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General Introduction 

 

Quantum chemistry plays an important role in elucidating molecular geometries, 

electronic states, and reaction mechanisms, because of the developments of a variety of 

theoretical methods, such as Hartree-Fock (HF), Møller-Plesset (MP) perturbation, 

configuration interaction (CI), coupled-cluster (CC), and density functional theory 

(DFT) methods.
1
 Electronic structure calculations have been carried out by not only 

theoretical chemists but also experimental chemists. DFT is currently most widely used 

to investigate large molecules in the ground state as well as small molecules because of 

the low computational cost. However, the generally used functionals fail to describe 

correctly non-covalent interactions that are important for host-guest molecules, 

self-assembly, and molecular recognition, and they tend to underestimate reaction 

barriers.
2
 Many attempts have been made to develop new functionals and add 

semiempirical or empirical correction terms to standard functionals, but no generally 

accepted DFT method has emerged yet. 

Second-order Møller-Plesset perturbation theory (MP2)
3
 is the simplest method that 

includes electron correlation important for non-covalent interactions and reaction 

barriers within the single determinant model. However, the computational cost of MP2 

is considerably higher than that of DFT. In addition, much larger sizes of fast memory 

and hard disk are required in MP2 calculations. These make MP2 calculations 

increasingly difficult for larger molecules. Since workstation or personal computer (PC) 

clusters have become popular for quantum chemistry calculations, an efficient parallel 

calculation is a solution of the problem. Therefore, new parallel algorithms for MP2 

energy and gradient calculations are presented in this thesis. Furthermore, an efficient 

algorithm for the generation of two-electron repulsion integrals (ERIs) which is 

important in quantum chemistry calculations is also presented. 

For the calculations of excited states, different approaches are required: for 
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example, CI, multi-configuration self-consistent field (MCSCF), time-dependent DFT 

(TDDFT), and symmetry adapted cluster (SAC)/SAC-CI methods.
4,5

 One of the most 

accurate methods is SAC/SAC-CI, as demonstrated for many molecules. In this thesis, 

SAC/SAC-CI calculations of ground, ionized, and excited states are presented. 

This thesis consists of five chapters: a new algorithm of two-electron repulsion 

integral calculations (Chapter I), a new parallel algorithm of MP2 energy calculations 

(Chapter II), a new parallel algorithm of MP2 energy gradient calculations (Chapter III), 

applications of MP2 calculations (Chapter IV), and SAC/SAC-CI calculations of 

ionized and excited states (Chapter V). 

    In quantum chemistry calculations, the generation of ERIs is one of the most basic 

subjects and is the most time-consuming step especially in direct SCF calculations. 

Many algorithms have been developed to reduce the computational cost. In Pople-Hehre 

algorithm,
6
 Cartesian axes are rotated to make several coordinate components zero or 

constant, so that these components are skipped in the generation of ERIs. In 

McMurchie-Davidson algorithm,
7
 ERIs are generated from (ss|ss) type integrals using a 

recurrence relation derived from Hermite polynomials. By combining these two 

algorithms, a new algorithm is developed in Chapter I. 

    In quantum mechanics, perturbation methods can be used for adding corrections 

to reference solutions. In the MP perturbation method, a sum over Fock operators is 

used as the reference term, and the exact two-electron repulsion operator minus twice 

the average two-electron repulsion operator is used as the perturbation term. It is the 

advantage that the MP perturbation method is size consistent and size extensive, unlike 

truncated CI methods. The zero-order wave function is the HF Slater determinant, and 

the zero-order energy is expressed as a sum of occupied molecular orbital (MO) 

energies. The first-order perturbation is the correction for the overcounting of 

two-electron repulsions at zero-order, and the first-order energy corresponds to the HF 

energy. The MP correlation starts at second-order. In general, second-order (MP2) 
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accounts for 80 – 90% of electron correlation. Therefore, MP2 is focused in this thesis 

since it is applicable to large molecules with considerable reliability and low 

computational cost. 

The formal computational scaling of MP2 energy calculations with respect to 

molecular size is fifth order, much higher than that of DFT energy calculations. 

Therefore, less expensive methods, such as Local MP2,
8
 density fitting (resolution of 

identity, RI) MP2,
9-12

 and Laplace Transform MP2,
13-16

 have been developed. However, 

all of these methods include approximations or cut-offs that need to be checked against 

full MP2 energies. An alternative approach to reduce the computational cost is to 

parallelize MP2 energy calculations. A number of papers on parallel MP2 energy 

calculations have been published. Almost all of them are based on simple parallelization 

methods that distribute only atomic orbital (AO)
17

 or MO
18

 indices to each processor. 

These methods have a disadvantage since intermediate integrals are broadcasted to all 

CPUs or the same AO ERIs are generated in all processors. Baker and Pulay
19,20

 

developed a new parallel algorithm using Saebø-Almlöf integral transformation 

method.
21

 This algorithm parallelizes the first half transformation by AO indices and the 

second half transformation by MO indices. The advantages are that the total amount of 

network communication is independent of the number of processors and the AO 

integrals are generated only once. The disadvantage is the I/O overhead for the sorting 

of half-transformed integrals. A new parallel algorithm for MP2 energy calculations 

based on the two-step parallelization idea is presented in Chapter II. In this algorithm, 

AO indices are distributed in the AO integral generation and the first three quarter 

transformation, and MO indices are distributed in the last quarter transformation and 

MP2 energy calculation. Because the algorithm makes the sorting of intermediate 

integrals very simple, the parallel efficiency is highly improved and the I/O overhead is 

removed. Furthermore, the algorithm reduces highly the floating point operation 
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(FLOP) count as well as the required memory and hard disk space, in comparison with 

other algorithms. 

    Determination of molecular geometries and reaction paths is a fundamental task in 

quantum chemistry and requires energy gradients with respect to nuclear coordinates. In 

Chapter III, a new parallel algorithm for MP2 energy gradient calculations is presented. 

The algorithm consists of 5 steps, the integral transformation, the MP2 amplitude 

calculation, the MP2 Lagrangian calculation, the coupled-perturbed HF calculation, and 

the integral derivative calculation. All steps are parallelized by distributing AO or MO 

indices. The algorithm also reduces the FLOP count, the required memory, and hard 

disk space. 

In Chapter IV, several applications of MP2 are performed using the program 

developed in Chapters II and III. Some molecules that DFT cannot treat well are 

optimized at the MP2 level. Geometry optimization is also carried out using the 

spin-component scaled (SCS) MP2 method.
22

 In this method, a different scaling is 

employed for the same and opposite spin components of the MP2 energy, so that 

SCS-MP2 performs as well as the much more costly CCSD(T) method at a high level of 

theory. 

SAC theory is developed for ground states and based on CC theory that describes 

higher-order electron correlation. The main factor of electron correlation is collisions of 

two electrons. In CC theory, most collisions of four electrons can be taken in as the 

product of collisions of two electrons. Only a symmetry adapted excitation operator is 

used for the SAC expansion. Since the operator of the SAC expansion is totally 

symmetric, the unlinked terms (the products of the operators) are also totally symmetric. 

SAC-CI is developed to treat excited states. SAC and SAC-CI wave functions are 

orthogonal and Hamiltonian-orthogonal to each other. These orthogonalities are 

especially important for the calculations of transitions and relaxations. In general, the 

SAC-CI operators R are restricted to single and double excitations. This is called the 
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SAC-CI SD-R method. For the calculations of high-spin states and multiple excitation 

processes, triple, quadruple, and higher excitation operators are included. This is called 

the SAC-CI general-R method. In Chapter V, the ground, singlet and triplet excited, 

ionized and electron attached states of ferrocene (Fe(C5H5)2) are calculated using the 

SAC/SAC-CI SD-R method. The assignment of d electron ionizations and the 

difference of singlet and triplet d-d transitions are discussed. 
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Chapter I 

 

A new algorithm of two-electron repulsion integral calculations 

(Ishimura, K.; Nagase, S. Theoret Chem Acc in press.) 

 

 

1.1 Abstract 

A new algorithm of two-electron repulsion integral (ERI) calculations has been 

developed. In this algorithm, Cartesian axes are rotated to make several coordinate 

components zero or constant using the Pople-Hehre algorithm, and ERIs are evaluated 

at the rotated coordinate by the McMurchie-Davidson algorithm. The new algorithm 

applicable to (ss|ss) to (dd|dd) ERIs is implemented in the quantum chemistry program 

GAMESS. Test calculations show that the new algorithm reduces the computational 

times by 10-40%, as compared with the Pople-Hehre and the Rys quadrature algorithms.
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1.2 Introduction 

   In quantum chemistry, it is an important subject to calculate two-electron repulsion 

integrals (ERIs) at a high speed, because ERIs are fundamental in all ab initio 

self-consistent field (SCF) and post-SCF calculations. The generation of ERIs is 

especially time-consuming in widely used direct SCF calculations because ERIs are 

generated in every SCF iteration. Since Boys proposed the use of Gaussian functions as 

basis functions in 1950,
1
 many algorithms have been developed to reduce the 

computational time.
2-17

 

   In the Pople-Hehre algorithm,
2
 Cartesian axes are rotated so that several coordinate 

components become zero or constant. The Floating-Point Operation (FLOP) count of 

the fourth and second power terms is reduced. The Rys quadrature developed by Dupuis, 

Rys, and King
3-5

 is based on a set of orthogonal polynomials and is used especially for 

ERIs including high angular momentum functions. In the McMurchie-Davidson 

algorithm,
6
 the efficient recurrence relation derived from Hermite polynomials was 

adopted to generate all ERIs from (ss|ss) type integrals. Obara and Saika
7
 developed an 

efficient algorithm of a vertical recurrence relation (VRR) in which required ERIs are 

generated from actually needed and auxiliary ERIs of lower angular momentum 

functions. Head-Gordon and Pople (HGP)
8
 derived a horizontal recurrence relation 

(HRR) to make several terms in VRR always vanish. Gill, Head-Gordon, and Pople
9
 

derived another relation by combining the MD and HGP algorithms. Lindh, Ryu, and 

Liu
10

 derived an algorithm from the Rys quadrature and HRR. Ishida
11

 developed the 

accompanying coordinate expansion (ACE) algorithm based on the Rys quadrature, 

which can treat up to (hh|hh) ERIs.
12

 A different algorithm was proposed by Gill and 

Pople, and named PRISM.
13

 In PRISM, the path from (ss|ss)
(m)

 integrals to required 

ERIs is selected to minimize the FLOP count. The bra and ket transformations in the 
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algorithms such as MD and HGP as well as the bra and ket contractions depend on the 

degrees of bra and ket contractions of the primitive functions. 

   In this paper, we report a new algorithm of ERI calculations by combining the PH 

and MD algorithms because MD can use all advantages of PH. The new algorithm is 

considerably faster than the original PH and Rys, as demonstrated by test calculations. 

 

 

1.3 Methods 

   An unnormalized primitive Gaussian function a(r) with the exponent at point A 

is given by 

          2
exp Arr  A

a

z

a

y

a

xa
zyx AzAyAx  .          (1) 

A primitive ERI can be written by 

         
 2122

1

1211| rrrrrrcdab ddr dcba  .                 (2) 

The bra part, a product of two primitive functions, can be written by 

       222
expexp PrBrAr  PPBA L               (3) 

where point P is defined as  

  PBA  BAP  ,                                      (4) 

BAP   ,                                            (5) 

and the constant LP is  

  PBAPL 
2

exp BA  .                                (6) 

In the same manner, the ket part in Eq. 2 can be written as follows: 

       222
expexp QrDrCr  QQDC L   ,            (7) 

  QDC  DCQ  ,                                      (8) 

DCQ   ,                                            (9) 

  QDCQL 
2

exp DC .                               (10) 
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Primitive functions are usually contracted in the following way, 

  
K

k

akaka D  r                                         (11) 

where Dak is a contraction coefficient and K is the degree of contraction. A contracted 

ERI can be written from Eqs. 2 and 3, 

   
A B C DK

i

K

j

K

k

DlCkBjAidlckbj

K

l

ai DDDD dcbacdab || .              (12) 

   In the Pople-Hehre (PH) algorithm,
2
 Cartesian axes are rotated to make z- and y- 

directions along AB and perpendicular to AB and CD, respectively, as shown in Fig. 1, 

which are named axes-2 in the original paper. Point P lies on the AB line and depends 

on exponents A and B. In the rotated coordinate, PAx, PAy, PBx, and PBy are zero and 

PQx and PQy become constant at any point P. QCy, and QDy are zero at any point Q. 

 

 

 

 

 

 

 

 

Figure 1. Rotated Cartesian axes. 

 

   In the McMurchie-Davidson (MD) algorithm,
6
 the bra part of the primitive [ab|cd] 

(=[ab0|cd0]) is formed from the following recurrence relation, 

          |2|||
1

iPiiiii APp 1pababp1pabbp1a 


       (13) 

x 

y 
z 

B 

C 

D 

A 

P 

Q 
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where subscript i denotes a Cartesian direction (x, y, or z) and 1i is the unit vector of the 

i-direction. The ket part is also formed in the following way, 

           iQiiiii CQq 1qcdcdq1qcddq1c 


|2|||
1

 .   (14) 

[p|q] (=[00p|00q]) necessary to generate [ab|cd] is evaluated by 

     qpqp 
q

1| .                                         (15) 

Furthermore, [r] (=[r]
(0)

) integrals can be obtained from [0]
(m)

 (=(ss|ss)
(m)

) integrals, 

          11
1




m

ii

m

iii

m
rPQ 2r1rr                       (16) 

where 2i is twice the unit vector in the i-direction and [0]
(m)

 is generated from 

  

 
 TFLLDDDD mm

QP

m

Q

m

Pm

QPdcba

m

21

11

2512












0                 (17) 

where 

  


1

0

2 2

dtetTF Ttm

m                                           (18) 

 2
PQ

QP

QP
T






 .                                          (19) 

When T is small, Fm(T)
 
for the largest m value is evaluated using Taylor or Chebyshev 

expansions and the others are evaluated using the following recurrence relation,
18

 

      TTTF
m

TF mm 


  exp2
12

1
1 .                           (20) 

When T is large, F0(T) is evaluated using the following equation, 

  TTF 40  ,                                            (21) 

and the others are evaluated using the following recurrence relation, 

      TTFmTF mm 2121  .                                   (22) 

    We developed the PH+MD algorithm by combining the PH and MD algorithms. 

Cartesian axes are rotated using the PH algorithm, as described above, and then ERIs 

are calculated using MD algorithm at the rotated coordinate. The calculated ERIs are 
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transformed to the original coordinate. The second rotation in the original PH algorithm, 

axes-1, is not exploited in the PH+MD algorithm because the rotation is not useful for 

contracted basis functions. The pseudocode is shown in Fig. 2. Cartesian axes are first 

rotated, as shown in Fig. 1, and the quadruple loop starts at the rotated coordinate. The 

outer loop is over c and d, and the inner loop is over a and b. In the quadruple loop, 

[0]
(m)

 and the related integrals such as (Pz-Az)[0]
(m)

, (Pz-Bz)[0]
(m)

, (2P)
-1

[0]
(m)

, and 

(Qz-Pz)[0]
(m)

 are calculated and accumulated. Calculations of integrals including terms 

such as (Px-Ax) and (Qy-Py) are skipped because PAx, PAy, PBx, and PBy are all zero and 

PQx and PQy are constant at the rotated coordinate. After the loop, the bra-contracted 

integrals (0]
(m)

 are obtained. In the double loop, (r] and the related integrals such as 

(Pz-Az)(r], (Qx-Cx)(r], and (2Q)
-1

(r] are calculated and accumulated. Calculations of 

integrals including terms such as (Px-Ax) and (Qy-Cy) are again skipped because PAx, 

PAy, PBx, PBy, QCy, and QDy are all zero. After the loop, the contracted integrals (r) are 

obtained. The (ab|cd) integrals are calculated from (r) using Eqs. 13-15 in the rotated 

coordinate and finally transformed into the original coordinate. (sp,sp|sp,sp) and (dd|dd) 

integrals have 90K
4
 and 830K

4
 constant values and 250K

2
+380 and 3900K

2
+31000 zero 

values, respectively (K is the degree of contraction). 

    As an example, we describe the (ps|ss) generation. In the quadruple loop, [0]
(0)

 and 

[0]
(1)

 are calculated for each primitive function, and (2P)
-1

[0]
(1)

, (Qz-Pz)(2P)
-1

[0]
(1)

, 

and (Pz-Az)[0]
(0)

 are calculated and accumulated for the bra part. In the double loop, 

(2P)
-1

(x], (2P)
-1

(y], (2P)
-1

(z], and (Pz-Az)(0] are calculated and accumulated for the 

ket part. After the loop, (ps|ss) integrals are calculated using the following recurrence 

relations derived from Eqs. 13-15, 

     x
1

2|


 Px sssp  ,                                      (23) 

     y
1

2|


 Py sssp  ,                                      (24) 
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        x0
1

2|


 Pzzz APsssp  .                           (25) 

At the end, (ps|ss) integrals are transformed to the original coordinate. 

 

 

rotate Cartesian axes 

do c shells 

  do d shells 

    do a shells 

      do b shells 

        calculate Fm(T) 

        calculate and accumulate [0]
(m)

 and the related integrals 

      enddo b 

    enddo a 

    calculate and accumulate (r]
(m)

 and the related integrals 

  enddo d 

enddo c 

calculate (ab|cd) 

rotate (ab|cd) to original Cartesian axes 

 

Figure 2. Pseudocode of PH+MD algorithm. 
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1.4 Results 

   Tables 1 and 2 show the FLOP count parameters for (sp,sp|sp,sp) and (dd|dd), 

respectively. The FLOP count is given by 

FLOPs = xK
4
 + yK

2
 + z.                                      (26) 

 

Table 1. FLOP count parameters for (sp,sp |sp,sp). 

  x y z 

PH+MD 180 1100 5330 

PH
a
 220 2300 4000 

MD
b
 1500 1700 0 

Dupuis, Rys, and King
c
 1056 30 800 

Head-Gordon and Pople
d
 1400 30 800 

Gill, Head-Gordon, and Pople
e
 450 1300 1700 

Lindh, Ryu, and Liu
f
 753 30 800 

ACE-RR
g
 155 774 4548 

a
Reference 2. 

b
Reference 6. 

c
Reference 3-5. 

d
Reference 8. 

e
Reference 9. 

f
Reference 10. 

g
Reference 17. 
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Table 2. FLOP count parameters for (dd |dd). 

  x y z 

PH+MD 850 11860 173500 

MD
a
 27300 24000 0 

Dupuis, Rys, and King
b
 30900 220 0 

Head-Gordon and Pople
c
 14600 30 11300 

Gill, Head-Gordon, and Pople
d
 2450 25800 28900 

Lindh, Ryu, and Liu
e
 10255 30 11300 

ACE-b3k3
f
 327 2281 163000 

a
Reference 6. 

b
Reference 3-5. 

c
Reference 8. 

d
Reference 9. 

e
Reference 10. 

f
Reference 12. 

 

 

Table 3 shows the FLOP counts of (sp,sp|sp,sp) for several K. The parameters x and y 

for K
4
 and K

2
 become very small in the PH+MD algorithm, compared with the original 

algorithms, because of zero components, constant components, and efficient recurrence 

relations. Instead, the zeroth power parameter z becomes large because the operations of 

the last recurrence relations, Eqs. 13-15, are performed. This PH+MD algorithm is 

especially suited for the moderate degree of contraction, for instance, STO-3G and 

6-31G(d). The FLOP count of the PH+MD algorithm is not the least of all the 

algorithms. However more than 80% operations of the algorithm are performed in do 
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loops. This is a significant advantage for practical calculations because of the sequential 

access to fast memory. 

 

 

Table 3. FLOP counts for (sp,sp |sp,sp). 

  K=1 K=2 K=3 K=6 

PH+MD 6610 12610 29810 278210 

PH
a
 6520 16720 42520 371920 

MD
b
 3200 30800 136800 2005200 

Dupuis, Rys, and King
c
 1886 17816 86606 1370456 

Head-Gordon and Pople
d
 2230 23320 114470 1816280 

Gill, Head-Gordon, and Pople
e 

3450 14100 49850 631700 

Lindh, Ryu, and Liu
f
 1583 12968 62063 977768 

ACE-RR
g
 5477 10124 24069 233292 

a
Reference 2. 

b
Reference 6. 

c
Reference 3-5. 

d
Reference 8. 

e
Reference 9. 

f
Reference 10. 

g
Reference 17. 
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   The PH+MD algorithm derived for (ss|ss) to (dd|dd) was implemented into the 

quantum chemistry package GAMESS
19

 by adding 39000 lines. Test calculations were 

performed for PH+MD and compared with the PH and Rys algorithms available in 

GAMESS using a 3.0GHz Pentium4 machine. PH is used for ERIs including s and sp 

functions and Rys is used for ERIs including d functions. The computational times for 

the Fock matrix generation in the first direct SCF iteration are shown in Table 4 for 

taxol (C47H51NO14, no symmetry) and luciferin (C11H8N2O3S2, no symmetry). STO-3G, 

6-31G, and 6-31G(d) basis sets were used for taxol and 6-31G, 6-31G(d), and 

aug-cc-pVDZ were used for luciferin. An integral prescreening threshold of 10
-9

 was 

adopted in all calculations. As shown in Table 4, the PH+MD algorithm reduces 

computational times by 10-20% in comparison with the PH algorithm for the STO-3G 

and 6-31G basis sets. This is because the FLOP count of (sp,sp|sp,sp) is 25-30% 

reduced in PH+MD though the FLOP counts of (ss|ss) and (sp,s|ss) are almost the same 

in PH+MD and PH. It is interesting that PH+MD reduces the computational times by 

32-43% in comparison with PH and Rys for 6-31G(d) and aug-cc-pVDZ. This is owing 

to the fact that ERIs of sp and d functions such as (d,sp|d,sp) and (dd|sp,sp) are 

generated very fast. Only for primitive (dd|dd) calculations PH+MD is somewhat slower 

than Rys. The number of primitive (dd|dd) ERIs is usually very small, so that the 

disadvantage is negligible in practical calculations. Due to the small x coefficient for 

quartic work, the strength of this new approach must be even more apparent for heavy 

atoms with valence or core d electrons, whose basis sets would contain contracted d 

functions. 
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Table 4. Computational times of PH+MD, PH, and Rys algorithms (sec). 

    PH+MD PH PH and Rys 

taxol STO-3G 69.9 85.7   

 6-31G 379.4 475.4  

 6-31G(d) 1361.8  2015.2 

luciferin 6-31G 8.6 9.6  

 6-31G(d) 39.3  62.2 

  aug-cc-pVDZ 1154.5   2014.9 

 

 

1.5 Conclusions 

   A new algorithm to calculate (ss|ss) to (dd|dd) ERIs is developed by combining the 

PH and MD algorithms and implemented into the GAMESS program. The FLOP count 

is highly reduced because of the axis-switch in PH and the recurrence relation in MD. 

The PH+MD algorithm is considerably faster than the PH and Rys algorithms, 

especially for the basis sets including d functions such as 6-31G(d) and aug-cc-pVDZ. 
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Chapter II 

 

A New Parallel Algorithm of MP2 Energy Calculations 

(Ishimura,K; Pulay, P.; Nagase S. J Comput Chem 2006, 27, 407.) 

 

 

2.1 Abstract 

  A new parallel algorithm has been developed for second order Møller-Plesset 

perturbation theory (MP2) energy calculations. Its main projected applications are for 

large molecules, for instance for the calculation of dispersion interaction. Tests on a 

moderate number of processors (2-16) show that the program has high CPU and parallel 

efficiency. Timings are presented for two relatively large molecules, taxol (C47H51NO14) 

and luciferin (C11H8N2O3S2), the former with the 6-31G* and 6-311G** basis sets (1032 

and 1484 basis functions, 164 correlated orbitals), and the latter with the aug-cc-pVDZ 

and aug-cc-pVTZ basis sets (530 and 1198 basis functions, 46 correlated orbitals). An 

MP2 energy calculation on C130H10 (1970 basis functions, 265 correlated orbitals) 

completed in less than 2 hours on 128 processors.
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2.2 Introduction 

Density functional theory (DFT) is currently the most widely used method to 

calculate molecular properties. However, the generally used local and semilocal DFT 

methods fail to describe the dispersion interaction that plays an important role for large 

molecules, and usually underestimate reaction barriers. The simplest method to include 

dispersion nonempirically is second order Møller-Plesset perturbation theory (MP2).
1
 

The formal scaling of MP2 with molecular size (assuming constant basis set quality) is 

fifth order, O(n
5
), higher than the O(n

4
) formal scaling of Hartree-Fock theory. 

Moreover, natural sparsity is more difficult to use in canonical MP2 theory than in 

Hartree-Fock theory. These factors together made MP2 theory significantly more costly 

for large systems than, say, Hartree-Fock theory. Much effort has been expended to 

create less expensive approximations to MP2. Local MP2
2-9

 can be much less expensive 

than full MP2 for large systems. Other efficient methods include Density Fitting 

(Resolution of Identity, RI) MP2
10-13

 and Laplace Transform MP2.
14-17

 All of these 

methods include approximations that need to be carefully checked against full 

calculations. Most introduce a new model chemistry, and have limitations. For instance, 

the efficiency of local MP2 decreases for genuinely delocalized systems, like - 

interactions, and for diffuse basis sets. The recent implementation of RI-MP2 by the 

Ahlrichs group
13

 has no problems with large basis sets and promises to be an excellent 

tool for routine calculations. However, it also introduces a slightly different model 

chemistry, and its ultimate scaling is fifth order, like that of canonical MP2. A Laplace 

Transform MP2 utilizing natural sparsity has been implemented
17

 but its computational 

superiority has yet to be demonstrated. 

   An alternative method of overcoming the long computational times of MP2 is 

parallel implementation. This has become particularly useful with the advent of 
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inexpensive high-speed processors. A number of papers have been published on parallel 

integral transformation, the main part of parallel MP2.
18-28

 The simplest parallelization 

methods use a single variable, say atomic orbital (AO) or molecular orbital (MO) 

indices to distribute the workload, or use shared memory computers. These methods 

have significant shortcomings. For instance, in the AO-based parallelization of Nielsen 

and Seidl
23

 progressively more network communication is needed as the number of 

processors increases. The MO-based parallelization, for instance the methods devised 

by Schütz and Lindh
26

 require the repeated evaluation of AO integrals on different 

nodes or to broadcast integrals to all nodes, limiting parallel efficiency. Shared memory 

computers are much less widely available and more expensive than clusters, and their 

size is limited. 

   Recently, Baker and Pulay
29

 have described a parallel MP2 implementation, based 

on an efficient canonical program
30

 using the Saebo-Almlöf integral transformation 

method.
31

 This program parallelizes the first half transformation by AO indices and the 

second half transformation by MO indices. Its advantages are that the fast memory 

needed scales only with the square of the system size, the total amount of 

communication is independent of the number of processors, and the AO integrals are 

generated only once. One of its disadvantages is that it uses only one permutational 

symmetry during AO integral generation, quadrupling the computational effort for this 

task. However, the main disadvantage of the Baker-Pulay code is the I/O overhead 

involved in the sorting of the half-transformed integrals. While disk I/O on the current 

generation of computers cannot be eliminated, the current project aims at reducing this 

overhead. The required memory in the present code has a cubic component. However, it 

is proportional to o
2
n only, where o is the number of correlated MOs. In most MP2 

calculations, o is about an order of magnitude smaller than n, the number of basis 
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functions, and therefore memory becomes a limiting factor only for very large 

calculations in the present program. 

   The algorithm described in this paper has been implemented in the freely distributed 

quantum chemistry program system GAMESS.
32

 GAMESS has already a parallel MP2 

implementation,
28

 based on the Distributed Data Interface.
33

 However, this 

implementation stores the transformed integrals, an array that scales with the fourth 

power of the molecular size, in distributed fast memory. If there is not enough memory, 

it resorts to expensive multiple passes. This is an efficient strategy on massively parallel 

computers where the aggregate memory is sufficient to hold all integrals, but it becomes 

inefficient for larger calculations on small or medium-sized clusters. By making use of 

ample and inexpensive disk storage, the program presented in this paper is able to 

perform large calculations on modest clusters with high efficiency. 

 

 

2.3 Theory 

The closed-shell MP2 energy can be written as 

          
 
 




. . ||2|
2MP2

occ

ji

virt

ab baji

ij

jaibjbiajbia
E


 ,                     (1) 

where i and j are doubly occupied MOs, a and b are virtual MOs, and ε’s are 

corresponding the orbital energies. (ia|jb) denotes a two-electron MO integral that is 

generated as 

   


  || bjai CCCCjbia .                                (2) 

Here, and in the following Greek letters denote AOs, (|) is a two-electron AO 

integral, and C is the matrix of the MO coefficients. The most time-consuming step in 
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an MP2 energy calculation is the transformation of the AO integrals to MOs, Eq. (2). 

The outline of the new algorithm is summarized in Figure 1 and the required memory, 

disk space requirements, and formal computational costs are shown in Table 1. First, we 

describe the serial version. Capital Greek letters , , , and  denote shells of AOs; 

computational efficiency mandates the utilization of shell structure. The outermost loop 

up to the third quarter transformation is over AO shell . In the loop, AO integrals 

(|) are calculated for one , , and , and all . (|) denotes all integrals 

(|), , , , and . Schwartz prescreening
34-36

 is used in this phase to 

discard insignificant integrals, just as in the SCF calculation. This results in significant 

computational savings. The required memory size in this step is s
3
n, where s is the 

maximum number of basis functions in a shell, for instance, 1 for s function and 4 for sp 

function and n is the total number of basis functions. The formal computational cost is 

O(n
4
); for large molecules, this diminishes to O(n

2
). Only one of the three permutational 

symmetries, (|)=(|), is exploited in our algorithm. This means that AO 

integrals are effectively evaluated four times. The SCF algorithm and some other MP2 

algorithms can use three symmetries. However, we find, in agreement with Pulay et 

al.,
30

 that sacrificing permutational symmetry of the AO integrals incurs only a modest 

penalty. After the calculation of AO integral blocks, the first quarter transformation, 

   


  || iCi                                           (3) 

is performed for all i, and , , and . The memory size required to store the 

transformed integrals is s
3
o, where o is the number of correlated MOs, and the formal 

computational cost is O(on
4
). The second quarter transformation, 

   


  || iCji j                                             (4) 
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is performed for all i and j(≤i), and for  and . The required memory size is 

so
2
n/2 and the formal computational cost is O(o

2
n

3
). This is the step with the largest 

memory demand in our algorithm. On a 32-bit computer, memory limits restrict the 

calculation to ~2000 basis functions and 200 occupied orbitals if the highest angular 

momentum functions are 6-component d functions. This limit can be exceeded (see 

below) at the cost of introducing multiple integral batches. The half-transformed (i|j) 

integrals are accumulated for all i, j(≤i), and , and for . The quarter-transformed 

(i|) integrals are screened prior to the transformation. 

   The third quarter transformation, 

   


  jiCbji b ||                                                (5) 

is performed for all i, j(≤i), and b, and for . The three-quarter transformed integrals 

are collected in fixed-size bins that are written to disk when full. We use the compact 

DDI library
33

 in GAMESS for communication, and achieve high CPU efficiency by 

choosing the bin size the same size of disk cache, for instance, 2 or 8 MB. This reduces 

disk I/O time significantly, as writing to the disk cache is more than ten times faster than 

to the disk itself. The computational cost of this step, both formal and actual, is O(o
2
vn

2
), 

where v is the number of virtual MOs. No screening of the (i|j) integrals is used in 

this transformation, as the canonical orbitals are usually delocalized, making the 

screening ineffective. The total disk storage required is o
2
vn/2, somewhat less that in 

Ref. 30 (o
2
n

2
/2). After the Μ loop has finished, all (i|bj) integrals have been calculated 

and stored. 

  In the fourth quarter transformation, 

   


  bjiCbjai a || ,                                               (6) 
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the outermost loop step is over batches of ij pairs. A block of (i|bj) integrals for all , b 

and a batch of ij pairs are read from disk and transformed. For a single (ij) orbital pair, 

this step requires a minimum array size of vn for storing the (i|bj) integrals and v
2
 for 

(ai|bj), in addition to the storage of the SCF coefficient matrix. However, efficiency is 

higher if as many pairs are processed together as possible. The computational cost of 

this step is O(o
2
v

2
n). The computational cost of the MP2 energy calculation is O(o

2
v

2
). 

If the memory demand is too high, the program can use multiple passes in the 

calculation of AO integrals to the third quarter transformation, with the AO integrals 

recalculated in each pass. The maximum memory size depends on the shell size s. 

This algorithm uses a two steps parallelization like in Ref. 29. In our algorithm, AO 

indices, (in reality shells,  in Figure 1), are distributed dynamically to each processor 

in the AO integral generation phase and subsequent phases up to the third quarter 

transformation. A subset of the three-quarter transformed (i|bj) integrals (all bs, all ij, 

ij and a subset of s) is stored on each node, with b running fastest, followed by ij and 

finally . The fourth quarter transformation and the MP2 energy calculation are 

parallelized by batches of occupied MO pairs ij. This parallelization is static, i.e. each 

process gets approximately the same number of ij pairs, because no cut-offs are 

included, and therefore the timings are the same for each pair. Prior to the fourth quarter 

transformation, each process reads its own three-quarter transformed integrals, and 

sends them, according to the ij indices, to the appropriate node. As a result, the  indices 

become scrambled; rather than reorder the integrals, each process reorders its copy of 

the AO coefficient matrix accordingly. In the final, computationally insignificant stage, 

the partial MP2 energies are accumulated on the master process. The required memory 

size for each quarter transformation is the same as the serial version and the disk storage 

size per process is o
2
vn/2nproc, where nproc is the number of the processors. The total 
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amount of network communication is o
2
vn, and it does not depend on the number of 

processors. This feature is suitable for the parallel computation. An in-core version is 

available for small molecules or a large number of processors, in which all (i|bj) 

integrals are stored in memory, not on disk.  

 

 

Table 1. Flop count, required memory, and total disk space for each step. 

 Flop count memory disk 

AO integral generation O(n
4
) s

3
n  

first quarter transformation O(on
4
) s

3
o  

second quarter transformation O(o
2
n

3
) so

2
n/2  

third quarter transformation O(o
2
vn

2
) k1sv (=2 or 8MB) o

2
vn/2 

fourth quarter transformation O(o
2
v

2
n) k2(vn+v

2
)  

MP2 energy calculation O(o
2
v

2
)   

k1, k2: batches of ij pair. 



 

 

do  (distributed dynamically) 

  do  = 1, nshells 

    do = 1,  

      Schwartz prescreening of (|) integrals 

      calculate   |  and store as elements of the matrix  ,T  in memory for all ,  , , and  

        transform to    



,

|
iocci CT   and store    ,| ii U  in memory for all i, , , and  

        screen of   |i  integrals 

        transform to    



,,

|
ijoccji CU   and store    ,,| ijji V  in memory for all i and j(≤i), , and  

    end do  

  end do  

  do all ij batch 

    transform to    



,,

|
ijbvirbji CV   for all b and  

    write    ,,| ijbbji W  on disk 

  end do ij batch 

end do  

do ij batch (distributed statically) 

2
8

 



 

 

  read    ,,| ijbbji X  from disk and send to an appropriate node for all b, partial ij of the node to send, and all  on this node 

  receive    ,,| ijbbji Y  from other nodes for all b and , and a batch of ij 

  transform to    
ijbavirbjai

,,
| CY   and store   ijbabjai ,,| Z  in memory for all a and b, and a batch of ij 

  calculate partial MP2 energy 

end do ij batch 

accumulate MP2 energy 

 

Figure 1. Outline of the parallel algorithm. 2
9
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2.4 Results and Discussion 

Test calculations on taxol (C47H51NO14, no symmetry) and luciferin (C11H8N2O3S2, 

no symmetry) were performed on a cluster of 3.0 GHz Pentium4 computers connected 

by gigabit Ethernet. Each node has 2GB dual-PC3200 DDR memory and a striped pair 

of 200GB disks, each with 8MB cache.  

  6-31G* and 6-311G** basis sets were used for taxol, and aug-cc-pVDZ and 

aug-cc-pVTZ basis sets were used for luciferin. Only the valence orbitals were 

correlated. Table 2 summarizes the details of the calculation (the number of basis 

functions, shells, correlated orbitals, virtual orbitals, and SCF cycles), and the required 

memory and disk size per process, and the total amount of network communication. 

Table 3 shows elapsed timings and speed-ups of SCF and MP2 single point calculations. 

An integral screening threshold of 10
-10

 was used in all calculations on taxol and 10
-11

 

on luciferin. The tighter threshold is required in the latter calculation because of the 

near-singularity of the augmented basis sets for luciferin (the lowest eigenvalue of the 

overlap matrix is 6.6x10
-8

). 

  As the data in Table 2 show, even the large calculation (taxol 6-311G**, almost 1500 

basis functions) can be easily accommodated by a single PC. This calculation needs less 

than 1 GB of fast memory and about 200 GB of disk space. 
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Table 2. Details of the calculations. 

  taxol luciferin 

  6-31G* 6-311G** aug-cc-pVDZ aug-cc-pVTZ 

Number of contracted basis functions 1032 1484 530 1198 

Number of basis shells 350 514 206 328 

Number of correlated orbitals 164 164 46 46 

Number of virtual orbitals 806 1196 422 948 

Number of SCF cycles 14 14 15 14 

     

Required memory size per processor /GB 0.67 0.96 0.05 0.16 

Total required disk size /GB 90 192 2 10 

Total amount of network communication /GB 90 192 2 10 

 

 

  As the timings in Table 3 show, in spite of its steeper formal scaling, the 

computational time for MP2 energy is commensurate with the SCF time. The parallel 

scaling of the code is excellent up to the largest number of nodes we have tried: For 

instance, on 16 processors the elapsed time for the MP2 calculation is 15.4 times faster 

(in average) than the single-processor time. This is a consequence of the high CPU 

efficiency of the code (88-98% on 16 processors) which is defined as the ratio of master 

node CPU and elapsed times. 
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Table 3. Elapsed times
a
 and speed-ups of SCF and MP2 calculations (minutes). 

Number of processors 1 2 4 8 16 

Taxol 6-31G*           

 tscf
b
 323.7(100%) 160.6(99%) 82.6(99%) 42.6(96%) 25.0(84%) 

 sscf
c
 1.00 2.02 3.92 7.60 12.94 

 tmp2
d
 611.3(90%) 305.0(90%) 152.1(91%) 78.5(88%) 38.7(89%) 

 smp2
e
 1.00 2.00 4.02 7.78 15.80 

 6-311G**      

 tscf
b
 1051.5(100%) 520.2(100%) 263.8(99%) 137.6(97%) 73.5(89%) 

 sscf
c
 1.00 2.02 3.99 7.64 14.31 

 tmp2
d
 1898.2(92%) 975.0(90%) 483.7(91%) 242.9(91%) 123.3(88%) 

 smp2
e
 1.00 1.95 3.92 7.81 15.40 

Luciferin aug-cc-pVDZ     

 tscf
b
 305.3(100%) 159.5(100%) 77.8(100%) 39.1(99%) 20.0(97%) 

 sscf
c
 1.00 1.91 3.92 7.81 15.26 

 tmp2
d
 114.3(99%) 58.2(99%) 29.0(98%) 14.8(98%) 7.5(97%) 

 smp2
e
 1.00 1.96 3.94 7.73 15.19 

 aug-cc-pVTZ     

 tscf
b
 3814.1(100%) 2062.4(100%) 971.0(100%) 487.1(100%) 244.0(99%) 

 sscf
c
 1.00 1.85 3.93 7.83 15.63 

 tmp2
d
 1452.7(100%) 710.5(99%) 367.9(98%) 182.3(96%) 96.1(98%) 

  smp2
e
 1.00 2.04 3.95 7.97 15.12 

a
CPU efficiency is shown in parentheses. 

b
Elapsed time of SCF calculation. 

c
Speed-up of SCF calculation. 
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d
Elapsed time of MP2 calculation. 

e
Speed-up of MP2 calculation. 

 

 

  Table 4 shows the master node CPU and elapsed timings of the individual steps for 

the 6-311G** calculation on taxol. It is not possible to break down the elapsed time of 

the first steps (from AO integral generation to third transformation) and only the total is 

shown. Though the CPU timing ratios of the AO integral generation and each quarter 

transformation vary with the number of processors, the speed-up of the first step is 

almost proportional to the number of processors. The CPU efficiency of the first step is 

over 99%, in spite of writing the intermediate integrals on disk. This high efficiency is 

achieved by using an array size in the third transformation that is the same as the disk 

cache size. This way, the disk writing effectively overlaps with the CPU calculation. 

The lower CPU efficiency of the fourth transformation (including MP2 energy 

calculation) comes from reading the intermediate integrals from disk and from network 

communication. In this example, the CPU efficiency of the fourth transformation varies 

between 52% and 58%; it shows no systematic variation with the number of processors. 

The most time-consuming step is the first transformation for the 6-311G** basis, and 

the second transformation for the 6-31G* basis. As Table 4 shows, the ratio of the first 

to the second quarter transformation for the 6-311G** basis is only about 1.5, much less 

than the ratio n/o=9, showing the efficiency of integral screening. The percentages of 

the (|) integrals skipped in the first quarter transformation, and the (i|) 

integrals skipped in the second quarter transformation are 94.9% and 75.9% for 

6-311G** and 93.4% and 72.6% for 6-31G* basis sets, respectively. The speed-ups on 2 

processors, for instance, in luciferin aug-cc-pVTZ, are slightly higher than the 
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theoretical upper limit. It may happen that processor cache hit ratios on 2 processors are 

better than the ratios on 1 processor. 

 

 

Table 4. CPU and elapsed times of each step for 6-311G** calculation on taxol 

(minutes). 

Number of processors 1 2 4 8 16 

CPU time      

AO integral generation 318.3 162.6 79.1 40.7 19.6 

1st transformation 535.6 269.6 134.1 63.7 29.8 

2nd transformation 372.7 185.4 93.2 48.6 25.1 

3rd transformation  266.1 136.0 68.1 35.3 18.4 

AO-3rd transformation 1535.3 776.0 385.2 193.7 95.6 

4th transformation  

+ MP2 energy calculation 
205.0 104.9 53.2 26.4 13.3 

total 1740.2 880.9 438.5 220.1 108.8 

Elapsed time      

AO-3rd transformation 1544.9 773.5 388.3 194.9 97.9 

4th transformation  

+ MP2 energy calculation 
353.2 201.6 95.4 48.0 25.4 

total 1898.2 975.0 483.7 242.9 123.3 

 

 

Figure 2 shows the speed-ups, defined as the ratios of elapsed times, of the 6-311G** 

calculation on taxol and the aug-cc-pVTZ calculation on luciferin. The speed-ups are 
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almost linear, indicating the high parallel efficiency. 
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Figure 2. Speed-up ratios of the 6-311G** calculation on taxol and the aug-cc-pVTZ 

calculation on luciferin. 

 

 

As Table 3 shows, for a medium-sized molecule with large basis set (luciferin 

aug-cc-pVTZ), MP2 is significantly less expensive than SCF. Moreover, with three 

marginal exceptions (luciferin aug-cc-pVDZ on 8 or 16 processors and aug-cc-pVTZ on 

16 processors), the parallel speed-up of MP2 is higher than that of SCF. The slightly 

lower parallel speed-ups for the luciferin calculations arise from imperfect load 

balancing, caused by the relatively few and large shells in these calculations. 
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  As a preliminary application to grid computing, a larger calculation (a segment of 

hydrogen terminated (5,0) carbon nanotube, C130H10) with the 6-31G* basis (1970 

contracted basis functions) was run in a GRID computing environment on a total of 128 

processors (64 Hitachi SR-11000 and 64 Hitachi HA-8000) at the NAREGI computer 

center (Okazaki, Japan). The SR-11000 is IBM Power-4 compatible while the HA-8000 

is essentially a 3 GHz Intel Xeon processor. Elapsed time for the MP2 energy 

calculation was less than 2 hours (117 min), and CPU efficiency was high (94 %), even 

on this heterogeneous system. For comparison, the elapsed time for the SCF procedure 

was 52 minutes using a new, highly efficient two-electron integral program for 

GAMESS. 

 

 

2.5 Conclusions 

We have developed a parallel algorithm for MP2 energy calculation with two-step 

parallelization and dynamic load-balancing. The parallel efficiency of the algorithm is 

very good. For moderately large calculations (1000-2000 basis functions), the cost of 

MP2 is comparable to that of SCF. The CPU efficiency of the present algorithm is high, 

i.e. the elapsed time is only slightly longer than the CPU time. Using this algorithm, it is 

entirely practical to calculate the MP2 energies of moderately large molecules. 
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Chapter III 

 

A New Parallel Algorithm for MP2 Energy Gradient Calculations 

(Ishimura,K; Pulay, P.; Nagase S. J Comput Chem 2007, 28, 2034.) 

 

 

3.1 Abstract 

A new parallel algorithm has been developed for calculating the analytic energy 

derivatives of full accuracy second order Møller-Plesset perturbation theory (MP2). Its 

main projected application is optimization of geometries of large molecules in which 

non-covalent interactions play a significant role. The algorithm is based on the two-step 

MP2 energy calculation algorithm developed recently and implemented into the 

quantum chemistry program GAMESS. Timings are presented for test calculations on 

taxol (C47H51NO14) with the 6-31G and 6-31G(d) basis sets (660 and 1032 basis 

functions, 328 correlated electrons) and luciferin (C11H8N2O3S2) with aug-cc-pVDZ and 

aug-cc-pVTZ (530 and 1198 basis functions, 92 correlated electrons). The taxol 

6-31G(d) calculations are also performed with up to 80 CPU cores. The results 

demonstrate the high parallel efficiency of the program.
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3.2 Introduction 

   The determination of molecular geometries is one of the basic tasks for quantum 

chemistry. The most widely used computational method for large molecules is density 

functional theory (DFT). However, the commonly used functionals are unable to 

describe the dispersive component of non-covalent interaction which is important for 

host-guest molecules, self-assembly, molecular recognition, etc. There is much work 

carried out in this area, both by designing new functionals and by adding 

semiempirical or empirical correction terms to standard DFT but no generally accepted 

method has emerged yet. The least expensive ab initio method that includes dispersion 

in a theoretically correct way is second-order Møller-Plesset perturbation theory 

(MP2)
1
. If dispersion is a significant component of the intermolecular interaction, it is 

important to optimize molecular geometries at the MP2 level, and this generally 

requires the calculation of analytical forces of the MP2 energy. Both MP2 energies and 

in particular MP2 forces are computationally much more demanding and higher 

scaling than DFT forces. 

   Analytical MP2 gradients were first implemented by Pople et al. in 1979,
2
 and 

since then several groups
3-11 

have proposed modified algorithms. In general, direct and 

semi-direct algorithms require very large memory space, of the order O(n
4
) for the 

storage of two-electron molecular orbital (MO) integrals and intermediate data, where 

n is the number of basis functions. To reduce the required memory size, multiple pass 

techniques
3-6

 were introduced in which two-electron atomic orbital (AO) integrals and 

their derivatives are generated many times. This reduces the required memory size to 

O(n
2
) or O(n

3
) at the expense of CPU time. Saebø et al.

7
 developed an AO based MP2 

gradient algorithm in which intermediate data of O(n
4
) order are stored on disk. This 

reduces the required random-access memory size to O(n
2
) without increasing the 
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number of CPU cycles, allowing larger calculations. However, all are serial algorithms 

and limited by CPU, memory and disk capacity. Nielsen
8
 developed a parallel direct 

algorithm in which multiple passes are introduced. The penalty is that AO integrals and 

their derivatives are recomputed many times. Fletcher et al.
9-11

 also developed a 

parallel algorithm using Distributed Data Interface,
12

 which was implemented in the 

quantum chemistry program GAMESS.
13

 This algorithm stores all intermediate data in 

a distributed fashion in the aggregate fast memory of the computer cluster. The total 

fast memory needed still scales as O(n
4
) but individual CPUs need only O(n

4
)/P where 

P is the number of CPUs. This algorithm is best suited to massively parallel computers. 

Fletcher et al.
9-11

 report high parallel efficiency using fast interconnect between the 

CPUs. Several less expensive MP2 gradient methods have been proposed in order to 

reduce the computational time and resources. Local MP2
14,15

 and Density Fitting 

(Resolution of Identity, RI) MP2
16,17

 can treat very large molecules by localizing 

orbitals or introducing auxiliary basis sets. However, these methods have to be 

calibrated against the full MP2 gradient because they include approximations or 

cut-offs. 

   In this paper, we present a new parallel closed-shell MP2 energy gradient algorithm 

based on the MP2 energy algorithm that we have developed recently.
18

 In the energy 

algorithm, a two-step parallelization strategy was used. In the first step, the parallelized 

outermost loop goes over an AO shell index. The first step includes AO integral 

generation and the first three quarter transformations. The second step includes the 

final quarter transformation and MP2 energy calculation, and is parallelized by the 

occupied MO index pair. We have obtained high parallel efficiency and overall 

computational speed using a modest PC cluster connected by gigabit Ethernet because 

there are no redundant calculations, and the total amount of network communication is 
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constant regardless of the number of CPUs. Based on the two-step parallelization idea, 

we have developed a fast MP2 gradient program with high parallel efficiency that is 

appropriate for intermediate parallelization. 

 

 

3.3 Theory 

   In the following, i, j, and k denote occupied MOs, I and J denote frozen-core 

occupied MOs, a, b, and c denote virtual MOs, A and B denote frozen virtual MOs, p 

and q denote any MOs, and , , , and  denote AOs. The summation ranges are 

denoted as occ, oact, vall, vact, and all, and refer to all occupied MOs, active occupied 

MOs, all virtual MOs, active virtual MOs, and all MOs, respectively. The closed-shell 

MP2 energy is given by 

 
oact

ij

vact

ab

ab

ij jbiatE |MP2
,                                         (1) 

where the spatial orbital amplitude is defined as 

   
ab

ij

ab

ij
D

jaibjbia
t

||2 
 ,                                         (2) 

   
AO

||


 bjai CCCCjbia ,                              (3) 

baji

ab

ijD   .                                         (4) 

)|( jbia  is a two-electron integral in Mulliken notation and p  is an orbital energy. 

Following Aikens et al.,
11

 the derivative of the closed-shell SCF+MP2 energy with 

respect to a nuclear Cartesian coordinate x can be written in the MO basis as 

          









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k
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pqpq
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occ

i

x
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x qkpkkkpqHPijijjjiiHE ||22||22 )2(

MP2SCF
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      
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where 

   
oact

k

vact

ab

ab

ikij kbjatIW |2)2(
,                                 (6) 

   
oact

ij

vact

c

ac

ijab jcibtIW |2)2( ,                                  (7) 

   
oact

jk
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jkai kbijtIW |4)2( ,                                  (8) 
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1
,                                    (9) 

   baabab PIIW   )2()2(

2

1
,                                    (10) 

  iaiai PIIW )2()2(  ,                                           (11) 

and 

       
all

pq

pqij qjpiijpqPIIIW ||2)2()2( .                          (12) 

The occupied-occupied and virtual-virtual one-particle density matrix elements are 

defined as 

0)2( IJP ,                                                    (13) 
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The virtual-occupied one-particle density matrix terms are obtained by solving the 

following coupled perturbed Hartree-Fock (CPHF) equations derived from the 

Z-vector method,
19

 

         ai
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j
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b
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where the MP2 Lagrangian is written as 
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. 

Although most of the terms in Eqs. 5-20 are calculated in MO basis, some terms are 

evaluated in AO basis to reduce the computational time or disk space in this new 

algorithm. The first, second, and third terms in Eq. 5 are calculated in the AO basis, 
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where HFP  is the SCF density matrix and  
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The first, second, and fourth terms in the MP2 Lagrangian (Eq. 19) are calculated in 

the AO basis, 
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 IIIWij

)2(  in Eq. 5 is calculated in AO basis, 
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The overlap integral terms are also evaluated in AO basis, 
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The last term in Eq. 5 is calculated in the AO basis, 
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3.4 MP2 gradient algorithm 

  The pseudocode of the new algorithm is shown in Figure 1. The formal 

computational costs, required memory and disk sizes, and the total amount of network 

communication are shown in Table 1. We first describe the serial version. The 

algorithm consists of 5 steps. Capital Greek letters, , , , and  denote shells of 

AOs. 



do  (distributed dynamically) 

  do  

    do  (≤) 

      Schwartz prescreening of (|) 

      calculate (|) for all , , , and  

      transform to (|j) for all j, , , and  

      screen of (|j) 

      transform to (i|j) for all i, j, , and  

    end do  

  end do  

  transform to (ai|j) and save on disk for all i, j, a, and  

end do  

 

do a (distributed statically) 

  read (ai|j) from disk and send to an appropriate CPU for all i, j,  on this CPU, and one a 

  receive (ai|j) from other CPUs for all i, j, , and one a 

4
7

 



  transform (ai|bj) for all i, j, b, and one a 

  transform (ai|kj) for all i, j, k, and one a 

  calculate MP2 energy 

  calculate ab

ijt ,  IWij

)2( ,  IWab

)2( ,  IWai

)2( , )2(

ijP , and )2(

abP  for all i, j, b, and one a 

  transform to a

ijt  and send to an appropriate CPU for all i, j, , and one a 

  receive a

ijt  and store on disk for all i, j,  on this CPU, and a from other CPUs 

end do a 

accumulate and broadcast MP2 energy,  IWij

)2( ,  IWab

)2(
,  IWai

)2(
, )2(

ijP , and 
)2(

abP  for all i, j, a, and b 

calculate  IIWij

)2( ,  IIWab

)2(
, and 

)2('

P  for all i, j, a, b, , and  

 

do  (distributed statically) 

  read a

ijt  from disk for all i, j, a, and  

  transform to 

ijt  and store on disk for all i, j, , and  

  do  

    do  (≤) 

      Schwartz prescreening of (|) 

4
8

 



      calculate (|) for all , , , and  

      calculate 2,1

L  for all , and  

      transform to (|j) for all j, , , and  

      calculate 4

iL  for all i and 

    end do  

  end do  

end do  

accumulate and broadcast 2,1

L  and 4

iL  for all i, , and  

calculate aiL  for all i and a 

 

do CPHF cycle 

  do  

    do  (≤) (distributed dynamically) 

      Schwartz prescreening of (|) 

      calculate (|) for all , ,, and  

      calculate Fock-like matrix of CPHF equations 

4
9

 



    end do  

  end do  

  accumulate Fock-like matrix 

  solve CPHF equations in the AO basis 

end do CPHF cycle 

obtain and broadcast 
)2(

aiP  

calculate  IIWai

)2(
, )2(

P ,  IIIWij

)2( , and )2(

W  all i, j, a, , and  

 

do  (distributed dynamically) 

  calculate xH  and xS  terms for all  and  ≤ 

end do  

do  (distributed statically) 

  do  

    transform to 


it  for all i, , , and  

    do  

      prescreen (|)
x
 

5
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      transform to 

t  for all , , , and  

      calculate (|)
x
 terms for all ≤, , , and  

    end do  

  end do  

end do 

 

Figure 1. Outline of the MP2 Gradient Algorithm. 
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Table 1. Formal Flop Count, Required Memory Size, Total Disk Size, and Total Amount of Network Communication of Each Step
a
. 

 

 

 

 

 

 

 

a
Abberviations: n = number of basis functions; o = number of occupied MOs; o’ = number of active occupied MOs; s = number of basis 

functions in a shell, e.g., 4 for a sp shell; v = number of virtual MOs, v’ = number of active virtual MOs 

b
Extra memory required for parallel calculation is shown in brackets. 

 Flop Memory Disk Communication 

Step 1 O(n
4
)+O(o'n

4
)+O(o'on

3
)+O(o'ovn

2
) s

3
n+s

3
o'+so'on+disk cache o'ovn  

Step 2 O(o'ovn
2
)+O(o'v'n

3
)+O(o'

2
v'

2
n) o'on+2o'

2
v'+o'

2
n+3n

2
+[o'

2
n]

b
 o'ovn+o'

2
v'n o'ovn+o'

2
v'n 

Step 3 O(o'
2
v'n

2
)+O(n

4
)+O(o'n

4
)+O(o'

2
n

3
) so'

2
v'+o'

2
v'+s

3
n+n

2
+s

3
o'+o'n o'

2
n

2
  

Step 4 O(n
4
) 4n

2
   

Step 5 O(n
2
)+O(o'n

4
)+O(o'

2
n

3
)+O(n

4
) s

2
o'

2
+s

2
o'n+s

4
+2n

2
 o'

2
n

2
  5

2
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Step 1: The integral transformation part is based on the algorithm of MP2 energy 

calculations developed recently.
18

 The outermost loop up to the third quarter 

transformation is over AO shell . An AO integral block (|) is generated for one 

, , , and all . (|) denotes all AO integrals (|) for , , , 

and . Before the AO integral generation, Schwartz prescreening
20-22

 is employed to 

skip the calculation of insignificant integrals, as in the SCF calculation. The 

computational cost in this step is formally O(n
4
), but actually O(n

2
~n

3
) because of the 

screening, where n is the total number of basis functions. The required memory size is 

s
3
n, where s is the maximum number of basis functions in a shell, for instance, 1 for s 

function and 4 for sp function. Only one of the three permutation symmetries, 

(|)=(|) is used in the algorithm, that is, the same AO integrals are generated 

4 times. This penalty is, however, small, as Pulay et al. pointed out for MP2 energy 

calculations.
23

 After the generation of AO integral blocks, the first quarter 

transformation, 

   
AO

jCj


  ||                                    (35) 

is performed for all active occupied MOs, j, , , and . The formal 

computational cost is O(o'n
4
) and the memory size is s

3
o', where o' is the number of 

active occupied MOs. The second quarter transformation, 

   
AO

i jCji


  ||                                      (36) 

is performed for all occupied MOs, i, j, , and , then the half-transformed 

integrals (i|j) are accumulated. The formal computational cost is O(o'on
3
) and the 

memory size is so'on, where o is the number of all occupied MOs. The (|j) integrals 

are screened prior to this transformation. The third quarter transformation, 
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   
AO

||


  jiCjai a                                       (37) 

is performed for all virtual MOs, a, i, j, and , then the integrals (ai|j) are stored 

on disk. The computational cost is O(o'ovn
2
), where v is the number of all virtual MOs. 

The memory size is the same size of disk cache, for instance, 8 or 16MB, to reduce 

disk I/O time. High CPU efficiency is achieved in this step because writing data to the 

disk cache is more than 10 times faster than to the disk itself. Screening of (i|j) is not 

exploited in this transformation, as canonical orbitals are delocalized, making the 

screening ineffective. The disk storage requirement is o'ovn. 

Step 2: The outermost loop is over virtual MO, a. A block of (ai|j) integrals for all i, j, 

, and one a, is read from disk. The fourth quarter transformations, 

   
AO

b jaiCbjai


 || ,                                       (38) 

for all i, j, virtual MOs, b, and one a and 

   
AO

k jaiCkjai


 || ,                                       (39) 

for all i, j, occupied MOs, k, and one a are performed. The computational cost is 

O(o'ovn
2
) and the memory size is 2o'on. Using these MO integrals, the MP2 energy, 

ab

ijt ,   IWij

)2( ,  IWab

)2(
,  IWai

)2(
, )2(

ijP , and 
)2(

abP  in Eqs. 1, 2, 6-8, and 13-18 are 

calculated. The computational cost is O(o'v'n
3
) and the memory size is 

o'on+2o'
2
v'+o'

2
n+3n

2
, where v' is the number of active virtual MOs. The first 

back-transformation, 


vact

b

ab

ijb

a

ij tCt 


                                               (40) 

is performed for all active MOs i, j,  and one a, and a

ijt  is stored on disk. The 
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computational cost is O(o'
2
v'

2
n) and the memory size is o'

2
n. The disk storage size is 

o'
2
v'n. At the end of this step,  IIWij

)2( ,  IIWab

)2( , and )2('

P  in Eqs. 9, 10, and 26 are 

calculated. 

Step 3: The outermost loop is over AO shell . a

ijt  is read from disk and the second 

back-transformation, 


vact

a

a

ijaij tCt 



                                               (41) 

is performed for all active MOs, i and j, , and  and 

ijt  is stored on disk. 

ijt   

is overwritten on the a

ijt  file. The computational cost is O(o'
2
v'n

2
) and the memory 

size is (s+1)o'
2
v'. The disk storage size is o'

2
n

2
. Schwartz prescreening for AO integrals 

is performed, then an AO integral block (|) is generated for one , , , and all 

. One permutation symmetry (|)=(|) is also used in this step. 2,1

L  in Eq. 

25 is calculated for all  and . The formal computational cost and the memory 

size for (|) and 2,1

L  are O(n
4
) and s

3
n+n

2
, respectively. The first 

transformation, 

   
AO

jCj


  ||                                       (42) 

is performed for all j, , , and . 4

iL  in Eq. 27 is calculated for all i and 

. The formal computational cost and the memory size for the first transformation 

and 4

iL  are O(o'n
4
)+O(o'

2
n

3
) and s

3
o'+o'n. After the  loop finishes, full aiL  in Eq. 

20 is calculated using 2,1

L  and 4

iL . 

Step 4: CPHF equations are solved in AO basis
24-26

 using the DIIS method
27

 to 

calculate 
)2(

aiP . The outermost loop is over AO shell, , and the next is over AO shell, 

. The formal computational cost is O(n
4
) and the memory size is 4n

2
. After 

)2(

aiP  is 

converged,  IIWai

)2(
, )2(

P ,  IIIWij

)2( , and )2(

W  in Eqs. 11, 22, 29, 30, and 32 are 
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calculated. 

Step 5: The derivative terms of the core Hamiltonian integral xH  and the overlap 

integral xS  are calculated for all  and . The outermost loop is over AO shell, , 

during this calculation. The computational cost and the memory size are O(n
2
) and 4n

2
, 

respectively. The third and fourth back-transformations, 


oact

j

ijji tCt 



                                                (43) 

and 


oact

i

iitCt 



                                                (44) 

are performed and the derivative terms of the two-electron integral (|)
x
 are 

calculated for , , , and . The outermost loop is over AO shell . 

Only one permutation symmetry, (|)
x
=(|)

x
, is used. The formal 

computational cost and the memory is O(o'n
4
)+O(o'

2
n

3
)+O(n

4
) and s

2
o'

2
+s

2
o'n+s

4
+2n

2
, 

respectively. This step yields the final SCF+MP2 energy gradient values. 

  The required memory sizes in Steps 1 and 3 can be reduced by introducing multiple 

passes, in which AO integrals are calculated several times up to the number of basis 

function in a shell. The penalty is small compared with the total cost of the MP2 

gradient calculation. 

  The framework of the parallel version is the same as that of the serial version. In 

Step 1, AO shells  of the outermost loop are dynamically distributed to each CPU. In 

Step 2, virtual MOs a of the outermost loop are statically distributed. (ai|j) is read 

from disk and sent to an appropriate CPU before the fourth transformations. After the 

first back-transformation, a

ijt  is sent to an appropriate CPU. The AO shell indices  

for a

ijt  are statically distributed. The extra required memory sizes for receiving data 
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are o'on for (ai|j) and o'
2
n for a

ijt . The MP2 energy, )2(

ijP , )2(

abP ,  IWij

)2( ,  IWab

)2( , 

and  IWai

)2(  are accumulated to the master CPU at the end of the loop and 

broadcasted to all CPUs.  IIWij

)2( ,  IIWab

)2( , and )2('

P  are calculated in all CPUs 

using full )2(

ijP  and )2(

abP . The penalty is negligible because the cost is O(n
3
). In Step 3, 

AO shells  of the outermost loop are distributed as decided in Step 2. The information 

of this  distribution is kept until Step 5. At the end of the step, 2,1

L  and 4

iL  are 

accumulated and broadcasted. Finally, aiL  is calculated in all CPUs. In Step 4, AO 

shells  of the second outermost loop are distributed dynamically and the CPHF 

equations are solved iteratively. After )2(

aiP  is converged,  IIWai

)2( , )2(

P ,  IIIWij

)2( , 

and )2(

W  are calculated in all CPUs. In Step 5, AO shells  of the outermost loop are 

dynamically distributed during the derivative calculation of the one-electron and 

overlap integrals. AO shells  of the outermost loop are statically distributed as 

decided in Step 2 during the derivative calculation of the two-electron integrals. At the 

end of the step, partial MP2 gradient values are accumulated. 

   Because we generate each AO integral only once, and do not broadcast all 

intermediate integrals to all CPUs in the two-step parallelization, total computational 

cost and the total disk storage size are the same as those of the serial version and the 

total amount of data communication is essentially constant, o'ovn for (ai|j) and o'
2
v'n 

for a

ijt  in Step 2. Furthermore, all fourth and fifth order calculations are parallelized 

by distributing AO or MO indices. 

 

 

3.5 Results and Discussion 

  The algorithm was implemented into the GAMESS package. Test calculations on 

taxol (C47H51NO14, no symmetry) and luciferin (C11H8N2O3S2, no symmetry) were 
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performed on a 3.2-GHz Pentium4 cluster connected by a gigabit Ethernet. Each CPU 

has 4-GB dual-PC3200 DDR2 memory and a 400-GB hard disk with an 8-MB cache. 

  The 6-31G and 6-31G(d) basis sets were used for taxol, and the aug-cc-pVDZ and 

aug-cc-pVTZ basis sets were used for luciferin. Only the occupied core MOs were 

frozen. Table 2 summarizes the details of the calculations, the required memory size 

per CPU, the total required disk size, and the total amount of network communication. 

An integral screening threshold of 10
-10

 was used in all calculations on taxol and 10
-11

 

on luciferin. The tighter threshold is required in the luciferin calculation because of the 

near-singularity of the augmented basis sets. The required memory and disk sizes are 

moderate, so that test calculations can be performed on one or two PCs. 



Table 2. Details of the Calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
Same as the number of active virtual MOs. 

  Taxol   Luciferin 

  6-31G 6-31G(d)   aug-cc-pVDZ aug-cc-pVTZ 

Number of contracted basis functions 660 1032  530 1198 

Number of shells in the basis set 288 350  206 328 

Number of correlated electrons 328 328  92 92 

Number of occupied MOs 226 226  72 72 

Number of active occupied MOs 164 164  46 46 

Number of virtual MOs
a
 434 806  422 946 

Number of SCF cycles 16 16  24 23 

Number of CPHF cycles 21 21  22 21 

Required memory size per CPU/GB 0.78 1.84  0.09 0.33 

Total required disk size/GB 147 426  10 49 

Total amount of network communication/GB 147 426  10 49 

5
9
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  Table 3 shows single processor CPU and elapsed timings for the SCF procedure and 

for each step of the MP2 gradient calculation as described in the previous section. We 

could not complete the calculation for taxol with the 6-31G(d) basis (n=1032) because 

the total required disk space was over 400GB. The most CPU intensive steps are Step 1 

for taxol and Step 4 for luciferin. The ratios of the number of occupied MOs and basis 

functions are 2.9 for taxol, 7.4 for luciferin aug-cc-pVDZ, and 16.6 for luciferin 

aug-cc-pVTZ. The number of occupied MOs is relatively large for taxol. Step 1 (from 

the AO integral generation to the third quarter integral transformation) takes much time 

for taxol because the maximum formal computational cost during the transformations 

has terms that scale formally as O(o'on
3
), in addition to the first quarter transformation 

that scales as O(o'n
4
). In luciferin, the number of basis functions is large but the 

number of correlated orbitals is small, and the calculations are dominated by the 

formally O(n
4
) integral evaluation step that has to be repeated in every CPHF step. The 

difference between CPU and elapsed timings comes from disk I/O, especially in Steps 

2 and 3. Reading (ai|j) and writing a

ijt  are performed in Step 2, and reading a

ijt  

and writing 
ijt  are performed in Step 3. The difference of timings in Step 1 is 

negligible in spite of writing huge amounts of data (ai|j) to disk, for instance, 85GB 

for the taxol 6-31G calculation. As in the MP2 energy calculation, (ai|j) is written to 

disk in blocks that match the size of the disk cache. This measure reduces the timing 

for disk writing very much. 



Table 3. Single Processor CPU and Elapsed Times for the SCF Procedure and for the Steps of the MP2 Gradient, in Hours 

  
    SCF Step 1 Step 2 Step 3 Step 4 Step 5 

MP2 gradient 

(Step 1 to Step 5) 

Taxol 6-31G CPU 1.22 4.14 1.91 2.62 2.19 1.26 12.11 

  Elapsed 1.22 4.20 5.01 4.00 2.19 1.96 17.36 

Luciferin aug-cc-pVDZ CPU 5.75 2.06 0.11 1.66 6.76 2.95 13.54 

  Elapsed 5.75 2.06 0.55 2.01 6.76 2.95 14.33 

 aug-cc-pVTZ CPU 67.72 24.54 1.10 22.51 78.67 31.31 158.12 

  Elapsed 67.74 24.56 3.76 25.05 78.67 31.54 163.58 

6
1
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    Table 4 shows elapsed timing, speedup ratios, and CPU efficiency of the master 

CPU for parallel calculations from 1 CPU to 32 CPUs and Figure 2 shows speedup 

ratios for taxol calculations. The speedup on 2 CPUs is set to be 2.0 for taxol 6-31G(d) 

calculation. The speedups are very good up to the maximum 32 CPUs we have tried. 

For instance, on 32 CPUs we get speedup ratios ranging from 28.2 to 33.0, 

corresponding to 88 to 103 % of linear speedup. This indicates that the present 

program has high parallel efficiency. In some cases, particularly on a small number of 

CPUs, we got superlinear speedups. CPU efficiency increases at first with the number 

of CPUs because the block size of the disk reading in Step 2 increases with increasing 

number of CPUs. Over 4 or 8 CPUs, we experience a slight deterioration in CPU 

efficiency because it becomes difficult to achieve completely uniform load balancing. 

However, the effect is small up to 32 CPUs, as shown in Table 4 and Figure 2. 
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Figure 2. Speedup Ratios for Taxol 6-31G and 6-31G(d) Calculations. 



 Table 4. Elapsed Times (Hours), Speedups, and CPU efficiencies (%) of the Master CPU for parallel MP2 gradient calculations. 

  

 

Number of CPUs 1 2 4 8 16 32 

Taxol 6-31G  Time 17.36 8.09 3.82 1.92 0.97 0.53 

  Speedup 1.0 2.1 4.5 9.0 17.9 33.0 

  CPU effi. 69.8 76.9 81.2 78.1 76.7 72.9 

 6-31G(d)  Time  31.11 15.11 7.57 3.87 2.05 

  Speedup  2.0 4.1 8.2 16.1 30.4 

  CPU effi.  80.2 85.6 82.3 78.6 75.8 

Luciferin aug-cc-pVDZ  Time 14.33 6.94 3.44 1.74 0.92 0.50 

  Speedup 1.0 2.1 4.2 8.2 15.5 28.9 

  CPU effi. 94.5 97.5 97.2 97.8 94.2 91.8 

 aug-cc-pVTZ  Time 163.58 81.06 40.66 20.59 10.75 5.80 

  Speedup 1.0 2.0 4.0 7.9 15.2 28.2 

  CPU effi. 96.7  97.3 98.0 98.2 98.0 95.6 

6
3
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    The taxol 6-31G(d) calculation was also performed using dual-core, dual-processor 

3.0GHz Xeon workstations to check the parallel efficiency on a larger number of 

processors. Each node has 4 CPU cores, 8-GB FB-DIMM 667MHz memory, and two 

500-GB hard disks. Note that this is an unfavorable configuration for correlated 

calculations because four processes compete for both fast memory and disk access on 

the same node. In spite of this, as shown in Figure 3, the program maintains high 

parallel efficiency for up to 80 CPU cores. The speedup for 4 cores was set to be 4. 

From these data, we expect that in a more advantageous 2 processor core configuration, 

reasonably high parallel efficiency would be maintained for 64-128 processors. 
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Figure 3. Speedup Ratios for Taxol 6-31G(d) Calculation Using a Dual-core 

Dual-Processor Xeon Cluster. 

 

 

3.6 Conclusions 

  We have developed a new parallel algorithm for MP2 energy gradient calculation 
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based on the parallel algorithm recently developed for MP2 energy calculation using 

two-step parallelization. The program allows routine calculation of MP2 gradients for 

relatively large basis sets (660-1200 basis functions) on medium-sized PC or 

workstation clusters with good parallel efficiency and CPU utilization. 
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Chapter IV 

 

Applications of MP2 calculations 

 

 

4.1 Introduction 

    New parallel algorithms for MP2 energy and gradient calculations are developed in 

Chapters II and III. In this chapter, these are applied to the energy and geometry 

calculations of several molecular systems. 

Geometries of the lead analogues of alkynes with very bulky substituents are 

optimized using the developed programs, and are compared with those optimized using 

the DFT method at the B3PW91 level. MP2 is the simplest method that includes 

electron correlation important for non-covalent interactions. However, MP2 tends to 

overestimate the interactions. This shortcoming can be improved by introducing 

different scaling parameters for the same-spin and opposite-spin components of MP2 

correlation energies, as demonstrated by Grimme.
1
 To perform the SCS 

(spin-component scaled)-MP2 calculations, an efficient parallel program is 

implemented. Geometry optimization and binding energy calculations are performed for 

platinum complexes as well as benzene-benzene and naphthalene-naphthalene dimers, 

using both MP2 and SCS-MP2 methods. 
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4.2 Structures of the lead analogue of alkynes 

   Multiple bonds between heavier elements are of wide interest in main-group 

chemistry. Among these, the heavier group 14 element analogues of alkynes, REER (E 

= Si, Ge, Sn, Pb), have attracted great interest as challenging synthetic targets.
2
 Up to 

now, R
si
SiSiR

si
 (R

si
 = SiiPr-{CH(SiMe3)2}2),

3
 Ar’GeGeAr’ (Ar’ = C6H3-2,6-(C6H3-2,6- 

iPr2)2),
4
 BbtGeGeBbt (Bbt = C6H2-2,6-{CH(SiMe3)2}2-4-C(SiMe3)3),

5
 Ar’SnSnAr’,

6
 

and Ar*PbPbAr* (Ar* = C6H3-2,6-(C6H2-2,4,6-iPr3)2)
7
 have been synthesized and 

isolated. Bulky silyl and aryl groups play an important role in making these heavier 

analogues synthetically accessible and isolatable as stable compounds because they 

suppress isomerization and dimerization.
8
 As shown by X-ray crystal analysis, the 

heavier analogues have a trans-bent core skeleton, unlike the alkyne case. The 

trans-bending is due to the mixing of the low-lying vacant σ* orbital into the in-plane π 

orbital. This σ* mixing makes the π orbital slipped and weakened. However, the central 

Si-Si distance of R
si
SiSiR

si
 is considerably shorter than those of Si-Si double bonds,

3
 

while the Ge-Ge and Sn-Sn distances of Ar’GeGeAr’, BbtGeGeBbt, and Ar’SnSnAr’ 

are close to those of Ge-Ge and Sn-Sn double bonds.
4-6

 In sharp contrast, the X-ray 

crystal analysis of the heaviest analogue, Ar*PbPbAr*, has shown that the trans-bending 

is greatly increased and the Pb-Pb distance is much longer than the Pb-Pb single-bond 

distances of diplumbanes such as Ph3Pb-PbPh3.
7
 The singly bonded structure having no 

Pb-Pb π bond has been also confirmed by model calculations.
9
 The exceptional structure 

of Ar*PbPbAr* has been explained by the fact that the heaviest Pb atom has the 

strongest tendency to preserve the valence 6s electrons as lone-pair electrons in making 

bonds (Figure 1).
2,7 
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        S                                  M 

Figure 1. Singly (S) and multiply (M) bonded structures. 

 

    In an attempt to investigate whether Ar*PbPbAr* takes a multiply bonded structure 

or not, density functional calculations at the B3PW91 level have been very recently 

carried out because the molecular size is considerably large.
8g

 Here, geometry 

optimization was carried out at the MP2 level. The triple-ζ basis set
11

 augmented by two 

sets of d polarization functions (d exponents 0.213 and 0.062)
12

 and relativistic effective 

core potential
11

 were used for Pb, while the 6-31G(d) basis set was used for other 

atoms.
13

 These provide a total of 1,324 basis functions for Ar*PbPbAr*. Since all 

valence electrons were correlated in the MP2 calculations, the numbers of active 

occupied and virtual orbitals are 269 and 979, respectively. The time-dependent 

(TD)-B3PW91 method in the Gaussian 03 program
14

 was employed to calculate 

excitation energies. 

    To calibrate the reliability of the MP2 method, the singly bonded structure of 

Ar*PbPbAr* found from the X-ray crystal study was first optimized. As Table 1 shows, 

the Pb-Pb distance and Pb-Pb-C trans-bent angle optimized by the MP2 method are 

3.217 Å and 94.4º, respectively. 
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Table 1. Calculated and experimental geometrical parameters of the singly 

bonded structure of Ar*PbPbAr*. 

  B3PW91
a
 MP2 Exptl.

b
 

Pb-Pb (Å) 3.260 3.217 3.188 

Pb-Pb-C (º) 100.4 94.4 94.3 

C-Pb-Pb-C (º) 175.2 178.6   

a
 Reference 8g. 

b
 Reference 7. 

 

These values agree much better with the experimental values of 3.188 Å and 94.3º than 

the values of 3.260 Å and 100.4º optimized by the B3PW91 method. The core skeleton 

is nearly planar, as indicated by the C-Pb-Pb-C dihedral angle of 178.6º. Interestingly, a 

new structure was located as an energy minimum by switching the HOMO and LUMO 

levels of the singly bonded structure, as in the previous B3PW91 calculations.
8g

 As 

Table 2 and Figure 2 show, the newly located structure is much less trans-bent (112.1º) 

and has the shorter Pb-Pb distance of 3.024 Å, while it is 118.5º twisted around the 

Pb-Pb bond because of the bulk of the Ar* group. The Pb-Pb distance is longer than 

those of typical Pb-Pb single bonds. As is apparent from Figure 3, however, the newly 

located structure corresponds to a multiply bonded structure, since the central Pb-Pb 

bond consists of a σ bond, a somewhat distorted πdis bond (resulting from the twisting of 

the out-of-plane π orbital), and a slipped πslip bond (resulting from the mixing of σ* and 

in-plane π orbitals due to trans-bending).  
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Table 2. Geometrical parameters calculated for the multiply 

bonded structure of Ar*PbPbAr*. 

 
B3PW91

a
 MP2 

Pb-Pb (Å) 3.071 3.024 

Pb-Pb-C (º) 117.7 112.1 

C-Pb-Pb-C (º) 119.8 118.5 

a
 Reference 8g. 

 

 

 

Figure 2. Singly (S) and multiply (M) bonded structures of Ar*PbPbAr* optimized at 

the MP2 level. 

 

   UV-vis spectra provide important information. For Ar*PbPbAr*, two absorptions 

have been observed at 397 nm (ε = 29000) and 719 nm (ε = 5200) in n-hexane solution,
7
 

as in the cases of Ar’GeGeAr’ (371 and 501 nm)
3
 and Ar’SnSnAr’ (410 and 597 nm).

6
 

Table 3 compares the absorptions calculated using the TD-B3PW91 method and the 

observed values. For the multiply bonded structure of Ar*PbPbAr* optimized at the  

S M 
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Figure 3. σ, πdis, and πslip orbitals of the multiply bonded structure of Ar*PbPbAr* at the 

HF level, plotted with a value of 0.03 au. 

 

MP2 level, the two absorptions were calculated at 414 nm (f = 0.065) and 784 nm (f = 

0.029), which are assignable to the (πslip →πslip* + πdis → σ* + πdis → Ar*) and (πdis 

→πdis*) transitions, respectively. These values are closer to the observed values of 397 

and 719 nm (especially the πdis →πdis* absorption) than the values of 413 and 822 nm 

calculated using the B3PW91 optimized structure. This may suggest that the MP2 

structure is more reliable than the B3PW91 structure. For the MP2 and B3PW91 

πslip πdis 

σ 
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optimized singly bonded structures, only one strong absorption was calculated at 405 (f 

= 0.350) and 416 nm (f = 0.383), respectively, which is assignable to the πdis → σ* 

transition. Obviously, these results indicate that Ar*PbPbAr* has a multiply bonded 

structure in solution. 

 

Table 3. Calculated and observed UV-vis absorptions (nm) of the singly bonded 

structure of Ar*PbPbAr*.
a
 

Excitation 
Geometries 

Exptl. 
B3PW91

b
 MP2 

πslip →πslip* + πdis → σ* + πdis → Ar* 413 (f=0.141) 414 (f=0.065) 397 (ε=29000) 

πdis →πdis* 822 (f=0.025) 784 (f=0.029) 719 (ε=5200) 

a
 f=oscillator strength, ε in Lmol

-1
cm

-1
. 

b
 Reference 8g. 

 

In conclusion, MP2 provides more reliable structures for Ar*PbPbAr* than 

B3PW91. As verified from the calculations of UV-vis absorptions, Ar*PbPbAr* takes a 

multiple bonded structure in solution, although a singly bonded structure has been 

reported from the X-ray crystal study. 

 

 

4.3 Binding energies of platinum complexes with π-conjugate systems 

    Platinum complexes of organic molecules have attracted considerable interest since 

the synthesis of Pt(PPh3)2(C60) in 1991.
15-24

 Recently, calculations have been performed 

for the platinum complexes of corannulene (C20H10), sumanene (C21H12), fullerene (C60), 

and small π-conjugate molecules, C2H4-n(CH=CH2)n (n = 0 - 4), using a variety of 
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theoretical methods. For Pt(PH3)2(C2H4-n(CH=CH2)n) (n = 0 - 4), various DFT methods, 

such as SVWN, BLYP, B3LYP, B3PW91, MPW1PW91, and PBE1PBE, were employed 

to calculate the binding energies. However, the binding energies were highly 

underestimated by all the DFT methods, as compared with the MP2 and CCSD(T) 

results. In addition, the underestimation was greatly enhanced as “n” increases. All these 

results are based on the geometries optimized by the DFT (B3LYP and B3PW91) 

methods. 

    Therefore, geometry optimization was carried out without symmetry constraint for 

platinum complexes, Pt(PH3)2(C2H4-n(CH=CH2)n) (n = 0 and 2) (Figure 4), at the 

B3LYP,
25

 MP2, and SCS-MP2 levels. 

 

         

                n = 0                       n = 2 

Figure 4. Structures of Pt(PH3)2(C2H4-n(CH=CH2)n) (n = 0 and 2). 

 

The binding energies were calculated with CCSD(T) as well as B3LYP, MP2, and 

SCS-MP2. The (2111/2111/111) basis set
26

 augmented by a set of f polarization 

functions (f exponent 0.993)
27

 and relativistic effective core potential
26

 were used for Pt, 

and the 6-311G(d,p) basis set was used for other atoms.
28,29

 B3LYP and CCSD(T) 

calculations were performed using Gaussian 03 program.
14

 A dual-core, dual-processor 

Xeon 3.0GHz machine was used for all calculations. 

In the SCS-MP2 method,
1
 different scaling parameters are adapted for the 

same-spin (ESS) and opposite-spin (EOS) components of MP2 correlation energies, 
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where ESS and EOS are given as 
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The scaling parameters used generally are pSS = 1/3 and pOS = 6/5, which are determined 

from the calculations of various molecules. 

   Table 4 shows the calculated bond distances optimized at the B3LYP, MP2, and 

SCS-MP2 levels for Pt(PH3)2(C2H4-n(CH=CH2)n) (n = 0 and 2). The geometries 

optimized at the MP2 and SCS-MP2 levels are very similar. Furthermore, the Pt-P, Pt-C, 

and C=C distances optimized at the MP2 and SCS-MP2 levels for n = 0 are much closer 

to those observed for Pt(PPh3)2(C2H4) than those optimized at the B3LYP level. The 

same is also expected for n = 2. As Table 5 shows, the binding energies are highly 

underestimated at the B3LYP level, as already pointed out in the recent study.
24

 MP2 

provides significantly larger binding energies than CCSD(T). However, it is notable that 

the SCS-MP2 binding energies are almost equal to the CCSD(T) binding energies. The 

binding energies for n = 2 are much smaller at the B3LYP level than those for n = 0, 

unlike the MP2, SCS-MP2, and CCSD(T) cases. This reflects the fact that the dispersion 

forces between the substituents on the Pt atom and the C=C bond are not well taken into 

account at the B3LYP level.  
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Table 4. Bond distances (Å) optimized at the B3LYP, MP2, and SCS-MP2 levels for 

platinum complexes. 

   Pt(PH3)2(C2H4) 
 

 Pt(PH3)2(C2H2(CH=CH2)2) 

  Pt-P Pt-C C=C 
 

Pt-P Pt-C C=C 

B3LYP 2.321  2.150  1.425  
 

2.323  2.173  1.441  

MP2 2.252  2.088  1.434  
 

2.251  2.103  1.445  

SCS-MP2 2.275  2.094  1.438  
 

2.274  2.107  1.449  

Exptl.
a
 2.268  2.112  1.434  

 
      

a
 Pt(PPh3)2(C2H4).

30
 

 

Table 5. Binding energies (kcal/mol) of Pt(PH3)2(C2H4-n(CH=CH2)n) (n=0 and 2) 

calculated with B3LYP, MP2, and SCS-MP2 optimized geometries. 

Pt(PH3)2(C2H4-n(CH=CH2)n) B3LYP MP2 SCSMP2 CCSD(T) 

MP2 optimized geometries 
   

n=0 12.1  38.1 29.5 27.3 

n=2 4.7  40.2 30.0 27.3 

SCS-MP2 optimized geometries 
   

n=0 12.7  38.0 29.6 27.6 

n=2 5.7  40.0 30.2 27.8 

 

Table 6 shows the elapsed times for the energy calculations of 

Pt(PH3)2(C2H4-n(CH=CH2)n) (n = 0 and 2) at the MP2, SCS-MP2, and CCSD(T) levels. 

The SCS-MP2 calculations are as fast as the MP2 calculations, both being completed 

within 1 minute for n = 0 and 2. In contrast, the CCSD(T) calculations take 2 hours for 

n = 0 and 1 day for n = 2, and are 800 – 1800 times more time-consuming than the 
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SCS-MP2 calculations, despite no significant difference in accuracy between CCSD(T) 

and SCS-MP2. 

 

Table 6. Elapsed times (second) for the energy calculations of 

Pt(PH3)2(C2H4-n(CH=CH2)n) (n = 0 and 2) using a Xeon 3.0GHz machine (4 

CPU-cores). 

n MP2 SCS-MP2 CCSD(T) 

0 10 10 8,220 

2 46 46 85,800 

 

    In conclusion, the SCS-MP2 method differs little in accuracy from the CCSD(T) 

method. Since SCS-MP2 is much faster than CCSD(T), it is suited to the calculations of 

large molecular systems. 

 

 

4.4 Binding energies of benzene-benzene and naphthalene-naphthalene dimers 

    π-π interactions play an important role in many fields of supramolecular chemistry 

and biochemistry (i.e., DNA stacking). The widely used DFT fails to describe correctly 

π-π interactions, while the MP2 method is the simplest approach to treat them. However, 

the MP2 method tends to overestimate π-π interactions. The binding energies of 

benzene-benzene and naphthalene-naphthalene dimers with parallel-displaced structures 

(Figure 5) were calculated using the MP2, SCS-MP2, and CCSD(T) methods to check 

the performance of SCS-MP2 for π-π interactions. Geometry optimization was carried 

out at the MP2 and SCS-MP2 levels. The 6-31G(d),
13

 6-311G(d),
31

 and aug-cc-pVDZ
32

 

basis sets were used for all calculations. 
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Figure 5. Structures of benzene-benzene and naphthalene-naphthalene dimers 

 

     As Table 7 shows, the largest difference in C-C and C-H bond distances between 

MP2 and SCS-MP2 is only 0.005 Å. However, the intermolecular distances (R) 

optimized at the SCS-MP2 level are 0.12 - 0.15 Å longer than those at MP2, indicating 

that the SCS-MP2 method corrects the overestimation of π-π interactions at the MP2 

level. 

    As is obvious from Table 8, binding energies calculated at the MP2 level for the 

benzene-benzene dimer are considerably larger than those at the CCSD(T) level. In 

contrast, the binding energies at the SCS-MP2 level are close to those at the CCSD(T) 

level for all the basis sets employed. The same is also true for the binding energies for 

the naphthalene-naphthalene dimer, as shown in Table 9. In contrast, only repulsive 

interactions were calculated for the benzene-benzene and naphthalene-naphthalene 

dimers by the standard DFT methods such as B3LYP and B3PW91. 

 

 

 

 

 

R 
R 

r(C-C) 
r(C-H) 

rA(C-C) 

rB(C-C) 
r(C-H) 
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Table 7. Bond distances (Å) optimized for benzene-benzene and 

naphthalene-naphthalene dimers. 

 
6-31G(d) 

 
6-31１G(d) 

 
aug-cc-pVDZ 

 
MP2 SCS-MP2 

 
MP2 SCS-MP2 

 
MP2 SCS-MP2 

Benzene-benzene dimer 
      

r(C-C) 1.397 1.399 
 

1.399 1.400 
 

1.408 1.409 

r(C-H) 1.088 1.088 
 

1.087 1.088 
 

1.094 1.095 

R 3.390 3.538 
 

3.252 3.388 
 

3.203 3.323 

Naphthalene-naphthalene dimer 
      

rA(C-C) 1.434 1.430 
 

1.437 1.432 
   

rB(C-C) 1.419 1.424 
 

1.421 1.426 
   

r(C-H) 1.091 1.091 
 

1.090 1.091 
   

R 3.265 3.408 
 

3.164 3.297 
   

 

 



Table 8. Binding energies (kcal/mol) calculated for the benzene-benzene dimer. 

   
Energies 

  

 
6-31G(d) 

 
6-311G(d) 

 
aug-cc-pVDZ 

Geometries MP2 SCS-MP2 CCSD(T) 
 

MP2 SCS-MP2 CCSD(T) 
 

MP2 SCS-MP2 CCSD(T) 

MP2/6-31G(d) 3.17 1.88 1.57 
 

4.33 2.70 2.50 
 

8.01 6.08 6.03 

SCS-MP2/6-31G(d) 3.04 2.01 1.73 
 

3.92 2.59 2.37 
 

7.33 5.73 5.70 

MP2/6-311G(d) 3.02 1.43 1.07 
 

4.50 2.52 2.31 
 

8.37 6.06 5.97 

SCS-MP2/6-311G(d) 3.16 1.94 1.65 
 

4.28 2.74 2.55 
 

7.81 5.97 5.95 

MP2/aug-cc-pVDZ 2.78 0.99 0.57 
 

4.44 2.22 1.95 
 

8.45 5.89 5.71 

SCS-MP2/aug-cc-pVDZ 3.16 1.71 0.99 
 

4.48 2.66 2.40 
 

8.25 6.09 7.58 

8
0

 



Table 9. Binding energies (kcal/mol) calculated for the naphthalene-naphthalene dimer. 

   
Energies 

  

 
6-31G(d) 

 
6-311G(d) 

 
aug-cc-pVDZ 

Geometries MP2 SCS-MP2 CCSD(T) 
 

MP2 SCS-MP2 
 

MP2 SCS-MP2 

MP2/6-31G(d) 8.56 5.05 3.61 
 

11.80 7.52 
 

18.14 13.37 

SCS-MP2/6-31G(d) 7.98 5.39 4.29 
 

11.95 7.05 
 

19.11 13.62 

MP2/6-311G(d) 8.38 4.30 2.67 
 

10.38 7.18 
 

16.77 13.05 

SCS-MP2/6-311G(d) 8.55 5.30 3.95 
 

11.46 7.51 
 

18.29 13.77 

 

8
1
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    In summary, the SCS-MP2 method reproduces well the binding energies at the 

CCSD(T) level. The SCS-MP2 method is suitable for the calculations of π-π 

interactions in large molecules, because of the much lower computational cost. 
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Chapter V 

 

SAC/SAC-CI calculations of ionized and excited states 

(Ishimura, K.; Hada, M.; Nakatsuji, H. J Chem Phys, 2002, 117, 6533.) 

 

 

5.1 Abstract 

The ground state, singlet, and triplet excited states, and ionized states of ferrocene 

Fe(C5H5)2 were studied by the symmetry adapted cluster 

(SAC)/SAC-configuration-interaction method. The calculated ionization energies and 

intensities fairly well reproduced the observed photoelectron spectrum in the wide 

region of 6-14 eV. In particular, the first two peaks (
2
E2’ and 

2
A1’) were assigned to the 

ionizations from the occupied 3d orbitals of Fe, mixed already with the two-electron 

shake-up processes. This is the first ab initio quantitative assignment that is consistent 

with the experimental data. For the singlet states, three d-d transitions were calculated at 

2.12, 2.26, and 4.02 eV, which correspond to the experimental peaks observed at 2.69, 

2.97, and 3.82 eV. We propose possible assignments for other absorption bands in the 

range of 2.12-6.57 eV. In another three triplet d–d transition states we calculated, we 

found that the energy order of these states (1 
3
E1”, 1 

3
E2”, 2 

3
E1”) differs from that of 

singlet states (1 
1
E2”, 1 

1
E1”, 2 

1
E1”). 



86 

 

5.2 Introduction 

Since the discovery of ferrocene, Fe(C5H5)2 ,
1,2

 a number of studies have clarified its 

structure, reactions, and properties.
3,4

 Ultraviolet and visible absorption spectra, in 

particular, have been studied extensively to clarify the electronic structure of ferrocene 

in its ground and excited states.
5-11

 Photoelectron spectra of various ferrocene-type 

compounds have also been observed and are well documented.
7–9

 Armstrong et al.
10

 and 

Sohn et al.
11

 reported that ferrocene exhibits at least 11 absorption bands in the range of 

18 000-53 000 cm
-1

 (2.2-6.5 eV). Using the ligand-field theory, three d-d transitions 

were expected for d
6
-ferrocene, though there is considerable ambiguity in the location 

of these three transitions. Further, the positions of the spin-forbidden d-d transitions are 

unclear because of their small intensities. In the ionization spectrum, the first and 

second peaks were inferred from experimental data to be the ionizations from the 3d 

orbitals.
8,9

 

A number of theoretical studies reported the bonding character of the ferrocene 

ground state.
4
 The bonding nature between Fe and two cyclopentadienyl (Cp) rings is 

reasonably understood as the dative bond between Fe
2+

 and Cp
-
.
3,12

 Recently, the 

mechanism of the protonation of ferrocene in the ground state has been studied using 

the CCSD(T) method.
13

 

For ferrocene ionization energies, ∆SCF calculations,
14,15

 Xα scattered-wave 

calculations,
16,17

 and intermediate neglect of differential overlap (INDO) Green’s 

function calculation
18

 have been done. Ohno et al.
19

 calculated the ionization energies 

with the ab initio third-order algebraic diagrammatic construction [ADC(3)] Green’s 

function method and proposed the lowest four peaks to be E2’ (metal), E1’ (ligand), E1” 

(ligand), and A1’ (metal). All calculations have contradicted with the experimental 

assignment, the lowest E2’ (metal) and A1’ (metal) states, either qualitatively or 
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quantitatively. 

For ultraviolet-visible absorption spectra of ferrocene, on the other hand, Rohmer 

et al.
20

 proposed a theoretical assignment based on ab initio singly excited configuration 

interaction (SECI) calculations. Zerner et al.
21

 also proposed a different assignment 

based on semiempirical INDO-SECI calculations. The calculated results did not 

satisfactorily agree with the experimental transition energies due to the small basis sets 

and/or the lack of electron correlations. More reliable ab initio studies are necessary to 

truly understand the electronic structures of the ground, excited, and ionized states of 

ferrocene.  

This paper addresses this subject using the symmetry adapted cluster (SAC)
22

 and 

SAC-configuration-interaction (SAC-CI)
23

 methods, which have been applied 

successfully to the spectroscopies of various molecules
24

 including transition metal 

complexes.
25-27

 We assign the photoelectron spectra and the ultraviolet-visible 

absorption spectra of ferrocene, Fe(C5H5)2 by calculating the ground state, singlet, and 

triplet excited states, and ionized doublet states of this molecule. 

 

 

5.3 Method 

   We used the Gaussian basis functions of triple-zeta quality for Fe and double-zeta 

quality for C and H; Huzinaga’s (533111/52111/311) basis set is used for Fe,
28

 

Huzinaga’s (5121/41) set for C,
28

 and Huzinaga-Dunning’s (31) set for H.
29

 The basis 

set for Fe was augmented with Hay’s flexible d function (ζ=0.1133)
30

 and the 

augmented double-zeta ANO f functions of Roos et al.
31

 The basis set for C was 

augmented with a polarization d function (ζ=0.6)
28

 and that of H with a polarization p 

function (ζ=1.0).
29

 On the center of each Cp ring, the s, p, and d Rydberg functions were 
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added in double-zeta quality.
32

 The total number of basis functions is 315. 

Experimental geometrical parameters of Fe(C5H5)2 for the ground state are used 

throughout the present calculations: 2.064 Å for Fe-C, 1.440 Å for C-C in the Cp ring, 

and 1.104 Å for C-H.
33

 The Cp ring is assumed to be planar and the two Cp rings are in 

an eclipsed conformation (D5h), as observed in a gas phase.
34

 The z-axis is defined to be 

parallel to the Cp-Fe-Cp axis. 

The Hartree-Fock (HF) calculations were carried out using the GAUSSIAN 98 

program.
35

 The electron correlation in the ground state was taken into account by the 

SAC theory, and those in the singlet and triplet excited states and ionized doublet states 

by the SAC–CI theory. The active space in SAC and SAC-CI calculations involves 285 

HF orbitals; the 1s, 2s, and 2p orbitals of Fe and 1s orbital of C were treated as 

frozen-core orbitals. To reduce the configuration number, perturbation selection 

technique
36

 is used with energy thresholds of 1.0×10
-5

 for the ground state, 1.0×10
-6

 for 

the doublet ionized state, and 2.0×10
-6

 for singlet and triplet excited states. 

 

 

5.4 Ground State 

    The bonding nature of the ground state of ferrocene has been well documented as 

described above. Table 1 summarizes the energies and their characters of some 

important occupied and unoccupied orbital obtained by the present Hartree–Fock 

calculation. The highest occupied molecular orbital (homo) 4e1” and the next homo 6e1’ 

are essentially the π orbitals of the Cp rings (Cp-π) and have small components of the 

3dxz and 3dyz or 4px and 4py orbitals of Fe. We may consider that ferrocene has dative 

bonds between Fe
2+

 and Cp
-
, electron donation being from Cp

-
 to Fe

2+
 through these 

orbitals. Occupied 3d orbitals of Fe (4e2’ and 8a1’) are lower in energy than the Cp-π  
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Table 1. Orbital energies and orbital characters of some important occupied and 

unoccupied MOs. 

occupied   unoccupied 

No. 

 

Symmetry 

 

Orbital 

energy(eV) 

Character 

  

No. 

 

Symmetry 

 

Orbital 

energy(eV) 

Character 

 

47,48 4e1” -9.11 Cp(π)+Fe(dxz,dyz)  49 9a1’ 0.29 Fe(s)+Cp(Ryd(s,dz2)) 

45,46 6e1’ -9.25 Cp(π)+Fe(px,py)  50 7a2” 0.44 Fe(pz)+Cp(Ryd(s,pz,dz2)) 

43,44 4e2’ -11.44 Fe(dxy,dx2-y2)  51,52 5e1” 0.79 Fe(dxz,dyz)+Cp(Ryd(px,py)) 

42 6a2” -13.31 Cp(π)+Fe(pz)  53 10a1’ 0.80 Fe(s)+Cp(Ryd(s,dz2)) 

41 8a1’ -13.82 Fe(dz2,s)  56,57 7e1’ 0.94 Fe(px,py)+Cp(Ryd(px,py)) 

39,40 3e2” -14.04 Cp(σ)  63 11a1’ 1.31 Fe(s)+Cp(Ryd(s,pz,dz2)) 

37,38 3e2’ -14.30 Cp(σ)  64 9a2” 1.49 Fe(pz)+Cp(Ryd(s,pz,dz2)) 

35,36 5e1’ -14.95 Cp(σ)  65 12a1’ 2.03 Fe(s)+Cp(Ryd(s,pz,dz2)) 

33,34 3e1” -15.10 Cp(σ)  66,67 6e1” 2.14 Fe(dxz,dyz)+Cp(Ryd(px,py)) 

32 7a1’ -15.24 Cp(σ)  78,79 7e1” 3.90 Fe(dxz,dyz)+Cp(Ryd(px,py)) 

     83,84 7e2’ 5.28 Cp(π
*
)+Fe(dxy,dx2-y2) 

     86,87 8e1” 6.18 Cp(π+Ryd(px,py))+Fe(dxz,dyz) 

          92,93 9e1” 7.43 Fe(dxz,dyz)+Cp(π+Ryd(px,py)) 

 

orbitals (4e1” and 6e1’). The 4e2’ orbitals are essentially the 3dxy and 3dx2-y2 atomic 

orbitals of Fe with a small Cp-π character, while the 8a1’ orbital has 3dz2 and 4s 

character of Fe. The unoccupied 3dxz and 3dyz orbitals appear as 9e”1. Therefore, in a 

simple ligand-field picture, three singly excited d-d transitions are expected in this 

electronic configuration. The total energy at the HF level was -1646.4843 hartree and 
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the ground state correlation energy obtained by the SAC method was -0.8361 hartree. 

 

5.5 Ionized doublet states 

   Figure 1 shows the calculated SAC-CI ionization energies compared to the observed 

spectrum,
9
 together with the HF orbital energies shown as Koopmans ionization 

energies. The observed spectrum in Figure 1 has three bands below 16 eV. First and 

second bands have two peaks, and the third one has several peaks. The present SAC-CI 

result satisfactorily reproduces the observed first two bands including four ionized states. 

The SAC-CI method predicts the third band to have six electronic states. The ionization 

energies calculated by the SAC-CI method agree well with the observed ones. 

   Table 2 lists the ionization energies and the intensities (in parentheses) calculated by 

the SAC-CI method and the HF method (Koopmans). The ionization energies calculated 

by the ab initio ADC(3) Green’s function method
19

 and those observed
8,9

 are also 

shown for comparison. The first peak observed at 6.86 eV was calculated at 6.26 eV (1 

2
E’2) as the ionization mainly from 4e2’ MO. The second peak observed at 7.23 eV was 

calculated at 7.27 eV (1 
2
A1’) as the ionization from 8a1’ MO. These states have 

significant components of two-electron shake-up processes, which are from 4e1”, 4e2’ to 

9e1”, and from 4e1”, 8a1’ to 9e1”, respectively, as shown below: 

 

 

 

 

                 +               ,                    + 

 

             1
2
E2’                                 1

2
A1’ 

4e1” 

8a1’ 

4e2’ 
4e1” 

8a1’ 

4e2’ 

9e1” 

4e1” 

8a1’ 

4e2’ 

4e1” 

8a1’ 

4e2’ 

9e1” 
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The extents of mixing of these shake-up configurations are very large as seen from 

the main configuration shown in Table 2. It is very remarkable that even the first 

ionization peak already has a strong mixing of the shake-up ionizations. It is for this 

reason that the calculated ionization energy differs by more than 0.5 eV from the 

experimental value. 

The next band at around 9 eV is assigned to be composed of the two peaks of the 

ionizations from the π orbitals of the Cp rings and the d or p orbital of Fe. The third 

peak observed at 8.72 or 8.87 eV was calculated at 8.78 eV (1 
2
E1’), which is the 

ionization from the 6e’1 MO. The fourth peak observed at 9.14-9.39 eV was calculated 

at 9.05 eV (1 
2
E1”), which is the ionization from 4e1”. These two peaks do not have the 

shake-up mixing. The present assignment of the lowest four peaks agrees with the 

experimental prediction, though these peaks have not been reproduced quantitatively or 

even qualitatively in the previous theoretical calculations.
14-19

 The assignment of the 

ADC(3) Green’s function method differs from ours because the first and second peaks 

by ADC(3) were not caused by the ionizations from the Fe d orbitals. The Koopmans 

picture completely breaks down as seen from Figure 1; it fails to describe the 

ionizations from the d orbitals of Fe, due to the strong orbital relaxation and/or large 

electron correlation effects. This is seen from the main configurations of the 1 
2
E2’ and 

1 
2
A1’ ionized doublet states shown in Table 3. 

For the next broad band in 11-14 eV, six ionized states were calculated by the 

SAC-CI method. The fifth peak calculated at 11.86 eV corresponds to the peak 

observed at 12.2-12.3 eV and originates from the π orbitals of the Cp rings mixed with 

the p orbital of Fe. The next higher two pairs of peaks calculated at 12.63, 12.65, and 

13.46, 13.69 eV originate from the σ orbitals of the Cp rings, and the peak at 13.34 eV, 

which lies median between these two pairs of peaks, is the ionization from the π orbital 
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of the Cp rings. Note that the ordering of these six ionized states is quite different from 

that of the Koopmans picture, as seen from Figure 1 and from the comparison between 

Tables 1 and 2. Electron correlations are certainly very important for describing the 

electronic structures of the ionized states of ferrocene. 

 

 

                         Ionization Energy (eV) 

Figure 1. Ionization energies SAC-CI and Koopmans ionization energies of Ferrocene. 

 

8.0 10.0 12.0 14.0 16.0 6.0 

SAC-CI 

Koopmans 
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Table 2. Ionized doublet states and ionization energies (eV) of ferrocene obtained by 

SAC-CI, ADC(3), Hartree-Fock, and experiment. 

State Main configurations SAC-CI  ADC(3)
a
 Koopmans.

b
 Exp. 

1
2
E2’ 0.854(4e2’)+0.39(4e1”,4e2’→9e1”) 6.26(1.494) 7.85 11.44 6.86

c
,6.88

d
 

1
2
A1’ 0.82(8a1’)+0.41(4e1”,8a1’→9e1”) 7.27(0.747) 9.36 13.82 7.23

 c,d
 

1
2
E1’ 6e1’ 8.78(1.917) 8.70 9.25 8.72

 c,d
,8.87

d 

1
2
E1” 4e1” 9.05(1.919) 9.08 9.11 9.14

d
,9.38

 c
,9.39

d
 

1
2
A2” 6a2” 11.86(0.919) 12.13 13.31 12.2

c
,12.3

 d
 

2
2
E2’ 3e2’ 12.63(1.910) 13.08 14.30 13.0

 d
,13.6

c
 

1
2
E2” 3e2” 12.65(1.887) 12.96 14.04 13.0

 d
,13.6

c
 

2
2
A1’ 7a1’ 13.34(0.920) 13.71 15.24 13.46

d
,13.6

 c
 

2
2
E1’ 5e1’ 13.46(1.956) 13.89 14.95 13.46

d
,13.6

 c
 

2
2
E1” 3e1” 13.69(1.916) 14.07 15.10 13.46

d
,13.6

 c
 

a
Reference 18. 

b
Our work 

c
Reference 8. 

d
Refercence 9. 

 

 

5.6 Singlet Excited states 

Table 3 shows the singlet transition energies and the corresponding main 

configurations calculated by the SAC-CI method. The results calculated by the ab initio 

SECI method reported by Rohmer et al.,
20

 and by the INDO-SECI method reported by 

Zerner et al.,
21

 and the experimental transition energies
10,11

 are also shown in the same 
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table. As for the experimental values, those observed in vapor phase
10,11

 and in a 

solution
10

 are shown, since they are complementary with each other. 

As expected from the ground-state electronic configuration, three d-d transitions 

may appear in the low-lying singlet excited states of ferrocene. The present work 

certainly gave the lowest three states, 1 
1
E2” (2.11 eV), 1 

1
E1” (2.27 eV), and 2 

1
E1” 

(4.03 eV), to be essentially the d-d transitions in character, as expected. However, this 

energy ordering (1 
1
E2” , 1 

1
E1” , 2 

1
E1”) is different from that given by the INDO-SECI 

method (1 
1
E1” , 1 

1
E2” , 2 

1
E1”).

21
 These transitions are dipole-forbidden, so that the 

observed peaks are very weak. In fact, the lowest two singlet transitions were observed 

at 2.70 and 2.98 eV in solution, but observed as one peak at 2.81 eV in a vapor phase. 

The next three states calculated by the SAC-CI method are 1 
1
A2’ (5.25 eV), 1 

1
A1’ (5.29 

eV), and 1 
1
E2’ (5.48 eV), which are the transitions from Cp-π to 3dxz , 3dxz of Fe. The 

experimental values are 5.02 and 5.23 eV. The next state is 2 
1
A2’ calculated at 5.60 eV 

in comparison with the experimental value of 5.82 eV, and this is the π-π* transition of 

the Cp ring. These transitions are dipole-forbidden and therefore, their experimental 

peaks have only small intensities, but they are reasonably well reproduced by the 

present SAC-CI calculations. 

The first dipole-allowed transition is the 1 
1
E1’ state that is calculated at 6.34 eV by 

the SAC-CI method; the calculated energy well reproduces the observed ones, 6.31 eV 

in vapor and 6.20 eV in solution. The second dipole-allowed state is 2 
1
E1” state 

calculated at 6.43 eV, which is assigned to the experimental peak observed at 6.58 eV. 

Thus, the dipoleallowed transitions in this energy region are also well reproduced by the 

present SAC-CI calculations. 
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Table 3. Singlet excited states and their excitation energies of ferrocene (eV) obtained 

by SAC-CI, SECI, INDO-SECI, and experiment. 

State 

 

Main configurations 

 

SAC-CI 

(eV) 

SECI
a 

  

INDO- 

SECI
b
 

Exp.(eV) 

 

1
1
E2” 4e2’→9e1” 2.11 2.63 2.96 2.81

c
,2.70

d
 

1
1
E1” 0.58(4e2’→9e1”)-0.54(8a1’→9e1”) 2.27 3.31 2.69 2,81

 c
,2.98

d
 

2
1
E1” 0.57(8a1’→9e1”)+0.54(4e2’→9e1”) 4.03 5.74 3.96 3.82

c,d
 

   9.05 4.58,4.92,4.95 4.67
c,d

 

1
1
A2’ 4e1”→9e1” 5.25  5.11 5.02

c
 

1
1
A1’ 4e1”→9e1” 5.29  5.26.5.32.5.54 5.23

c
 

1
1
E2’ 4e1”→9e1” 5.48    

2
1
A2’ 4e1”→7e2’ 5.60 10.17 5.62,5.69,5.91 5.82

c
 

    6.22 6.16
c
 

1
1
E1’ 0.69(6e1’→9a1’)+0.53(6e1’→11a1’) 6.34 10.39 6.24 6.20

d
,6.31

c
 

2
1
E1’ 6e1’→9a1’ 6.43  6.48 6.58

c
 

1
1
A1” 6e1’→9e1” 6.45  7.04  

1
1
A2” 6e1’→9e1” 6.47    

2
1
A2” 6e1’→9e1” 6.56    

a
Reference 19. 

b
Reference 20. 

c
Reference 10. 

d
Reference 11. 
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5.7 Triplet Excited States 

Table 4 displays three triplet d-d transition energies calculated by the SAC-CI, 

SECI,
20

 and INDO-SECI
21

 methods. The SAC-CI main configurations and their 

coefficients are also listed along with the observed excitation energies,
10

 which were 

assigned experimentally to be spin-forbidden transitions. The present SAC-CI 

calculations indicate that the lowest three triplet excitations are d-d transitions in nature, 

as expected similarly from the case of the singlet excitations. The 1 
3
E1” is located 

lower by 0.87 eV than the corresponding singlet 1 
1
E1” state, while 1 

3
E2” and 2 

3
E1” 

states are lower by 0.43 and 1.43 eV than the corresponding 1 
1
E2” and 2 

1
E1” states. 

The large splitting of the singlet and triplet 
2
E1” states implies a considerable mixing of 

the Cp-π states to the d states in the triplet state 2 
3
E1”. Thus, the 

3
E1” state has the 

lowest energy of these triplet states and the energy ordering of the triplet states (1 
3
E1”, 

1 
3
E2”, 2 

3
E1”) is different from that of the singlet states (1 

1
E2”, 1 

1
E1”, 2 

1
E1”). The 

total energy order, including both singlet and triplet states, is 1 
3
E1”, 1 

3
E2”, 1 

1
E2”, 1 

1
E1”, 2 

3
E1”, and 2 

1
E1”. We assign the calculated 2 

3
E1” state (2.60 eV) to the observed 

peak of 2.29 eV considering its weak intensity and the spin-forbidden nature 

experimentally suggested, though the calculated 1 
1
E2” state (2.11 eV in Table 4) is 

closer to the 2.29 eV peak than the 2 
3
E1” state. 
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  Table 4. Triplet d-d excitation energies of ferrocene (eV) obtained by SAC-CI, 

SECI, and INDO-SECI, and experiment.  

State Main configurations SAC-CI 

(eV) 

SECI
a
 INDO- 

SECI
b
 

Exp.(eV)
c
 

1
3
E1” 0.72(4e2’→9e1”)-0.33(8a1’→9e1”) 1.40 1.81-1.87 2.54 1.74 

1
3
E2” 4e2’→9e1” 1.68 1.81-1.87 2.55 2.05 

2
3
E1” 0.70(8a1’→9e1”)+0.32(8a1’→8e1”) 2.60 4.56 2.55 2.29 

a
Reference 19. 

b
Reference 20. 

c
Reference 10. 

 

 

5.8 Conclusions 

This paper summarizes the SAC/SAC-CI study on the ground state, singlet and 

triplet excited states, and doublet ionized states of ferrocene, Fe(C5H5)2 . The main 

results of this paper are as follows: 

(1) The ionization spectrum in 6-12 eV energy region is reproduced reasonably by the 

present calculations. The first and second peaks are assigned to the ionization from 

occupied 3d orbitals of Fe. This assignment is consistent with the experimental one. A 

remarkable point is the strong mixing of the shake-up processes even to these lowest 

ionization states, showing a break-down of the Koopmans picture. 

(2) The second and third broad bands in the ionization spectrum experimentally 

observed are composed of the two and six ionized states and were reproduced 

satisfactorily by the SAC–CI method. The Koopmans ordering was wrong for these 

states. 
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(3) The observed peaks at 2.70, 2.98, and 3.82 eV were assigned to the singlet d-d 

transitions calculated at 2.11, 2.27, and 4.03 eV. Other dipole-forbidden states were also 

assigned satisfactorily to the weak peaks experimentally observed. 

(4) The absorption observed at 6.31 eV with strong intensity is assigned to the first 

dipole-allowed 
1
E1’ state, whose calculated energy is 6.34 eV. This agreement is much 

improved over those in the previous works. The second strong absorption peak is also 

well reproduced and assigned to the second 
1
E1’ state. 

(5) Three triplet d-d transition energies are calculated; they well reproduced the three 

weak peaks observed in 1.74 - 2.29 eV. 
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Conclusions 

 

In Chapter I, a new algorithm for the generation of two-electron repulsion integrals 

(ERIs) was developed by combining Pople-Hehre and McMurchie-Davidson algorithms. 

The algorithm derived for (ss|ss) to (dd|dd) ERIs was tested using STO-3G, 6-31G, 

6-31G(d), and aug-cc-pVDZ basis sets. The results show that the new algorithm reduces 

the computational cost by 10–40%, as compared with the original algorithms. It is 

notable that the generation of ERIs including d functions is considerably fast. The 

program implemented officially in GAMESS in 2004 has been used all over the world. 

In Chapter II, a new two-step parallel algorithm for MP2 energy calculations was 

developed. Test calculations of taxol (C47H51NO14) and luciferin (C11H8N2O3S2) were 

performed on a cluster of Pentium 4 computers connected by gigabit Ethernet. The 

parallel scaling of the developed code is excellent up to the largest number of processors 

we have tested. For instance, the elapsed time for the MP2 energy calculations on 16 

processors is on average 15.4 times faster than that on the single-processor. As an 

application to grid computing, a larger calculation (a segment of hydrogen terminated 

(5,0) carbon nanotube, C130H10) with the 6-31G(d) basis (1970 contracted basis 

functions) was performed using a total of 128 processors (64 Hitachi SR-11000 and 64 

Hitachi HA-8000) at the NAREGI computer center. Elapsed time for the MP2 energy 

calculation was less than 2 hours and CPU efficiency was high (94%) even on this 

heterogeneous system. 

In Chapter III, a new parallel algorithm for MP2 energy gradient calculations was 

developed. Test calculations of MP2 energy gradients were performed for taxol and 

luciferin on a cluster of Pentium 4 computers. The speedups are very good up to 80 

CPU cores we have tested. For instance, the speedup ratios are 28.2 - 33.0 on 32 

processors, corresponding to 88%–103% of linear speedup. This indicates the high 

parallel efficiency of the present algorithm. The calculation of taxol with 6-31G(d) 
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(1032 contracted basis functions) finishes within 2 hours on 32 processors, which 

requires only 1.8GB memory and 13.4GB hard disk per processor. Therefore, geometry 

optimization of molecules with 1000 basis functions can be easily performed using 

standard PC clusters. 

In Chapter IV, MP2 and SCS-MP2 calculations were applied to several molecules. 

MP2 provides geometries that are much closer to experimental ones than DFT. 

SCS-MP2 performs as well as CCSD(T), though the former is much less 

time-consuming than the latter. 

The algorithms and programs developed in this thesis make MP2 calculations 

practically feasible for considerably large molecules. It is planned to investigate 

host-guest molecules, self-assembly, and molecular recognition using the present 

programs, and to develop an efficient parallel algorithm for open-shell MP2 calculations 

of large molecules. 

In Chapter V, the ionized and excited states of ferrocene were calculated using the 

SAC/SAC-CI theory. The calculated results are in good agreement with experimental 

values. It is found that shake-up processes (one electron ionization and one electron 

excitation) contribute to the first two ionization peaks. 
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B3LYP Becke 3-parameter, Lee, Yang, Parr 

B3PW91 Becke 3-parameter, Perdew-Wang 1991 

CI configuration interaction 

CC coupled-cluster 

CCSD(T) coupled-cluster with single, double, and perturbative triple excitation 

DFT density functional theory 

ERI electron repulsion integral 

FLOP floating point operation 

GAMESS the general atomic and molecular electronic structure system 

HF Hartree-Fock 

MCSCF multi-configurational self-consistent field 

MO molecular orbital 

MP2 2nd order Møller-Plesset perturbation theory 

PH Pople-Hehre (scheme) 

RI resolution of identity 

SAC symmetry adapted cluster 

SAC-CI symmetry adapted cluster configuration interaction 

SCF self-consistent field 

SCS-MP2 spin-component scaled 2nd order Møller-Plesset perturbation theory 

TDDFT time-dependent density functional theory 
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