are ruled by RDF se-
mantics and objects that are ruled by OWL sematttjogshereas OWL Full style by W3C cannot
distinguishOC! againstC’, OT? againstR?’.

In addition, we added the followings axiom in order to make OWL classes belong to OWL
universe, because such axiom is not defined in the OWL definition'file.

Axiom 1.
oc! coT? (3.30)

Namely, the class extension of the denotation of owl:Class URI reference is a subset of the class
extension of the denotation of owl:Thing URI reference. Note that this is the same as the relationship

http://www.w3.org/TR/rdf-mt/#rulerdfs4
8actually, every RDF resources is an instance of rdfs:Resource, and every OWL object is an instance of owl:Thing.
19Note that the document [58] actually describes (3.30).

3.3. OWL FULL ON TOP OF RDF(S) 61

between rdfs:Class and rdfs:Resource. Thus, this axiom makes vin:Zinfandel and vin:Wine belong
to OWL universe as well as their individuals in Wine Ontology.
This axiom is written as follows in SWCLOS S-expression.

(defResource owl:Class (rdfs:subClassOf owl:Thing))

From the object oriented view, this axiom implies that every class in OWL universe inherits
properties defined at owl:Thing for individuals. Thus, classes in OWL universe are enabled to have
owl:sameAs and owl:dlierentFrom properties, then enabled to be treated classes as individuals.

3.3.2 Anonymous Restriction Classes for Properties

While OWL object-centric expressions look like object expressions in OOPLs rather than RDF
graphs, they still obey RDF syntax and semantics in OWL Full. Therefore, the property restric-
tions in OWL become anonymous classes as instances of owl:Res#fctibhus, the subjective

CLOS object in the expression is defined as a subclass of the anonymous restriction classes that
appears within rdfs:subClassOf or owl:intersectionOf representations. For example, in the defini-
tion of vin:Wine in the Wine Ontology, vin:Wine has two anonymous classes, the restriction for the
cardinality and the value restriction of vin:Winery, on the vin:hasMaker property.

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">
1
</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:allValuesFrom rdf:resource="#Winery" />
</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

20As mentioned earlier, every class in CLOS is an object called metaobject. Furthermore, class metaobject may have
no name in CLOS. See also the demonstration in Section 6.2

62 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

As described in Subsection 2.3.1, multiple pieces of information that exist among superclasses
upon a particular property with flerent values for the same restriction are collected and the most
special concepts or the strictest constraints are computed for the value restriction or existential
restriction. Thus, those facilities enabled the satisfiability-checking for the slot-value against con-
straints in the instance creation. For instance, after loading the Wine Ontology and the Food Ontol-
ogy, an attempt at creating an instance of the unsatisifiable cofihefpecialCourse causes a
satisfiability error.

(defResource TheSpecialCourse (rdf:type owl:Class)
(owl:intersectionOf
food:RedMeatCourse
(owl:Restriction (owl:onProperty food:hasFood)
(owl:allValuesFrom food:Fruit))))

(defIndividual NolSpecialCourse (rdf:type TheSpecialCourse)
(food:hasFood food:Meat food:Bananas))

Error: Unsatisfiable by disjoint pair in
(#<owl:Class food:Fruit> #<owl:Class food:RedMeat>) for
TheSpecialCourse food:hasFood

Here, the value restrictiofiood:RedMeat is inherited fromfood:RedMeatCourse and the value
restrictionfood:Fruit is defined at the concepheSpecialCourse. The satisfiability error hap-
pened at the creation &b1SpecialCourse, an instance oftheSpecialCourse.

The property constraints in OWL on owl:onProperty generate anonymous classes as instances
of owl:Restriction (owl:Restriction is a metaclass), a restriction that is attached to a class in the
description of rdfs:subClassOf or owl:intersectionOf turns out in CLOS a superclass of the class to
which the restriction is attached, then the restriction value that is transferred into the type option
in the slot definition object of the anonymous restriction class is inherited by the class that the
restriction is attached and all of its subclasses. Thus, CLOS inheritance machinery is reasonable
from the viewpoint of the property restriction in OWL semantics.

3.3.3 Axiomatic Complete Relations

Among the many OWL properties, only four, i.e., owl:intersectionOf, owl:unionOf, owl:complementOf,
and owl:oneOf make axiomatic complete assertions without using the owl:equivalertClass.

2Ihttp://www.w3.org/TR/owl-ref/#DescriptionAxiom

3.3. OWL FULL ON TOP OF RDF(S) 63

other words, these properties define complete equivalency upon the binary relation of concepts.
For example, the following asserts the definitioniiafi teBordeaux. If something is known as
Bordeaux andWhiteWine, it is concluded to be #@hiteBordeaux.

<owl:Class rdf:ID="WhiteBordeaux">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Bordeaux" />
<owl:Class rdf:about="#WhiteWine" />
</owl:intersectionOf>
</owl:Class>

Similarly, the following assertion defingdineColor, which has the enumerative membership of
White, Rose, andRed, so that the instance @fineColor is exactly one of the three, and not any
of others.

<owl:Class rdf:ID="WineColor">
<rdfs:subClassOf rdf:resource="#WineDescriptor" />
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#White" />
<owl:Thing rdf:about="#Rose" />
<owl:Thing rdf:about="#Red" />
</owl:one0f>
</owl:Class>

Therefore, it is not necessary to place the open world assumption upon such axiomatic complete
relational properties. If we find the right-hand side (body of object-centered expression) of such
an equation (object-centered expression) matches the database, then we may conclude the left-hand
side (subjective term) without worry about other statements. Conversely, we must assert consistent
knowledge of a subject in one assertion with respect to these four properties.

Suppose the following example for owl:intersectionOf. The system concludesatElizabethII
should be a woman, because it is asserted that a person who has gender female is a woman, and it
is also asserted th@tieenElizabethII is an instance oPerson andhasGender Female. Here
note that the system proactively made the entailment without demand or query from users.

(defIndividual Female (rdf:type Gender) (owl:differentFrom Male))
-> #<Gender Female>
(defResource Person (rdf:type owl:Class)
(owl:intersectionOf
Human
(owl:Restriction (owl:onProperty hasGender)
(owl:cardinality 1))))

64 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

-> #<owl:Class Person>
(defResource Woman (rdf:type owl:Class)
(owl:intersectionOf
Person
(owl:Restriction (owl:onProperty hasGender)
(owl:hasValue Female))))
-> #<owl:Class Woman>
(defIndividual QueenElizabethII (rdf:type Person)
(hasGender Female))
-> #<Woman QueenElizabethII>

3.3.4 Substantial Properties and Non-Substantial Properties

OWL has many properties that rule the inclusiveness of concepts, i.e., rdfs:subClassOf, owl:intersectionOf,
owl:unionOf, owl:equivalentProperty, etc. From the viewpoint of DL, they have same strength for
subsumption decidability. However, from the viewpoint of ontology engineering and software en-
gineering, we must discriminate substantial ones and non-substantial ones for ruling subsumption.
Borgida [6] argued that one should deal with individual objects that remain related rather than
volatile references. Mizoguchi [52, 53] claimed that the I1S-A relation (substantial sort) should com-

ply with single inheritance from the viewpoint of Ontology Engineering, whereas an object may

have multiple roles (non-substantial sort). Kaneiwa and Mizoguchi [29] developed a formal ontol-

ogy for property classification and extended Order-Sorted Logic to the property classification.

It is also important for the ontology and database maintainability to distinguish persistent re-
lations and temporal relations. In SWCLOS, the rdfs:subClassOf relation in the RDF universe
is mapped onto the class-superclass relation in CLOS, and a CLOS object as an rdfs:subClassOf
property value is placed in thi#irect-superclasses-1ist slot of the subjective class object.
However, when a propertpl in OWL universe is a subproperty of or equivalent property to
rdfs:subClassOf, should we plagé’s value into the direct-superclasses slot in the class? Note
that a superclass in CLO%eacts the slot structure of its instances. In other words, what property in
OWL may dfect the structural variation in CLOS due to the slot inheritance, and what property must
not afect the structural variation in CLOS? We specified that rdfs:subClass, owl:intersectionOf, and
owl:unionOf should &ect the variation, but owl:equivalentClass, owl:equivalentProperty and other
properties, including subproperties and equivalent properties of rdfs:subClass, owl:intersectionOf,
or owl:unionOf, should fiect subsumption reasoning but not the structural variation.

Conversely, we should define the substantial and persistent subsumption with rdfs:subClassOf,
owl:intersectionOf, and owl:unionOf, and the non-substantial subsumption should be defined through
other properties. The substantial subsumption may cause proactive entailment, but the non-substantial

3.3. OWL FULL ON TOP OF RDF(S) 65

subsumption should not cause any structural variation in the entailment. Thus, such discrimination
of substantial and non-substantial subsumptions allows us to add and delete relations and makes it
easy to maintain ontologies.

3.3.5 Extended Structural Subsumption Algorithm

We extended thetructural subsumption algorithin the ¥ £ level [5], which is applicable only to
conjunction (owl:intersectionOf) of concepts and value restriction (owl:allValuesFrom), so as to in-
clude disjunction (owl:unionOf), disjointness (owl:disjointWith), negation (owl:complementOf) of
concepts; equivalency (owl:sameAs, owl.equivalentClass, owl.equivalentProperty); symmetric rela-
tion (owl:SymmetricProperty), functional relation (owl:InverseFunctionalProperty), inverse-functional
relation (owl:FunctionalProperty); full existential restriction (owl:someValuesFrom), filler restric-
tion (owl:hasValue), and cardinality restriction (owl:maxCardinality, owl:minCardinality, owl.cardinality).
This original structural subsumption is described as follows [5].

Let B; andA; be distinct names of atomic or complex conceRsandS; be distinct names of
roles,C; andD; be ¥ Lo-concept descriptions, and let

Arn---MAnMYRL.Ci M-+ M VYRL.Cyy
be the normal form of th& Ly-concept description &, and let
Bim---MmBymV¥S1.D1m---MVYS,.Dy

be the normal form of thé Lp-concept description dD. Here,n represents the intersection of
concepts. Theg C D (inclusiveness of concepts) holdBthe following two conditions hold:

(1) Foralliin 1 <i <Kk, there existg in 1 < j < msuch thatA; C B;.

(2) Foralliin1<i <, there existg in 1 < j < nsuch thatS; = R; andC;j C D;.

The computation of the class-superclass relation in CLOS conveys the semantics of weak sub-
sumption in RDF universe. However, owl:intersectionOf and owl:unionOf relation show the strong
subsumption in OWL universe, and owl.equivalentWith and owl:oneOf relation also fiaetar
tion. To compute the strong subsumption in OWL universe, functidssumed-p computes the
inclusiveness of the class extensions between two concepts according to the OWL semantics using
ternary truth value. Note that direct relation of owl:intersectionOf and owl:unionOf are computed
firstly in the RDF graph links or CLOS, because the direct relations of them are replaced into su-
persubclass relation in CLOS. Howevegbsumed-p secondly computes the strong subsumption

66 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

of class extensions, even if two classes are not directly connected. The weak subsumption in the
substantial properties (rdfs:subClassOf, owl:intersectionOf, owl:unionOf) is computed through the
CLOS class-superclass relationship, and the non-substantial subsumption is calculated with this
extended structural subsumption algorithm.

In this algorithm, the top concept (owtThing’) substantially subsumes every concept of
CEXT (owlClas¢) in the CLOS class-subclass relation, but the bottom concepwENothing)
is virtually subsumed by other concepts through this extended structural subsumption algorithm.
For classes in OWL universe, the following algorithm returns one offalsgunknown as truth
value.

Where symbok is used for the equivalency of Lisp objects (ed@plFirst, the top and the bot-
tom are checked. Next, all equivalent classe€@mdD is retrieved and checked. The subsumption
of classes for owl:oneOf is firstly checked before ordinary computatiaiesignates the subsump-
tion in CLOS, then it checks the direct relation of owl:intersectionOf and owl:unionOf in additon
to rdfs:subClassOf. Then, indirect subsumption in owl:intersectionOf and owl:unionOf is checked.
~ means class equivalency considering owl:FunctionalProperty and owl:InverseFunctionalProperty,
andx= designates the relationship of complement and disjoint.

onC, D € CEXT (owlClasg)
if C = D then return true
if D = T then return true
if C = L then return true
if D = L then return false
if C = T then return false
for someC in equivalent-classes-d
for someD in equivalent-classes-d})
if oneOf@) and oneOf@) then
if oneOfC)coneOfP) then
return trueelse returnfalse
else ifC < D then return true
else ifD < C then return false
else ifintersect-subsume@d(D) then return true
else ifunion-subsumed,D) then return true
else ifC ~ D then return true
else ifC = D then return false
else returnunknown

2|t js for string equivalency in Lisp.

3.3. OWL FULL ON TOP OF RDF(S) 67

As shown in Subsection 3.3.3, on the relation of owl:intersectionOf and owl:unionOf, two classes
of which the components (the right hand sides) are equivalent are equivalent (in the left hand sides).
The subsumption computation algorithm for owl:intersectionOf is described as follows.

DD < unfold(intersects-ofp))
for every Dgs € collect-concepts-irifD)
if for some Cgs € all-superconcepts-a()
Cgis C Dgs then
if restrictions-ofPD)= 0 then return true
else if for everyR e roles(restrictions-offD))
cslot « slot-definitionCqs,R)
modelsList— generate-models§lof)
for somemodelsin modelsList
if for every modelin models
satisfyfnode]restrictions-ofpD,R))
then return true
else returnfalse

DD is a set of unfolded classes fBron owl:intersectionOf. So, all componentsDB are atomic.

Dgis is a part of non property restriction iBD. Cgs is a collection of non property restriction

from all superclasses &. In this computation, firstly the subsumption for concepts, secondly
property constraints are performed. Here, syntbatands for inclusiveness of class extensions
(namely checking bygubsumed-p itself). In case of property constraints, satisfiability is checked

by seeing models. Hereslotis slot definitions on propertR for Cs. As mentioned so far, this

slot definition holds all inherited cardinality and type restrictions. According to these restriction,
all possible models are generated. Firstly, plausible models are generated based on existence of
individuals by owl:hasValue and owl:someValuesFrom. By owl:hasValues the value can be one of
interpretation models, and by owl:someValuesFrom the instance of constraint can be one of models.
Note that instance of owl:someValuesFrom is a variable over the owl:someValuesFrom value class.
In case of max cardinality restriction given, the possible models are generated up to the numbers of
cardinality restriction, after that, the next existent constraint is superimposed onto one of models so
as to map all existing models. Thus, generally, a set of possible sets of models are obtained. The
restriction of owl.allValuesFrom is applied onto every possible models. Then, the number of models
may be reduced by unsatisfiability. In a very simple case, say, max cardinality is one, the value of
owl:hasValue is/, type A for owl:someValuesFrom, typB for owl:allValuesFrom, thewr becomes

an instance of the most specific concepté&\pB, and its original class, and the satisfiable model is

68 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

one. At the last, the generated models are checked adinkether or not it satisfieB’s property
constraints.

Obviously, this algorithm includes self-recursion. However, this computation is terminated,
because CLOS does not accept direct and indirect loop in super-subclass relationship, and the
class precedence list f@ and unfolding classes fdb prevents the occurrence of loop in trac-
ing rdfs:subClassOf and owl:unionOf definition (e Bis a subclass df andC is a union ofA and
B)23.

In SWCLOS, all individuals (including classes as individual) can be checked for subsumption
with respect to owl: TransitiveProperty and owl:sameAs. See the followings.

onC, D in CEXT (owlThing’)
if C = D then return true
for some propin intersection(all-transitive-props-@j, all-transitive-props-ofd))
for some Dy in same-things-of)
for someC, in same-things-oft)
if transitively-sub-ongrop, Dy , Dy) then return true
else returnfalse

Where symbok means the equality as OWL individual (owl:sameAs).

3.3.6 Satisfiability Check

Proactive entailment reduces the load of the satisfiability check. For example, when users attempt to
define an object ambiguously (to define an object in a more abstract class), if the domain and range
constraints are available, the system defines an object more specifically (defines an object in a more
special class), by fitting the domain and range restriction. Nevertheless, the satisfiability check is
useful to prevent ones from importing bugs into ontologies. We implemented satisfiability checking
on the domain and range, value restriction, filler restriction, cardinality, disjoint-pair, etc., and Table
3.1 summarized additional unsatisfiability rules in the OWL definition for SWCLOS.

3.3.7 OWL Entailment Rules

The total number of OWL entailment rules is not known yet. In addition to the entailment rules
which ter Horst disclosed [72](See Table 2.6), SWCLOS added five axioms shown in Table 3.2, and
18 entailment rules shown in Table 3.3.

23Note that SWCLOS does not accept cyclic loop in RDF graph for other properties.

3.3. OWL FULL ON TOP OF RDF(S) 69

Table 3.1: Unsatisfiability in OWL added to SWCLOS

Unsatisfiability Conditions

unsatisfiabilityl ConeOf{ x...}

ytype C

ydifferentFrom some X;
unsatisfiability2 xdifferentFromy

X sameAs 'y
unsatisfiability3 C disjointWith D

D equivalentClass C
unsatisfiability4 C disjointWith D

X type C

X type D

Table 3.2: Additional OWL Axioms for SWCLOS

axioml owl:Thing rdfs:subClassOf rdfs:Resource .

axiom2 owl:Class rdfs:subClassOf owl:Thing .

axiom3 owl:FunctionalProperty rdf:type owl:Class .

axiom4 owl:InverseFunctionalProperty rdf:type owl:Class .

axiom5 owl:FunctionalProperty owl:disjointWith owl:InverseFunctionalProperty .

In this subsection and succeeding sectiod®, andrdfs** means one of RDF entailment rules
and RDFS entailment rules, respectively. A descriptiordff** means one of entailment rules by
ter Horst. Ifrule* found, it means one of entailement rules in Table 3.3.

Since SWCLOS is a procedural reasoning system, all of entailment rules are implemented
into SWCLOS programming code. Therefore, we might miss to find out a proper position where
premises of rules match context and to insert entailment procedures. However, note that the Tableau
Algorithms are insfficient for implementing proactive entailment. The work of Tableau is to test
the membership of individuals and the subsumption relation among classes by means of refutation.
The prover based on refutation does work with given refutation. So, to implement proactive entail-
ments, we must find out refutation when and where we think entailments are required. In order to
perform proactive entailments, we need to sense the situation that matches the premise of entailment
rules and in which an entailment is deductive.

Hereafter, we introduce many entailment rules in OWL and discuss how these rules are imple-
mented in our system.

70 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

SameAs Group, EquivalentClass Group, EquivalentProperty Group

The owl:sameAs relation is reflexivedfp6) and transitive idfp7). Thus, all related individu-

als make one group upon owl:sameAs. The group information that is a collection of related in-
dividuals in owl:samaAs is registered to each individual of the group. The owl:equivalentClass
owl:equivalentProperty is also reflexiveld{pl2a, rule9) and transitive idfp12c, rulel10), respec-

tively. Therefore, the same machinery is adopted for them. The equivalency information is used in
the extended structural subsumption algorithm as explained in Subsection 3.3.5. In this computa-
tion, the relation of subsumption of cld@ssoperty individual is expanded to the equivalent group of

the clasgproperty.

DifferentFrom Pairs and DisjointWith Pairs

On the other hand, owl:fferentFrom is reflexive but not transitive. Therefore, the pairwise relation

is not resolved into one group. Each of a pair is registered to the other individual. The syinbol

the subsumption algorithm uses this information. Such machinery is the same for the class relation
of owl.disjointWith.

If a class is disjoint with another class, the subclasses of the class are also disjoint with the
subclasses of the other disjoint class. 8de4 in Table 3.3, which is implemented in the function
owl-disjoint-p. If disjoint classes are specified as multiple classes in an instance definition, the
system signals an alarm of unsatisfiability. S@esatisfiability3 and4 in Table 3.1.

Functional Property

The entailment rule for an instance of owl:FunctionalProperty is describedfp¥ in [72]. The
system maintains the bookkeeping of the inverse relation of a functional property in addition to the
functional property itself. Then, the functi@wl-same-p, which is denoted as in the explana-
tion of the extended structural subsumption algorithm in Subsection 3.3.5, infers this equality of
individuals.
The following shows an example of this entailments. Seealgothe subsumption algorithm.
gx-user(2): (defProperty hasband
(rdf:type owl:FunctionalProperty)
(rdfs:domain Woman)
(rdfs:range Man))
Warning: Range entailX3 by rdfs:domain: Woman rdf:type rdfs:Class.

Warning: Range entailX3 by rdfs:range: Man rdf:type rdfs:Class.
#<owl :FunctionalProperty hasband>

3.3. OWL FULL ON TOP OF RDF(S) 71

gx-user(3): (defIndividual MarieTherese (hasband LouisXIVdeFrance))
Warning: Range entailX3 by hasband: LouisXIVdeFrance rdf:type Man.
#<Woman MarieTherese>

gx-user(4): (defIndividual MarieTherese (hasband Roi-Soleil))
Warning: Range entailX3 by hasband: Roi-Soleil rdf:type Man.
#<Woman MarieTherese>

gx-user(5): (-> MarieTherese hasband)

(#<Man LouisXIVdeFrance> #<Man Roi-Soleil>)

gx-user(6): (owl-same-p LouisXIVdeFrance Roi-Soleil)

t

In this demonstratior,ouisXIVdeFrance andRoi-Soleil are explicitly not stated as the same,
but it is entailed by a propertyasband, which is an instance of owl:FunctionalProperty.

Inverse Functional Property

For owl:InverseFunctionalProperty, the same machinery for entailment computation is made. See
rdfp2. See alsex in subsumption algorithm.

The following shows an entailment example of owl:InverseFunctionalProperty.

gx-user(7): (defProperty hasWife (rdf:type owl:InverseFunctionalProperty)
(rdfs:domain Man)
(rdfs:range Woman))

#<owl:InverseFunctionalProperty hasWife>

gx-user(8): (defIndividual Obama (hasWife Michelle))

Warning: Range entailX3 by hasWife: Michelle rdf:type Woman.

#<Man Obama>

gx-user(9): (defIndividual The44thPresidentOfUnitedStates
(hasWife Michelle))

#<Man The44thPresidentOfUnitedStates>

gx-user(10): (owl-same-p Obama The44thPresidentOfUnitedStates)
t

WhereObama andThe44thPresidentOfUnitedStates is hot same explicitly, but SWCLOS en-
tailed it because an inverse functional propérdgwife supports it.

Symmetric Property

The symmetric property implicitly defines the same relation between an object and a subject as well
as between the subject and the object. The system registers the symmetric relation to both ends
upon one assertion. See alste8.

The following shows an example of owl:SymmetricProperty.

72 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

gx-user(11): (defProperty spouse
(rdf:type owl:SymmetricProperty))
#<owl:SymmetricProperty spouse>
gx-user(12): (defIndividual Bill (spouse Hillary))
#<|rdfs:Resource| Bill>
gx-user(13): (-> Bill spouse)
#<|rdfs:Resource| Hillary>
gx-user(14): (-> Hillary spouse)
#<|rdfs:Resource| Bill>

Intersection of Concepts

The intersection of concepts turns out a subclass of each component. NarAetyQf r--- m C,
(wherei =1, ...,n), thenA C C;. The system adds every claSsto thedirect-superclasses list

of classA in CLOS from owl:intersectionOf assertions. Therefore, the subsumption computation
is primarily performed by CLOS. In addition, the strong subsumption is computedisumed-p
procedure. Note that if there is another cl8dhat partly shares the component of the intersection,
the CLOS class-superclass relation betwa&emd the clasB is adjustedfA < Bor B < Aaccording

to the inclusiveness of the intersection sets).

Union of Concepts

Inversely, the union of concepts turns out a superclass of each component. NarAedy,Gf U

---UCp (wherei = 1, ...,n), thenC; C A. The system adds clagsto the direct-superclasses list of
every clas<C; in CLOS from owl:unionOf assertions. Therefore, the subsumption computation of
owl:unionOf is performed by CLOS as well as of owl:intersectionOf. In addition, if there is another
classB that partly shares the component of the union, the CLOS class-superclass relation between
A and the clas8 is adjusted A < B or B < A according to the inclusiveness of the union sets).

Complement of Concept

The complement relation is reflexive (sede5) and entails disjointednessu{e6). The system
registers each of the complement pair with the other for complementness and disjointness.

3.4. OWL DEMONSTRATION IN SWCLOS 73

3.4 OWL Demonstration in SWCLOS

Cardinality checking

The following shows an example of entailments by the restriction of owl:allValuesFrom and owl:cardinali

(defResource Wine
(rdfs:subClassOf
owl:Thing
(owl:Restriction
(owl:onProperty hasMaker)
(owl:allValuesFrom Winery))
(owl:Restriction
(owl:onProperty hasColor)
(owl:cardinality 1))))
-> #<rdfs:Class Wine>

(defResource Color (rdf:type owl:Class)
(rdfs:subClassOf owl:Thing))

-> #<owl:Class Color>

(defIndividual Red (rdf:type Color))

-> #<Color Red>

(defIndividual White (rdf:type Color))

-> #<Color White>

(defIndividual MyHomeMadeWine
(rdf:type Wine)

(hasMaker MyHome))

-> #<Wine MyHomeMadeWine>

MyHome

-> #<Winery MyHome>

(defIndividual MyBlendedWine
(rdf:type Wine)

(hasColor Red White))

Error: cardinality constraint condition
unsatisfiable: hasColor’s max
cardinality 1 unsatisfiable with
(#<Color Red> #<Color White>).

WhereMyHome is entailed as instance @finery, because a value fdrasMaker must be so by
owl:allValuesFrom restriction, as defineditdne definition. On the other hand, the definition of
MyBlendedWine caused an error, because the cardinality restriction is inheriteddfastolor.

74 CHAPTER 3. IMPLEMENTATION OF RDF, RDFS, AND OWL ON CLOS

3.5 Concluding Remarks

In this chapter, the semantic gap between object-centric CLOS and property-centric RDF(S) was
filled by setting property resource objects in CLOS and inventing the collection mechanism for the
property extension in RDF(S) through CLOS native slot-definition facilities. Although the CLOS
type system is very close to RDFS semantics, the problem of membership loop at rdfs:Class aris-
ing from straightforward mapping of clagsstance relationship was solved by inventing a proxy of
rdfs:Class that has a twisted relation to rdfs:Class. The flexible implicit slot definition on demand
was embodied in the class-based CLOS system. In order to accept forward-reference for entities, the
novel functionality callegroactive entailmentvas realized using RDBWL entailments. The do-

main and range constraint were developed with the property inheritance mechanism and embodied
into SWCLOS.

It should be noted for readers unfamiliar with the practice of Semantic Web tools that the char-
acteristics of SWCLOS is very fierent from other tools. SWCLOS was built so as to match the
characteristics of interactive lisps. Programmers or ontologists can build ontologies interactively
on top of lisp’s Read-Eval-Print Loop (REPL) mode. Thus, if users input a piece of ontology into
SWCLOS, SWCLOS immediately evaluates it, and performs default reasoning and satisfiability
checking, whereas most of other tools read ontology files in batch mode with no warning for unsat-
isfiability, and then validation checking is invoked by users. It often results that most of people will
suffer bunch of errors.

In order to realize the OWL universe in the RDF universe, only one axiom that owl:Class have
to be a subclass of owl:Thing was added into the set of axioms, which are not stated in the OWL
description file. All semantics and functionality of OWL specification was implemented on top of
RDF(S) subsystem along with housekeeping facilities for OWL.

The dficiency of implementation is described the next chapter, and OWL Full programming is
demonstrated after the next chapter.

3.5. CONCLUDING REMARKS

75

Table 3.3: Entailment Rules added in OWL for SWCLOS

If Then
rulela vpw

V type Class Vv subtype Thing
rulelb vpw

W type Class W subtype Thing
rule2a uintersectionOf{v;...} vjtype Class
rule2b uunionOf {v;...} vj type Class
rule3 xdistinctMembers {X;...} X;type Thing
rule4 udisjointWithv

U subClassOf u U disjointWith Vv

V' subClassOfv
rule5 U complementOf v Vv complementOf u
rule6 U complementOf v vdisjointWithu
rule7 uoneOf {Xj...} Xj typeu
rule8 vallValuesFrom w

Vv onProperty p W subtype u

p range u
rule9 p type SymmetricProperty

p domain C C equivalentClass D

p range D
rule10 p equivalentProperty q gequivalentProperty p
rulell p equivalentProperty g

g equivalentPropertyr p equivalentProperty r
rulel2a pequivalentProperty q

p domain u (q domain u
rulel2b pequivalentProperty q

p range u grange u
rulel3a pinverseOfq

p domain u qrangeu
rulel3b pinverseOfq

p range u g domain u
rulel4 udisjointWithv

atypeu adifferentFromb

b type v

[This page intentionally left blank]

Chapter 4

Benchmark Test by LUBM

The dficiency of implementation is tested by Lehigh University Benchmark (LUBMHNd SWC-
LOS showed the comparable performance to other OWL reasoners reported in Guo et al. [22].
SWCLOS replied with correct answers to all LUBM queries, whereas no other reasoners but OWL-
JessKB replied correctly to all queries. It should be noted that SWCLOS is not an application
system for OWL ontology repository. It is an object oriented language for OWL modeling. All of
ontology data are maintained on memory in SWCLOS. The results also showed the requirement of
persistentization for instance objects for the purpose of the usage of ontology repository.

The rationale and elemental problems of benchmark tests for Semantic Web tools are also dis-
cussed in the discussion of related work in this chapter.

4.1 Characteristics of Lehigh University Benchmark

Generally, systems that are applicable to complex problems tends to be massive and complex.
Therefore, it is dificult to manage ontologies against both complexity and scalability, but coping
with them has been recently becoming a critical problem in Semantic Webs.

LUBM is designed to test the scalability of ABox or a set of instances. The ontology of univer-
sity domain in LUBM is categorized to OWL Lite level, whereas the ABox, which can be artificially
generated by a program, may be large and the sizes can be varied. Therefore, it is suitable to test
ABox scalability for variable sizes of ABox as database where the underlying class schema (TBox)
is shared by all sets of ABox test data. Therefore, it is not available to test the scalability of TBox.

http://swat.cse.lehigh.edu/projects/lubm/

77

78 CHAPTER 4. BENCHMARK TEST BY LUBM

Thus, LUBM is not suitable to tableaux based systems like Rauat Pellet, and other Descrip-

tion Logic based systems like KAON2whereas these tools were tested and reported for LUBM

by tool's developer themselves. As well, it should be noted that the aim of LUBM is not suitable to
test SWCLOS, an object-oriented programming language for Semantic Webs. However, it is worth
comparing SWCLOS to memory-based OWL reasoners reported by Guo, et al. [22] for two reasons.
First, there is no other appropriate benchmark test reports yet, and second, it suggests the way of
improvement of SWCLOS language system.

4.1.1 Characteristics of University Domain in LUBM

As mentioned above, LUBM domain ontology falls into OWL Lite. However, there is no entry for
owl:sameAs and no owl:hasValue restriction. There are some OWL specific features as follows.

owl:TransitiveProperty: ub:subOrganizationOf is a transitive property.

owl:inverseOf: There are two inverse property relationshipsb :hasAlumnus, ub: degreeFrom>

and<ub:member0Of, ub:member>.
In addition, there are five subproperty relationships as follows.

1. ub:doctoralDegreeFrom is a subproperty ofib:degreeFrom.

2. ub:mastersDegreeFrom is a subproperty ofib: degreeFrom.

3. ub:undergraduateDegreeFrom is a subproperty ofib: degreeFrom.
4. ub:headOf is a subproperty ofb: worksFor.

5. ub:worksFor is a subproperty ofib : memberOf.

Therefore, the treatment of these properties is critical to obtain right answers for queries.

4.2 Queries for Benchmark Test in LUBM

Guo, et al. set up 14 queries for a university domain ontology. Most of them are for testing the
extensionality, that is, queries for instances that satisfy some conditions. Each of queries are de-
scribed below in simple SPARQLforms and SWCLOS query programs, which are encoded so as

’http://www.racer-systems.com/products/racerpro/index.phtml
Shttp://www.mindswap.org/2003/pellet/index. shtml

4h'ctp ://kaon2.semanticweb.org/
Shttp://www.w3.org/TR/rdf-sparql-query/

78 CHAPTER 4. BENCHMARK TEST BY LUBM

Thus, LUBM is not suitable to tableaux based systems like Rauat Pellet, and other Descrip-

tion Logic based systems like KAON2whereas these tools were tested and reported for LUBM

by tool's developer themselves. As well, it should be noted that the aim of LUBM is not suitable to
test SWCLOS, an object-oriented programming language for Semantic Webs. However, it is worth
comparing SWCLOS to memory-based OWL reasoners reported by Guo, et al. [22] for two reasons.
First, there is no other appropriate benchmark test reports yet, and second, it suggests the way of
improvement of SWCLOS language system.

4.1.1 Characteristics of University Domain in LUBM

As mentioned above, LUBM domain ontology falls into OWL Lite. However, there is no entry for
owl:sameAs and no owl:hasValue restriction. There are some OWL specific features as follows.

owl:TransitiveProperty: ub:subOrganizationOf is a transitive property.

owl:inverseOf: There are two inverse property relationshipsb :hasAlumnus, ub: degreeFrom>

and<ub:member0Of, ub:member>.
In addition, there are five subproperty relationships as follows.

1. ub:doctoralDegreeFrom is a subproperty ofib:degreeFrom.

2. ub:mastersDegreeFrom is a subproperty ofib: degreeFrom.

3. ub:undergraduateDegreeFrom is a subproperty ofib: degreeFrom.
4. ub:headOf is a subproperty ofb: worksFor.

5. ub:worksFor is a subproperty ofib : memberOf.

Therefore, the treatment of these properties is critical to obtain right answers for queries.

4.2 Queries for Benchmark Test in LUBM

Guo, et al. set up 14 queries for a university domain ontology. Most of them are for testing the
extensionality, that is, queries for instances that satisfy some conditions. Each of queries are de-
scribed below in simple SPARQLforms and SWCLOS query programs, which are encoded so as

’http://www.racer-systems.com/products/racerpro/index.phtml
Shttp://www.mindswap.org/2003/pellet/index. shtml

4h'ctp ://kaon2.semanticweb.org/
Shttp://www.w3.org/TR/rdf-sparql-query/

4.2. QUERIES FOR BENCHMARK TEST IN LUBM 79

to simulate the behavior of SPARQL query language as much as possible.

Query 1. This query simply retrieves graduate students who GaledluateCourse® in Department®

of University®. The computational time is less th@fgurduatestuden)s The number of grad-

uate students are large but the selection condition is highly selective. In SPARQL and SWCLOS,
this query is written as follows.

SELECT 7X
WHERE
{?X rdf:type ub:GraduateStudent.
?X ub:takesCourse http://www.Department®.University0.edu/GraduateCourse®}

(defun q1 O
(loop for student in (collect-all-instances-of ub::GraduateStudent) with results
when (member ub::Department®.University0.GraduateCourse0
(mklist (get-value student ub::takesCourse)))
do (push student results)
finally (return results)))

Query 2. This query requires a specific triangle relationship among three kinds of entities. In
this case, the computational time in simple encoding wildggraduatestudentg universitiesx
departmentk It amounts up t@®(1874x979x15) = O(0.275x10®) even in LUBM(1,0). Therefore,

the lisp code is modified simply to reduce the computational time.

SELECT ?X, ?Y, ?Z
WHERE
{?X rdf:type ub:GraduateStudent.
?Y rdf:type ub:University.
?Z rdf:type ub:Department.
?X ub:memberOf ?Z.
?Z ub:subOrganizationOf ?Y.
?X ub:undergraduateDegreeFrom ?Y}

(defun q2.1 O
(let ((students (collect-all-instances-of ub::GraduateStudent))
(universities (collect-all-instances-of ub::University)))
(loop for student in students with results
do
(loop for department in (mklist (get-value student ub::memberOf))
when (typep department ub::Department)
do
(loop for university in universities
when (and (member university
(mklist (get-value student

80 CHAPTER 4. BENCHMARK TEST BY LUBM

ub: :undergraduateDegreeFrom)))
(member university
(mklist (get-value department
ub: :subOrganization0f))))
do (push (list student university department) results)))
finally (return results))))

Query 3. This is analogous to Query 1 but the input data are rather small and the selection condi-
tion is broad.

SELECT ?X
WHERE
{?X rdf:type ub:Publication.
?X ub:publicationAuthor http://www.Department®.University®.edu/AssistantProfessor0}

(defun g3 O
(loop for publication in (collect-all-instances-of ub::Publication) with results
when (member ub::Department®.University0.AssistantProfessor®
(mklist (get-value publication ub::publicationAuthor)))
do (push publication results)
finally (return results)))

Query 4. This question looks like requiring large amount of computational tin@(pfro fessors
names emailaddressestele phones However, supposing the number of names, emailaddresses,
and telephones are one, it becorépro fessory Note that this question assumes rdfs:subClassOf
relationship betweenb:Professor and its subclasses.

SELECT ?X, ?Y1, ?Y2, ?Y3
WHERE
{?X rdf:type ub:Professor.
?X ub:worksFor <http://www.Department®.University®.edu>.
?X ub:name ?Y1.
?X ub:emailAddress 7?Y2.
?X ub:telephone ?7Y3}

(defun g4 O
(loop for professor in (collect-all-instances-of ub::Professor) with results
when (member ub::Department®.University®0.
(mklist (get-value professor ub::worksFor)))
do (loop for name in (mklist (get-value professor ub::name))
do
(loop for email in (mklist (get-value professor ub::emailAddress))
do
(loop for tel in (mklist (get-value professor ub::telephone))
do (push (list professor name email tel)

4.2. QUERIES FOR BENCHMARK TEST IN LUBM 81

results))))
finally (return results)))

Query 5. This question looks simple. However, it assumes the combination of class hierarchy of
ub:Person and property hierarchy afb :memberOf. So, it is internally complex in inference.

SELECT ?X
WHERE
{?X rdf:type ub:Person.
?X ub:memberOf <http://www.Department®.University0.edu>}

(defun q5 O
(loop for person in (collect-all-instances-of ub::Person) with results
when (member ub::Department®.University®0.
(mklist (get-value person ub:member0f)))
do (push person results)
finally (return results)))

Query 6. This question looks quite simple described below.

SELECT ?X
WHERE
{?X rdf:type ub:Student}

(defun g6 O
(collect-all-instances-of ub::Student))

However, it assumes the implicit sugmrbclass relation betweeib : GraduateStudent and
ub: Student in addition to the explicit one betweab : UndergraduateStudent andub: Student.
ub:Student is defined as an intersection ab:Person and the restriction ofib: Course on
ub: takesCourse. By contrastub:GraduateStudent is defined as a subclass of baih: Person
and restriction ofib: GraduateCourse onub: takesCourse. See the following definitions.

(owl:Class ub:Student (rdfs:label "student™)
(owl:intersectionOf ub:Person
(owl:Restriction (owl:onProperty ub:takesCourse)
(owl:someValuesFrom ub:Course))))

(owl:Class ub:GraduateStudent (rdfs:label "graduate student™)
(rdfs:subClassOf ub:Person
(owl:Restriction (owl:onProperty ub:takesCourse)
(owl:someValuesFrom ub:GraduateCourse))))

82 CHAPTER 4. BENCHMARK TEST BY LUBM

Although there are no explicit relation betweah: Student andub:GraduateStudent in the
semantics of RDF, in OWlb:Student is a superclass afb:GraduateStudent, because a per-

son who takes ab:Course is a student due towl:intersectionOf complete relation, and
ub:GraduateStudent is a person who takes : GraduateCourse that is a subclass ob : Course.

See the following demonstration example in SWCLOS. The systems must infer these implicit sub-
sumption combined with another sufsibclass relation.

gx-user(4): (rdf-subtypep ub:GraduateStudent ub:Student)
nil

t

gx-user(5): (subsumed-p ub:GraduateStudent ub:Student)

t

t

Query 7. This query is for students who take courses\byociateProfessor® of Department®
in University®. This query includes a query for matching a constant subject in triple.

SELECT ?X, ?Y
WHERE
{?X rdf:type ub:Student.
?Y rdf:type ub:Course.
?X ub:takesCourse ?Y.
<http://www.Department®.University0.edu/AssociateProfessor®> ub:teacherOf ?Y}

(defun q7 O
(loop for student in (collect-all-instances-of ub::Student) with results
and courses = (mklist (get-value
ub: :Department®.University0.AssociateProfessor®
ub: :teacher0Of))
do
(loop for course in courses
when (member course (mklist (get-value student ub::takesCourse)))
do (push (list student course) results))
finally (return results)))

Query 8. This question is similar Query 7 rather than Query 2, and more complex than Query 7
by adding one more property. However, SWCLOS results vefermdintly than other reasoners as
shown below. The analysis of this distinction will be presented at a subsection below.

SELECT ?X, ?Y, ?Z
WHERE
{?X rdf:type ub:Student.
?Y rdf:type ub:Department.

4.2. QUERIES FOR BENCHMARK TEST IN LUBM 83

?X ub:memberOf ?Y.
?Y ub:subOrganizationOF <http://www.University0.edu>.
?X ub:emailAddress ?Z}

(defun q8 (O
(let ((students (collect-all-instances-of ub::Student)
(departments (collect-all-instances-of ub::Department))))
(loop for department in departments with results
when (member ub::University®.
(mklist (get-value department ub::subOrganizationOf)))
do
(loop for student in students
when (member department
(mklist (get-value student ub::member0f)))
do
(loop for email in (mklist (get-value student ub::emailAddress))
do (push (list student department email)
results)))
finally (return results))))

Query 9. This query handles a triangle relationship among three kinds of entities like Query 2.
In this case, the straightforward encoding from the SPARQL query form proddadentsx
facultiesx course$. Evenin LUBM(1,0) it is up taO(7790x 1627x 540) = O(0.68x 10'°). How-

ever, refactoring the straightforward encoding for student’s advisor is easy to obtaifficieney.
Therefore, the lisp code is modified apart from straightforward mapping from SPARQL.

SELECT ?X, ?Y, ?Z

WHERE
{?X rdf:type ub:Student.
?Y rdf:type ub:Faculty.
?Z rdf:type ub:Course.
?X ub:advisor ?Y.
?Y ub:teacherOf ?Z.
?X ub:takesCourse ?Z}

(defun q9.1 O
(loop for student in (collect-all-instances-of ub::Student) with results
do
(loop for faculty in (mklist (get-value student ub:advisor))
when (typep faculty ub:Faculty)
do
(loop for course in (mklist (get-value faculty ub:teacherOf))
when (and (typep course ub:Course)
(member course
(mklist
(get-value student ub:takesCourse))))

84 CHAPTER 4. BENCHMARK TEST BY LUBM

do (push (list student faculty course)
results)))
finally (return results)))

Query 10. This query is simpler than Query 7, but it requires the implicit s(gudaclass relation-
ship betweemb: GraduateStudent andub: Student as well as Query 6. Additionally, it is more
complex than Query 6 by query for one more property.

SELECT ?X
WHERE
{?X rdf:type ub:Student.
?X ub:takesCourse <http://www.Department®.University0.edu/GraduateCourse®>}

(defun q10 (O
(loop for student in (collect-all-instances-of ub::Student)
when (member ub::Department®.University0.GraduateCourse0
(mklist (get-value student ub::takesCourse)))
collect student))

Query 11. This query form is similar to Query 1. The number of entities are small, but this query
assumes the transitive propertyudf: subOrganizationOf. Note thatsubsumed-p in SWCLOS
computes the transitivity of individuals on transitive properties. See Subsection 3.3.5.

SELECT 7X
WHERE
{?X rdf:type ub:ResearchGroup.
?X ub:subOrganizationOf <http://www.University0.edu>}

(defun ql11 O
(loop for research-group in (collect-all-instances-of ub::ResearchGroup)
when (some #’(lambda (x) (subsumed-p x ub::University®.))
(mklist (get-value research-group ub::subOrganizationOf)))
collect research-group))

Query 12. This query is highly OWL specificub:Chair has no direct instances and no direct
subclasses. Therefore, the class extension is implicit. Notaith&@hair is defined as a subclass

of ub:Professor and it is defined such as a chair is a professor who has a progerheadof

for someub:Department. Thus, the system must infer that a professor who has a head property of
some department is an instance of classChair.

SELECT ?X, ?Y
WHERE

4.2. QUERIES FOR BENCHMARK TEST IN LUBM 85

{?X rdf:type ub:Chair.

?Y rdf:type ub:Department.

?X ub:worksFor ?Y.

?Y ub:subOrganizationOf <http://www.Department®.edu>}

(defun ql12 O
(loop for chair in (collect-all-instances-of ub::Chair) with results
do
(loop for department in (mklist (get-value chair ub::worksFor))
when (and (typep department ub::Department)
(member ub::University®.
(mklist
(get-value department ub::subOrganizationOf))))
do (push (list chair department) results))
finally (return results)))

Query 13. This query assumes the combination of owl:inverseOf and rdfs:subPropertyOf con-
structs. Note that there is no explicit property extensiontbbohasAlumnus. Howeverub : hasAlumnus

is an inverse ofib: degreeFrom. Furthermoreyb: degreeFrom is a superproperty of three proper-
ties,ub:doctoralDegreeFrom, ub:mastersDegreeFrom, andub:undergraduateDegreeFrom.

The system must infer these relationship correctly.

SELECT ?X

WHERE
{?X rdf:type ub:Person.
<http://www.University®.edu> ub:hasAlumnus 7X}

(defun q13 O
(loop for person in (collect-all-instances-of ub:Person) with results
and values = (mklist (get-value ub::University®. ub::hasAlumnus))
do
(loop for val in values
when (rdf-equalp person val)
do (push person results))
finally (return results)))

Query 14. This query is the simplest in the test query set. It assumes no OWL specific fea-
tures and no RDFS hierarchical structures. Note titatindergraduateStudent has no sub-
classes. Thus, in this case, SWCLOS only retrieve the pointer to the list of direct instances of
ub:UndergraduateStudent.

SELECT 7X
WHERE

86 CHAPTER 4. BENCHMARK TEST BY LUBM

Table 4.1: LUBM Benchmark Loading Time (dd:hh:mm:ss)

- Triples# OWLJessKkB-NF SWCLOS CPU1 SWCLOS CPU2 SWCLOSCPU3 SWCLOS CPU4
LUBM(1,0) 103,397 00:02:19:18 00:00:11:31 00:00:06:36 00:00:03:06 00:00:01:43
LUBM(5,0) 646,128 - 00:27:14:00 00:15:26:00 00:08:42:00 00:04:54:00
LUBM(10,0) 1,316,993 - 08:13:00:00 05:03:00:00 02:18:00:00 01:13:00:00

OWLJessKB-NP: Pentium 4 CPU 1.8GHz, 256MB RAM, Windows XP Professional

SWCLOS CPU1: Pentium 4 CPU 1.50GHz, 256MB RAM, Windows XP Home Edition SP2

SWCLOS CPU2: Celeron CPU 2.53GHz, 512MB RAM, Windows XP Professional SP3
SWCLOS CPU3: Core 2 1.64..66GHz, 0.99GB RAM, Windows XP Professional SP3
SWCLOS CPU4: Core 2 2.92.93GHz, 1.94GB RAM, Windows XP Professional SP3

{?X rdf:type ub:UndergraduateStudent}

(defun q14 O
(collect-all-instances-of ub::UndergraduateStudent))

4.3 Experimental Results

4.3.1 Loading of LUBM

The loading times of LUBM are summarized in Table 4.1 with the size of LUBM ontologies and
the loading time of OWLJessKB-NP, which is a non-persistent version of OWLJessKB. Note that
OWLJessKB is only one that replied correct answers for all queries in the LUBM report [22] and
also note that the CPU clock and memory size for OWLJessKB-NPflisreint from SWCLOS
CPU1, CPU2, CPU3, and CPU4. However, it is reasonable to compare the performance of OWL-
JesskB to an intermediate value between CPU1 and CPU2 by reason of their clock and memory
size.

OWLJesskKB-NP takes approximately 10 times to load LUBM(1,0) ontology than SWCLOS.
Furthermore, OWLJessKB cannot load LUBM(5,0) and LUBM(10,0). The other reasoners than
OWLJessKB in the LUBM report can load larger ontologies, LUBM(10,0) and LUBM(20,0), but
all of them cannot answer correctly for some queries. See the detail in Guo et al. [22]. In case of
SWCLOS, LUBM(5,0), and LUBM(10,0) are also loadable even for CPUL.

4.3. EXPERIMENTAL RESULTS 87

4.3.2 Results for Queries

The results for queries are listed at Table 4.2 for LUBM(1,0), Table 4.3 for LUBM(5,0), and Table
4.4 for LUBM(10,0) with the report data in [22] for the comparison. Sesami fails to answer for
Query 6 to 13. It suggests that Sesami cannot be equipped for highly OWL specific functionalities
such as implicit extensionality. DLDB-OWL fails to answer for Query 11 to 13. It might implies
that inference on transitive property and sypelp property are not correctly devised.

Note that generally DLDB-OWL (databased) and Sesami (memory-based and databased) are
faster than OWLJessKB, but those systems do not reply correctly for queries. It deserves to note
that the computational capability generally shows tréidesdationship to computationatieciency.
Therefore, OWLJessKB-NP (memory-based) is suitable to compardtibiercy with SWCLOS,
because both are fully equipped for inference that LUBM requires. The CPU speed of the machine
used in the tests is fierent among SWCLOS and [22], but it is reasonable that Guo’s numbers is
compared to an intermediate value between SWCLOS CPU1 and CPU2 by their CPU clock and
memory size.

Roughly speaking, the test results showed the computatifi@éacy of SWCLOS is compara-
ble to other tools, especially in comparison to OWLJessKB-NP. For LUBM(5.0) and LUBM(10,0),
OWLJessKB was not tested, since it failed to load test data. Note that at the time of [22] reported
Racer cannot load LUBM dafaNote that we had no expansion of heap memory of Allegro Com-
mon Lisp 8.1.

Meanwhile, the results of SWCLOS showed some distinctive results about Query 2, 5, 8, and
13 in comparison with other queries. We analyze the reason of the distinctive behavior of SWCLOS
in the next subsection.

4.3.3 Analysis of Distinctive Results
Refactoring query codes

Generally, more query variables in SPARQL forms, more complex query codes. However, in case
no dependency among query variables, it amounts to actually simple codes, even if the code includes
many loops like Query 4. Exactly, the complexity of query form in Query 4 is the same as Query
1. In both, substantial task is finding ou'® bound values that satisfy the given conditions. By
contrast, higher dependent relations such as Query 2 and Query 9, which show the triangle relations
among query variables, are exactly more complex.

6]t was tested for Racer by developer themselves. See the section 4.5 and Haarslev et al. [23]

88 CHAPTER 4. BENCHMARK TEST BY LUBM

Table 4.2: LUBM(1,0) Benchmark Test Results

Query unit DLDB Sesame Sesame OwL OwL SWCLOS SWCLOS SWCLOS SWCLOS
-OWL -DB -Memory JessKB-P JessKB-NP CPU1 CPU2 CPU3 CPU4
1 ms 59 46 15 9,203 200 83 63 27 16
ans 4 4 4 4 4 4 4 4 4

2 ms 181 51,878 87 11,6297 3,978 75,154 54,818 21,328 12,047
ans 0 0 0 0 0 0 0 0 0
3 ms 218 40 0 13,990 164 250 187 73 31
ans 6 6 6 6 6 6 6 6 6
4 ms 506 768 6 211,514 8,929 547 412 177 109
ans 34 34 34 34 34 34 34 34 34
5 ms 617 2,945 17 5,929 475 22,146 14,281 9,063 5,125
ans 719 719 719 719 719 719 719 719 719
6 ms 481 253 48 1,271 112 52 47 21 16
ans 7,790 5,916 5,916 7,790 7,790 7,790 7,790 7,790 7,790
7 ms 478 603 3 128,115 67 1,583 1,141 432 250
ans 67 59 59 67 67 67 67 67 67

8 ms 765 105,026 273 164,106 4,953 285,291 182,922 120,370 68,109
ans 7,790 5,916 5,916 7,790 7,790 7,790 7,790 7,790 7,790
9 ms 634 3,4034 89 87,475 2,525 974 703 281 156
ans 208 103 103 208 208 208 208 208 208
10 ms 98 20 1 141 4 443 323 130 78
ans 4 0 0 4 4 4 4 4 4
11 ms 48 65 1 1,592 45 62 41 16 16
ans 0 0 0 224 224 224 224 224 224
12 ms 62 4,484 12 11,266 162 521 381 172 94
ans 0 0 0 15 15 15 15 15 15
13 ms 200 4 1 90 1 15,427 11,875 5,021 2,812
ans 0 0 0 1 1 1 1 1 1
14 ms 187 218 42 811 20 5 0 0 0
ans 5,916 5,916 5,916 5,916 5,916 5,916 5,916 5,916 5,916

ms: milli-second, ans: number of answers
SWCLOS CPUL1: Pentium 4 CPU 1.50GHz, 256MB RAM, Windows XP Home Edition SP2
SWCLOS CPU2: Celeron CPU 2.53GHz, 512MB RAM, Windows XP Professional SP3
SWCLOS CPU3: Intel Core 2 1.68.66GHz, 0.99GB RAM, Windows XP Professional SP3
SWCLOS CPU4: Intel Core 2 2.92.93GHz, 1.94GB RAM, Windows XP Professional SP3
not SWCLOS: Pentium4 CPU 1.80GHz, 256MB RAM, Windows XP Professional

4.3. EXPERIMENTAL RESULTS

Table 4.3: LUBM(5,0) BenchMark Test Results

89

Query unit DLDB Sesame Sesame SWCLOS SWCLOS SWCLOS SWCLOS
-OWL -DB -Memory CPU1 CPU2 CPU3 CPU4
1 ms 226 43 37 765 438 188 109
ans 4 4 4 4 4 4 4
2 ms 2,320 368,423 495 484,172 345,032 129,375 72,703
ans 9 9 9 9 9 9 9
3 ms 2,545 53 1 1,515 1,093 375 219
ans 6 6 6 6 6 6 6
4 ms 2,498 823 4 3,296 2,391 1,063 609
ans 34 34 34 34 34 34 34
5 ms 4,642 3,039 17 238,735 154,562 95,641 53,704
ans 719 719 719 719 719 719 719
6 ms 4,365 1,517 251 391 266 125 63
ans 48,582 36,682 36,682 48,582 48,582 48,582 48,582
7 ms 2,639 636 4 9,234 6,797 2,375 1,344
ans 67 59 59 67 67 67 67
8 ms 3,004 108,384 262 | 3,179,687 2,050,579 1,294,375 737,453
ans 7,790 ,916 5,916 7,790 7,790 7,790 7,790
9 ms 7,751 256,770 534 5,782 4,407 1,484 859
ans 1,245 600 600 1,245 1,245 1,245 1,245
10 ms 1,051 36 0 2,594 1,921 735 406
ans 4 0 0 4 4 4 4
11 ms 51 73 1 422 297 110 63
ans 0 0 0 224 224 224 224
12 ms 78 4,659 14 3,156 2,375 1,016 594
ans 0 0 0 15 15 15 15
13 ms 2,389 9 1 333,969 210,843 94,484 52,344
ans 0 0 0 1 1 1 1
14 ms 2,937 1,398 257 31 31 0 16
ans 36,682 36,682 36,682 36,682 36,682 36,682 36,682

ms: milli-second, ans: number of answers

SWCLOS CPUL1ibid.
SWCLOS CPU2ibid.
SWCLOS CPUS3ibid.
SWCLOS CPU4ibid.

not SWCLOSbid.

90

Table 4.4: LUBM(10,0) BenchMark Test Results

CHAPTER 4. BENCHMARK TEST BY LUBM

Query unit DLDB Sesame Sesame SWCLOS SWCLOS SWCLOS SWCLOS
-OWL -DB -Memory CPU1 CPU2 CPU3 CPU4
1 ms 412 40 106 1,172 922 344 203
ans 4 4 4 4 4 4 4
2 ms 14,556 711,678 1,068 1,009,563 710,781 280,141 154,516
ans 28 28 28 28 28 28 28
3 ms 5,540 59 0 3,079 2,156 734 407
ans 6 6 6 6 6 6 6
4 ms 5,615 762 4 6,610 4,937 2,094 1,203
ans 34 34 34 34 34 34 34
5 ms 11,511 3,214 17 758,391 472,328 302,953 167,250
ans 719 719 719 719 719 719 719
6 ms 11,158 3,539 543 781 546 235 125
ans 99,566 75,547 75,547 99,566 99,566 99,566 99,566
7 ms 7,028 5,916 4 18,656 13,437 4,516 2,531
ans 67 59 59 67 67 67 67
8 ms 5,937 108851 264 | 10,084,219 6,391,422 4,229,938 2,322,890
ans 7,790 5,916 5,916 7,79 7,790 7,790 7,790
9 ms 19,971 460,267 1,123 11,344 8,421 2,953 1,657
ans 2,540 1,233 1,233 2,540 2,540 2,540 2,540
10 ms 2,339 40 0 5,750 3,812 1,344 765
ans 4 0 0 4 4 4 4
11 ms 61 84 3 875 562 281 125
ans 0 0 0 224 224 224 224
12 ms 123 4,703 12 6,469 4,719 2,062 1,171
ans 0 0 0 15 15 15 15
13 ms 5,173 12 1 1,953,141 764,141 363,000 197,406
ans 0 0 0 1 1 1 1
14 ms 7,870 3,831 515 78 63 31 15
ans 75,547 75,547 75,547 75,547 75,547 75,547 75,547

ms: milli-second, ans: number of answers

SWCLOS CPUL1ibid.
SWCLOS CPU2ibid.
SWCLOS CPU3ibid.
SWCLOS CPU4ibid.

not SWCLOSibid.

4.3. EXPERIMENTAL RESULTS 91

In the experiment of benchmarking described above, the straightforward mapping from SPARQL
forms may cause huge amount of computational time. Therefore, such codes are simply modified
by looking the textual expressions. For example, Suppose we obtained an code such that;

(defun query (O
(let ((xx (collect-all-instances-of ClassX))
(yy (collect-all-instances-of ClassY))
(zz (collect-all-instances-of ClassZ)))
(loop for x in xx with results
do (loop for y in yy
do (loop for z in zz
do (when (and --satisify-given-condition-for-x--
--satisify-given-condition-for-y--
--satisify-given-condition-for-z--)
(push (list x y z) results))))
finally (return results)))).

In case of findingyy only dependsx in -satisify-given-condition-for-y-, it may be tai-
lored such as;

(defun query (O

(let ((xx (collect-all-instances-of ClassX))
(zz (collect-all-instances-of ClassZ)))

(loop for x in xx with results

do (loop for y in --satisify-given-condition-for-y--
do (loop for z in zz
do (when (and --satisify-given-condition-for-x--
--satisify-given-condition-for-z--)
(push (list x y z) results))))
finally (return results)))).

This tailoring reduces the computational timeQn; x n’, x nz) from O(ny X nz X nz), whereny, ny,
andng is a number of entities of three kinds, respectively, Bt a number of satisfiable entities
for the given condition. Thus, the lisp codes of Query 2 and 9 are simply modified in order to reduce
the computational time. See two lisp codgs 1 andq9. 1 described above.

For Query 2, we might be able to furthermore improve tiieiency. Fig.4.1 depicts the triangle
structure in Query 2. As shown here, an instancghofcraduateStudent will be a subject for not
only ub:memberOf triple but alsoub: underGraduateFrom triple, and there is a dependency of a
student to a departmenta department to a university. Therefore, we can make a match between
two computational values for universities against a student and a department. The following code
g2 .2 is a newly modified code for Query 2 for pursuing the dependency.

92 CHAPTER 4. BENCHMARK TEST BY LUBM

agraduate student

undergraduateDe memberOf

subOrganizationOf
a university a department

Fig. 4.1: Triangle Structure of Q2.

(defun q2.2 O
(loop for student in (collect-all-instances-of ub::GraduateStudent) with results
do
(loop for department in (gx::mklist (get-value student ub::memberOf))
when (typep department ub::Department)
do
(loop for university in (gx::mklist (get-value department ub::subOrganizationOf))
do
(when (member university
(gx::mklist (get-value student ub::undergraduateDegreeFrom)))
(push (list student university department) results))))
finally (return results)))

As well as Query 2, Query 8 can be analyzed from the data dependency. The&tsted
above for Query 8 was distorted from straightforward encoding. The structure of Query 8 is depicted
in Fig. 4.2. Then, we could improve théieiency by pursuing regularly dependency from students
to departments. The following shows the dependency code for Query 8.

agraduate student

emailAddress

memberOf
an emailAddress

subOrganizationOf
University0 a department

Fig. 4.2: Triangle Structure of Q8.

(defun 8.1 O
(let ((students (collect-all-instances-of ub::Student))
(departments (collect-all-instances-of ub::Department)))
(loop for student in students with results
do
(loop for department in (gx::mklist (get-value student ub::memberOf))

when (typep department ub::Department)
do

4.3. EXPERIMENTAL RESULTS 93

Table 4.5: Results of Refactoring Lisp Query Code for LUBM(1,0)

Query unit DLDB Sesame Sesame OWL OWL SWCLOS SWCLOS SWCLOS SWCLOS
-OWL -DB -Memory JesskKB-P JesskB-NP CPU1 CPU2 CPU3 CPU4
2 ms 181 51,878 87 11,6297 3,978 4,844 3,328 2,062 1,321
ans 0 0 0 0 0 0 0 0 0
8 ms 765 105,026 273 164,106 4,953 19,500 13,297 8,781 5,407
ans 7,790 5,916 5,916 7,790 7,790 7,790 7,790 7,790 7,790

ms: milli-second, ans: number of answers

SWCLOS CPUL1: Pentium 4 CPU 1.50GHz, 256MB RAM, Windows XP Home Edition SP2

SWCLOS CPU2: Celeron CPU 2.53GHz, 512MB RAM, Windows XP Professional SP3
SWCLOS CPU3: Core 2 1.64.66GHz, 0.99GB RAM, Windows XP Professional SP3
SWCLOS CPU4: Core 2 2.92.93GHz, 1.94GB RAM, Windows XP Professional SP3

not SWCLOS: Pentium4 CPU 1.80GHz, 256MB RAM, Windows XP Professional

(when (member ub::University®.
(gx::mklist (get-value department ub::subOrganizationOf)))
(loop for email in (gx::mklist (get-value student ub::emailAddress))
do (push (list student department email) results))))
finally (return results))))

The results of this refactoring for LUBM(1,0) are summarized in Table 4.5. The computational
time is reduced more than 10 times in comparison with Table 4.2.

Backpointers of predicates and objects

As described above, the improvement fdi@ency was obtained by manual refactoring for Query

2 and 8 by pursuing the data dependency in triples. However, iffisudt that machines analyze
structures of SPARQL query forms and automatically compile them and proffigierd lisp codes.

In case of Query 2 and 8, if we have backpointers on syipjexticatgobject triples, machines

can easily compile SPARQL query forms without dependency analysis, since we can obtain any
subject values associated to any objects with respect to some predicate. Eventually, it makes easy
to produce #icient codes. The following code of CLOS method automatically adds backpointers
from an object to subjects in SWCLOS with respect to every predicate that points the object from
the subjects. Them2 andgq8 may be changed taq2 andqq8, respectively by leveraging these
backpointers.

(defmethod shared-initialize :after ((instance gnode) slot-names &rest initargs)
(declare (ignore slot-names initargs))
(typecase instance
(rdfs:Datatype nil)
(rdfs:Literal nil)

94 CHAPTER 4. BENCHMARK TEST BY LUBM

(owl:Restriction nil)
(rdfs:Resource
(let* ((class (class-of instance))
(slotds (mop:class-slots class)))
(dolist (slotd slotds)
(let ((slot-name (mop:slot-definition-name slotd)))
(when (slot-boundp instance slot-name)
(let ((val (slot-value instance slot-name)))
(typecase val
(rdfs:Datatype nil)
(rdfs:Literal nil)
(owl:Restriction nil)
(rdfs:Resource
(let* ((inv-plist (slot-value val ’inv-plist))
(inv-vals (getf inv-plist slot-name)))
(cond (inv-vals (pushnew instance inv-vals))
(t (setq inv-vals (list instance))))
(setf (getf inv-plist slot-name) inv-vals)
(setf (slot-value val ’inv-plist) inv-plist)))))I))))))

(defun qq2 O
(loop for university in (collect-all-instances-of ub::University)
as students =
(remove-if-not #’(lambda (x) (typep x ub::GraduateStudent))
(getf (slot-value university ’'gx::inv-plist)
"ub: :undergraduateDegreeFrom))
as departments =
(remove-if-not #’(lambda (x) (typep x ub::Department))
(getf (slot-value university ’gx::inv-plist)
"ub: : subOrganizationOf))
append
(loop for student in students
as belong = (get-value student ub:memberOf)
when (member belong departments)
collect (list student university belong))))

(defun qq8 (O
(let ((departments
(remove-if-not #’(lambda (x) (typep x ub::Department))
(getf (slot-value ub::University®. ’gx::inv-plist) ’ub::subOrganization0f))))
(loop for department in departments
append
(let ((students
(remove-if-not #’ (lambda (x) (typep x ub::Student))
(getf (slot-value department ’gx::inv-plist) ’ub::member0f))))
(loop for student in students
append
(loop for email in (gx::mklist (get-value student ub::emailAddress))

4.3. EXPERIMENTAL RESULTS 95

Table 4.6: Query Results by Backpointer for LUBM(1,0)

Query unit DLDB Sesame Sesame OWL OWL SWCLOS SWCLOS SWCLOS SWCLOS
-OWL -DB -Memory JesskKB-P JesskB-NP CPU1 CPU2 CPU3 CPU4
2 ms 181 51,878 87 11,6297 3,978 4,688 3,172 1,906 1,125
ans 0 0 0 0 0 0 0 0 0
8 ms 765 105,026 273 164,106 4,953 390 250 94 63
ans 7,790 5,916 5,916 7,790 7,790 7,790 7,790 7,790 7,790

ms: milli-second, ans: number of answers

SWCLOS CPUL1: Pentium 4 CPU 1.50GHz, 256MB RAM, Windows XP Home Edition SP2

SWCLOS CPU2: Celeron CPU 2.53GHz, 512MB RAM, Windows XP Professional SP3
SWCLOS CPU3: Core 2 1.64.66GHz, 0.99GB RAM, Windows XP Professional SP3
SWCLOS CPU4: Core 2 2.92.93GHz, 1.94GB RAM, Windows XP Professional SP3

not SWCLOS: Pentium4 CPU 1.80GHz, 256MB RAM, Windows XP Professional

collect (list student department email)))))))

These codesig2 andqq8, might look messy but they are actually simple and may be rearranged
by introducing appropriate internal functions. It is easier for machines to produce such lisp codes
from SPARQL forms. The results of these queries by leveraging the backpointers are summarized in
Table 4.6. As you can see, it is approximately 1000 tinfésient for Query 8 than Table 4.2. This
drastic d€ficiency improvement is obtained by firstly getting the subject value associated to constant
objectub:University®. In such a case, generalf(n; x nyr x nz) is reduced td(n1 x 1 x ng).

Memoization for Data Caching

In case such that query forms are simple but the inferences are complex, refactorindiieativee

Fig. 4.3 shows the result of analysis of Query 5 by Allegro Common Lisp Code Analyzer. As shown
here, 90% of computational time is spent for the executiorodfiect-all-extensions-of. We

know that LUBM ontology does not change in the query process. Therefore, memoiediciting
results of function execution) will beffective. The memoization process is very simple. It only
needs to invoke functiomemoize for the function to be memoized before the function execution.
The result of memoization of functiorpllect-all-extensions-of is summarized in Table 4.7

for all of queries in LUBM(1,0). The query execution was carried out twice successively. The
execution time of Query 5 is drastically reduced in comparison with Table 4.2. The time for Query
13 is drastically reduced from the 1st execution to 2nd execution.

’Not memorization. For example, stRaradigms of Artificial Intelligence Programming: Case Studies in Common
Lisp” (Peter Norvig).

CHAPTER 4. BENCHMARK TEST BY LUBM

Table 4.7: Results of Memoization obllect-all-extensions-of for LUBM(Z,0)

Query unit OWL CPU1 CPU2 CPU3 CPU4
JesskKB-NP (1st2nd) (1s¢2nd) (1st2nd) (1sf2nd)

1 ms 200 7878 78/63 1515 0/16
ans 4 4 4 4 4

2 ms 3,978 | 69,46869,531 53,46%4,391 19,569,562 10,750,828
ans 0 0 0 0 0

3 ms 164 250’250 188172 6378 A47/47
ans 6 6 6 6 6

4 ms 8,929 531547 406422 172/188 94/109
ans 34 34 34 34 34

5 ms 475 2,5462,531 2,0312,000 843829 469469
ans 719 719 719 719 719

6 ms 112 A47/47 A47/47 31/15 0/16
ans 7,790 7,790 7,790 7,790 7,790

7 ms 67 1,5471,547 1,2041,219 422/453 250'250
ans 67 67 67 67 67

8 ms 4,953 | 11,23%11,204 8,738,797 3,368,360 1,878,875
ans 7,790 7,790 7,790 7,790 7,790

9 ms 2,525 953953 750782 281297 15157
ans 208 208 208 208 208

10 ms 4 422/422 343375 125141 7878
ans 4 4 4 4 4

11 ms 45 62/62 31/47 16/16 1515
ans 224 224 224 224 224

12 ms 162 515515 375390 15172 9394
ans 15 15 15 15 15

13 ms 1 15,3121,860 11,157,453 5,032625 2,859359
ans 1 1 1 1 1

14 ms 20 0/0 0/0 16/0 0/0
ans 5,916 5,916 5,916 5,916 5,916

ms: mili-second, ans: number of answers
SWCLOS CPULibid.
SWCLOS CPU2ibid.
SWCLOS CPU3ibid.
SWCLOS CPU4ibid.
not SWCLOSibid.

4.4. SUMMARY OF ANALYSIS AND IMPROVEMENT FOR LUBM 97

4. Runtime Analyzer Results flﬁ|§|
outine Flat | Calls | | 3
¥ Start 100.00 100.00 0.00 A
I thread-hind-and-call 449.95 99 85 o.oa

¥ rep-one-command-event-loop 99.90 95995 0.00
|—v event-loop 99,90 100.00 .00
v process-single-svent 99890 10000 0.00
Lv window-procedure H9.90 100.00 0.00
|—v handle-proxy-tasks 99.90 100.00 0.00
|—v ide-proxy-task 99,90 100.00 .00
—w eval 9985 99.95 o.00
¥ 0f §9.82 9997 0.05
¥ getvalue 92.50 92 66 0.00
¥ mappend 92.39 9989 0.03
¥ mapcar 492.34 9994 o.00
¥ mapl §2.32 9997 0.00
¥ (internal getvalue 0y 92.29 9997 0.00
¥ %getvalue 92.24 9994 011
[} collect-all-extensions-of m m w
Colurmnz show branch % of the total tree, branch % of parent branch, and node % within branch.
[sawetoHistoy][gavetofie][Graph <

Fig. 4.3: Code Analysis of Query 5

Table 4.8: Summary of Analysis and Improvements

Improvement, Q2 Q5 Q8 Q13 note

refactoring | O - O - Effective SPARQL implementation is needed.
backpointer | O - O - Larger memory size is needed.
memoization| - O O O | Applicable only for immutable ontologies

4.4 Summary of Analysis and Improvement for LUBM

The results of analysis and improvement fifa@ency can be summarized at Table 4.8, which shows
the dfectiveness of improvements for Query 2, 5, 8 and 13, which initially demonstrated distinctive
behaviors in computationafieciency.

Manual refactoring isféective for queries such as involve combinatorial explosions in SPARQL
query forms. However, refactoring is not generally applicable for all queries and fiffisudti to
automatically produceficient codes for SPARQL queries.

Backpointer is an alternative solution for combinatorial explosions but it requires larger memory
size instead of obtaining drasticallffieient results. For example, in LUBM(10,0), additional 10MB
memory is required for backpointer memory cells, since one backpointer requires two cons cells of
4 memory words.

98 CHAPTER 4. BENCHMARK TEST BY LUBM

Memoization is widely fective from inferential complexity problems for OWL reasoning to
combinatorial complexity problems in query forms, but it is not applicable to mutable ontologies,
and it will require a special code to clear the memoized data. It is affouti to appropriately
perform the clearance against dynamic change for ontologies.

In practice, it is obvious that the improvement of performance should be reflective for the aim
of applications and the characteristics of problems. It should be very engineering solution.

4.5 Related Work

So far, the #iciency of implementation of SWCLOS is compared with some reasoners which were
reported in the LUBM paper by Guo et al. [22]. After the first LUBM reports at ISWC 2004, the
LUBM Test has become thae factstandard for testing Semantic Web reasoners, and succeeding
studies in Semantic Web community were carried out in two directions, that is, developing RDF
stores for huge RDF or OWL Lite level ontology repositories, and the extending the LUBM test set
to OWL DL or more comprehensive test suites. Virtubaad AllegroGraph are examples of the
former, and the fforts by Ma, et al. [45] and Weithoner et al. [76] are for the latter. In this section,
the impact of early LUBM Test and the related work after LUBM are discussed.

45.1 Supplementary LUBM Test Reports

In the LUBM paper by Guo et al. [22], three reasoners, that is, DLDB-OWL, Sesami, and OWL-
JessKB, were tested and other reasoners or tools were not adopted by various reasons. Then, sup-
plementary reports were made for RacerPro, Pellet, and KAON2 by developer themselves of those
tools.

RacerPro report

At the time of Guo’s report, Racer failed to load the LUBM test dataset due to the inferior per-
formance of connection to ABox. After that, the RacerPro was updated for the improvement of
handling large ABoxes and the result was published on the Hom&Paiik the new trial version

of RacerPro and data sets. It reports the time for loading, ABox preparation, consistency checking,

8http://virtuoso.openlinksw.com/
*http://www.franz. com/agraph/allegrograph/
http://www.sts.tu-harburg.de/~r. f.moeller/racer/lubm.html

4.5. RELATED WORK 99

and index structuring is 13.8%# 1.38+ 0.00+ 7.87 sec for LUBM(1,0). The times for answering
gueries were varied from millisecond to a few seconds. It took 2.39 sec for Query 8.

Pellet report

Pellet is an OWL DL level reasoner in open source license. In Pellet, the tableaux-based reasoner
searches for interpretation models in order to construct a completion graph of tableaux starting from
ABox. The query form is strictly restricted within first order logic. However, ovffatentFrom is
effective as well as rdf:itype and owl:samelndividualAs. Pellet can accept very restricted OWL
Full descriptions that are accidentally described by users due to incomplete knowledge or careless
miss in spite of aiming OWL DL, if they are “DLizable”. Subproperties of rdf:type and cardinality
restrictions on transitive properties are ignored by Pellet.

Pellet reports results of LUBM(1,0), LUBM(3,0), and LUBM(5,0) [63]. It seems that Pellet
showed better performance than RacerPro.

KAONZ2 report

KAON2 seems to be tested for LUBM(1,0), LUBM(2,0), LUBM(3,0), and LUBM(4,0) together
with other ontologies in report [54]. However, the performance data of queries are disclosed only
on three queries, that is, Queryl, 2 and 3, although the report states, “As our results show, LUBM
does not pose significant problems for KAON2."

4.5.2 Towards Complete Benchmark Suits

There are several pitfalls with respect to Benchmark Testing. Firstly, although benchmarking is
basically useful to find out points of remedy on reasoners, excessive adaptation easily happens in
trying to obtain a good performance with respect to materialized benchmark tests, because it is easy
to adapt their systems to concrete test sets. It may be a problem if benchmark test sets are not
matured and does not cover full range of problems, or in the case that the limitation of applicability
stays ambiguous.

Secondly, creating benchmark test sets for ABox scalability is rather easy, but creating ones
for TBox scalability is dfficult. It should be noted that the complexity of TBoxes rises from the
complexity of ontologies themselves. Thus, how to generate test sets for ontological complexity is
left as a question to be solved.

100 CHAPTER 4. BENCHMARK TEST BY LUBM

Thirdly, we does not share common image of standardized OWL ontologies. There are many
expressions to represent an ontology. People from OWL DL tend to use owl:equivalentClass to-
gether with owl:intersectonOf or owl:unionOf, although it is not necessary by OWL syntax rules.
Some ontology has deeply nested RRML expressions in which new entities appear only in the
middle of a tree, and another ontology has a set of many shallow’>RDIE trees. Furthermore,
ontologies seldom perfect on their syntax and semantics.

UOBM test sets

Ma et al. [45] pointed that LUBM does not provide test data on cardinality and allValuesFrom, and
also pointed that it supports only a subset of OWL Lite. In fact, LUBM only cover23lparts

with respect to OWL Lite constructs. Aiming a complete benchmark test sets for OWL DL, Ma et
al. extended LUBM to University Ontology Benchmark (UOBM).

In Ma’s report [45], three reasoners, that is, OWLIM, DLDB-OWL, and Minerva were tested
for UOBM test data. OWLIM! is a newly developed repository as a Storage and Interface Layer
for Sesami. Minerv& is an ontology toolkit for a storage and the inference performed by Pellet at
backend.

They also pointed out that LUBM has another limitation such that instances in ABox form
multiple isolated graphs and the graphs lack links among them. This point was not important so far,
but it has been becoming critical with recently spreading expectations for Linked Data.

ABox complexity vs. TBox complexity

Weithoner et al. [76] investigated th&ects of the scalability of ABox onto the complexity of TBox.
They claimed, “We are convinced that an ABox benchmark cannot be conducted without scaling
the TBox size too. Inevitably this will also increase TBox reasoning complexity which again might
influence ABox reasoning performance.” Aiming to evaluate the scalability linkage between ABox
and TBox, they created a new benchmark, and found tiierdnt behavior between RacerPro and
KAON2 with respect to the size change of both TBox and ABox. However, it seems that scalability
and complexity of TBoxes are vague.

11http ://www.ontotext.com/owlim/
http://www.alphaworks. ibm. com/tech/semanticstk/

4.6. CONCLUDING REMARKS 101

Probabilistic ontology generation

To reduce required time and labor for generation of benchmarking datasets, the LUBM team studied
how to rapidly generate the datasets, and generated Lehigh BibTeX Benchmark [75]. This direction
of study seems to be important in order to produce complex TBoxes rather than ABoxes. However,
there is no ontological consideration in Wang, et al. [75].

4.6 Concluding Remarks

The dficiency of SWCLOS implementation is tested by LUBM Benchmark Test Sets from hundreds
thousand to one million triples. As a result, we conclude the following remarks.

1. SWCLOS showed the comparative performance in loading time and reasoning time to tools
reported in Guo et al.

2. SWCLOS replied correctly to all queries of LUBM, whereas no reasoners but OWLJesskKB
in the reports could reply.

3. Refactoring by pursuing data dependency in triples vikestve for complex query forms.

4. Backpointers arefBective for complex query forms in order to produdéeetive code by
pursuing data dependency.

5. Function memoization is alsdfective for dficient execution of reasoning and complex query
forms.

6. We recognized that loading for LUBM takes long time in comparison of answering queries.
There is a room of improvement for large-scale ABox loading. Persistentization of ABox and
late evaluation for instances will be recommended.

It is obvious that ABox should be persistentized at least for a repository of ontologies. This result
for LUBM Benchmark Test and discussion of related work indicated useful suggestions for building
repositories, whereas SWCLOS is a language for Semantic Web application.

[This page intentionally left blank]

Chapter 5

Demonstration of OWL Full
Metamodeling

"Demo or Die"(The MIT Media Lab’s motto)

SWCLOS is the first full-fledged language system as OWL Full processor, in which the capa-
bility of metamodeling objects is borrowed from the power of the dynamic and reflective features of
Lisp and metamodeling capability of CLOS. We implemented many OWL axioms into CLOS using
Meta-Object Protocol (MOP) of CLOS.

Although unrestricted freedom of metamodeling certainly results in undecidability, most exam-
ples demonstrated as OWL Full undecidability are unreasonably extreme and make no sense from
the view of engineering. In this chapter, several metamodeling examples of SWCLOS are shown
within the understandable rationale of metamodeling from our practical experience, and a set of
metamodeling criteria that enables SWCLOS to perform ontology metamodeling is addressed.

5.1 Tractability on Metamodeling and Metamodeling Criteria

5.1.1 Untractable Metamodeling

In SWCLOS, RDF(S) semantics is preserved in the OWL universe. Thus, it is critical to distinguish
individuals, strict classes, and metaclasses according to the metamodeling manner &f RB¥FS
ever, there some ontologies do not distinguish them such as shown in 3uM@®include direct

1See Section 6.3.
’http://www.ontologyportal.org/

103

104 CHAPTER 5. DEMONSTRATION OF OWL FULL METAMODELING

<«— super/subclass relation
«---- Class/instance relation

FirstOrderCollection

Fig. 5.1: Membership Loop in Cyc on Collections

and indirect infinte loops on membership such as shown in Open@ar example, as shown in
Fig. 5.1, OpenCyc includes direct and indirect membership loops around the definitions of various
kinds of collections (see the bold and broken curve lines). Such complex membership loops violate
the metamodeling criteria which conform to the semantics of RDF(S) and SWCLOS.

In SUMO, althouglsumo : UnitOfMeasure andsumo: SystemeInternationalUnit are classes
of classsumo: Meter, it does not satisfy the metaclass condition 6.16 (see Chapt€i¢)5.2de-
picts this improper relation.

According to the semantics of RDFS and CLOS, SWCLOS does not process such unprincipled
metamodeling. Thus, we addressed metamodeling criteria that conform to RDF(S) semantics and
allow SWCLOS to perform metamodeling.

5.1.2 Metamodeling Criteria from RDF(S) Semantics

We settled criteria for ontology metamodeling that support the well-formedness of metamodeling
with respect to the semantics of RDFS and SWCLOS. It is c&@le@S clearor RDF cleanmeta-
modeling criteriaFig. 5.3depicts some examples of CLOS clean metamodeling.

1. Ontology must be clearly layered in the base-object layer, the strict-class layer, and the meta-
class layer. Every entity must be in only one layer and does not belong to more than one layer
of them. In other words, it must be decidable for every entity in the universe which layer an
entity belongs.

Shttp://www.opencyc.org/

UnitOfMeasure Systemelnternational Unit

rdfs:subClassOf rdfitype

<«—— rdfs:subClassOf
<«---- rdfitype

Fig. 5.2: A Part of SUMO Ontology

<«+——— rdfs:subClassOf
-« ---- rdfitype

Fig. 5.3: Examples of CLOS Clean Metamodeling

106 CHAPTER 5. DEMONSTRATION OF OWL FULL METAMODELING

2. There is no dire¢indirect loop among superclass-subclass relation.
3. There is no diregindirect membership loop except rdfs:Cl4ss.

4. There may exist anywhere parallel relationship between superclass-subclass relation and mem-
bership relation. Seey andm,, andmy andk; in Fig. 5.3. It may be calledtratified® This
parallel relation bears a metaclassing bifurcation in metaclass layers but it cannot make a
closed universe in ontology.

5. There may exist anywhere twisted relation between class super-subclass relation and mem-
bership relation. See andm, in Fig. 5.3. Such twisted relation makes a closed sub universe
in the super universe.

6. A class of classes must have rdfs:Class in its superclasses. (metaclass condition)

Thus, in order to remedy SUMO ontology from the viewpoint of CLOS clean critsuiag : Systeme-
InternationalUnit itself or sumo:UnitOfMeasure must be a subclass of rdfs:Class.

5.2 Demonstration of Metamodeling Programming

5.2.1 Treating a Class as Individual

Several usecases for metamodeling ontology are shown by W3C OWL Working &raiipf
them are easily programmed by SWCLOS. For example, for a elaBsgle and an individual
a:Harry defined as follows;

(/. a::Eagle rdf:type owl:Class)
(/. a::Harry rdf:type a::Eagle)

in order to define a class:Eagle as instance ofi: EndangeredSpecies,

(/. a:Eagle rdf:type a::Species)
(/. a:Eagle rdf:type a::EndangeredSpecies)

“Despite this criterion, we can set up substantially membership loops with subsumptiortwisitegl relationor
proxy. A twisted relation makes a subdomain that is completely included by a superdomain by making it between a
universal class and a universal metaclass for the subdomain.
5In stratification of New Foundations (NF) set theory, for a given any forng@d), the formuladA™vx"[(x" €
A" & o(xM] is an axiom wheré\™! represents the set such that | o(x")}™2. If the order ofm, andmyg in Fig. 5.3 is
two, then the order afy, andk; is three.
Shttp://www.w3.org/2007/0WL/wiki/Punning

5.2. DEMONSTRATION OF METAMODELING PROGRAMMING 107

makinga: : Species a metaclass enables such metamodeling as follows.

(/. a:Species rdfs:subClassOf owl:Class)
(/. a:EndangeredSpecies rdfs:subClassOf a:Species)

5.2.2 Adding a Role Filler to a Class

Suppose the case such that wine brands must identify through ID-numbérebational Wine
Society Since there are brand wine concepts such as vin:Zinfandel mixed together with non-brand
wine concepts such as vin:CaliforniaWine in Wine Ontology, we must distinguish them at first. Even

if we introduce two new classes as a subclass of vin:Wine, namely BrandWine of which instances
have an ID-number and NonBrandWine that does not have an ID-number, we cannot attach an ID-
number to wine concepts such as vin:Zinfandel (in such case an ID-number is attached to wine
instances such as vin:ElyseZinfandel), because in order to attach a role and filler to a class, a class
of the class is required. The solution in SWCLOS is shown below.

(defConcept BrandWine (rdf:type owl:Class)

(rdfs:subClassOf vin:Wine owl:Class)) -> #<owl:Class BrandWine>
(defConcept NonBrandWineConcept (rdf:type owl:Class)

(rdfs:subClassOf vin:Wine owl:Class)) -> #<owl:Class NonBrandWineConcept>
(defProperty hasIDNumber (rdf:type owl:ObjectProperty)

(rdfs:domain BrandWine)

(rdfs:range xsd:positiveInteger)) -> #<owl:0ObjectProperty hasIDNumber>
(defResource vin:Zinfandel (rdf:type BrandWine)

(hasIDNumber 12345)) -> #<BrandWine vin:Zinfandel>

(get-form vin:Zinfandel)
-> (BrandWine vin:Zinfandel (rdf:about #<uri http://www.w3.org/TR ...
(rdfs:subClassOf (owl:hasValueRestriction ...

(owl:intersectionOf vin:Wine
(owl:hasValueRestriction ...
(owl:cardinalityRestriction ...

(hasIDNumber 12345))

108 CHAPTER 5. DEMONSTRATION OF OWL FULL METAMODELING

5.2.3 Treating an Individual as Class

In Semantic Web Service by OWL (OWL-S) [47the range of propertyrocess :hasPrecondition

is expr:Condition, and an instance @&xpr:Condition may have a value @fxpr: expressionBody.
Ordinary logics do not have a notion of class for logical expression, but suppose here that we
have many kinds of conditions as definition and need to classify actual conditional occurrences
to one of these condition classes. For example, we have many operational modes in the rocket
launch operation [51], and each operational mode selects applicable services through precondi-
tions. Note that arexpr:expressionBody is different each other by operational modes and it
identifies each condition class. Here we need to attaglr: expressionBody value to class-

like preconditions, in order to classify actual conditions in operation and store them as instances
of each operational condition classes. Recall thar: expressionBody value may be attached

to an instance of, but cannot be attachedetqr:Condition per se. In SWCLOS, the problem

is solved as follows. We defined a new metaclassrcs:Precondition that inherits properties

of expr: Condition, and then specific conditionBipeCoolDownMode-, TankCoolDownMode-,
andRocketTankingMode-Precondition were defined as instance@fpr:Condition. As a re-

sult, actual occurrences are classified to three conditions, and similafilsuédt services could be
invoked according to the service precondition classes, within the boundary of the schema of OWL-S
1.1.

(defResource gxprocess::Precondition (rdf:type owl:Class)
(rdfs:comment "This is a meta-class for precondition.")
(rdfs:subClassOf owl:Class expr:Condition))

(defResource gxprocess::0OperationModePrecondition
(rdf:type gxprocess::Precondition)

(rdfs:label :en "operation mode precondition')
(rdfs:subClassOf expr:Condition gxdomain::OperationMode)
(expr:expressionBody ...))

(defResource gxprocess: :PipeCoolDownModePrecondition
(rdf:type gxprocess::Precondition)

(rdfs:label :en "pipe cool-down mode precondition™)
(rdfs:subClassOf gxprocess::OperationModePrecondition

gxdomain: :PipeCoolDownMode)
(expr:expressionBody ...))

(defResource gxprocess::TankCoolDownModePrecondition

"http://www.daml.org/services/owl-s/1.1/

5.3. CONCLUDING REMARKS 109

(rdf:type gxprocess::Precondition)

(rdfs:label :en "tank cool-down mode precondition")

(rdfs:subClassOf gxprocess::OperationModePrecondition
gxdomain: : TankCoolDownMode)

(expr:expressionBody ...))

(defResource gxprocess: :RocketTankingModePrecondition

(rdf:type gxprocess::Precondition)

(rdfs:label :en "rocket tanking mode precondition")

(rdfs:subClassOf gxprocess::OperationModePrecondition
gxdomain: :RocketTankingMode)

(expr:expressionBody ...))

5.3 Concluding Remarks

In this chapter, firstly we saw examples for untractable metamodeling from the viewpoint of RDFS

and CLOS metamodeling, and then the criteria for tractable metamodeling that is elaborated from

the CLOS metamodeling capability and conforms to RDFS axicems addressed. According to

the criteria of metamodeling, three typical metamodeling examples are demonstrated in SWCLOS.
The theoretical rationale of these metamodeling criteria and the foundation of OWL Full theory

is discussed in the next chapter.

8See the next chapter.

[This page intentionally left blank]

Chapter 6

OWL Full Theory

“The most comprehensive formal systems that have been set up hitherto are the
system of ‘Principia mathemathica’ (PM) on the one hand and the Zermelo-Fraenkel
axiom system of set theory (further developed by J. von Neumann) on the other. These
two systems are so comprehensive that in them all methods of proof today used in
mathematics are formalized, that is, reduced to a few axioms and rules of inference.
One might therefore conjecture that these axioms and rules of inference fAcgest
to decide any mathematical question that can at all be formally expressed in these
systems. It will be shown below that this is not the case, that on the contrary there are
in the two systems mentioned relatively simple problems in the theory of integers that
cannot be decided on the basis of the axionf®h Formally Undecidable Propositions
of Principia Mathematica and Related Systems I, Kurt Gédel)

In this chapter, OWL Full theory is developed with rearranging and rephrasing previously pre-
sented descriptions for RDF, RDFS, CLOS, and OWL in W3C documentations and Chapter 2.

Properly speaking, we do not believe that set theories are prerequisite to develop OWL Full
Theory. However, futile arguments lasted about the foundation of semantic theory in Semantic
Web community on the pretext of Russell's Paradox. The W3C recommendation of RDF semantics
mentions Zermelo-Fraenkel set theory on one hand, and the other hand the W3C recommendation of
OWL semantics mentioromprehensive principlinat is a foundation afiaiveset theory by Georg
Cantor. Set theories are the foundation of Semantic Web theory as well as they are the foundation
of mathematical theory. Therefore, there is no choice but to discuss about set theories in order to
rescue OWL Full from theoretic disorder, and then we discuss OWL Full theory.

111

112 CHAPTER 6. OWL FULL THEORY

6.1 Set Theory and Russell's Paradox

6.1.1 Comprehension Principle and Russell’'s Paradox

“In 1902, Ruessell wrote a letter to Frege, in which he informed Frege that he had discovered a
paradox in Frege'8egrifsschrift [...] Only six days later, Frege answered Russell that Russell’s
derivation of the paradox was incorrect. He explained that the self-applicitigns not possible

in the Begriffsschrift f(x) is a function, which requires ambjectas an argument, and a function
cannot be an object in tH&egrifsschrift” (Kamareddine et al. [28] p.15)

A set can be extensionally defined by writing down all members of the set, or intensionally
defined by designating a property that all members of the set satisfy. We usually use the latter to
describe a set, because it is convenient to define an abstract set that has many or infinite number
of members. For any given well-formed formuéx), it is likely that a set such that satisfies the
formula exists.

(Unrestricted comprehension) For an open well-formed fornaula
JAVX[(x € A) & ¢(X)] whereg(X) hasx free and has no frea. (6.1)

The unrestricted comprehension principle states that any forafyauch thatA is not free inp(x)
may be used for determining any setHowever, if we takep(X) to bex ¢ xt, which intends a set
that does not have itself as a member, it causes a contradiction.

Suppose thah = {x| X ¢ x} exists. TheWx[(x € A) & x ¢ X] from (6.1), therefore in particular
Afor x, Aec Ao A¢ A Thisis called Russell's Paradox, since a contradiction is derived from a
system in which all of elements are plausible as individual.

There two workarounds followed Russell’s Paradox. One, which is invented as Separation Prin-
ciple by Ernst Zermelo, is to restrict the formula so that it does not involve the paradox, and the
other is to introduce Russell’s Ramified Type Theory.

6.1.2 Zermelo-Fraenkel Set Theory

In set theory, the uniqueness of sets are defined as extentionality principle:

Yt is calledRussell’s ClassSee Appendix A

6.1. SET THEORY AND RUSSELL'S PARADOX 113

Axiom 1 (Extensionality).
YAVYB[VXx(xe A& xe B) = A=B] (6.2)

Zermelo weakened Cantor's Comprehension Principle (6.1) to his Separation Axiom.

Axiom 2 (Separation, Aussonderung)For an open well-formed formula,

YZAAYX[(x € A) & (xe Z A ¢(X))] whereA does not occure ig(X). (6.3)

Then, the seA in the Separation Axiom (6.3) is uniquely determinedzdgndg(x) with (6.2).
It is expressed in the usual notation as follows.

A={xeZ]|e(X)}

If ¢(x) is a property of sets such that a geexists, then the members Afexactly satisfies.
Namely,
xe A e ¢(X).

then this setA is denoted by{x | ¢(X)}. Separation Axiom (6.3) separates a sulfsétom Z by
formulag(xX). Then, the member of sétsatisfies a property(x). It sounds like tautology and does
not seem to be productive itself. Michael Potter [60] described on Separation Axiom st &
set, thenx € Z | ¢(X)} is a set. We do not have any useful information to constfuahdZ from
Separation Axiom itself, but it does not involve any paradox and useful as a template to support
theorems and lemmas with other axioms.

In addition to the Separation Axiom, Axiom of Choice by Zermelo, Substitution Axiom by
Abraham Fraenkel, and several other axioms have become a base of axiomatic set theory, and it is
called Zermelo-Fraenkel Set Theory. See Appendix A.

Transfinite set theory

The set theory by Georg Cantor has been a mathematical foundation of the theory on natural number.
Mathematicians have no interest in concepts of things in the world or ontology. They are interested
only in mathematical concepts. They attempted to generate the concept of natural numbers by
devising only sets of which members are also only sets.

Hereafter, we overview Zermelo-Fraenkel Set Theory according to the description by H.C.

114 CHAPTER 6. OWL FULL THEORY

Doets [15f. Let us start with axioms that (i) there exists at least one thing. and (ii) every thing
is a set. We have already Extensionality Axiom (6.2) and Separation Axiom (6.3). Then, the empty
set can be defined as follows.

Axiom 3 (Empty set).
0 ={xeA|X#X}

Note that this definition does not depend on the choich. of
We define a successor operat®that takes a set and produces another set.
S(X) = XU {x}
These stipulations ensure to provide us the infinite number of sets.

S(0) 0 U {0} = {0}
S(10}) {0}y U {{0}} = {0, {0}
S(0.{0}) = {0,{0}} U {{0,{0}}} = {0,{0}, {0, {0}
S({0,{0},{0,{0}}}) = {0,{0},{0,{0}}} U {{0,{0}.{0, {0}}}} = {0, {0}, {0, {0}, {0, {0}, {0, {O}}}}

S({0,{0},{0,{0}}},...) {0,{0},{0,{0}}, ...} U {{0,{0},{0,{0}}}, ... } = {0, {0}, {0, {0}}, {0, {0}, {0, {0}}}, ...

Axiom 4 (Infinity). There exists a sk such that
e A

Vxe A[XU{x} € A].

Notably such sef is closed to this axiom, and it has infinite members.

By making a map from the empty set to integer 0, and the succ&skoa integer successor,

2The two chapters in [15] is summarized at Appendix A.

}

6.1. SET THEORY AND RUSSELL'S PARADOX 115

we obtain natural numbers due to two Peano systems with isomorphic.

0 = 0
S = {0}=1
S({0y) = {0,{0} =2
S({0,{0}}) = ({0,{0}} U {{0,{0}}} = {0,{0},{0,{0}}} = 3

S(10, {0}, {0, {0}}})

{0,{0},{0,{0}},{0, {0}, {0, {0}}}} = 4

Theorem 1. The natural numbers form a set.

Thus, the concept of set of infinite number of natural number is obtained, Numbers that include
w is calledtransfinite numbeor transfinite ordinal number

w = {0,{0},{0,{0}},{0,{0}, {0, {0}}}, ...}

The successor operation can be applied tthen we obtain a series of transfinite numbers.

S(w)
S(w+1)

w+1l

w+2

Sw+w) = w-2

S(w+w+...) = wXw=w

Obviously, the magnitude of any transfinite number is bigger than the magnitude of any natural
number, including a set of infinite members. Therefore, it is cdligd

We strongly claim that we do not need to understand sriglmumber to build any kind of
ontologies that contain classes and instances of things in the real world. Namely, we do not need
Zermelo-Fraenkel Set Theory and other axiomatic set theories developed for mathematical concepts,
whereas the W3C Recommendation of RDF Semantics [25] states;

116 CHAPTER 6. OWL FULL THEORY

When classes are introduced in RDFS, they may contain themselves. Such ‘mem-
bership loops’ might seem to violate the axiom of foundation, one of the axioms of
standard (Zermelo-Fraenkel) set theory, which forbids infinitely descending chains of
membership. However, the semantic model given here distinguishes [...] classes con-
sidered as objects from their extensions - [...] things that are ’in’ the class - thereby
allowing the extension of a [...] class to contain the [...] class itself without violating
the axiom of foundation. (RDF Semantics [25])

Any set in Zermelo-Fraenkel Set Theory that satisfies the axiom of regdléoityids the infinitely
descending chains of membership. However, in proof it is far from the axiom of foundation to
reach the forbidden chains of membership. Furthermore, it is not clear that the membership loop
at the universal class does not violate the infinity of the descending chains of membershjp loop
whereas the recommendation states that the semantic model in RDF distinguishes classes as objects
from their extensions. See (2.12). Rather we claim that it is appropriate to introduce the concept
of type order in Ramified Type Theory in order to distinguish higher order rdfs:Class and lower
order rdfs:Class for the sake of the prohibition on infinitely descending chains of membership on
rdfs:Class. It is discussed later on.

Infinite descending chains of membership are also forbidden by KIF 3.0 Set Theory, and KIF Set
Theory is appropriate to discuss Russell's Paradox in ontology, because the set is initially composed
of ontological individuals.

6.1.3 KIF Set Theory

Knowledge Interchange Format (KIF) is a language designed for use in the interchange of knowl-
edge among disparate computer systems. The universe of discourse in KIF is defined as the set of all
objects presumed or hypothesized to exist in the world. If we start from a finite set of base entities
that exist as individuals of a set but does not exists as a set, and construct a higher order class as a
set of lower order objects, then we are never involved in Russell's Paradox, even if we have a class
which has a member of itself. In fact, it is the way adopted in KIF [18], in whiohnded seis
distinguished fromunbounded sét

The section on “Paradox” in KIF 3.0 Man(atates:;

3See Appendix A

“Note that Zermelo-Fraenkel Set Theory does not include suetiversal class

5See also Appendix B.

Shttp://logic.stanford. edu/kif/Hypertext/node25.html#SECTIONOOO74000000000000000

6.1. SET THEORY AND RUSSELL'S PARADOX 117

“Itis crucial that the paradoxes of set theory be avoided. One of the goals in the design
of KIF is that it have a clearly specified model-theoretic semantics in terms of which
the concepts of entailment, equivalence, consistency, soundness and completeness can
be defined. If the paradoxes are allowed to persist in principle, even if they are easy to
avoid in practice, the consequence would be that no KIF theory would be true in any
model. Definitions couched in terms of models would be trivialized, becoming useless.
All sentences would be entailed by any theory, any two theories would be equivalent,
no theory would be consistent, every possible inference rule would be sound, and so
on.

In the von-Neuman-Godel-Bernays version of set theory, these paradoxes are avoided
by replacing the principle of unrestricted set abstraction with the principle of restricted
set abstraction given above. ” (KIF 3.0 Manual)

An overview of such Set Theory is given in Appendix B. Whereas Russell’'s Paradox in ontology is
forbidden in KIF Sets.

Russell's Ramified Type Theory is suitable to discuss metamodeling of ontology, because it
includes the discussion about the order of types.

6.1.4 Ramified Type Theory

When Russell pointed out the inconsistency in his letter to Frege, he was just at the point of finishing
his work. Then, he developed a type theory in order to work around the paradox which arose from
unrestricted comprehension principle. His basic idea on type theory is to distinguish order of logical
variables and predicates. If the order of arguments as variable in predicate calculus is zero, then the
order of its predicate is one. If a variable as arguments in predicate calculus over first order objects in
the domain, then the order of its predicate is two. Thus, itis critical to distinguish a vanthlaeder
variablex" from n+ 1th order variable<™*. A set of Oth order objects (individuals) is discriminated
from a set of 1st order objects (predicates), and a settobrder objects is discriminated from
n+ 1th order objects.

Gilles Dowek [17] summarized the logic foundation of type theory as follows.

To avoid Russell's paradox, and to get a (hopefully) consistent theory of sets, we can
restrict naive set theory in two ways. The first method is to restrict the comprehension
scheme to some particular propositions (for instance Zermelo’s set theory permits four
constructions : pairs, unions, power sets and subsets), the other is to move to a many

118 CHAPTER 6. OWL FULL THEORY

sorted theory with a sort (called 0) for atoms a sort (called 1) for sets of atoms, a sort
(called 2) for sets of sets of atoms, etc. and allow propositions of the tfegmu only
whent is of sortn andu of sortn + 1 (which permits to construct unions, power sets
and subsets but disallows arbitrary pairs). The formalism obtained this way is called
higher-order logicor simple type theoryThe original formulation of A.N. Whitehead

and B. Russell [...] has been modified by L. Chwistek, F. Ramsey and finally by A.
Church [...]

Thus, it is obvious the substitution must be performed among the same order variables. In this
theory self-referential typing does not occur within the discrimination among entitiestaretit
orders. See also Appendix C.

6.2 Whatis Comprehension Principle?

In the W3C recommendation of OWL semantics, the RDF-Compatible Model-Theoretic Semantics
at Chapter 5 [58] describes thefgirence between the abstract syntax, which is developed in Chapter
3, and RDF compatible OWL DL as follows.

“In OWL DL, localizing information must be provided for many of the URI refer-
ences used. These localizing assumptions are all trivially true in OWL Full, and can
also be ignored when one uses the OWL abstract syntax, which corresponds closely to
OWL DL. But when writing OWL DL in triples, however, close attention must be paid
to which elements of the vocabulary belong to which part of the OWL universe.”(OWL
Semantics Chapter 5 [58])

The ‘localizing assumptions’ are actually written in Chapter 5 of the W3C recommendation for
blank nodes as instances of owl:Restriction for owl:onProperty restrictions, and blank nodes as
instances of owl:Class for property owl:complementOf. Furthermore the notion of sequence for
owl:oneOf, owl:intersectionOf, owl:unionOf, and owl:distinctMembers is introduced and the se-
guence is embodied as an instance of rdf.List. However, such ‘localizing assumptions’ are not
required in OWL Full. For instance, we formalized owl:allValuesFrom restriction in formula (2.27).

In RDF semantics, such a blank node for owl:allValuesFrom restriction actually can exist because
of the entailment ruledfs4a or the domain rule for owl:allValuesFrom.

For example, with an expression in the XKRDF form for owl:Restriction such as;

6.2. WHAT IS COMPREHENSION PRINCIPLE? 119

<owl:Restriction>
<owl:onProperty rdf:resource="#x" />
<owl:allValuesFrom rdf:resource="#w">

</owl:Restriction>.

the following is a demonstration in SWCLOS for such case.

gx-user(2): (addForm ’(owl:Restriction (owl:onProperty x)
(owl:allvValuesFrom w)))

Warning: Range entailX3 by owl:onProperty: x rdf:type rdf:Property.

Warning: Range entailX3 by owl:allValuesFrom: w rdf:type rdfs:Class.

#<V x.w>

In the case of owl:oneOf, owl:intersectionOf, owl:unionOf, and owl:distinctMembers, we do not
use range constraints of these properties, that is, rdf:List. Instead we directly embody the sequence
as a list of Common Lisp as described in Subsection 2.2.1.

By the nature of RDF syntax and semantics, we can describe the same meanirfgrémtdi
ways using dferent RDF graphs. For example, we can describe vin:RedWine in Wine Ontology in
the following two ways.
As one way with rdf:List;

vin:RedWine rdf:type owl:Class .
vin:RedWine owl:intersectionOf _:1stl .
_:1stl rdf:type rdf:List .

:1stl rdf:first vin:Wine .

_:1stl rdf:rest _:1st2 .

_:1st2 rdf:type rdf:List .

_:1st2 rdf:first _:gx3

:1st2 rdf:rest rdf:nil .

:gx3 rdf:type owl:Restriction .
_:9gx3 owl:onProperty vin:hasColor .

_:9x3 owl:hasValue vin:Red .

Then, as another way without rdf:List;

vin:RedWine rdf:type owl:Class .
vin:RedWine owl:intersectionOf vin:Wine .
vin:RedWine owl:intersectionOf _:gx4 .

_:gx4 rdf:type owl:Restriction .

120 CHAPTER 6. OWL FULL THEORY

_:gx4 owl:onProperty vin:hasColor .

_:9x4 owl:hasValue vin:Red .

The collection of objects that are indicated as a predicate value of a subject node can be simply
represented a bunch of pairs of edges with an identical property name and objective graph nodes,
without rdf:List. In comparison that each of container properties, i.e. rdf:Seq, rdf:Bag, rdf:Alt has
clearly each semantics in their usage, respectively, there is no semantics in the usage of rdf:List and
we have no motivation to use rdf:List in the usage for RDF graphs.

The document of RDF-Compatible Model-Theoretic Semantics [58] justifies the existence of
a blank node using terminology ‘comprehension principle’. However, this wording is misuse. As
shown above, ‘comprehension principle’ means axiom (6.1) in set theories. On the other hand,
‘comprehension principle’ in OWL Semantics seems to mean a principle that requires the existence
of individuals in several entailment rufeswWe can find the same misuse on the terminology ‘list
comprehension’ in some programming langu&gésowever, the function of the ‘list comprehen-
sion’ in those programming languages should be called ‘separation principle’, because the function
is exactly the same as the meanings of ‘separation principle’ in ZF. To make matters worse, the word
‘comprehension principle’ is used on the pretext that RDF semantics involves Russell’s Paradox. As
described previous sections, Zermelo-Fraenkel Set Theory adopted the Separation Principle instead
of comprehension principle in order to avoid the paradox. In KIF ontological Set Theory, Rus-
sell's Paradox is forbidden by the settlement of bounded sets (see Appendix B), and Russell himself
developed Russell's Ramified Type Theory in order to avoid the paradox (see Appendix C).

Even if the universal class and the universal metaclass have a membership loop, we can get rid
of the possibility of the infinitely descending chains of membership by distinguishing the orders of
the universal class in descending process. We distingdishClass™" andrdfs: Clas§"*. The
descending of orders never happens froffs : Class™ to rdfs: Class" or rdfs: Clasg™?!. The
ontology metamodeling must be performed so that the descending of orders always happens from
rdfs:Class™ to rdfs:Clasg ™.

rdfs:Clas§™?! e CEXT (rdfs:Clasg") &
(rdfs:Clasg"™ 1 rdfs:Clasg") e EXT (rdf : typ€’) (6.4)

"It is the same in OWL 2. Selettp://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
#Appendix:_Comprehension_Conditions_.28Informative.29.
8http://en.wikipedia.org/wiki/List_comprehension

6.3. OWL FULL METACLASSING 121

Therefore, if we start from a finite set of base entities that exist as individuals of a set but does not
exists as a set, and construct a higher order class as a set of lower order objects, then we are never
involved in Russell’s Paradox, even if we have a class which has a member of its extension.

6.3 OWL Full Metaclassing

In Chapter 2, we derived the membership loop at the universal class and the universal metaclass
from the characteristics of them. Namely, the universe class stands for the universe of discourse and
the universal metaclass denotes all of classes in the universe of discourse. In this subsection, we
show that their membership loops are derived from RDF axioms and consistent with axioms in RDF,
by using the twisted relation between the universal class and the universal metaclass. Furthermore,
we derive the metaclass condition.

6.3.1 Membership Loop at rdfs:Class and Twisted Relation with rdfs:Resource

Definition 1 (Class membership).
xf e CEXT (y)) = (X!, y!) € EXT (rdf : typ€) (6.5)
Definition 2 (Universal metaclass).
C! = CEXT (rdfs: Clas¥) (6.6)
Definition 3 (Universal class, Twistl).
rdfs: Resourcé e C? (6.7)
Definition 4 (Twist2).
(rdfs: Clas¥, rdfs: Resourcé) € EXT (rdfs: subClassOf) (6.8)
Axiom 1 (Subsumption).See also (2.13).

(XL, y"y e EXT (rdfs: subClassOf) = x e CZ Ay e Cf ACEXT (X)) c CEXT (y!) (6.9)

122 CHAPTER 6. OWL FULL THEORY

Axiom 2 (Reflection).See also (2.14).

xl e ¢t = (X, xty e EXTY(rdfs: subClassOf) (6.10)

Axiom 3 (Top). See also (2.16).

x! e ¢! = (X, rdfs: Resourcé) € EXT (rdfs: subClassOf) (6.11)
Axiom 4 (Meta).
x! e ¢! = (X, rdfs:Clasd) € EXT (rdf : typ€e) (6.12)
Lemma 1 (Membership loop at universal metaclass).

rdfs: Clasg e C = CEXT (rdfs: Class) (6.13)

Proof. By the definition of (6.8) and the subsumption axiom (6.9), we obtifsi Clasg e C.

Lemma 2 (Membership loop at universal class).

rdfs: Resourcé e CEXT (rdfs: Resoucé) (6.14)

Proof. By the definition of the universal class (6.7) and the subsumption axiom (6.9), we obtain
rdfs: Resourcé € CEXT (rdfs: Resouc®).

Making a conjunction of (6.7) and (6.8), we obtained the following.
rdfsResourcé e CEXT (rdfs: Clas§? A CEXT (rdfs: Clasg? ¢ CEXT (rdfs: Resourc¥ (6.15)

We call ittwisted relationbetween rdfs:Resource and rdfs:Class. Note that this is resulted by the
definitions of rdfs:Class and rdfs:Resource, in which the semantics of the universal class and the
universal metaclass is applied to themselves.

Here, if we substitutg’ in Subsumption (6.9) bydfsClase, then we obtained the following.

(x, rdfsClasg) € EXT? (rdfs: subClassOf = x € C* A CEXT(x) c CY (6.16)

6.3. OWL FULL METACLASSING 123

This means a class that is a subclass of rdfs:Class is an instance of rdfs:Class and its class extension
is also a subclass of the set of classes in the universe. Namely, this semantic condition is the same as
that in CLOS semantics. In CLOS, it is very critical to distinguish base objects (individuals), strict
classes (first order classes), and metaclasses (higher order classes). Then, we distinguish them by
conditions;

1. x ¢ C! (for base objects),
2. xe Cf A CEXT/(X) ¢ C (for first order classes), and
3. xe CY A CEXT/(x) c C! (for metaclasses).

We call them, respectivelfpase object conditigrstrict class conditionandmetaclass conditian

6.3.2 OWL Metaclassing

This subsection contains the re-arrangement of contents in Subsection 2.2.1.

Definition 5.
owl:Clas§ e Cf (6.17)
oc! = CEXT(owl:Clasg) c C (6.18)
owl:Thingg e OC’ (6.19)
ot! = CEXT(owl:Thing) ¢ R (6.20)
owl: Restrictiod e Cf (6.21)
OR! = CEXT (owl:Restrictiof) c OC (6.22)
owl: ObjectProperty e Cf (6.23)
OP/ = CEXT (owl:ObjectProperty) c P (6.24)

The following is rephrasing of (3.30).

Axiom 5.
oc! coT? (6.25)

From (6.17) and (6.18), we see that owl:Class is a metaclass in RDF universe. From (6.21) and
(6.22), we see that owl:Restriction is also a metaclass in RDF universe.

124 CHAPTER 6. OWL FULL THEORY

Furthermore, we obtain the following conjunction from (6.19) and (6.25)
owtThing’ e OC! A OCf c OT/ (6.26)

This is the same twisted relation as rdfs:Resource and rdfs:Class in RDF universe, so we can call
it twisted relation for OWLFig.6.1 shows the relationship between the two twisted relation. The

_———

-~ S~ -

<«——— rdfs:subClassOf
< ---- rdfitype

-

-
4
rdfs:Resource

Fig. 6.1: RDF Universe and OWL Universe Connection

axiom (6.25) is required in order to let OWL classes be in the OWL universe. Namely, such twisted
relation of (6.15) and (6.26) idfective so as to make a closed universe including classes. Notably,
by connecting two universes of RDF and OWL such as depicted in Fig.6.1, OWL universe is con-
structed as a subset of RDF universe, and then OWL universe can be facilitated not only in OWL
semantics but also in RDF semantics. Note that owl:Class and owl:Restriction are not in OWL
universe rather in RDF universe.

6.4 Non-Unigue Name Assumption and Equality

6.4.1 Equality of Individuals

Unigue Name Assumption (by whichftérent names always denotefdient entities), which is
usually adopted into computer languages, is not adopted in Semantic Webs. In REFENdURI
references denoteftierent graph nodes. However, in OWL language, owl:sameAs property may
be applied to dferent URIs to indicate that two fiierent URI references denote the same entity
as individual in the OWL universe. Oppositely, the owffeientFrom property (and the combina-
tion of owl:AlIDi fferent and owl:distinctMembers, too) may be used to indicate tierdint URI
references denoteftierent entities in OWL universe.

The followings are the same as the description in Subsection 2.2.1.
(owl:sameAs) Ifx andy is different URIs and the both references makes a pair that is an extension

6.4. NON-UNIQUE NAME ASSUMPTION AND EQUALITY 125

of owl: sameAS, then the denotation of andy are the same one.
(x£y|xeV, ye Vi A, y'y e EXT (owl:sameA$) = x! =y

(owl:differentFrom) Ifx andy is different URIs and the both references makes a pair that is an
extension obwl: differentFrond, then the denotation ofandy are diferent.

(x£y|xeV, yeVi}axt, y'y e EXT! (owl: differentFrond) = xf = y*

Thus, in case of no information on the equality in OWL, the equality of two entities is not
determined, then, the decision of the equality of entity must be performed in the RDF universe.
To discuss the equality of entities in RDF semantics, it is appropriate to discuss the equality of two
subgraphs that the two entities are in positiosubject

The algorithm for the equality computation in the RDF universe is explained as féflows

Two RDF graphss andG’ are equivalent if there is a bijectiom between the sets of triples
for the two graphs, such that:

1. M maps blank nodes to blank nodes.

2. M(lit) = lit for all RDF literalslit which are nodes d&.

3. M(uri) = uri for all RDF URI referencesri which are nodes db.

4. The triples/p/ois in G if and only if the tripleM(s)/p/M(0) is inG'.

Note that these are not described in denotational semantics. The document of RDF Semantics [25]
state;

Any instance of a graph in which a blank node is mapped to a new blank node not
in the original graph is an instance of the original and also has it as an instance, and
this process can be iterated so that any 1:1 mapping between blank nodes defines an
instance of a graph which has the original graph as an instance. Two such graphs, each
an instance of the other but neither a proper instance, whitdr dinly in the identity

of their blank nodes, are considered to be equivalent.

%Instance properties of owl:FunctionalProperty and owl:InverseFunctionalPropertyfaisitiae equality as individ-
ual.
Ohttp://www.w3.org/TR/rdf-concepts/#section-graph-equality

126 CHAPTER 6. OWL FULL THEORY

For the discussion of equality under the non-UNA condition, we superimpose owl:sameAs and
owl.differentFrom properties onto the above algorithm. RDF is property-centric but OWL is object-
centric (it means a subject node and linked nodes with one hop predicates are regarded as an object
like object-oriented language). Then, we modify the above algorithm to meet OWL object-centric
paradigm. For each subgraph composed of a subject node and one-hop linked r@des! @,

1. M maps blank nodes to blank nodes.
2. M(lit) = lit for all RDF literalslit which are nodes db.
3. M(uri?) = uri? for all RDF URI referencesri which denote nodes @.

4. For everys of triple s/p/o for G, (s’,0?) e EXT!(p?) if and only if (M(s?), M(0?)) €
EXTI(M(pY))isinG'.

In case thas? in G ands? in G’ are blank nodes in a bijectioM, (s’,0?) € EXT (p?) is
equivalent to(M(s), M(0?))y € EXT!(M(p?)), if of = M(0?) in OWL semantics. We apply
the same algorithm for non-blank node in non-UNA condition. In casesghands? are named
with different names and we cannot determine the equality by the names, our approach determines
the equality betweers’ and s through the subgraphs of the both. Namely, we chgtkand
the equality ofo’ ando’?. This algorithm traverses two graphs, until the decision is obtained.
Note that RDF graph is a directed graph. In this graph equality checking, if two nodes have sub-
trees, the corresponding sub-trees on both graphs are recursively checked for the equality. Thus,
if we reach at terminal nodes (atomic nodes that do not have edges any more) but no information
is obtained, we fall into a troublesome situation. For example, in comparison ofesxyéx:A
and ex:Zex:pex:B, if ex:A and ex:B are both atomic, the non-UNA computation cannot conclude
whether or not ex:Y is equivalent to ex:Z. In such condition, in order to derive useful computational
results, we must define the equality offdrence among every atomic individual. Itis very laborious
work to describe common knowledge such as Bill iedent from George, Barack, Al, and so on.
Therefore, we devised a flag for non-UNA and set up falsity to the flag as default. Note that the
equality of two blank nodes is checked both in UNA and in non-UNA. In the default condition, we
stand in UNA as well as for ordinary computer languages, then two nodes that ffaverdiURI
references are fierent, and then two blank node trees are distinct if we cannot find the correspond-
ing edges of graphs or we find the lexicallyfdrent URI references at the corresponding positions
in the trees. In non-UNA condition with the flag setting, the graph equality checking is performed
even though two URIs at the corresponding positions dferént, until we find either the flerence

6.5. CONCLUDING REMARKS 127

of graph structures or theféierence of nodes that are explicitly stated in OWL statements. In our
approach, two atomic nodes withfidirent names are regarded afatent in the equality check-
ing, even though the flag indicates non-UNA. Thus, this algorithm is paraphtisaAdor atomic
objects in the non-UNA condition

6.5 Concluding Remarks

In this chapter, we gave an overview of Zermelo-Fraenkel Set Theory, which is the standard set
theory in the number theory of mathematics and does not involve Russell's Paradox in system. We
strongly claimed that we do not need sumly number set theory for ontology construction. The
overview of KIF Set Theory is also given, and it is confirmed that Russell's Paradox is avoided
by bounded sets in KIF. As the other way for avoiding Russell's Paradox, Ramified Type Theory
by Whitehead and Russell is also mentioned and it is stressed that it is critical to discriminate an
identical entity in syntax by its order in semantics. The position in which an entity appears with
respect to membership (in set theory) and predicate or terms (in higher order logic) is critical. The
problem of ‘localizing assumptions’ described in the RDF-Compatible Model-Theoretic Semantics
in W3C Recommendation is discussed, and the misuse of word ‘comprehension principle’ is pointed
out.

OWL Full metaclassing is re-formalized using by RDF(S) Axioms, and OWL universe is for-
malized as subset of RDF universe. The membership loop at the universal class rdfs:Resource and
the universal metaclass rdfs:Class is also discussed using RDF(S) Axioms.

Finally, non-Unique Name Assumption in OWL is superimposed onto RDF graph, and the novel
algorithm for Unique Name Assumption for atomic objects in the non-UNA condition is invented
in order to integrate OWL non-Unigue Name Assumption to RDF graph.

[This page intentionally left blank]

Chapter 7

Open World Assumption and Class
Disjointness

“There are more things in heaven and earth, Horatio, than are dreamt of in your
philosophy.” (Shakespeare, Hamlet)

Concerned with the existential restriction of property or owl:someValuesFrom, the full Open World
Assumption (OWA) is meaningless from the viewpoint of ontology building, since the existential
restriction under the OWA means the possibility that a satisfiable value may be defined somewhere
in WWWs or someone in the team members may add a proper constraint tomorrow or after. The full
OWA implies that ontology builders cannot know all for target ontologies. However, this assumption
is not enjoyable in actual fact in personal and collaborative ontology building process. Thus, we
settled more mild setting for the problem of Open World Assumption.

7.1 Auto Epistemic Closed World Assumption

It is natural to distinguish the local world for target ontologies and the given general WWW. Hence,
we have introduced the notion afito-epistemic local closed world assumptitmthis idea, agents
can introspectively check their knowledge within their extent of capabilities.

An agent sits in locally closed world as environments around it. The flag for auto-epistemic local
closed world assumption is set true as default in SWCLOS, and the satisfiability for slot value is
aggressively checked even in case of the existential restriction. Namely, if an existential restriction
is not satisfied, then the interpretation is not satisfied. Setting the flag false means the completely

129

130 CHAPTER 7. OPEN WORLD ASSUMPTION AND CLASS DISJOINTNESS

full OWA. In this case, no alarm is signaled for the existential restrictions.

7.2 Complete Relation for Class Equivalency and Disjoint Relation

In OWL, owl:equivalentClass is applicable to indicate the equivalency of two objects as class. For
example, food:Wine in Food Ontologis equivalent to vin:Wine in Wine Ontolodyith the state-

ment of owl:equivalentClass. In addition, the other three complete reldicgs owl:intersectionOf,
owl:unionOf, and owl:oneOf also decide the equivalency of classes. In case that two concepts
(classes) have equivalent values for these complete relational properties, the two concepts must be
conceived to be equivalent. For example, vin:DryWine and vin:TableWine in Wine Ontology are
equivalent as class in OWL semantics (they share the same class extensions), because the both have
the same value for owl:intersectionOf property.

Meanwhile, we can actively apply the statement of owl:disjointWith to classes that we consider
they are disjoint each other. In addition, owl:complementOf property explicitly state that two con-
cepts are definitely fierent as class. Thus, in case of no declaration of equivalency and disjointness
of classes, we cannot determine the equality as classes immediately.

However, the complete relations except owl:equivalentClass decide not only the equality but also
the disjointness of classes. For example, even though we have no direct statement of disjointness
for vin:RedWine and vin:WhiteWine, the disjoint relationship between them is deduced through
property owl:intersectionOf and owl:hasValue restriction vin:Red of vin:RedWine and vin:White of
vin:WhiteWine, because it is explicitly stated that vin:Red tsatent from vin:White. Furthermore,
we can also conclude some useful results by resorting to RDF graph checking mentioned at the
previous chapter. For example, we can find that vin:CaliforniaWine is not equal to vin:ltalianWine
in spite of no explicit information of disjointness, because the graph equality checking deduces that
vin:CaliforniaRegion, in which vin:CaliforniaWine is located, idfdrent from in:ltalianRegion, in
which vin:ltalianWine is located, even if we are in non-UNA.

However, for atomic concepts that have no edges except being pointed as superclass, we cannot
conclude that Man is disjoint to Woman, if those concepts are atomic in non-UNA. Thus, we are
forced to do very laborious work to describe common knowledge such as Man and Woman are
disjoint, Plant and Animal are disjoint, Ape and Monkey are disjoint, Virus and Bacteria are disjoint,

http://www.w3.org/TR/2004/REC-owl-guide-20040210/food.rdf
thtp ://www.w3.0rg/TR/2004/REC-owl-guide-20040210/wine.rdf
Shttp://www.w3.org/TR/owl-ref/#DescriptionAxiom

7.3. PAIRWISE DISJOINT DATATYPE 131

and so of.

ANSI Common Lisp specifies that CLOS classes are pairwise disjoint if they have no common
subclass and one class is not a subclass of the other. Namely, each class is disjoint to the others as
default until we connect them in superclass relation or set a common subclass. This agreement is
supported by the premise that an object in CLOS is typed to only one class. In the RDF universe, an
entity may be typed to more than one class. So, the nature of disjointness in CLOS is not applicable
in the RDF universe in theory. However, in SWCLOS, the pseudo multiple-classing macéhinery
is implemented using the CLOS class and multiple inheritance mechanism. Therefore, from the
viewpoint of CLOS, the algorithm of disjointness for CLOS is still valid in the RDF universe in
virtue of CLOS. In the next section, we introduce an idea of role concept that is divided from
substantial concept with the premise of pairwise disjointness.

As described in Chapter 2, the subsumption (2.13) in RDF semantics is weak but the sub-
sumption (2.22) in OWL semantics is strong. Therefore, we must pay attention to determine class
disjointness which semantics we are talking about as OWL Full Theory.

Note that if two classes are implicitly or explicitly stated as disjoint in OWL semantics. Then,
both must be disjointin RDF semantics. In such a case, the error must be signaled, if the non-disjoint
relation is given later on. Similarly, in case that two classes are in the non-disjoint relation in RDF
semantics, the error must be signaled, if the implicit or explicit disjoint relation is given later on.
Oppositely, if we have some evidence of subsumption in OWL semantics, it must be interpreted not
disjoint even if there is no relation in RDF semantics. Thus, if we have no evidence of disjointness
and subsumption in OWL semantics and no evidence of subsumption in RDF semantics, we interpret
it disjoint as default. However, this default disjointness accepts the change later on when new
statements are inputted.

7.3 Pairwise Disjoint Datatype

In SWCLOS, we defined XML datatype wrappers as mapping XML Schema descriptions to lisp
datatypes in lisp value space. We defined xsd datatypes in lisp space and the same datatypes are also
defined as CLOS classes in the RDF universe in order to treat them in the RDF universe. Therefore,
independent XML Schema datatypes in SWCLOS are pairwise disjoint by the implicit disjointness

of CLOS classes, e.g., xsd:float is disjoint with xsd:integer, xsd:URI, xsd:string, xsd:boolean, etc.

4As mentioned in Chapter 1, 58% is for class disjointness in lines of pizza.owl for only 23 pizza and 29 pizza toppings.
The number of lines for disjointness will explode with the number of classes.
5See Subsection 3.1.6.

132 CHAPTER 7. OPEN WORLD ASSUMPTION AND CLASS DISJOINTNESS

7.4 Ontological Categories and Disjointness

OWL provided the description of class disjointness and forced us labor-intensive work as described
above. W3C new recommendation for OWL, namely OWL 2 specification [9], attempts to solve
the disjointness problems without ontological consideration in depth. In OWL 2, Person may be de-
scribed as owl:disjointUnionOf Man and Woman. However, we are still forced to describe explicitly
disjointness for all disjoint classes, or basic atomic concepts. We strongly claim that the approach
to describe disjointness must be well-founded on ontological consideration.

Sowa [66, 67] showed a lattice of the top-level ontological categories of things. Each of the
twelve elemental concepts in the top ontology hd@edent characteristics and those combinations,
i.e.,independentphysical relative, abstract andmediating The concepts of the independent exist
itself and they show the firstness. The concepts of the relativel@only live with the firstness
and they show the secondness. The mediating describes concepts that mediate the firstness and the
secondness.

Guarino [20] parted ontology into two categories, ijgarticular that represents substantial
entities anduniversalthat is the category of entities required to describe the particulars. Physical
objects, abstract processes, phenomena, quality, and materials fall into the particular, and attributes,
relations are categorized into the universal.

Mizoguchi, et al., developed an ontology building tool called Hozo [53, 43] based on ontological
deep discussion and have utilized Hozo for many application field of ontology building. Using
Hozo, ontology builders can easily construct complex concepts that are composed of substantial
sorts and non-substantial roles. For example, Wife is a part of Family and composed of Woman
and Wife-role. The concept Woman is a substantial and may have slots of gender, age, etc. The
role concept Wife-role is not a substantial, in other words, it always requires substantial concepts to
work, but may have its own slots such as married-year, partner, etc. In a sense, it is regarded that
the concept Family represents the context in which the concept Wife is activated from Woman with
Wife-role.

Takeda, et al., also propos@dpect Theorgf ontology in the study oknowledgeable Commu-
nity [70], which is a framework of knowledge sharing and reuse based on a multi-agent architecture.
In this framework, while ontologies are the minimum requirement for each agent to join the commu-
nity, each of heterogeneous ontologies describes an aspect of an entity and knowledge. A mediator
agent that embodied knowledge for mediation helps other agents to communicate each other. In this

7.5. INTRODUCTION OF ROLE CONCEPTS 133

theory, the aspect may be rephrased as a context on which an agent focused for discourse. For ex-
ample, a concept Temple is an aggregation of concepts in aspect of religion, cultural asset, building
architecture, corporate body, and so on. In most case without communication, we usually focus on
one aspect of entity and do not need to take care of the other aspects in a particular context. How-
ever, for agents in a particular discourse, the mediator translates heterogeneous ontologies from one
to another and mediates agent’s speech acts that are broad-casted in the community.

7.5 Introduction of Role Concepts

In order to solve the labor-intensive disjointness problem, we propose two ontological categories
according to Kozaki, et al. [43], i.e., substantial concepts and role concepts, and realize them on
top of RDF and extended OWL semantics. The substantial concepts are described in OWL, but
we adopt the assumption of implicit disjointness for substantial concepts in the same way as CLOS
described above. On the other hand, a role concept is an extension of owl:Restriction. Neither
owl:disjointUnionOf nor owl:AllDisjointClasses in OWL 2 are introduced. Instead, we extend
owl:Restriction, which has property-value restrictions but usually no name and no super restric-
tions in OWL, to the role concept that is able to have a hame and supers. The instance of role
is attached to an instance of substantial classes in the same way as owl:Restriction provides the
definition of predicatgobjectat subjector an instance of substantial class. A complex concept is
composed of a substantial class and role concepts. For example, a complex concept Husband is
composed of Man and Husband-Role that has spouse and marriage-date properties, and Teacher is
composed of Person and Teacher-Role that has subject and classinCharge property. The discussion
of disjointness on role concept is meaningless, because the role concept cannot have any instance by
itself as well as owl:Restriction. Husband and Teacher can share individuals, but those individuals
should be interpreted as instances of Man in Husband and Person in Teacher.

7.6 Concluding Remarks

In this chapter, the problem of full setting on Open World Assumption is pointed out, and more
practical and useful setting of auto-epistemic local closed world assumption is introduced. If this
flag is set, owl:somevaluesFrom restriction is aggressively checked against loaded ontologies into
SWCLOS. In order to avoid wasteful alarming by forward referencing, the flag is set as false in
batch loading mode, but it is set as default in interactive mode.

134 CHAPTER 7. OPEN WORLD ASSUMPTION AND CLASS DISJOINTNESS

Secondly, the dference of semantics of disjointness in RDF semantics and OWL semantics is
described. The algorithms for the disjointness described here are embodied in SWCLOS.

Thirdly, the problematic OWL disjointness is pointed and the novel approach is proposed un-
der the consideration of ontological sorts of substantial (disjoint each other in nature) and non-
substantial sort (role concepts). It is suggested that these two sorts can be realized as the extension
of OWL 1 semantics.

Chapter 8

Related Work

8.1 Frame-based and Object-Oriented OWL Systems

In this doctoral study, an OWL Full system is realized by the object oriented system in Common
Lisp language. However, this is not the first case of OWL realization of object oriented systems.
Meditskos and Bassiliades presented a deductive object-oriented system O-DEVICE for reasoning
over OWL [50]. This system is based on CLIPS Object-Oriented Language (COOL). This system
intends to extend to Rule language based on CLIPS.

F-OWL is an ontology inference engine for the Web Ontology Language OWL by Harry Chen,
Youyong Zou, Lalana Kagal and Tim FirtinThe ontology inference mechanism in F-OWL is im-
plemented using Flora-2, an object-oriented knowledge base language and application development
platform that translates a unified language of F-logic, HiLog, and Transaction Logic into the XSB
deductive engine. The ability to support knowledge consistency checking using axiomatic rules
defined in Flora-2. It is also stated that F-OWL is still in its early stage of development.

F-logic is a frame system of object oriented logic programming [33, 32], and Heiko Kattenstroth
studied the combination of OWL DL and F-logic and realized the knowledge-management system
using Jena and Florid (F-Logic Reasoning in Databases) [30] as a result of PhD thesis. However, it
is based on OWL DL and not OWL Full. Therefore, there is no discussion for OWL Full theory in
this study.

Recently, Puleston, et al. [61] madiagts to integrate Java language to OWL for the purpose of
developing Semantic Web application in the domain of Health Care and the Life Science. However,
it is very difficult in this approach to extend the system to OWL Full, because Java language is

http://fowl.sourceforge.net/about.html

135

136 CHAPTER 8. RELATED WORK

strictly limited to the functionality of reflection and no Meta-Object Protocol. We think it is hopeful
that the UML framework by OMG will be extended to allow OWL Full metamodeling.

8.2 RDF and OWL Theory

8.2.1 RDF Semantic Theory

Bruijn et al. presented logical analyses of RDF reasoning and complexity [12, 13]. In these paper,
they pointed out that the triple construct and class membership in RDF is close to the attribute
value construct in F-Logic [32]. They also discussed blank nodes, domain constraintdassd
positionandindividual positionof term. It is concluded that complete RDF, which includes blank
nodes and some of rdfs:Resource, rdfs:Class, rdf:Property, rdfs:ContainerMembershipProperty, and
rdfs:Datatype, has the complexity of NP-complete.

The Close World and Open World in RDF semantics was discussed in Analyti et al. [3]. In
this paper, they extended RDF graph to what allows explicit strong negation, and then created new
termserd f: T otoalPropertyanderd f: T otoalClasghat represent metaclasses, on which the Open
World Assumtpion applies. They defined ERDF models and Herbrand interpretations. However,
we consider that it is important to contribute the progress of OWL itself and OWL Full according
to the original idea for Semantic Webs by Tim Berners-Lee.

8.2.2 OWL Semantic Theory

Since achieving OWL 1 of W3C Recommendation, the shortage of the OWL specifications has
been widely recognized through many practical experience of applying OWL language, and then
the dfort of the improvement has resulted in new W3C recommendation of OWL 2. {Fiesaof

OWL 2, motivations, conditions, objectives, etc. were reported in Grau et al. [19].

ODM team also tackled OWL DL and OWL Full for the integration to UML [8]. In this paper,
they discussed the integration of OWL DL and OWL Full onto UML profile.

The dforts to computation of OWL Full is also continued by Jena team, and two important con-
tributions are performed. Turner and Carroll [74] found many minor errors in the specification of the
semantics of OWL, using interactive theorem pragabelle Successively Carroll and Turner [10]
discussed OWL Full theory and ‘comprehension principle’, and then concluded that OWL Full can
be consistent without ‘comprehension principle’. However, it is wonder that these contributions
seems to be not evaluated in Semantic Web community.

8.3. OTHER WORK 137

- -
-

’ r ~
N
I Vaiable-Order Class I
\ - Vie DR Y
Sao _,I’" ________ < o
- [}
..... - Meta-Class 'I,'
Pty A
ememomTm T 4 -
Fixed-Order Class o ¥
- .~ ‘a
T A ’l,‘l'
A s
h ~._ Fourth-Order Class .- Fh
i‘\ ------ A -~ =" I' ,’
‘|\|\\ Y a’ !
W ‘. Third-Order Class -)
(DR Tl ’
[N ~A, - ‘

T /

IRl

A}
%\, Second-Order Class -
1 ~

—————
.-

kN

Individual

Fig. 8.1: Membership Loop in Cyc by foxvog [16]

8.2.3 Criteria for Metamodeling

We proposed the criteria for well-founded metamodeling in OWL Full. We believe this proposal
is very critical to establish OWL Full, and in our best knowledge at this time there is no similar
proposal. Foxfog [16] reported rules for sound membership loop in Cyc. The complex membership
loops in Cyc are depicted iRig. 8.1which is taken from [16]. However, the rationale of the Cyc
membership loop and the membership rules is not reported.

8.3 Other Work

Recently, with the progression of research on Linked Open Data, the ambiguity of the semantics on
owl:sameAs is coming to be closed up. Halpin et al. has pointed the problems on owl:sameAs with
respect to Linked Data in [24]. The problematic Open World Assumption is also becoming known
gradually. In SWCLOS, we simply settled the flag for auto-epistemic closed world assumption,
Pellet also has equipped with a flag for CWA. Alferes, et al. [2] introduced the logic of MKNF
(minimal knowledge and negation as failure) into query for the purpose of combining OWA and
CWA.. We think hopefully this direction is a legitimate direction as the solution in logic theory.

138 CHAPTER 8. RELATED WORK

8.4 Concluding Remarks

In this section, related work is described from the survey on recent work with respect to the OWL
system realization, especially focusing frame systems and object-oriented systems. The research
results on OWL DL and Description Logics are omitted in this dissertation, but some system real-
izations in OWL DL are reported in the chapter of LUBM 4.

RDF and OWL theory also investigated and the contributions from HP Jena Team is admitted.
We also found a few reflections on individual sameness and the problematic Open World Assump-
tion, which are recently closed up as problems.

Chapter 9

Conclusion

In this doctoral study, OWL semantics is formalized in Tarskian denotational semantics as well as
RDF Semantics according to the description of RDF Semantics [25] of W3C Recommendation,
with focusing mainly membership and subsumption of entities. Due to no formalization so far
on OWL semantics by Tarskian denotational semantics, this part is our original contribution for
Semantic Webs. CLOS semantics and its computational model are also discussed based on the
model addressed by Brian Smith, and the semantic gap between OWL and object oriented languages
addressed by SETF of W3C are pointed out.

The semantics of RDF(S) is very close to that in CLOS. Then, the RDFS type structure is
straightforwardly mapped onto the type system of CLOS. The semantic gap between object-centric
CLOS and property-centric RDF(S) is filled up by setting property resource objects in CLOS and
inventing the collection mechanism for the property extension in RDF(S) through CLOS native
slot-definition facilities. The flexible implicit slot definition on demand is embodied in the class-
based CLOS system. In order to accept forward-reference for entities, the novel functionality called
proactive entailmenis realized using RD®WL entailments. The domain and range constraint
were developed with the property inheritance mechanism and embodied into SWCLOS.

In order to realize OWL universe in RDF universe, only one axiom that owl:Class have to be
a subclass of owl:Thing was added into the set of OWL axioms, which are described in the OWL
description file. All semantics and functionality of OWL specification was implemented on top of
RDF(S) subsystem with preserving RDF(S) semantics.

The dficiency of SWCLOS implementation is tested by LUBM Benchmark Test Sets. As a
result, SWCLOS showed the comparative performance in loading time and reasoning time to tools
reported in Guo et al.,, and SWCLOS replied correctly to all queries, whereas no reasoners but

139

140 CHAPTER 9. CONCLUSION

OWLJessKB in the reports could reply.

Several examples of metamodeling in OWL Full is presented with the criteria for tractable
metamodeling that is elaborated from the CLOS metamodeling capability and confirms to RDFS
axioms are addressed.

OWL Full theory is presented in metaclassing formalization based on RDF(S) Axioms, and
integration of RDF universe and OWL universe is described based on this metaclassing theory. The
non-Unigue Name Assumption in OWL is superimposed onto RDF graph, and the novel algorithm
for Unigue Name Assumption for atomic objects in the non-UNA condition is invented in order to
integrate OWL non-Unique Name Assumption to RDF graph. The mild settings for Open World
Assumption is indicated as auto-epistemic closed world assumption, and the introduction of role
concepts is suggested as the extension of the OWL specification in order to solve the problematic
disjointness of OWL classes.

The overview of set theories on Zermelo-Fraenkel and KIF are given for the purpose of avoiding
futile arguments on membership loop and Russell's Paradox.

As a result of this study, SWCLOS has become the first full-fledged language as OWL Full
processor, in which the capability of metamodeling objects is borrowed from the power of the
dynamic and reflective features of Lisp and metamodeling capability of CLOS.

We hopefully desire that the initial goal of Semantic Webs that indicated by the Semantic
Web Layered Architecture will be achieved in the near future. Simultaneously, Common'Logic
is emerged as alternative language that targets Semantic Web domain. Although the detail of the
specification is still open and to be fixed as soon as possible, it is already established as an abstract
language of ISO standard in a logic framework intended for information exchange and transmis-
sion. The framework allows a variety offtBrent syntactic forms, called dialects, all expressible
within a common XML-based syntax and all sharing a single semantics. The dialects, which have
different syntax but interchangeable from one to another, include Common Logic Interchange For-
mat (CLIFY, Conceptual Graph Interchange Format (C@JRML Common Logic (XCLY, and
Common Logic Controlled English (CLCE)CLIF may be conceived to be a modernized version
of Knowledge Interchange Format (Kff26]. Table 9.1summarizes the basic computational as-
sumptions underlying Common Lisp, Description Logic, OWL, and Common Logic.

httpy/common-logic.org
2httpy/www.ihmc.ugusergphayegCLIF.html
Shttpy/conceptualgraphs.qrg
“http;/www.altheim.coryspecgxcl/1.0/
Shttpy/www.jfsowa.comiclcg/'specs.htm
Shttpy/www-ksl.stanford.edtnowledge-sharingif/

Table 9.1: Basic Computational Features of Languages.

141

UNA/nonUNA | CWA/OWA | Truth Value | arity
Common Lisp UNA CWA Ternary n
Description Logic UNA (OWA) Binery 2
RDF(S) UNA (CWA) Binery 2
OwWL nonUNA OWA Binery 2
Common Logic nonUNA OWA Ternary? n

The abstract syntax model of Common Logic is analogous to polymorphism in object oriented
programming and no fixed arity like Common Ligpofyadiq. As shown in Table 9.1, the arity of
RDF and OWL is strictly constrained to 2. Not only Common Logic allowary, but also the arity
is not fixed for a predicate or property. Guha and Hayes initially proposed such features as the RDF
syntax for a common base language of Semantic Web languages [21]. In their initial proposal for
the candidate of RDF, they expected a base language for Semantic Web languages, and claimed the
basic language, calldd,;se that supports basic inference and semantics, and then allows RDF and
extending diferent semantics at the upper layers in the Semantic Web stack. They imagined that
Lhase providesL; language iri-th layer of Semantic Web language stack. However, the history of
Semantic Web languages did not developed as Tim Berners-Lee intended.

Common Logic also permits ‘higher-order’ constructions such as quantification over classes or
relations while preserving a first-order model theory. The semantics allows theories to describe
intensional entities such as classes and properties. The first solution of this ‘higher-order’ construc-
tions will bemetamodelingn Common Logic.

It seems that the modernized features of Common Logic are a reflection of the progress of mod-
ern computer languages. For example, the semantics of Common Logic introduced a new term,
universe of referencen addition to the universe of discourse in denotational semantics. A dialect
is calledsegregatedn which some names aren-discourse namesamely the denotations of the
non-discourse names are in the universe of reference, but not in the universe of discourse in an in-
terpretation. “Segregated dialects are commonly described to have a universe of discourse, without
mentioning the universe of reference; and for non-segregated dialects the universes of discourse and
of reference are identical. The distinction makes it possible to provide a single semantics which
can cover both styles of dialect”. The motivation of introducing the universe of reference and non-
discourse names is likely to be for the provision against people who do not want to concern some
terminologies out of concerning ontologieslowever, this notion is very akin to Smith’s reference

"from private discussion on [55] at the conference.

142 CHAPTER 9. CONCLUSION

and de-reference framework in Section 2.3. See Subsection 2.3.4. Therefore, we might be able to
rephrase that the second language model of Common Lisp is non-segregated, and the third is seg-
regated, in which symbols and internal structures are segregated. This language model will support
to develop logic systems using objects in imperative computer languages which include symbols
or variable names, structures, objects, whereas the meaning of “segregated” may be misunderstood
from its introductory usage in Common Logic.

We claim that today’s OWL, including OWL 2, embraces some drawbacks for the practical
usage. It seems to lead people into a blind alley without thinking what ontology is and how it
should be represented as ontology description languages. Common Logic intends to be a common
framework of concrete knowledge representation languages that are compatible with World Wide
Web. Although actual dialect implementation of Common Logic is not emerging yet and no one
can foresee the future of Common Logic, but we also hopefully desire that our experience for
SWCLOS can contribute to establish Common Logic as one of practical knowledge representation
and exchange language in the ISO standard.

Appendix A

Zermelo-Fraenkel Set Theory

The purpose of this appendix is to introduce Zermelo-Fraenkel Set Theory (ZF for short), which is
considered the foundation of mathematical number theory today, to readers who are unfamiliar with
it. The most part of the description is taken from a lecture of set theory at University of Amsterdam,
“Zermelo-Fraenkel Set Theory” (H.C. Doets, 2002[15]) Chapter 1 and 2. However, readers must
note that ZF is completed as a theory for mathematics, specifically for natural number, and does not
presume any elements of ontology. The set theory in KIF ontology is introduced at Appendix B.

A Definitions and Axioms

Primitives. The axioms listed below use only two primitivesetandmembershipnamelye.

Axiom 0. Note that we discuss only sets on ZF in this appendix. We start the discussion from the
following two basic axioms.

(i) There exists at least one thing (in the universe).

(i) Every thing is a set (in the universe).

Axiom 1 (Extensionality). Sets are completely determined by their elements, and it is expressed
as:
Yavb[Vx(xeae xe b) = a=1b] (A.1)

This axiom means that for areyand for anyb if every element ofa is an element ob and vice
versa, thera andb are equal. This axiom provides the definition of equality on sets.

143

144 APPENDIX A. ZERMELO-FRAENKEL SET THEORY

Axiom 2 (Separation, Aussonderung). For an open well-formed formula,
YadbVx[(x e b) (xe an ¢(X))] whereb does not occure ip(x). (A.2)

Zermelo weakened Cantor's Comprehension Principle (6.1) to this Separation Axiom by postulating
another sea for a setb in question. Note that, by Extensionality, the Belefined by the Separation
Axiom is uniquely determined by postulatadnde. It is written in usual notation as

b={xealeX). (A.3)

If ¢ is a property of sets such that a getxists, (unique sdi by Extensionality), the elements of
which are exactly the sets satisfyipg

Xeb e ¢(X), (A.4)
then this seb is denoted by an expressiéx| ¢(X)}.

Classes. The concept of classes in ZF means a mere construct of the{forg(x)}, wherey is a
formula. In particular, sets are classes, but all classes are not sets.

Readers should note that this terminoladgssis unique in set theory andfeirent from OWL
and object oriented languages.

Proper Classes. There may be no set consisting exactly of the entities satisfyirig that case,
the clasgx | ¢(X)} is calledproperin ZF.

Russell’'s clasgthe class of sets that do not belong to themselves) is an example of the proper class.
Theuniversal classs also a proper class in ZF but it is a set in Quine’s New Foundations Set Theory
(NF).

Universal Class. R={x| x= x}.

Russell's Class. R = {x| x ¢ X}.

By “a set{x | E(X)}" we mean there is a satsuch thatVx[x € a © E(X)].

A. DEFINITIONS AND AXIOMS 145

Note that, by AxiomO (ii) in ZF, proper classes simply don't exist, and so the use of abstractions
{x| ¢(X)} must be regarded as a mere way of speech.

Empty Set. 0 ={xea|x+Xx}.
Note that, the empty s¢x | x # x} does not depend on the choice of a postulated.set

Intersection. anb={xea|xeb}={x|xeaAxebh)}.

Pairing. VavbdcYx (xece x=aVv x=h).
Namely, paring defines a setsuch that{x | x = aVv x = b}. An unordered pairof a andb is
postulated by this axiom, and it is denotectas {a, b}. Note that{a, b} = {b, a} by this axiom.

Singleton. In casea = b, we obtain{a} = {a, a}.
Thesingletonis a special case afnordered pair

Sumset. YadbVx[xeb o Ay(xeyAye a).
Sumset ofis a set such that contains all elements of sets that are elementSlvdt is a set such
that{x | dy € a(x € y)} and denoted ag) a.

Union. aub=J{a,b} = {x| xe aV x € b} is called theunionof a andb.
Note that{ag, ..., an} = {ag} U --- U {an}.

Subset. If Yy(y € x = y € @), xis called a subset afand it is denoted by c a.

Powerset. Yadb¥Yx(xe b & x C a).
Here,bis called a powerset & and it is denoted in ZF bl = p(a).

Infinity. 3al0 € aA (Yx e a(xU {x} € @))].

There exists a set such that has initially the empty set as element, and composed of an element
and the singleton of the element for every element. Obviously, this definition involves a recursive
description, and it amounts to infinite number of elements. This axiom is also defined as another
form for a seta, namelydald e aA ¥Vx(xe a= Ay(yc aAVz(zey © ze XV z= X)))].

146 APPENDIX A. ZERMELO-FRAENKEL SET THEORY

Regularity, Foundation. Va[a# 0 = Ax(xe aA (xNa = 0))].

This axiom means that any non-empty set has at least one element such that is disjoint with the set
itself. This axiom ensures to forbid infinitely descending chains of membership. Note ¢hat}

in ZF.

B Remarks for ZF Set Theory from Ontology

The point of Zermelo-Fraenkel Set Theory is to avoid Russell's Paradox by weakening too power-
ful unrestrictive comprehension principle, which allows us to make too big sets such as Cantor’s
transfinite ordinal number, to Separation Axiom, which separates sets from classes in ZF such as
universalor Russell'sclass. In the form of Separation AxiorA,in (6.3) orain (A.2) may be a set

or a class buZ in (6.3) orbin (A.2) that can be constructed by using Separation Axiom with an ap-
propriate formula must be a set. In order to ensure the existence of such a set, Zermelo axiomatized
the existence of only sets including the empty set with presuming to use the Infinite Axiom. From
the viewpoint of ontology, Zermelo’s sets are big enough, because it can handle sets that include
a set of infinite number of members. However, it cannot handle any individuals in the universe of
discourse. [62][60]

By contrast, from the viewpoint of mathematics, due to the unavailability of transfinite ordinal
numbersw, w - 2, ..., etc., Zermelo's theory was regarded too weak. Fraenkel solved this prob-
lem by introducing Replacement Axiom with the Axiom of Choice. The Axiom of Choice was
invented by Zermelo. Thus, the set theory for mathematical foundation by Zermelo and Fraenkel
is called Zermelo-Fraenkel Set Theory (ZF) or Zermelo-Fraenkel Set Theory with Choice (ZFC),
today. However, we do not need such extremely big sets for ontology.

Appendix B

Sets in KIF

The purpose of this appendix is to introduce KIF Set Theory, which is developed at KIF 3.0 [18]
Chapter 7. In this theory, an ontologically basic set is composed of concrete objects rather than sets,
whereas any set in ZF is composed of only sets including the empty set. Furthermore, a set in KIF
is categorized into two distinct set categoriesundedset andunboundedset, and this distinction

is critical to avoid Russell's Paradox.

A Rationale of Set Theory in KIF

Knowledge Interchange Format (KIF) is a language designed for use in the interchange of knowl-
edge among disparate computer systems. The universe of discourse in KIF is defined as the set of
all objects presumed or hypothesized to exist in the world in their own right. In Chapter 7 of KIF
3.0 [18], the description of KIF Sets starts as follows.

“The formalization of sets of simple objects is a simple matter; but, when we begin
to talk about sets of sets, the job becomdBdilt due to the threat of paradoxes (like
Russell’'s hypothesized set of all sets that do not contain themselves).”

It is obvious that KIF Set Theory has been developed in order to avoid the threat of Russell’s Para-
dox. Then, it states that KIF adopted the set theory of von Neuman-Bernays-Goédel (NBG for short).

“Fortunately, there is no shortage of mathematical theories for our use in KIF — vari-
ous higher order logics, Zermelo-Fraenkel set theory, von Neuman-Bernays-Gddel set
theory, Quine’s variants on the previous two approaches, the more recently elaborated

147

148 APPENDIX B. SETS IN KIF

proposals by Feferman and Aczel, and so forth. In KIF, we have adopted a version of
the von Neumann-Bernays-Godel set theory.”

The NBG is a conservative extension of ‘Zermelo Fraenkel Set Thoery with the axiom of Choice’
(ZFC). NBG distinguishes sets and classes as well as ZFC, and then the expressions of axioms
are presented as a two-sorted theory for sets and classes, with lower case letters denoting variables
ranging over sets, and upper case letters denoting variables ranging over classes. The four axioms
in NBG, e.g., Paring, Union, Powerset, and Infinity, are identical to their ZFC counterparts. The
Extensionality for sets is also identical to ZFC, and Extensionality for classes is similar to the
Extensionality for sets and the Foundation is applied to classes.

KIF discusses how the set theory avoids the paradox. However, it should be noted here that the
standard notion oproper classin set theories (ZF and NBG) is replaced by taumboundedset,
and the standard notion ofassis replaced by termsetin KIF 3.0 documentation [18].

B Basic Concepts

“In KIF, a fundamental distinction is drawn betwegividualsandsets A set is a collection of
objects. An individual is any object that is not a set.” [18] This statement is important to understand
the diference between a set in mathematical set theories and a set in ontology. As shown at Axiom
0 in Appendix A, everything in the universe for a set theory is a set. By contrast, objects in KIF are
individuals, sets of individuals, and sets of sets.

Sets and Individuals. The sentencandividual(x) is true if and only if the object denoted bjis
an individual. The sentencge(X) is true if and only if the object denoted hyis a set. Individuals
and sets are exhaustive and mutually disjoint. That is;

VXx(se(x) & —individual(x)) (B.1)
¥x(individual(x) & —se(x)) (B.2)
YXYs({x | individual(x)} U {s| se(s)}) = R (B.3)
YxYs({x | individual(x)} N {s| se(s)}) = 0. (B.4)

In addition to distinguishingndividualsandsets the category oboundedandunboundedb-
jects are introduced.

C. SETS 149

“A distinction is also drawn between objects that amundedand those that aren-
bounded This distinction is orthogonal to the distinction between individuals and sets.
There are bounded individuals and unbounded individuals. There are bounded sets and
unbounded sets.”

Bounded and Unbounded. The sentencboundedx) is true if and only if the object denoted by
is bounded. The sentenaaboundek) is true if and only if the object denoted is unbounded.
Boundedness and unboundedness are exhaustive and mutually disjoint.

Vx(boundedx) & —unbounde(x)) (B.5)
¥x(unbounde@x) & -boundedx)) (B.6)
Yx1VXo[{X1 | boundedx;)} U {x2 | unboundeix,)}] = R (B.7)
Yx1Yxo[{X1 | boundedx;)} N {X2 | unboundefixy)}] = 0 (B.8)

A set can have members, but an individual cannot. A bounded objects can be a member of sets,
but an unbounded object cannot. The finite sets are bounded as shown below. So, a finite set and
a bounded individual can be a member of sets. Thus, an interesting thing in the ontological view
is what individual is bounded and what individual is unbounded. However, the KIF documentation
did not state anything about it. Instead it just provides a unary predicateled andunbounded
as well asset andindividual.

As mentioned above, an object can be a member of another object if and only if the former is
bounded and the latter is a set.

Axiom 1 (Membership).
¥x3dgx € s © boundedx) A se(9)] (B.9)

C Sets

Many axioms in ZF and NBG are also axiomatized for sets in KIF. In additioresti@m of choice
is modified for KIF. The Axiom of Choice in ZF is described in the following statement (Chapter 5
in [15]).

Every set has a choice function.

Supposing in ZF lef be a set (of sets), a choice functibfor Ais a mapping from domaiA-0 (for
a non-empty element) to a set such that every element satigkps x (choose one representative

150 APPENDIX B. SETS IN KIF

from each elemental set &f). The choice function in KIF chooses every element that is uniquely
associated to each bounded element, and it asserts that there is a set that associates every bounded
set with a distinguished element of that set.

Axiom 2 (Choice).

AVYrAXAy(r € s= {X,Y})
A YXYWZ(({X, Y} € SA{X,Zl € 5) >y =2
A Yu(boundedu) Au# 0 = Av(ve uA {uv} € 9))] (B.10)

D Boundedness

The key diference between bounded and unbounded obijects is that the former can be members of
other sets while the latter cannot. This fact establishes a necessaryficiérsttest for bounded-

ness — an object is bounded just in case it is a member of a set. However, this is not very helpful

to determine whether or not an object is bounded based on other properties. The following axioms
and description is useful to decide the boundedness.

Axiom 3 (Bounded Finite Set).Any finite set of bounded sets is itself a bounded set.

Vso...¥s(/\ boundeds) = bounded{s, ..., x}) (B.11)
i=0,...k

Axiom 4 (Bounded Subset)The set of all subsets of a bounded set is also a bounded set.
Yv[boundedv) = Yu(bounded{u | u c v})] (B.12)
Axiom 5 (Bounded Union).The sumset of any bounded set of bounded sets is also a bounded set.
Yu[boundedu) A YX(X € u = boundedx)) = boundech u)] (B.13)

Here, the notatiolh) represents a sumset, see Appendix A. Since every finite set is bounded, this
allows us to conclude that the union of any finite number of bounded sets is a bounded set.

Axiom 6 (Bounded Intersection).The intersection of a bounded set and any other setis a bounded
set.
YuvsvYx[boundedu) A x e s= bounded{x | Xxe UA X € 8})] (B.14)

E. PARADOXES 151

So long as one of the sets defining the intersection is bounded, the resulting set is bounded.

Axiom 7 (Bounded Infinity). There is a bounded set containing a set, then a set that properly
contains that set, and then a third set that properly contains the second set, and so forth. In short,
there is at least one bounded set of infinite cardinality.

Julboundedu) Au# 0 AVYX(Xeu= Ay(XCyAYyEe) (B.15)

E Paradoxes

The paradoxes appear only when we try to define set primitives that are too big and too powerful.
We might consider defining the terfr | ¢(x)} to mean simply the set of all objects denotedxoy
for any assignment of the free variablesxdhat satisfieg(x). Unfortunately, these two definitions
quickly lead to paradoxes, as mentioned earlier in Section 6.1.

KIF describes the harmful influence of paradoxes as:

“One of the goals in the design of KIF is that it has a clearly specified model-theoretic
semantics in terms of which the concepts of entailment, equivalence, consistency, sound-
ness and completeness can be defined. If the paradoxes are allowed to persist in prin-
ciple, even if they are easy to avoid in practice, the consequence would be that no KIF
theory would be true in any model. Definitions couched in terms of models would be
trivialized, becoming useless. All sentences would be entailed by any theory, any two
theories would be equivalent, no theory would be consistent, every possible inference
rule would be sound, and so on.”

In the NGB version of KIF, these paradoxes are avoided by replacing the principle of unre-
stricted set abstraction with tipeinciple of restricted set abstractidsy bounded objects as follows.
X e {v|¢(v)} & boundedx) A ¢,/x (B.16)

wheregp, x stands for the result of substitution of tesafior all free occurrences ofin ¢(v).
Thus, eventually KIF can avoid Russell's Paradox by introducing boundedness and combining
it with any formula. The KIF document concludes as follows in Chapter 7.

“With this principle, there are two reasons why something may be excluded from a
set{v | ¢(v)}. It may fail to be a member because it does not satisfy the defining

152 APPENDIX B. SETS IN KIF

conditiong(v), or it may be excluded because it is an unbounded object. Conditioning
the membership of objects in this set on their boundednésstigely eliminates the
paradoxes.”

Appendix C

Ramified Type Theory

The purpose of this appendix is to introduce Russell's Ramified Type Theory (RTT), which is the
first genuine type theory developed in ‘Principia Mathematica’ (PM) for the purpose of avoiding
Russell's paradox in case of the axiomatization of mathematical system. In this appendix, we spe-
cialize the description of Laan [44] and Kamareddine et al. [28] for RTT into unary predicate (for
class extension) and binary predicate (for property extension) of higher order logic along with the
definition of RDF Semantic Theory.

A Vicious Circle Principle

Bertrand Russell and Alfred N. Whitehead conceived that the so-called Russell's Paradox is one of
many paradoxes all of which are caused by vicious circle.

An analysis of the paradoxes to be avoided shows that they all result from a certain
kind of vicious circle. (Principia Mathematica [77], pp.39)

Therefore, they settledcious circle principlein order to avoid the paradoxes.

[...] “Whatever involvesall of a collection must not be one of the collection”; or,
conversely: “If, provided a certain collection had a total, it would have members only
definable in terms of that total, then the said collection has no total.” We shall call this
the “vicious-circle principle,” [...] (PM [77], pp.39)

The universe of discourse is exactly ‘a total’ and ‘no total’ mentioned in PM, and the universal
class or rdfs:Resource is a class that denotes the totality. Russell invented Ramified Type Theory

153

154 APPENDIX C. RAMIFIED TYPE THEORY

in order to avoid the Russell's Paradox and take the totality into account. However, obscurities in
their formalization remained in the description from the today’s viewpoint that is mathematically
rigorous, and then researchers re-formulated and re-interpreted more precisely the Ramified Type
Theory latet.

In the following sections, according to the description by Kamareddine et al. [28], we sim-
plify the Ramified Type Theory only into unary and binary predicate, adapting the theory to RDF
Semantic Theory.

B Propositional Function

In PM, the concept opropositional functiorwas introduced onto the logic by Frege instead of set
theories.

“By a ‘propositional function’ we mean something which contains a variabéad
expresses propositionas soon as a value is assignectb(PM, pp.41)

For example, “Obama is Human” oHumar{Obamag” is a proposition. Humar(x)” and “x(Obamg”
is a propositional function, respectively.

The following metavariables for individuals, variables, and functions are distinctive as symbol.
However, actual vocabulary of individuals, variables, and functions are not distinctive, and function
arguments, i.ei, j andk, are metavariables that run over individuals, variables, and functions.

e Ais a vocabulary ofndividuals a,aj,as,... andb, by, by, ... are symbols for vocabulary
A. a{ andbi] is an expression for the denotationapfandby;, respectively.

e Vis a vocabulary ofrariables X, X1, Xo,... andy, yi1, Yo, ...are symbols for vocabulary.
x andy/ is an expression for the denotationxpfandy;, respectively.

e Cis a vocabulary ofinary predicatesR is a vocabulary obinary predicatesC,C;,C,,...
are symbols for vocabulaiy. R R, R, ... are symbols for vocabularg. Cif is an expres-
sion for the denotation d;. F{ is an expression for the denotationRf

(Atomic Proposition)C(a) is called (unary) atomic propositiorR(a, b) is called (binary) atomic
proposition.7 (C(a)) = C?(a’) denotes an interpretatidhof C(a). 7(R(a, b)) = R (a, b’) denotes
an interpretatiord of R(a, b).

1See Kamareddine et al. [28], pp.21.

C. RAMIFIED TYPE 155

Propositional functions in PM are generated from atomic propositions by two means, namely, i)
the use of logical connectives and quantifiers, and ii) abstraction from earlier generated propositional
functions, using the abstraction principle.

(Propositional function) We define a collection of propositional functighsSuch as:

1. Ifi,j e AUV, thenC(i), R(i, j) € P.

2. If f,ge P, thenf vgePand-f e P.

3. If f ePandxisfreeinf, thenvx[f] € P.

4. If ki, ko € AUV UP, thenC(ky), R(ks, ko) € P.

5. All propositional functions can be constructed by using the construction rules 1, 2, 3 and 4

above.

Note that rule 2 and 3 above allow us to describe not only disjunctipbiit also conjunctionA)
due to the negation-)2. In case of rule 1 through 3, we stay in first order logic, rule 4 allows us to
expand propositional functions to higher order.
(Proposition) A propositional functiofi is apropositionif there is no free variable irf.

So far, we do not seticious circle principleyet. For example, we can define the so-called
Russell's set:z(2)® as propositional function.

C Ramified Type

Here, in order to avoid the paradox, ramified types are introduced. while there is no definitions of
“type” in PM, Kamareddine et al. pointed out that the definition of “the same type%ihi31 in
PM.

x9-131 Definition of “being of the same typeThe following is a step-by-step defini-
tion, the definition for higher types presupposing that for lower types. We say that
andv “are of the same type” if (1) both are individuals, (2) both are elementary func-
tions taking arguments of the same type, (3% a function and is its negation, (4)
uis ¢%* or yX, andvis ¢X v ¥k, wheregX andy X are elementary functions, (5)is

2We assume the law of excluded middle.

3|t corresponds t& ¢ x, which causes Russell’s Paradox.

4The notationpX in PM denotes a propositional function that hass a free variable. Similarg(X,) is used for the
representation of a propositional functigithat has two free variablesandy amongst its free variables.

156 APPENDIX C. RAMIFIED TYPE THEORY

Yy[#(X, y)] andv is YZy (X, 2)], whereg(X, §) andy(X, §) are of the same type, (6) both
are elementary propositions, (f)s a proposition and is —u, or (8)uis YX[¢X] andv
is Yy[yy], wheregX andy/X are of the same type. (PM [77],Vol.1,pp.138)

Here, an elementary function is a propositional function that takes only elemental propositions as its

value. An elemental proposition is a proposition that does not involve any variables. See [77],pp.95.
According to these rules for “the same type”, Kamareddine et al. pointed out(}hat-z() is

not of the same type).

(Simple type) firstly simple type is defined such as:

1. Ois a simple type;

2. If tg,...,t, are simple types, then alsta (. . ., ty) is a simple typen = 0 is allowed: then we
obtain the simple type ();

3. Allimple types can be constructed using above rules 1 and 2.

The type () stands for the type of the proposition, and the type 0 stands for the type of the individuals.
Then, the unary propositional function that takes one individual as argument should have type (0).
It is also pointed tha€(a) andVz: ()[z() v —z()] are of a diferent level, because the former is

an atomic proposition, while the latter is based on the propositional fungfijon-z(). Note that

the expression of propositional functiaf) v -z() involves an arbitrary propositiors therefore

vz: ()[z() v —-z()] denotes all interpretations quantified over the universe of discourse. However,
according to the vicious circle principl&€z: ()[z() v —Z)] itself cannot belong to this collection of
propositions. This problem is solved by dividing types intders We startramified typedrom

type 0 with order O for individuals.

1. 0°is a ramified type;
2. It ... ta" are ramified types, thetl[t, ..., ta")N is a ramified type, wherd > max(m, ..., my);
3. All ramified types can be constructed using rules 1 and 2.

If tMis a ramified type, themis called theorder of t™.

Amongst the ramified types, onesf= maxmy, ..., my)+1 is calledpredicative For example,
for Obamac A, individualObamd has type 6, thenHumarf (Obamd) has type (8)1. Therefore,
rdfs:Clasg (Humarf) has type ((8)1)2.

C. RAMIFIED TYPE 157

We conceive that RDF classes in RDF Semantics are equivalent to the unary predicates and they
have a predicative type. Thus! € CEXT (CY) is equivalent taC? (x!), and if the order ok’ is
n, then the order o€’ is n + 1. Thus, for the equation on the universal metaclass (2.12) or (6.13),
if the order ofrdfs: Clasd at the left hand side is, then the order ofdfs : Clasd at the right
hand side i1 + 1. Both are the same in appearance, but they must be distinguished by the orders in
Ramified Type Theory. Therefore, the descendant of membership on rdfs:Class is terminated from
an arbitraryn to the bottom order 2 of rdfs:Class suchmas» n—1 - n-2 - --- — 2, because
RDF properties, e.grdfs: comment andrdfs: label’, have type B, and therrdf : Property’ has
type ()1, thenrdfs: Clasd (rdf : Property) has type ((0)1)2.

[This page intentionally left blank]

Appendix D

List of Published Papers

(Vv —FI)
AN FE T, ERH SERH : OWL BRI CLOSA 7Y =27 Mgm7u s3I vy, av
Ya—&Y 7 b7y, 2011-5H Fi&, &%, 25—

(e s =]
AN, ISR« N THIBEH S5 Lisp 4 &k, ATLAIREF 25, 24(5) 681-690
2009 10R—Y

(EER=E (EH>)]
Seiji Koide and Hideaki Takeda, Common Languages for Web Semantics, Evaluation of Novel
Approaches to Software Engineering (CCIS), Lecture Notes, Springer-Verlag (2011), 16 pages.
Seiji Koide and Hideaki Takeda, Common Languages for Semantic WWW — Beyond RDF and
OWL —, 5th Int. Conf. Evaluation of Novel Approaches to Software Eng. (ENASE2010),
10 pages.
Seiji Koide and Hideaki Takeda, Meta-circularity and MOP in Common Lisp for OWL Full,
ELW '09: Proceedings of the 6th European Lisp Workshop, 28—-34, ACM. 7 pages.

Seiji Koide and Hideaki Takeda, Formulation of Hierarchical Task Network Service (De)composition,
First International Joint Workshop SMR2 2007 on Service Matchmaking and Resource
Retrieval in the Semantic Web, Workshop at ISWC2688WC2007, 107-121, 15 pages

Seiji Koide and Hideaki Takeda, OWL-Full Reasoning from an Object Oriented Perspective, Asian
Semantic Web Conf. (ASWC200), 263-277, Springer. 15 pages

159

160 APPENDIX D. LIST OF PUBLISHED PAPERS

Seiji Koide and Hideaki Takeda, MetaModeling in OOP, MOF, RDFS, and OWL, 2nd International
Workshop on Semantic Web Enabled Software Engineering (SWESE 2006) at the 5th
International Semantic Web Conference (ISWC 2006), 14 pages

(F2— bV TILZDA]

Seiji Koide, SWCLOS: A Semantic Web Processor on CLOS, Europian Lisp Workshop,
Tutorial, 2009

Seiji Koide, SWCLOS User’s Manual, National Institute of Informatics Technical Report
(NI11-2009-014E), 2009, 92 pages

Seiji Koide: Semantic Web Services and OOP — toward Unified Services —, SWO, 2006

INB R, ¥ v Tav ooz T -V ALy M EREY AT A, HARANTHIGE
T2 0M Al Y VERY Y L, 2005

Seiji Koide, SWCLOS: Semantic Web Processing in CLOS, International Lisp Conference,
Tutorial, 2005

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

Ontology Definition Metamodel. Standard document, OMG, May 2009. OMG Document
Number: formal2009-05-01.

José Julio Alferes, Matthias Knorr, and Terrance Swift. Queries to hybrid mknf knowledge
bases through oracular tabling. Pmoceedings of the 8th International Semantic Web Confer-
ence ISWC '09, pages 1-16, Berlin, Heidelberg, 2009. Springer-Verlag.

Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damasio, and Gerd Wagner. Stable
model theory for extended RDF ontologies. IBWC 2005 volume 3729 ofLNCS pages
21-36, 2005.

Colin Atkinson. Unifying MDA and knowledge representation technologiesldninter-
national Workshop on the Model-Driven Semantic Web (MDSW2004) Enabling Knowledge
Representation and MDA Technologies to Work Toge®@04.

Franz Baarder and Werner Nufthe Description Logic Handbopkhapter 2. Basic Descrip-
tion Logics, pages 43-95. Cambridge, 2003.

Alex Borgida and Ronald J. Brachmaithe Description Logic Handbopkhapter 10. Con-
ceptual Modeling with Description Logics, pages 349-372. Cambridge, 2003.

Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation, February 2004.

Saartje Brockmans, Robert M. Colomb, Peter Haasea, Elisa F. Kendall, Evan K. Wallace,
Chris Welty, and Guo Tong Xie. A model driven approach for building OWL DL and OWL
Full ontologies. INSWC 2006volume 4273 oL NCS pages 187-200, 2006.

161

162 BIBLIOGRAPHY

[9] Jeremy Carroll, lvan Herman, and Peter F. Patel-Schneider. Owl 2 web ontology language rdf-
based semantics. W3C Candidate Recommendation, June 2008witipw3.orgTR/owl2-
rdf-based-semantits

[10] Jeremy J. Carroll and Dave Turner. The consistency of OWL Full (with proofs). Technical
Report HPL-2008-59, HP Laboratories, 2008.

[11] Robert M. Colomb, Anna Gerber, and Michael Lawley. Issues in mapping metamodels in the
ontology development metamodel. Pmoc. Model-Driven Semantic We® 2004.

[12] Jos de Bruijn, Enrico Franconi, and Sergio Tessaris. Logical reconstruction of RDF and on-
tology languages. IfPrinciples and Practice of Semantic Web Reasonirgume 3703 of
LNCS pages 65—71. Springer, 2005.

[13] Jos de Bruijn and Stijn Heymans. Logical foundations of (€)RDF(S): Complexity and reason-
ing. In K. Aberer at al., editodl SWGASWC 2007, The Semantic Weblume 4825 oL NCS
pages 86-99. Springer, 2007.

[14] Dragan Djure, Dragan GaSe#j and Vladan Devedzi Ontology modeling and MDAJournal
of Object Technology?(1):109-128, January-February 2005.

[15] H.C. Doets. Zermelo-Fraenkel Set Theory. Lecture Note, April 2082tp://staff.

science.uva.nl/~vervoort/AST/ast.pdf.

[16] douglas foxvog. Instances of instances modeled via higher-order class&suridational
Aspects of Ontologies (FOnt 200Fages 4654, Koblenz, Germany, September 2005. 28th
German Conference on Artificial Intelligence. ISSN 1860-4471.

[17] Gilles Dowek. Higher-Order Unification and Matching, HANDBOOK OF AUTOMATED
REASONINGchapter 16, pages 1009-1062. Elsevier, 2001.

[18] Michael R. Genesereth and Richard E. Fikes. Knowledge interchange format version 3.0
reference manual, 1994.

[19] Bernardo Cuenca Grau, lan Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider, and
Ulrike Sattler. Owl 2: The next step for owleb Semanti¢c$:309-322, 2008.

[20] Nicola Guarino. Some ontological principles for designing upper level lexical resources. In
A. Rubio, N. Gallardo, R. Castro, and A. Tejada, editdih®, First International Conference

BIBLIOGRAPHY 163

on Lexical Resources and Evaluatjgmages 527-534, Granada, Spain, May 1998. ELRA -
European Language Resources Association.

[21] R. V. Guha and Patric Hayes. Lbase: Semantics for languages of the semantic web. Note,
W3C, October 2003.

[22] Yuanbo Guo, Zhengxiang Pan, andtJ¢eflin. LUBM: A benchmark for owl knowledge base
systems.Journal of Web Semantic3(2):158-182, 2005.

[23] Volker Haarslev, Ralf Mdoller, and Michael Wessel. Querying the semantic web with facer
NRQL. InProceedings of the Workshop on Description Logics 2004 (ADL2@0404.

[24] Harry Halpin, Patrick J. Hayes, James P. McCusker, Deborah L. Mcguinness, and Henry S.
Thompson. When owl:sameas ins’t the same: An analysis of identity in linked daBa\W@
201Q 2010.

[25] Patrick Hayes and Brian McBride. RDF Semantics. W3C Recommendation, Feb. 2004.
http//www.w3.orgTR/rdf-mt/.

[26] Patrick Hayes and Christopher Menzel. A semantics for the knowledge interchange format. In
In IJCAI 2001 Workshop on the IEEE Standard Upper Ontoj@§p1.

[27] Pascal Hitzler, Markus Krotzsch, Bijan Parsia, Peter F. Patel-Schneider, and Sebastian
Rudolph. Owl 2 web ontology language primer. W3C Recommendation, October 2009.

[28] Fairouz Kamareddine, Twan Laan, and Rob Nederpgelodern Perspective on Type Theory
Kluwer Academic Publishers, 2004.

[29] Ken Kaneiwa and Riichiro Mizoguchi. An order-sorted quantified modal logic for meta-
ontology. InProceedings of the International Conference on Automated Reasoning with Ana-
lytic Tableaux and Related Methods (TABLEAUX 2006ume LNCS 3702, pages 169-184.
Springer Verlag, 2005.

[30] Heiko Kattenstroth Knowledge-Management with OWL and F-logic: A Combination of De-
sciption Logic Reasoning with F-Logic Rulé3hD thesis, Univ. Goettingen, 2007.

[31] Gregor Kiczales, Jim des Riviéres, and Daniel G. Bobrbie Art of the Metaobject Protocol
MIT Press, 1991.

164

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

BIBLIOGRAPHY

Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented and
frame-based language¥ournal of the ACM42(4):741-843, 1995.

Michael Kifer and James Wu. A logic for object-oriented logic programmindroceedings
of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems
(PODS '89) 19809.

Graham Klyne, Jeremy J. Carroll, and Brian McBride. Resource description framework
(RDF): Concepts and abstract syntax. W3C Recommendation 10 February 2004, February
2004. httpt/www.w3.0rgTR/2004REC-rdf-concepfs

Holger Knublauch, Daniel Oberle, Phil Tetlow, and Evan Wallace. A semantic web primer for
object-oriented software developers. W3C Working Group Note,/htpw.w3.orgTR/sw-
oosd-primet, March 2006.

Paul Kogut, Stephen Cranefield, Lewis Hart, Mark Dutra, Kenneth Baclawski, Mieczyslaw
Kokar, and Jffrey Smith. UML for ontology developmentThe Knowledge Engineering
Review 17(1):61-64, 2002.

Seiji Koide. Swclos user's manual. Technical Report NII-2009-014E, National Institute of
Informatics, Oct. 2009. communicated by Hideaki Takeda.

Seiji Koide, Jans Aasman, and Steve Haflich. OWL vs. object oriented programming. In
Workshop on Semantic Web Enabled Software Engineering (SWESE) at the 4th International
Semantic Web Conference (ISWC 20@glway, Ireland, November 2005.

Seiji Koide and Masanori Kawamura. SWCLOS: A semantic web processor on common lisp
object system. I13rd International Semantic Web Conference (ISWC2004), De2@gg!.

Seiji Koide and Hideaki Takeda. Metamodeling in OOP, MOF, RDFS, and OWL2nth
International Workshop on Semantic Web Enabled Software Engineering (SWESE 2006) at
the 5th International Semantic Web Conference (ISWC 2@06gns, GA, U.S.A., November
2006.

Seiji Koide and Hideaki Takeda. OWL-Full reasoning from an object oriented perspective. In
Asian Semantic Web Conf., ASWC2Qtdges 263—-277. Springer, 2006.

BIBLIOGRAPHY 165

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Seiji Koide and Hideaki Takeda. Meta-circularity and mop in common lisp for owl full. In
ELW '09: Proceedings of the 6th European Lisp Workshogges 28—-34, New York, NY,
USA, 2009. ACM.

Kouji Kozaki, Eiichi Sunagawa, Yoshinobu Kitamura, and Riichiro Mizoguchi. Role repre-
sentation model using owl and swrl. Broc. of 2nd Workshop on Roles and Relationships in
Object Oriented Programming, Multiagent Systems, and OntolpBiedin, July 2007.

Twan Laan. A formalization of the ramified type theory. Technical report, 1995.

Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue Pan, and Shengping Liu. Towards a
complete owl ontology benchmark. InY. Sure and J. Domingue, edifwos, ESWC 2006
number 4011 in LNCS, pages 125-139. Springer, 2006.

Pattie Maes. Concepts and experiments in computational reflecti@QORSLA '87 Proceed-
ings, pages 147-155. ACM, October 1987.

David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila Drew McDermott, Sheila Mcll-
raith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren Sirin,
and Naveen Srinivasan Katia Sycara. OWL-S: Semantic markup for web services.
httpy//www.w3.0orgSubmissiof2004 SUBM-OWL-S-20041122 2004. W3C.

Drew McDermott. Tarskian semantics, or no notation without denotat@ognitive Scienge
2:277-282, July-September 1978.

Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language Overview.
W3C Recommendation 10 February 2004, February 2004. /Mttpw.w3.orgTR/owl-
featureg

Georgios Meditskos and Nick Bassiliades. Towards an object-oriented reasoning system for
owl. In Proc. OWL: Experiences and Directions Workshpages 11-12, 2005.

Shohei Misono, Seiji Koide, Norikazu Shimada, Masanori Kawamura, and Susumu Nagano.
Distributed collaborative decision support system for rocket launch operatidBEEIASME
International Conference on Advanced Intelligent Mechtronics (AIM2005), WB®#&des
1318-1323, 2005.

Riichiro Mizoguchi. Tutorial on ontological engineering - part 2: Ontology development, tools
and languagedNew Generation Computing2(1):61-96, 2004.

166 BIBLIOGRAPHY

[53] Riichiro Mizoguchi, Eiichi Sunagawa, Kouji Kozaki, and Yoshinobu Kitamura. The model of
roles within an ontology development tool: Hozappl. Ontol, 2(2):159-179, 2007.

[54] Boris Motik and Ulrike Sattler. A comparison of reasoning techniques for querying large
description logic aboxes. lhogic for Programming, Artificial Intelligence, and Reasoning
volume 4246 oL ecture Notes in Computer Scienpages 227-241, 2006.

[55] Fabian Neuhaus. The semantics of modules in common logic. In Barry Smith, Riichiro
Mizoguchi, and Sumio Nakagawa, editohsterdisciplinary Ontologyvolume 3, pages 107—
117. Open Research Centre for Logic and Formal Ontology, Keio University, February 2010.

[56] Andreas Paepcke, editaRbject-Oriented Programming - The CLOS PerspectiMér Press,
1993.

[57] Peter F. Patel-Schneider, Patrick Hayes, and lan Horrocks. OWL Web Ontology Language
Semantics and Abstract Syntax. W3C Recommendation, February 2004.

[58] Peter F. Patel-Schneider, Patrick Hayes, and lan Horrocks. OWL Web Ontology Language
Semantics and Abstract Syntax section 5. rdf-compatible model-theoretic semantics. W3C
Recommendation, httfjwww.w3.0orgTR/owl-semanticsdfs.html, February 2004.

[59] Peter F. Patel-Schneider and lan Horrocks. OWL Web Ontology Language Semantics and
Abstract Syntax section 3. Direct Model-Theoretic Semantics. W3C Recomendation, 2 2004.
httpy//www.w3.orgTR/owl-semanticalirect.html.

[60] Michael Potter.Set Theory and its Philosoph@xford, 2004.

[61] Colin Puleston, Bijan Parsia, James Cunningham, and Alan Rector. Integrating object-oriented
and ontological representations: A case study in java and OWBrdo. ISWC 2008volume
5318 of LNCS pages 130-145. Springer, 2008.

[62] Willard van Orman QuineSet Theory and its LogidHarvard, 1963.

[63] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpura, and Yarden Katz. Pellet:
A practical owl-dl reasoneiVeb Semanti¢c$:51-53, June 2007.

[64] Brian Cantwell Smith. Reflection and semantics in LispP®PL '84: Proceedings of the 11th
ACM SIGACT-SIGPLAN symposium on Principles of programming langupgges 23-35,
New York, NY, USA, 1984. ACM Press.

BIBLIOGRAPHY 167

[65]

[66]

[67]

[68]
[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL Web Ontology Language
Guide. W3C Recommendation, February 2004. Httpvw.w3.orgTR/owl-guide.

John F. Sowa. Top-level ontological categoriks. J. Hum.-Comput. Stu43(5-6):669-685,
1995.

John F. SowaKnowledge Representation: Logical, Philosophical, and Computational Foun-
dations Brooks Cole Publishing Co., Pacific Grove, CA., August 1999.

Guy L. Steele, JrCommon Lisp The LanguagPigital Press, 1984.
Guy L. Steele, JrtCommon Lisp The Language 2nd editi@igital Press, 1990.

Hideaki Takeda, K. lino, and Toyoaki Nishida. Agent organization and communication with
multiple ontologiesInt. J. Cooperative Inf. Sys#(4):321-338, 1995.

Alfred Tarski. Introduction to Logic Dover, 19461995. This book is an extended edition of
the book of title “On Mathematical logic and Deductive Method,” which appeared at 1936 in
Polish.

Herman J. ter Horst. Completeness, decidability and complexity of entailment for RDF schema
and a semantic extension involving the OWL vocabul&vgb Semanti¢c8:79-115, 2005.

Phil Tetlow, J& Z. Pan, Daniel Oberle, Evan Wallace, Michael Uschold, and
Elisa Kendall. Ontology driven architectures and potential uses of the seman-
tic web in systems and software engineering. W3C Editors’ Draft, Feb 2006.
httpy/www.w3.0rg200Y/sw/BestPracticg SEODA.

David Turner and Jeremy J. Carroll. Comparing owl semantics. Technical Report HPL-2007-
146, Digital Media Systems Laboratory, HP Laboratories Bristol, 2007.

Sui-Yu Wang, Yuanbo Guo, Abir Qasem, andiJeeflin. Rapid benchmarking for semantic
web knowledge base system. In Y. Gil et al., edikmc. ISWC 2005volume 3729 o NCS
pages 758-772. Springer, 2005.

Timo Weithoner, Thorsten Liebig, Marko Luther, Sebastian Béhm, Friedrich Henke, and Olaf
Noppens. Real-world reasoning with owl. Rroceedings of the 4th European conference on
The Semantic Web: Research and Applicati@SWC '07, pages 296-310, Berlin, Heidel-
berg, 2007. Springer-Verlag.

168 BIBLIOGRAPHY

[77] Alfred North Whitehead and Bertrand Russd®rincipia Mathematicavolume 1. Merchant
Books, 1910.

Index

A-calculus, 41
3-lisp, 41

ABox, 5

Aczel, 148

after method, 38

Alferes, 137

Allegro Common Lisp, 52
AllegroGraph, 98
allValuesFrom, 35
Analyti, 136

annotation property, 29
anonymous class, 61
anonymous restriction, 61
ANSI Common Lisp, 131
around method, 38
Aspect Theory, 132
Aussonderung, 113

auto-epistemic local closed world assumption,

129
Axiom of Choice, 113
axiom of choice, 148, 149
axiom of foundation, 116
axiom of regularity, 116

base object, 104, 123
Bassiliades, 135
before method, 38

Begriffsschrift, 112
BibTeX Benchmark, 101
blank nodelD, 16

blank nodes, 15
Borgida, 3, 64

bottom class, 30
bounded, 148

Bruijn, 136

Cantor, 111, 113
cardinality, 36
cardinality checking, 73
Carroll, 136

causality, 40

CEXT, 19

CGIF, 140

change class, 39

Chen, 135

%I,ass, 18

class based system, 39
class disjointness, 129
class extension, 18, 51
class hierarchy, 21
class in CLOS, 36
class membership, 121
class order, 21

class orders, 21

class precedence list, 39

169

170

CLCE, 140

CLIF, 140

CLIPS, 135

CLOS, 7, 36

CLOS clean, 104

Common Lisp, 36

Common Logic, 140

Common Logic Controlled English, 140
Common Logic Interchange Format, 140
Common Loops, 36

complement of concept, 33, 72

complete relation, 62

comprehension principle, 31, 33, 118, 136
comprehensive principle, 111, 112
Conceptual Graph Interchange Format, 140
context dependent role, 8

COOL, 135

criteria for metamodeling, 137

cyclic loop, 68

DAML +OIL, 59

datatype property, 29

de-reference, 43

denotational semantics, 3, 11, 28, 34, 43
differentFrom, 34, 70

direct slot definition, 39

disjoint class, 34

disjointness of substance classes, 8
disjointWith, 70

DLDB-OWL, 87

Doets, 114, 143

domain, 53

domain constraint, 23

Dowek, 117

INDEX

dynamic programming, 44

effective slot definitions, 39
empty set, 114

entail, 24

entailment, 24

entailment rule, 25, 68
equivalent class, 32, 70
equivalent property, 70
EXT, 14

Extensionality, 113
externalization, 43

F-logic, 135

F-OWL, 135
Feferman, 148

Finin, 135

first-class object, 38
FLO, 65

Flavors, 36

Flora-2, 135

Florid, 135

Food Ontology, 130
forward reference, 56
Foxfog, 137
Fraenkel, 113

frame based, 135
Frege, 12, 112
functional property, 70

generic function, 38
ground graph, 13, 14
Guo, 77

hasValue, 35

INDEX 171

Hayes, 20, 21 Ma, 98, 100

Herbrand interpretations, 136 maxCardinality, 35

HiLog, 135 maxcardinality, 54

homoiconic, 42 McBride, 21

Hozo, 132 McDermott, 11
MDA, 6

individual property, 29
Infinity, 114
internalization, 43

Meditskos, 135

membership, 18

membership loop, 18, 52, 116, 122, 137
memoization, 95

Meta, 122

meta-circularity, 39

Meta-Obiject Protocol, 39

metaclass, 44, 52, 104, 123

metaclass condition, 123

interpretation, 12, 13
interpretation mapping, 13
intersection of concept, 33
intersection of concepts, 72
inverse functional property, 71
IS-A relation, 64

Kagal, 135
Kamareddine, 112, 153

Metamodeling Criteria, 7
metamodeling criteria, 103

Kaneiwa, 64 metaobject, 7, 40, 44, 54, 61
KAONZ, 78, 99 Metaobject Protocol, 39
Kattenstroth, 135 method, 38

KIF, 116, 147 method combination, 38
Knowledge Interchange Format, 147 method dispatch, 38

Kozaki, 133 minCardinality, 35

Laan, 153 mincardinality, 54

Lehigh University Benchmark, 77 Minerva, 100

Linked Open Data, 137 minimal knowledge and negation as failure, 137
Lisp 1.5, 41 Mizoguchi, 64, 132

lisp package, 49 MKNF, 137

list comprehension, 120 model theoretic semantics, 59
literal, 13 model theory, 12

literal class, 20 MOF, 6

localizing assumption, 118 monotonicity, 24

LUBM, 77 monotonicity principle, 25

172 INDEX

MOP, 7 OWL interpretation, 29
multiple class, 55 OWLIM, 100
multiple class inheritance, 44 OWLJessKB, 77
multiple inheritance, 38
Paepcke, 39
naive set theory, 111 Pellet, 78, 99
namespace, 49 pizza.owl, 5
NBG, 147 PM, 153
Neuman-Godel-Bernays, 117 Potter, 113
New Foundations, 106 primary method, 38
nodelD, 13 Principia Mathematica, 153
non-discourse names, 141 proactive entailment, 56
non-substantial property, 64 property, 13, 17
non-Unique Name Assumption, 4, 18, 34 property centric, 23, 49
NP-complete, 136 property extension, 14, 50
property restriction, 35
O-DEVICE, 135 propositional function, 154
object centric, 49, 126 proxy, 106
object oriented, 135 Puleston, 135
object-centered modeling, 6 punning, 3
ODA, 6 _
ODM. 6 Quine, 147
OMG, 6 Racer, 78
oneOf property, 34 RacerPro, 98
ontology property, 29 ramified type, 155
Open World Assumption, 4, 129 Ramified Type Theory, 117, 153
open world assumption, 129 range, 53
OpenCyc, 104 range constraint, 23
order, 156 RDF clean, 104
OWA, 129 RDF compatibility, 58
OWL 2,120 RDF graph, 5, 14, 24, 47
OWL Direct-Model Semantics, 11 RDF Schema, 18
OWL entailment rule, 36 RDF simple interpretation, 14

OWL Full, 58, 121 RDF Universe, 13

INDEX

rdf-interpretation, 17
rdf-vocabulary, 17

RDFS semantic condition, 19
Read Eval Print Loop, 74
redefine class, 39

reflection, 6, 22, 40, 122
reflective programming, 44
refutation, 69

resource, 13

role concept, 133

RTT, 153

Russell, 153

Russell's Class, 112
Russell's Paradox, 111, 112, 153

S-expression, 41

sameAs, 34, 70

satisfiability check, 68
segregated, 141

semantic condition, 12, 14
Semantic Web Layer Cake, 2
Separation Axiom, 113
Sesami, 87

SETF, 6

simple type, 156

slot definition, 50, 54, 55

slot inheritance, 39

slot option, 54

slot value type option, 39
Smalltalk, 38

Smith, 41, 43

Software Engineering Task Force, 44
someValuesFrom, 35
standard-class, 40

stratified, 106

strict class, 104, 123

strong subsumption, 30
structural subsumption algorithm, 65
subject type, 50

subproperty, 24

substantial property, 64
Substitution Axiom, 113
subsumption, 18, 22, 51, 53, 121
SUMO, 103

superproperty, 24

symmetric property, 71

Tableau Algorithm, 69
Takeda, 132

Tarski, 11

Tarskian denotational model theory, 3
Tarskian Semantics, 11, 12
TBox, 5

ter Horst, 36, 68

ternary truth value, 8

Tim Berners-Lee, 2, 141
Top, 122

top class, 22, 30

tractability, 103

transfinite ordinal number, 115
transfinite set theory, 113
transitivity, 22, 51

Turner, 136

Twist, 121

twisted, 41, 53, 106

twisted relation, 122

twisted relation for OWL, 124
type theory, 7

173

174

UML, 6

UML profile, 136

UNA for atomic object, 8, 127
unbounded, 148

union of concept, 33, 72
universal class, 19-21, 121
universal metaclass, 20, 121
universe of discourse, 13
unrestricted comprehension, 112
untractable metamodeling, 103
UOBM, 100

vicious circle principle, 155
Virtuoso, 98
von Neuman-Bernays-Goedel, 147

Wang, 101

Weithoner, 98, 100
Whitehead, 153

Wine Ontology, 119, 130

XCL, 140
XML Common Logic, 140
XSB, 135

Zermelo, 112
Zermelo-Fraenkel, 111, 143
ZF, 143

ZFC, 148

Zou, 135

INDEX

