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The problem of learning behavior policy, a task representation mapping

from world states to actions, lies at the heart of many robotic applications. One

approach to acquiring behavior policy is learning from demonstration, an inter-

active technique in which a robot learns a policy based on observation to action

mappings provided by a human teacher. When the user behavior policy changes

frequently the robot has to adapt to new user behavior policy rapidly. Robots

ability to rapidly adapt to user behavior policy is an important aspect of learning

from observation because otherwise the user may be tired. However rapid adapta-

tion poses a significant challenge because it is difficult with conventional methods.

Bayesian network is suitable to address the challenge because it can represent de-

gree of confidence for behavior decision as probability and can provide a confidence

even with a small number of observations. Bayesian network is also suitable for on-

line interactive learning. However the performance of Bayesian learning strongly

depends on the quality of the observed dataset. When the dataset included signif-

icant data, the learning would be a success. But it is difficult to evaluate data to

be insignificant because when the data become insignificant for learning process is

not known a priori. In this thesis, we propose a novel concept for evaluating sig-

nificance of data and contributes multiple algorithms that provide rapid behavior

adaptation. We evaluate our algorithms empirically, both in simulation and on a

real robot. Results with the performance PeopleBot confirm the effectiveness of

the algorithms in rapid behavior adaptation.
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Chapter 1

Introduction

Robots have proven powerful tools in the predictable environments of fac-

tories and manufacturing plants. However, they have been far less successful in

human environments characterized by a higher degree of uncertainty and change.

Each response of today’s industrial robots has to be programmed in advance.

This approach is ill suited for robots in human environments, which require a

vast amount of knowledge and the specification of a wide set of behaviors for suc-

cessful performance. Typically robots in human environments are placed in very

restricted worlds because then the environment can be controlled. If a robot is

taken in a unknown home, that approach just doesn’t hold anymore. Moreover

when the user or environment changes frequently the robotic system should be

able to adapt to new user or environment rapidly to take correct action. This

has introduced the need for building robotic systems able to adapting to user and

environment in an engaging way by using their observed sensory information.

The recent trend in robotics is to develop a new generation of robots that

are capable of adapting to new user, interacting with user and participate in our

daily lives. Adaptive behavior plays an important role in the assistance of different

user with different needs. Therefore, such robots should be able to rapidly adapt

to user preference, user policy and have interaction skills to communicate with

user. In this thesis users preference indicates variation of behavior decision by
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the user even though identical sensor is observed. And user’s policy is defined by

the mapping from observation to action. The problem of learning a policy, a task

representation mapping from world states to actions, lies at the heart of many

robotic applications. One approach to acquiring a task policy is learning from

demonstration, an interactive learning approach based on human-robot interaction

that provides an intuitive interface for robot programming. In this approach, a

teacher performs demonstrations of the desired behavior to the robot. The robot

records the demonstrations, typically as state to action mappings, and learns a

policy imitating the teachers behavior.

Learning from demonstration is an incremental online learning process in

which the robot begins with no knowledge about the task, and acquires training

data until a fully autonomous policy representing the complete task is learned.

If the user change his preference or policy the system should adapt to the new

preference or policy rapidly. This thesis contributes an interactive approach to

demonstration learning that enables the robot to rapidly adapt to user preference

and policy. In this thesis users preference indicates variation of behavior decision

by the user even though identical sensor is observed and policy is the mapping

from world state to action. These algorithms enables the robot to identify the

need for and request demonstrations for specific parts of the state space based

on confidence thresholds characterizing the uncertainty of the learned policy. In

our evaluation, we show that this approach significantly reduces the number of

demonstrations and can rapidly follow user preference and policy.

1.1 Rapid policy adaptation

Demonstrations provide the robot with a dataset consisting of state-action

pairs representing examples of the desired behavior. The robots goal is to use

this information to adapt to a policy, which enables the robot to select an action
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based upon its current world state. Our policy should map from the robots state

to a discrete set of action primitives. And due to the interactive nature of learning

from demonstration, policy adaptation must occur rapidly. In this thesis rapidness

is defined as the ratio of expected time to change user’s preference or policy by

the user to the required time to adapt to preference or policy by the robot.

The state-action mapping represented by a policy is typically complex. One

reason for this complexity is that the desired observation-action mapping is un-

known. A second reason for this complexity is the complications of policy adap-

tation in real world environments. Traditional approaches to robot control model

the domain dynamics and derive policies using mathematical models. Though

theoretically well-founded, these approaches depend heavily upon the accuracy of

the model. Not only does this model require considerable expertise to develop,

but approximations such as linearization are often introduced for computational

tractability, thereby degrading performance. Other approaches, such as reinforce-

ment learning, guide policy learning by providing reward feedback about the desir-

ability of visiting particular states. To define a function to provide these rewards,

however, is known to be a difficult problem that also requires considerable exper-

tise to address. Furthermore, building the policy requires gathering information

by visiting states to receive rewards, which is non-trivial for a mobile robot learner

executing actual actions in the real world. We chose Bayesian network for rapid

policy adaptation because it can represent degree of confidence for behavior de-

cision as probability and can provide a confidence even with a small number of

observations. Also Bayesian network is suitable for online interactive learning.

1.2 Approach

This thesis presents a Bayesian network based framework to address rapid

behavior adaptation. The performance of Bayesian learning strongly depends on
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the quality of the demonstration dataset. When the dataset included significant

data, the learning would be a success. But it is difficult to evaluate data to be

insignificant because when the data become insignificant for learning process is

not known a priori. We propose a method for evaluating significance of data based

on a concept of change in the degree of confidence. A small change in the degree

of confidence can be regarded as an insignificant data for learning, so that data

will be evaluated as insignificant.

For evaluating the significance of demonstration, the experience data is as-

signed to distribution parameters. The distribution represents not only event

probability among behaviors, but also degree of confidence for the output prob-

ability. The system calculates the degree of confidence by integrating the area

around peak of the distribution after each demonstration. The change in the two

consecutive degrees of confidence can be regarded as the importance of the obser-

vation to the learning process. When the change in the degree of confidence in two

consecutive time steps is small, this situation is regarded as familiar; the experi-

ence data is considered insignificant for learning and be discarded. In contrast,

when the robot detect a large change in the degree of confidence in two consec-

utive time steps, this situation is considered unfamiliar; the experience data is

considered significant for learning and be accepted.

We introduce multiple rapid behavior adaptation algorithms that enable the

robot to evaluate demonstrations based on the change in the degree of confidence.

The rapid adaptation algorithm enables the robot to evaluate demonstrations in

real time as it interacts with the user. To enable the robot to clarify unfamiliar

and ambiguous situation, we assume that the robot can pause between execu-

tions of consecutive actions. The clarification component allows the teacher to

provide demonstration when the confidence of the robot is low. Combined, these

techniques provide a rapid and intuitive approach for rapid behavior adaptation.
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We utilize the learning from experience approach, which has the advantage

that the demonstrations are inherently restricted to the robots physical abilities

and a mapping from the teachers actions to those of the robot is not required.

The teacher does not perform demonstrations with his body. Instead the teacher

to select among the robots available actions. We assume the robot has a discrete

number of of high-level actions, or action primitives, which are the basic building

blocks required to perform the task. This ensures that the teachers demonstrations

always fall within the robots abilities.

1.3 Contributions

The main contributions of the thesis are:

A novel method for rapid preference adaptation. We show that the

method of significance evaluation can be used to handle prior probability for rapid

preference adaptation. Change in degree of confidence based significance evalua-

tion method is used to select important action so that prior information become

uninformative. It made rapid preference adaption possible. We demonstrate the

utility of rapid preference adaptation method in the mobile robot context. We

show that robot can automatically adapt rapidly to user preference when signifi-

cance evaluation is used. This work is published in conferences (reviewed) [103],

[105] and is accepted in journal [106].

A novel method for rapid policy adaptation. We show that the

method of significance evaluation can be used for rapid policy adaptation. Signif-

icance evaluation method is used to select important observation for addressing

both prior and conditional probability. We show that robot can automatically

adapt rapidly to user policies when significance evaluation is used. This work is

published in conferences (reviewed) [107] and in journal [108].
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Two techniques for representing and teaching collaborative behav-

ior using demonstration. These techniques are based on different information

sharing strategies: implicit coordination and coordination through active commu-

nication. We are now working on interactive communication that can be used for

handling unstable confidence for rapid policy adaptation. Preliminary result of

this work is presented in the conferences [104].

In current technology, there is no system that allows a robot to adapt in

real-time to user’s policy. Therefore, the aim of this thesis is to find a solution to

this problem by proposing a system by which such a rapid adaptation is possible.

1.4 Organization of the thesis

The work of this thesis is organized in the following chapters.

Chapter 2-Related Works we discuss the related works to this thesis.In

this chapter, We start off with an overview of the different viewpoints from which

the problem of policy adaptation has been approached. We then describe the

related work and their limitations in relation to rapid behavior adaptation. We

finish by highlighting the reasons of our choice for Bayesian network.

Chapter 3- Rapid adaptation to user preference starts with a brief

description of Bayesian network. We then describe the problem in case of Bayesian

network. We then describe the concept of change in the degree of confidence and

how to take the advantage with beta and Dirichlet distribution. Then we describe

how user preference can be followed with the change in degree of confidence based

significance evaluation. Experiment and result for rapid adaptation to user pref-

erence is also described.

Chapter 4- Rapid adaptation to user policy describe how change in

degree of confidence based significance evaluation can be applied for policy adap-

tation. We described the the experiment and result for user policy adaptation in
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this chapter.

Chapter 5-Conclusion and future work discusses the contribution of

the thesis. Give limitations of the thesis and provide future directions. As a future

work we include interactive communication so that the robot can make interaction

with the user by asking question or clarifying situation when it has low confidence

while adapting to new policy.



Chapter 2

Related work

2.1 Introduction

Algorithms for rapid adaptation will become an important prerequisite for

future robots to achieve a more intelligent coordination of their movements that

is closer to human. In this thesis we focus on demonstration based rapid behavior

adaptation. Learning from demonstration is a technique to derive a policy by

a learner from given examples of behavior. There are several common aspects

of demonstration based learning among all applications to date. One is the fact

that a teacher demonstrates execution of a desired behavior. Another is that the

learner derives a policy to reproduce the demonstrated behavior with a set of these

provided demonstrations. Considering the two fundamental phases we segment

the demonstration learning problem into data gathering and policy learning and

survey different solutions to each in this chapter. We also discuss other adaptation

techniques than demonstration based adaptation. We discuss about the limitation

of existing methods and clarify why we chose Bayesian network as our framework.

2.2 Data Gathering

This section discusses demonstration execution and recording techniques.

The dataset is recorded during teacher executions of a desired behavior and is

composed of state-action pairs. Tools used for behavior execution and procedure
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used for recording varies greatly across approaches. Examples range from sensors

on the robot learner recording its own actions as it is passively teleoperated by

the teacher, to a camera recording a human teacher as she executes the behavior

with his own body.

2.2.1 Learning from experience

In learning from experience data gathering approach, the robot experience

the demonstrated actions using its own body. This demonstration experience is

gained by the robot through exploitation of its parts or by instructing it which

of its actions to perform. The robot is an integral part of the demonstration

and executes the actions selected by the teacher while using it’s sensors to sense

the environment. This approach eliminates the correspondence problem faced by

observation-based methods by allowing the robot to directly associate gathered

sensory information with one of its own actions. There may exist an indirect

record mapping for state-action pairs when teacher execution is demonstrated

which needs to be inferred from the data.

2.2.1.1 Method to provide demonstration

We identify two methods for providing demonstration data to the robot

learner based on the record mapping distinction:

(1) Teleoperation: A demonstration technique in which the robot’s sensors

record the execution while the robot is operated by the teacher.

(2) Teacher following: A demonstration technique in which the robot at-

tempts to match or mimic the teacher’s motion as the teacher executes

the task while the robot learner records the execution using its own sen-

sors.
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During teleoperation, a robot records from its own sensors while it is operated

by the teacher. Within demonstration learning, teleoperation provides the most

direct method for information transfer. However, teleoperation requires that op-

erating the robot be manageable. This requirement limits the suitability of this

technique to some systems. For example low-level motion demonstrations are

difficult on systems with complex motor control, such as high degree of freedom

humanoids. The positive side of the teleoperation approach is the direct transfer

of information from teacher to learner, while its negative side is the requirement

that the robot be operated in order to provide a demonstration.

Demonstrations recorded through human teleoperation via a joystick are

used in a variety of applications, including obstacle avoidance and navigation

[46][94],robot kicking motions [19], flying a robotic helicopter [77], object grasping

[84][98] and robotic arm assembly tasks[22]. Teleoperation is also applied to a

wide variety of simulated domains, ranging from static mazes [28][87] to dynamic

driving [1] [25] and soccer domains [3] and many other applications. In place of a

human teacher, hand-written controllers are also used to teleoperate robots [42]

[88][94].

During teacher following, the robot records from its own sensors while try-

ing to mimic the teacher’s demonstrated motions. The states or actions of the

true demonstration execution are not recorded. Instead the learner records its

own mimicking execution and thus indirectly encode the teacher’s states/actions

within the dataset. An extra algorithmic component is required in teacher follow-

ing in comparison to teleoperation that enables the robot to track and actively

follow (rather than passively be teleoperated by) the teacher. Indeed the teacher

following does not require that the teacher be able to operate the robot in order

to provide a demonstration.
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Demonstrations recorded through teacher following teach navigational tasks

by having a robot follow an identical-platform of robot teacher through a maze

[32], follow a human teacher past sequences of colored markers [79] and mimic

routes executed by a human teacher [76]. Teacher following also has a humanoid

learn arm gestures, by mimicking the motions of a human demonstrator [80].

It is important to note that sometimes there exist a significant gap between

the full observation state of the teacher and the demonstration data recorded

by real robots. This occurs when the teacher employs extra sensors that are

not recorded while executing demonstration. For example if there exist some

inaccessible parts of the world to the robot’s camera while the teacher can observe

it (e.g. behind the robot, if its cameras are forward-facing), then the state differs

from what is actually observed by the teacher and recorded as data. Teleoperation

requires that operating the robot be manageable,and as a result not all systems

might be suitable for this technique. Teacher following requires that the learner

be able to identify and track the teacher but has the advantage of not requiring

the teacher to actively control the robot. Furthermore, no direct recording of the

observation is made by the teacher during the execution.

2.2.2 Learning from observation

Demonstration examples are obtained by the robot by passively observing

the actions of the teacher in this learning from observation data gathering ap-

proach. It is assumed in learning from observation method that the task being

learned is best demonstrated by the teacher through independent and uninhibited

execution using his own body. This approach is commonly used to demonstrate

low-level motion control of the robot for which teleoperation would be difficult

such as high degree of freedom robots (humanoids). Common applications in-

clude object manipulation [62] [115] and interactive games [52] [10] [9].
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Interpretation and extraction of useful information from the observed demon-

stration is done by the robot in learning from observation data gathering approach.

This gives rise to the correspondence problem [31], the challenge of identifying the

state and action of the demonstrator and mapping them to the robots own abili-

ties with the corresponding effect. Accurate and efficient methods for solving this

problem have been the focus of extensive research [4] [31] [45] [54] [55] [115].

To record the demonstration and recognize the actions performed by the

demonstrator, most observation-based methods rely on advanced computer vision

systems [12][54] [55]. Extracting meaningful information from image sequences is

a very challenging problem, and marker-based vision systems have been developed

that provide additional information about the demonstrators movements. Addi-

tional data sources have included tactile [33] [115], position [22] [45], and magnetic

sensors [33], as well as speech recognition [33] [64] [90].

2.2.3 Interactive communication

In interactive demonstration, data is acquired through an active communica-

tion between robot and teacher. In this approach the robot acts as a collaborator

by providing feedback to the teacher about the learning process. In this approach

the robot receive demonstrated examples actively and can indicate uncertainty or

even asking questions about the task. This approach allows the robot to help guide

the learning process. This approach builds upon interaction framework and can

be considered as a natural extension of demonstration learning. It is important to

note that interactive demonstration is not mutually exclusive from the previous

two data gathering techniques. Interactive communication based demonstration

describes the method by which demonstrations are selected, and not the way they

are performed. To learn through interaction with human teachers and other au-

tonomous robots a number of algorithms have been developed. In the context
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of reinforcement learning, Clouse presents the ask for help framework [28]. This

approach enables a robot to request advice from other robots when it is confused

about what action to take. This confusion is described by relatively equal quality

estimates for all possible actions in a given state.

Chernova et. al. [26][24] introduces confidence-based autonomy, a mixed-

initiative robot demonstration learning algorithm that enables the robot and

teacher to jointly control the learning process. The robot identifies the need

for and requests demonstrations for specific parts of the state space based on con-

fidence thresholds characterizing the uncertainty of the learned policy. Nicolescu

[78] present a learning framework based on demonstration, generalization and

teacher feedback, in which training is performed by having the robot follow a hu-

man and observe its actions. A high-level task representation is then constructed

by analyzing the experience with respect to the robots underlying capabilities.

The authors also describe a generalization of the framework that allows the robot

to interactively request help from a human in order to resolve problems and unex-

pected situations. This interaction is implicit as the robot has no direct method

of communication; instead, it attempts to convey its intentions by communicating

through its actions.

Argall et al. [6] [5] present methods for policy refinement and generation

using feedback. Their algorithms use feedback to refine demonstrated policies,

as well as to build new policies through the scaffolding of simple motion behav-

iors learned from demonstration. Lockerd and Breazeal [17] [64] demonstrate a

robotic system where high-level tasks are taught through social interaction. In

this framework, the teacher interacts with the robot through speech and visual

inputs, and the learning robot expresses its internal state through emotive cues

such as facial and body expressions to help guide the teaching process. The out-

come of the learning is a goal-oriented hierarchical task model. In later work
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[109], the authors examine ways in which people give feedback when engaged in

an interactive teaching task. Although the studys focus is to examine the use

of a human-controlled reward signal in reinforcement learning, the authors also

find that users express a desire to guide or control the robot while teaching. This

result supports our belief that, for many robotic domains, teleoperation provides

an easy and intuitive human-robot communication method.

Grollman and Jenkins present the dogged learning algorithm [40], a confidence-

based learning approach for teaching low-level robotic skills. In this algorithm, the

robot indicates to the teacher its certainty in performing various elements of the

task. The teacher may then choose to provide additional demonstrations based

on this feedback. Inamura et al. [46] [47][48]present similarly motivated methods

based on Bayesian Networks that are limited to a discretely-valued feature set.

In addition to learning from demonstration, within machine learning re-

search, active learning [14][29] enables a learner to query an expert and obtain

labels for unlabeled training examples. Aimed at domains in which a large quan-

tity of data is available but labeling is expensive, active learning directs the expert

to label the more informative examples with the goal of minimizing the number

of queries.

2.3 Policy learning

Robot must learn a policy that enables it to reproduce the desired behav-

ior Once the demonstration data has been obtained. Three core approaches to

deriving policies from demonstration data has been developed in case of learning

from demonstration. Learning a policy can involve learning an approximation of

the state to action mapping (mapping function), or learning the model of the

world dynamics and deriving a policy from this information (system model).

Alternately, a sequence of actions can be produced by a planner after learning
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a model of action pre- and post-conditions (plans). Across all of these learn-

ing techniques, minimal parameter tuning and rapid learning times requiring few

training examples are desirable.

2.3.1 Mapping Function

The mapping function approach to policy learning find a function that ap-

proximates the state to action mapping for the demonstrated behavior. The goal

of this type of algorithms is to reproduce the underlying unknown teacher pol-

icy. And, if possible, generalize over the set of available training examples such

that valid solutions are also acquired for similar states that may not have been

encountered during demonstration. Many factors influence the details of function

approximation. These include whether the state input and action output are con-

tinuous or discrete; whether the generalization technique uses the data directly

at execution time or uses the data to approximate a function prior to execution

time; whether it is feasible or desirable to keep the entire demonstration dataset

around throughout learning; and whether the algorithm updates online.

In general, mapping approximation techniques fall into two categories de-

pending on whether the prediction output of the algorithm is discrete or con-

tinuous. Classification techniques are used to produce discrete output. Exam-

ple classification methods applied to learning from demonstration have included

k-Nearest Neighbors [92], Bayesian Networks [17] and Hidden Markov Models

[49][50][51][34]. Regression techniques produce continuous output. Regression al-

gorithms applied to demonstration learning for robotic systems include Locally

Weighted Regression [19][73][95][40], Gaussian Mixture Regression [20], and On-

Line Gaussian Processes [42]. A common assumption held by these approaches is

that for any world state there exists a single best action.
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2.3.2 System Model

The system model approach to policy learning determines a state transition

model for the world from which it then derives a policy. This approach is typically

formulated within the structure of reinforcement learning [97]. The standard

reinforcement learning system assumes that the world can be described by a finite

set of states, and that the robot is limited to taking one of a finite set of actions

at each discrete timestep. At each learning timestep, the robot observes its state

in the world and chooses an action to execute. After completing the action, the

robot receives a reinforcement signal, or reward, that reflects the goodness of the

action or the resulting state. The robots goal is to learn a mapping from states to

actions that maximizes the robots reward over time. Among the many extensions

to the standard reinforcement learning algorithm, a wide range of approaches have

been developed for applying reinforcement learning to continuous state and action

domains [71] [72] [96] [97] [113].

Within the context of reinforcement learning, demonstration can be seen

as a source of reliable information, or advice, that can be used to accelerate the

learning process [65] [81] [88]. A number of approaches for taking advantage of

this information have been developed, such as deriving or modifying the reward

function based on the demonstration [1] [7] [28] [82] [109] and using the demon-

stration experiences to prime the robots value function or model [85] [93] [99]. [96]

propose an alternate approach for accelerating learning in domains with sparse

rewards. Instead of attempting to model expert behavior by rewarding similar ac-

tions, they allow the expert to demonstrate the execution of the task and expose

the robot to areas of the state space where the reward is non-zero. Bootstrapped

with this information, the robot is then able to learn the task under autonomous

execution.
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2.3.3 Plans

A policy is represented as a sequence of actions that lead from the initial

state to the final goal state in the planning framework. Actions are often defined

in terms of pre-conditions, the state that must be established before the action

can be performed, and post-conditions, the state resulting from the actions execu-

tion. Unlike other learning from demonstration approaches, planning techniques

frequently rely not only on state-action demonstrations, but also on additional

information in the form of annotations or intentions from the teacher [37] [39]

[63]. Demonstration-based algorithms differ in how the rules associating pre- and

post-conditions with actions are learned, and whether additional information is

provided by the teacher.

Veeraraghavan and Veloso [114] present an algorithm for learning general-

ized plans that represent sequential tasks with repetitions. In this framework,

a humanoid robot is taught the repetitive task of collecting colored balls into a

box based on two demonstrations. Rybski et al. [91] present a system in which

demonstration of the desired task is performed through speech dialog. The teacher

presents the robot with a series of conditional statements which are processed into

a plan. The robot is additionally able to verify any unspecified parts of the plan

through dialog.Nicolescu [78] introduce a plan-based framework in which train-

ing is performed by having the robot follow a human and observe its actions. A

high level task representation is constructed by the algorithm by analyzing this

experience with respect to the robots abilities.

2.4 Learning algorithms and their problem in rapid adaptation

Several machine learning approach is proposed for adaptation in the past

that include Reinforcement Learning (RL) and Artificial Neural Network (ANN)
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obtaining successful result. Here we discuss related algorithms to identify their

unsuitability for rapid adaptation.

Reinforcement Learning

Reinforce Learning (RL) [97] is a machine learning technique that has been fre-

quently used in many domains. Although the obtained results are usually suc-

cessful, the main drawback of this technique is the large state space that most

problem present. As a consequence, a large amount of learning steps are required

to find the policy that matches states and actions. Hence most of the times this

technique is not feasible when dealing with real robots.
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Figure 2.1: Reinforcement learning architecture. Adapted from [97]

In the field of reinforcement learning, almost all learning agents gain expe-

rience solely by interaction with their environmentteachers are not in the loop.

Recently the idea of integrating a teacher into the learning process has been pro-

posed [1] [116][28]. The field of Inverse Reinforcement Learning [1], also sometimes

called apprenticeship learning, attempts to learn an agents reward function by ob-

serving a sequence of actions (not rewards) taken by a teacher. In contrast to this

interaction, [116] consider a teacher with a policy that can deliver a trace to the

learning agent after seeing it behaving sub-optimally. In that the learners actually

see samples of the transitions and rewards collected by the teacher and use this
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’experience’ in a traditional RL fashion.

Kleiner et. al. [59] apply a hierarchical reinforcement learning in a semi

Markov Decision Process framework. In their approach they show that learning

simultaneously on the behavior level (low level) and on the policy level (high level)

is advantageous with respect to only on one level at a time. Result with the real

robots when policy is obtained through simulation show that more than an hour

would be necessary to improve the hand-coded action selection mechanism.

Neural Network

Neural network [89] have been proved to efficiently perform in many domains,

including robot control. However one of their main drawbacks, is the large amount

of data needed for the training, which is not always feasible to provide. Another

problem with conventional Artificial Neural Network (ANN) based methods is

that the diversity of behavior that can be learned by a single conventional ANN

is strongly limited by the degree to which a number of behavior systems can be

realized in a single functional mapping. This limits the methods capacity for rapid

adaptation to user policies.

Because feed-forward networks compute a one-way mapping from inputs to

outputs (i.e., in the case of a robot controller from sensor input to motor outputs),

a feed-forward controller can only react to its current input in each time step.

The complexity of behavior that can be achieved with such an agent is, of course,

limited. Nevertheless, it has been shown that such a system can learn to acquire

far more than trivial behavior. Nehmzow [75], for example, used a simple robotic

vehicle controlled by a feed-forward network mapping the input from two whisker

sensors at the front of the vehicle to four possible actions (left, right, forward,

backward). It was shown that, using reinforcement learning, this vehicle could

successfully be trained to perform tasks like following corridors or pushing boxes

in a purely reactive fashion.
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Figure 2.2: Recurrent Neural network. Adapted from [69]
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The most conventional type of feedback is to reuse some of the controller

networks activation values as extra inputs at a later (typically the next) point in

time. A good example is the work by [69] who uses a recurrent ANN controller

to guide a toy-car-like vehicle. The vehicles task is to keep moving around in

an environment while minimizing contact with obstacles and periodically seek-

ing/avoiding a light source placed in the environment. The controller network of

fig. 2.2 controls the vehicles two motors and receives sensory input from a number

of touch and light sensors as well as a special input determining its current goal.

Other recurrent neural network based method include [101] [35] [61].

There are a number of modular ANN approaches to the control of au-

tonomous agents [111] [112]. However the controlled agents are typically not

able to adapt their behavior themselves. Adaptive Mixture of Experts (AME)

such as [53][43] [102] also used modular ANN of the form of many expert with

one gating network.

The advantage of AME is that Switching between experts is carried out by

the gating network and it can be learned as well. AME suffer from the problems of

built-in modularization which leads to problems with adaptation of the behavioral

organization, concerning how and when to add or remove expert module.

Evolutionary Algorithm

Evolutionary computation is based on the mechanics of natural selection and

process of evolution. Chromosome encode the potential solutions of the problem

to solve. During the search, chromosome are combined and muted in order to find

the best solution (although it is not guaranteed to find the optimal solution).

Meeden [69], for example, used an evolutionary algorithm to find suit-

able weight settings for the recurrent controller network for the robotic vehi-

cle.Comparisons to the results achieved with conventional ANN learning showed

that evolutionary algorithms can find suitable solutions more reliably in cases
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where no sufficient reinforcement model is available. The problem with this type

of learning in an individual robot, the evolution and evaluation of such a large

number of controllers is often not possible/feasible due to real-time and memory

restrictions.

2.5 Other approaches

Time window based adaptation methods include [11][30][38][58] [117][60].

Window based adaptation methods requires a preliminary investigation of the

domain to determine the appropriate window size. Moreover, if the frequency of

changes in the time series data are unpredictable, accuracy may deteriorate. In

dual model based adaptation methods includes [13] [27]. In dual model based

methods, separate models are used for short and long term learning. When short

term model cannot infer with high confidence the system delegates the inference to

a long term model where learning is done with the observations that were collected

for a longer period of time. Long term module is not suitable for rapid adaptation

as it perform with large number of observations. Adaptive control is also being

tried for flight simulation or fault tolerant system[100][15]. These adaptive system

deals how to detect sudden change for monitoring or how to control adaptively

when there are faults in the control system.

Novelty detection is the identification of new or unknown data that machine

learning system is not aware of during training. Novelty detection methods do

so by modeling normal data and using a distance measure and a threshold for

determining abnormality. Standard method include estimating data’s probability

density [66] [44], characterizing its geometry or identifying its support [23]. Nov-

elty detection might be useful in behavior adaptation because novelty detection

can be used to detects new behavior and then use them for adaptation. Here

we discuss two statistical methods for novelty detection. Yamanishi [118] present
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SmartSifter (SS), an outlier detection system based on unsupervised learning of

the information source. Every time a datum is input, it is required to evaluate

how large the datum has deviated compared to a normal pattern. The proba-

bility density over the domain of categorical variables is found using a histogram

and a finite mixture model is employed for each histogram cell to represent the

probability density over the domain of continues variables. Every time a datum

is input, an on-line learning algorithm is employed to update the model. SS gives

a score to each datum on the basis of the learned model indicating how much the

model has changed after learning. A high score means that the datum is an out-

lier. The system was successfully tested on the network intrusion database,KDD

Cup, 1999. In [110] Thomson presented a novelty detection method based on

density estimation. In their work they compute the novelty threshold adaptively

for any new dataset. They identify the appropriate threshold by computing the

density estimate for each training example in the context of the new image. They

used this adaptive thresholding technique for detecting novel rock and sediment

features in rover space image.

2.6 Choosing Bayesian network

From the above discussion we get that it is difficult to adapt rapidly to follow

user preference by using huge observation data for learning. We chose Bayesian

network because it can represent degree of confidence for behavior decision as

probability and can provide a confidence even with a small number of observations.

Also Bayesian network is suitable for online interactive learning. A more details

of benefits of using the Bayesian network representation are as follows:

• Incorporation of prior knowledge. Bayesian networks facilitate the

translation of human knowledge into probabilistic form making it suitable
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for refinement by data.

• Validation and insight. In many cases a learned Bayesian network can

be given a causal interpretation. Consequently a Bayesian network is more

easily understood than black box representation such as neural networks.

As an immediate by product the recommendations of a Bayesian network

than those of a model justified only by its raw predictive performance

is more logical. In addition users are more likely to gain insights from

Bayesian networks.

• Learning causal interactions. Unlike purely probabilistic relationships

causal relationships allow us to make predictions given direct interventions

or manipulations of the world. Therefore, by learning with Bayesian net-

works there is a hope that we can make better predictions in the face of

intervention. Learning causal relationships is crucial in scientific discovery

where interventional studies are often expensive or impossible. Similarly,

the ability to learn causal relationships is crucial for intelligent agents that

must act in their environment on the basis of acquired knowledge.

• Other benefits of using Bayesian networks for learning are de-

rived from their probabilistic semantics. Because sophisticated yet

efficient methods have been developed for using a Bayesian network to an-

swer probabilistic queries, they can be used both for predictive inference

and diagnostic or abductive inference. This is in contrast to standard

regression and classification method e.g. feed forward neural networks

and decision trees that encode only the probability distribution of a tar-

get variable given several input variables. Whereas the Bayesian network

representation can describe the casual ordering in the domain there are no

restrictions as to the directions of the queries. Thus there is no inherent
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notion of inputs and outputs of the network. This property also allows

Bayesian networks to reason efficiently with missing values by comput-

ing the marginal probability of the query given the observed values. One

other cited benefit of the Bayesian network representation which derives

from its probabilistic nature is that it can be used to determine optimal

decisions.

2.7 Research focus

Here we give our a table showing goodness of different machine learning

techniques. The items in the red shows that we focus our research in the area

of Bayesian network and proposed significance evaluation of data for improved

performance for rapid adaptation.

Table 2.1: Adaptation goodness of with different machine learning approach. Here
© represent good,� represent fair and × represent need improvement.

Topic RL RNN MNN windowing BN Proposed
Reward Design × © © © © ©

Accuracy © © © � � �
Robustness � × × × © ©
Rapidness × × � � � ©

Obs. selection × × × © � ©

2.8 Research map

Figure 2.4 provide a research map which indicates related research by refer-

ence number in accordance with our work. This research map is to visualize where

our work might be placed. [108] reference shows our work. It is observed that

methods which are fast to adapt donot deal well with interaction probably be-

cause of algorithmic limitation (bottom right). The methods which use traditional

reinforcement learning and neural network donot do well both with rapidness and
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interaction(bottom left). Recent reinforcement learning with ’trace’ or ’advice’

providing interaction with the teacher and Bayesian network based interactive

methods do well both in interaction and rapidness (top right). Top left shows

the method which do well in interaction but not in in rapidness. We aimed at

developing an algorithm that would both be rapid and interactive for Human-

centered robot. Our current work shows that we could get good rapidness and we

are working to integrate interaction with it. As we had chosen Bayesian network

as our framework we aimed at producing a rapid behavior adaptation algorithm

and we hope to bring good results.
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Figure 2.4: Shows the research map of the related reference in accordance with
our work.

2.9 Conclusion

In this chapter we discussed about the previous work on policy learning.

We also discussed about the shortcoming of those policy learning methods. And

finally we discussed why we have chosen Bayesian network for rapid policy adap-

tation.



Chapter 3

Rapid Adaptation to user preference

3.1 Introduction

To make robots useful to non-technical users, learning from observation is

an intuitive approach because robots do not require embedding all behaviors for

all users. Robots learn novel behavior strategy using conventional methods that

extract meaningful relation between observed sensor and user commands. When

the user behavior preference changes frequently the robot has to adapt to new

user behavior preference rapidly. In this thesis, as mentioned earlier, users pref-

erence indicates variation of behavior decision by the user even though identical

sensor is observed. For example let us consider operation of a mobile robot; ob-

stacles are approaching. An operator may prefer to avoid obstacles sometimes by

turning left; sometimes by turning right. Robot’s ability to rapidly adapt to user

behavior preference is an important aspect of learning from observation because

otherwise the user may be tired. However it is difficult to adapt to users behav-

ior preferences rapidly with conventional methods. This chapter presents a rapid

adaptation method of behavior preference based on Bayesian significance evalua-

tion of experience data. Rapid adaptation to user preference cannot be achieved

when data from every process cycle is used for learning because significant data

are not differentiated with insignificant data. We propose a method to solve this

problem by selecting significant data for the learning based on change in degree
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of confidence of the behavior decision. A small change in the degree of confidence

can be regarded as reflecting insignificant data for learning, so that data can be

discarded. Accordingly the system can avoid having to store too frequent experi-

ence data and the robot can adapt rapidly to changes in the users preference.Here,

as already mentioned, rapidness is defined as the ratio of expected time to change

user’s preference by the user to the required time to adapt to preference by the

robot.

The following section describe the problem with an example scenario. Sec-

tion 3.3 describe the concept of significance evaluation. Section 3.4 describe the

method, Section 3.5 describes the experiment to test its effectiveness, and sec-

tion 3.6 presents experimental results and Section 3.8 concludes the paper with a

summary and concluding remarks.

3.2 Definition of Preference, the problem by an example

To start with let us define user preference formally. We already know users

preference indicates variation of behavior decision by the user even though iden-

tical sensor is observed.

A user demonstration data {di, bj}εD is represented by pair of sensor ob-

servation di and user behavior bj where diεS and bjεB. Then the user preference

can be defined by P (B = bj) such that
∑

j P (B = bj) = 1. We explain the matter

with the following illustration.

Let us consider that the B have two values b1 and b2 and b1 indicates ’turn

right’ and b2 indicate ’turn left’. Now at the the junction if the user take a

’turn right’ we say that the user preference of turning right is P (B = b1). If for

several trials the user prefer to turn right then user preference increase to turn

right. If the user prefer to turn left then the preference of turning left is given by

P (B = b2). At any time the user preference of turning right and turning left is
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b1b 2

Figure 3.1: Illustration for understanding preference

given by P (B = b2) and P (B = b2).

As an example, imagine that we have a car robot and its driver changes

frequently (e.g., it is a rental car). Also imagine that the teaching and learning

are done through a driver assist system. The driver assist system learns from each

drivers actions in order to act in accordance with his preference. For example,

when a driver typically drives at a moderate speed, the driver assist system should

recognize the drivers preference and give suggestive feedback to lower the cars

speed when it becomes high. In contrast, under normal circumstances, the system

should not suggest lowering the cars speed on a freeway if the driver typically

drives close to the speed limit. If the drivers change frequently, the assist system

has to adapt preference rapidly to every change.

From a brief introduction of Bayesian network we start describing problem.

A Bayesian network is a directed acyclic graph consists of parent nodes represent-

ing causes and child nodes representing effects as shown in Fig.3.2. Each node can

represent a multi valued variable, comprising of collection of a mutually exclusive

propositions. Let the variable be labeled by capital letters (X, Y, Z1, Z2, Z3) and

their possible values by the corresponding lowercase letters (x, y, z1, z2, z3). Each

directed link X → Y is quantified by a fixed conditional probability table (CPT )
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in which the (x,y) entry is given by

CPT(Y |X) ≡ P (Y = y|X = x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P (y1|x1) P (y2|x1) . . . P (ym|x1)

P (y1|x2) P (y2|x2) . . . P (ym|x2)

...
...

. . .
...

P (y1|xl) P (y2|xl) . . . P (ym|xl)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.1)

Y

Z Z Z

X

1 2 3

Figure 3.2: A Bayesian network

The CPT is calculated for all parent-child nodes. The reasoning can be

expressed as

Bel (Y ) = βλ (Y ) π (Y ) , (3.2)

where λ (Y ) represents the current strength of diagnostic support contributed

by the children of Y given by
∏

i λi (Y ), π (Y ) represent the current strength

of the causal support contributed by the parents of Y and β is the coefficient

for normalization [83]. Elements of Bel (Y ) indicate the plausibility for each

proposition of a node. When Y does not have any parent, π (Y ) is the prior

probability of Y . The likelihood vector λi(Y ) is calculated as

λi(Y ) = CPT(Zi|Y )λ(zi), (3.3)

where CPT(Zi|Y ) quantifies Y → Zi link and λ(zi) is the observed input of Zi. One

of the advantages of Bayesian networks is that a robot can evaluate the vagueness
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of a behavior decision, and this leads it to ask questions and give suggestions to

users [46]. For example, the robot should ask the user to confirm the behavior

decision when the elements of Bel(Y) are almost equal.

We emphasis the need of the change in degree of confidence based signif-

icance evaluation of data with an example as shown by Fig.3.3. According to

B

S

Figure 3.3: A simple Bayesian network

definition the user’s preference pj is the probability to select behavior bj . The

robot observes the user’s behavior bj and gathers the sensor information di at the

same moment. Let N be the number of observed data, Nj be number of observa-

tions of behavior bj , and nij be the number of observation of behavior bj for di.

One of the simplest calculations based on the observation is

P (di|bj) = P (S = di|B = bj) =
nij

Nj

, (3.4)

P (bj) = P (B = bj) =
Nj∑
j Nj

, (3.5)

A problem arises with this simple calculation when the data is continuously

input during the observation. Suppose that the user behavior changes between

two behaviors, b1 and b2. When a rare but important behavior b2 is observed

much smaller time than b1, that is N2 � (N1 +N2), the probability P (B = b2) is

close to 0 and P (B = b1) is close to 1. This simple prior probability calculation

by Eq(3.5) based on frequency of the number of data causes the problem because
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even if the conditional probability by Eq(3.4) shows a feasible value, the degree of

confidence, Bel(B), by Eq(3.2) becomes heavily biased. Consequently the system

tends to output the most frequent command even though sensor input for rare

behavior is given. This factor also causes another problem that the robot cannot

adapt rapidly to changeable preference of the user.

In this chapter we are considering rapid adaptation to user’s preference by a

mobile robot. In the experiment the user teaches the mobile robot of his behavior

in a three way junction(T-type). The user teaches the robot ’turn right’ behavior

for many occasions when coming to the junction from the same direction. And

after that user changes his preference and started to teach ’turn left’ behavior.

Therefore the robot needed to adapt rapidly to the user user’s preference. We

propose a method in which the important observation is selected on basis of the

change in the degree of confidence. We extend the experiment in a more complex

scenario in which the user teaches the mobile robot of behavior ’go forward’ for

a long duration. And when the user changes behavior to ’turn left’ the robot

needed to adapt rapidly to the new user preference. We applied the change in

the degree of confidence based significance evaluation in this case also. The next

section discusses the concept of significance evaluation based on the change in the

degree of confidence.

3.3 The concept of significance evaluation

To overcome the problem we proposed a method to evaluate significance

of data based on the change in the degree of confidence. In this section we will

describe the concept. Suppose that robot observe data continuously for learning

where data comprised of user behavior and sensor information. Also say that the

user has two behaviors, b1 and b2. The concept of the method is that when robot

observes a datum it checks whether it is significant for learning. The significance
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evaluation is carried out by assigning user behavior to the parameters of a distri-

bution, in this case to a binomial distribution as shown in the following Fig.3.4.
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Figure 3.4: Illustrating concept of the change in degree of confidence

In the figure two end of w represents two user behaviors where peak of the

distribution concentrate when one parameter is higher than other. Distribution

parameters αj [t] refers to a set of number of observations for the user behavior

bj at time t and these parameters represent the shape of the distribution. The

distribution represents not only event probability among two behaviors, but also

degree of confidence for the output probability. The system calculates the degree

of confidence by integrating the area around peak of the distribution after each

observation. The change in the two consecutive degrees of confidence, shown by

the dashed area above arrow in the Fig.3.4, can be regarded as the importance of

the observation to the learning process. When the change in the degree of confi-

dence in two consecutive time steps is small, this situation is regarded as familiar;

the experience data is considered insignificant for learning and be discarded. In

contrast, when the robot detect a large change in the degree of confidence in

two consecutive time steps, this situation is considered unfamiliar; the experience

data is considered significant for learning and be accepted. This following section
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describe the detail method.

3.4 The significance evaluation method

The change in degree of confidence based significance evaluation is described

in this section in detail. We adopted Beta and Dirichlet distributions to evaluate

the significance of data. We explain our method with beta distribution for a

decision follower that can change between two preferences. Later, we extend our

system using the Dirichlet distribution for choosing among multiple preferences.

We choose beta and Dirichlet distribution because with the help of them we can

evaluate confidence even though the number of observation is small.

3.4.1 In the case of two preferences

We use a beta distribution to evaluate the significance of data based on

changes in the degree of confidence when the behavior has two propositions. A

beta distribution is a family of continuous probability distributions given by

fb (w;α1, α2) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
wα1−1(1− w)α2−1 =

1

Beta(α1, α2)
wα1−1(1− w)α2−1

(3.6)

where α1 and α2 are positive shape parameters, Γ is the gamma function,

and Beta is the beta function. The beta distribution is uniform when α1 = α2 =

1. When α1 = α2, the probability distribution function is symmetric at about

w = 0.5. If α1 < α2, the peak of the probability distribution function moves to

the left; when α1 > α2, the peak probability distribution function moves to the

right. Fig. 3.5 shows the beta distributions for three sets of α1 and α2.

In the figure3.5 w represents the order of the distribution. The two extreme

values of w can represent two behaviors, for example, w = 0 can represent ’turn
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left’ and w = 1 can represent ’turn right’. The area around the peak of the

distribution represent confidences. The distribution parameter α1 and α2 are

expressed as α1 = 1 + N1 and α2 = 1 + N2. The system increases α1 or α2

according to the observed behavior. The degree of confidence is calculated by

integral of the distribution as

C1[t] =

∫ 1

1−u

fb (w;α1[t], α2[t]) dw, (3.7)

C2[t] =

∫ u

0

fb (w;α1[t], α2[t]) dw, (3.8)

wherefb (w;α1[t], α2[t]) is the beta distribution, αj [t] is αj at time t, 0 < u ≤ 0.5,

integration is done from 1 − u to 1 when the peak moves to the right and 0 to u

when the peak moves to the left, C1[t] represents the confidence when the peak

moves to the right at t and C2[t] represents confidence when the peak moves to

the left at t. Suppose that the system accepts data for learning b1, and it increases

α1. The system calculates the degree of confidence at t− 1 and t by Eq(3.7). We

think the difference between the two degrees of confidence can be regarded as the

importance of the observation for learning process. To evaluate the significance

of the observation data, the following criteria are calculated.

Ej = |Cj[t]− Cj[t− 1]|, (3.9)

Here, Ej represents the change in degree of confidence for evaluating the signif-

icance of the data. Let v[t]ε{d1, d2, . . . , dn} be the observation of the sensor at

time t. Let o[t]ε{b1, b2, . . . , bm} be the observation of the user’s behavior at time

t. Then, we can define data as D[t] = {v[t], o[t]}. If Ej is less than a specific

threshold, the system evaluates D[t] as insignificant for learning and discard. Let

θ be the threshold. Data D[t] are significant for learning and accepted when
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Ej ≥ θ, and are insignificant for learning and discarded when Ej < θ. The steps

for learning bj are as follows

(1) Receive D[t] and assign αj as the number of observation of bj

(2) Calculate degree of confidence Cj[t]

(3) Calculate change in the degree of confidence, Ej

(4) If Ej ≥ θ, then D[t] is significant; N sig
j := N sig

j + 1 and go to Step 1

(5) Else D[t] is insignificant; discards it and go to Step 1

The θ can vary from application to application. For example, an application

with a very high input frequency will have a different threshold (low value) from

one with a very low input frequency (relatively high). For rapid adaptation, the

area and threshold should be determined by experimentation, as discussed in

section 3.5. Here, we explain the probability calculation based on the concepts

explained above. Let N sig
j be the number of significant observations while the

user behavior bj is observed. Then we get

P (bj) = P (B = bj) =
N sig

j∑
j N

sig
j

(3.10)

Now let us explain the consequences of the significance evaluation method.

We consider that user changes between two behaviors b1 and b2; the frequency of

observation of b2 is less than that of b1. Even though the importance of two behav-

ior is same, the expected likelihood of selecting b2 would be less than that of b1.

However N sig
2 can be almost equal to N sig

1 because significance evaluation method

discards most of insignificant observation data for b1. Then prior information be-

comes uninformative because prior probabilities for both behavior become almost

equal. Therefore, the degree of confidence remains unbiased for both behaviors,

and robot can adjust rapidly to the user’s new preference with a few observations.
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3.4.2 In the case of multiple preferences

The previous section explained the case of a behavior node with two prefer-

ences. In this section, we extend the algorithm to handle multiple preferences. We

use a Dirichlet distribution to evaluate the significance of data based on changes in

the degree of confidence instead of Eq(3.9). A m-directional Dirichlet distribution

for w = {w1, w2, . . . , wm}, is given by

fd (w;α1, . . . , αm) =
1

Z

∏
k

w
αk−1

k , (3.11)

where,

Z =

∏m
k−1 Γ (αk)

Γ
(∑m

k−1 αk

) , (3.12)

is a normalization factor, Γ is the gamma function and the m parameters αm are

assumed to be positive.
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When α1 becomes larger than the other Dirichlet parameters, the peak of

the distribution moves within a small area at the end of corresponding variable

as shown by Fig.3.7. The system calculates the degree of confidence at t− 1 and

t. Confidence at time t is calculated as
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Cj[t] =

∫
Δj

fd (w;α[t]) dw, (3.13)

where fd (w;α[t]) is the Dirichlet distribution at time t and Δj represents area of

integration where the peak of the distribution is moved by observing bj as shown

by Fig.3.8 where u is the integration limit over w. The change in the two degrees

of confidence can be regarded as the importance of the observation to the learning

process. To evaluate the significance of the observation data, the criteria

Ej = |Cj[t]− Cj[t− 1]|, (3.14)

is calculated. As in the previous case Cj and Ej are calculated when the behavior

bj is observed. When Ej ≥ θ, data D[t] are significant for learning and accepted,

that is, N sig
j := N sig

j + 1, and data are insignificant for learning and discarded

when Ej < θ.

3.5 Experimental setup

3.5.1 Determining evaluation parameter

An multinomial behavior node, which used a Dirichlet distribution for eval-

uation, is used for experiment. Before starting the experiment, we needed to fix

the areas of integration (Δ1,Δ2,Δ3) and threshold θ for the significance evalu-

ation. We tested this method for different non-overlapping areas and different

thresholds. The selection of area of integration and threshold is explained with

help of Fig. 3.9, Fig. 3.10 and Fig. 3.11. As shown in Fig. 3.9, when the area

of integration increased, the system needed fewer data to reach significance eval-

uation criteria for fixed threshold. Therefore, it was reasonable to use a larger

area of integration. As shown in Fig. 3.10, when the area was fixed and the

threshold was increased, the time required to reach the significance evaluation
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criteria is decreased. Therefore, for rapid adaption, a higher threshold should be

used. However, when we used a higher threshold value, the system failed to reach

a satisfactory level (0.95) of probability of behavior as shown in Fig. 3.11. The

area of integration and threshold determine the required rapidness of the system

and thus can be adjusted according to application. For our current experiments,

therefore, we set the area of integration limit u from 0.0 to 0.5 and the threshold

to 1× 10−6.
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Figure 3.9: Relationship between area of integration and learning time for fixed θ

3.5.2 Experimental setup

We developed a teaching and learning system that incorporated the signif-

icance evaluation method based on the change in the degree of confidence. The

user controls the teaching information by using a joystick that corresponds to the

behavior node. We trained the system for three simple behaviors: go forward

(b1), turn left (b2), and turn right (b3). In the experiment, we used a Bayesian

network consisting of eight distance sensor nodes and a behavior node as shown

in the Fig. 3.12. The input data, D[t] = {v[t], o[t]}, was given to the robot at all

the time. The distance sensors were used to measure the distance to obstacles.

The user operated the robot with joystick. Joystick inputs were translated into
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discrete instructions by using a predetermined threshold.

Figure 3.12: A Bayesian network used in the experiment

3.5.3 Experimental environment for virtual mobile robot

To carry out experiments on teaching and learning, we developed a virtual

environment for a mobile robot and a user interface.The experimental environ-

ments as shown in Fig. 3.13 and 3.14 was prepared using Webot [70] real-time

simulation software. The ’pioneer’ robot model we used had eight front sensors.

The pioneer robot model has length 47 [cm], width 38 [cm], height 24.5 [cm] and

clearance 6.5 [cm]. The robots wheel diameter is 191 [mm] and width of the wheel

is 50 [mm]. The robot’s eight front sonar distance sensors mounted on the front

from left to right were used for the experiments. The first virtual experimental

environment had an enclosed area of 8 [m]× 8 [m]. Width of each lane was 2.5

[m]. Junction’s tail path was 5[m].

The second experimental environment had an enclosed area of 8 [m]× 8 [m].

The length and width of the initial forward path were 4.8 [m] and 1.5 [m]. The

length and width of the next path (left to initial position) were 3.75 [m] and 1.8

[m], and the length and width of the third path (left and then right to initial

position) were 3 [m] and 1.5 [m]. For the second experiment when data for a new

behavior is evaluated as significant and is added to the secondary database, one
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datum D[t] with oldest t is deleted, if existed. This ensures that the maximum

number of significant data to adapt any user behavior remains same. One of the

related method is widowing technique [60]. But our method has the advantage

that it can select significant data by using evaluation criteria given by Eq(3.9)

or Eq(3.14). Evaluation criteria not only decide about the size of the learning

database(window) but also decide when data become insignificant and should be

discarded.

2.5 m

2.5 m

Robot

Wall

Sensors

8 m

5 m

Figure 3.13: First experimental environment with virtual mobile robot

3.5.4 Experimental environment for real mobile robot

A pioneer-based performance PeopleBot robot was used as shown in Fig.

3.15. The PeopleBot robot has length 47 [cm], width 38 [cm], height 124 [cm]

and clearance 3.5 [cm]. The PeopleBot robot was commercially available for the

last few years and has been extensively used in robotics research (e.g. [8][2][36]).

The robots wheel diameter is 191 [mm] and width of the wheel is 50 [mm]. The

robot’s eight front sonar distance sensors mounted on the front from left to right

were used for the experiments. A joystick was used to control the robot remotely.
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After the distance sensor values were collected, each value was translated into a

state value. Two state values were used for each distance sensor v[t] = {d1, d2}.
When the distance was less than 1 [m], d1 was used; otherwise, d2 was used. This

threshold was the same for all sensors. The translational velocity of PeopleBot

was 90 [mm/sec], and its rotational velocity was 15 [deg/sec]. The frequency of

observation was 5 [Hz]. The experiment used a corridor environment. The length

of the first part of the corridor was 8.8 [m], length of the second part of the

corridor was 5 [m], length of the third part of the corridor was 4 [m] and width of

the corridor in all csaes was 2 [m]. The significant data storage method was the

same as the second virtual experiment.

3.6 Experimental results and discussion

3.6.1 Experimental results in the case of virtual mobile robot

In the first virtual experiment we considered rapid adaptation to user’s

preference by a mobile robot. In the experiment the user taught the mobile robot

of his behavior in a three way junction. The user taught the robot ’turn right’

behavior (b3) for many occasions when fetching the junction. And after that

user changes his preference and started to teach ’turn left’ behavior (b2). The

experimental result is shown in Fig.3.16. The vertical axis represent N sig
j and

horizontal axis represent behavior execution time. Each time the user performed

behavior b3 the system increased α3. The system started with uniform αj and

used Dirichlet distribution for evaluation. Along with the behavior b3 each time

the system calculated E3 for evaluation. Until E3 became less than threshold the

system increased α3 and used observations for learning. When the user changed

preference and started behavior b2 the system could automatically evaluate new

data using E2. Evaluation method bounded the number of significant data used
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Figure 3.15: A PeopleBot in the real experimental environment
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Figure 3.16: Significant data for preference adaptation
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for learning and thereby shortening the time for adaptation. The shaded region

in the Fig.3.16 shows that preference adaptation was achieved in 6.5 [sec].

In the second virtual experiment the user taught preference while the robot

was running in the environment. Fig.3.17 shows the results of significance evalu-

ation of data using the virtual mobile robot. The horizontal axis represents the
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Figure 3.17: Uses of data for learning in a virtual environment

time of observation. The vertical axis represents the number of experience data

used for learning. The dashed line represents the number of experience data used

for learning b1 (go forward). When the change in the degree of confidence was

below the threshold, the system evaluated data as insignificant (the flat portion of

the line). The significance evaluation continued as long as the user did not change

his preference. When the user changed his behavior to ”turn left”, the change in

the degree of confidence was large and the system subsequently started to accept

experience data for b2. The system quickly adapted to the user’s new preference

by learning with behavior b2. The sloping lines show these changes. When learn-

ing b3 (turn right), the change in the degree of confidence was large and data were

accepted for b3. b3 was learned until the change went below threshold again, after

which the data for this behavior was discarded.
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Fig.3.18 shows the change in the degree of confidence (Ej) while adapting

to new preferences. The figure shows that data for new behavior is evaluated

as significant because the change in the degree of confidence is increased over

threshold. The Ej indicates the highest value when the number of significant data

for new behavior (α2) becomes larger than that of old behavior (α1). Afterwards

as α2 becomes larger than α1, increasing α2 more make the behavior more familiar

and Ej is decreased. When Ej goes below the threshold, the data is evaluated as

insignificant.
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Figure 3.19: Progress of learning with significance evaluation by a virtual mobile
robot

Fig. 3.19 shows how the probability of behavior changes over time in a

virtual experiment. The horizontal axis represents the time of observation, and

the vertical axis represents the probability of the learning behavior. Experience

data was used and Bel(B=b1) increased until the change in the degree of confidence

fell below the threshold for behavior b1 (region a in the bar). New data was not

used when the change was below the threshold for behavior b1, and Bel(B=b1)

remained the same (region e in the bar). When the user changed behavior from b1

to b2, the change in degree of confidence became large, data was accepted for the

new behavior and Bel(B=b2) increased and Bel(B=b1) decreased as (region g in
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the bar). Our system quickly adapted to the user’s new preference again when it

changed behavior to b3 by rapidly adjusting Bel(B=b3). In this case the rapidness

is 20 where expected time to change user’s preference by the user is 75 seconds

and expected time to adapt to the new preference by the system is 3.75 seconds.
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Figure 3.20: Uses of data for learning with the real mobile robot

3.6.2 Experimental results in the case of real mobile robot

Fig. 3.20 shows experience data evaluation result for the real mobile robot.

The horizontal axis represents the time of observation. The vertical axis repre-

sents N sig
j . The solid line represents the number of data points used for learning

behavior b1 (go forward). When the change in degree of confidence was below

the threshold, the system evaluated data as insignificant (the flat portion of the

line). When the user changed behavior to ”turn left”, the change in the degree of

confidence was bigger than the threshold, and the system started to accept data

for b2. The system quickly adapted to the user’s new preference by learning with

behavior b2. The sloping lines show these changes. When learning b3 (turn right),

the change was large and data were kept for b3. Behavior b3 was learned until the
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change fell below the threshold again, after which the data for this behavior was

evaluated as insignificant.
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Figure 3.21: Progress of learning with significance evaluation with Peoplebot. The
bar shows the regions of learning (a), insignificant (e), rapid adaptation to a new
preference (g), insignificant (e), rapid adaptation to another new preference (g),
and insignificant (e)

Fig.3.21 shows how the probability of user behavior changes over time. The

horizontal axis represents the time of observation, and the vertical axis represents

the probability of the learning behavior. Data was used and Bel(B=b1) increased

until the change in degree of confidence went below the threshold for behavior

b1 (region a in the bar). No more data was used after the change went below

the threshold for behavior b1, and Bel(B=b1) remained the same (region e in the

bar). When the user changed behavior from b1 to b2, the change in the degree of

confidence became larger than the threshold and data was accepted for the new

behavior. Bel(B=b2) increased and Bel(B=b1) decreased (region g in the bar). In

this case the rapidness is 16.

Fig.3.22 shows the changing state more closely. This experiment examined

the case in which a user behavior changed before the previous behavior became

stable. In Fig. 3.22, the user preference initially was b1 and when the system it
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Figure 3.22: Progress of learning with significance evaluation in more detail. The
bar shows the regions of learning (a), insignificant (e), rapid adaptation to a new
preference (g, g′,g′′), and insignificant (e).
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gained high confidence, the data was discarded for behavior b1. When behavior

changed to b2, Bel(B=b2) started to increase. However, the instruction was not

enough and did not reach a high confidence level (for Bel(B=b2)). Before the

change in the degree of confidence went below the threshold for b2, the user be-

havior changed to b3. Hence, Bel(B=b2) decreased and Bel(B=b3) increased. The

user continued with behavior b3, and the change in the degree of confidence went

below the threshold. Data was subsequently evaluated insignificant and discarded.

Fig. 3.23 shows the learning progression for Bel(B=b1), Bel(B=b2), and

Bel(B=b3) without the use of our method. The system gradually decreased

Bel(B=b1) when the behavior changed to b2 (region e in the bar). It did not

adapt to the change in user preference in 40 [sec]. When another change in be-

havior occurred, Bel(B=b3) started to increase (region g in the bar), but the

system failed to recognize the previous change as a user’s preference. In the case

of without significance evaluation the rapidness become 1 as per definition.

3.7 Evaluation of Rapidness

The rapidness of the adaptation depend on the θ and Δ. Here we provide

a comparative figure with different θ and Δ. As we mentioned before according

to the need of the application the value of θ and Δ can vary. This comparison is

prepared when the observation frequency was 20 [Hz].

Figure 3.24 shows the rapidness of our method with different observation

frequencies for two behaviors with one minute demonstration each when θ was

1 × 10−6and for Δ area of integration limit u was from 0.0 to 0.5. In the figure

δ represent ratio of rapidness of without to with significance evaluation method

and ν represent frequency of observation. Fig. 3.24 shows that our method works

better in high frequency. And as the frequency of observation decreases the rapid-

ness also decreases and become equivalent to the method without significance
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Table 3.1: Adaptation time with different θ and Δ0tou with significance evaluation
method

θ Δ adaptation time (sec)
0.01 0.5 0.50
0.001 0.5 1.50
0.0001 0.5 2.25
0.00001 0.5 3.50
0.000001 0.5 3.75
0.000001 0.4 5.25
0.000001 0.3 9.50
0.000001 0.2 20.90
0.000001 0.1 75.00

evaluation. This is because significance evaluation method requires a fixed num-

ber of observation with particular θ and Δ and if the demonstration time is not

enough to get the required number of data then our become equivalent to without

significance evaluation method.

3.8 Conclusion

We described an experience data management system for rapid adaptation

to changes in user preferences for online teaching and learning. The degree of

confidence is used for managing the experience data for learning. The system

uses the change in the degree of confidence for evaluating the significance of the

experience data. A small change in the degree of confidence implies that the data

has little effect on the learning process. The system therefore discards data if the

change in the degree of confidence is below a certain threshold and stores data if

the change is above the threshold. This algorithm enables a robot to adapt rapidly

to changes in the user’s preference without having to store an enormous amount of

data. Testing using a virtual and an actual robot incorporating this algorithm in

an interactive teaching and learning environment showed that the time required

to adapt to changes in user preferences among ”go forward”, ”turn right”, and
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”turn left” was 3.75 [sec] when the frequency of sensor observation was 5 [Hz],

the translational velocity was 90 [mm/sec], and the rotational velocity was 15

[deg/sec]. When the frequency of observation was set to 20 [Hz], the actual robot

could adapt within 1 [sec]. We think that the frequency of observation determines

the time required to reach the threshold for evaluating data to be insignificant and

hence the speed of adaptation. This should not be a problem because frequency

of observation is almost higher than the frequency of changes of user preferences.

The work presented in this chapter evaluates data based on the behavior

observation. As a result we could only handle prior probability and take the

advantage of uninformative prior probability. In the following chapter we are

considering significance evaluation for each sensor proposition. This will ensure

that only significant sensor observation will be used for learning and we could

take advantage of both prior and conditional probability which will ensure that

our system is capable of handling rapid policy adaptation.



Chapter 4

Rapid adaptation to user policy

4.1 Introduction

This chapter presents a rapid adaptation method of behavior policy for mo-

bile robots teleoperated by an operator. In our previous work [105] we proposed a

method to manage experience data with evaluation of significance based on a con-

cept of change in degree of confidence for behavior decision. Using that method,

the robot adapted to a new preference by overriding the previous preference after

evaluating the significance of its user-behavior observations. In that work, we only

handled prior probability and hence only user preference could be adapted. We

could not handle conditional probability and hence policy adaptation. That was

a problem. In this chapter, we have solved that problem by using the significant

evaluation method on sensor observation data.

4.2 The problem and an example

Policy is the mapping from world states to actions. Demonstrations provide

the robot with a dataset consisting of state-action pairs representing examples of

the desired behavior. The robots goal is to use this information to learn a policy,

which enables the robot to select an action based upon its current world state.

Let us define policy formally. A user demonstration {di, bj}εD is represented

by pair of sensor observation di and user behavior bj where diεS and bjεB. Demon-
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stration data D is used to directly approximate the underlying policy or mapping

function from the robot’s sensor observations to user behavior (π : S → B) as

B = π(S).

As an example, in Robocup soccer when the robot get hold of the ball it

start to ’approach’ the goal of the opponent. When the robot finds opponent it

has to change policy to ’avoid’ the opponent. In the game the policy might change

from approach to avoid and vice versa.

4.3 Significance evaluation for policy adaptation

The distribution parameter αj is expressed as αj = 1 + nij . The system

increases αj according to the observed sensor proposition. When αj becomes

larger than the other Dirichlet parameters, the peak of the distribution moves

within a small area at the end of the corresponding variable, as shown by the

circle in Fig.4.1.

Figure 4.1: Three superimposed Dirichlet density functions with three parameters.
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The change in the degree of confidence is calculated as per Eq.3.14 in

chapter3. The Cj and Ej are calculated when the sensor proposition di is ob-

served for bj . When Ej ≥ θ, data D[t] are significant for learning and accepted,

and data are insignificant for learning and discarded when Ej < θ. The steps for

evaluating sensor observation di are as follows

(1) Receive D[t] and assign αj as the number of observation of di

(2) Calculate degree of confidence Cj[t]

(3) Calculate change in the degree of confidence, Ej

(4) If Ej ≥ θ, then D[t] is significant; nsig
ij := nsig

ij + 1 and go to Step 1

(5) Else D[t] is insignificant; discards it and go to Step 1
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Figure 4.2: Evaluation of significance and CPT for each sensor. Here diε{d1, d2}
and biε{b1, b2, b3}.

This sensor proposition level significance evaluation process is illustrated

in Fig. 4.2. The Fig. 4.2 shows a sample Bayesian network with CPT for one
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sensor (S1) and the corresponding Dirichlet distribution for d1 of s1 for significance

evaluation for a proposition (d1). From Fig. 4.2 we can imagine how significance

evaluation is done on each sensor proposition. Here, we explain the probability

calculation based on the concepts explained above. Let nsig
ij be the number of

significant observations while the sensor proposition di is observed for bj and N sig
j

be the number of significant observation of behavior bj . Then we get

P (di|bj) = P (S = di|B = bj) =
nsig
ij

N sig
j

, (4.1)

P (bj) =
N sig

j∑
j N

sig
j

(4.2)

Now as discussed in chapter3 because of the significance evaluation N sig
2

can be almost equal to N sig
1 . Therefore, the prior probability remain unbiased.

Also as significance evaluation is done on each sensor proposition the number of

observation of sensor remained small. As a result the system could rapidly adapt

to user policy by using handling both prior and conditoinal probability.

4.4 Experimental setup

We developed a teaching and learning system in a virtual environment that

incorporated our concept. The environment as shown in Fig. 4.3 and Fig. 4.4 was

prepared using Webot[70] real-time simulation software. The first experimental

environment had an enclosed area of 8 [m]× 8 [m] with a static square obstacle

of 1 [m]× 1 [m] placed inside the area. The second environment has an enclosed

area of 8 [m]× 8 [m] and three moving obstacle (wondering robots) were placed

in the square area. The user controls the robots with a lever joystick. In these

experimental setups, user policy corresponds to avoid and approach. Avoid policy

is accomplished by turning left when there is an obstacle on the right and vice
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versa. Approach behavior is accomplished by approaching the obstacle when there

is one. Whether the obstacle is on the right or left side is determined by the laser

distance sensor return value from sensors mounted on the front side of the robot.

For the experiment we used a Bayesian network of eight distance sensor nodes

and a behavior node as shown in Fig.4.5.

8 m

8 m
Box

Robot
Seonsors

Figure 4.3: Virtual static experimental environment.

The robot model had eight front laser distance sensors (Si,i = 1, 2, . . . , 8)

mounted on the front to measure the distance to obstacles along a horizontal

distance to the obstacle. Joystick inputs were translated into discrete instructions

by using a predetermined threshold. We found [103] that area of integration was

inversely proportional and threshold value was directly proportional to the time

required reach the evaluation criteria respectively. Therefore we set the area of

integration to the maximum non-overlapping area and the threshold to 1.0×10−6.

These values for the area of integration and the threshold can be set according to

the desired rapidity, and can vary from application to application.

The user can teleoperate the robot at any time. When user do not operate
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Figure 4.4: Virtual dynamic experimental environment.

Figure 4.5: A Bayesian network used in the experiment.
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the robot, it operates automatically with it’s own degree of confidence in its

behavior node. Three behaviors are taught in the experiment; go forward(b1),

turns left(b2) and turn right(b3). Previously we have shown that our algorithm can

adapt to the user preference [105] by evaluating the significance of the behavior

data. In the current experiments the user policy was changed from avoid to

approach after a fixed amount of time (200 time steps). In our current work the

evaluation of significance of the data is carried out fir each proposition of each

sensor. In the following section the results of the significance evaluation in both

static and dynamic environment is given.

4.5 Experimental results

4.5.1 For static environment

In the experiment the robot was to avoid in a few trial runs, and then policy

was changed to approach. Fig. 4.6 shows a snapshot of the CPT for sensor number

5. The number of data points evaluated as significant and kept in secondary

database for that particular sensor. The numbers in the CPT shows only the

significant data is stored in the secondary database for each sensor proposition.

Flat part of the graph represents times when data is evaluated as insignificant

and discarded or when the robot operated automatically. From the CPT we can

also see that the policy was overridden by accepting data for different sensor

propositions. Policy adaptation is accomplished through the integration of all

significant data for each sensor proposition.

Fig. 4.7 shows the changes in probability of the degree of confidence during

teleoperation. This is an integrated probability over all sensor elements. Robot

could rapidly adapted to the new policy around 320 by overriding the previous

policy.
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4.5.2 For dynamic environment
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0
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Time
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Figure 4.8: Change in degree of confidence of the proposition near (d1 = 0) for
sensor number 5.

Fig.4.8 shows the change in the degree of confidence for sensor proposition

d1 = 0 of sensor number 5. The figure confirms that the change in the degree

of confidences decreases for the same behavior and increases for the a different

behavior. Data evaluated as significant were kept in a secondary database for

that particular sensor. The conditional probability table is updated only with

significant data for each sensor proposition. Policy adaptation was accomplished

through the integration of all significant data for each sensor proposition. Fig.4.9

and Fig.4.10 shows the robot’s avoid and approach behavior, respectively after

adaptation (time is given is seconds).

Fig.4.11 shows the change in the probability for different user behaviors.

This shows the integrated probability over all sensor elements. The robot rapidly

adapted to a new policy during the operation by overriding the previous policy

twice. In this case rapidness is 0.66. As policy is a mapping from observation to

action, it takes a few trials to learn or adapt to new policy and in that regard

rapidness value of 0.66 is promising.
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Figure 4.9: Robot behavior when the policy was to avoid.
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Figure 4.10: Robot behavior when the policy was to approach.
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Figure 4.11: Integrated probability of behavior during policy adaptation.
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4.6 Conclusion

The experimental results showed that our method could adapt to a user’s

policy on the basis of a significance evaluation using the change in degree of con-

fidence. We described the significance evaluation for each sensor proposition of

each sensor. In [103], we showed that a robot could adapt to a new user preference

by evaluating the significance of behavior data. Robot could use only the prior

probability as per Eq(4.2) and hence could adapt to the user’s preference. The

problem was that the robot could not rapidly adapt to user policy. In this chapter,

the problem was solved through the use of both conditional probabilities Eq(4.1)

and prior probabilities Eq(4.2). In this chapter we reported the experimental re-

sults in both static and dynamic environments. As for rapidness evaluation we

used the same significance evaluation criteria for each sensor proposition. Hence

the number of data in database will remain small. As a result time for adaptation

to a new policy will remain constant for particular choice of θ and δ no matter

for how long the robot is learning one policy. It will change with frequency of

observation as we discussed before. Bayesian network that adapt without our

significance evaluation method requires many trials thus making rapidness very

small. The experimental results confirmed that only significant sensor observa-

tions are enough for rapid policy adaptation. In the next chapter we would like

to integrate interactive communication with rapid policy adaptation method.



Chapter 5

Conclusion and future work

We use several simulated and real-world experimental domains to evaluate

the algorithms presented in this thesis. A complete discussion of each algorithm

is included with each chapter. The following sections presents contribution of this

research, limitation of the presented algorithms and future works.

5.1 Contribution

The main contributions of the thesis are: A novel method for rapid

preference adaptation. We show that the method of significance evaluation

can be used to handle prior probability for rapid preference adaptation. Change

in degree of confidence based significance evaluation method is used to select

important action so that prior information become uninformative. It made rapid

preference adaption possible. We demonstrate the utility of rapid preference adap-

tation method in the mobile robot context. We show that robot can automatically

adapt rapidly to user preference when significance evaluation is used.

A novel method for rapid policy adaptation. We show that the

method of significance evaluation can be used for rapid policy adaptation. Signif-

icance evaluation method is used to select important observation for addressing

both prior and conditional probability. We show that robot can automatically

adapt rapidly to user policies when significance evaluation is used.
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Two techniques for representing and teaching collaborative behav-

ior using demonstration. These techniques are based on different information

sharing strategies: implicit coordination and coordination through active commu-

nication. We are now working on interactive communication that can be used for

handling unstable confidence for rapid policy adaptation. Preliminary result of

this work is presented in the conferences [104].

5.2 Limitation

There are few limitations of our work. We have chosen θ and Δ empirically.

But in the ideal case the values of θ and Δ should be determined automatically.

Sensor observation data has been discretized using a predefined threshold. But

this discretization of sensor observation data should also be done automatically

in ideal case. We have used a predefined Bayesian network structure. But in ideal

case the network structure should be learned dynamically using observation.

5.3 Future Work

I have started my work with rapid policy adaptation for human centered

robot. I would like contribute toward a solution for rapid adaptation in future.

Here I am discussing about my ongoing work and a few possible work that might

be undertaken in near future.

5.3.1 Adaptation based on interactive communication

Recent interest in intelligent robots represents building complex systems

that is capable of holding belief in the state of the world. They come to hold

these beliefs through existing data and by deriving new belief from interaction

with user as a result of internal reasoning. Intelligent robotic systems are deemed
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to be agents capable of communicating about the events and confidence of the

world which they share with their users.

In our previous works [107][108] we have shown that rapid behavior adapta-

tion are possible based on the change in the degree of confidence based significance

evaluation of observation and action. In those works we assumed that data is al-

ways available and user demonstrate until the robot has high confidence. During

learning progression from low confidence to high confidence the robot simply fol-

lowed user action of those methods. That system is practical if the user is infinitely

patient. But we can expect human to be lazy and only wish to respond if nec-

essary to improve the system’s behavior or teach a new task. In this chapter we

introduced interactive teaching in which robot will present its internal state as

confidence and ask for user to teach based on the confidence. This confidence

value can be used in many ways. Firstly, it can be used to recognize when the

system has adequately learned a task. When the confidence value associated with

queries is high, it means that the system has enough information to make a good

prediction of the appropriate output. Teaching may then cease and the platform

can proceed to act autonomously. Conversely, when the confidence value falls, it

means that the learning algorithm is operating in space that it is unfamiliar with

and perhaps its predicted outputs should not be trusted. In this case, signals can

be sent to the user requesting more teaching (giving initiative to the teacher). In

this work we integrate our policy learning method and interactive communica-

tion. Together, rapid adaptation and interactive communication algorithm form

an interactive learning in which the learner and user teacher play collaborative

role.

Interactive communication is a part of the policy learning algorithm in which

the agent must select data, as it interacts with the human. At each time step,

the algorithm uses confidence thresholds to determine whether a user action in
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the agents current state will provide useful information and improve the agents

policy. If user action is required, the agent requests to the teacher, and updates

its policy based on the resulting action. Otherwise the agent continues to perform

its task autonomously based on its policy.

There are two distinct situations in which the agent requires help from the

user, unfamiliar states and ambiguous states. An unfamiliar state occurs when

the agent encounters a situation that is significantly different from any previously

demonstrated state. Ambiguous states occur when the agent is unable to select

between multiple actions with certainty. This situation can result when teaching

of different actions from similar states make accurate classification impossible.

In these cases, additional teaching may help to disambiguate the situation. The

goal of the interactive adaptation algorithm is to update CPT for high confidence

(autonomous execution) and low confidence (interactive teaching) in a way such

that unfamiliar and ambiguous cases fall into the low confidence areas.

Here we can give tow interaction scenario for unfamiliar states and ambitious

state. Unfamiliar situation might start at the beginning of the process when it

start to evaluate significance of data and update CPT. Scenario for interaction

during this unfamiliar state is as follows:

• robot : unfamiliar state, do you want learn with this data enter yes orno

for +/- confirmation

• user : yes

In such interaction the robot will update CPT with the same observation

until that data become insignificant. Therefore the robot need to clarify whether

the user really want take this action because the robot has a high belief to follow

the previous policy. A no confirmation by the user is considered as false positive
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data and will be ignored. Scenario for such interaction during this ambiguous

state is as follows:

• robot : ambiguous state, do you really want this action; enter yes orno

for +/- confirmation

• user : yes

In such case the robot will execute the user action. Policy adaptation can

be accomplished through the significance evaluation and interactive teaching.

5.3.2 Bayesian network structure

In our current work we have predefined the Bayesian network structure. In

ideal case the the system should learn Bayesian network online using observation.

There are two types of algorithms for Bayesian structure learning is useful to

accomplish that task namely constraint based algorithms and scoring based algo-

rithms. It is possible to learn the Bayesian Network structure by identifying the

conditional independence relationships among the nodes. Using some statistical

tests (such as chi-squared or mutual information), we can find the conditional inde-

pendence relationships among the nodes and use these relationships as constraints

to construct a Bayesian Network. These algorithms are referred as dependency

analysis based algorithms or constraint-based algorithms [83][74]. An alternative

method of structural learning uses optimization based search. It requires a scoring

function and a search strategy. A common scoring function is posterior probability

of the structure given the training data. The time requirement of an exhaustive

search returning back a structure that maximizes the score is super-exponential

in the number of variables. A local search strategy makes incremental changes

aimed at improving the score of the structure. A global search algorithm like

Markov Chain Monte Carlo can avoid getting trapped in local minima. Therefore
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I would like to work on online structure learning and use the structure with our

algorithm.

5.3.3 Adapting threshold automatically

In this study we had empirically determined two values and we need to

consider how to automate those issues as well. The threshold value for which

change in the degree of confidence is determined for data significance and high

confidence area of the distribution for integration. Although these values will

depend on application, we need to explore if we can automate these values in

those application domain.

5.3.4 Discretization of observation

In our current work discretization of sensor observation is done in predefined

manner. But discretization should be determined on-line. The chi-square-based

criteria [56] [57] [16] focus on the statistical point of view whereas the entropy-

based criteria [21][86] focus on the information theoretical point of view. Other

criteria such as Gini [18] try to find a trade off between information and statistical

properties. I would like to work in near future on how to get the correct discretized

states from observation.

5.4 Summary

This thesis has developed the concept of significance evaluation of observa-

tion data. We have shown that significance evaluation of observation data can

be used for rapid behavior adaptation for human centered robot. Our algorithm

for rapid behavior adaptation can deal with both prior and conditional probabil-

ity, can detect the change point automatically, and is amenable to online robotic
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behavior adaptation. We have verified the usability of the algorithm on simu-

lated environment and on real environment. This thesis provide a general and

extensible approach for rapid behavior adaptation.
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Figure A.1: The overall architecture of our system


