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Abstract

Multi-antenna transmission and reception technique, also known as MIMO,

has evolved as one of the key enabling techniques to meet the ever-increasing

demand for high-speed wireless data access in current and emerging wireless

cellular networks. This dissertation addresses some critical issues on the re-

source allocation for MIMO-enhanced cellular networks with centralized or

distributed antenna architecture.

With the dramatic growth of mobile services provided by cellular net-

works, the first problem that we should confront is to support and differentiate

diverse services, particularly the quality of services (QoS) guarantee for real-

time services. However, traditional algorithms for resource allocation fail to

provide a better solution that dynamically guarantees the QoS requirements

while obtaining the throughput efficiency, since they have neglected compet-

ing and sharing characteristics between services from a systems perspective.

In contrast, I consider this problem based on a cooperative game model, which

gives great insights into the nature of competing and cooperative relations.

Consequently, I successfully formulated this problem on resource allocation

as a cooperative game and obtained the notion of QoS guaranteed fairness

based on the well known Nash bargaining solution. The algorithm based on

QoS guaranteed fairness, can satisfy the QoS requirements of all services and

achieve the Pareto optimal system throughput, which is validated through
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simulations and discussed at the end of Chapter 3. Moreover, this work also

provides a theoretical framework that paves the way to solving resource allo-

cation problems in other similar scenarios.

At the same time, the huge amount of traffic have highly saturated the

bandwidth available by current cellular networks, which pushes us to utilize

bandwidth more efficiently than ever so that universal frequency reuse is usu-

ally considered by future cellular networks. However, this raised the second

problem, severe inter-cell interference(ICI), which has become the bottleneck

of further enhancement of spectral efficiency. The spatial multiplexing trans-

missions in MIMO-enhanced cellular networks, whose main advantage is a

dramatic improvement in spectral efficiency, lose much of their effectiveness

due to this high levels of interference. Fortunately, the advances in MIMO

technique such as cooperative transmission, especially that between base sta-

tions (BS) within a cellular context, have emerged as one of the most promis-

ing techniques to mitigate ICI and thus improves total system throughput.

I proposed an algorithm in Chapter 4 for allocating wireless resources coop-

eratively, which is aimed at mitigating ICI and efficiently utilizing wireless

resources. Based on game theoretic analysis, the proposed algorithm achieves

Pareto optimal efficiency and considers proportional fairness. Due to the

prohibitive complexity of computation, I also developed a heuristic algorithm

and compared it with a benchmark that is regarded as a Nash equilibrium

outcome in a non-cooperative scenario. The simulation and analysis results

are also given at the end of Chapter 4.

I also investigated the distributed antenna scenarios in both Chapter 5 and

6 that have a topology of distributed antennas for the BS at each cell. The

intuitive advantages of this architecture are better signal coverage and lower

power consumption. However, We expect to further exploit other advantages
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since resource allocation with distributed antennas is more flexible in cooper-

ation and optimization than that in traditional architectures. In Chapter 5, I

proposed two energy-efficient resource allocation algorithms, based on beam-

forming transmission and selection transmission, respectively. the simulation

results shows that both algorithms have a higher energy efficiency that con-

ventional algorithms, and the selection transmission outperforms the beam-

forming transmission algorithm in terms of energy efficiency and complexity.

The ICI problem in distributed antenna architecture is also investigated in

Chaper 6. I proposed a cooperative beamforming algorithm that mitigates

ICI and achieves a higher system capacity. A comparison and analysis of

performance between a scenario with co-located antennas and that with dis-

tributed antennas are given, which clearly demonstrate the advantages of the

architecture with distributed antennas.

In summary, the cooperative resource allocation problems is investigated

in the MIMO-enhanced cellular networks. The game theoretic framework

is proposed to provide QoS guarantee for diverse services, mitigate interfer-

ence, and conserve transmission energy. All these algorithms can achieve the

Pareto optimal in terms of system throughput. my investigations with both

architectures of distributed antenna and traditional co-located antenna is also

discussed in this dissertation.
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Chapter 1

Introduction

1.1 Motivation

Wireless communications has undergone significant growth worldwide over

the last few decades and has been one of the most vibrant research areas

in communications. On the one hand, we have observed the evolution of

different wireless communication systems that have gradually improved the

throughput and supported even more services. As well as traditional mobile

services such as voice calls, messages, and simple Web browsing, the upcom-

ing cellular networks are expected to provide a wide variety of new services

from high-quality video calls to online games, since numerous mobile users

are being attracted by these kinds of real-time multimedia interactive services

with the help of powerful mobile devices nowadays. On the other hand, we

are still facing hostile wireless channels and scarce wireless spectrum with the

increasing demand for higher throughput. Signals can be severely distorted

by wireless channels whose parameters such as path delay, path amplitude, as

well as carrier phase and frequency shifts may vary with time, frequency, and

location. In addition, another negative characteristic of wireless networks is
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that the broadcast nature of channel behavior causing interference between

channels. Excessive interference can significantly deteriorate the performance

of networks and waste wireless resources. Strict limitations in wireless re-

sources such as power, bandwidth, and spatial beams also are another major

difficulty in the design of wireless networks. Due to these reasons, resource

allocation could have significant effect on the performance of next-generation

cellular networks to provide highly efficient and fair services.

As advanced technology in link level of wireless systems, multiple-antenna

transmissions, also known as MIMO, has been widely adopted as one of

the key enabling technologies by next-generation broadband wireless access

and cellular system standards such as IEEE 802.16m [1] and 3GPP LTE-

Advanced [2]. In MIMO-enhanced cellular networks, it offers the potentials

to provide better quality-of-service (QoS), higher system throughput, and

energy efficiency [3]. However, to fully explore the potentials of MIMO, ef-

ficient allocation of wireless resources to multiple users with the additional

degree of freedom in spatial dimension has become more crucial and chal-

lenging. Therefore, it has been identified as the essential for the success of

next-generation cellular networks when we aim to satisfy the three critical

requirements as follows: efficiently supporting and differentiating heteroge-

neous services to different users, mitigating inter-cell interference (ICI) to

obtain higher spectral efficiency, and improving the power efficiency in the

wireless transmission.

Meanwhile, driven by the explosive demand for high data rates, researches

from the early work on point-to-point MIMO transmissions [4,5] to the recent

work on multi-user MIMO systems [6] that achieve aggregated capacity of all

users, people have ceaselessly pursuit the potentials offered by techniques of

multiple antennas. The research community as well as industrial actors has
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Figure 1.1: Basic Forms of MIMO

recently begun to focus on exploiting the utilization of wireless resources in a

form of distributed but cooperative antennas [7–9]. Resource allocation opti-

mized for this kind of cooperation has been identified to emerge as the next

innovation toward the implementation of next-generation broadband cellular

networks since it aims to overcome inefficient non-cooperation in traditional

networks.

1.2 MIMO-Enhanced Cellular Networks

1.2.1 Basic of MIMO Techniques

Multiple-input and multiple-output (MIMO) is the use of multiple antennas

at both the transmitter and receiver to improve communication performance.

some basic forms are illustrated as Fig. 1.1. MIMO technique has attracted

attention in wireless communications, because it offers significant increases

in data throughput and link range without additional bandwidth or transmit

power. It achieves this by higher spectral efficiency and link reliability or

diversity (reduced fading). Because of these properties, MIMO is an impor-

tant part of modern wireless communication standards such as IEEE 802.11n

(WiFi), 802.16e (WiMAX), 3GPP LTE, and fundamental technology in fu-
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Figure 1.2: An Example of SDMA

ture wireless systems.

For a multi-user MIMO system, it do not necessarily require the user de-

vices equipped with multiple antennas as well. A technology, so-called Space-

Division Multiple Access (SDMA), is a channel access method based on the

principles of MIMO techniques, which creating spatially parallel sub-channels

to obtain higher system capacity through spatial multiplexing. Because of

this, it is able to offer superior performance in multi-user wireless networks

even when the user terminals are less antennas. In traditional cellular net-

works, the base station has no information on the position of the mobile units

within the cell and radiates the signal in all directions within the cell in order

to provide radio coverage. It results in wasting power on transmissions when

there are no mobile units to reach, in addition to causing interference for adja-

cent cells using the same frequency, so called inter-cell interference. Likewise,

in reception, the antenna receives signals coming from all directions including

noise and interference signals. By using differing spatial locations of mobile

units within the cell, SDMA techniques offer attractive performance enhance-

ments. The radiation pattern of the base station, both in transmission and

reception, is adapted to each user to obtain highest gain in the direction of

that user, as illustrated in Fig 1.2. This is often done using beamforming
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techniques.

As aforementioned, SDMA technique obtains multiple spatial access chan-

nels by precoding to form multiple beams, which are known as beamforming.

When using beamforming precoding, we can not only multiplex transmissions

of multiple users, but also mitigate interference. One classical beamforming

is maximum ratio (MR) transmission or matched beamforming. If the ref-

erence BS has knowledge of the channel of its own users, then it is possible

to use MR transmission to maximize throughput for individual user without

considering other users. This increases the interference between users. Con-

versely, another classical beamforming is zero-forcing (ZF) transmission or

nulling beamforming. The ZF beam-former orthogonalizes all the correlated

users, which sometime decreases the channel gain for each user.

1.2.2 Cooperative Transmission

Over the last decades, cooperative cellular systems have emerged as the next

improvement toward the implementation of broadband wireless networks.

However, the term ”cooperation” can mean diverse things within the con-

text of wireless networks. Therefore, the purpose of this section is to explain

which major cooperative forms and strategies can be identified in MIMO-

enhanced cellular networks. As the demand for cost-efficient high-rate wire-

less services increases, wireless network operators have to employ new wireless

architectures to achieve higher data-rates. However, despite the evolution of

wireless cellular technologies, the increase in system complexity has become

disproportional with respect to the provided gain in capacity. Therefore, the

research community as well as industrial actors have begun a quest to find

compatible or alternative cellular architectures that have the ability to pro-

vide high spectral efficiencies. Cooperative cellular architectures are gaining
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Figure 1.3: Centralized vs. Distributed Connection of BSs

momentum as dominant candidates for alternative approaches in wireless cel-

lular networks. Cooperation in wireless networks can take many forms, such

as user cooperation, BS cooperation and relaying. User cooperation is the-

oretically possible but is very complicated in practice, because they have to

communicate either on a separate wireless frequency band or through the BS

to exchange cooperative information. This fact results in a waste of spectrum

and energy, which is very serious in terms of the battery life and complexity

of mobile devices. Both BS cooperation and relaying have recently been the

focus of extensive research. Relaying can be beneficial, but it either consumes

the limited resources of relaying users or requires network operators to install

additional transponders (i.e., relay stations). Therefore, we have only focused

on BS cooperation in this dissertation.

Based on the previous discussion, the approach to BS cooperation is an-

alyzed and compared to that of conventional cellular systems. As demon-

strated in Fig. 1.3, BS cooperation generally assumes that all BSs are mutu-

ally connected or clusters of BSs are connected to a central processor through

high-capacity error-free channels (e.g., optical fibers), which coordinates or
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jointly encodes/decodes user signals. This multi-cell coordination or joint

processing has the ability to transform the cellular network to a wide-area

MIMO network or distributed antenna system (DAS). The main benefit of

BS cooperation is higher system capacity gain than that in conventional cel-

lular network, because ICI is no longer harmful to the capacity of the cellular

system. We discuss our investigation into BS coordination to mitigate in-

terference in Chapter 4 of this dissertation, and BS joint processing with a

topology of distributed antennas is explained in Chapter 6.

1.3 Review of Related Work

The state-of-the-art techniques for resource allocation are reviewed in this

section, including cross-layer design and resource allocation for SDMA sys-

tems.

1.3.1 Cross-Layer Design for Resource Allocation

In conventionally layered network architecture, each layer is designed and op-

erated independently to provide transparency between layers to enable sim-

plicity in design. Of these layers, the physical (PHY) layer handles raw-bit

transmission, and the medium access control (MAC) layer manages multi-

ple users so that they can gain access to shared wireless resources, it also

maintains traffic arriving from the upper layer. There are different compo-

nents with respect to each kind of wireless resource for resource allocation

in cellular networks. These components may reside in different layers, for

instance, power is controlled in the PHY layer, while scheduling is done in

the MAC layer. Each of these components in the overall network design

can be targeted separately, thereby enabling important inter-dependencies to
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be ignored between them. Exploiting these inter-dependencies through the

joint optimization of these components leads to significant gains in perfor-

mance [10], but it may otherwise be computationally prohibitive to be of any

use in practice. Theoretically, a heuristic algorithm may help to solve this

problem by balancing performance and complexity.

Earlier generations of cellular networks that were based on a layered ar-

chitecture adopted static resource allocations, in which the BS took turns to

equally serve individual users with a fixed time slot series or frequency band,

irrespective of specific conditions such as their channel and traffic-queuing

states. Due to the time-varying characteristics of channels and traffic, un-

awareness in this architecture resulted in inefficient use of resources by cellular

networks. Since some main functionality in the allocation of resources such

as power control, time scheduling, and dynamics information such as chan-

nel state information (CSI) and queuing state information (QSI) are operated

and collected in different layers, we need an integrated design that is adaptive

across these layers. Therefore, the well known concept of cross-layer design

and optimization across the PHY and MAC layers has been proposed in the

recent literature [10–16], for the allocation of wireless resources. Many re-

source allocation algorithms, such as maximum carrier-to-interference (max

C/I), max-min fairness [11], and proportional fairness (PF) [12] have been

proposed by these researchers and different tradeoffs have been obtained be-

tween system throughput and fairness by exploiting the independent fading

characteristics of users, i.e., multi-user diversity. However, these strategies

have always assumed an infinite backlog, which did not take into account the

QoS requirements of traffic and may also have caused instability [13] when

implemented in the practical systems that had finite data buffers for queuing

traffic. Because of this, we classified these strategies as a class of channel-
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aware resource allocation algorithms. However, another class of queue-aware

strategies, which include Max Weight (MW) [14], Largest Weighted Delay

First [15], and Exponential Rule schedulers [16], have been proposed for cases

in which finite queues are fed by an arrival process, and they have aimed at

not only balancing throughput and fairness but also maintaining system sta-

bility. However, although almost all the prior resource allocation algorithms

that have been proposed, i.e., both channel- and queue-aware, have been suit-

able for best-effort services but failed to provide QoS guarantee to real-time

services.

1.3.2 Resource Allocation for MIMO Systems

MIMO systems have drawn vast attentions for its significant improvement in

channel capacity [4] and widely adopted by future wireless systems. In the

downlink of Multi-User MIMO (MU-MIMO) systems, multiple users can be

multiplexed in space and share the same resource in frequency and time to

improve spectral efficiency. The multiplexing technique forms multiple spa-

tial channels by using a MIMO beamforming precoder such as Zero-Forcing

(ZF) transmit precoder [17], therefore, the performance of resource allocation

in MU-MIMO systems largely depends on the spatial channel correlation be-

tween users. Since the number of transmitting antennas at Base Station (BS)

is usually less than the total number of users, traditional resource allocation

algorithms for MU-MIMO systems try to select a subgroup in each allocation

interval with an appropriate number of users in which their spatial channels

are close to orthogonal. However, the problem of finding the optimal group

of users that maximizes the system capacity is a mixed integer combinatorial

problem and proved to be an NP-complete problem [18]. Although we can

find its optimal solution through an exhaustive search algorithm, due to its ex-
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ponential complexity, the algorithm can reach prohibitive computational cost

even for a moderate number of users and transmitting antennas. Therefore,

sub-optimal algorithms able to solve this resource allocation problem with

low complexity are more attractive and have been studied in some recent

work [18–20]. All these studies took great effort on maximizing the system

capacity with low-complexity algorithms. In [18,19], the proposed algorithms

reduce the computational complexity by separating the scheduling and power

allocation and selecting users directly based on their spatial correlations. The

algorithm in [20] takes emphasis on the limited feedback with an equal power

allocation. However, the performance of these sub-optimal algorithms only

investigated through simulations.

1.4 Contributions

Based on the seminal work discussed above, we aimed at solving three main

problems in resource allocation research on MIMO-enhanced cellular networks

by using a game theoretical approach.

The problems we are going to solve and primary contributions of this

research below:

1. How could the QoS be guaranteed when we achieved some kind of trade-

off between efficiency and fairness?

We successfully modeled the resource allocation problem in a multi-user

MIMO network as a cooperative game and obtained the notion of QoS

guaranteed fairness based on the well known Nash bargaining solution.

It provides a framework that paves the way to solving similar resource

allocation problems with QoS guarantees in other scenarios.

2. How could ICI be mitigated to gain higher system throughput?
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We developed cooperative resource allocation algorithms that were both

optimal and heuristic to solve the interference problem and improve sys-

tem throughput between cells in a cellular network where BS antennas

cooperatively mitigated interference.

3. How could the signal distribution be fundamentally changed through

an alternative infrastructure topology of MIMO techniques? And the

consequence in energy consumption?

The distributed antennas architecture was investigated and is discussed

in Chapter 5 and 6. We investigate the energy efficiency issue and

propose two algorithms in Chapter 5, and ICI mitigation is investigated

in Chapter 6.

1.5 Organization of Dissertation

The remainder of this dissertation is structured as follows:

Chapter 2 describes the basic principles underlying cooperative resource

allocation in MIMO-enhanced cellular networks. It also highlights the re-

source allocation problem under the system model.

Chapter 3 proposes a joint resource allocation algorithm for a downlink

SDMA network in a single-cell scenario that offers QoS guaranteed fairness

(QGF), i.e., the QoS requirements of all real-time services will be satisfied

if this is feasible while providing proportional fairness with respect to both

their channel and queuing conditions without loss of throughput efficiency.

We derived the QGF from the Nash bargaining solution in a cooperative game

model in which the well known proportional fairness could also be incorpo-

rated into our framework. We then formulated the resource allocation prob-

lem into a combinatorial optimization problem based on the QGF concept.
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We compared our proposed strategy with PF and MW strategies through sim-

ulations, which indicated superior performance by QGF in providing services

particularly for real-time users.

Chapter 4 explains our investigations into resource allocation with a multi-

cell coordinated MIMO system incorporating proportional fairness and inter-

ference suppression. We formulated an optimal resource allocation problem

in a multi-cell MIMO system coordinated to suppress ICI. Our aim was to

achieve high throughput and proportional fairness. Although we divided the

original problem into easily solvable sub-problems, the computational com-

plexity was still high. Therefore, we propose a low-complexity algorithm to

achieve better fairness and less computational complexity with only a slight

loss in throughput. We also obtained a tradeoff between throughput and fair-

ness by achieving proportional fairness. The simulation results revealed that

our algorithm improved system throughput, particularly for cell-edge users in

a multi-cell environment and achieved proportional fairness for all of them.

Chapter 5 proposes two energy-efficient algorithms in the distributed an-

tenna architecture, one is beamforming based and the other is antenna se-

lection based. The simulation results show that both algorithms are energy-

efficient that traditional ones. In addiction, the antenna selection algorithm

is with low complexity than beamforming algorithm.

Chapter 6 investigates a fundamental framework to mitigate ICI in dis-

tributed MIMO systems. We will focus on the partially sharing issues in the

next step, including an optimal scheduling scheme to make our algorithms

more practical. Therefore, distributed MIMO systems applying cooperative

transmission should be able to provide higher network capacity at any loca-

tion and better link reliability at any time.

Chapter 7 summarizes the dissertation and proposes several stimulating
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topics for future work.
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Chapter 2

Background

This chapter briefly introduces the principles underlying all proposed al-

gorithms, including technical details on MIMO-enhanced cellular networks,

utility-based resource allocation, and the background to game theory. Before

that, I first make some general assumptions that have been used for analysis

and evaluation throughout the entire dissertation.

2.1 General Assumptions

1. Block-fading channels

We assumed that multipath fading would be constant within the time

duration of our interest. We specifically assumed that multipath fad-

ing would be constant within a frame, which is reasonable in practical

scenarios where users move at moderate speeds.

2. Perfect channel state information feedback

User CSI is crucial for exploiting multi-user diversity in cellular net-

works. In this dissertation, we assumed users would ideally estimate

and feedback their CSI to the BS. The amount of feedback information
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increases the system overhead, and limited feedback techniques [21,22]

or channel prediction [23, 24] can be used to reduced the amount of

overhead from feedback. The performance of cellular networks with

imperfect CSI is still an intensive area for ongoing research [25].

3. Continuous Rate Model

The Shannon capacity, which is a continuous function, is used as the

user throughput in this dissertation. User data rates in practical system

present discrete values due to different modulation and coding schemes.

The continuous Shannon capacity formula, however, simplified the anal-

ysis of resource allocation and provides an upper bound on achievable

throughput. A signal-to-noise ratio gap can be included in the Shannon

capacity formula to model degradation in the signal-to-noise ratio [26].

4. User terminal is equipped with only one antenna and provided with

only one service

This assumption is mainly to simplify analysis in the following chapters

without any loss of generality. Actually, all the studies mentioned in this

dissertation can be easily extended to users attached by multi-antennas

and multi-services.

2.2 Fundamentals of Resource Allocation

2.2.1 Frame-Based Resource Allocation

Almost all modern cellular networks, especially those based on multi-channel

techniques, have adopted frame structures to facilitate the organization of

resources. A general frame structure has been illustrated in Figure 2.1. The

frame in the time division duplexing (TDD) mode is further divided into
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Figure 2.1: General Frame Structure

a downlink subframe and an uplink subframe. The downlink and uplink

subframes in frequency division duplexing (FDD) mode are transmitted in two

different frequency bands respectively. However, their basic frame structures

are the same. The wireless resources that we have considered within a MIMO-

enhanced cellular context in this dissertation include power, time slots, and

spatial beams. These wireless resources are jointly allocated based on the

frame-by-frame structure.

In fact, as the analysis is based on some general structures, the results

in this dissertation can be easily applied to other cellular networks incorpo-

rating extra resource dimensions, since transmission by multiple antennas is

always combined with other link techniques (e.g., MIMO-OFDM systems) in

practical networks.

2.2.2 Performance Metrics

The allocation and management of wireless resources are crucial for cellular

networks, in which scarce wireless resources are shared by multiple users with

respect to the fundamental tradeoff between efficiency and fairness. The no-

tions of both efficiency and fairness have different definition depending on the

objective of resource allocation. More specifically, the notion of efficiency can

be defined by throughput, the signal-to-interference-plus-noise ratio (SINR),

power consumption, or any combination of these. While the notion of fair-

ness also has many definitions in terms of data rate, users, and QoS, we
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have adopted widely used aggregate throughput as the efficiency metrics in

this dissertation. Fairness is defined with respect to the QoS fairness we

proposed.

2.2.3 Utility Functions

Utility functions are used for capturing all cross-layer information (i.e., CSI

and QSI) and balancing efficiency and fairness. A utility function for each user

maps all the information concerning wireless resources into a real number. As

more efficiency and fairness are preferred, the utility function U(x) should be

a non-decreasing function in terms of these metrics. For instance, let denote

the user’s data rate, when U(r) = r, i.e., the utility is simply the data rate for

this user. The aggregate utility for resource allocation will lead to maximum

system throughput, which is the objective of some capacity-achieving systems.

Therefore, this method can be regarded as a general extension to traditional

network optimizations.

Utility functions instead of some explicit performance metrics serve as an

optimization objective for cross-layer resource allocation. Consequently, they

build a bridge between different layers.

2.3 Game Theoretic Approach

2.3.1 Introduction

Game Theory generally provides a formal modeling approach to situations in

which decision makers interact with other players. It analyzes and represents

such situations as games, where players choose different actions in an attempt

to maximize their payoffs. Although some Game Theoretic analysis appears

similar to Decision Theory, Game Theory studies the decisions made in en-
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vironments where players interact. In other words, Game Theory studies the

choice of optimal behavior when the costs and payoffs of each option depend

upon the choices of other individuals.

Informally, a game is considered to be a collection of players who play

different moves, and is aimed at maximizing their individual payoffs. The

notion of a game is formally as follows:

Definition 2.1. A game is defined by the tuple: Q = 〈K, S,v〉 where

K = {k : k ∈ {1, . . . ,K}} is a set of K players,

S is the strategies space,

v = (v1, . . . , vK) is a vector of payoff functions.

2.3.2 Non-Cooperative Games and Nash Equilibrium

Non-cooperative games are able to model situations, in which players make

decisions independently to maximize their own payoffs. There is one or more

stable outcomes called the Nash Equilibrium in such games. For example,

the power control at each BS in traditional cellular networks can be regarded

as a non-cooperative game, since each BS will transmit the maximum power

to achieve high throughput. The Nash Equilibrium is where all BSs transmit

at their maximum power, which yields poor performance because of heavy

interference.

2.3.3 Cooperative Games and Nash Bargaining Solution

A cooperative game is one in which players are able to make enforceable

contracts. Hence, it is not defined as a game in which players actually do

cooperate, but as games in which any cooperation can be enforced by an

outside party. There are two major components of cooperative game theory:

the bargaining solutions and coalition structures.
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Chapter 3

Cooperative Resource

Allocation with QoS

Guarantee

3.1 Introduction

As discussed in previous chapters, resource allocation is one of the key mech-

anisms in cellular networks to support and differentiate heterogeneous ser-

vices. Services provided by cellular networks can be generally classified into

two categories: real-time and best-effort services. The data traffic produced

by real-time services is highly sensitive to delay, while the one generated by

best-effort services, also known as elastic traffic, seldom has specific QoS re-

quirements. In such cases, the design of resource allocation algorithms that

well handle these two kinds of services and gain good balance between effi-

ciency and fairness, becomes more complicated.

Great difficulties have been encountered when modeling these kinds of

traffic in conventional algorithms, since they have always been analyzed and
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Figure 3.1: Downlink of Multi-User SDMA Systems

proposed in a resource-oriented way that took into account how the radio

resources available to all traffic were to be allocated. One of most important

area of research is in utility-based resource allocation algorithms, which cap-

ture QoS requirements with the help of utility functions. It is quite difficult

to model diverse QoS requirements in this way for all active services from the

perspective of resources by subjectively designing utility functions. We tried

to derive utility functions from the perspective of services to deal with QoS

requirements in an individual way, where we considered resource allocation

to be a problem with many service instances competing and sharing radio

resources. We can solve this problem based on this viewpoint using the game

theoretic approach, which is a mathematical tool that promises to solve these

kinds of problems.

3.2 System Model

This chapter presents our investigations into the downlink of multi-user SDMA

networks with one BS serving users, which is illustrated in Figure 3.1. Let

K denote the index set of all users and k ∈ K = {1, . . . ,K} represents the

index of kth users in the set. Queue Qk fed by an arrival rate λk buffers
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the data intended for user k. According to the assumption 4 have been pro-

posed in Section 2.1, therefore, there are N antennas at the BS that can

simultaneously transmit N data flows to N users (usually N ≤ K) per time

slot, which implies that the scheduler chooses N flows from K queues to

serve at each time slot t. We adopted the zero-forcing (ZF) beamforming

per-coding to separate the multi-user data streams into N independent spa-

tial sub-channels, thereby multi-user diversity can be fully exploited through

appropriate scheduling, and it asymptotically closes in on the optimal sum

capacity as the number of users goes to infinity [27]. Users are chosen at

time slot t according to scheduling policy s(t), which depends on both infor-

mation from channels and QoS. We omit the notation of time t, and denote

any possible scheduling policy as sm ∈ S = {s1, . . . , sM}(M = CNK ). Define

ρmk = {0, 1} as the entries of sm = (ρm1 , . . . , ρ
m
K) indicating that the user is

scheduled under policy sm when ρmk = 1, otherwise, ρmk = 0.

Consider a quasi-static fading MIMO channel, which holds when users

are stationary or have low mobility. This means the channel state changes

slowly and is almost constant within the period of one time slot. Due to the

different scheduling policy s(t) generates different ZF pre-coding weight, and

the receiving signal of user k will be different, which can be given by

ym,k = hk
wm,k

‖wm,k‖
√
pm,kxk + nk. (3.1)

The notations here are listed as:
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hk is the 1×N complex downlink channel gain vector of user k.

wm,k is the column-normalized ZF beamforming weight for user k under

policy sm.

pm,k is the transmitting power for user k under policy sm.

xk is the traffic bit flow for user k with E[xkx
H
k ] = 1.

nk is the additive white Gaussian noise with E[nkn
H
k ] = σ2.

‖·‖ is the Euclidean norm.

E[·] is the expected value of the random variable.

Let Hm represent the channel matrix of all scheduled users in sm. Weight

vector wm,k is then the normalized corresponding column for user k of pre-

coding weight matrix Wm, which is the pseudo-inverse matrix of Hm given

by

Wm = H†m(HmH
†
m)−1.

M-ary quadrature amplitude modulation (MQAM) is a modulation scheme

for high spectrum efficiency, which was also used in our system model. There-

fore, adaptive modulation and coding (AMC) provides all users with the

ability to match the spatial sub-channels achievable rate according to their

channel conditions. As discussed in [26], a user k’s bit error rate (BER)

of MQAM as a function of rate rm,k and the signal-to-noise ratio (SNR) is

approximated by

BERk ≈ c1e
−c2

SNRm,k

2
rm,k−1 ,

where c1 ≈ 0.2, c2 ≈ 1.5, and the effective SNR based on ZF beamforming

can be expressed by [28]

SNRm,k =
pm,k

‖wm,k‖2 σ2
.
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Therefore, the data rate for user k in policy rm,k is given by

rm,k = log2(1 + η
pm,k

‖wm,k‖2 σ2
), (3.2)

where η = −c2/ ln(BERk/c1).

3.3 QoS Guaranteed Resource Allocation

3.3.1 Game Theoretic Model

We explain our modeling of the resource allocation problem with real-time

services as a cooperative game in this section. We then obtain the notion of

QGF based on the Nash bargaining solution, which provides QoS-guaranteed

fairness with Pareto optimal system throughput. Moreover, our notion of

QGF can be taken as an extension to the well known concept of proportional

fairness, which is widely accepted in wired and wireless networks.

The K-person bargaining model of a cooperative game can be described

as follows. There are K users with real-time traffic sharing the channels.

Each of them has delay cost dm,k, which is defined as:

Definition 3.1. Once a packet has arrived at queue Qk at time t, for a given

queue length qk(t), the expected queuing delay can be expressed by:

dm,k(t) = qk(t)/rm,k(t), ∀k, (3.3)

where rm,k(t) is the instantaneous data rate of user k in time t.

In addition, let Dk ∈ D = (D1, . . . , DK) represent the maximum cost

that user k can afford and the baseline for bargaining, otherwise, the user

will not cooperate. Define R as all feasible rate sets. Since the duality of the
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game, our objective here is to minimize the total cost to users. We gave the

following Pareto optimal allocation point as a criterion to choose optimal r

from feasible set R.

Definition 3.2. The allocation point r = (rm,1, . . . , rm,K) is said to be Pareto

optimal, if and only if there is no other allocation r′ and its corresponding

delay d′, such that d′m,k ≤ dm,k,∀m, k, and d′m,k < dm,k, ∃m, k, in other

words, there exists no other allocation that leads to a lower delay for some

users without increasing delays for other users.

There might be many Pareto optimal points in a cooperative game, and

there are different system throughputs and fairness at different points. We

need to add some more criteria to obtain a unique point, at which the QoS

for all users is fairly satisfied while achieving as high throughput as possible.

One commonly used criterion for fairness is max-min [29], it tends to allocate

radio resources to the worst users as long as all users achieve the same per-

formance. This criterion penalizes users with good channels, and as a result,

generates inferior system performance with no guarantees to ensure QoS to

all users. Although proportional fairness achieves a tradeoff between fairness

and system throughput, there are still no guarantees to ensure user QoS, and

neither do the rest of the scheduling strategies we discussed in Section 3.1.

Therefore, we propose a criterion of QGF, which is derived from the Nash

bargaining solution. The intuitive idea behind this is that at least the QoS

requirements of all users are met; we further provide fairness proportionally

to users according to their channel and queuing conditions. We also discuss

the proportional fairness criterion in detail, which is a special case of QGF, at

the end of this section. Of the many Pareto optimal solutions, QGF provides

a unique and QoS constrained fair Pareto optimal operation point under the

following conditions, which is briefly explained as follows [30].
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Definition 3.3. r∗ is said to be a Nash bargaining solution in feasible set R

for constraints D, i.e., r∗ = ϕ(R,D), if the following axioms are satisfied:

1) Individual Rationality.

2) Feasibility.

3) Pareto Optimality.

4) Independence of Irrelevant Alternatives.

5) Independence of Linear Transformations.

6) Symmetry.

We have omitted the mathematical expressions for these axioms here,

which can be found in [30]. Axioms 1-2 assert that the baseline QoS re-

quirement must be satisfied if it is feasible. Axiom 3 asserts the efficiency of

this solution, Axiom 4-6 assert that fairness distributed among users propor-

tionally to their channel and queuing conditions. As a result, the following

theorem indicates that there is exactly one Nash bargaining solution that

satisfies the six axioms.

Theorem 3.1. Existence and Uniqueness of Nash bargaining solution: There

is unique solution function r∗ = ϕ(R,D) that satisfies all six axioms in

Definition 3.3, and it satisfies

r∗ = arg max
rm,k≥

qk
Dk

K∏
k=1

(Dk −
qk
rm,k

). (3.4)

Proof. Please refer to [30].

Recall that the well known proportional fairness is derived from the Nash

bargaining solution as well; we demonstrate that PF is a special case of the

fairness provided by QGF as follows.

Lemma 3.1. When there is no requirement D, the vector of allocation rates
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r̂ is proportionally fair, i.e., if it is feasible, and for any other feasible vector

r, the aggregate of proportional changes is non-positive, i.e.,

∑
k

rm,k − r̂k
r̂k

≤ 0. (3.5)

Proof. when there is no specific QoS requirement D, (3.4) can be simplified

by

min
rm,k

K∏
k=1

qk
rm,k

, (3.6)

since the function of the natural logarithm is concave and monotonic and

defines Ûr = −
∑K

k=1 ln(qk/rm,k), i.e., (3.6) is equivalent to maximizing Ûr.

As shown in [12], for convex utility function Ûr and convex feasible set R,

the following optimality condition holds:

∑
k

∂Ur
∂rm,k

|r̄k(rm,k − r̂k) =
∑
k

rm,k − r̂k
r̂k

≤ 0. (3.7)

Equation (3.7) satisfies the proportional fairness criterion in (3.5). Conse-

quently, proportional fairness is a special case of QGF when there are no

specified QoS restrictions.

To sum up, the cooperative game model for a multi-user system can be

defined as follows: the system has rate vector r as its objective solution,

where all entries of r are bounded and have a nonempty convex feasible set.

The goal is to minimize all dk simultaneously from an initial agreement point

D. Define R as the feasible set of rate allocation vector r that satisfies

qk/rm,k ≤ Dk,∀k. The problem, in the next section, is to find a way of

choosing the QGF operating point in R for all users.

We formulate the resource allocation problem in the following based on

the gradient function of logarithmic equivalence in (3.4) derived from the last
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Section, and solve it with the Lagrange Multiplier method.

3.3.2 Problem Formulation

As we described in section II, the SDMA system can support up to N users

sharing resources at each time slot. Because of this, we form N -user coali-

tions to share the channels each time. Actually, since we aimed to devise an

iterative algorithm for this repeated game, there is still a K-user cooperative

game in the long term. Note that we omit all the constraints for some inter-

mediate expression during the mathematical derivation, but we give them in

detail in the final objective function in (3.10).

Definition 3.4. a non-empty subset of the set of K players is called a coali-

tion.

According to the discussion above, the function in (3.4) needs to be slightly

modified in case of any sm, given as

arg max
ρmk ,rm,k

M∑
m=1

K∏
k=1

(Dk −
qk
rm,k

)
ρmk
, (3.8)

where rm,k represents the instantaneous data rate for user k in scheduling

policy sm. The problem in (3.8) is difficult to solve directly. Actually, the

following expression is equivalent to (3.8) by

arg max
ρmk ,rm,k

M∑
m=1

K∑
k=1

ρmk ln (Dk −
qk
rm,k

), (3.9)

Define Ur =
∑K

k=1 ρ
m
k ln(Dk − qk/rm,k). To find the maximum value of Urrr(t)

defined on variable r(t) = (rm,1(t), . . . , rm,K(t)), we can find the maximum
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value of ∇Ur̄rr(t− 1) · r(t) for the repeated game, such that

arg max
ρmk ,rm,k

M∑
m=1

K∑
k=1

ρmk
∂Ur
∂rm,k

|r̄krm,k (3.10)

subject to

C1:
∑K

k=1 ρ
m
k pm,k ≤ Ptotal,∀m

C2: rm,k ≤ qk/Ts,∀m, k

C3:
∑K

k=1 ρ
m
k = N, ∀m

C4: ρi,k = {0, 1}

where qk is the queue length of user k at this time slot. Ptotal and Ts cor-

respond to the total transmitting power constraint and time slot duration.

Constraints 1-2 define the feasible set of r(t), and Constraints 3-4 define the

feasible set of sm. In each time slot, the iterative algorithm can be viewed

as selecting rate vector r(t) = (rm,1, . . . , rm,K) that has maximum projection

onto the gradient of the function at optimal point r̄(t− 1), where ∇Ur(t− 1)

is a concave gradient function of user s average throughput r̄(t−1) up to time

t−1, which can be updated by using an exponentially weighted low-pass time

window with filtering factor tc, given as

r̄k(t) = (1− 1

tc
)r̄k(t− 1) +

1

tc
rm,k(t), (3.11)

where tc is the exponential moving average weight factor.

3.3.3 Algorithm

The problem in (3.10) is easier to solve with the Lagrange Multiplier. The

KKT condition in [31] is utilized to reformulate the optimal scheduling policy.

We have the following theorem.
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Theorem 3.2. Let scheduling policy s∗m be the optimal user scheduling and

pm,k be the power allocation both for user k. Then, they satisfy the conditions:


s∗m = arg maxsm∈S

∑M
m=1 smrm

pm,k = [∇Ur̄(t−1)
µ − σ2‖wm,k‖2

η ]+
(3.12)

Proof. The following Lagrangian is obtained with the Lagrange multiplier:

L =
M∑
m=1

K∑
k=1

ρmk
∂Ur
∂rm,k

|r̄krm,k−µ(
K∑
k=1

ρmk pm,k−Ptotal)− ξ(
K∑
k=1

ρmk −N) (3.13)

where µ and ξ are non-negative Lagrange multipliers. Differentiate (3.13)

with respect to ρmk and pm,k, by using the KKT optimality conditions,

∂L

∂ρmk
=
∑
sm

∂Ur
∂rm,k

|r̄krm,k − ξ =


< 0 ρmk = 0

= 0 ρmk = 1

(3.14)

∂L

∂pm,k
= ρmk

∂Ur
∂rm,k

|r̄k
∂rm,k
∂pm,k

− µ =


< 0 pm,k = 0

= 0 pm,k > 0

(3.15)

assuming that sub-channel

K∑
k=1

ρm
∗

k

∂Ur
∂rm∗,k

|r̄krm∗,k = ξ >

K∑
k=1

ρmk
∂Ur
∂rm,k

|r̄krm,k,∀m
∗ 6= m. (3.16)

That is, we meet the KKT conditions by scheduling the user that has the

largest
∑K

k=1 ρ
m
k

∂Ur
∂rm,k

|r̄krm,k for each sm. The solution is the global maximum

because the problem is convex.

From (3.15), if scheduling policy sm is selected, then, ρmk = 1, therefore,
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the power allocation to user k∗ is

pm,k = [
∇Ur̄(t− 1)

µ
−
σ2 ‖wm,k‖2

η
]+ (3.17)

Obviously, the optimal resource allocation must simultaneously satisfy the

conditions in (3.12). This can be achieved through a combination of power

allocation, and an update of the gradient function.

3.4 Evaluation

We compared the performance of QGF, PF, and MW strategies with respect

to system throughput, packet loss ratio, and average delay.

3.4.1 Simulation Layout

In our simulation, a single BS with multiple antennas serves multiple users.

We assumed all the users would be fed by Poisson arrival traffic as illustrated

in Figure 3.1. Arrival rate λk with different mean values was used to simulate

different system loads. The packet size was exponentially distributed around

a mean of 128 bytes, and any packets larger than 576 bytes were set to

a maximum of 576 bytes. The users were uniformly distributed within a

cell and moved according to the random walk mobility model. All users in

each time slot had a probability of 1
2 of holding still, otherwise, they moved

randomly at a uniformly chosen speed of up to 2 m/s.

Since the users were also randomly distributed, we modeled the multi-

user MIMO channel including both large-scale and small-scale fading. lk

and θk are defined as the distance from BS to user k and shadow fading,
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Table 3.1: Simulation Parameters

Parameters Values

Cell radius 1000 m

System bandwidth 200kHz

Noise density -174dBm/Hz

Path loss 128.1+37.6log10(d) (d in km)

No. of transmitting antennas (Nt) 4

No. of users 10

Exponential moving average
100

weight factor (tc)

BER 10−4

respectively. Thus, the channel vector for user k is hk =
√
βθk/l

α
khw, where

hw is a classical frequency-flat Rayleigh fading channel vector in which the

entries are independent and identically distributed complex Gaussian random

variables with zero mean and unit variance. β is a constant and α is the path-

loss exponent. Shadow fading was modeled as a normal distribution with a

mean value of 0 and a variance of 8 dB. The correlation distance for shadow

fading was set to 10 m. The other simulation parameters are listed in Table

3.1.

3.4.2 Simulation Results

We evaluated the performance of our proposed QGF strategies with MW and

PF strategies. The utility functions for these strategies are listed as follows.

QGF: U = ∂Ur
∂rm,k

|r̄k = qk
Dk r̄

2
k−qk r̄k

PF: U = 1
r̄k

MW: U = qk

Figure 3.2 shows the variation in the utility function value of the QGF
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Figure 3.2: Utility Value vs. Elapsed Time

strategy as the time elapsed. Different delay requirements present different

utility values. For example, VoIP traffic commonly requires a delay within

100 ms and video streaming requires a delay within 500 ms. Where their

utility values vary as in Fig. 3.2, when the elapsed time is close to the delay

bound, the utility value will become infinite. Users with this traffic will have

a high probability of being scheduled. There are no specific delays for the

best-effort traffic, therefore, utility increases much slowly than that for real-

time traffic. Moreover, the utility function of the QGF strategy for best-effort

traffic, as we discussed in Section 3.3, is equivalent to the PF utility function.

How the throughputs with these three strategies vary with increasing ar-

rival rates are illustrated in Fig. 3.3. Both QGF and MW strategies out-

perform PF in the region of high system load, which is simply because QGF

and MW strategies also adapt their rates to traffic characteristics, while our

proposed QGF only has negligible throughput loss compared to MW. Figs.

3.4 and 3.5 demonstrate the performance of average delay and packet loss

ratio, respectively. The MW strategy in Fig. 3.4 has the best delay since

it tries to minimize the expected delay without other constraints. Our QGF
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Figure 3.3: System Throughput vs. System Load

Figure 3.4: Average Delay vs. System Load

strategy serves some packets that are close to the delay bound so that it costs

some decrease in performance of overall average delays. If we add some mech-

anism to drop the overdue packets, we can find the packet-loss-ratio for these

strategies as shown in Fig. 3.5. Because our QGF strategy can guarantee

QoS if this is feasible, packets have a higher probability of being successfully

transmitted to their destinations than with any other strategies.

The overdue packets are meaningless to the users with real-time traffic.
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Figure 3.5: Packet Loss Ratio vs. System Load

Although MW achieves a little more gain in throughput than QGF, many

packets transmitted by MW are actually useless since they might be overdue.

Therefore, our proposed QGF algorithm achieves a tradeoff between traffic

QoS requirements and time-varying wireless channel capacity in multi-user

MIMO systems, which is much more meaningful to any traffic with QoS

requirements. Furthermore, as QGF incorporates PF characteristics, this

strategy is also suitable for best-effort traffic.

3.5 Summary

In conclusion, we proposed a joint resource allocation algorithm for downlink

SDMA systems in this paper that offers QoS guaranteed fairness, i.e., all real-

time users will be satisfied with their QoS requirements if they are feasible

while providing proportional fairness with respect to both their channel and

queuing conditions without loss of efficiency in throughput. We derived the

QGF strategy from the Nash bargaining solution in a cooperative game model,

in which the well known proportional fairness could also be incorporated into



Cooperative Resource Allocation with QoS Guarantee 37

our framework. We then formulated the SRA problem into a combinatorial

optimization problem based on the QGF concept. We compared our proposed

strategy with PF and MW strategies in simulations, which demonstrated

QGF had superior performance to provide services particularly to real-time

users.
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Chapter 4

Cooperative Resource

Allocation with ICI

Mitigation

4.1 Introduction

Next generation cellular networks currently involve plans to adopt some ag-

gressive radio resource reuse patterns between cells such as smaller cells and

universal frequency reuse that results in severe inter-cell interference to obtain

higher system capacity. Although spatial multiplexing can be used to simulta-

neously transmit data to multiple users and to multiply the total throughput

in single-cell scenarios, its performance sharply decreases when the received

SINR gets low [32]. Therefore, applying a SDMA technique to interference-

limited cellular networks is a huge challenge particularly because of the effi-

ciency loss at edge users. In consequence, researchers in resource allocation

have begun to shift to multi-cell scenarios [33, 34], and cooperative resource

allocation has been identified as a promising way of dynamically mitigating
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inter-cell interference (ICI), which is the main difference from the previous

single-cell scenario.

Many static and dynamic solutions have been proposed for SDMA system

to solve this problem. However, one is immediately confronted with two issues

to implement the idea of cooperation in real systems: delay and overhead.

The mutual communications of channel state information (CSI) of concerned

users between BSs is the main reason for long delays and large overhead.

The simplified cooperation architecture, called coordinated MIMO, which we

propose here, is one in which the BSs only broadcast their resource allocations

and the CSI of their edge users to adjacent BSs. A given BS does not need to

wait for feedback from its adjacent BSs and only broadcasts small amounts of

information, which consequently saves time and reduces the system overhead.

The details on the coordinating framework are explained in Section 4.3.

Under the condition of any pair of adjacent BSs being coordinated, we

use the zero-forcing beamforming (ZFBF) interference suppression (IS) algo-

rithm proposed in our previous study [28] to mitigate the ICI in a multi-cell

MIMO system. This algorithm prevents interference from being generated to

adjacent cells by orthogonalizing these mutually interfered channels and only

allocating power to the sub-channels of local users. The simulations presented

in [28] demonstrated that this resulted in dramatic improvements in perfor-

mance at the cell edge. However, its system overhead needs to be reduced

since each BS needs to share the CSI of all their users with its adjacent BSs.

In this paper, we only discuss the ZFBF-IS algorithm for edge users, which

reduced the system overhead. We integrated it into a joint resource allocation

framework, which included pre-coding, power allocation, and user scheduling.

Since we have only focused on the mitigation of interference through re-

source allocation in this chapter, we have simply taken the proportional fair-
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ness into consideration, which has been largely ignored in resource allocation

studies on SDMA systems. The majority of the previous researches focused

on maximizing the throughput of the system [6, 18, 27]. Only a few stud-

ies have referred to fairness. The opportunistic beamforming algorithm with

proportional fairness (PF) was proposed in [35]. PF maximizes the sum of

the logarithmic function of users’ throughput and involves a tradeoff between

system throughput maximization and fairness. In this paper, we formulate

resource allocation as an optimization problem that can achieve proportional

fairness in the long term. This is an NP-hard non-linear combination opti-

mization problem that cannot be easily solved. We further divided it into

many sub-problems, which are convex and can be solved by using the La-

grange multiplier approach. However, it still needs to exhaustively search for

all the sub-problems and this still creates enormous complexity with com-

putation. To make it more practical, we further propose a low-complexity

(LC) algorithm. We decouple the user scheduling and power allocation prob-

lems through pre-calculating equal power allocation utility to determine user

scheduling first. The LC algorithm avoids having to do an exhaustive search

of power allocation on all possible users, and therefore, greatly reduces the

computation time.

4.2 System Model

Consider the multi-cell cooperative downlink architecture of SDMA/TDMA

cellular network illustrated in Figure 4.1, which is described in what follows.

For each cell, the BS with N antennas simultaneously transmits data to N

best users chosen from a total number of K users per time slot. Here, ”best”

means it maximizes the aggregated value of the utility function of these N
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Figure 4.1: Multi-Cell System Model

users, which we define as fulfilling a certain resource allocation criterion. We

also assume that the users only have one receiving antenna just like the ma-

jority of handheld terminals in the real world. We denote the instantaneous

scheduled users as set Si and the total users as set K. Let k ∈ K = {1, . . . ,K}

represent the index of users. Obviously, set Si ⊆ K is an N -element-

combinations of the given set K with subscript i ∈ {1, · · · , I}(I = CNK )

denoting the index of all possible Si sets. The BS separates multi-user data

streams into N independent spatial sub-channels by using the ZFBF multi-

plexing approach thereby fully exploiting multi-user diversity, and this asymp-

totically closes in on the optimal sum capacity as the number of users reaches

infinity [27].

Let us take into consideration a cell of interest surrounded by M adjacent

cells for analysis from the perspective of the network. The users within it

are therefore affected by any interference from the adjacent cells, and the

interference coming from the cells that are farther away are treated as white

noise. We classify all the users within a cell into two sets to simplify the fol-

lowing analysis: center users set C and edge users set E. User k ∈ C receives

little interference. Due to its short access distance, its BS is only required to

allocate a small amount of power, which also results in this signal interfering

very little with the other cells. Therefore, we will also take the interference

to be white noise for any user in C and do not take into consideration this
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interference on users in adjacent cells. The situation is completely opposite

for user k ∈ E. The BS needs greater transmission power due to the long

access distance, which also causes strong interference on the edge users of

adjacent cells and the user itself also easily receives interference due to the

transmission of adjacent cells. The resulting inference issue, which will only

be evaluated for users in E, is described in Section 4.2.2.

4.2.1 Signal Model

Let us consider a flat-fading MIMO channel, which means the channel status

will not change within the period of one time slot. We first analyze the simple

situation of a k ∈ C user, since we can omit weak interference. According

to [28], the ZFBF multiplexing pre-coding weight for user k depends on all

the other channels of the users in this Si. This implies that the independent

sub-channel for user k is determined together with other N − 1 users who are

scheduled simultaneously if we let S−kj denote the sub-set of users who are

scheduled together with user k, and with subscript j ∈ {1, · · · , J}(J = CN−1
K−1)

denoting the index of all possible combinations of users of S−kj . From another

point of view, j also represents the index of all possible independent sub-

channels for user k. Therefore, the signal received by user k can be expressed

by

yk,j = hk
wk,j

‖wk,j‖
√
pk,jxk + nk (4.1)

The notations here are listed as:

hk is the 1×N complex downlink channel gain vector of user k.

wm,k is the column-normalized ZF beamforming weight for user k under

policy Si.

pm,k is the transmitting power for user k under policy Si.
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xk is the traffic bit flow for user k with E[xkx
H
k ] = 1.

nk is the additive white Gaussian noise with E[nkn
H
k ] = σ2.

‖·‖ is the Euclidean norm.

E[·] is the expected value of the random variable.

Since users are randomly distributed, we will model the multi-user MIMO

channel including both large-scale and small-scale fading. Thus, the channel

vector is given by

h =
√
β/dαhw,

where hw is a classical frequency-flat Rayleigh fading channel in which the

entries are independent and identically distributed complex Gaussian random

variables with zero mean and unit variance. The β is a constant that embodies

the antenna and near-field propagation characteristics, and β is the path-loss

exponent.

Vector wk,j is the first column of pre-coding weight matrix Wk,j , which

is the pseudo-inverse matrix of Hk,j given by

Wk,j = H∗k,j(Hk,jH
∗
k,j)
−1,

where Hk,j = [hTk ,H
T
j ]T is the channel matrix of all scheduled users k∪S−kj .

The superscripts T and * correspond to transpose and conjugate transpose

matrix operations, respectively. Therefore, the achievable throughput of user

k ∈ C is given as that in [28] by

ck,j = log2

(
1 +

pk,j

‖wk,j‖2 , σ2

)
(4.2)

where pk,j is the allocated transmitting power on user k under the condition

that it is scheduled with users in set S−kj .
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4.2.2 Interference Model

We investigate the ICI problem in this section. Each user in traditional

system operations is registered at and communicates with a single BS, which

is called the serving BS. However, a user in many modern wireless systems

may communicate with more than one BS at the cell edge since it may receive

multiple signals of comparable power. In addition to the serving BS, other

BSs within the transmission range of the user are called neighboring BSs and

are denoted by Dk. The transmission range of a user is usually a little more

than the radius if a cell but less than its diameter. This implies that not all

adjacent cells except Dk are considered to cause interference to a particular

edge user. For example, the new wireless system of IEEE 802.16e, which has

been implemented, defines a diversity set for users to keep track of the serving

BS and neighboring BSs that are within the transmission range of a given

user. In a classic hexagonal cellular layout, the diversity set may contain

one serving BS and 0-2 neighboring BSs. Some advanced techniques (e.g.,

soft handover and fast cell selection) standardized in 3GPP 3/3.5G systems,

incorporate similar operations. Edge user k will feedback its CSIs including

both channels to serving BSs and channels to neighboring BSs. A serving BS

will share the CSIs with neighboring BSs using back-haul connections when

user k is scheduled. This reduces a large amount of the cooperation overhead,

while conventional cooperative networks share all CSIs of users.

As the traditional ZFBF multiplexing technique only orthogonalizes the

channels of the local scheduled users, the edge users of the adjacent cells,

which are spatially correlated, will interfere with each other. For clarity

and without any loss of generality, we index a cell of interest as 0, then we

let m ∈ {1, · · · ,M} denote the index of the adjacent cells and all the cell

indexes are superscripted in the given notations when necessary. Regarding
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Figure 4.2: ICI Model

our above description and assumption, at each time slot, a user k in cell 0

will interfered by cell m when k ∈ E0 ∩ S0
i ,m ∈ Dk and Em ∩ S′mi 6= ∅.

An ICI model of two spatial correlated users that we used in our analysis is

illustrated in Fig. 4.2. The solid lines with arrows are the desired signals and

the dashed lines represent the interference. To quantify the ICI, we define a

correlation coefficient δ to measure this kind of interference. For the user k,

the correlation coefficient with a user k′ ∈ Em ∩ Smi′ is expressed as

δmk =

∣∣h0
k(h

m
k′)

H
∣∣∥∥h0

k

∥∥∥∥hmk′∥∥ (4.3)

thus, the received interference power from cell m to user k is given by

pmk = δmk ‖hmk ‖
2 pmk′ (4.4)

where Pmk′ is the transmitting power intended for user k′ in cell m. The

received signal of user k being scheduled is given as

y0
k,j = h0

k

w0
k,j∥∥∥w0
k,j

∥∥∥
√
p0
k,jx

0
k +

∑
Dk

∑
Em∩Sm

i′

√
pmk x

m
k′ + nk (4.5)
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therefore, the achievable throughput of the user k ∈ E0 is given as

c0
k,j = log2

1 +
p0
k,j∥∥∥w0

k,j

∥∥∥2
(σ2 +

∑
Dk

∑
Em∩Sm

i′
pmk )

 (4.6)

4.3 Resource Allocation with ICI Mitigation

We propose a joint resource allocation with inter-cell cooperation, incorpo-

rating not only the proportional fairness tradeoff but also the inter-cell IS

algorithm. In general, there are two steps in the proposed joint resource allo-

cation framework for multi-cell MIMO systems: 1) joint resource allocation

with user scheduling, ZFBF pre-coding, and power allocation, followed by

a broadcast of the scheduled edge users’ information to adjacent cells. 2)

A comparison of the utility function values of local edge users with those

of the adjacent cells, and a decision being made as to whether to suppress

interference or not.

4.3.1 First Step: Single-cell Resource Allocation

Similar to that of a single-cell resource allocation, in the first step, each

BS schedules the users, calculates the pre-coding matrix, and allocates the

transmitting power based solely on the local information. Let us define ρk,j =

{0, 1} as the users set S−kj selection indicator. ρk,j = 1 represents if and

only if user k is scheduled together with the users S−kj . ck,j represents the

instantaneous throughput of user k. Thus, user k’s achievable throughput at

time slot t is
∑J

j=1 ρk,j(t)ck,j(t). To achieve a proportional fairness among

the users over the long term, we further define the user’s utility function at
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the tth time slot as

Uk,j(t) =
1

R̄k(t)

J∑
j=1

ρk,j(t)ck,j(t) (4.7)

where R̄k(t) is the average throughput for user k by the tth time slot, which

can be updated each time slot by using

R̄k(t+ 1) = (1− 1

tc
)R̄k(t) +

1

tc

J∑
j=1

ρk,j(t)ck,j(t) (4.8)

where tc is the exponential moving average window factor. We omit the

notation of time slot t in the following analysis of instantaneous resource

allocation problem, and therefore the joint resource allocation problem can

be mathematically formulated as follows:

max
ρk,j ,pk,j

K∑
k=1

1

R̄k

J∑
j=1

ρk,jck,j (4.9)

subject to

C1:
∑K

k=1

∑J
j=1 ρk,jpk,j ≤ Ptotal

C2: pk,j ≥ 0, ∀j

C3: ρk,j = {0, 1}, ∀k, j

C4:
∑K

k=1

∑J
j=1 ρk,j = N

C5: if ρk,j = 1and{k} ∪ S−kj = k′ ∪ S−k′j′ ,thenρk′,j′ = 1, ∀k 6= k′

where constraint C1 denotes that there is a total transmitting power con-

straint in each cell. C2 denotes the non-negative transmit power. C3 denotes

that ρk,j is a binary variable. C4 and C5 denotes that there is only on possible

selection of user scheduling per time slot. The solution value of ρk,j and pk,j
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are the optimal user scheduling and power allocation, respectively. However,

problem in (4.9) involves both binary variables ρk,j and continuous variables

pk,j , also with non-linear constraints. Such a non-linear combinational prob-

lem is generally very difficult to solve.

According to constraint C5 above, we noticed that if k and j are both

determined, the set Si = {k} ∪ S−kj is determined and this means that wk,j

is also determined. From (4.2)and (4.6), we know that ck,j is a monotonic

function of pk,j . Provided a given set of scheduled users Si, let n ∈ 1, · · · , N

denote the index of the users in Si, we can replace the indicator ρk,j with

i and the power allocation issue is constrained within a set Si, the user n’s

utility function simplified from (4.9) as

Un,i(t) =
cn,i(t)

R̄n,i(t)
(4.10)

Then, a sub-problem is

max
pn,i

N∑
n=1

cn,i
R̄n,i

(4.11)

subject to

C1:
∑N

n=1 pn,i ≤ Ptotal

C2: pn,i ≥ 0, ∀n

where constraint C1 denotes that there is a total transmitting power con-

straint in a given Si. C2 denotes the non-negative transmit power for users.

We can see that the sub-problem is a simple convex optimization problem

(the solution is known as water-filling power allocation) and can be easily

solved using the Lagrange multiplier approach, we obtain

pn,i =
(
γ − ‖wn,i‖2 σ2

)+
(4.12)
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where (x)+ = max (x, 0) and constant γ are obtained by bisection search of

the following expression:

N∑
n=1

1

R̄n,i
log2

(
1 +

(γ − ‖wn,i‖2 σ2) + 1/ ‖wn,i‖2

σ2

)
= Ptotal (4.13)

The algorithm finally exhaustively search all I optimal power allocation

results, and select the optimal Si with the highest
∑N

n=1 Un,i .

As soon as the BS gets the optimal allocation results, it broadcast only

the information of the edge users, including the allocated power, the value of

the utility function of these users, and their CSI. When the BS receive the

broadcast from the adjacent cells, it carry out the IS algorithm, which we

describe in the next section.

4.3.2 Second Step: Interference Suppression

After the BS finishes step one, it evaluates the allocation results of the edge

users, and if it finds that L adjacent cells’ edge users are being scheduled

with a higher utility value, it will delete L scheduled edge users of this cell,

and redo the pre-coding by taking the L interfering users into account. Note

that we define L as an integer number no more than the number of scheduled

edge users in this cell. In other words, it will schedule N − L local users,

and only allocate the transmitting power to these users. Take a user n for

example, in case that the transmission to usern ∈ E0∩S0
i causes interference

to usern∗ ∈ Em ∩ Smi∗ and Un,i < Umn∗,i∗ , the BS will delete the user n from

the set scheduled users, and redo the pre-coding to orthogonalize the users’

channels including the user n∗. Then, the BS allocate the transmitting power

only to its local users, and it ensures that there is no interference to user n∗.

The joint resource allocation with proportional fairness is briefly summa-
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rized as follows.

Algorithm 4.1 Optimal joint resource allocation
1: Step One:
2: initialize temporary scheduling information.
3: for each cell
4: Si = ∅; update sets E,C.
5: for each user set Si ∈ K, i = {1, · · · , I}
6: Calculate pn,i, n = {1, · · · , N} which maximizes the value of

∑
Un,i by

7: using Eqs. (4.2), (4.6), (4.10) - (4.13).
8: end
9: Obtain the Si with highest value of

∑
Un,i.

10: Broadcast to adjacent cells the pn,i, Un,iand CSI of the users exist in Si∩E.
11: end
12:

13: Step Two:
14: for each cell
15: Compare the local Un,i of the users in Si ∩E with the received ones from
16: adjacent cells.
17: if not the highestUn,i (e.g.Un,i < Um

n∗,i∗)

18: Delete user n (Si = Si − {n}).
19: Perform pre-coding by adding the channel of user n∗.
20: Recalculate pn,i which maximizes the value of

∑
Un,i under the

21: condition pn′ = 0 by using Eqs. (4.2), (4.6), (4.10) - (4.13).
22: end
23: end
24: Scheduling the users in Si.
25: Power allocation according to pn,i.

26: Update R̄n,i.

Although the sub-problem is easier to solve, we still need to carry out an

extensive search of all the user sets, and solve the sub-problems for every given

Si to find a global optimal solution. For a cell of K-users N -transmit antenna

L-interfered users, the complexity is approximately O(KN +LNK) [35]. For

these reasons, we propose a suboptimal LC algorithm in the following section.

4.3.3 Low-Complexity Suboptimal Solution

Due to the prohibitive computational burden at the BS to reach the opti-

mal solution in (4.9) and for fast changing wireless channels, it’s necessary

to implement a low-complexity sub-optimal algorithm for cost-effective and
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delay-sensitive wireless systems. We noticed that most of the computational

time is consumed at I times calculations of power allocation for every possi-

ble set of scheduled users. Therefore, an efficient way is to decouple the user

scheduling from power allocation. Based on this idea, we define a new utility

function of the users assuming an equal power allocation to approximately

search for the optimal user set Si, which is given by

Un,i =
1

R̄n,i

N∑
n=1

log2

(
1 +

Ptotal/N

‖wn,i‖2 σ2

)
(4.14)

BS calculates all the Un,i to find the highest one which is a sub-optimal Si,

and then we need to allocate the transmitting power only once. In the second

phase, we also reduce the reallocation processing time by deleting the users

with lower utility values and skip the pre-coding if they have a higher spatial

correlation coefficient. Therefore, we define a spatial correlation threshold

δT to adjust the computation level. When a system has a heavy load, we

can increase the threshold and only when the spatial correlation is more

than δT , the ICI suppression algorithm will be used. In the worst case, the

most computational consuming situation for an LC algorithm is the spatial

correlation threshold set to 0, and the complexity is O(NK + LK). A brief

summary of the low-complexity algorithm is as follows.
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Algorithm 4.2 Low-complexity resource allocation
1: Step One:
2: initialize temporary scheduling information.
3: for each cell
4: Si = ∅; update sets E,C.
5: for each user set Si ∈ K, i = {1, · · · , I}
6: Calculate

∑
Un,i by using Eq. (4.14).

7: end
8: Obtain the Si with highest value of

∑
Un,i.

9: In a given Si, calculate pn,i, n = {1, · · · , N} which maximizes the value
10: of

∑
Un,i.

11: Broadcast to adjacent cells the pn,i, Un,iand CSI of the users exist in Si∩E.
12: end
13:

14: Step Two:
15: for each cell
16: Compare the local Un,i of the users in Si ∩E with the received ones from
17: adjacent cells.
18: if Un,i < Um

n∗,i∗ and δmn,i > δT
19: Delete user n (Si = Si − {n})
20: Recalculate pn,i which maximizes the value of

∑
Un,i under the condition

21: pn′ = 0 by using Eqs. (4.2), (4.6), (4.10) - (4.13).
22: end
23: end
24: Scheduling the users in Si.
25: Power allocation according to pn,i.

26: Update R̄n,i.

4.4 Simulation Results

4.4.1 Simulation Setup

Table 4.1: Simulation Parameters

Parameters Values

Cell radius 1000 m

System bandwidth 1 MHz

Noise density -174 dBm/Hz

Path loss 128.1+37.6log10(d)

tc 100
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Figure 4.3: Example of Simulation Layout

In this section, we evaluated the performance of the proposed algorithms

through simulations. An example of the simulation layout is shown in Fig.

4.3. We considered a wrap-around 7-cell hexagonal cellular MIMO system

with K single antenna users (dots in Fig. 4.3) uniformly distributed within

each cell. The center cell is the cell of interest and the 6 surrounding cells

are the adjacent cells according to our previous definitions in Section 4.2. For

simplicity reasons, we classified each user into either set E or C according

to their distance from the serving BS in our simulation. The MIMO channel

is assumed to be a flat-fading channel including large-scale path loss but

without shadowing. There are always packets in the buffers of BSs waiting

to be transmitted. Some of the simulation parameters are listed in Table

4.1. We compared three algorithms in our simulation. ’Optimal w/ IS’ is the

extensive search algorithm in (4.9) with ICI suppression, while ’Optimal w/o
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Figure 4.4: Throughput vs. No. of Users. (Ptotal = 43dBm,N = 4, δT = 0)

IS’ means there is no coordination between the BSs, every cell just performs

the water-filling power allocation based on the local information. ’LC’ is the

proposed low-complexity algorithm in Section 4.3.3, and ’Random’ means

randomly selecting users to transmit.

4.4.2 Throughput Evaluation

Figure 4.4 illustrates the comparison of the average cell throughput among

the three algorithms with and without IS for an increasing number of users.

We ran the simulation 10000 times, each time the users were uniformly dis-

tributed in the cell. The solid line without marks on it is the single cell

throughput based on the optimal user selection and water-filling power allo-

cation. We can see that both the ’Optimal’ and ’C’ algorithms are close to the

single cell upper bound and we found that our LC algorithm had a negligible

throughput loss compared to that of the ’Optimal’ algorithm. However, as

the number of user increases, the interference increases, and the performance
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Figure 4.5: Throughput vs. No. of Transmit Antennas.
(Ptotal = 43dBm,K = 20, δT = 0)

loss is larger for the algorithms without IS. Note that when there are more

users than transmit antennas, both the ’Optimal’ and ’LC’ algorithms can

gain further at the system throughput due to the exploitation of the multi-

user diversity. Whereas the performance of the ’Random’ algorithm remains

at the throughput at which the number of users equals the transmit anten-

nas. This is because it only utilizes the space diversity, which is limited to

the number of transmitting antennas.

The variation in system throughput based on the number of transmit

antennas is illustrated in Fig. 4.5. In a multiplexing MIMO system, the

throughput increases approximately proportional to the minimum number of

transmit or receive antennas. As the total number of transmit antennas in-

creases, the throughput based on the ’Optimal’ and ’LC’ algorithms increases

faster than that based on the ’Random’ algorithm. We also investigated the

performance of the three algorithms on the edge users, which is illustrated in

Fig. 4.6. The edge throughput of the three algorithms are compared as the to-
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Figure 4.6: Edge throughput vs. Total Power Constraint.
(K = 10, N = 4, δT = 0)

tal transmit power constraint increases. We found that there is a comparable

edge throughput of the ’Optimal’ and ’LC’ algorithms. All three algorithms

gain very little on the edge throughput as the total power constraint increases.

This is easy to understand in an interference-limited network. Also, the ’Op-

timal’ and ’LC’ algorithms outperformed the ’Random’ algorithm.

4.4.3 Effect of Spatial Correlation Coefficient Threshold

We use the same simulation configuration to evaluate the effect of the spatial

correlation coefficient threshold on the system throughput. The spatial cor-

relation coefficient varied between 0 and 1. The spatial correlation threshold

in our algorithm can dynamically control the computational complexity. The

appropriate spatial correlation threshold can be set as a fix number or dy-

namically adjusted by an algorithm according to the real system processing

ability and interference level. But here, we want to know how the throughput

varies. When the spatial correlation coefficient is less than this threshold, we
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Figure 4.7: Throughput vs. Spatial Correlation Coefficient Threshold.
(Ptotal = 43dBm,K = 10, N = 4)

assume the two users are comparatively orthogonal. This means that they

will not interfere with each other too much. If the spatial correlation coeffi-

cient is more than the threshold, we have to perform interference suppression

to decrease the interference between them. The system throughput varies

with the spatial correlation coefficient threshold, as illustrated in Fig. 4.7.

As the threshold δT increases, only the highly correlated users perform the

interference suppression, which results in a decreased throughput for the al-

gorithms with IS. When δT = 0, each scheduled user at the cell edge will

be suppressed the ICI by the BSs. Whereas, when δT = 1, there is no IS

operations. Therefore, the curves of the algorithm with IS and those without

IS converge at this point.

4.4.4 Fairness Evaluation

We plotted the fairness index of the three algorithms with and without IS. To

evaluate the fairness, we assumed that all the users’ locations were fixed and
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Figure 4.8: Fairness vs. No. of users (Ptotal = 43dBm,N = 4, δT = 0)

ran the simulation for a 10000-time slot. As the number of users increased,

we witnessed the index variation as shown in Fig. 4.8. The fairness index is

based on the Jain’s fairness index [36], which is defined as

Fairness Index =
(
∑
R̄mk )2

K
∑

(R̄mk )2

where R̄n,i denotes the average throughput of the kth user in cell m. Although

the ’Random’ algorithm exhibited a poor throughput, it achieved the highest

fairness index. Since it treats every user equally and randomly selects them,

it exhibits a good fairness. However, to our surprise, our ’LC’ outperformed

the ’Optimal’ algorithm because it selects users according to the utility with

equal power allocation. We can see that all the fairness indices go down as

the number of users increases. The main reason for this is due to the heavier

amount of inference between the cells and the users have less opportunity to

be scheduled by the BS. The algorithms without IS deceased more rapidly

than those with IS. The algorithms with IS are always better than those
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without IS in terms of fairness. This is because the IS most benefits the edge

users, which usually have only a low throughput and have less chance to be

scheduled compared to the centre users. Since the algorithms with IS can

have a higher throughput for the cell edge users, it gives more fairness to the

edge users.

4.5 Summary

We investigated a multi-cell coordinated MIMO system resource allocation in-

corporating proportional fairness and IS. We formulated the optimal resource

allocation problem in a multi-cell MIMO system coordinated to suppress the

ICI. Our aim was to achieve a high throughput and proportional fairness.

Although we divided the original problem into easily solvable sub-problems,

the computational complexity was still high. Therefore, we proposed a low-

complexity algorithm to achieve a better fairness and less computational com-

plexity with only a slight loss in throughput. We also obtained a tradeoff

between the throughput and fairness by achieving proportional fairness. The

simulation results showed that our algorithm improves the system through-

put, particularly for cell edge users in a multi-cell environment and achieves

proportional fairness for all users.



Chapter 5

Energy-Efficient Resource

Allocation with Distributed

Antennas

5.1 Introduction

Global warming has become one of the world’s most serious environmental

problems and there has raised concerns about greenhouse-gas emissions fueled

by industrial progress that continues to consume huge amount of natural

resources. High-energy consumption is not the only cause of the energy crisis,

but it has also deteriorated the environment in which we live. Because of this,

people are eagerly seeking methods of conserving energy in every walk of life

for the sake of our future. Meanwhile, the unprecedented expansion of mobile

networks has resulted in a tremendous increase in energy consumption and

become a non-negligible contributor to global warming [37]. In addition, the

electrical power consumed by the infrastructure of mobile networks already

accounts for up to 50 percents of their operators’ total operational costs [38].
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In such cases, energy-efficient wireless transmissions that achieve both high

spectral and energy efficiencies are the main objectives for the next generation

mobile networks and these have triggered activities in standardization and

regulatory bodies such as 3GPP and ITU, as well as research projects such

as the European Commission’s research project EARTH [39].

Generally speaking, there are many aspects in the mobile systems that

can be investigated to conserve energy, and some of them are even beyond

the scope of communication research area such as those on semiconductors

and cooling technologies. However, as the consumed energy for the wireless

transmission has been regarded as one of major sources of total energy con-

sumption [38], in this study, we concentrated on energy-efficient techniques

for wireless transmission, i.e., how to transmit the wireless signals and con-

figure the systems that achieves high energy efficiency and fulfills specified

capacity with limited output power. Early researches [40–45] were on energy

efficiency issues for mobile nodes or sensors, which mainly focused on how to

save total energy or prolong the network life time. Because these devices are

powered by supplies of limited energy such as batteries. A recent survey on

energy-efficient mobile networks [38] has presented a holistic approach and

has clearly summarized the potentials for saving energy from the link to net-

work levels as well as different components of mobile networks. The study

in [46] has investigated energy efficiency based on MIMO techniques both in

slow-fading and fast-fading channels, and [47] has focused on the impact on

coverage and capacity when we limit transmitting power. However, afore-

mentioned studies on the energy conservation methods for base stations (BS)

in mobile networks are preliminary surveys or theoretical performance analy-

sis on the effects of conserving transmitting power. Majority of these studies

have involved in the energy management of the mobile networks. As far as we
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know, there are few work particularly on energy-efficient transmission that

dedicated to the development of practical algorithms or solutions for mobile

networks.

The approaches toward enhancing energy efficiency, roughly, can be ex-

plained as follows. Based on the fundamental information theory on MIMO

channels [17], we can easily derive a basic expression for energy efficiency,

which is defined as the number of bits transmitted per output Watt. Accord-

ingly, considering the case that the channel state is known at the transmitter,

the energy efficiency, denoted by η, can be given as

η =
B

P

N∑
i=1

log2

(
1 +

pig
2
i

σ2

)
, (5.1)

where B is the signal bandwidth, and N is the number of transmitting an-

tennas. g2
i , pi and σ2 correspond to the channel gain, effective power for

transmission and interference-plus-noise power in the ith spatial channel, re-

spectively. P is the sum of all the pi and overhead power, which will be

explained in section 5.3.1. It is worth noting that, the BS facilitated by

some kind of feedback mechanisms can adaptively allocate wireless resources

to users with different channel gains, this benefits achieving optimal energy

efficiency through optimization. According to (5.1), we basically have three

technical approaches to improve the energy efficiency while without being loss

in capacity and consuming extra spectrum:

• Improve the channel gain g2
i such as reducing the access distance and

number of obstacles between transmitter and receiver.

• Reduce the interference to decrease σ2, specifically, reducing the co-

channel interference in mobile networks.

• Increase the number of antennas N to achieve power gain promised by
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MIMO techniques.

Because of the dramatic decrease in signal power during its propagation,

large amount of energy that are emitted by BS antennas is wasted during

the wireless transmission. The longer distance signals are traveled, the more

energy is lost. Although large amount of work have been done on mitigating

or utilizing negative effect of the small-scale fading, the major part of power

loss, i.e. large-scale fading including path loss and shadowing, has not at-

tracted much attention. The main reason for this is that large-scale fading

depends on the distance and obstacles between the BS and users, which is dif-

ficult to overcome unless we fundamentally change the layout of the cell. The

distributed antenna systems (DAS) is such kind of architecture to reduce the

access distance and provide macro-diversity and recently shows great poten-

tial for increasing the system capacity in mobile networks [28,48–55]. Earlier

studies on DAS focused on the theoretic capacity comparison with conven-

tional centralized antenna systems in a single-cell scenario [48–50], where the

interference from outside are taken as Gaussian noise. Two studies [51], [52]

considered a multi-cell scenario, in which the authors paid much attention

on the inter-cell interference. However, all these studies, both signal cell and

multi-cell, only analyzed either a broadcast transmission where all antennas

transmit the same signal or a single-antenna selection transmission where only

the nearest antenna transmit the signal to avoid excessive interference. As

the study in [56] pointed out, the co-channel interference plays an important

role in system performance. Recent studies [28,53–55,57] have identified that

DAS can be generalized as a distributed MIMO system and focused on the

MIMO capacity, which seems natural, therefore, to apply MIMO technologies

such as beamforming to DAS in order to mitigate interference and enhance

the performance.
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Based on the above analysis of prior work, in our study, we focused

on the energy efficient algorithms with the promising DAS configuration.

More specifically, we investigated the resource allocation problems that aim

at achieving high energy efficiency with satisfied capacity and identified the

effect on them with different system configuration. Thus, there are mainly

three contributions in our study.

• proposed a beamforming based resource allocation (BF) to optimize

energy efficiency by jointly allocate power and control interference.

• further proposed an antenna-selection (AS) algorithm, which combined

the advantage of high energy efficiency in BF algorithm and low com-

plexity in single-antenna selection case.

• identified the influences on energy efficiency with different configuration

of DAS.

The remainder of this paper is organized as follows. We present in Sec-

tion 5.2, the assumptions and system model of DAS that considered in this

study as well as the model for resource allocation. Section 5.3 is devoted to

the resource allocation algorithm based on BF, and our demonstration of AS

algorithm is described in Section 5.4. Section 5.5 compares energy efficien-

cies between conventional centralized antennas and different configurations of

DAS as well as performance evaluation between BF and AS algorithms with

extensive simulations. Section 5.6 concludes the whole work.

5.2 System Model

In order to clearly describe the following models, we begin with some defini-

tions of notations. Matrices are denoted by bold capital letters and vectors
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Figure 5.1: Distributed Antennas Architecture

by bold lower-case letters. |x| means the absolute value of scalar number

x, and ‖x‖ means the Euclidean norm of vector x. Notations HH and H†

correspond to the conjugate transpose and pseudo inverse of matrix H. The

set of complex numbers is denoted by C.

5.2.1 System Architecture

We consider the downlink of DAS where a BS serves K-mobile users, which is

outlined in Figure 5.1. In DAS, randomly distributed antenna units (DAUs)

are equipped with only a simple RF transceiver module. There are M DAUs

evenly deployed within the cell and all of them are connected to the BS

central processing unit where all the signal processing is done, via optical

fiber or other high-bandwidth wired connections that can be assumed to be

an ideal back-haul. As each DAU is equipped with L antennas, we denote

these kinds of system configurations as (M,L) distributed antenna networks

with total N = ML transmitting antennas, which is similar to the notation

in [48]. Note that (1, N) means conventional centralized MIMO systems that

are equipped with N antennas at a center location.

Our scenario is assumed to be a single cell where all outside interference

is taken as Gaussian noise, and we only deal with the interference between

DAUs. Without loss of generality, we only considered simple TDMA tech-

nique as the multiple access method. However, the system still allows time
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Figure 5.2: Resource Allocation Diagram

sharing by multiple users with beamforming. Our algorithms can also be

applied to a more complicated scenario to incorporate the frequency domain.

For example, a combination known as MIMO-OFDM that incorporates all

three dimensions of wireless resources has already been extensively studied.

In each time slot for allocating resources, we assumed a block fading channel

in which the channel gains could be taken as a constant during the time in-

terval and ideally feedback to the BS. The user devices were assumed to be

only equipped with one antenna, which is very common in practical networks,

particularly for mobile devices.

Regarding the traffic pattern, we assume an infinite backlog where there

are always sufficient data waiting to be transmitted to users. Here, we do not

consider the unbalanced traffic that may result in inefficient energy use. In

fact, we may consider to adaptively adjust the number of active antennas for

transmission to tackle with this problem, which is beyond the scope of this

study.

5.2.2 Resource Allocation Model

Our goal was to develop a resource allocation algorithm that can use the

energy more efficiently in the downlink transmission of DAS without loss in
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throughput by optimal power allocating, precoding, and scheduling. Figure

5.2 shows the diagram for basic operation in resource allocation for mobile

networks with multiple antennas. The BS first schedules N users chosen

from total K-users, it then allocates the power to their information bits,

and precodes them onto N antennas, where the signals are transformed into

RF and emitted. Let p = {p1, . . . , pK} denote the power allocation vector,

W = {w1, . . . ,wK} denote the precoding matrix, and k ∈ K = {1, . . . ,K}

denote the index of all users. Scheduling vector ρ represents users who are

being scheduled, and its entry ρk = 1 indicates the kth user is being scheduled

by the BS, otherwise, ρk = 0. Unless noted, all variables representing the

allocation of wireless resources, such as p, W , ρ, are time-varying. We omit

subscript t for them to represent the time slot in the following analysis, since

we mostly discuss the problem for instantaneous resource allocation within

one time slot of interest. Therefore, the received signal by user k is given by

yk = hkwkρk
√
pkxk︸ ︷︷ ︸

desired signal

+
K∑

j=1,j 6=k
hjwjρj

√
pjxj︸ ︷︷ ︸

interference

+n, (5.2)

where vectors hk ∈ C1×N ,wk ∈ CN×1 are channel gains and corresponding

precoding weights, xk is the original information bit for user k. The pk

is the allocated effective power on the signal intended for user k and n is

the Gaussian noise with variance E[nnH ] = σ2
N . The second term is the

interference from the other scheduled users at the same time slot t. Therefore,

the signal-to-interference-plus-noise ratio (SINR) for user k is given by

SINRk(p,ρ,W ) =
ρk · pk |hkwk|2∑K

j=1,j 6=k ρj · pj |hjwj |2 + σ2
N

. (5.3)

Assuming adaptive modulation and coding scheme is adopted, users have
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the ability to match the rate they can achieve according to their channel

conditions. As discussed in [26], rate rk of user k that can be approximated

as a function of bit error ratio (BER) and SINR by

rk(p,ρ,W ) ≈ log2(1 + δ · SINRk), (5.4)

where δ = −1.5/ ln (5 ·BERk) is a parameter to bridge the gap between

Shannon capacity and the practical modulation and coding scheme.

5.3 Beamforming based Energy-Efficient Resource

Allocation

5.3.1 Energy Efficiency Metrics

To evaluate the energy efficiency of resource allocation algorithms for prac-

tical systems, we first need a reasonable metric to appropriately reflect the

key parameters in the problem. Some studies [46, 47] have proposed their

own metrics for mobile networks scenario. Since energy consumption in the

infrastructure is a systematic problem that depends on many factors and has

only recently been investigated, there are not any widely accepted metrics for

energy efficiency in this field yet. Because of this, we used a metric model

similar to that in [47], which only captured the key components that affect

the energy efficiency during the transmission. In real scenario, the reference

signals and common control signaling in downlink transmissions of mobile

networks account for nearly a constant part of the actual transmitting power.

Therefore, we defined α denoting the overhead percentage of the maximum

output power by BS, and the metric for transmission power efficiency of user
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k can be expressed by

ηk =
rk

αPmax/N + pk
, 0 ≤

∑
k∈K

pk ≤ (1− α)Pmax (5.5)

where Pmax is the maximum total output power of the BS. Maximizing (5.5)

leads to an optimal energy efficiency for user k.

5.3.2 Beamforming Transmission

Beamforming can obtain multiple spatial channels by precoding user singals

into multiple beams. When using beamforming precoding, we can control

the power concentration to particular users or interference power leaked to

other users. linear precoding technique can directly calculates the precoding

weight with the channel matrix, or derive it from a linear combination of two

extreme beamforming weights, which is described in what follows.

One strategy is maximum ratio (MR) transmission. If the base station

has knowledge of channel hk of user k, then it is possible to use the technique

to maximize desired signal power. MR weight vector wMR for user k is given

by

wMR
k = hHk / ‖hk‖ . (5.6)

This strategy clearly achieves the greatest power weight for user k as no

attempt is made to reduce interference to other users. Another strategy is

zero-forcing (ZF) transmission, which places nulls in the direction of users

with interference thereby ensuring no interference is applied to these users.

ZF weight vector wZF for user k is given by

wZF
k = h†k/

∥∥∥h†k∥∥∥ , (5.7)
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where h† is the corresponding column of weight matrix H†, and H is com-

posed of all scheduled users’ channel vectors. The linear combination of MR

and ZF weights may simplify computational complexity [58] for the iterative

solution to resource-allocation problems. Thus, the precoding vectors can be

just parameterized by a real number λk ∈ [0, 1] by

wk(λk) =
λkw

MR
k + (1− λk)wZF

k∥∥λkwMR
k + (1− λk)wZF

k

∥∥ . (5.8)

Thus, (5.4) can be simplified as rk(p,ρ,λ).

5.3.3 Problem Formulation

We formulated the energy-efficient resource allocation as an optimization

problem based on above resource-allocation model discussed in Section 5.2.2.

Note that if we only consider maximizing the efficiency of system energy, the

obvious outcome is that the BS will always transmit to users who have supe-

rior channel conditions, however, this is unfair to the other users with inferior

channel conditions. To solve this problem, the aggregated utilities of all users

incorporate proportional fairness [29] in terms of throughput and this can be

given by ∑
k∈K

Uk =
K∑
k=1

rk
(αPmax/N + pk)r̄k

, (5.9)

where r̄k is the average throughput for user k by the tth time slot, which can

be updated each time slot by using

r̄k(t+ 1) = (1− 1

tc
)r̄k(t) +

1

tc
rk(t). (5.10)
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Thus, to optimize resource allocation in terms of energy efficiency in each

time slot with proportional fairness we solve

max
pk,ρ,λk

∑
k∈K

Uk

s. t. C1: 0 ≤ pk ≤ Pmax,∀k

C2: ρk ∈ {0, 1},∀k, and ‖ρ‖ = N

C3: λk ∈ [0, 1], ∀k

(5.11)

The interpretation of the above optimization is as follows. The three

constraints are limitations for power control, scheduling, and beamforming.

When the BS carries out resource allocation, the controller jointly computes

the maximal value of the aggregate utility to find the best point for opera-

tion. This solution with the optimal scheduling vector, power control, and

beamforming maximize the energy efficiency of the network. However, the

objective function is discrete, and the problem in (5.11) is not easy to solve

in a real-time processing environment. Algorithm 5.1 to solve this problem is

briefly summarized as follows.

Algorithm 5.1 Beamforming based Resource Allocation

1: for each time slot t
2: create all possible ρ based on set K
3: for each ρ
4: create corresponding H based on ρ;
5: calculate W based on (5.6), (5.7), (5.8) with parameters λ;
6: calculate max

∑
ρ U(p,λ) using Lagrange multiplier;

7: store the sub-optimal values;
8: end
9: search all sub-optimal values;

10: obtain the optimal p,λ together with corresponding ρ;
11: update r̄k(t+ 1),∀k;

12: end
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5.4 Antenna Selection based Energy-Efficient Re-

source Allocation

Due to the computational complexity of the BF based energy-efficient re-

source allocation, we proposed a low-complexity algorithm that selects part

of the total antennas to transmit. Note that in DAS, users usually have dif-

ferent distances from different DAUs. In some cases, any of them may have

one or several (less than the total number of antennas) dominant channels

where the gain of these channels are much greater than that of others, e.g.,

users are geographically close to one or several DAUs. This inspired us to

simply restrict the transmission of signals only through one or several closest

DAUs instead of joint transmitting them from all antennas. Intuitively, al-

though this subset antenna-selective beamforming may avoid power wastage

on distant antennas, it increases interference to some extent since we lose

fully coordinating in BF transmission. We hereby defined γk,n as the domi-

nance degree to quantify the nth antenna comparative channel gain for user

k, which can be given as

γk,n =
|hk,n|2∑
i 6=n |hk,i|

2 , i ∈ {1, · · · , N}. (5.12)

Higher value of γk,n represents the user k getting close to the corresponding

antenna n. Consequently, (5.12) can be used to determine antenna selection,

if we defined a appropriate threshold γ0 for selection criterion. The criterion

is defined as

ρk,n =


1 γk,n > γ0

0 γk,n ≤ γ0

. (5.13)

Let the set of selected DAUs by user k be Ak, comparing to (5.4), the
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date rate for user k in AS based resource allocation should be updated as

rk(p,ρ,λ) =

log2

1 + δ ·
ρk,n · pk

∣∣∣∑n∈Ak
hk,nwk,n

∣∣∣2∑
j 6=k ·pj

∣∣∣∑n′∈Aj
hj,n′wj,n′

∣∣∣2 + σ2
N

 ,
(5.14)

where
∑

j 6=k ·pj
∣∣∣∑n′∈Aj

hj,n′wj,n′
∣∣∣2 is the interference coming from other un-

selected antennas. In addition, the antennas is restricted to be selected only

once considering the exceed interferences. Thus, the constraint C2 in the

optimization problem in (5.11) is also updated as

ρk,n ∈ {0, 1},
K∑
k=1

N∑
n=1

ρk,n = N,

K∑
k=1

ρk,n = 1,∀k, n, (5.15)

which shows a loose correlation in the scheduling feasible set. Algorithm 5.2

to solve this problem is briefly summarized as follows.

Algorithm 5.2 Antenna Selection based Resource Allocation

for each time slot t
create all possible ρ based on set K
for each ρ

create corresponding H based on ρ;
select the serving antenna based on (5.12), (5.13);
calculate rk(p,ρ,λ) based on (5.6), (5.7), (5.8), (5.14);
calculate max

∑
ρ U(p,λ) using Lagrange multiplier;

store the sub-optimal values;
end
search all sub-optimal values;
obtain the optimal p,λ together with corresponding ρ;
update r̄k(t+ 1),∀k;

end
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5.5 Simulation Results

To validate the effectiveness of the proposed algorithms, we compared the

above two algorithms with conventional centralized architecture, and also

gave a comprehensive evaluation results on the energy efficiency with differ-

ent numbers of antennas, network configurations, networks loads, and power

overheads. The abbreviations BF and AS are short for beamforming and

antenna selection. We evenly generated the DAUs and users locations for

all simulation instances, and run for 10000 time slots to obtain the averaged

value. Some simulation parameters are listed in Table 5.1.

Table 5.1: Simulation Parameters

Parameters Values

Cell radius 1000 m

System bandwidth 1 MHz

Background noise density -174 dBm/Hz

Path loss 128.1+37.6log10(d)

(d in km)

Minimum BS and user distance 30 m

Maximum transmission power 43 dBm

Exponential moving average
100

weight factor (tc)

BER 10−4

The power efficiencies with different antenna configurations and resource

allocation algorithms have been given in Fig. 5.3 with increasing numbers of

antennas. The green curve with stars plotted the efficiency of distributed an-

tennas with full beamforming that outperforms the other two configurations.

We can see that the energy efficiency of all these algorithms increases as the
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Figure 5.3: Power Efficiency vs. Number of Antennas
(total transmitting power =1 W)

number of antennas increases. However, the configuration with distributed

antennas (N, 1) increases faster than that with centralized ones, mainly be-

cause it reduces the access distance that achieves a huge macro-diversity gain

in the MIMO channel. Note that the AS algorithm performs poorly when

there are two or three antennas, since mutual interference is quite strong

with a small number of distributed antennas, and this results in poor perfor-

mance for an AS algorithm. However, as the number of antennas in-creases,

the performance of AS approaches that of BF in the distributed configuration.

Figure 5.4 plotted the power efficiency with different configurations and re-

source allocation algorithms, which varies with spectral efficiency, i.e., through-

put. As can be seen in the figure, the power efficiency curves are always

plotted as concave functions among different antenna configurations and re-
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Figure 5.4: Power Efficiency vs. Spectral Efficiency

source allocation algorithms. It is obvious that a particular antenna configu-

ration and resource allocation has a unique point of throughput that provides

optimal power efficiency. It is better for operators to set up the BS oper-

ational throughput around the point of peak power efficiency. Regardless

of this, distributed antenna configurations always achieve better energy use

than centralized ones. We can also see that the performance of AS algorithms

approach those of BF algorithms with the same antenna configuration when

we distribute all available antennas as much as possible.

We can see from Fig. 5.5 that as the number of users increases in the net-

work, the energy efficiency also slowly increases. As our resource allocation

algorithms were optimized for energy efficiency, all user diversity gain was

mainly to reduce transmission powers and improve throughput, both of these
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Figure 5.5: Power Efficiency vs. Network Load

effects enhanced energy efficiency. Regarding Fig. 5.4, another similar situ-

ation can be found in Fig. 5.5 where the distributed antenna configuration

outperforms the centralized one and energy efficiency with AS approaches

that of the BF algorithm as the number of antennas increases.

We have also investigated what effect the power overhead had on energy

efficiency as seen in Fig. 5.6. It is clear that the lower power overhead leads to

higher energy efficiency. All simulation results indicated that the algorithm

of BF resource allocation for distributed antenna configurations not only dra-

matically increased energy efficiency at every point of throughput, but also

improved the throughput region with high energy efficiency. While the AS

algorithm is mainly used in distributed antenna networks, it can approach the

performance of the BF algorithm when there are many antennas (usually one
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Figure 5.6: Power Efficiency vs. Throughput with Various Power Overheads

with more than three antennas outperforms traditional centralized networks).

5.6 Conclusions

In this paper, we considered a multi-user MIMO networks with distributed an-

tenna transmission where two energy-efficient resource allocation algorithms

are proposed and validated. We first proposed a beamforming based algo-

rithm to achieve the optimal energy efficiency in this scenario. Due to com-

putational complexity and real-time processing requirements, we further pro-

posed an algorithm with low-complexity based on antenna selection to make

the energy-efficient algorithm tractable for practical use with negligible loss in

performance. Finally, we compared these algorithms as well as different net-

work configurations through extensive simulations and the simulation results
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demonstrated that the proposed resource allocation algorithms in the config-

uration of distributed antenna networks can achieve higher energy efficiency

in regions with high operational throughput. Based on all these analyses,

we have gained some insights into energy efficiency in the downlink of mo-

bile networks where there are many factors that we should jointly take into

consideration. Enhancing every aspects in mobile networks is intrinsically

difficult in practical scenario as wireless resources are limited and there are

many system constraints. This requires joint optimization of these metrics of

concern and sometime tradeoff is achieved.



Chapter 6

Cooperative Resource

Allocation with Multi-cell

Distributed Antennas

6.1 Introduction

The increasing demand for ubiquitous access to higher data rates and better

quality of service (QoS) calls for innovative techniques that provide higher

network capacity anywhere and better link reliability anytime. The biggest

challenge to achieving this goal is how to enhance the wireless channel capac-

ity and reliability for users at the cell edge. The distributed antenna system

(DAS), which has traditionally been used to cover dead spots in indoor en-

vironments [59], shows great potential for increasing the system capacity in

outdoor settings especially the cell edge because it reduces the access distance

and provides macro-diversity [48], [49], [54]. In DAS, randomly distributed an-

tenna elements (AEs) in a cell are equipped with only a simple RF transceiver

module. They are connected to a central processing unit where all the signal
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Figure 6.1: Areas with Different Interference Levels

processing is done, via fiber optic or exclusive RF link.

Most current cellular systems are interference-limited, which means the

quality of signals depending on not only the received power but also the in-

terference. According to the signal-to-interference-and-noise ratio (SINR), we

may classify the whole coverage of a cell into three kinds of area, where users

experience different interference level, shown in Fig. 6.1. The center area is

very close to the base station (BS), where users are hardly affected by the

other cells’ interference. The second area, called the mid area, is a large area

between center and edge of a cell; users within it suffer moderate levels of

interference. The cell edge area is where users are severely affected by inter-

ference from other cells. DAS provides higher received power to enhance the

SINR of users in the mid-area, but it still suffers from strong interference in

the edge area: this severely limits further improvements to the SINR. Most

research on DAS has focused on performance comparisons with conventional

co-located antenna systems in single-cell noise-limited scenario [50], [53], [54].

Two studies [51], [52] considered a multi-cell interference-limited scenario with

frequency reuse factors of 1 and 7, respectively. However, these studies only

analyzed a simple antenna selection transmission (AST) strategy with in-

terference reduction, which still performs poorly at the cell edge. Recent

studies [53], [54] have shown that DAS can be generalized as a distributed

multiple-input multiple-output (D-MIMO) system when the user device is
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equipped with more than one antenna, even though the original intent of

these studies was to solve problems inherent in the conventional co-located

MIMO (C-MIMO) systems. It seems natural, therefore, to apply advanced

MIMO interference mitigation technology to D-MIMO systems in order to

enhance cell-edge performance.

Beamforming is a simple but effective precoding strategy to reduce in-

terference among users by projecting a multiuser channel into multiple inde-

pendent single-user channels. Extensive research on beamforming has been

conducted, and the majority of these studies, e.g., [27], [29], focus on im-

proving capacity in a single-cell multi-user environment. The study in [34]

considers eliminating interference among multi-cells; unfortunately, it is im-

practical to implement a multi-cell processing scheme in current co-located

antenna systems because of severe path loss among cells. Owing to no such

problems existing in D-MIMO systems, we were inspired to devise a coop-

erative beamforming transmission (CBT) algorithm for multi-cell D-MIMO

systems as an attempt to resolve these co-channel-interference (CCI) issues.

While antenna selection can clearly reduce the interference from the trans-

mit power perspective, we seek a more aggressive method, one which can

fully utilize the degrees of freedom of the transmit antennas to achieve better

performance in universal frequency reuse environments.

The rest of this paper is organized as follows. Section 6.2 describes the

system architecture and channel model. CBT is mathematically analyzed in

comparison with other transmission methods in Section 6.3. Section 6.4 gives

some numerical results on performance evaluation, and Section 6.5 gives our

conclusions.
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Figure 6.2: Configuration (7, 1, 6) of Distributed-MIMO Systems
(• Target user ; • Co-channel user)

6.2 System Model

6.2.1 Distributed MIMO System

Following the similar notation used in [48], (M,N,K) is used to briefly de-

scribe the network configuration, whereby a generalized distributed MIMO

cellular system employs M randomly distributed AEs within each cell and

there are N receive antennas on a user device. Each cell has K adjacent cells.

For simplicity, we consider a practical (M, 1,K),MK + 1 scenario in which

the user has only one antenna, as in a conventional DAS, and it’s easy to ex-

tend the study to the case of N ≥ 2 by simply implementing receiver shaping
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functions or adopting . Since the users’ devices are limited in their energy

and processing capabilities, and it is hardly for them to cooperate with each

other, we would like to concentrate on exploring the degrees of freedom at

the transmit end to do processing. Unless noted, we will consider this kind

of configuration (7,1,6), an example of which is shown in Fig. 6.2 with the

central cell numbered 0.

Moreover, we assume that the users’ channels are orthogonal within the

cell and there is only one co-channel interfered user in each of the other

cells during the transmission, which holds for most orthogonal multiple ac-

cess systems such as TDMA, FDMA, Orthogonal-CDMA, and OFDMA, in a

universal frequency reuse scenario.

6.2.2 Channel Model

An interference-limited distributed MIMO channel is considered. Without

loss of accuracy, we will take the CCI coming from the adjacent cells to be

the major sources of interference. The rest of the interference from farther

cells can be treated as Gaussian noise. We shall focus on a user located at

cell 0, called the target user (red dot in Fig. 6.2), whose receiving signal can

be expressed as

y =
√
Ph0

0x0 +
K∑
k=1

√
Ph0

kxk + n (6.1)

Where P is the total transmission power in each cell. Notationn is the

noise including insignificant interference and additive white Gaussian noise

with variance E[nn∗] = σ2 = σ2
i + σ2

n. Vector xk = [xk,1, xk,2, , xk,M ]T ,

(k = 0, 1, · · · ,K) is the transmitting signal from the kth cell. Vector h0
k =

[h0
k,1, h

0
k,2, · · · , h0

k,M ] is the channel gain from the kth cell to the target user.

Since AEs are geographically separated, we will model the distributed MIMO



86 Cooperative Resource Allocation with Multi-cell Distributed Antennas

channel including both large-scale and small-scale fading. We assume a rich

scattering Non-line-of-sight (NLOS) environment, therefore, the channel vec-

tor is given by

h = l� hw (6.2)

where � is the element-wise product, and hw is a classical frequency-flat

Rayleigh fading channel in which the entries are independent and identically

distributed complex Gaussian random variables with zero mean and unit vari-

ance. The large-scale fading vector l, which reflects path loss and shadowing,

parameterized by the distance vector d = [d1, · · · , dM ]T and shadow fading

ψn is given by

l =
[√βψ1

dα1
,

√
βψ2

dα2
, ...,

√
βψM
dαM

]
(6.3)

where β is a constant that embodies the antenna and near-field propagation

characteristics, and α is the path-loss exponent.

Under different transmission algorithms, vector xk is a weighted transmit-

ting signal with a constraint E[xkx
∗
k] = 1. Let wk be the normalized weight

vector and s be the original information signal; thus, transmitting xk can be

expressed as wk s. For maximum ratio transmission (MRT) algorithm, the

weight vector is [27]

wk = h∗k/ ‖hk‖ (6.4)

where ‖·‖ represents the Euclidean norm, and * represents conjugate trans-

pose. In particular, the weight vector for AST is all zero but only one entry

equal to 1 [52]. Note that the weight vectors wk are intended for the kth user

(without loss of generality, we refer to the kth user as co-channel user in the

kth cell, blue dot in Fig. 6.2).
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6.3 Resource Allocation in Distributed Antennas

Networks

In a multi-user MIMO system, M transmitting antennas and K+ 1 receiving

antennas can generate up to min(M,K + 1) independent channels. In other

words, by beamforming, if we expect to eliminate signals to the K users and

transmit signals only to the target user, we should have M ≥ K + 1. This

is exactly why we consider the (M, 1,K)M ≥ K + 1 scenario mentioned in

Section 6.2. Obviously, an (M, 1,K) distributed antenna system with only one

user interfered in each adjacent cell can basically be regarded as a generalized

M by K + 1 distributed MIMO multi-user system. The case of M < K + 1,

implies that we cannot eliminate all the interference goes to adjacent cells. If

we virtually take all the co-channel interfered users together with target user,

consequently, the receiving signal in (6.1) can be extended in vector form as

y =
√
PH0x0 +

K∑
k=1

√
PHkxk + n (6.5)

where y = [y0, y1, · · · , yK ]T is a vector formed from all receiving signals of the

K+1 users. The vector x0 = [x1, x2, · · · , xM ]T is the transmit signal of cell 0.

The row vectors hk0 of channel matrix H0 = [h0
0,h

1
0, · · · ,hK0 ]T represent the

channel gain vectors from cell 0 to the corresponding kth user.

We assume that every two adjacent cells cooperate perfectly and share

their users’ channel state information (CSI). Take cell 0 for instance, with a

target user and Kco-channel users’ CSI, CBT performs, which places nulls

in the direction of the adjacent interfered users thereby ensuring no CCI is

delivered to these users. The signal x0 is weighted by the normalized weight
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vector w0 which is given by

w0 =
h†0∥∥∥h†0∥∥∥ (6.6)

where h†0 is the first column vector of the pseudo-inverse matrix H†0 given by

H†0 = H∗0 (H0H
∗
0 )−1 (6.7)

Effective SINR

Assuming that all the cells perform CBT, the second term in (6.5), which is

expressed to be adjacent cell interference for the target user, will be canceled.

Accordingly, (6.5) becomes

y =
√
PH0w0s+ n (6.8)

As is done above, substituting w0 into (6.8), we can get y0 =
√
Ps∥∥∥h†0∥∥∥ + n,

while y1 = · · · = yK = n, which implies the transmission is only delivered to

the target user so that there is only white noise received. Consequently, the

effective SINR of the CBT is given by

γCBT =
P∥∥∥h†0∥∥∥2
σ2

=
P

σ2
δCBT (6.9)

where we have defined δCBT = 1/
∥∥∥h†0∥∥∥2

, which can be interpreted as the

effective channel gain of the target user, and it is directly proportional to the

effective SINR.

Similarly, the effective SINR of the MRT and AST are

γMRT =
P
∥∥h0

0

∥∥2

σ2 + σ2
MRT

=
P

σ2
δMRT (6.10)
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γAST =
P max (

∣∣h0
0

∣∣)2

σ2 + σ2
AST

=
P

σ2
δAST (6.11)

where max
∣∣h0

0

∣∣ represents the largest absolute value of entries in the vector

h0
0, and where we have defined

δMRT =

∥∥h0
0

∥∥2

1 + σ2
MRT /σ

2
, σ2

MRT = E[P
K∑
k=1

∣∣h0
kwk

∣∣2] (6.12)

δAST =
max (

∣∣h0
0

∣∣)2

1 + σ2
AST /σ

2
, σ2

AST = E[P
K∑
k=1

∣∣h0
k,i

∣∣2] (6.13)

from (6.12) and (6.13), we know that the effective channel gain δMRT and

δAST is decreased by incorporating interference in the denominator.

Ergodic Capacity

The ergodic capacity of an interference-limited frequency flat-fading MIMO

channel at a given location in cell 0 can be written as [60]

C = E
[
log2

det(σ2IM +H0R0H
∗
0 +HIRIH

∗
I )

det(σ2IM +HIRIH∗I )

]
(6.14)

where the covariance of the transmitting signal in cell k is Rk = E[xkx
∗
k].

HI is the channel gain matrix from the adjacent K cells to the target user.

Substituting (6.5) and (6.6) into (6.14), we find that the ergodic capacity of

the CBT is reduces to

CCBT = E

log2(1 +
P

σ2
∥∥∥h†0∥∥∥2 )

 (6.15)

In the case of only one receiving antenna, we can see the equivalent form of

(6.15) is simply CCBT = E[log2(1 +γCBT )]. Therefore, the derivation for this

matrix channel is a generalization of the channel denoted in (6.1), and the
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ergodic capacities of the MRT and AST are respectively given by

CMRT = E [log2(1 + γMRT )] (6.16)

CAST = E [log2(1 + γAST )] (6.17)

Approximate Comparison

Some coarse results based on the analysis above represent here. So far,

having the close-form solution of our algorithm, we intuitively would like to

do some qualitative assessment.

Firstly, assuming in C-MIMO systems, we can have E[δMRT ] > E[δAST ],

which means the MRT outperforms AST algorithm in C-MIMO systems,

whereas δMRT < δAST in D-MIMO systems, showing that AST performs bet-

ter than MRT in distributed scenario. Meanwhile, our above analysis con-

firms the results presented in [52], which were gotten by another approach

and simulation.

Secondly, according to (6.12) (6.13), the effective channel gain δMRT δAST

is more likely smaller than δCBT . It obviously knows that CBT is superior to

MRT and AST at certain locations in the D-MIMO systems. To have a better

understanding of the performance comparison among the three algorithms,

in next section, we describe the results of numerical simulations investigating

how much gain can be obtained.

Practical Issues

In the above, we analyzed only the target user in the center cell; actually,

every cell shares all of the users’ CSI with adjacent cells. This implies that the

cell of interest can perform CBT for any of its users and suppress interference

to the co-channel users in adjacent cells.

For the sake of simplicity of analysis, we assume BS perform CBT algo-
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rithm to all the users, which cause the adjacent BSs exchange large amount

of users CSI. Even the CBT require only the channel gain h information, the

cell of interest should collect all the users CSI from adjacent cells. So much

amount of information will be a heavy burden for the network. We may notice

that the edge users are much more sensitive to the interference than the users

close to the AEs. Considering this, as a more practical scenario, therefore, the

neighboring cells only share the edge users CSI with each other, and perform

CBT to the chosen users according to a scheduling approach, in order to save

much of network and processing resources while incurring only a negligible

performance loss in the inner cell. The scheduling scheme is out of the scope

of this paper, though, we shall assume that CBT is performed for all users.

6.4 Numerical Results

The previous section gives analytical performance results and makes approxi-

mate comparisons. In this section, we seek a more complete understanding by

analyzing the results of extensive Monte-Carlo simulations of a 7-cell model

with universal frequency reuse. At present, we have not taken the location of

AEs into consideration; however, the study in [28] shows that uniformly de-

ployed AEs provide nearly the same performance as regularly spaced AEs, in

the aspect of the whole network. Without loss of generality, we can consider

a (7, 1, 6) configuration, with 6 AEs evenly space on a circle with a radius

of 2/3 cell and one AE located at central of the cell, which is illustrated in

Fig. 6.2. Each cell transmitted at a total power of 43 dBm over a Rayleigh

flat-fading channel with a path-loss exponent α = 3.76 and lognormal shadow

fading standard deviation σs=8 dB, as suggested in [61].

Firstly, we try to evaluate the receiving signal qualities based on the three
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Figure 6.3: Effective SINR versus normalized distance

algorithms. We uniformly distribute target user based on the distance from

cell 0’s center (referred to as normalized distance d=0) to its edge (referred

to as normalized distance d=1) with co-channel user randomly located in

adjacent cells. The simulator generated complex random variables with zero

mean and unit variance for the Rayleigh fading and calculated the path loss

for the given location of the user to simulate the channel in (6.1) and (6.5).

We calculate the mean value of effective SINR from 10000 realizations of the

channel. Figure 6.3 shows that the target user effective SINR varies with

the distance from the cell center. Clearly, AST algorithm achieves a small

gain over the MRT algorithm at most locations and obtains the largest gain

(about 3 dB) at the cell edge; while proposed CBT algorithm outperforms

both of them and obtains a higher SINR gain, at most about 10 dB, at the cell
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Figure 6.4: Cumulative distribution function of capacity

edge and the spots in the middle of the two AEs. Moreover, CBT algorithm

confers a high SINR over the entire cell. Most locations are more than 20

dB, and the edge area, where MRT performance drops below 0 dB and AST

is less than 3 dB, is more than 10 dB. The edge users can sustain more high

date rate through CBT algorithm performing.

To demonstrate the overall performance, users were uniformly distributed

at every location one by one within cell 0, and the ergodic capacity was

calculated from 1000 sample averages at each location. As in the previous

simulation setup, the co-channel users in adjacent cells were randomly chosen.

Figure 6.4 shows the cumulative distribution function of ergodic capacities of

uniformly distributed users in cell 0. Note that the CBT algorithm performs

better than AST especially in the lower capacity region because of interference

mitigation. The curve at the higher capacity region (greater than 10bps/Hz
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in Figure 6.4) implies that CBT and AST perform well when the user is close

to the AEs, where the receiving signal is much greater than the interference.

This result verifies the approximation described in the preceding section. We

see that the CBT algorithm sacrifice some overhead on network to enhance a

large performance gain especially for the edge users.

6.5 Summary

By regarding an (M, 1,K) distributed antenna system with only one user

interfered in each adjacent cell as a generalized M by K + 1 distributed

MIMO multi-user system, our cooperative beamforming transmission scheme

can provide higher capacity near the cell edge. The results of our mathemat-

ical analysis and Monte-Carlo simulation, verify that CBT achieves at most

a 10 dB gain in SINR compared with other schemes, has a desirable effective

SINR at the cell edge (more than 10 dB) and maintains a relatively high

SINR over the whole cell (around 20 dB). In this paper, we proposed a fun-

damental framework to mitigate inter-cell interference in distributed MIMO

systems; the next step, we will focus on the partly sharing issues including an

optimal scheduling scheme to make our algorithms more practical. Therefore,

distributed MIMO systems applying CBT should be able to provide a higher

network capacity anywhere and better link reliability anytime.
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Conclusions and Future Work

This final chapter summarizes the major contributions of the dissertation and

highlights numerous topics for future research.

7.1 Summary of Contributions

In this dissertation, we tried to solve three critical problems on resource alloca-

tion in MIMO-enhanced cellular network. The first problem that we solved is

to support and differentiate diverse services, particularly on the quality of ser-

vices (QoS) guarantee for real-time services. Traditional resource allocation

algorithms in cellular networks either not considered the QoS requirements,

or subjectively design utility functions for individual services. However, both

of these methods are failed to incorporate the QoS into the fairness, since they

neglect the completing and sharing relations between services from a system

perspective. In contrast, we consider this problem based on game theory,

which gives great insight into the nature of completing and cooperation re-

lations. In consequence, we successfully formulate this resource allocation

problem as a cooperative game and obtain the notion of QoS guaranteed fair-

ness based on the well known Nash bargaining solution. The algorithm based
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on the QoS guaranteed fairness, can satisfied the QoS requirements for each

service and still achieve the tradeoff between efficiency and fairness, which has

been validated by simulations in the end of Chapter 3. Moreover, this work

also provides a theoretical framework that paves the way to solve resource

allocation problem in other similar scenarios.

Based on the demand for high spectral efficiency and cost-effectiveness in

cellular networks, universal frequency reuse is usually required for future cellu-

lar networks, which means a high inter-cell interference (ICI) level. However,

SDMA and other spatial multiplexing transmissions, whose principle merit

on dramatic improvement in spectral efficiency, lose much of their effective-

ness in high levels of interference. Fortunately, the advancement of MIMO

techniques such as cooperative transmission, especially between the base sta-

tions (BS) in cellular context, has emerged as one of the most promising

techniques to mitigate inter-cell interference (ICI) and thus improve the total

system throughput. In order to exploit the extra wireless resource provided

by inter-cell cooperation, we proposed a cooperative resource allocation al-

gorithm in Chapter 4, aiming to ICI mitigation and efficient utilization of

the wireless resources. Based on the game theoretic analysis, the proposed

algorithm achieves the Pareto optimal and fulfills the fundamental tradeoff of

efficiency and fairness. Due to the prohibitive computational complexity, we

also developed a heuristic algorithm and compared with the benchmark that

regarded as a Nash equilibrium outcome in a non-cooperative scenario. The

simulation results and analysis are given in the end of Chapter 4 as well.

I also investigated the distributed antenna scenarios in both Chapter 5 and

6 that have a topology of distributed antennas for the BS at each cell. The

intuitive advantages of this architecture are better signal coverage and lower

power consumption. However, We expect to further exploit other advantages
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since resource allocation with distributed antennas is more flexible in cooper-

ation and optimization than that in traditional architectures. In Chapter 5, I

proposed two energy-efficient resource allocation algorithms, based on beam-

forming transmission and selection transmission, respectively. the simulation

results shows that both algorithms have a higher energy efficiency that con-

ventional algorithms, and the selection transmission outperforms the beam-

forming transmission algorithm in terms of energy efficiency and complexity.

The ICI problem in distributed antenna architecture is also investigated in

Chaper 6. I proposed a cooperative beamforming algorithm that mitigates

ICI and achieves a higher system capacity. A comparison and analysis of

performance between a scenario with co-located antennas and that with dis-

tributed antennas are given, which clearly demonstrate the advantages of the

architecture with distributed antennas.

In summary, we investigated some cooperation problems on resource al-

location in the multiple antennas cellular networks. We proposed a game

theoretic framework to guarantee QoS for diverse services, developed coop-

erative resource allocation both optimal and heuristic to solve interference

problem and improve system throughput among cells, and finally investigate

a promising architecture with distributed antennas at BS that achieves better

performance than traditional cellular architecture.

7.2 Future Work

Although resource allocation is a concept with a long history, it always has

new form and new requirements along with the advance of other techniques

for cellular networks, particularly, the link techniques. As the first chapter

described, this dissertation has studied a part of problem in the resource
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allocation in MIMO-enhanced cellular networks, however, as far as we know,

there are several issues remained for further investigation.

First of all, Chapter 3 introduced a cooperative resource allocation with

QoS guarantee is mainly focused on the real-time services. Although it can

also incorporate the best-effort traffic, but in practical, cellular operators

prefer to use some kind of priority mechanism to distinguish users, since there

might be different subscription plan for the users. Furthermore, in this study,

we only investigate the most important delay parameter for real-time services.

However, there are other important QoS parameters such as minimum data

rate should be considered. This needs to further explore the characteristic of

traffic.

Second, in the multi-cell BS cooperative resource allocation, every inter-

fered user needs the interfering BS one nulling beams. Some recent work

pointed out that if we align all the interfered users in adjacent cells, the in-

terfering BS will only need one nulling beam to mitigate all the interference

to adjacent cells, which will save a lot of antenna resources to allocate to

its own users. The resource allocation for interference alignment has great

potential to fully use all the freedom degree of multi-cell cooperation.

Last but not least, since the new architecture of distributed antennas

totally changed the signal distribution of the traditional cellular cell. this

emerging topology provides great potential to be further investigated.
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