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Abstract

The Stokes phenomena of the standard second-order ordinary differential equa-
tions with the coefficient functions of the certain n-th order polynomials are in-
vestigated. Four cases of the coeficient function g(z) are solved to find analytical
solutions of the Stokes constants: (i) q(z) = a;n22V + T2 a2 (1) g(z) =
agy—12?N 71+ T2 a2t (i) ¢(z2) = Ti=0,;27; and (iv) ¢(z) = Lizoa;2?. The
case (iii) can be immediately applied to the two-state linear curve crossing prob-
lems which represent the most basic models for non-adiabatic transition processes
in atomic and molecular physics. The two-state linear curve crossing problems
are generally classified into the following two cases: (1) the same sign of slopes
of two diabatic potential curves(Landau-Zener case), and (2) the opposite sign of
slopes(nonadiabatic tunneling case). The reduced scattering matrix for each case
has been found to be expressed in terms of only one Stokes constant #/;, which is
solved exactly and analytically in a form of convergent infinite series. This means
that exact quantal solutions of the reduced scattering matrices for both cases are
analytically found for the first time. Furthermore, new semiclassical solutions of
the reduced scattering matrices for both cases are derived in simple compact forms.
Especially, the case that the collision energy is lower than the crossing point is cor-
rectly dealt with for the first time. Both quantal and semiclassical solutions for the
reduced scattering matrix are made possible by expressing the connection matrix,
which is a crucial bridge to link physics and mathematics, in terms of Stokes con-
stants. Among the fruitful results obtained, one of the most notable ones is about
a derivation of a new formula to replace the widely used Landau-Zener formula for
nonadiabatic transition probability. The new one is as simple as the Landau-Zener,
but works much better than the latter. On the the other hand, by fully analyzing
the distributions of the four transition points and the Stokes lines in complex plane
for the basic equations of the two-state linear curve crossing problems, the valid-
1ty conditions are made clear for the present and the other available semiclassical

formulas of the reduced scattering matrices.
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Chapter 1

This thesis begins with the asymptotic solutions of the second-order differential
equations for the four cases mentioned above. The asymptotic solutions are found
exactly in the form of infinite series, in which the recurrence relations among the
coefficients are given explicitly. This is made possible by transforming the original
differential equations from the complex-z plane to a new complex-¢ plane in which
all the Stokes lines coincide with the real axis. At the same time, the standard
asymptotic WKB solutions are introduced for convenience as reference functions to
define Stokes constants. The Stokes phenomenon is reviewed and explained briefly
so that physicists and chemists can get quickly an insight on the topics discussed in
this thesis,

Chapter 2

A central task in the subject of Stokes phenomenon is to find analytical solu-
tions of Stokes constants. The standard asymptotic WK B solutions are proved to
be quite useful for the present type of analysis, especially for deriving the relations
among Stokes constants. Actually, three independent relations for all Stokes con-
stants U; defined in the complex-z plane are easily established. They are very useful
for many physical problerus although they are not enough to have a complete. A
further deduction is made by transforming the asymptotic solutions from complex-z
plane to the complex-£ plane where the Stokes constants 7. are defined. One-to-one
simple correspondence is obtained between U/; and 7.. What is fascinating about
the complex-£ plane is that all Stokes constants 7% can be simply related to only
one, for instance, T}, by using a particular transformation under which the differ
ential equation in the complex-¢ plane is invariant. The conclusions obtained up to
now hold not only for the four cases mentioned above but generally. The remaining
most difficult problem is how to find an analytical solution for 7} for each case. By
generalizing the coupled-wave-integral- equations method devised by Hinton, Stokes
constant T3 is finally shown to be expressed in the analytical form of a convergent

infinite series as a function of the coefficients ¢(z) for all four cases.
Chapter 3

A connection matrix presented in this chapter represents an important physi-
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cal quantity i.e., scattering matrix, and bridge between the Stokes phenomenon in
mathematics and the two-state linear curve crossing problems in physics. If the
standard WKB solutions are used in the asymptotic region |z| — oo of the complex
plane, the connection matrix is exactly expressed in terms of the Stokes constants.
This matrix can connect solutions in one asymptotic region in complex plane to solu-
tions in another asymptotic region, such as physical important connections between
two anti-Stokes lines, two Stokes lines, and one anti-Stokes and Stokes lines. What
is fascinating about expressing the connection matrix in terms of Stokes constants
is as follows: A physically required connection matrix sometimes can not be well-
approximated by following traditional semiclassical path. It is much more flexible
and versatile to try to find Stokes constants. Based on the knowledge of the distri-
butions of transition points and Stokes lines, such a path which may not correspond
to the physical connection matrix can be designed to derive the best semiclassical
solution from Stokes constants. Excellent examples will be given in chapters 5 , 6
and 7 for semiclassical solutions of the reduced scattering matrices for the cases of
energy lower than the crossing points. The connection problems for one transition
point and two transition points are briefly reviewed, and those for three transition
points and four transition points are presented in detail. The last case is mainly

concerned with the curve crossing problems discussed in the subsequent chapters.
Chapter 4

The classic problems of the two-state linear curve crossing were initially discussed
by Landau, Zener and Stueckelberg. As mentioned before, there are the following
two cases: (1) the same sign of slopes of two diabatic potentials(Landau- Zener case),
and (2) the opposite sign of slopes(nonadiabatic tunneling case). It is well known
that the reduced scattering matrices for these two problems can be described in
terms of the two parameters a?(effective coupling strength) and &*(effective collision
energy). Finding the exact analytical quantal solutions for the reduced scattering
matrices is very challenging and very difficult question. The answer to this question
is given in this chapter. The starting point is the basic differential equation of the
case (iii) mentioned before. By using the conneciion matrix oblained in chapter
3, the reduced scattering matrix for each case is first expressed in terms of three
Stokes constants. Then by taking into account two exira conditions in addition to

the unitarity of reduced scaltering matrix, it is shown to be expressed finally in
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terms of only one Stokes constant U,. Finally, this one Stokes constant is given
exactly and analytically by a convergent infinite series which is a direct result from
chapter 2. Another work reported in this chapter is a new numerical method to solve
reduced scattering matrix for the nonadiabatic tunneling case. The original coupled
equations suffer from very rapid oscillation asymptotically and can not give stable
and reliable numerical results. New coupled equations are presented which involve
ordinary sine and cosine solutions asymptotically. Numerical results of reduced

scattering matrix can be obtained with any desirable accuracy.

Chapter 5

The distributions of the four transition points and the Stokes lines are fully an-
alyzed for both Landau-Zener and nonadiabatic tunneling cases in the whole plane
of the two parameters @ and 6. This analysis is, of course, important in itself,
but what is more significant about this is that the structure of the distributions
essentially determines which path in complex plane is the best for obtaining good
semiclassical solutions of the reduced scattering matrices. The semiclassical method
used here and in the following chapters should be potentially useful for other prob-

lems in physics and chemistry.
Chapter 6

The semiclassical solution of the reduced scattering matrix for the Landau-Zener
case 1s obtained in this chapter. Since the reduced scattering matrix is expressed
in terms of one Stokes constant U, in chapter 4, question now is how to find an
approximate solution for I/;. The distributions of transition points and Stokes lines
analyzed in chapter 5 clearly show that there are two best choices of path to get
good approximate solutions of U;. One path corresponds to the connection on the
anti-Stokes lines along which the four transition points are separated in two paris.
Another path corresponds to the connection on the Stokes lines along which the four
transition points are again separated in two pairs. The former(latter) corresponds
to high(low) energy limit. In each limiting case, the exact connection matrix can
be approximately decomposed into a product of the two matrices, each of which
represents the connection matrix based on two transition points as is given in chapter
3. Finally, two new compact analytical formulas for the reduced scattering matrix

are derived and compared with available ones. The a? — 42 plane is now divided into



five regions, in each one of which the best recommended formulas are proposed. The
new formulas proposed are simple and explicit functions of the two parameters a’
and b°. Especially, a simple formula which works much better than the conventional
Landau-Zener formula is obtained for nonadiabatic transition probability for one

passage of crossing point.
Chapter 7

The semiclassical solution of the reduced scattering matrix for the nonadiabatic
tunneling case is obtained in this chapter. The reduced scattering matrix is, of
course, given in chapter 4 in terms of one Stokes constant U/;. The distributions
of transition points and Stokes lines in this case are more complicated than the
previous case. There are two limiting cases, > > 1 and #* < —1, which are similar
to the Landau-Zener case. Therefore, the two new formulas for reduced scattering
matrix are obtained in these two limiting cases again by simple functions of the two

? and b°. Especially formula for 62 < —1 is the first one ever obtained.

parameters a
The distributions of transition points and Stokes lines in the region [63] < 1 are
very different from and have no correspondence to the former Landau-Zener case.
Based on the solvable special differential equation given in chapter 3, an approximate
expression for Stokes constant U; is found with use of a fitting procedure. Again,
the a® — 6% plane is divided into five regions and the best recommended formula for
reduced scattering matrix is proposed for each region. Thus, a complete piciure of

the nonadiabatic tunneling case is attained.
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Notations

Throughout this thesis, solid line represents Anti-Stokes line, dashed line Stokes

line, and wavy line branch cut.

Anti-Stokes line

______ —_—— Stokes line

AN Branch cut

It should be noted that the definitions of Stokes and anti-Stokes lines used here are

those in physics, and that they are interchanged in mathematics.
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PART 1. STOKES PHENOMENON

The Stokes phenomenon{3] is the phenomenon that asymptotic solutions of ordi-
nary differential equations exhibit discontinuous change across certain lines(Stokes
lines} in the complex plane. Certain constant called Stokes constant is assigned to
each Stokes line to ensure the single-valuedness of the solution. In general, it is very
difficult to determine the Stokes constants; and therefore it is very usual to treat
particular differential equations for which the Stokes constants can be calculated
either exactly or approximately[2 - 7, 14 — 22]. A few efforts have been made so far
to develop methods that calculate the Stokes constants for as general differential
equations as possible[2, 4, 7, 22].

Part 1 in this thesis is actually a new work toward this aim. The Stokes phe-
nomena for the certain four general cases of second-order differential equations are
discussed. Analytical solutions of the Stokes constants are obtained exactly in a
form of convergent infinite series for all four cases. On the other hand, the con-
nection matrices which connect solutions from one asymptotic region to another in
complex plane are exactly expressed in terms of the Stokes constants. The connec-

tion matrices for the cases of two and four transition points discussed in this Part 1

arc applied to the two-state linear curve crossing problems in Part 2.




Chapter 1

Asymptotic solutions

Asymptotic solutions of a standard second-order differential equation constitute the
basis to analyze Stokes phenomenon and to define Stokes constant. In this chapter
four kinds of the differential equations defined in the complex-z plane can not be
directly solved. By transforming the differential equations from the complex-z plane
to a new complex-§ plane, exact asymptotic solutions for all these [our cases are
solved in the form of convergent infinite series. A brief introduction aboul Stokes
phenomenon is presented for those people who do not know well about this subject,

and it is also an aim to make a smooth connection to the contents of this thesis.

1.1 WKB solutions

A standard sccond-order differential equation
4’
dz?

+g(2)d(z) =0, for —oo <z < 00, (1.1)

represents numerous physical problems. As we know, exact solutions can be obtained
analytically only for a very himited number of functions g(z). The use of approxi-
mations are quite necessary; and the Wentzel Kramers-Brillouin (WKB}[1] solution
constitutes one of the most powerful techniques among these approximations.
Task of many typical physical problems, in which physicists are only concerned
with physical quantities such as cigenvalues and scatiering matrices, is aimed to find
a connection of wave hunction ¢{z) belween two asymptotic regions ¢ — +co and
where the WKB solutions coincide with original exact solutions. This

T — —00,
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connection can hardly be obtained by using WKB solutions only on real axis. So,
for this purpose, a real independent variable z may often be replaced by the complex

variable z. The two independent WKB solutions are given by
IR L TR PR
pa(z) = g(z)7ee I ) (1.2)

where zp is called reference point. A zero of q{z) in the complex plane is called
transition point; evidently the Eq (1.2) ceases to be valid near a transition point due
to the singularity caused by the factor g(z)~%, while the exact solutions of Tq (1.1)
must obviously remain finite at such a point. The farther from all transition points
the WKB solutions are, the more accurate they become. There is a method which
allows us to trace the WK B solutions in the asymptotic region |z| — oo where WKB
solutions always remain exact; evidently the solutions of certain physical quantities
obtained by this way are also exact. But it is not always possible and necessary
to use WKB solutions only in the region of |z| — co. In many physical problems
we can still construct quite good approximation by using the WKB solutions in the
certain region , in which the solutions should be far from all transition points.

Our investigation about Stokes phenornenon in part 1 of this thesis focuses at-

tention on the certain n-th order polynomial coefficient function of Eq (1.1),

qlz) = i a;z’, (n>0); (1.3)

J=—o0

and more precisely speaking, a complete analysis is presented for the following {our

cases:
Case (i) q(z) = aavz™ + T, 0,77,
Case (ii ) g(z) = agy-122"7 1 + ZJN;_EOO a,z’,

Case (i11) ¢(2) = as2’ + @227 + a1z + ag,

and

Case (iv ) g(2) = a3z + 012 + aq,

with N being positive integer.




1.2 Asymptotic solutions

A starting point to find asymptotic solutions of four cases mentioned above is to

introduce the following transformation|2]

$(z) = 27 ¥y ), (1.4)

and A
_ _ L in+2)/2
Eﬁn+2( dn)? 2 : (1.5)
Simple calculation leads (€) to
d*y
Qe =0, (16)
£
where | () : 2 4
__Hp_qz~anz”_ n+2)" -4 i .
Q€)= i Py . z . (1.7)
For general case of Eq (1.3), we can assume that Q(&) is given in the form,
1 i -
Q) = -7+ 2 0k, (1.8)
K

Hinton[2] discussed the case in which K are positive integers, here we will deal with
the case K are positive fractions.

In order to analyze Stokes phenomenon in a unified way, we shall first introduce
standard WKB solutions as asymptotic WKB soltutions, in which we consider the
leading terms({omit all constant terms) in the phase integrals and the first leading
term of q(z)i‘ in Eq (1.2). Then, relations between exact asymptotic solutions in
the complex-€ plane and the standard WKB solutions will be made clear in the

following.
A. Case (i}

First, let us write the following asymptotic WKB solutions which we call standard

WKB solutions:

(o, 2) = (228) 7 exp[i 02 vt g OV 1y (1.9)

j‘v—]”" 1M 211[}.2‘.\:

(o,2) = (23~ 1/ exp[-—fﬁ——mﬂvﬁ g In(2)i, (1.10)

J}V—i‘],v 2\/(12N



where

[ () SR 4 sk n(z), for o] — oo (L1)

and the notation e simply means that the lower limit of integration i.e. the reference

point is not specified. As is seen from Eq (1.8), Q(£) can be expanded as

1 N+n

QE)=—7+ i Q& W+, (1.12)

n=1

where the fractional powers of £ are expicitly introduced. We can assume a solution

of the form

Y(E) = £ Y e e w (1.13)
n=0

If this is substituted into Eq. (1.6) with Eq. (1.12), we can find

p:gi, 7 =41, (1.14)
g
" m—1
cm(gN n 1) = ;} enQmat-n Tor 1 <m <N, (1.15)
and
m m m =

C = —1 7/ Cm—-N— ‘nldm—n .16
emlo ) = 0+ g~ Do+ Fplomewa + 2 Qi (L16)

n=0

form > N + 1,
where ¢y is an arbitrary constant. This formal solution is an asymptotic expansion
of a solution in a certain region of £, if we assume that the infinite series in Eq. {1.13)
converges for sufficiently large |£]. Corresponding to the choices of o = &1, the two
independent solutions in the complex &-plane are defined as

o0

u(€Q1, Qo) = (0,8) ) AVETNE for o = L, (1.17)
n=0_
and y
W(EQ1, Qs ) = (&0 Y cPeTTE for 0= -1, (1.18)
n=0
where
(o.6) = £9et (1.19)
and
(6 0y = €9t (1.20)
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which correspond to the standard WKB solutions in complex-z plane, as shown
in Egs. (1.9) and (1.10). We can easily see that exact asymptotic solutions in
Eqgs. (1.17} and (1.18) are made up of two parts, one include all divergent terms
which are the standard WKB solutions, others are convergent terms in the power
series expansion. This fact is also true for other three cases.

B. Case (ii)

The same procedure as in case(i) can be utilized. The standard WKB solutions

are
2 [#) 2N+
_ (L2ZN-1y-1/4 : N1 ZhHL
0 z)=(z expli—————z ? |, 1.21
and N
— 2N =1 —1/4 _'-‘ GQN_]' 2—N2+—l 1 bD
(2, 0) = (2 70) e axpl i Y4 (122)
The coefficient Q(£) is equal to
1 hiai _aNtn .
QO = =7+ 2.0k S22 (1.23)
n=1
and a formal solution is given by
HE) = 7D Y o i (1.24)
n=0
with
o = 41. (1.25)
The recurrence relations for ¢, are
) in—1. = ¢ .
Com1 am) = mE::O om @ for 1<n <N, {1.26)
“am { o —ni:l- for 1<n<N (1.27)
C2n a?fv + ]) - = 62771+1an'm or =N » A
n—1 An—N—-1) 2(n—N—-1) il
Cop— = + ] Colm—N— + :211:(11—7711
w1l oNGTT U aN T Jeatn-n-n) 2—;0 ’
(1.28)
forn > N + 1,
( 27 2(71-N~1)+1‘2(an—1)+1+1]
Can\ T = Co(n—N —
»ON +1 ON + 1 N + 1 “Anm N

£




n—1
+ > c2mt1@Quem  for n> N+ 1. (1.29)

m=0
It should be noted that we have used exactly the same notation for ¢, and @, as in

case (1), but they have naturally different definitions in each case.
C. Case (iii)

In this case, we have

1/2 25} 23]
g "(2)d In{z) for |z| = o0 (1.30)
/ NNV ,
in which the second term is new, missing in the case(i) and will give an additional
complexity in the procedure to obtain Stokes constants, as is seen next chapter. The

standard WKB solutions are thus explicitly obtained as

Vil s +i—In(z)], (1.31)

(o,2) = 27 exp[i¥22° + i

5 g

and
AVALTI 839 ay

20— i——z— In(z})]. (1.32)

(z,8) =z exp[—i

The coeflicient @(£) and a formal solution (&) are given by

+ = (1.33)

and
B(E) = ErelePE0E S L ot (1.34)
n=0
where
oy e
p=—0==x1a==06Q), and Q, = 2/9. (1.35)
23

The recurrence relations for ¢, are

@t Qs e
=3—_— %, (1.36)
3
o2 = [0+ Qs+ (@3 + Qe (1.37)
and
n 17— 3 1, 2
(O‘g)c” - [(/7 3 )(p + ‘E.) + g]r:11"§3+

2 -
[2Q0Q1 + EUCJO(H - 1)}(:”_2 + [(36 + Q?]C‘n—l: f()[' T Z 3 (](58)

T




Two independent solutions in the complex £-plane are thus denoted as

=]

w(é; Qo, @1, Q2) = (o, Z dVETs ) for 0 = +1 (1.39)
and .
v(€Q0,Q1, Q) = (£,0) > P73, for o =—1, (1.40)
n=0
where
(0,6) = 6“@16(5—6Q0£1/3)/2 (1.41)
and
( .) — é‘Ql (¢- GQDE”J)/” (142)

in which the second terms in the exponentials are new, missing in the case (i).
D. Case (iv)

The same procedure as in case(iii) can be used, and the following resulis are

obtained:
(0,2) = 2~ exp{'u\'/— ———21/2], (1.43}
3
2
(z,8) =z~ e\(p[ f P 213, (1.44)
\/a;
1 (20 Qg -
QE) = —7+ R g (1.45)
and o
H{£) = polE-ati®)f2 3 0 £7F {1.46)
n=0
where
o =1 0= 10Qq and Q; = 21/100. (1.47)

The recurrence relations for ¢,, are

3a .
CB(T)) = l','o(gé + r','gQ-_?!

L4(T) = 20900 /25 + 0100 + 302a,

8




and
Ca(no [5) = cu_s[n(n — 5)/25 + 21/100]

+ cnsl(n — 2)0a/25) + c,3Q2 + 2, 1Qs, for n> 5. (1.48)

Two independent solutions in the complex £-plane are given by

u(&; Qo, @2, Qa) = (0,6) . ¢ Ve™%, for 0= +1 (1.49)
n=_
and -
v(§ Qo Q2, Qa) = (£,0) 3 cPE™%, for 5 = —1, (1.50)
n=0
where
(0,8) = elE-10Q /2, (1.51)
and
(€, 0) = £~ (E-10Qu!%)/2. (1.52)

For the above four cases, the explicit recurrence relations for the coefficients
¢n in the asymptotic solutions have been made possible due to transforming the
differential equations from complex-z plane to ¢ plane. But, it should be pointed
out that explicit recurrence relations are not always .possible for general form of
Eq. (1.3). However, for given ¢(z) in Eq. (1.3) explicit expressions of standard

WHKB solutions can be derived in principal.

1.3 Stokes phenomenon

A general solution for the differential equation (2.1) in the whole complex plane
can be given by a certain lincar combination of two independent solutions; this fact
should hold also in any asymptotic region of complex plane . But , what Stokes[3]
discovered is that if in a certain region of arg z a gencral solution is given by a certain
combination of two asymptotic solutions, in the neighbouring region of arg z it is no
longer necessary to maintain the same lincar combination as before. The constant
coefficients of the linear combination changed discontinuously as certain lines are
crossed in the complex plane. This phenoimenon is called Stokes phenomenon.

In order to deal with this phenomenon quantitatively, we first need to introduce

our basic terminology used in this subject. Let us start with the following convenient

9




notations[4] to rewrite the WKB solutions in Eq. (1.2):

(20,2) = q(z)"’i‘e"fﬂ! e (1.53)

and

oz L
(2,70) = g(z) e~ w722 (1.54)

in which qé‘ and g~ can be specified by means of certain branch cut in the complex
plane , and the path of integration should not cross the branch cut. If for given
z the exponential in Eq. (1.53) is dominant, a suffix d is inserted, namely {z0, 2)a;
then solution in Eq. (1.54) is subdominant, a suffix s is used, namely (z,20),.

In the complex z-plane, there are certain lines that are called anti-Stokes lines

on which we have

Im/zq%(z)d:j:o. (1.55)

o

Interchange between the subdominancy and the dominancy of solutions takes place if
the solutions cross the anti-Stokes lines, on which the solutions are neither dominant
nor subdominant. On the other hand, we define Stokes lines by
Re/ g7 (2)dz = 0, (1.56)
0
On the Stokes lines, one of the two independent solutions reaches ils position of
maximum subdominancy, while the other attains its maximum deminancy.
Now, we can turn to quantitatively describe discontinucus change of asymptotic
solution in the complex plane. Assume that for certain g(z) in Eq. (1.1) a asymptotic
solution in the region 1 of Fig.1.1 is given by the linear combination of two solutions

of Eqs. (1.53) and (1.54},
Pz} = Alz, 2)a + Blz, z)s, (1.57)

where A and B are arbitrary constants. In the neighbouring of the region 1, region

2, this solution becomes
Plz) = Alzo, z}a + (B + AU) (2, z)s, {1.58)

where a discontinuous change occurs in the coefficient of the subdominant solution,

and U is called Stokes constant which is associated with a particular Stokes line in

Fig.1.1.




AN
N

Figure 1.1.

Taking the Airy equation as an example , we shall demonstrate the procedure
how to find Stokes constant. Assuming that 4(z) = z in Eqgs. (1.53) and (1.54) with

the reference point zy = 0, we have WKB solutions given by

(0,2) = 277 '35 {1.59)
and

(2,0) = 27~ (1.60)

A branch cut is shown in Fig.1.2, where three Stokes constanis are assigned to three
Stokes lines. Considering now a given solution P(z) = A{0, z) 4+ B(z,0) on the anti-
Stokes line arg = 0, and tracing the sclution round positively in the coinplex plane,

we have

L A0, 2), + B(z,0),,
20 (A+ BU(0,2), + B{z,0),,
3. (A+ BU(0,2)4 + B(z,0),,
Lo {A+ BU0, 2)a 4 [B + Ua{A + BUD(z,0),, (161)

and then negatively,
7. A0, 2)y + B(z,0),,

6. 24(0,z2), + iB(z,0),,

1 A0, 2)0 + (B — U34)(z,0),,

n

4. QA0 2), +i(B — Uy A)(z,0),, (1.62)
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Figure 1.2

where we have used a rule for the solutions (0, z) and (z,0) crossing branch cut in
negative sense:

(Or 3) - t(O) Z)r

(z,0) —= i(z,0). (1.63)

This is because the continuity of the solutions must remain when they cross the
branch cut. A another rule is I/, — —U; when the solutions cross Stokes lines in

negative sense. Comparison of Eq. (1.61) with Eq. (1.62) leads to

and
B4+ Uy(A+ BU) =iA. (1.65)

Thus, we obtain Uy = U, = Uy = 4. The method used above for finding Stokes
constants 1s not possible for general case of ¢(z) in Eq. (1.3), nevertheless, the
procedure can always provide threc independent equations for all Stokes constants.
This is quite useful for many physical problers, an example of which will be seen
in part 2.

A numerical method based on the definition of Stokes constant from Eqs. {1.57)
and (1.58) may be designed for the computalion of Stokes constant, but it is a ques-

tion whether the method can produce results with an acceptable accuracy due to

12



the fact that a dominant solution is asymptotically divergent. For the certain simple
cases of ¢(z) some numerical tests were actually tried by Emamzadeh[5]. On the
other hand, there are several analytical method used for finding Stokes constants.
Heading[4, 6] investigated the cases that for certain polynomials of ¢(z) the differ-
ential equations can solved analytically .But , his method can not be extended to
deal with the case when differential equation can not be solved analytically. In this
case, Sibuya(7] developed a procedure to obtain connection matrices that connect
subdominant solutions in different regions of complex plane. Some formal solutions
for Stokes constants were obtained by this method, but not convenient for many
physical problems. Hinton{3] introduced a method that transforms differential equa-
tions from the complex-z plane to the complex-¢ plane. With help of coupled wave
equations method an explicit expression for Stokes constant was obtained. But the
method can deal with quite limited cases of q(z}. For instance , it can not solve
the case of ¢(z) we encounter in the two-state linear curve crossing problems. A
great extension from his method is done in the present thesis, so that the present
method can now deal with more general cases of g(z) which frequently appear in
many interesting physical problems.

Finally, let us make a further discussion about why discontinuily is allowed in the
asymptotic solutions that is originally continuous. Actually, subtracting BEq. (1.57)
from Eq. (1.58) gives

£ = AU(z, z¢)s, {1.66})

in which (z, z5) obviously approaches to zero for |z| — +oco due to its subdominancy.
According to the precise definition of asymptotic expansion in mathematics[8], this
discontinuity is acceptable. This is because ¢ can be arbitrarily small by taking |z|
sufficiently large. This fact also shows that an exact solution of Stokes constant {/

can be obtained only by requiring |2| — 400 .



Chapter 2

Stokes constants

In this chapter we shall derive analytical solutions of the Stokes constants for the
four cases discussed in the previous chapter. First, three independent relations for
all Stokes constants U/; defined in the complex-z plane are established. these re-
lations are quite useful for obtaining the connection matrix discussed in the next
chapter. Second, we shall transform the asymptotic solutions from complex-z plane
to the complex-£ plane where the Stokes constants 1, are defined. One-to-one cor-
respondence between U/; and 7, is simply obtained. Furthermore, the iransforma-
tion ”-” introduced in this chapter shows a link between two asymptotic solutions
u(€) and v(£). This link essentially concludes that all Stokes constants T can be
simply related to only one of them, for instance, 77. By generalizing the coupled-
wave-integral-method devised by Hinton, Stokes constant Ty is finally shown to be
expressed in the analytical form of a convergent infinite sertes as a function of the

coefficients ¢(z) for all four cases.

2.1 Relations among the Stokes constants

In this section |, we derive relations among the Stokes constants and prove that they
can be expressed in terms of one Stokes constant. First, by tracing the standard
WHB solutions across the Stokes lines, the anti-Stokes lines, and a branch cut,
three independent equations are found among the Stokes constants in the complex-
z plane. Next, we establish inter-relations between the two (z- and &) complex

planes. Finally, we shall prove that all the Stokes constants in each case can be
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given in terms of only one. Since the procedure is easily demonstrated in the cases
(iii) and (iv), we start with them.
A. Case (iii)

First of all, we need to determine the Stokes lines and anti-Stokes lines in the
complex plane. Our focus is in asymptotic region where Stokes constants are ex-

actly defined, so that the anti-Stokes lines are defined by the phase integration of

Im[m\/i_J'z3 + z+ —El—ln(z)] = Im

a3
3 21/0.4 2@

= Im[—\/??zra(cos 30 + isin 34)] = \/Sars sin 34 = 0, (2.1)

where z = r¢'% is used and aq 1s assumed to be positive. Thus, anti-Stokes lines are

Eq. (1.30), and given as
|2 =0 o
)

1
g =

= chm £=0,1,2,3,4,5. (2.2)

And Stokes lines can be found in the same way ,

g = T, k=20,1,234,5 (2.3)

1

br 4+

(=N =

1
3
As are shown in Fig.2.1(a).
Next, let us determine a rule for governing WKB solutions across the branch
cut. Assume that the branch cut is inserted at argz = 4, and if z = r¢* just belore

the cut, then
(0,2) = (9 Nomyet, (2.4)

but just after the cut we must have » — ret* 2 5o that we have

= eV (o, )] (2.5)

repeif.

In order to maintain the continuity of the standard WKB solutions on crossi ng the

branch cut | we have
(.53) - e—fSMQl(.:Z): {2(’)

and the similar discussion gives




where we have Q, = —22_. The rule given above is for positive (anti-clockwise)

6\/a4 N

crossing. For negative (i.e. clockwise) crossing, it can be easily proved that the sign
of the exponents should be changed.

Now, we start with a given solution A(e,z) + B(z, ) on the anti-Stokes line
arg z = 0 in region of Fig.2.1(a), here A and B are arbitrary constants. if we trace

this solution in a positive sense, then we obtain
1. A(s, z), + B(z,e),,

2. (A4 BUy)(e,z2), + B(z, o),

3. (A+ BU )(e,z)a+ B(z,9),,

4. (A + BU (e, 2)a +[B+ (A+ BU)U,|(z, ),

5. (A+ BU )(e,2), +[B + (A + BU)U,](z, e,

=3

- {{A+ BU) + [B+ (A + BU)U,3 Us (e, 2),
+[B 4 {4+ BUNL(z, )4, (2.8)
and if we go round negatively we have
13. A(e,z)a+ B(z,e),,
12, Ae®m%1 (0, z) 0+ Be ™91 (1 o),
11, AeS79 (0, 2)y4+ (Be™070 - (g AebmQ1) (= o)
10. Ae®™9 (o, 2) 4 (Be ™ — [, Ae5™01) (2 0),,
9. [Ae5™D — (Bemtm@r Us Ae®™ %) Us](e, 2) 4 {Be=fmi@r UgAe®™ 91 (2 o)y,
8. [Aef™Cr _ (Be—tmQ1 _ Us Ae"™90) Ul](e, 2) 4 (Be™8%Q0 ], 4.57@) )z, ),
7. [Ae®T9 — (Be™0 % — (g A5 ()0, 2) 4 {(BeTtmO Ug Aet™1)
= Uy [Ae9 — (Bem 070 g AT 1 (2 ), (2.9)

One-valuedness of the solution, as was discussed in the section 1.3, leads to the

following equations:

(l + (Jg[!‘r‘}} = (l - [ff)([(})fisriQ:l’
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(1 + UlUg) = (1 —+ U.;Us)S_G”in,
Ul + U3 + U]UQUg = —USG_SWiQIJ
U4+U5+U4II5U6 = "*Ugemstl, (210)

among which three of them are independent.

Now let us consider the Stokes constants denoted as T;(j = 1--6) in the cormnplex
§-plane based on solutions u(€; Qp, @y, @2) and v(£;Qo, @1, Q2) of Egs. (1.39) and
(1.40). If we start with the function v(¢; Qp, @y, @2) of Eq. {1.40) in region 1 of
Fig.2.1(b}, which corresponds to A = 0 in Eq. (2.8), then ¥(€) in the region 7/2 <
arg £ < 27 can be easily found to be given by

() ~ v(€Qo, @1, Q2) + T10(£)ulé; Qu, @1, Q5), for T/2 <argé < 2w, (2.11)

where ©,(£) is a step function defined as

0, arg{ < nm,
jead = 51
Oel0 { 1, arg& > nm, for n=1,2--.. (2.12)
Here c(ol) = cgg) is assumed in Eqs. {1.39) and (1.40). Repeating this procedure, we
obtain
Y(E) ~ (1+ T To0,(6))v + ThO (Eju, for 7/2 < arg € < 3, (2.1%)

and, finally,
PE) ~ {1+ N0 + [T+ (1 + TT)TH)T00 + {T1 + (1 + Ty ) Ts+
[+ T+ (Th + (1 + )T T T O Ty v+
{70, + (1 + ThTH)e; T+
0+ T+ (T + (1 + IO To Yu, for /2 < arg€ < 7. (2.14)

From Egs. (1.31),(1.32),(1.41), and (1.42) we can casily prove

(0.€) = [2i/a /3] 2(s, 2) (2.15)
arncl
(£, ) :[Zi\/a/fi]_cg':(:]o), (2.16)
17
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Figure 2.1: Stokes lines and anti-Stokes lines in the asymptotic region in the case

(1i1), in which arg & = Jargz + = /2.
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Substitution of this equation into Eqs. (2.11) and (2.13) leads to

B(2) = 27IP(E) ~ [20v/as/3]9{(z, 0) + T1(2iv/25/3) 2 ©, () (o, 1)},
for 0<argz<n/2 {2.17)

and
¢(z) = 27(E) ~ [20/a: /319 {(1 + TiT204(6))(2, )+
Ti(2i/ag/3) 29 0,(€)(e, 2)), for 0 < arg z < 5m/6, (2.18)
where the power series with respect to £7! in Eqgs. (1.39) and (1.40) are neglected
for simplicity. Comparing Eqs.(2.17) and (2.18) with Eq. (2.8) for A = 0 and
B = [2i\/a,;/3]%, we find

Uy = T1[20/ag /3] (2.19)
and
Uy = Ta[2iy/a, /3], (2.20)

Similarly, we obtain
Us = Tu[20/a; /3] 79, Uy = T5[2iJa /3] 7291,

Us = Ty[2i/ay /377", and, Us = T4[2i/d,/3]*9. (2.21)

Simple one-to-one relations between Stokes constants U, in the z-plane and 7, in the
£-plane have been set up.

Finally, we drive inter-relations among the Stokes constants T, which enable us

to express all Stokes constants in terms of one . First of all, we define a symbol 7-"

to indicale a transformation,

£ — &7,

o — ngo;

¢y — stl,

Q@ — w0, (2.22)

with w = ¢/ [t is easily seen that Q&) in Eq. (1.33) is unchanged under this
transformation, so thal the differential equation (1.6) is invariant. Actually, this

invariance ultimately leads to the inter-relations among six Stokes constants. Next,



let us employ this transformation to the two independent solutions in Eqs. (1.39)

and (1.40), and take u as an example, we have
7= u(e™; Qow?, Q1w Qauwt)
= (o,8) Y @Vemm/3g=nl3, (2.23)
n=0
where
(0,8) =771 (0, 8). (2.24)
With further effort by using the recurrence relations for the e and 42 we can

prove
el = c2om, (2.25)

hence we obtain
G=e "y Qy, Qr, Qa)

— e~iWQl?j, (

N}

26)

and in the same way we have
U= U(ge_”r; Q0w21 (u)lwa! Q?u"'4)

= e u(g; Qo, @1, Q2). (2.27)
Now, we start to trace the solution v from region 1 to region 5 in Fig.2.1(b} by using
two interchangeable ways as explained below. One way is that we first trace v to
region 5 where we obtain Eq. (2.13), and then take the transformation of Eq. {2.22)
to Eq. {2.13), we have
V(E) ~ (14 T T50,(Ee ™ )T + 710, (62 )T

=T10:(6)e ™%y 4 ™9y Aor T/2 < arg£ < 37, (2.28)

where T, = T,(Qou?, Qw?, Qsw?). 1 should be noted here that O,(£e™) = 0 and
O1(£e™7) = ©,(£), becanuse 7/2 < arg & < 3r. Another way is that we first take the
transformation of Eq. (2.22) to v, then we have

Y(E) ~ e ™ u(£;Qy, O, (22), for n/2 <argé <, {2.29)
and now we trace this solution to region 5, we obtain

Y(E) ~ ™D (4 TH0,(E)), o T/2 < argé < 3. (2.30)

20



Comparing this with Eq. (2.28), we find
Ty = Tie™ 27, (2.31)
Repeating the same procedure, we can prove
Ty = Toe®™ 9 7, = Tae #Q1
T, = T.e® ™ and Ts = Tse 3790 (2.32)

B. Case (iv)

In this case, there are five Stokes constants associated with five Stokes lines in the
asymptotic region of z, as is shown in Fig.2.2. The coefficient as is again assurned
to be positive. Since we follow the same procedure as in the previous case (ili), only
the results are given below.

First, three independent equations for the five Stokes constants in the complex

z-plane are
L+ UgUy = iUy, 14 UUs = ils, and 1+ U,U, = il (2.33)
Secondly, the relations between U; and 7} are
Ui=T, i=1~5 (2.34)
But, the rule for the solutions to cross branch cut now becormes

(.,Z) . 871311/2(2'.)?

—i3x)2
(z,0) — ¢ 7/ ), (2.35)
in the positive sense, this is because @, = 0 in this casc.
The 7-7 transformalion in this case is given by
§ — &,
4
Qo — wQy,
(—23 — Lb's(g-_g, (256}
with w = 7/ We can prove that under this transformation the solutions i

Egs. (1.49) and (1.50) satisfy

T=u(fe; Quut, Qaw")



= v(£; Qo, Q2) (2.37)

and

v

u(€; Qo, Q2). (2.38)

Thus, we finally obtain
Ti = iﬁi+1(Q0: Q'Z)J Z: 1~ 4: (239)

where T, = 7T, (W Qo, w®Qs).
C. Case (1)

There are 2N + 2 Stokes constants associated with 2N + 2 Stokes lines, as is
shown in Fig.2.3. Three independent equations among the 2V + 2 Stokes constants
can always be derived from the one-valuedness of asymptotic solution. Explicit
expressions can be obtained when N is specified. Again, we can employ the same

procedure as in the case(iii). As a result, relations between U; and T; are
Ur = Th[2iy/aaw [3]72% Uy = Tu[2i/azy /3],

Us = Ts[24y/aan /3] 9", Uy = Ty[2i\/azy /3%,

L ]
[ ]
L ]
Usngr = Tov 1 [20/aan /31729 Uy yr = Tonv+2[21/azn /3]79". (2.40)

The transformation 7-7 is

5 - 56*”)
N
Ql — W +]er

Q; — W¥TQ,, (2.41)

[ ]
L ]
L
with w = e™"/(N*1) The final relations among the 2¥ + 2 Stokes constants T, are

Obtai]]ed fa 3]
—
7‘5 T]_Kl .J?rQ|1

Q)
[
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Figure 2.2: Stokes lines and anti-Stokes lines in the asymptotic region in the case

(iv}, in which arg & = Zargz + /2.




T3 = T2€2ier1 ’ T4 R T3€_2”FQ1,
T5 = T4€2irQl ; Ts = T5e_2i”Q‘,
L J

]
- _ o
Tont1 = Tone™™ " Tonys = Toy e 2790, (2.42)

where T, = T; (wV*1Qy, ¥ 2Q,, - ).
D. Case (i)
In this case, by using the same procedure as in the case (iv) we obtain the

following results:
Uy=T, for 1=1,2,--- 2N +1 (2.43)

and

Ti:711+1((2]1(:22?-..)7 L= 1)2?”'121\[' (244)
The -7 transformation is defined as
E = gd—iﬁ,

Qi — wAHHQ,,

Q@ — L,

)y — wg(NH)Qz, (2.45)
]
L
[ ]

- r = , A - ry - .
where w = e™/CN+D nd T, = T (WH¥HDQ ) WNEDGL 0 The Stokes lines
and the anti-Stokes lines are shown in Fig.2.4.

In summary, the Stokes phenomena for the four cases of second-order differen-
tial equations have been analyzed here. Virst, one-to-one correspondence has been
established between Stokes constants U; and 1) in the two complex planes. Then,

»on

the transformation ”-”, under which the differential equation {1.6) is invariant leads
to the simple rules which express all Stokes constants 70 in terms of only one | for
instance, 77. In conclusion, the procedure here used can be extended to deal with
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Figure 2.3 Stokes lines and anti-Stokes lines in the asymplotic region in the case
(1), in which arg& = (N + 1l)arg z + 7 /2.
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Figure 2.4: Stokes lines and anti-Stokes lines in the asymplotic region in the case
(i), in which arg£ = (N + 1/2)arg z + 7 /2.



the most general case of Eq. (1.3), relations among Stokes constants will be formally
the same as in the case (i) or case (ii). What we need to do is just to redefine the

transformation 77 which remains invariant to Q(¢) in the general case of Eq. (1.3).

2.2 Explicit expressions of the Stokes constants
T

In this section, extending the method of Hinton[2], we derive explicit expressions of
the Stokes constants 7) for all four cases in the form of convergent infinite series.

First, let us write the solution of Eq. (1.6) as a product of two functions,

B(€) = X(U(£), (2.46)

where X{(£) is required to be a solution of

d* X

T +{Q&) + (€)X =0, (2.47)

and 4* must be chosen for Eq.(2.47) to have a regular singular point at £ = co. The

wave function ¢ is searched in the form,

UE) = w&H AN expl [ ()] + Al expl [ l)de)},  (2.48)

where 4:(£) and A,(£) satisfy coupled equations { Eqs. (2.50) and {2.51) below).
For our purpose to determine the Stokes constants 7}, we can assume that 11

subdominant on the Stokes line arg £ = 0. This means
A€) — 0 and Az(&) — 1 for § — 40c0. (2.49)

Coupled integral equations satisfied by A,(£) and A,(€) are obtained as

A0 = [ deB@)exnl-2 [ ple)de)an(e) (2.50)

and . ‘
AQ) =1 [ deB(E)expl2 [ pe)del M (e) (2.51)

where Ny v
B(£) = E% —;; (2.52)




It should be noted that the formulas given above are exact and merely reformulate
the original problem of solving Eq. (1.6). For later convenience, we introduce here
the following two complementary expressions of the incomplete Gamma functions

and its asymptotic expansion:

R8¢ == [ dggPe (253)
+00

[ degrmret = eme-np(p, oy, (2.54)

and

oo I\ —_
‘TE O ~ Z(*l)m——(;“é;)m)(—’”ﬁkl
2m10,(5) o810

o 9 9 5!
I‘(l-b’) for —w < arg( < 2, (2.55)

where ©; is the step function defined in the previous section.

A. Casef(i)
[n order to obtain a solution of Eq. (2.47) which has a regular singular point at

£ = oo, we choose 4 as
N1

=3 Q8 W (2.56)

1
T2
namely,

N+ 1 "
i 7w (2.57)

1 N
J (€)= 26— Quing+ Y Qs
- n=1

This choice is another generalization from the Hinton’s method. This p#{€) is substi-

tuted into Egs. (2.50) and (2.51), and B(€) is combined with third term of Eq. (2.57)

to give
N+l
BI(E):B( O)\pﬁ)ZQn+l & N+I]

n=1
:ZM%%% (2.58)
n=1
and
N+1 o

Bg(f) = O‘([) Z (Jn +1T NH]

n=1

X3

=3 B

n=]

—
(S
Nial
<=

~—




where B{(¢) is calculated from Eq. (2.52). The power series expansion of B(£)
and explicit expressions of B{!) and B'?) are in Appendix A. The coupled integral

equations are thus given by

(e = [ demereretante) (2.60)
and
A =1+ [ deBa(ee e ane), (261)
with v = 20);.

Now , we shall look for asymptotic solutions of Eqs. (2.60) and (2.61) for —7 <

arg & < 27 in the form,

o0 [=e]
Ar(€) = e 30 ogUe WD L ey (€) 3T BPETHY (262
n=1] n=0
and,
=2 BRETII D 4 1oy (et 3 alPe O (0,63
n=0 n=1
where ﬁm ['?éz) = 1. The other coefficients af"), AV, oi?) and, A2, and the
Stokes constant T\ on arg £ = 7 are to be determined.
Following Hinton, we introduce the quantity
‘ 6 5 g f(V4L)
MO = [ Bieret 3 glemiovn, (2.64)
Voo n=0

which corresponds to the first term of Eq. (2.60) with A,(£) replaced by Eq. (2.63).
Using Eq. (2.58) and the asymptotic expansion Bq. (2.55) of the incomplete Gamma

function of Eq. {2.53), we obtain

> { o Ntsyt
MO = XUS BN [ dee W
3=0 ntm=s :

= e Z{Z Z Bp+lﬁq o )I\“-H

n=0 s=0 pt+g=s

[(—v+ N;‘j:;”)m n— -l
x P _ \+s+1 V +l }C
( v+ e ) i
i — 216 N
¢ BT AN
s=0 ptg=s ( v+ N1 )
where v(X) is defined as
1, X =012 .
N ’ y Ay : g g
7(X) = { 0, otherwise. (2.66)
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It should be noted that the second term of Eq. (2.65) is dependent on the variable

¢ only through the step function ©,. Next, let us consider the quantity

Q)= [ BUOE oy (Q)e et 3 agrioven)]

n=0

(2.67)

which corresponds to the second term of Eq.(2.60) with A,{£) replaced by Eq. (2.63).
This can be calculated straightforwardly to result in

ha(¢) = -Th©

Comparing the sum of Eqgs. (2.65) and (2.6

V—,—l 41
1 2 . 4
OX(T BaE) Y

s=0 ptg=s

8) with Eq. (2.62), we obtain

af(ll) = a(l) == OJEVU =Y
- 1—\ 4+ N+n+l)
(1) !
Qnivy1 = Z( Z Bﬁﬁlﬁm )V“H Nji-:j-l
s=0 pt+g=s v N+1 )
n— g
X ,  for n >0,
Y(NH) >
N+1
B = o 3 BYA for n> 1,
7 .
p+g=n—1
and g
o0 (1) 1) efi“( NN-:I l)
T = —2mie Z( Z p-Hﬁ ) ( v+ N+n+1)'
n=0 pt+g=n N+1

In the same way, substituting Eq. {2.62) into Eq. (2.61) and using fgs. (2.5

we obtaln

(2.55) ,

Comparison with L. (2.

ﬁ(l) - _

[ demieeeiane

N+ 1 (2) e
_Z (> Bl v
s=0 s+ 1 p+q 3 g q
r -1 (2 23
RO Y T B A
s=0 ptg=s
i '+ N:‘jjl +o) L e
: NYU
=0 ] (U + & \_.t-—j-_:-l )
63} leads to
N+ 1 )
. Z Bp-H q+l’ for n 2 J-a
m ptrg=n—1
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(2.68)

(2.

[}

-1

—
~—

4) and



O.’l = g?) _— O’.’E\?} = 0,
and,
n N4n+1
(2) _ @) a2y 8 Plv+ 58
4N = Z( Z B 8.7 ) )= . )
B Shopkems NI (v + B
for n>0. (2.74)

We have thus obtained recurrence relations for the determination of the coefficients
in Egs. (2.62) and (2.63), and an explicit analytical expression for the Stokes constant
Th. Only two coefficients i) and 8 in Eqs. {2.69) and (2.73) are required for the
determination of T}. This is also true in the other cases.
B. Case(ii)
In this case we choose p in Eq. (2.47) as
1 o N4y
HlE) = 5 — X Que™ (275)

n=]1

The coupled integral equations are the same as Egs. {2.60) and (2.61) with » = 0.

The functions By and B, are obtained as

N N 1 N
Bi(€) = B(&)exp[-2>_ Q. 2; j—] £ ]

n=]1

o]

Be Tt (2.
ke
1

[}

=1

|
-

X0

T

and

2N + 1 _2ey
2N 41

2n -1 £ ]

By(€) = B(&)exp2 S @

n=1

= 3 B, (2.77)

n=1

IExplicit expressions of B(€) and the cocfficients of B and B2 are derived in

Appendix A. Asymptotic solutions of A, (€) and Ay(£) are given by

A(€) = 783 e RN L 10 (5) 3 gD (g
=1 n={
and . o
Ap(€) = 37 AUETIENTY L g (£)cE S aDgmniN D (2.79)
n=( n=]|
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for —n < arg€ < 2w, and where ﬁél) = g“)} = 1. Final results for the coefficients

oV, B ) B2 and the Stokes constant T} are as follows:

- ()
o B ;
Ty = —2mi ) > p+15(]))W' (2.80)
i=0 ptg=s (Tvﬁ”)
2N 41 72!
6= IR 0 0 s (2)
=0
- e,
(1) = (qu(l) (1y(__1 2;‘;l+1r(§ﬁ17)
Doty — Z s—qﬁq )(“ ) F(?N«}s
s=1 g=0 IN+1
"), fern> 2.82
’7(2]\]4'1)1 or n___ i ("‘("‘)
2N+1 &
ﬁr(r,l) = - Br(:)m+1a’£r]1)ﬂ for n Z 1: (283)
n m=1
0‘12) = f—‘f(g?) == agj\), =0,
and
n s—1 _ 11(21\"4-”)
(23 _ (2) (> n—s IN+1
an+g\' - Z Z Bs —) 'm ) 2N s Y
‘ s=1 m=0 2]V + 1 1(;':'1-1)
for n>1 (2.84}

C. Case(iil)
In order to obtain a solution of Tq. (2.47) with £ = co as regular singular point,

we should choose 11 as

I . Qs+ Q2 200 3
G R (2.83)

The phase integral becomes

/ w(€)dE = %(5 —al ) = QuinE+3(QF + Q) #3000, 7 (2.80)

where o = 6Qy as defined in the previous chapter. The second term in B, (2.80)
15 a new term which has never appeared in the case(i) and case (i) and can not be
combined with B in Egs. (2.50) and (2.51), while the last two terms in . (2.80)

can be combined with B as the previous cases. We obtain

Bi(&) = B(&) exp[—6(Q; + Q)67 — 6Qq¢, 67/
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=3 B (2.87)

n=1
and

By (€) = B(¢) exp[6(QF + Q,)E~1/3 1 6Q0 Q1721
=2 B (2.88)
n=1
where explicit expressions of B(£) and of the coefficients Bfll) and ng) are given in

Appendix A. Coupled integral equations are slightly different from Eqs. (2.60) and
(2.61), and are given by

A = [ deBi(ere ey (2.89)

and
‘ v l€=agl f?)
A0 =1+ [ deBy(e)eelemt g ) (2.90)
J4 oo
with v = 20Q, and the initial conditions are the same as before. The asymplotic
solutions of Eqs. (2.89) and (2.90) are different from the previous cases and given

by

v —{f—afl/3 - —nf: - = 2} —n ¢
A = g T W el L o) S pRe (2.91)
n=]1 n=0
and , B
A€ = 30 BVETP 1 0, ()t N g ignss, (2.92)
n=0 n=]

for —7 < arg € < 27, and where ﬁél) = ﬁég) = 1.

In the same way as before in the casc(i), we introduce the following quantities

Iy; and 1,y

¢ = 1/ = =Tl -
In(¢) = ‘/+ dEBy ()67 e (a8 §™ gli)g=nis (2.93)

n=0

and
¢ /3
IIQ(C) = /; 0’531(6) ue—(f—ﬂf / )

[7104(g)e 77D 37 a2 =n13) (2.94)

n=0

X

The quantity 1, can be simply obtained as

; o 5 r; et .
Ia(Q) = =T (O3 Y B, — (2.95)
s=0 p4g=sx -

33




In order to reduce f1; so that we can determine the Stokes constant 71, we first
expand the term ¢%¢'” into power series and then use the Stokes phenomenon (the

asymptotic expansion Eq. (2.55)) of the incomplete Gamma function. Then we

obtain
T — -~ B(l) d v—(s+3)/34n/3 ,~¢
n(Q) = 2020 B4 Z 33
3=0 p+g=s n=0
F( Uun—r—S +?TI)
— B (1) ﬁ(l) { m+1 3_ —
EEE e I
—s—23 —2 - R—38—
S ri6y(¢ iy (2.96)

I'—v - “_3"3)

where the second term depends on ¢ only through the step function @,(¢). Direct
comparison of Eqs. (2.95) and (2.96) with Eq. (2.91) can not be made yet, because
the first term of Eq. (2.96) does not contain the term e«¢}’* explicitly. In order to
make this possible to obtain an explicit expression of 13, rearrangement of the first
term of Eq. (2.96) should be carried out. This is a tedious procedure and is given

in Appendix B. We obtain finally

etr( =72
Ty = —2mie'™ e {2.97)
52):?:0 n! -y — B 2)
(2) 3 ?) i
ﬁn = - Z JiIj’n+1 Xot1, for n > 1, (298)
n ptg=n—1
o:_(ll) = agl) =0, (2.99)
and
ran =— > AW, forn>o0, (2.100)
rtg=n
where
o=6Q, A= S0 BU AW, (2.101)
n+mos
[QJ’QI m ﬂ?,!
Woe = 3. O@3m—q) > ——W )
7'22{’:1/,3] n=3m—g i
? (U - P/J)Cn(;’.m—q) alim.—q’ (‘3102)
Iy —p/3—m+mn)
with
{ OnOr rT= Ol (() 1(}3)
Cn,r = T r—3s 1"(5 3+1) . - -
Zs:o(wl) .s!(r—s)frlés,’S—n-!-l)’ ! 2 ]'
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the symbol [z] means the largest integer, not larger than z, and © is the ordinary
step function,
1, X <0,
0(X) = { 0 X0 (2.104)
On the other hand, substituting Eq. (2.91) to Eq. (2.90) with use of Eq. (2.88) and
using the asymptotic expression Eq. (2.55) of the incomplete Garama function, we
have

[ deuerereteciiia, g

(3 B Y s

3=1 ntm=s—1

80T, (¢)

0 p+g=s
5+3 n
i F(I/ + + TTE) C*"”-_”— si:‘;—n 8C.

2.105
r(f/+ s+g n) ( ‘J)

Again we extract the term e~ from the second term of Eq. (2.105) and compare

this equation with Eq. (2.92) to obtain

3
,[37(;1) = —— Z Bn+1 q+1! for n 2 1, (21{)6)
n
ptg—n—i
RO (2.107)
and
.;y +3 = Z O /\pq: for n 2 0, (2108)
ptrg=n
where
> (2109)
n+m=p
[q,n'?] I Tn.'
Xpg = Y O6Bm—-g)(-1)" > m
171‘*[(,‘/3] n=3m-—qg " : e
7 hp/ Cn(dm—g) (ﬁa)iimfﬂ_ (2.110)

r ( v— p/._} —m4n)

The coefficient Cn(am—gq) ale the same as those of Egs. (2.103} . This completes the

derivation of the coefficients a1, o2 B3 and the Stokes constant 7.
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Because Qo # 0 in the present case, the expression of 1y is more complicated

than the first case. When we put Qg = 0, it is easy to confirm that all the results

obtained in the present case coincide with those of the case (1) with ¥ = 2 and no

negative powers of z in (z). We have confirmed that our results obtained here give

the exact results in the case of a, = a; = 0[2].
D. Case(iv)

In this case the funciion 4 as is chosen as

Q Q Q3
H(g) = 5 - 54/05 - 56/25 - 68/0‘5’

and the following coupled integral equations are obtained:
( s
A = | deBi(§)e P ay(g)

and

A0) =1+ [ BN, (e)

where a = 10Q, and

BA(E) = () expl-10Q:6 1 — D3

= iB(I)g_lF

=1
and 0
Ba(&) = B(&) exp[10Q,67'° + T Qa7

n

_ Y B2

(2.111)

(2.114)

(2.115)

Explicit expressions of B(£) and of the coefficients B and B are given in Ap-

pendix A. Asymptotic solntions of Egs. (2.112) and (2.113) for —7 < arg £ < 27 are

obtalned as

M) = & E ST W DeT e, (6) S AP

n=1 =0

and
s 4]

A2(€) = 30 BVET 4 10, ()M 3 gLt

1n=() n=1

(2.116)

(2.117)



The same procedure as in the case(iii) can be used to determine the coefficients
in Eqs. (2.116) and (2.117), and the Stokes constant 7y. Here we just list the final
results:

DD LA (
T] = =2y _AST' 2]18)
s=0n=0 nr F(-W 5 5)
2 5 1 2 ‘
5,2_31 = b Z Bl(,ﬂf)laéﬂu)p for n > 0, (2.119)
m+ pte=n
afg ) = ol = ag = oagl =0, (2.120)
and
oty = 3 AW, forn>o, (2.121)
prg=n
where
A=Y BU AL s> (2.122)
n+m=s
[4/4] Z m!
W, = O(5m — ¢) —
ra ;%:/5 sy N — n)!
L=p/5)entom=o S (2.123)
F(=p/5 —m+n)
with
‘SrzOr r= 01 -
Cnr = 7 I{s/o5+1) . (-)112’1)
{ §= U(_I) ‘(T—5)?I‘f£s/5-n+])’ 4 2 1’
Following similar procedure like Eq. (2.105) in the case (i}, we can have
Al = 1 ol for n> 0 (2.125)
n+1 — +1 q+I - “ e
p+qgn
ol =l = 0P = P = g, (2.126)
and
”+5 = Z 0, X,,, for n> 0, (2.127)
p+g=n
where
Z Bn+1 " ! (")‘1‘38)
netr=p
[4/9] ™ .
Xpg = 2 Om —g)(—~1) P —
o] nam—g M — 1!
(‘-P/ ”(”"'? ) 1J'qu'_ (2130)

F{=p/5 — m+n)
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It should be noted that the final results of cases (ili) and (iv) are quite similar. We
can again easily confirm that when Q, = 0, the present results coincide with those

of case (ii) with N = 2 and no negative power of z in Q(z).

2.3 Concluding remarks

The standard asymptotic WKB solutions were proved to be useful for present type
of analysis, especially for dertving the relations among Stokes constants. From the
one-valuedness of an asymptotic solution, we have established three independent
relations among Stokes constants 7, defined in the complex z plane. These are
quite useful for many physical problems although they do not have a complete.
Furthermore, one-to-one correspondence was established between U; and the Stokes
constant T; in the complex £ plane.

The z — ¢ transformation has many advantages. First, asymptotic solutions in
the £ plane can be obtained in the form of power series with respect to £7', The
explicit recurrence relations of the expansion cocfficients can be derived. Second, all
Stokes constants can be expressed in a compact form in terms of only one Stokes
constant 77. It should be noted that this can be dope , even in the general case of
Eq. (1.3). So, if we could obtain an analytical expression for the Stokes constant Ty,
we could, in principle, determine all the other Stokes censtants. Third, in the four
cases (i)-(iv) considered in this chapter, the Stokes constant 7} has actually been
found to be expressed analytically in the form of a convergent infinite series as a
function of the coefficients a,.

A numerical test is done for the case (iii} by investigating the two-state linear
curve crossing problems in chapter 4, we have encountered the same problemn as
that in Ref[2] aboul convergence rate of the infinite series. It was found that the
convergence rate for the Stokes constant T, becormnes increasingly slow when the
parameters in the differential equation are much bigger than unity, We conclude
that this situation is generally triue in any one of the four cases because of the
reason explained below,

Although Stokes constants are lorally defined by standard asymptotic WKB
solutions that should be actually considered as the reference functions for simplic-

ity of discussion. Precise definition of Stokes constants are related to the exactly
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asymptotic solutions u and v in the complex ¢-plane. Therefore, exact solutions for
Stokes constants must include contribution from each term of the expansions of the
asymptotic solutions. This is the reason why the Stokes constant 7} is given in the
form of the convergent infinite series. On the other hand, as we discussed in chapter
1, the farther from all transition points WKB solutions are, the more accurate they
become. This implies that if one transition point is far from the origin, we need
to consider more terrms in the asymptotic solutions in order to maintain a desirable
accuracy for solutions of u and v. Thus, these result in a slow convergency rate for
the solution of the Stokes constant Ty. Fortunately, however, when transition points
are separated far .away from one another, we can use other sophisticated analytical
approximations which are based on the Alry or the Weber equations. These will be
demonstrated in chapters 5, 6 and 7

Analysis of Stokes phenomena for the four cases (1)-(iv}) provides a powerful tool
to deal with many physical problers. Actually, Case (iv) represents a quantum rme-
chanical cubic potential scattering with resonances. Case (iii) with real coefficients is
similarly related to an eigenvalue problem in double minimum potential{a, < 0} orto
ascattering(reflection and transmission) preblem in double maximum poteniial{a, >
0). This case also includes the basic differential equation for two-state linear curve
crossing problems that are our basic motivation lo carry out research in this field.
In the present study we have assumed that the coefficients a, of the highest order
of z [n=2N,2N — 1,4 and 3, corresponding to cases (i)-(iv)] is positive. Solutions

for the negative a, can easily be obtained by rotating the complex z-plane by = /2.
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Appendix

A. Power series solutions of B({) and explicit expressions of Bl and B?

Solution of Eq. (2.52} is divided into the following two steps:

B(£) = v(€) +a(¢), (2.130)
where (8)
v(£) = ;{((5) (2.131)
and (8
(€)= é;(g)‘ (2.132)
From Eq. (2.47), it is easy to prove that v(€) satisfies the Riccati equation
dv 2 ;
Fé_—+'v“+(Q+,u‘)=O, (2.133)

where 1(£) is defined in texi for each case.
A. Case (i)
Egs. (1.12) and (2.56) give

2 > _ Nt )
Q) +u(8) = > P (2.134)
s=N42
where
P _ Qs + E:n_:j\i_l QszfN-'m: N + 2 _<_ 8 S ?IV + 2, (,) ]5:)
RN s> 3N + 3 =199

[t is easy to see that a solution of Bq. (2.131) can be found in the form,

GED I s (2.136)

n=1

Substitution of Eqs. (2.134) and (2.136) into Eq. (2.133) vields the following recur-

rence relations for v,:

v — v+ Py = a, (2.137)
) N+n
o = P — 20, 2.138
() s/ ( N1 1) ( )
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and

n—1
= Z UrnUn41lem + Pn+1V+l)/( 2?]1), for n 2 3. (2139)
m=2

n
N+1
By choosing v, to be the root of Eq. (2.137) with smaller real part, we can obtain
one series solution which can be shown[9] to converge for sufficiently large |¢]. This
is true for the other cases.

From Eq. (2.56), we can easily obtain

o0

N "
7(&) = 3 o T (2.140)
m=1
where
QmiAm, 1<m<N+1,
O = T 20000y N 42 <m<L2AN 4+ 2, (2.141)
N+] 2Qn0m N—n, EJ'V + 3 S m.

Finally, from Eqgs. (2.136) and (2.140) we have

0

_ N4 .
B(g):v(f)-FU(f)EZBng NAT (3.]42)
1
where
Yy 1 <n< N —+ 11 .
= ! - = 5 i
B, { Up + 0, N—1, N 4+2 < n. (“113)

In order to obtain explicit expressions for B, and B2 in Egs. (2.58) and (2.59),

let us consider the quantity

N

V& disdyy - dy) = exp(3)d, e w5 (2.144)

n=1

N

o N _hptusd oy,
Z Z U Z d”l dm T (‘-i"m& M
=1n;=1

=1

MgﬁMg

= 14> Toldy,do, - dy)e 7 (2.145)

Il
—

5

After a little effort, we can find

4

T—L(dl, (1:.2, T ('lli\f) = Z ——'()(?H,fv — 5) Z L?.Inl (7'”._, s dn,,.: (2]‘1())

771:[5/;\] . n.I—i-ng-l----nmzs,n,zl




where ©(X) is an ordinary step function.

With use of these results, we obtain finally,

BY =B _p (2.147)
and .
BY —=p 1 2 BuT(dy,dy, - dy), n> 2, (2.148)
s=1
n—1
BY=B.+ Y B, ,T.(~d;, ~dy,- - —dy), n>2, (2.149)
s=1
where v
N +1
dy = =20Q,.; N>n>1. (2.150)
B. Case (ii)
Egs. (1.23) and (2.75) give
b \i)
<2 L ed &
QUE)+ 178y = 5. P iR (2.151)
s=N+1
where
Qw1 s=N+1,
P QA+ DT QuQuvem, N +2< s <3N, (2.152)
¢, s> 3N 4+ 1.
In the same way as case (i}, we have
() = 3 v, (2.153)
n=]
and
7€) = 3 o (2.154)
=1
where
Ui — w4 Puy, =0, (2.155)
2N 2N +2s )s 2
Yoy T2 —m “; § > 1, 2]5(‘
o= )N—i—] }:,]U Vet e ( )
lags | 2N+2S+])+Qilu + P 0 > | (2.157)
Uzg T T T U Uas 49— s+ 0V = 5~ 1 <. 1
251 SN 47 2 + +N 41 L




and

Qm B, 1<m< N,
Tm = Zm s IQQnJm—N;n, N+2 <m < 2N + 1, (2158)

zi:.’:l 2Qnam—N—n, ZJ'V + 2 S m.

Thus we obtain

B(£) = »( Z B,& (2.159)
where
By=v,, 1<n< <2N 42 (2.160)
an = Uap, n 2 N + 2, (2161)
and
Bgn+1 = Uan41 + Tp-N, 7 2 N + 1. (2162)

In order to derive final results for B, and B2 defined by Eqgs. (2.76) and (2.77),

we 1se
ol 2n—1
T(fi dy,dy, - ) G!'N) = exp(z dng‘?ﬁ)
= I+ZTs(d1,d2,'",tiv)f_ﬁﬁf, (2.163)
s=1
where
Blddo ) = 3 sm(zy — 1) -
m=[s/(2N=1)]
X Z d‘nl dng T dngm (-2164)
n]-’rng+---n.-;,,,=.~;+7n,n,2]
and

s—1 ]

55—1(d1,d2,...,a'N) = Z _
m=[(s—N)/(2N - 1)] (2m + 1)!

Olmn{2N — 1) - s + N

X > Y N (2.165)
i tnrtng g =s+mon>1
From these expressions we finally find
¢! 2 o 3
BV = B = g, (2.166)
11
Bil} = Bn+ ZBH 5- nled’ "'1d.f\r"): n 2 21 (21()7)
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n—1

B =B+ 3 B, T~d, ~ds,-- - —dy), n>2 (2.168)
s=1
and 2N +1
N+
d, = —-20Q, , N>n>1. 2.16¢
s ; (2:169)

C. Case (iii)
Egs. (1.33) and (2.85) lead to

5
2 _n4s
QU +17°(8) = Y- PETF, (2.170)
n=]1
where
2
P o= a‘f”Qf'*‘?Qo(Qg”i‘Qz), (2.171)
Py = 4Q50Q) +20Q,(Q + Q,), (2.172)
Py = 4Q7Q0+ (Q2 4 Q) (2.173)
Pyo= 4Q0Q:(QF + @), (2.174)
and
Py =4Q2Q3%. (2.175)
Solutions of v(£) and ¢(£) are obtained as
() =3 v, (2.176)
n=1
and o
a(€) = X o6 T, (2.177)
n=1
where
vy~ + P =0 (2.178)
4
bZ“}JQ/(g'AgU])) (2 1?9)
n—1 D)
Up = (Z VmUngl—mm + ]Jn)/(n.-*_ - - 21}1)! fOi' n 2 31 (‘2]80)
Ty = U-‘:;:U, (..)181)
2
03 = jQOJ (3 ln\l)
7y = Q, (2.183)




gy = g(Q§+Q2)+2Qoa3, (2.184)

10
gg = ?Qle + 20074 + 2Qg03, (2.185)
a7 = 2Qo0s +2Q104 + 2(Q2 + Q) oy, (2.186)

and
Tn = 2Q00n—2 + 2Q10,_3 + 2(Q2 + Q3) g,y + 1Q0Q10n-s, for n>8. (2.187)
Thus,

B() = (&) +v(¢)

_ Zan—n 2
n=1

= S (va+ o) (2.188)
n=1

Finally, from Eqgs. (2.87) and (2.88) we have

n—1

BS.‘,'I) = Z BnﬁﬂzTrn(dlnd'E)x n 2 1 (2189)
m=0
and ~
= > BunTon(—=dy, ~dy), n>1, {2.190)
m=0
where (64, (3d,)
™m 6 2 2n—tn 3d, =it '
I e a _ 2.1¢
To(dy, ds) 7_%{.3] O2n m)(Zn—-m).'(m—— - (2.191)
with
d = -Qf — Qs (2.192)
and
D. Case (iv)
Eqgs. (145} and (2.111) lead to
O{E) + 112 Z P (2.194)

n=]



where

21
A =2 + —— 2
1 Q0@ 100’ (2.195)
Py = 0 (2.196)
Po= QF+20;, (2.197)
P, = 0, (2.198)
Py = 20.Q3, (2.199)
=0, (2.200)
and
Pr=Q}. (2.201)
Solutions of v(€) and ¢(€) are obtained as
() =3 v,e (2.202)
n=1
and
_nts
o(&} = > 0,675, (2.203)
n=1
and
ui =+ P =0, (2.204)
o =0, n>1, (2.2()5)
2
i 2n+5
Vang1 = (Z Ym Vap42—m + JD’J?HH)/( E ’ - 2?/'1), 7l 2 1, (2206)
m=2 =
Ty = Ty =03 = gy =0, (2.207)
Ton = 0, n>1 (2.208)
4
Ty = ;Qny Ty = FQ?; (2-209)
5 5
8
I
[ERN = 2(93(754*2(2007’ (.22]1)
and
Tong1 = 200000, 3 + 20404, _, + 2Q500,—7, n > 6. (2.212)
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Thus, we have

= igng*%
n=1

= 3 (vn+ on) (2.213)
n=1

Finally, from Egs. (2.114) and (2.115) we obtain

n—1
BY =3 By pToldy,dy), n>1 (2.214)
m=0
and B
B = 3 B Tu(=dy, ~dy), n > 1, (2.215)
m={
where
” (10d, )° ™ (10d,/3)mn
Tom(dy, ds) = O3n — , > 1, 2.216
i ( l d) n:%ﬂ'] ( ) m) (3?’? - m)’(m - n)l e ( )
and
L (1Ud1)3n+l—m(]Odg/:‘g)mkn
Tamsa(dh, o) 7;,:[(7nz—]}/3] (3 + ™) (3n+1—m)l(m — nyl mab
(2.217)
with
dy=—@Q; and d,= —Q;. (2.218)




B. Derivation of Egs. (2.102) and (2.110)

In order to make a direct comparison of Egs. (2.91) and (2.96) possible, we
rewrite the first term of Eq. (2.96) except for £ve~¢, namely,

7n+1 ( y.._.-";:s__‘?'._{_m)

ZZ .AZ P(-u—?’w;s)

s=0n=0 3
x (TR J, (2.

(]
—
o
~—

where o and A, are defined in the text. First, we note that the summation with

respect to min Eq. (2.219) can rewritien as

i F(cg -+ 'm)
J = -1 mt] : —m—_&—
= (v i d” 4 (2.220
— e 2.220)
where
B n—s—23 (,_) 991
=—v — 2.22
; 2 )
Thus we obtain
i . w4 ames3
[(C) = -ZZ —fASC Z m(C ¥ )
3=0n=0 7 m=0 {-!C
> > odm 31/
= >ac (SO
s=0 = Ulcm
o0 0 om ) 1‘\(1 _ .s_) i3
= — &g _ 3 — 3 =—m+tn
_EJ ' 720”2:‘; nl{n —m)! Ty — % —m + n)c
d’l 173
X (")
d¢r
3 mn ! I‘( _ /3)[ )
1. v 5 Fn(3rm—g)
= — > A,
Z mZO q;jn % =) (v —s/3 —m+n) '
x a&m~q< (s+34+q) ,t'}ea(,”_ (3332)
Here the formula of the n-th derivative of a composite furction is used[10],
%e“ﬁ” = S b an (el (2.223)
R =0

where ¢, is defined by Eq. (2.103). Finaily, we exchange the summation with respect
to m and g by using the relation,

o) 3m 0 [f{/‘-?]

3 =3 0% e@m—qg). (2.224)

m=0g=2m q=0m=[q/3]
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Insertion of this final expression back into Eq. (2.96) yields Eq. (2.102). Derivation
of Eq. (2.110) can be done in exactly the same way.



Chapter 3

Conection matrices

Connection matrix discussed in this chapter is a matrix that can connect solutions
in one asymptotic region of complex plane to solutions in another asymptotic region.
Discussions in this chapter focus on physically important connections between two
anti-Stokes lines, two Stokes lines, and one anti-Stokes and Stokes lines. First,
the connection matrix is exactly expressed in terms of Stokes constants that are
defined by the Standard asymptotic WKB solutions, and then by cvaluating the
phase difference between the standard and the ordinary WKB solutions, we obtain
connection matrix that connects ordinary WKB solutions. Connection matrices for
one transition point and two transition peints are introduced to illustrate procedure,
and those for three transition points and four transition points are presented. Thesc

connection matrices construct a basis for later application in Part 2.

3.1 One transition point

The simplest connection problem is, of course, differential equation with one tran-
sition point written as,

£(2)

. +hizg(z) =0, &> 0 (3.1)
d=?
The WKB solutions in the form of phase integral are
(0,z) = q_l_(.z)exp[i / q%(z}d:] (3.2)
1o

and

(2,0) = g i (z) exp{——il/(; g% (2)dz), (3.3)
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where g(z) = A%z
The asymptotic solution on the anti-Stokes line of arg z = 0 in Fig.3.1 is given
by
#(z) :OOA(O,z)+B(z,O), (3.4}

T

and that on the Stokes line of arg z = 7 by

$(z) = _C(0,2);+ D(z,0),. (3.5)

Z—=

The connection matrix is defined as follows:

(5)=(m 2 (5)=r(s) (5:6)

As discussed in chapter 1, if we trace the solution (3.4) from arg z = 0 to region 3,

we have
(A -+ B1)(0,2); + B(z,0),. (3.7)
When the solution reaches on the Stokes line of arg = ==, it becones
(A+BMQAWHB+§A+BMQMP (3.8)

Here, we have used the second version of the Jeffreys’ connection formula[11], in
which coefficient of subdominant solution is required to have a discontinucus change

according to the {ollowing rule:
New subdominant coefficient =
old subdominant coefficient 4 (§x Stokes constant)x dominant coefficient.
Comparing Eq. (3.8) with Eq. (3.5) gives
C=A-+ B (3.9)

allcd ,
D= B+ s(A+ Bi). (3.10)

Thus, the connection matrix turns out to be

(1)

(3.11)




Figure 3.1.

Now, let us consider the differential equation(h?® — —h? in Eq. (3.1) )

d*¢(z)

Fi RPzd(z)=0. h>0 (3.12)

The asymptotic solution on the Stokes line of arg z = 0 in Fig.3.2 is given by

P(z) fooA(O’Z)’ + B(z,0),, (3.13)

z

and that on the anti-Stokes line of arg » =« by

#(z) = C0, )+ D(z,0). (3.14)

The connection matrix is

cy FY ]v"l’g) (A) _ ‘v(A) o
(D) B (1-‘.51 . )\B) ™ 1 B/ (3.15)

Tracing the solution from region 1 to 3 in Fig 3.2, we can easily obtain

ﬁ":( g *%). (3.16)

—1

It should be noted that the two connection maltrices salisfy

Pl= g (3.17)

3.2 'Two transition points

A typical differential equation with two transition points is the Weber equation for

which the connection matrix can be solved exactly in the compact form. This is

a2




Figure 3.2.

because that the Stokes constant for Weber equation is known to be given in the
compact form. Two cases will be discussed in the following for the connection matrix

between anti-Stokes lines and the connection matrix between Stokes lines.
A. Connection matrix on anti-Stokes lines
The Weber equation is
P(z)

dz2

+ h(2° - Eyd(z)=0, h> 0, (3.18)

where ¢ can be a complex constant. The corresponding Stokes and anti-Stokes lines
are shown in Fig.3.3. Asymptotic solutions on the anti-Siokes lines argz = 0 and

arg ¢ = m arc expressed in the ordinary WKB f{orrm as
() B Ag VY5 exp[: / gl’f:’(:)dz] + By Yi(z) expl—i /~ qlf’j(z)dz} {3.19)
Ehsds = o] J0 J0o
and

#(z) i Cq=11(z) explz \/OZ q]p(z)a’z] + Dg7 () exp—1 L/O.z (]1/2(.3)0{3], (3.20)

where

g(z) = h*(z7 — &%), (3.21)

The connection matrix between these two solutions is defined by

C o F]I jﬂg) Ii) — ;"i) 7 99

(o) = (i w2 (B =r(5) (3:22)

In order to find the matrix F we introduce tho standard WKB solutions of Iq. (3.18)
(o,2) = 271/ explil(2)] (3.23)
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and

(z,0) = 77112 exp[—iP(z)], (3.24)

where
h 3 2 -
Pz} = 5(2 — & ln 2). (3.25)

The asymptotic solutions (3.19) and (3.20) can be also given by

B2) — A(s,2) + B(2,0) (3.26)
and
¢(z) R C'(e,2) + D'(z, ). (3.27)

The connection matrix between the primed coefficients is given by[13]

(g:) - (—(1 +22ﬂﬂ)/g _:’.iwﬁ) (;:) ) (3.28)

where U is a Stokes constant on the Stokes line argz = /4 in Fig.3.3 and is given

by
vy ‘
U =, —xB{2 —iBin(2k) 3.99
E_%I‘(%-iﬁ)e ¢ (3.29)
with
1 |
Expanding the phasec integrals in Igs. (3.19) and {3.20) as
z,'/u ¢ 2 (2)dz - Plz) + 6, (3.31)
Jo z—+o0
and
i / g (2)dz: — —iP{z)+ 5, (3.32)
A0 I — o0
and comparing Eqs. (3.19) and (3.20) with (3.26) and (3.27), then we obtain
] 5 5 ‘
oy = z'h(~7152 — % In2 4 % In vere?) {3.33)
and
5= =8y + The” (3.34)

Finally, we can derive

"= Mg
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(3.35)

B. Connection matrix on the Stokes lines

Let us consider the Weber equation given by
d’¢(z)
dz?

where ¢ can be a complex constant. The corresponding Stokes and anti-Stokes lines

~ R =~ Np(z) =0, A >0, (3.36)

are shown in Fig.3.4. Asympiotic solutions on the Stokes lines argz = 7/2 and
arg z = —7/2 now become

$lz) —  AgHz)exp[— /:q’“(z)d:]Jqu1”"(2)@)(;)[./;ql/D(:)sz] (3.37)

r—one 7?2 SO

Cq {2y exp[—- /: g 7 (2)dz] + j_)q_lf‘*(:)cxp[fo: gt (z2)dz], (3.38)

T one = x/2 J0

where

q(z) = h7(z% — &°). {3.39)




The connection matrix is now defined by

(5)= (i w2)(5)=7(5) (340

Again, the standard WKB solutions are introduced as

(o,2) = 27 % exp[—P(2)] (3.41)
and

(z,0) = z 12 exp[P(z)] (3.42)
with .

P(z) = 5(22 —¢é’In z), (3.43)

by which the asymptotic solutions (3.37) and (3.38) are written as

Blz) = Aozt Bz, (3.44)

—ooe'* /2

and

d(z) — C'le,z)at D'(z,0),. (3.45)

z—rooe x/2
Tracing Eq. (3.44) from the Stokes line argz = /2 to the Stokes line argz =

—m/2, we have

1. AI(.S Z)d + (BI - %A’)(Z,‘ .)5:
2. Ar(.rz)s + (Br - %‘/1")(2:.)&

3. [A —-T(B - AN (e, 2), + (B~ %A’)(z, e},

2

4. A —T(B — LA)(e, 2)s + (B — LAz, 0),,

2

and on arg z = ~7/2,

! "t ! 4 ! 3 U i S 1 sy t f ‘ .
[ T(B = S A(w, )+ {(B = 4] = S = T(B - — A}z 0).. (3:46)

& &

Comparing this equation with Eq. (3.15), we obtain

U

o= AT - A, (3.47)
v o s i

D= (B A = AT TR = AT (3.48)




where the Stokes constants I/, T and S which correspond to the Stokes lines arg z =

7/2,0,—7/2 in Fig.3.4 respectively, are given by

S — Ue—zQTra’ (349)
T = _(€i27ra + 1)/U’ (350)
and s
U - i*lzz_eifra—a in(2h} (351)
'z —o)
with 1

It should be noted that we have also used the second version of Jefferys’ connection

rule. Thus, we obtain the connection matrix as

(o) = (CHle, hrioy (ay, sy

In the same way as before, putting

/h qlp(z)d‘z . /2 P(Z) - A+ (3'54)
JO z—oaat®
and

/ a"%(2)dz — —P(z)—A_, (3.55)

0 z—oaeT  T/2
then we obtain B2

Ay = 1%(1 +2In2 = 2InVeme?) (3.56)
and .

A= —A, — %hé’, (3.57)

with which we compare Eqs. (3.37) and (3.38) to Bgs. (3.44) and (3.45), we have

b—i—ﬁcfig?)tz“_al”“ —sin{mo)
H=H(a)=| 70 _

Sin(?i"(_]{) F‘(gie*avlralna

2
+a

(3.58)

2
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Figure 3.4.

3.3 Three transition points

The case (iv) discussed in the previous chapters 1s a typical differential equation
with three transition points, which is rewritten here as

&> (z)

-2

+ a2z’ + a2+ ae)d(z) =0, a3z >0, (3.59)
where a; and go can be corplex. By using two independent standard WKE solutions
(e,z) and (z, ) shown in the case (iv) of chapter 1, the asymptotic soluticn on the
anti-Stokes line of arg z = 0 in 'ig.3.5 is given by

#(z)

and that on the Stokes line of arg z = 7 by

Ale, )+ B(z, o), (3.60)

pa e §)

(=) = e z),+ Dz, 0 (3.61)

L= — D

The connection matrix between the anti-Stokes and the Stokes lines 1s now defined

(. o 11“1] f;‘l'l (}l) — ;,(fl> )
(D)“(fal (s =r(s) (3.62)
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In order to express the connection matrix in terms of the Stokes constants, we again
trace the solution (3.60) round in the complex plane of Fig.3.5, in positive sense we

have

1. Afe, z), + B(z, e)a,

2. (A+ BU))(e,2), + B(z,0)4,

3. (A4 BU))(e,2)s + B(z,9),,

4. (A+ BU){e,z)a+ [B+ (A+ BUUS)(z,0),,

5. (A-+ BU)(e,2), +[B+ (A+ BUNU(z, @),
and on the argz =,
{(A+ BU,}+[B+ (A+ BU)U D} e, z) +

[B+ (A4 BU U3 (2, 9)4 (3.63)

Comparing this equation with Eq. (3.61), we have

U
C=A+BU, +[B+(A+ BU)U)- (3.64)
and
D= B4+ (A+ BU)Us. (3.65)
Thus, the connection matnx is found to be
R ] +[/'r2[]3/2 l,[]+(1+[.j]l]3)(]3/2) g e
F= ( , L+ s : (3.66)
where L
Uy —— 7L (33.67)
1+ Uy,

This can be found from the three relations among five Stokes constants in the case
(iv) of chapter 2.

The connection matrix here is defined by the standard WK B solutions, in which
reference points are not specified. However, the connection matrix with other type of
WK B solutions can be easily found by adding certain phase correction to I2q. {3.66).

This procedure will be seen in next section for the case of four transition points.
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Figure 3.5.

3.4 Four transition points

The conrection matrix for four transition points constitutes a basic framework to
deal with linear curve crossing problems in Part.2 for finding both exact and semi-
classical solutions of the reduced scattering matrix. Since the Stokes phenomenon of
four transition points has been analyzed, we shall express the connection matrix in
terms of the Stokes constants. In this section we shall first discuss the the connec-
tion matrix between two anti-Stokes lines and the counection malrix between two
Stokes lines for general four-transition-point problem. Then a special distribution
of four transttion points will be given to illustrate how an explicit expression of the
connection matrix can be obtained from the Stokes constants.
A. Connection matrix on the anti-Stokes lines

As we know from discussion of the previos chapters, the second-order differential

equation with four transilion points are

d*é(z)

5

+ ((l.] Zl{l -+ L",:)Z."2 -+ a,z + [7.())(;3(3) = O, oy > D, (5(‘)8)
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where a», a; and gy are complex constants. The general WKB solutions can be

written as

82) = Aqi()exsli [ qt(a)dz]+ BaH()expl—i [ aF(z)dz)  (3.69)

T too 0 20

Z

[T

05(2)de) + Dy~ ) expli [

—zy

#z) = Co (=) exli | (2)dz]  (3.70)

—zg

g
where the reference points zy and —zy are chosen to be real and

q(2) = agz* + ay2” + a3z + ag. (3.71}
The definition of connection matrix is

(5)= (2 ) (5)=(5) (3.7

In order to find a relation between the connection matrix and the Stokes con-

stants, we must introduce the standard WKB solutions introduced in chapter 1,
Ao, z) + B'{z, @) (3.73)

and
dlz) = C'{e z)+ D'z, e}, (3.74)

I+ 00

where (o, z) and (z, } represent the standard WKB solutions defined by

25

(o,2) = 27 exp[r P{2) + 1 In z] (3.75)

Is

Ly Sy

and
(z,8) = 2" exp[—iP(z) — 'izi;l_a Inz]. (3.76)

Here the function P(z) is equal to

3
aa

P(z) = \/a(—; + —=z), (3.77)

20y

o3

and e simply means that the reference point {lower limit of integration) is not
specified. As is shown in Fig.3.6, there are six Stokes constants associated with six
Stokes lines in the asymptotic region. Let us start with a given solution A'(e, =} 4
B'{z,e) on the anli-Stokes line arg z = 0, in which A" and B arc arbitrary constanis.

By tracing this solution in the counter-clock wise {rom region 1, we obtain
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1. Al(s,2), + B'(z, ),
2. (A’ + B'Th)(e, 2). + B'(z, )4,

3. (A" + B'Uy){e, z)a+ B'(z,0),,

4. (A" + B'Uy)(e, 2)a +[B' + (4 + B'U)U2)(z, 0),,
5. (A" B'U)(s, 2}, +[B' + (A + BU)Us)(z, 0)a,
6. {{A"+ B'UL)+ [B' + (A" + B'U)U3)Us e, 2),

+ B+ (A + B'U)U: (2, 0)4, {3.78)

where the sufflixes d and s mean dominant and subdominant as before. The last
equation in Eqs. (3.78) represents a solution on the anti-Stokes line argz = 7, on
which the function in Eq. (3.74) is defined. Thus we find the following relation
between (C', D') and (A, B'):

(C’> (”U?Us U1+D’3+i’fleU~‘)(Al)
D)=

Uy 14+ U402 b
LY, L’lf,) (A’) ,(A’) _
= “ =1L . (3.79)
(L’Ql L, B B
The inter-relations among six Stokes constants in the complex-z plane, as discusssed

in chapter 2, are rewritten as
(] + IIEU"}) = (] + [,f\sl.[s)ﬁzGTrQIJ

(1 —+ byl b‘rg) = (] —+ [rr4 (./ri,)ri_iﬁerl,

and
Uy + Uy + U U Uy = =Uge ™59 (13.80)

with .
10
6, Ay ‘

These relations arc very useful, but three Stokes constants still remain independent

(3.81)

=

and to be determined. However, when we deal with physical problem, certain con-
straints of symunetry propertics coud give extra independent relations, as will be
seen in part 2. On the other hand, in chapter 2 we developed a general procedire to

express all Stokes constants in terms of only one based on the certain transformation.

G2



Figure 3.6.

Here we just set up a direct relation between two connection matrices L and L'

Tn order to do this we calculate the phase integrals in Eqs.{3.69) and (3.70),

i[q%(z')dz —s iP(z) 4 iz + 864 (20) (3.82)

z— oo 2\/&;

and
(23]

[1E

Inz 4+ 46_(z0) (3.83)

i/j:oq (z)dz:jm'ip(z)—l-i

2,;624
where 64 (29) are constants which are dependent on the reference point z and on the
coefficients a, in Bq. (3.68). Comparison of Bgs. (3.69) and (3.70} with Eqs. (3.73)
and (3.74) with use of Bqgs. (3.82} and (3.83) finally leads to
) I ey 1oLt —iby
L — L:*‘ln‘ (L“C Ll"t‘ ) ) (;84)

i S 41d v i 18
Loy et?m et Lise o+

It should be emphasized that d.{z0) in Eqs.(3.82) and (3.83) plays an mmportant
role for determining the connection matrix; but in chapter 4 when we deal with the
exact expression of reduced scattering matrix, and they can be eliminated in the

final results.
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B. Connection matrix on the Stokes lines

Now we turn to describe a general procedure of connecting solutions on the
Stokes lines for the differential equation (3.68). The connection should be made

: — <> . . .
from z — coe'™2 to z — coe ™2 Asymptotic solutions are written as

o(z) 7_—5112/1(2012)&-#3(2,50)5 (3.83)
and
(;()(Z)_ -—..::rfﬁ C(ﬁZO)Z)s+D(z:_ZO)d; ((586)
where (2/,2") is
(+,2") = ¢7(2) eXp[i/ g11?(2)dz]. (3.87)

Here, the reference points zy and —zy are chosen to be pure imaginary. The connec-

tion matrix (denoted as ) is defined by

C Gy Glg) (A) (A)
In order to express the matrix G in terms of the Stokes constants, we again use

standard WKB sclations |

dlz) — Ao z)e+ Blze), (3.89)
and
$(z) — C'(e,z),+ D'(z,0)a (3.90}

s onediTf2
Tt should be noted that the argument of z in Eq. (3.90) is taken to be 37 /2 because
of a branch cut shown in Fig.3.7. Let us start with a solution in Bq. {3.89) on the
Stokes line arg z = 7/2 with arbitrary constants A" and B’ and trace this solution

in the counter-clock wise to the Stokes line arg z = 37/2. Then, we have

4. A'(e,z)s+ (B + U A'[2){z,0),,

Aez), 4 (B Us A 2)(5, 00,

Wi §

jop]

AT Us(B A+ Us AT f2)} (e, 2) s + (BT 4 U A[2) (2, @),

7. [le + U‘\}(B’ -+ [/3/1"/2)](.: Z)d “+ (H’ 4 Ug‘}f/z)(, .)S,

o

(AT US (B Uy AT 2)](w, 2)at L (B4 Us AT J2) 4 Uy [ A+ Uy (B4 U2 f2)) s 0

!




9. [A'+Us(B'+ U A/2) (e, 2}, + {(B'+ U2 A" 2) + Uy[A' + Uy (B + U2 A"/ 2)]}H 2, @),
and on the Stokes line argz = 37 /2:
! ! 1 U5 ’ '
{A' 4+ Us(B'+ UA/2) + —A(B + U, 4'/2)

+ UgA"+ Us(B + U4 /2)] (o, 2),
+ (B + Uy A'J2+ U A + Us(B' + U A'/2)]}(z, @), (3.91)

Comparing this equation with Eq. (3.90) and using the relations among the Stokes

constants given in Eqgs. (3.80), we obtain

! I
(L}) - (g,) (3.92)

where
G ( (24 UslUs) + (2+ Uy Uy)e5™ @) 4 [Us — Uleﬁ’”Ql]/‘Z) (3.99)
T (U, — Uge®91]/2 1+ UsU, o
with
10
Q= (3.94)

—6\/(“1_4"
Tt should be noted that the Jeffreys’ connection rule has been used again on the
Stokes lines argz = «/2 and 37/2. Now, we can establish a relation between the
two connection matrices G in Lq. (3.88) and G' in Eq. (3.93) by evaluating the

phase-integrals of Eq. (3.87) as

ToV(Ade e Pz % T4+ A 3.95
/zoq (z)c e {(z)+ Q\ﬂi}l” + A4 (20) (3.95)
and
[ g (z)d:  — . 7(z) + Inz+ A (z), (3.96)
. r—ooe T T/ FAVALY]
where 4
z" 5]
Plz) = Vo (o + —2), (3.97)
3 2(}14

and A, (zp) are constants dependent upon the reference point zg and the cocflicients
, in Eq. {3.68). Then, a comparison of Eqs. (3.85) and (3.86) with Eqs. (3.89) and
(3.90) leads to

¥

o N A
O e P .
P A s ) (3.98)
21® el
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b =5
argt=3m/2
Figure 3.7.

where

Ay = Ay — A —may/Jay (3.99)
and

Ao = Ay + A +ivay [ ay (3.100)

It should be noted that the additional terms fway/ /2, come from a difference in
the branch cut used for the solutions Eq. (3.86) and Eq.(3.90).
C. Example for g(z) = a;z' + a2

In crder to demonstrate the procedure how to obtain connection matrx in the
case of four transition points, let us take ay = ag = 0 in Bq. (3.68) as a special
distribution of four transition points in Fig.3.8, in which one of the zeros zp is
located at ongin and the others are synmunetrcally distributed on a cirele, For the
correspouding differential equation

A2 2)

i 22

+(azt +a () =0, (3.101)

Lhe Stokes constants can be solved exactly in compact form by transforming this

equation to the complex-£ plane as the Whittaker equation[2]. By directly applying

GG




Eq. (3.84) to this special case, the connection matrix from z — oc to z — —o0 can

be given in the following way:

(g% g0 —i(6" 488
LU:e_i,r((1+U§U§’)e (2=85) (U9 + U9 4+ UOULUD)e (‘5‘”*)), (3.102)

U&iwiwi) (1+ UEUg)ei(ér‘-_éi)

where the Stokes constants U; have been replaced by U?, and 6%, and 162 are defined

by
i/ Jauzt + ayzdz ——r zfm+z \/_lnz—t—zﬁ_ol_ (3.103)

Z‘4 [val

and
Inz+ 82 (3.104)

/ \/a4z +alza'z ——b 7f~—+z

These can be exactly calculated as follows:

! 1 {a
[ L) e — T Y i 3.105
+ - E[Gﬁ 3\/@ l’l(2 04)]’ ( '))

in which we have used the indelinite integral formula,

1 . .
/\/:4 +agzdz = Ezv i az + %ln(z:}/‘ + Vi + a). (3.106)

\/"‘

By using the general method in the case (iii) of chapter 2, we can first relate the
Stokes constants U2, UF and U in the complex-z plane to the Stokes constants
T, T2 and T? in the complex-£ plane, and then express all T7 in terms of T, so

that we have

20
vy = Tl(Ql)({\/m)“Q‘, (3.107)
A
Uy = Ti(=Q1)s '°'”Q‘(%\/G4J“Q‘, (3.108)
and
Uy =TQ,)e “’"Ql( 3 \/a)‘g‘?l, (3.109)
where 71(Q;) is given in the compact form[2]
o _ -').T?P'_’v.'zQ] ;
Hi(Q) = (3.110)

I(L = Q)1 (Z - Q1)

with

(3.111)
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Above equations lead to the final expression of Ly,

: 9 =2Q 2xiQ 420Q
L L2mel) N _.,.‘r:Q e 1 1
1—e [1+ 2cos(27y)] A

1 — e @1 4 2cos(270Q )]

—tr
= £ )
LO Brn'Q?QIC—'?“QI_Bgl

T34+ Q0023+ 01 )

(3.112)

This is the explicit expression of the connection matrix between the anti-Stokes lines

arg z = 0 and arg z = » for this special four-transition-point distribution. We can

apply Eq. (3.98) to this special case, the connection matrix between the Stokes lines

argz = 7/2 and argz = —%/2 can be also derived.

6o



PART 2. TWO-STATE LINEAR
CURVE CROSSING PROBLEMS

As is well known, the Born-Oppenheimer adiabatic approximation, which is a
separation of electronic and nuclear motions, has been proved to be a very useful
approximation. As long as adiabatic potential energy surfaces remain well separated
from one another, it is generally a good approximation to consider the nuclear motion
to be confined onto one such surface. When two or more such surfaces intersect, or
come close together, or when nuclear speeds are very high, however, transitions take
place among such surfaces. These transitions are called nonadiabatic transitions
which occur in various atomic and molecular dynamic processes such as atomic
collisions, chemical reactions and spectroscopic processes[23 —28].

A study of nonadiabatic transition has a long history with development of a
host of classical, semiclassical and quantum mechanical approaches[23—86]. An
analytical treatment is mostly based on the semiclassical theory which has been
well developed for the one-dimensional two-state problems. As is well known, the
nonadiabatic transition occurs most effectively at avoided crossings where the two
adiabatic states come close together. This fact leads to the most basic and simplest
model, i.e., the systemn of two lincar diabatic potentials and constant coupling be-
tween them. However, this is not merely a hypothetiical model, but can give a good
basis for generalization. Analytical formulas in this model can be generalized to the
cases of more realistic potentials. The two-state theories can also be applied even
to multistate systems thanks to the localizability of nonadiabatic transitions[28].
The hinear curve crossing problem is classified into the following two cases: (1) the
same sign of slopes of the two diabatic potential curves, and (2) the opposite sign of
slopes[23]. The first case is called ”Landan-Zener case”, and the second ”nonadia-
batic tunneling case” which presents a quantum mechanical tunneling accompanied
by nonadiabatic transition.

Exact numerical quantal solutions for the two-states coupled differential equa-
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tions with general realistic potentials are not difficult at all; but those for the lin-
ear potential problems are troublesome, because the diabatic potentials linearly
diverge asymptotically and the coupling constant does not die out. Delos and Thor-
son treated the first case(the same sign of slopes) successfully by moving into the
adiabatic-state representation in momentum space[62]. In the case of nonadiabatic
tunneling, however, there appear singularities on the real axis in the adiabatic repre-
sentation. Eldsberg and Oppelstrup tired to solve the coupled equations in diabatic-
state representation, but their results can not be free from instability[65].

Exact analytical quantal solutions for the two-state linear curve crossing prob-
lems were tried by Barany[63] for the first case, later by Coveney[64] for the second
case. [t was realized that the exact analytical solutions should involve certain un-
known constants—Stokes constants. This was noticed to be a very difficult mathe-
matical problem.

The semiclassical trealment {or the two-state linear curve crossing problems was
firstly proposed by Landau[29], Zener{30] and Stiickelberg[68], and subsequently
analyzed by many authors{61- 68, 73 —78]. The analytical formulas developed so
far for the scattering matrix, roughly speaking, work all right when the collision
energy is higher than the crossing point of two diabatic potential curves, but they
can not work at enegies lower than the crossing point.

Part 2 in this thesis will actually deal with those unseclved problems mentioned

above, and successfully solve them for the first time.



Chapter 4

Exact quantal solutions of
scattering matrices

There have been a long history about the study of classic two-state linear curve
crossing problems since Landau, Zener and Stueckelberg. There are the following
two cases: (1) the same sign of slopes of two diabatic potentials(Landau-Zener case),
and (2) the opposite sign of slopes{nonadiabatic tunneling case}). The problemns
were formulated to solving reduced scattering matrices which are well known to
be described in terms of the two parameters a?(effective coupling strength) and
b?(effective collision energy). Finding the exacl analytical quantal solutions for the
reduced scattering maltrices is very challenging and a very difficult question. The
answer to this question is given in this chapter. On the other hand, a new mumerical

method will be presented for the case of the opposite sign of slopes.

4.1 Introduction

Since the pionecring works done by Landau, Zener and Stueckelberg on the two-state
curve crossing problem, numerous papers have been devoted to this subject[23}-
(28], This problem presents a very basic interesting mechanisim of stale change,
and its semiclassical theory has a long history and can provide elegant analytical
formulations[23]-{28]. Asis well known, the dynamics of many atomic and molecular
processes occur most effectively at avoided crossings where two adiabatic states come
close together. This non-adiabatic transition presents a very wide interdisciplinary

concept, and plays a very important role to cause a change of state in various fields
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of physics and chemistry, presumably even in biology[28].

The most basic and simplest model is, of course, the system of two linear diabatic
potentials and a constant coupling between them. However, this is not merely one of
the hypothetical models, but can give a good basis for generalization. The analytical
formulas in this model can be generalized to the cases of more realistic potentials.
The two-state theories can also be applied even to multi-state systems thanks to the
localizability of non-adiabatic transitions[60]. The linear curve crossing problem is
classified into the following two cases: (1) the same sign of slopes of the two diabatic
potential curves, and (2) the opposite sign of slopes[61].

The scattering matrices for two-state curve crossing problems can be decomposed
into a product of two parts[62], one of them is an elastic scattering phase shift
that is easily evaluated for realistic potential, but divergent for linear potential,
another part which is well defined for both realistic and linear potentials is called
the reduced scattering matrix, namely S®. To find out exact quantal solutions of
the reduced scattering matrices for both cases mentioned above is our central topic
in this chapter.

A work in finding an exact analytical solution for S¥ was tried by Bardny[63]
in the case (1), later by Covenecy[64] in the casc (2). It was realized that the exact
analytical solutions for both cases were involved in the certain unknown constants—
Stokes constants. This is a very difficult mathematical problem.

We shall first gives a brief introduction about how the linear curve crossing prob-
tems are reduced to solutions of the second-order ordinary differential equations with
quartic polynomials as coefficient functions, and the reduced scattering matrices S¥
satisfy extra symmetries in addition to unitarity. Since the connection matrix and
Stokes constants of this differential equation have been investigated in the previous
chaplers in a general {our-transition-point problen:, its application then will show
that the reduced scattering matrix in each case is exactly expressed in terms of one
Stokes constant U; which is finally given analytically by a convergent infinite series.

Finally, we will report a numerical method for finding solution of S% in the
case (2). Exact numerical solutions for general nonlinear realistic potentials are not
difficult at all, but those of the lincar potential problems are somewhat troublesome,
hecause the diabatic potentials linearly diverge asymptotically besides the coupling
consiant does not die out. Delos and Thorson treated the case (1) (the case of the

same sign of slopes), successfully by moving into the adiabatic-state representation in
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momen um s ace| ]. In hecase( ), however, herea earsin ulari ieson he real
axis in he adiaba ic re resen a ion andi is ver difficul o ob aln exac numierical
resul s. Eldsber and O els ru r1ied osolve he cou led e uationsin the diabatic
state representation, but their results can not be free from instability[65]. Their
transition probabilities are sometimes even larger than unity. As far as we know,
there is no reliable numerical method available for this second case. So, it is still
worthwhile to have a method for obtaining exact numerical results for the case (2).
considering the importance of the linear potential model which can give a good basis

for a general potential case.

4.2 Preliminaries——

Basic differential equations and symmetries

of reduced scattering matrices

The basic equations of the two-state linear curve crossing model in the diabatic-state
representation are given by[61]
R d* ()

= o [Vile) = Bl () = —Viala)balz) (4.1)

and R i (s)
1 dn(e ‘
2 s . 7, o . . K
T om dez T (Vas(a) — Elipa(a) = =Var(z)in(2), (1.2)
2m  dz
where m is the particle mass, the coordinate z is defined in the range —oc < & < oo,
and the collision energy J7 can be either positive or negative measured from the

crossing point. In this chapier we consider the case of linear potentials and constant

coupling,
Vilz) = =z,
Vis(s) = ~Fa,
and
Viglz) = Vnla)=A > 0. (4.4)

Without loss of generality, it is assumed throughout this chapter that [y > 0 and

> I The case 170 > 0 corresponds to the system in which the two terms
1 2 1 ¥
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Figure 4.1 Linear curve crossing: same sign of slopes.
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Fignre 4.2: Linear curve crossing: oppesite sign of slopes.
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Vii(z) and V5a(z) intersect with the same sign of slopes in Fig.4.1, and the case
Fy Fy, < 0 to the intersection with opposite sign of slopes 1n Fig.4.2.
It is well known that by using the Fourler transformation,
i(z) = (2r)7 /+00 w(k)e*dk, 1=1,2, (4.4}

the second-order coupled differential equations {4.1) and (4.2) can be reduced to the

first-order coupled equations in the momentum space as[26, 61]

. d
(7 — ¢ —ify (k) = ~om(k) (45)
and 4
(e = ifospunlh) = —ean () (16)
where
_ 2mE
£ = [
2mF,
f! - h'z ’
and
2mA . .
« = T i=1,2. (4.7)

Further simplification is made by using the transformation,

2 :

— Ak e
i Rrexly

and by introducing the dimensionless variable ¢ and parameters a’ and 67 defined

u, (k) = (ch — &/3)] i=1,2, (4.8)

by ;
L0 )
= (T)k, (4.9)
ol = f(f; — f2)/8a° and ¥ =e(f1 — fa)/20ef (d.10)
with
[ = QR (4.11)

Since the two cases (f; f» > 0and [, f» < 0) require different treatments, we consider
them separately. Although in this chapter we employ the above two parameters o’

and 67 introduced by Child[61], these are directly related to @ and ¢ introduced by

el

Nikitin and coworkers[66] : the relationships are o = 1/8% and 67 = ¢




A. Same sign of slopes: f1f; >0
From Eqs. (4.5), (4.6) and (4.8) we can easily obtain the following coupled equa-

tions: 4 _
1
10 = —iAQ(t) exp[—i(a’t® /3 — 6°t)] (4.12)
dt 2
and LA _
;t( ) = —%Al(t) expli(a®t? /3 — b%1)). (4.13)
Elimination of A;(t) results in
Aty L, dA(t) 1 _
and with further substitution
ioati? 5 -
Aty = Bi(t) expl=5(—— — 674, (4.15)
we obtain finally
& Bi(t
——a,;( ) q(t) Bi(t) = 0, (4.16)
where
g(t) = %-—-mgi—{— %(agtz—b?)g. (4.17)

It is known that the scaltering matrix S in the semiclassical context is conve-
niently written as{62]

Spam = SI expli(nm + 1)), (4.18)

Tmn
where 7, and n, represent semiclassical phase shifts for elastic scattering. Since we
deal with the functions A,(#) and A,(¢) in this chapter, S® and » are defined in the
diabatic-state representation. The matrix S% is called reduced scattering matrix
and contains all the necessary information about the nonadiabatic transition. In

the present case S%is defined by
Ay{+oc) SEskN (A(—o0) (
=\ cn vf€) (h.19)
Ay(+00) S San/ \Ax(—o0)

Furthermore, we can prove thal the matrix S% satisfies the following syinnetries in

addition to unitarity:

SE = (55 and S = 5] = pure imag. (-+.20)
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These directly come from the properties of the evolution matrix F(z, zo) defined by

(ho) = Fe= ()

These properties are

and

F(—z,0}= F*(z,0).

B. Opposite sign of slopes: f;f, <0
In this case Egs. (4.5), (4.6) and (4.8) give

dA, (2 7 :
]t( ) = —'i‘f'(g(t) expli(a®t? /3 — 671)]
cl Z
and "y _
LAy t ’ PN 5
() = i/-ll(t) exp[—i{a®t® /3 — £*1)].
d 2
Elimination of A;(t) results in
d? Ay 7. Y
—i{at? = b )— — = A =
g o Tl
and with the substitution
i att? .
451 = Bt expl S(5 - 920

we finally obtain
d* B,

dt?

+q(t) Bi(t) =0,

where
3

1 1 90 2
g(t) = -7 +ia’t + :l—(a.gé“ — &)

The reduced scattering malrix in this case is defined by

Ay (+oe) (Sfﬁ Q{E) Ay(—o0)
;'13(*00) N »S_gi ‘qu:g /13(+OO) !



where A;(£oc) and Aj(Zoc) are obtained from Egs. (4.26) and(4.27). The off-
diagonal elements of S represent non-adiabatic tunneling. Coveney et al derived

the properties of the evolution matrix F' defined by Eq.(4.21)[67}. They are

F(z,z0) = ((1) é) F*(z,z0) ((1) é) : (4.33)
det Fz,2) = 1, (4.34)
F(—z,0) = F"(z,0). (4.35)

From these properties we can show

Fas(00, —00) = Fiy(+00, ~00) (4.36)

and
Fyy(+00, —c0) = — Fia(+00, —o0) = pure imaginary. (4.37)

Finally, the reduced scattering matrix is proved to be given by

Sfi = 53, = 1/ Fap(+00. —00) (4.38)
and
S‘ﬁg = 'S';?l = ‘F]Q(‘I'OO; —OO)/FQQ(—FOO, “*OO) (113(})

The unttarity of S further requires

| Fy1 (400, —00)? + | Fia(+00, —o0)|® = 1. (1.40)

4.3 The reduced scattering matrices S in terms
of the Stokes constants U

The connection matrix L of Eq. (3.72) for a general four-transition-point problemn has
been discussed in chapter 3. Our basic differential eqnations (4.16) and (4.30), for
the same and opposite signs of slopes respectively, are special four-transition-point

problems. its evolution matrix F{+oo, —eo) of Eq. (4.21) essentially represents the

reduced scattering matrix S We first establish a relation between the connection




matrix I and the evolution matrix F{4co, ~o0), and then S¥ can be finally ex-
pressed in terms of one Stokes constant. Let us start with asyruptotic solutions of

the function By () of Egs. (4.16) and (4.30) (see Eq. (3.68) ):

By(t),— Aq™¥() expliQ*(t)] + BgTe (1) exp[—iQ* (1)) (4.41)
and
By(t),— Cq v (t)expliQ™ ()] + Dy + (1) exp[~1Q " (1)) (4.42)
where
Q¥ (1) = LP(1) £ 1Int + 5, (to) (4.43)
and
Q~(1) = +P(t) £ Int +5_(to) (4.44)
with s
P(t) = %13 — . (4.45)

The positive and negative signs in front of int in Eqs. (4.43) and (4.44} corresponds

to the same sign of slopes and the opposite sign of slopes, respectively.
A. Same sign of slopes: f; /2 > 0
Since from Eqgs.(4.15) and (4.12) we have

1

A(t) = By(t) exp[_gP(t)] (4.46}
and B AP :
L L f s t 1 -
() = (250 ) exp | S0 (4.47)
we can casily prove
: : 1 2 i) :
Ai(+o0) = thgrn B (1) exp —SP('f,)]: Ayf—ettethe (4.48)
—Toc Z a”
and
! 1’]) { 1 .
As(+oe) = tﬂinm{l [—2(1?(/,)+ L_dg )q_T(f‘,) CX[')[‘A(JJr(i)}
| 10{f Y.
+ B{Qq*f(t}—l-( J,'z(f )q_{' exp | —iQY{() }c?””
= B2V2g2eT ), (+1.49)




In the same way we can show
Ai(—o0) = Ce- e (4.50)

and
As(—o0) = D2V2a2e™-¢", (4.51)

Thus from Eqs. (3.72) and (3.84) we obtain the evolution matrix F{+oc0, -00},
Ay(+o0)) ( Lzzﬁié*_ié' . —Lwﬁfi&'“é’) ot Ay(—o0)
A2(+O()) —L21(2a2)e—"5+_‘5— L115*16++1ﬁ_ Ag(—OO)

(l'i‘U]Uz "((]l""'UJ“{‘UlUQU\})ﬁ) A]('—'OO) (4
=\ 22l 1+ Uy Ao(—o0)) "

52)

The symmetry properties of Eq. (4.20) give the following two additional equations

among the Stokes constants:
5 1 o -
207U, = (U + Uz + U3 UgU-J)Q—,) = pure imaginary, (4.53)
72

and
Uy, = —=U;. {4.54)

Since we alrcady have three equations among U; as given in Eqs. (3.80), the reduced
scattering matrix S® can be finally simplified to the following expressions in terms

of only one Stokes constant U:

. 14+ Uy —2a%U, .
SR = ( L )
—2a?, 1=USUs )" (1.5)
where iy U
Uy = — et (4.56)

dat + U U
It should be noted that in the present case the parameter ¢ in Lq. {3.80) 15 simply
equal to —1/3. The other four Stokes constants can, of course, be casily expressed

in terms of /) as follows:

1
I,j'::): _lfl‘ IU‘[ ey 7{104 (;‘1’
, i ‘, 1. )
Uy = —da'lly, and Ug = —U]. (1.57)
4a?
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It must be emphasized that the Stokes constant U is defined by the standard WKB
solutions in Eqs. (3.73) and (3.74). From Eq. (4.55), we can immediately have

expression for the important transition probability given by Pz = |SE|?:

16a* (ImU, )?
T U UT 4 ey 4.58
127U + 4at)? (4.58)
Interestingly, this expression tell that
0, ImlU, =0, |
Fi2 = { 1, Rel/; =0, ImU; = +2a°. (4.59)

B. Opposite sign of slopes: fi/, <0

Applying the same procedure as that in the previous case to Egs. {4.29), we have

Z‘ 7.ty 2 .
EP(”]: pemen |2 (4.60)

A1(+OO) = tl}Too Bl(i) exp

L d. )
Ay(4oc) = t_l_.iinoo{fi[—QqT(t)# th)qi(t)}exp[i(mt)]
+ B[qu(t)_d%go 7%(75) ex[)[—gQ'*(t)}}e*éP(t)

= —A2V2a%e"H, (4.61)

Ay(—oe) = Dy e (1.62)
-

Ay(=o0) = =2V 202" (4.63)

and

where ¢() in Eq. (4.31) has been used. Finally, we have
/11(""0@) . am ( jJ]]E_lé++”S" Lg],—)—iﬁy(i_lé'*'mlé‘ ) /11(*00)
Ay(+o0)) T\ Lyp(2a2)ette et Loe'?+ - Ay(—o0)

. ( P+ Usly 2,113 s ) Ay )

- (Url -'+- Ur;; -+ [[1(}"3[];3\)(2[19) 1 + Ulifg ,/12( }

This defines the evolution matrix /'(4+o00, —oc) in the case of opposite sign of slopes.

Comparison of Bq. (1.64) with Eqs. (4.38), Lqgs. (4.39) and Ees. (1.40) gives

1

sls = —(Uy + Uy + U11,U3){2a7) = pure imaginary (4.65)
2a?

S



and
Us = =U7. (4.66)

These two equations together with Eqs. (3.80) provide five relations among the six

Stokes constants. Note that in the present case @, in Eqs. (3.80) is simply equal

to % Thus, finally the reduced scattering matrix S# is expressed in terms of the

Stokes constant U, as

1 1 LU
St= —— ( %a? 2) 4.67
T+ U0\l 1) (4:67)
where ” u
Uy = ——— 1o (4.68)
U1U1 — 4'?

The other four Stokes constants can also be expressed in terms of U,
U3 = _Ul*l Uq = 4(14U1,

. 1 . .
Uy = EUQ and U; = —4a’U7. (4.69)

From Eq. (4.64), we can immediately have expression for the important transition
probability given by Py, = |S&|*:

(Iml/;)?/at
(U U = 1/(4a®)]* + (ImUy)?/at

Py = (4.70)

Interestingly, this expression tell that

0, Iml/y =0 )
By _ 3 , Z
jl?*{ LU = 1/(20%). {(41.71)

7

It should be noted that when Iml/;, = 0 and Rel/; = £1/(2a?} are both satisfied

simultancously, P, can take a finite value other than 0.

4.4 Exact expressions of the Stokes constants U,

In the previous section, the reduced scatiering matrices S™ are expressed in terms of
the Stokes constant U by Eqs.(4.55) and (4.67) for the same and the opposite sign
of slopes, respectively . Since the basic equations (4.16} and (4.30) by which the
Stokes constant /) are defined are included in the general four-transition-point case

discussed in chapters 2 and 3, here we just use the results obtained in the previous
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chapters to denote Stokes constants Uy in a unified way for both cases of linear curve

crossings. So, final analytical expression of U, is given as follows:

v, = U1(f14= QOv Qh Qz)
2 9
= Ti(Qo, Q1 Q)57 a2,

where T} is given below and the quantities Qy, @y and @ are defined by

PTx
L]

6:‘

QO = “%(1204)_
Q= —u(36ag) e’

b
1

Lk ]

and

-

5.4
Qg = —a0(182a4) ¥e's
The function 75 is given in the form of a convergent infinite series,

jirr(n—s—B)f:i

. (6
T, = 2@ Y ) % (20, — =72

s=0n=0
where
As = Z Bn-i-l‘”in ) 5 2 0’
n+m=s
3 1)
ﬁle) = Z Bpﬂrvgﬂ, n 21,
n ptg=n—1
f—‘”gla = - Z BWoy n 20,
ptg=n
[»/2] m !
Wo, = Z ('“)(3???,*({) Z I ANY]
m=[q{3] n=3m-q - (‘1‘7’1 h ?1)-
11(2(21 - %)C:"n(‘hn*q) (()(2 )37!1*@
LQ —E—(m—n) "
and
{ f(’?"O, r= 0’
Cor = rea S ’ -
= O(_l) sr—s) [j! 13! r>

with ﬁél) = 1 and le(ll) = (3 = (. The constants B and B in Bgs.

defined by
n—1

B,(Ll) = Z Bu—k’]jk(”‘ilv f-[_’.)a n 2 i1

k=0

N

(4.72)

1.76)

=1
-1
——

Are

-1
o
—



and »
= Z Bn—ka(—dll wd?)w n Z 1:
k=0

where

(6d1)2nrk(3d2)k—-n
L (dyy da) e(2n —
1 d2) _[Z”,)] Ll S T T

d] = #Qg — Qg and dg = —QQOQI'
The sequence B, in Egs. (4.78) and (4.79) is given by

B,=uv,+o, n2=lI,
where v,, is obtained from the recurrence relations,

U?"U1+P1:O,

4
Vo = Pg/(g - Z’Ul),

and )

n— _ 2

Z UmUnti—m Pn)/(n-: —2U1), TI> 3
with

Po= s Q3+ 200G+ Q)
P, = 4QR0) +20Q:1(QF + Q2),
Py = 4Q0Q) + (Q5 + Q2)
Py = 4Q0Q1(QF + Q)

L, = 40307

and

P, =0, for n>6t

The constants o, are also given by recurrence relations,

21 :0-3:0
2(
an *520:
Ty :Ql,
4

dy = E(Qi + Qa) + 2Qu7s,

a
fosl
I

10 —
TQOQ} + 20004 + 200173,
e = 2(3005 + 2(210.; + 2((23 + QL’)JJ"

8

(4.79)

(4.80)

(4.81)

{4

86)



and
0, = 2Q00n-2 + 2Q10n3 + 2(QF + Q2)0n-s +4QoQ1055, for n > 8. (4.87)

The notations appearing in Eqs.(4.75)-(4.83) have the following meanings: I'(z) is
the Gamma function, [z] means the largest integer not larger than =z, and O(z) is
the step function, i.e. ©(z) = 0 when z < 0 and O(z) = 1 when z > 0. Although
there are two roots for vy, as is easily seen from Iq. (4.83), we can select the one
with smaller real part or anyone of the two if two roots have the same real part. In
the above summations and recurrence relations, we can easily see that all of them
are given in the form of finite series except Eq. (4.74). Tt should also be noted that

a direct recurrence relation for A, can be obtained from Eqs.(4.75) as follows:

s—3

As - BE}*‘)I - VY(S“U?AODVOO - AO Z I/(5--1)(n+2)‘[/‘V(]n
n=1
§—3 ,5=3
- Z{Z ""(s—l)(n+2>”"k(nk)}i&k, (1.88)
k=1 "n=k
where 0 o
: 1 b 2 L e
V. = -3 Z}:ﬂ:q rrz+1BP+1*mb,7n+1fql for » 2 q _.>_ 0: (‘18())
e 0 otherwise.

Now, let us go back to our linear curve crossing problems. We can immediately

cee that what we have to do is just to replace Qp, @y and Q; in Eqgs. (4.73) by the

following expressions (sec Egs. {4.17) and (4.31) )

1 9 7, -L =
2o :;b‘(ga“) ety

i
O =
and
- 1 4 Gy— L g2
(22 :*—;(14*{) )(gﬁ“) T3 (190)
for the same sign of slopes, and
] ] gy L K
(20 = gbd(gﬂ“) 1:23,
I
¢, = —}
and
] - 2 2
QJy = —1(1 — M) (D)5 (4.91)
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Figure 4.3: Modulus and argument of the Stokes constant U/;: same sign of slopes.

for the opposite sign of slopes. The paramelers a” and §? are defined by Eq. (4.10).

Eqs. (4.55) and (4.67) with U, given by Egs. (4.72) and (4.74) provide the exact
analytical expressions of the reduced scattering matrices which can, of course, cover
the whole range of the two parameters a” and b2 1., the whole variety of coupled
lincar polentials {slopes and coupling constant) and the whole range of collision
energy. One big drawback is, however, that the analytical expression of the Stokes
constant {/; is quite cumbersome and not very transparent with respect to the de-
pendencies on ¢” and 62 Numerical computations confirmed that this expression
surely gives the exact results, and that the infinite series of Eq (4.74) converges
reasonably fast in the reglon [f{;—{ <1, where no good approximations are available
yel. The convergence becomes slower, however, in the region of large virlues of the
parameters, where various good approximations are avatlable.

In order Lo give a rough idea about the Stokes constant 1 e gl are
shown in Fig 4.3 for smme sign of slopes and Fig ] for opposite sign of slopes, as a

. -y .
function of 62 for some values of a?.

86



U, | argU,

Figure 4.4: Modulus and argument of the Stokes constant Uy: opposite sign of
slopes,
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4.5 Numerical solution for the case of f;f, <0

Our purpose in this section is to find out numerical method to calculate the reduced
scattering matrix S for the case of the opposite sign of slopes. Based on the
symmetry properties of the S in Eqs. (4.38), (4.39) and (4.40), we can have a

convenient expression given by

1 /1 W
SR:T*(I«V ]), (4.92)
where
TP+ w?=1 (4.93)

with W being pure imaginary. Tt is easily seen that what we need to calculate are
two quantities W and arg T. In order to make both stable and accurate numerical
results, we must establish new coupled equations which are our starting point in the

following.
A. New coupled equations

Let us first go back the original coupled equations in the momentum space given
in Egs. (4.5) and (4.6), rewritten as

-2 —y d g g
(K = = ifi= ) () =~

and
il
dly

Since the reduced scattering matrix is dependent only on the two parameters a® and

(5° =& —ifa)ua( ) = —ou (&), (4.94)

b2, it is sufficient to consider the special case f; = —f3 = f > 0. In other words, the
results of this special case can cover the whole general cases of f; # —f;. Lel us

introduce a transformation,
V() = ug () A+ ua ()

and
VoK) = uy (A7) — wa (), {4.95)

a new variable,

(4.96)

X=— 2
\/Itf|+r_v
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and parameters,

) I 2v/a?

= = 4.97
C (IEI +a)3,’2 (|62| + 1)3/2 ( )
e el = _ |1
gl — o -1
= = ) 4.98
T ¥ e T R (4.98)
Further introducing a variable transformation,
X3
y = + /‘{, (‘199)

..

and substituting these equations into Eqs. (4.94), we find new coupled equations for
Vy(y) and V_(y). Here, we treat the positive energy case (b° > 0) and the negative
energy case (b < 0) separately, because the convenient coupled equations have
different forms in these two cases. Then the following coupled equations can be

easily derived:

dV_
Vily) = ic? dy(y)| (4.100)
Xo(y) + v 24V (y) 2
K n f . b-f < BN
X1 o ED e
and X2(y) W_(y)
y) = 2 OV-Y
— V. (y) =
IO S
X2 (y) =1 L dVi(y) 2
g = it AL s 4.102
XL V_(y) =i iy for t* > 0, ( )

It can be easily seen that the new coupled equations are very suitable for numerical
calculation, because the coefficient functions never diverge anywhere. Actually, they

are smaller than unity. From Eq. (4.99), X(y) car be directly solved as

X () = {1+ (39207 +3y/21° = [T+ (/27 — 3y/2) (4009

B. The reduced scattering matrix

In order to obtain the rednced scattering matrix, we have to express the quanti-
ties T and W in Eq. (4.92) in terms of the solutions of the new coupled Eqs. (4.100),
(4.101) and (4.102). From Tiqs.(4.32) and (4.8}, we have

(ul(f\:)) _ (cxp[ﬁ%rﬁ(l{)}'f* W ) (ul(m]\’)) for K — oo,

wy( 1) —W expl2ip( K] T a(— A7)
(4.10:1)
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where

H(H) = =(— —eX). (4.105)
Eqs. (4.95) simply give

[V2(K) - VRO = [V2(- K) = VE(=K)]

f K — 4
Vo (K)WVa(—K) + Vo (RWVo(~Ky 0 00 (4.106)

1
W =-
2

and

arg T = arg{[(Vo(K) + V(L N)V_(~K) - Vi (~K))}
4 WVL(K) = V(=K expl2ia(K)},  for K — oo, (4.107)

It should be noted that

arg ST = arg S = arg T,
arg ST = arg S8 =4n/2 4 argT (4.108)
and 2
— |cR2 R |2 [
P =[Sy =155]" = T e (4.109)

Since Egs. (4.106) and (4.107) are not yet numerically stable and convenient, we
transform them further as described below. Multiplying V_ (%) to Eq. (4.100) and
Vo{y) to Eq. (4.101), subtracting these equations, and integrating the resultant

equation over y in the range(-co, 00}, then we obtain

V) = VIR)] = V2(= ) = V(= 1)
24 I 1
= -ﬁff(] — ) / Wl*’+(z’/)1/_(;u)ti;y, for A - oo, (4.110)

c S s
On the other hand, muliiplying V4 (y) to Eq. (4.100) with v reptaced by —y and
V_{—y) to Eq. (4.101), subtracting these equations, and integrating over y in the

ranges (0, +00), then we get
V(=KW (K)+ VLKV (= R) =2V (0)V.(0),  for K — oo, (4.111)

From LIgs. (4.106), (4.110) and (4. 111} we finally obtain the following integral ex-

pression for W:

I~ oV ()V

W =
252V, (OV_(0) Joe X2(y) + 1
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This expression is very convenient for numerical solution. Interestingly, by using
the same manipulation mentioned above, exactly the same expression as Eq. (4.112)
can be found for the case #2 > 0.

Since X(y) — £(3jy|)}/* for y — Foo, it can be shown that the asymptotic
solutions of Vi (y) are given by the following expressions for both 6% > 0 and 6* < 0:

VLK) "= Asing(K) + B cos ¢(K), (4.113)
VoK) 2% i[Acos p(K) — Bsin ¢(K)] (4.114)
and
VoK) "Z= A'sin ¢(K) + B' cos (K ), (4.115)
Vo (K) S50 A cos (K ) — B'sin (K], (4.116)

where ¢(K) is defined by Eq. (4.105). Then we obtain

B'A— A'B —iW[B” — A7)
A'A+ B'B—2iW A" B

arg T' = arctan{ }. (4.117)

it should be noted that ¢{/) cancels out exactly in Eq. (4.117). Thus when the
solutions are well extended into the asymptotic regions, the phase arg T' can be easily
evaluated from this equation.
C. Numerical results

The nonadiabaltic tunneling probability Ppy of T, (4.109) and the phase arg T
of Bq. (4.108) can now he stably and accurately calculated by using Eqs. (4.112)
and (4.117). Tt should be noted that we can salve the coupled equations (4.100),

(4.101) and (4.102) under the boundary conditions,
Vi{ye) = iVio  and  Vo(g) = Voo, (4.118)

where o, Vo and V_y can be any rcal numbers except for the case Vip = Vg =
0. Egs. (4.118) never represent unphysical boundary conditions. 1t is actually
numerically confirmed that Py and arg7 are completely the same for different
values of yg, Vi aud Vg

As is easily seen from Bgs. (4.100), (4.101) and (4.102), the solutions Vi (y) are
oscillatory. Thus in order to have a rapid convergence in the calculation of W it is
better to transform the integral in Eq. {4.112) by an integration by parts with use of

Fqgs. (4.100), (4.101) and (4.102). This is especially effective in the strong conpling
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(small a®) case, since the solutions oscillate rapidly because of the factor 1/c*(see
Eqgs. (4.119) and (4.120) below). We can repeat the integrations by parts as many
times as we want for the required accuracy.

In the calculation of arg 7" the numerical solutions should be fitted to analytical
asymptotic solutions so as to determine the coefficients (A, B) and (A’ B'). This
can be done by using the WKB asymptotic solutions. In the case of &2 < 0, the

WKB solutions are given as

- o] 1 2
Vo(y) = aly) ™ 1 {Asin[5 [0 (y)dy) + Beosl 5 [Fwdy)y, (4119)
and
. 1 2 L1
Valy) = igly)" A cosl [ P(e)dy] - Binl-; [P (@)dl), for 5 — £,
(4.120)
where X2(y)
yl+
= 4.121
9(y) Xy 41 (4.121)
The phase integral in Eqs. (4.119) and (4.120) can be easily expanded as
; 1/2 P ' 24 - 2
ykinm/q (y)dy = XI—ETOO / (X2 4+ 4)(X?2+1)dX
y-1 y—1)° -
=yt ){(y)—i—ﬁ—;—()(/\ ),
y — oo, (4.122)

The similar expressions as Eqgs. (4.119) ~ (4.122} can be easily obtained for the case
b2 > 0.

Numerical results for o? = 0.1, 1.0 and 10.0 are given in Fig.4.5 and Table 4.1, It
should be noted that arg 7" changes by 7 at the compiete reflection resonances[81].
It is easily confirmed that the present method is very stable and reliable even in a
strong coupling regime. Even very small values of transition probabilities can be
easily reproduced, and the unitarity iz never broken. As a demonstration, Table
4.2 shows five sharp resonances in the strong coupling case (a® = 0.1) {sce [ig.4.5).

These sharp resonances are seen to become slightly broader with increasing 7.

4.6 Concluding remarks

At first glance it may be surprising that the exact analytical quantal solutions for

the reduced scattering maitrices S* have been obtained withont solving the basic
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Table 4.1: Nonadiabatic transition probabilities (Pi,) and phases (arg 7).

0.1 1 10
B P arg T P, arg T P arg T
4.0 0.27%10° 13 1.25 0.16%10* | p.a0 046*107 | 0.129
-3.8 0.35%10°12 1.28 037*10% | 041 0.60*10°7 0.132
36 0.42+10°H! 132 0.82%10% | (.42 0785102 | 0136
3.4 0.47%30°1° 1.356 0.178*107°| 0.43 0.102*10°1 | 0.141
32 0.5*10°° 140 0382%107°| 045 0131207 1 0.145
-3.0 0491078 145 0801*107° | 046 0.167%10°* | 0.150
2.8 0.457*1077 1.50 0.164%102 | pag 0.212%107' | .56
-2.6 0303%10¢ 156 0330*+102| 0.50 0.267+10' | 0.161
24 0.314*10°} 1.63 0.646%107% | ps2 0335%107' | 0.187
2.2 0.233%10°* 1.71 0.123*10°1 | 0.55 0.415%10% | 0.174
2.0 0.160%10°3 1.81 0229*107' | 059 05111077 | p.180
-1.8 0.101*107% 1.92 0411%1077| Q.62 0.5623+101 | 0.187
-1.6 0.583*10°2 2.07 0.712*10 0.67 0.753*10 | 0.193
-1.4 0.302*¢10"! 2.26 0.118 0.72 0.903+107' | 0.200
1.2 0.131 2.54 0.184 077 0.107 0.206
-1.0 0.400 2.89 0.271 0.83 0.126 0211
0.8 0.726 -3.08 0.373 0.8% 0.147 0.216
0.6 0.904 -2.94 0.480 0.51 0.16% 0.220
0.4 0.968. -2.97 0.580 0.92 0.192 0.222
-0.2 0,038 3.13 0.667 .91 0217 . 0.223
—_—
0 0.995 284 0.737 0.88 0.242 0.222
0.2 0.998 245 0.791 0.53 0268 0.219
0.4 0.999 1.99 0.830 0.74 0.293 0.213
0.6 0.999 1.46 0.857 0.53 0.318 0.207
0.3 0.999 0.88 0.574 0.50 0.340 0.195
1.0 0.959 0.23 0.884 0.36 0.362 0.184
12 0.997 -0.45 0.886 0.71 0.381 0.168
14 0.9%0 -1.06 0.581 0.51-100] 0.397 0.152
1.6 0.977 0.96 0.863 0l 0411 0.130
1.8 0.993 0.21 0.825 -0.27 0.422 0.110
2.0 0.937 -0.5% 0.743 -0.33 0429 0.85+10°!
2.2 0,123 0.32 0.558 -0.43 0.432 0.61*10"!
2.4 (.984 0.48 0184 -0.27 432 0.35-10"
2.4 0.953 0472 03710t 0.12 0476 0011407
2.3 07410 0.2 {3aga 0.35 0416 017410
3.0 0.977 4 ‘ 0.643 015 0100 DA
3.2 097! 0,57 i 0740 0722 0.379 065107
3.4 0.4654 ’ 0.7 ! 0765 O3t 0350 st
36 0.976 I ‘ 0,740 05 0313 0100
3.8 0.894 | 2079 | 0433 -0.30 0273 IRET
| 20 0.9:43 | 0.63 07373 J 0 0226 1 0015
893




Table 4.2: Reflection resonances for a® = 0.1 in the renge 4* € [1,4].

b2 Py
1.4841 0.57*107
1.4844 0.22%10"
1.4847 0_21*10-3
2.1919 0.33*%10°
2.1922 0.13%10%
2.1025 0_12*10-3
2.80632 0.12*10°?
2.8066 0.44*10™
2.8069 0.22%10°3
3.3625 0.12%1073
3.3628 0.11%107°
3.3631 0.17%103
38777 014103
3.8780 0.31%10°¢
3.8783 0.12%10°3
!
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Frgure 4.5: Nonadiabatic tunneling probabilities 75 as function 62 for three Lypical
coupling regimes: o® = 0.1(strong coupling) a? = Li{interinediate), and o =

10.0(wealk).




equations (4.16) and (4.30) for two-state linear curve crossing problems. Actually,
the exact analytical solutions of these two basic equations can hardly be found.
But in the view of finding solutions of physical quantity, reduced scattering ma-
trix, what we need is the connection matrix which connects asymptotic solutions
of the basic equations (4.16) and (4.30) from # — 400 to z — —oo. This connec-
tion matrix has been expressed in terms of three Stokes constants for the general
four-transition-point problem in chapter 3. For these special {four-transition-point
problems of two-state linear curve crossing with the same and opposite sign of slopes,
two extra symmetry conditions of % in addition to unitarity could be obtained, so
that the reduced scattering matrix for each case has been expressed in terms of only
one Stokes constant which was found in chapter 2 in the form of a analytical con-
vergent infinite series. That is to asy, the exact analytical expressions of scattering
matrices are derived for the first time, although the convergent infinite series are
very complicated, unfortunately.

Although we have employed the diabatic-state representation in this chapter,
the total scattering matrix given by Eq. (4.18) does not depend on the representa-
tion, as far as we solve the problem exactly. Thus, if we want, we can easily obtain
the reduced scattering matrix in the adiabatic-state representation which is gener-
ally superior to the diabatic-state representation for comprehending the underlying
physics In various processes.

We have estimated the constants Ty of Eq. (4.74) numerically and found that
the convergence rate of the infinite series is fast when the four transition points
are close together near the origin, and becomes slower as the points move [ar away
from the origin. As explained in chapter 1, because if the transition points are far
away from the origin, the convergence of the WKB solutions, and consequently the
convergence of the Stokes constants, is expected to become slower. Fortunately,
however, in this case we can construct good analytical approximations by replacing
the four transition points by a pair of two transition points. Even in the former
case in which the four points stt close together, however, it is still very important to
develop a good simple analytical approximation, especially in the case of opposite
sign of slopes. Those approximate solutions for reduced scattering matrices S will
be discussed in the subsequent chapters.

Besides, for the case of the opposite sign of slopes, we proposed new conpled

equations which overcome the famous difficuity of the nuinerical solution[63]-{65]
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and can provide very accurate results for both amplitude and phase of the reduced

scattering matrix for any coupling regimes from weak to strong.
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Chapter 5

Distributions of transition points
and Stokes lines

From the standpoint of exact quantal treatment of the reduced scattering matrices
discussed in chapter 4, should be considered only asymptotic Stokes lines which are
absolutely far away from all transition points in the complex plane. We do not have
to care about where the exact positions of transition points are, if we know the exact,
solutions of Stokes constants. The connection matrix can be exactly expressed in
terms of Stokes constants by tracing the WKB solutions in the region |z| — +oc0
where the asymptotic Stokes lines are just straight lines with equal angular interval.
From the standpoint of the semiclassical trcatment of the reduced scattering
matrix, however, we want to figure out analytical selution in the compact form, and
to understand various limiting cases how the connection matrix is approximated
and what is the valid condition for semiclassical solution. So, we have Lo know
the distribution of transition points and Stokes { and anti-Stokes ) lines around
them accurately. Transition points are nothing but zero points of g(t) in Bas. {4.17)
and (4.31), and the Stokes and anti-Stokes lines emanate from cach transition point.
Stokes lines represent the lines on which the dominancy (snbdominancy) of dominant

(subdominant) solutions becomes strongest and are defined by

4
Re/ G = 0, (5.1)
o

where 15 usually represents a transition point. Anti-Stokes lines, on the other hand,

represent the lines across which the dominancy and subdominancy interchange and
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are defined by

Im ttqlfz(t')dz’ =0. (5.2)

o
The basic differential equations (4.16) and (4.30) governing the two-state linear curve
crossing problems look like similar in the coefficient functions (4.17) and {4.31), in
which the two terms have different sign. But this makes a big difference in the
distributions of both transition points and Stokes lines; and the difference has much
influence on analytical expressions of the reduced scattering matrices. We shall see

in the next two chapters.

5.1 Same sign of slopes: f;fy >0

The transition points are zerc points of Eq. (4.17) in the complex t-plane rewritten
in the from,
b 4 1 .
o) ==t ()T =0, (5.3)
a 2 .
in which the parameters o? and & defined by Eq. (4.10) can vary in the ranges
[0,00) and (—oo, 4+00), respectively. Using the [acts that these parameters are real

and that —#7 can be a root if {, is a root, we can analyze Eq. (5.3) by putting
t] = I =+ Hj, t-z = —I + Ey (54)

and
ty = —zp— iy, 14=x4— 1y, (5.5)
where ¥ > 0, 2; > 0, and 23 is real (it can be negative). These should satisfy the

following relations:

b'l
]+ = 2y2+2—7,
a2
2
2 2 <
ylz] —a3) = S
a
and
2 LW 2 b? 2 1 —_
(1 + )zt y) = ()7 + (5.6)

This means that the roots ¢ and {5 are symmetric with respect to the hmaginary
1 2 . g \
axis. I'or the other two roots ¢ and {4, there are the {ollowing three cases depending

. R
on the sign of z7:
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Figure 5.1: Distribution of transition points (¢,} in the case of same sign sign slopes.
(a) z2 < 0, (a') 22 =0, (b) 22 > 0.

(a) 23 > 0: ¢3 and ¢, are symmetric with respect to imaginary axis,
(a’) z2 = 0: double pure imaginary roots f; = {4,
a.[’ld
(b) zZ < 0: two purc imaginary roots t3 # t,.
The Stokes and anti-Stokes lines are depicted in Tig.5.1 for these three cases. Finally,

the four roots can be obtained analytically. Egs. (5.6} are casily reduced to

a 5 h? 1 N
7=y F () + e (5.7)
a2 a’y
5 R b |
wy=y () — (5.8)
& U."y
and .
& R Loy 1
A (st ey e = 0, 5.9
yt + (a?)f et Sdryer (5.9)




Eq. (5.9) is just a cubic polynomial of 4* and can be solved analytically, although
we do not do that explicitly here. It only suffices to say that only one positive root

of y? is shown to exist in the region

<yt < 2241, (5.10)
where
1 b2 3 b?
Lt 2.2 (2 :
* 3{ (aQ) * g (ag)}' (5-11)

The boundary curve (23 = 0) between the two cases (a) and (b) can be easily
obtained from Eqs. (5.8) and (5.9) as (see Fig.5.2)

. - 1, PR B -
a* = [5\/b4+d/4—5b ]/{2\/b*+1ﬂzbJ . (5.12)
On this curve y and 27 are given by
{ 7[ Bt 3 53J {5.13)
- 9 - _ 5
y 4
and
3 2 3 1.
2 al e gbz} {_\/4 *ﬂ_gl}. 5.1
2 =apfes L owlyfnfe e (5.14)

5.2 Opposite sign of slopes: f,f, <0

In this case, the transition points are the zeros of Bq. (4.31) which is rewritten as

b2, A b,
= 2= =t (5 — — =0, (5.1
o 3

- a at

)

I

In spite of the fact that only two signs are different from Eq. (5.3), the situation in
this case is more complicated. Lq. (5.15) can also be solved in the sinjlar way as

before by using Lqs. (5.4} and (5.5), so that we obtain

R , b 1 .
=yt = = (5.16)
25 =y
5 , b 1
o=y 5+ =5 (5.17)
a* a’y
and
2 ; 1
6 1 2 -
ey e 13
i+ () o (5.18)
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Figure 5.2: Regions of 23 < 0 and 23 > 0 in the (&% 6%) plane corresponding to the
cases (a) and (b) of Fig.5.1.




where y > 0, but both 27 and 23 can be negative. Analysis of Eq. (5.18) first leads
to the following broad classification:
()62 >1: 22> 0 and 27 real,
(ii)“\/§_<bg<l: z3>0and z? <0
and
(iii) 6% < —\/i’j: 3 real and 23 < 0.
In order to fully understand distributions of the transition points and Stokes lines,

each case above should he further classified into some subcases as discussed below.
Case(1) % > 1

In this case the transition points t3 and ¢y are always symmetric with respect
to the imaginary axis. The distribution of the other two roots ¢, and ¢, can be
classified according to the sign of z7 as follows:

(a) 27 > 0 : symmetric with respect to the imaginary axis (Fig.5.3a),

(a’) 27 = 0 : double pure imaginary roots t; = £,
and

{b) 1 < 0 : two pure imaginary rools {; # {5, (Fig.5.4b)

These are shown in Figs.5.3a and 5.3b together with the associated Stokes and anti-
Stokes lines. From Eq. (5.18), it can be proved that only one positive root of y?
exisl in the region 0 < ¢ < 1.

Also from Egs. {5.16) and (5.18} we can find the boundary (22 = 0) curve Lg as

is shown in Tig.5.4,

for  6° > 1. (5.19)

On this line ¥ and 23 are given by

and

—
P2l
[

~—

, 2 : 2
l‘;zlllkbg—\/fji—jj'/‘i—' b1ﬁi_,,£}
2 4 3 ! 3

In Fig.5.4 27 > 0 (< 0) corresponds to the right (left) side of the curve L.
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Case (ii) _\E < <1

The roots 3 and t, are always symmetric with respect to the imaginary axis
as in case (i), and #; and ¢, are always pure imaginary as in case (b). However,
Im(1;) is negative in this case {t; = 0 when % = 1) and accordingly the Stokes line
structure is different from the case (b). Only one positive root of 3 exists in the
region 0 < y* < 1+ {i’—i|

Another interesting boundary is the case that the three roots ¢, ¢5 and ¢, lic on

one line parallel to the real axis. Redefining the roots i; and #, as

n
%]
[R]

o=y + ) and ty =iy — [za]), (5.2:

we can find this boundary curve L; as (see Fig.5.4)

L](fg, t{;, i’f4, on the line):

(2',2:

1 2 2
9—13[5\/21 — 12b% 4+ BOP[V21 — 126% — 367,

3
— \[—15 b < 1, (5.23)

on which y is given by
y =y = 21/[5vV21 — 12b% 4 647 (5.24)

Concerning to this boundary, we have the following two cases:
(c) above Ly @ Im(ty) >Tm(t;)=Im{t;) (Fig.5.3¢)
and

(d} below Ly : Im{ts) <lm(ts3)=Im(i,}. (Tig.5.3d)
Case (iit) 6° < —/4

The two roots {3 and 15 are always pure imaginary (¢, % 15). As for 15 and 7,
there are following three cases according to the sign of 22

(e) 3 > 0 : ¢3 and £y are symmelric with respect to the imaginary axis

{Fig.5.3e),

2 . .
{e¢’) 25 = 0 : double pure imaginary rools iy = f,

(1) zZ < 0: two pure imaginary roots (I'ig.5.3f).
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Now, it should be noted that there are two boundary curves corresponding to z3 = 0.

From Eqs. (5.17) and (5.18) we obtain the following two roots for y:

y:yg_z[\/bé—gbg] (5.25)

sr [ 3 g )
y:yszg[b—i—b] , (5.26)

which lead to the boundary curves L, and L, given by

172 3 1 3 2 3
2: . 2:ﬁ-w 4T 2 4 _ 12 - 2 N e = o
Ly(z5=10):a 4{3\/6 1 3b }/[Mb 1 b} for b° < 1 {5.27)

and

A

and
, 2 3 2 3
SRR | T AU P By
Lj(z3 ) a 9[ 7 1+Sb b i b1 b,
. 3 -
for —1<b” < =/~ (5.28)

It is easily seen that z3 < 0 corresponds to the region bounded by L, L3 and real
axis. It should also be noted that since Im{iz) < Uin —1 < 6 < —/2, the Stokes
line structure shown in Fig.5.3¢ actually corresponds to the region of $% < —1 and
above L. The curves L, and L, are not smoothly connected, and the point P in
Fig.5.4 represents a triple point where three roots coalesce.

Before closing this section the following remark should he made about the number
of positive roots of y? of Eq. (5.18) and its consequence on the distribution of the
transition points. From the analysis of Eq. (5.18) we can easily find that there
is only one positive root in the region ¢ < y* < 1 for 4 > 0, and in the region
0 <y < 1+ |§?7J for —\/g < 0® < 0. Turthermore, we also find in the case of
b < ~\/§ that there arc two posilive roots on the boundary curves L, and i,
three roots in the region baunded by L, and L;, and only one clsewhere. In any

case, however, we confirmed that the existence of multiple roots of y? only requires

renaming of the transition points and never change the distribution we found above.




X

!
17

X 0>

[
I

L<, 40 <

Figure 5.3: Distribution of transition points (¢;) In the case of opposite sign sign
slopes. Case (a)-({) are explained in the text and correspond to each region in

Fig.5.4.
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. - . . . . o) ) B
Figure 5.4: Two-dimensional diagram in (a*, 67) plane to represent the various cases

of ¥ig.5.3. The boundaries L,(7 = 0 — — — 3) arc defined in the text.
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Chapter 6

Analytical approximations for the
Stokes constant and scattering
matrix: Landau-Zener case

Based on the analysis about distributions of the transition points and the Stokes
lines in chapter 5, the semiclassical solution of the reduced scattering matrix for the
Landau-Zener case is obtained in this chapter. This is made possible by reducing
the four-transition-point problem to two iwo-transition-point problems. The new
analytical formulas obtained in this chapter are simple and explicit functions of the
two parameters a” and %, Especially, a simple formula which works much better

than the conventional Landaun-Zener formula is obtained.

6.1 Introduction

In chapter 4 the guantum mechanically exact cxpressions of the reduced scattering
matrices S have been derived for the two cases of the linear curve crossing problemn,
i.e.; the same sign and the opposite sign of slopes of the two diabatic potentials.
The scattering matrix S in each case was expressed in terms of only one (complex)
Stokes constant Uy; furthermore, this Stokes consiant was found to be exactly and
analytically given in the form of a convergent infinite series as a function of the two
baslc parameters which effectively represent collision energy and coupling strength.

[n this chapter analytical approximations are proposed and reviewed for the case

of the same sign of slopes (Landau Zener case). The distribution of the fony transi-

108




tion points and the Stokes lines in the complex plane, as was analyzed in chapter 5,
is very crucial for deriving approximate analytical formulas and for clarifying their
validity conditions. Asis conjectured from Fig.5.1, there are the following three lim-
iting cases in which approximate analytical solutions can be figured out: (a) Four
transition points are well separated into two pairs along the real axis (anti-Stokes
lines) (see Fig.6.2a), (b) they are well separated into two pairs along the imaginary
axis (Stokes lines) (see Fig.6.3), and (c) they are very close together to the origin.
Since there have been published numerous papers on the semiclassical treatments of
the present Landau-Zener type of problem, let us first briefly review the history.
One of the phase-integral methods proposed by Zwaan and Stueckelberg[68] has
been utilized for long time to provide the approximate semiclassical expressions for
the two-state scattering matrix.[69]-[72] Later, an improvement was carried out by
Crothers[73] who gave a general expression for the reduced scattering matrix involv-
ing the phase-integrals along the two adiabatic potentials analytically continued into
the complex plane. On the other hand, the reduced scattering matrix for the linear
curve crossing was also Investigated in the diabatic state representation [74] by us-
ing the WK B solutions associated with the parabolic cylinder functions. The results
were directly expressed in terms of two basic parameters a? and #2. These approxi-
mations are valid in the limiting case (a) mentioned above. In the limiting case {(b)
which corresponds to the collision encrgy lower than the crossing point of the two
diabatic potentials, however, such a method was employed that takes into account
only one pair of transition points in the upper half plane.[75] This method can not
provide scattering matrix, bul only give non-adiabatic transition probability. More
importantly, it should be pointed out that the basic idea of this approximation is
actually not appropriate, because the four transition points are not symmetrically
distributed with respect to the real axis (see Fig.6.3} and should be treated as a
whole. More sophisticated formulas for the reduced scattering matrices in the two
limiting cases (a) and (b) were derived by Bardny[63, 76] in the adiabalic state
representation based on the phase-integral method of Froman and Fréman[77] In
this chapter, contribntions from the two pairs of polnts in the upper and lower half
planes are properly taken into account by going back to the diabatic state repre-
sentation. In the limiting case {¢), the perturbative method originally devised by
Nikitin and co-workers[26, 75] works all right. The reduced scatiering matvix is

expressed in terms of Airy functions. Later, the formmla has been rederived and in-
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terpreted more clearly by other authors[62, 63], but its validity condition has not vet
been made very clear. Another different way of reducing the total scattering matrix
was made by Nakamura in the context of semiclassical approximation.[78, 28] The
scattering matrix is expressed as a product of matrices, each of which represents one
of the basic events in the whole scattering process, namely, nonadiabatic transition
at avolded crossing in incoming or outgoing segment, adiabatic wave propagation
without any transition, and reflection at turning point. This reduction is very useful
for dealing with a general multi-level problem. The idea of our present treatment
is inspired by this method, although the connection matrices in this chapter are
utilized to derive approximate analytical expressions of Stokes constant.

In this chapter two new approximate analytical expressions of the reduced scat-
tering matrix are derived and arc compared with the other available formulas.
The treatment employed here is based on the phase-integral method developed by
Heading.[4] Approximate connection matrices are used to derive analytical expres-
sions of the Stokes constant U;. For the limiting case (b) a new method of connection
along the Stokes lines is proposed. The validity of each formula is made clear, and
the whole two-parameter (a?, b?)-planc is divided into five regions; and recommended
formulas in each region are presented. Furthermore, fitting formulas for the Stokes
constant {/; are also proposed for a region which 1s difficult to be covered by the
analytical formulas.

This chapter is organized as follow: In the section 6.2, comparison of the exact
connection matrix with approximate one wiil be explored for the Weber equation
in order to completely understand a criteria of semiclassical approximation, and its
underlying idea will be generalized to treat more complicated two limiting distri-
butions of four transition points: Limiting case (a) in the section 6.3 and limiting
case {b) in the section 6.4. The section 6.5 summarizes various analytical formu-
las of the reduced scattering matrix and clarifies their mutual relations. Elaborate
numerical comparison is presented in the section 6.6 and the best working formulas

are recommended. Concluding remarks is given in the section 6.7,
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6.2 Semiclassical solution for the Weber
equation

Since the connection matrix of the Weber equation can be both exactly and ap-
proximately solved in the compact form, we can clearly understand the criteria of
the semiclassical approximation and its relation to distributions of transition points.

Let us restart with the Weber equation:

dgci(f) + ("~ )(z) =0, h>0, (6.1)

where € can be a complex constant; and assume Ree > 0 without losing generality.

Two independent WKB solutions are given by

(6,2) = ¢ (expli [ 477(2)d2) (6.2)

and
(2, =9) = ¢ iz expl—i [ ' (2)de) (63)
where q(z) = A*(z? ~ ¢*). Tt should be noted that the reference points for these

two solutions are different, one at ¢ and the other at —¢. The connection matrix,
however, is defined in the same way as in the section 3.2. First we define general

solutions on both sides of asymptotic regions as

@) = Ale, z) + B{z,€)
= Ale, 0)(0, z) + B{z,0)[0, (] (6.4)

and

é(z) ZODC(—E,Z)+D(3,“E)

r—+

= Cl—¢,0){0, 2) + D{z,0)[0, —¢], (6.5)

in which the second equalities shift the reference points from £¢ to &, [ | ] represents

WEKB solution without q":’(z). The connection malrix s defined by

(5)=ru(2).
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where .

—¢, 0] 0 - [,0] 0O
= (57 plg) F(5 ) -

et 0 [0,—¢] 0 {0,¢]/° (6.7)
in which F' is the connection matrix of the WKB solutions with reference point at
zero and is given by Eq. (3.35) of chapter 3. Finally, we have

= (VI N2 4 ) e ) (68
ext = —em8 2memAIPHETAMG 1 (1 /2 — i) 9)
with

f= he (6.9)

Now suppose that the two transition points £¢ can be separately taken into
account. By tracing the WKB solution on path 2 of Fig.6.1, we obtain the connec-
tion matrices F and F, which can be approximately found by the Airy equation.
The procedures is the same as in the section 3.1. Consequently, the approximate

connection matrix F,,, is obtained as

Fapp == FQFOF], (()10)
where F, and F; have been given in Egs. (3.11) and {3.16), respectively, and
e 0
Fo= (" n) (6.11)

which comes form continuity of the WKB solution and its first derivative at origin.

Finally, we have
P ( T LeTFT et zge—ﬁﬁ)
app — —’L.Eﬁﬂ + ’L-%Si‘ﬁﬁ eﬁ.‘r + %E*ﬁw

Genmerally speaking, the connection matrix Fopp in Eq. (6.8) and £,,, in Bq. (6.12)

(6.12)

are different as is easily seen. But, il we consider a condition |3 > 1, F,;, and £,

approach the same limit F,,:

B L
. e LEe ,
o= (o o). (6.13)

—ie €
where /7 is defined in Eq. (6.9).

In the sense of semiclassical solution of F,,, the condition |7] = 1 has two
mmplications. One 1s that for given A | the distance between the two transition
points ¢ and —e should he relatively targe, vesulting in that WIKB solution on path
21s relatively far from the transition points. The other is that for given ¢, it should
be relatively large | resulting in classical hmit of WKB solution. Thus, the strict

condition is as follows:
|3 > 1. (6.141)
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Figure G.1.

6.3 Limiting case (a)

Roughly speaking, it is the limiting case (a) that the four transition points are
separated into two paris along the anti-Stokes lines in Fig.6.2a. The procedure to
derive our approximate matrix which connects the WKB solutions at { — +oo
and { — —oo on the anti-Stokes lines gives us strict condition like Eq. (6.14) to
define the limiting case {(a). Actually, when the approximate matrix is compared
with the exact one expressed in terms of the Stokes constant I/, we can derive an
analytical approximate expression for Uy, Two conditions for the validity of this
approximation are obtained. These are separability condition (see Iq. (6.25)) and
consistency condition {scc Eq. {6.45)). First, let us apply the differential equation
(3.68) of the section 3.4A for general four transition points to the basic differential
equation (4.16) of the section 4.2A for this special four transition points. The exact
connection matrix can be obtained in the following way. The asymptotic solutions
of the basic differential equation {4.16) are writien as

t ¢
H(t) —— /hf”‘l(f)cxp[i/ G ydt]) + ,B{fl“(i)cx]')[—'fi[ g Od) (6.15)

t—+oo
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and

B(t) — Cq™/*(t) expli /_:0 (1)) + Dg ) expl—i [ g (0)d), (6.16)

f—+—00 -z
where the reference points zq and —z, will be specified later (see Fig.6.2). In our

linear curve crossing problem, g(¢} is given by Eq. (4.17). The exact connection

(?)):(é; fiﬁ)(ﬁ)ﬂ(ﬁ) (6.17)

where L is expressed in terms of the Stokes constant U; and phase-integrals as (see

Egs. {3.84), (3.79) and (3.80) of the section 3.4A with Egs. (4.57) of the section

matrix is defined by

4.34), o |
T (1 — U;U2)6-25_+16-+ 4Q4U36_36’m16* )
L =¢ ( U28i5,+i6+ (] + UlUg)eiJ_—z‘a+ ) (6.18)
where 54 and §_ are cstimnated from the phase integrals,
t
i | gP()dt o iP(1) It S
) —+ o0
and
t
ﬁf g2 (8)dt —— iP(t) +Int 446, (6.19)
—xq —+ 00
where :
P(t) = (gagts ~ b%)/2. (6.20)

Now the exact connection matrix in Iq. (6.18) has been derived from path 1 in
Fig.6.2b.

In order to find an approximate connection matrix, we start {rom the distribution
of the four transition points fully analyzed in the section 5.1. Instead of using x,

and x4, here we use zp and Az defined by
2o = () + 22)/2 (6.21)

and
Az = (2, —z2)/2. (6.22)

|y

Then, from Egs. (5.6) of chapter 5 we obtain

H:é + (Aa:)z = ;112 + bg/agj
1
Wa)m = 5
AN
and
. b, I b, 1 _
(205 - =)+ == = (Z)V+— (6.23)
a atag a a
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In these new notations g(¢) can be rewritten as

{14

q(t) = 7t = 20)* = (Az +39)*)[(t + 20)* — (Az — iy)?). (6.24)
Since we obtained the approximate connection matrix of the Weber equation last
section by reducing two-transition-point problem to two one-transition-point prob-
lems, this idea can be generalized here to reducing four-transition-point problem
to two two-transition-point problems. Therefore, The first evident condition for
the limiting case (a) is that the distance between the two pairs of transition points
should be much larger than the distance between the two transition points in each

pair (see Fig.6.2a). This separability condition is explicitly expressed as
zg > |Az £yt (6.25)

Since the distributions of Stokes lines around z, and —z, are topologically the
same as that of the two-transition-point problem of the Weber equation, we can
tracec the WKB solutions in Eqgs. (6.15) and (6.16) on path 2 from ¢ — 400 to
t — 0% and from ¢ — 07 to 1 — —oo (Fig.6.2b). Then the whole connection matrix

can be decomposed as
L = By oy = (=) FoF (=), (6.26)

where the matrix I is obtained from the Weber cquation as is given in Eq. (3.35)

of chapter 3, and the matrix Fy is defined as
Buﬂb 0 .
Iy = ( 0 Et-q,) (6.27)

with
Io 5
@:/ $2(0)dt. (6.28)

It should be noted thal in the present semiclassical treatment of the limiting case
(a) the WKB solutions in Eqs. (6.15) and (6.16) are considered to be good at £ ~ (
and that the matrix Fj is required for the continuity of the WK B solutions and iis
derivative at origin. The parameters 2, and /3 in Eq. (6.26) can be determined by
the comparison equation method.[79] Here we explain the procedure, taking [, as
an example. At ¢ = —uzg, the basic differential equation (4.16) with Bq. (6.24) can

be approximately rewritten as

Pé() , 1

3 1(14)\3[(71 + 20)° — (Az — iy)?]B(1) = 0. (6.29)
X~ £
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= Ret

Fignre 6.2: Limiting case {a): {a) £; are transition points and 424 the reference
points. (b) Phase-integral paths.
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Comparing Eq. (6.29) with Eq. (3.18) of the section 3.2A, we have
1 .
g = ﬁgaz)\(Aw — ). (6.30)

The requirement that the phase integrals from 5 to 5 for Eqs. (6.29) and (6.24)

must be equal leads to

1 r—met(Az—iy) - ‘ |
2 Jay ~(a—s9) VIt = 20)? = Bz + ig)[(t + 20)? = (A2 ~ iy

Ly {/m+uﬁ"m)vﬁt+ )2 (Az — iy)?dt 6.31
= —Al xZ — I — . o
2 —x0—(Ax—1y) ’ Y ( )

Under the separability condition Eq. (6.25) we have A ~ 2z,, and thus

1 . \2
b = —;a?‘:f;g(Az - 1y)”. (6.32)

Z

In the same way as above we can obtain
I, 2
ﬁ-z poad wé'agﬁ,"o(A.T + 'Ey) . (633)

A simple manipulation with use of Eqs.(6.23) gives

] ]
2hh=0+ 6= ——(1 - — 5,34
fo=0+ 5 4(133:0( :cg) (6.34)
and

By — By =i (6.35)

Finally, the matrix L?7 in Eq. (6.26) turns out to be explicitly given by

.
2 p . ‘ .-
& - 3y —id— -
L‘;?P - : - : e wdnsuu?g 1 z¢+8 '277,80(3:(1"
(1 —if8o)T(—ifs)
Lapp — v 272 varﬁ]/?—ﬂﬁgeiﬁ[—zﬁl In 3y —¢
" P(1—ifk)
Gy
+ “T o= Bl 2= By i ki L By e
My ; B )
I (l + ’lﬁo)
Lapp o =V 2 —wBy[2=wB 4B —ifyIn Br—1d
21 BT Y=Y -
I'(—i%)
. 2 d—r(,f31,f'.2—7r,f32rj-+zﬁ1+iﬁ| In g 4
APae - H
]_ (Iﬁo)
and
. Dar .
P i —id 2 wBy L —DiBotiged
o= e e - T T g (6.36)
BT + i)
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where

¢ = Giln B + B2ln B,. (6.37)

Next, the phase-integrals defined by Eqgs. (6.19) and (6.28) should be explicitly
determined under the separability condition Eq. (6.25). By defining

SL=6, 6 —x (6.38)

and
Sy =64+ 6_ 47, {6.39)

and using the integral formulas given in Appendix of this chapter, we finally obtain

20?23 1
¢ = agao — o — *2%;5 + 280 In(zgr/a’zy), (6.40)
and . '
6, =In2+ —+ %[51 In By — Baln B] + Iny/a?/ (8z). (6.42)

It should be noted that the first and higher order terms with respect to [Az £iy|?/22
are neglecled under the separability condition. As is seen from E¢. (6.18), the ratio

between L1, and L,y does not depend on the Stokes constants; thus it is natural to

require
Ly Ly 5
= = = date T, 6.43
JL;I])P L21 ( )
From this requirement we find
fo= — (6.44)
e Balzy’ .

which, in comparison with Eq. (6.34), leads to the second condition (consistency

condition},

zg > 1. (6.45)
[t should be noted that Tq. (6.43} is equivalent to the symmetry S = ST and
that L°" already satisfies the other symmetry SE = (SH)"(see the section 4.24).

Furthermore from Lq. (6.18) we find that the Stokes constant /) should satisly
Uy = (Lape™ — 1) /L. (6.46)

If we use L% given by Eqs. (6.36), then we obtain

UZ¥ (= approximate U)) = 2a°(¥™ — 1)1/2 {6.47)

1
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where
¥ = 20%23/3 + Bolnzl — 26y — Foln By — arg T'(:8;) — w/4, (6.48)
Bo is defined by Eq. (6.44), and z is approximately solved as

167 A
= -z—[m + 4+ 5;] (6.49)

7 a2 at
under the consistency condition (6.45).

In conclusion, we have found an analytical approximate expression [Eq. (6.47)]
for U; in a compact form under the two conditions [Egs. {6.25) and (6.45}], which
define the validity region of the limiting case {a). Numerical calculation shows that
the formula works all right in a region wider than that defined by these strong

inequalities. This will be discussed later in this chapter.

6.4 Limiting case (b)

Roughly speaking, it is the limiting case (b) that the four transition points are
separated into two pairs on the imaginary axis (Stokes lines) (sce Fig.6.3). The con-
nection matrix must be evaluated along the Stokes lines rather than the anti-Stokes
lines. Although this connection matrix does not represent the reduced scattering
malrix anymore, this can be expressed in terms of the Stokes constants and phase-
integrals along the Stokes lines; and an approximate analytical expression for U; can
be derived by using the similar method te that in the previous section.

Let us next apply the results obtained in the section 34B for general fous-
transition-point problem to this special case. What we have to do is just to replace
g(t} of the section 3.4B by Eq. (4.17) of the section 4.2A. With use of the explicit
relations among the Stokes constanis given by Eqs. (4.57) of the scction 4.3A the
connection matrix in Eq. (3.98) finally turns out to be

G=e¢"" (‘*”'A' (160" + (Uy + U3 )/ [16a* + 40\ U7) =722 (U; + US)/2 ) (6.50)
—et 22U+ Ur]/[8a?] TR 4 U U fat) -

with the phasc-integrals,

£
/q”g(i)a.’t P —dlnl 4+ AL

Jy f_,,(,l‘clﬂ'f'z
and
¢ N _ .
/ f]ll'“(f,)df,t . Pty —alnt + A, (G.51)
vty — 0 2
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where

P(t) = (%W — 02, (6.52)

and reference points iy are specified later. The factor ma;/,/z4 in the section 3.4B
is omitted, because now this is equal to —27i.

A procedure similar to that in the section 6.2 is employed. The coordinate y to
define the reference point is a solution of the following equation (Eq. (5.9) of chapter
5):
y‘5+35y‘*w;£~; Eﬁﬁ;:o. (6.53)

The function g(t) of Eq. (4.17) is rewritten for the present purpose as

4

gty = Tl = iv) = [t +i9)* — =3, (6.54)

The separability condilion in the present limiting case (b) may be expressed as
y’ > ] + |23l (6.55)

The distribution of the four transition points is shown in Fig.6.3. It should be
noted that z3 can be negative and that the transition points #3 and #, either lie
parallel to real axis or sit on imaginary axis, whereas the points {; and ¢, always lie
parallel to real axis. This indicates that an approximation which takes into account
only one pair of transition points{61, 75] is not appropriate and the procedure used
here is required. The distributions of Stokes lines around 7y and —1y are topologically
the same as two-transition-point problem studied in the section 3.2B. Thus, the
whole connection rmatrix along the imaginary axis can be approximately decomposed
into three parts. If we trace the solutions on path 1 in Fig.6.3, then the exact

connection matrix of Eq. (6.50) is obtained. Going along path 2, we obtain
G = HyHoHy = H (o) HoH (ay), (6.56)

where the matrix H is given by Eq. (3.58) of the section 3.2B, and /i can be found

i
Ho=1|" Qd, , (6.57)
0 gt

in the same way as before:

where

§ = /‘U $ () dt (6.58)
Sy



Figure 6.3: Limiting case (b): phase-integral paths.



with ¢(t) given by Eq. (4.17). The comparison equation method same as before

gives

1 2
o) = gazymi (6.59)
and 1
Qy = gazymg. (6.60)
With the aid of Eq. (5.7) and (5.8) of chapter 5, we can show
1 1
oo = (1 +y)/2= (14 ) (6.61)
8ay y
and
] — ¥y = 1. (662)

Finally, G°?? in Eq. (6.56} can be explicitly obtained as

Gir = — sin (7o) G e + cos®(mer )e‘é
1 2 } T(l — Qo)r(—a’o) 0 '

G = YTSTE)eT TR g os(rag) YT e
- 24/2T(1 — o) I'(1+ ag)

Gerr — VT sin(2mag)eti T =i + cos( ) Vame e et®
A 2\/51%"‘060) ) ’ F(CYU) j

and

i 2200t ¥
GP = cos’(mog)e™ + et?, 6.63
22 ( O) J_‘(QQ)F(]J{’CYO) ( )

where

¢ = aln oy + s lnas. (6.64)

Our next task now is Lo determine the phase-integrals defined in Eqgs. (6.51) and
Eq. (6.58). With the help of the integral formulas in Appendix of this chapter, we

obtain the following expressions under the separability condition {6.55):
10 = 2047 /3 ~ g + 200 In(24/2y%a?) — /2, (6.65)
Ay =d— 7, (6.66)

and

_ 1 1 -
Ny = 1/2 4 In/a?/(2y) — pLs Ina, + E In s, {6.67)
The ratio between (75 and G5 does not depend on the Stokes constants and we
can require
GG,

= = dg'e A (6.68)

G G




from: which we obtain

1
T 8a%y’

A comparison with Eq. (6.61) leads to another condition (consistency condition),

o (6.69)
ye > 1. (6.70)

On the other hand, we see that the Stokes constant U; in Eq. (6.50) satisfies
REUI = Glgeim (671)

and
U\Ur = —da(Gope™ 4 1) (6.72)

If we insert G°P? of Egs. (6.63), then we have

2a° Ve T g TVo
ZN __ . . .
RelU ;" = Re[approximate U;] = ﬁ cos(wag)[r(%)ew + \ES‘“(MO)W]
(6.73)
and
. 2a° Qe lve T 220 ,
IngA = ﬁ SIH(WO[O)[T‘—Z((?TO) — 5 COSg(?I’(Io)F;(—_aS + oy COS(2’.’TC¥0)]1"HJ (674)
where 520 N
e = A 2o C‘dghl(y‘-), (6.75}
g

with g given by Eq. (6.69). Under the consistency condition of Eq. (6.70), »* can

be approximately solved as

b2 A
4 =1 (6.76)

4

2__1[ +
yi? a? at o«

In conclusion, we have found the analytical approximate expressions for U/ in
Eqgs. (6.73) and (6.74} under the two conditions Eqs. (6.55) and (6.70), which define
the validity region of the lmiting case (b). As will be discussed later, Eq. (6.74) is
slightly modified so that this approximation can wark well in a region much wider
than that defined by these strong inequalities. This will be discussed in the next of

this chapter.



6.5 Mutual relations among analytical formulas

Now it is time for us to make clear the mutual relations between the presently derived
formulas and the other available analytical approximations for scattering matrix.
The formulas by other authors we have selected here are the most sophisticated
ones in each limiting case. They are reformulated in terms of the Stokes constant
Uy, and the comparison is made at the level of U/;. The reduced scattering matrix

is, of course, given by Eq. (4.55) of the section 4.3A.
A. Limiting case (a} [z7 > (Az)?+y? and 22 > 1]
Analytical approximation for the Stokes constant U; can be generally expressed

in a unified form as (see Eq. (6.47))
Uy = 2022 — 1), (6.77)

The following three approximations are considered:

1. Present formula:U, = UZ¥ (Eq. (6.47)).

I'= FZN = Fﬁ[j’o (6?8)
and
5] 2,3
207z} 5 ,
=gy = 5 + Bolnay — 28, — By In gy — arg T(efy) — w /4
2[’12.1'8 lg ZN —
= + Bln(—3) — B+ 257, {6.79)
3 7
with
PN = Byln By — fo — arg '(ify) — 7 /4, (6.80)
where
1
fo= o (6.51)
a"Tq
and
o L ht 1 .
g = §-<§ + s + a_'J (6.82)

2. Formula of Bardny:[63] U, = U/},




and

Y=y = g—%—i—gln(é/ﬂ')—argf(iﬁ/w)ma’r/fl
= o+ ¢35, (6.83)

where ¢ and é are defined by

1+i

i§ = f 1241, .
i H\/_ ol e (6:84)
3. Formula of Child:[61] U, = U{.
= PC = 'ﬂ'éo. (685)
and 043
'(,[’ 'LL'C - E**"'Jr'é[)ln(b /CE —(Sg IHISO_ang(ééo)—TT/‘l-, (686)
where
g = ! 6.87
T Sah (6.87)

As is seen from the above three formulas, there holds the following correspondence

among the parameters:

Ay <=>§/Tg;§g, (6.88)
20’ + Boln{z3/35) — By = 0 —— 2 + 8o In(b*/a*87) (6.89)
3 s231 3a
and
I = P (6.90)

where ¢ corresponds to the phase called ”Stokes phase correction.” Since 3, —
So[1 + o(67%)] and zy — [b+ o{67*}]/a in the Limit 6% >» 1, the phase ¥e is not
necessarily a consistent hmit of #z 5 or ;. Numerical comparisons indicate that
UZY and UZ are better than U§ and that all three coincide in the limit £ > 1.

It should be noted that p = ="

represents the nonadiabatic transition proba-
bility by one passage of avoided crossing point and that pyy = ¢ ™2™ is nothing bhut
the conventional Landau-Zener probability. As will be explained later in detall (sec
Das. (6.113) and (6.114)), p%% = e s 4 very simple function of o and #7, and
yet much better than py 7.

B.Limiting case (b) [v° 3 =7 + |23 and v > 1]



Following the representation of Egs. (6.73) and (6.74), we give here approximate
analytical expressions of Rel/; and ImU; also for the Bardny’s approximation.

1. Present formula: Up = UZV

2a? V2 T g %o
RelUUZN = cos(mo e¥o 4 \/:sin ey 6.91
g \/*&E ( U)[F(ao) D) ( O)F(—OL‘{))] ( )
and
2a® 2eVo T Pt
ZN  _ . 2
ImUB = \/O[_O SIH(WCKO)[FGO—) - ‘5 Ccos (Wao)m
+  3agcos®(mag) — 20 sin? (1 )]? (6.92)
where D2y
Yy = aay — 209 + ag In(y? /g, (6.93)
1
g —= 8a3y (694)
and
5 1 b2 bt 1 -
=gty ) (6.95)

a a*  a
Eq. (6.92) is slightly modified from Eq. (6.74). This modification is made by a
numerical comparison with the exact results of ImU/; and enables the present ap-
proximation to be applicable in a much wider region (region 11in Fig.6.4) than that
required by the two conditions given above. The difference between Bq. (6.74) and
Eq. (6.92) appears only at y? < t which corresponds to the region a? > —b2(6? < 0)
in I'ig.6.4. The real part of UY given by Eq. (6.91) remains still good in this region.

2. Formula of Bardny:[63] Uy = UL.

2 /
2a 2m S—p+plop

RelUf = “—cos{mp)—e
3 Nz I'(p)
and
2a* ViIT
Imlif = - sin(wn)*‘j—céf””l”” (6.96)
v I'{p)
or
202 /O
wf = ZLYET aiatng (6.97)
Vo T{(p)
and
arg Ul = wp. (6.98)




with

p=oajm, (6.99)
where 6 and ¢ are defined again by Eq. (6.84).
3. Formula of Bykhovskii,Nikitin and Ovchinnikova.[62, 65]

In this approximation it is not possible to obtain an expression of the Stokes

constant U); and only the nonadiabatic transition probability is given as follows:

280

PgNO — 7 sinz(wég)Fz(rSO)c‘?J%" 6250+4|b|3/3a, (6100)
where
1
This was derived by going around in the upper half complex {—plane from = —co

to +oo by taking into account only one pair of transition points in Im? > 0. Since the
distribution of the four transition points are not symmetric at all with respect to the
real axis, as was discussed in the section 5.1, this approximation is not appropriate
and the procedure proposed in the previous section should be utilized to take into
account the effects of all the four transition points.

Correspondence among the paramcters in the above three approximations is

found to be as follows:

1
R — pbizl Sy = m (6.102)
and 2,3
2y, o In(y?/6d) — cg <= 5. (6.103)

[t should be noted that Eqgs. (6.91) and (6.92) contain extra terms compared to
Iigs. (6.96). These represent a contribution from the subdominant solutions on
the Stokes lines. This difference makes the present approximation betler than
Eqs. (6.96) at a® > 2|¢°|. The detailed comparison is made later.

Finally, it is interesting to note that the relations
S(—b%) = a(b) (6.104)

and

zo(0?) = 7 (=) (6.105)

C. Limiting casc (¢) [z5+ v < 1]
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When the diabatic coupling is weak (a® > 1), the first order perturbation theory
should work all right.[75, 63, 26] This corresponds to the situation that all four
transition points are located very close to the origin. In this case, the Stokes constant
Uy =~ UE¥? can also be expressed in the form of Eq. (6.77) with the parameters

I'8Y9 and ¥EY9 given as,[62]

1 1
r=13% = Eln {1+ Ea“"'aﬁrz[fl?(-—t/) + B (—v)]} (6.106)
and
Y = ¢FN° = arctanfA,(—v)/B;(—v)], {6.107)
where
v = b2/a*? (6.108)

and A;(X) and Bi(X) are the Airy functions.[80]
Since the Airy functions should be small enough in this approximation, another
condition |6°/al < 1 may be required. Considering this condition the following

simplified formula for transition probability is often utilized.[75]
PINO = 225105 g2 (_p2y 23 (6.109)

However, the numerical comparison indicates that the formula based on Eqgs. {6.106)

and (6.107) works better than Eq. (6.109) in region IV of Fig.6.4.

6.6 Numerical comparisons and recommended
formulas

Detailed numerical comparisons among the various approximate formulas listed in
the previous section are made here for the Stokes constant U, as well as for the
nonadiabatic transition probability. Since the validity conditions given before are
rather qualitative and a bit too strict for practical applicalions, we relax these con-
ditions based on the numerical calenlations here and divide the whole (a2, %)~ plane
(a* > 0) inlo five regions I~V bordered by the solid lines, as is shown in Fig.6.4.
The boundaries are, of course, still not exact, but fuzzy. For cach region except for
region V the best recommended formulas are proposed. In region V, none of the

presently available analytical approximations works satisfactorily, and we present

128



A az
a2_hb6 ]V
. 201 Y
a°=2b°
2
L 84
\\\\\ 82——‘b2 a% ’[
\\\\\ _v
\\\\ 5-—_
a o
¢ K 2 2
a“=eb

1 --{.m
o
as

| L ! L | 1 1 1 1 [_“* 1‘ L ! : | I : | I ] - b2

10 5 0 5 10

Figure 6.4: Five regions (I—V) in {a* #%) planc. Recommended lormulas for Lhe
reduced scattering matrix are provided for each region. aj = 0.2, a2 = 2.0, a? = 10.0
and a? = 15.0.




good fitting formulas for the Stokes constant U/;. The original conditions for the
limiting cases (a)-(c) roughly correspond to (a) ? > a® and 82 > 1, (b) —4% > a?
and —b? > 1, and (c) ? < a?(4? > 0) and —b% < (% < 0) with a® > 1.
Figs.6.5a-e show the Stokes constant U; for a® = 0.1,1.0,5.0,10.0 and 15.0 as
a function of #%. Arg(Sf) is also shown there. Figs.6.6a-e present the results of
transition probability Pj; for the same values of a?. In Figs.6.6c-¢, the negative b?
side is magnified. The overall transition probability P, given in the section 4.3A

can be rewritten in the ordinary form as

16a*(SU,)? 3o
P = i gty ~ W) S o
where fU I,,
Lo 1l 6.111
p=(1+ 00 (6.111)
and
= = arg(l)). {6.112)

Here p has a physical meaning of the nonadiabalic transition probability for one
passage of crossing point.
A. Region 1.

This region s an extension of the limiting case (a). The recommended formulas

in this region are (see Figs.6.5a-¢ and 6.6a-¢)

{ZN-1}: Zhu-Nakamura given by Eqs. (6.78} and (6.79)
and

(B-1): Barany given by Eqs. (6.83).
The probability p and the phase = of Eq. {6.110) are given by p = 7?0 and = = 4,
respectively. These two approximations work equally well in the region 62 > 1 and
b*/a® > 1/2. Furthermore, these approximations can be utilized even for #2 < 1
in region I. As is seen from I'igs.6.5a-b and 6.6a-b, the ZN-I1 (B-I) approximation
works slightly better at a® > 0.2(a* < 0.2).

It should be noted, however, that the ZN-1 formulas given by Ifgs. {6.78) and
(6.79) are explicit simple functions of a® and §*, while the elliptic type of inte-
gral (Eq. (6.84)) should be evaluated in the Bardny’s approximation(B-T). Actually,
paY = ¢7?av in the ZN-1 approximation can be simply expressed as

PN =oxpl

b
| = exp[—2mdy—] (6.113)

da’ag azxg
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with
(6.114)

b . [ 2 ]1/2
1+ 1+ %
where p;z; = ¢7?7% is equal to the conventional Landau-Zener formula. Eq. (6.113)

coincides with the latter in the limit 62 3 1(see Eq. (6.114) ), but improves it very

alg

much at low energies and works well even near the crossing point (6% ~ 0), as is
demonstrated in Fig.6.7. Namely, this formula (Eq. (6.113)) can replace the widely
used conventional Landau-Zener formula in practical applications. This is actually
one of the significant results obtained in the present thesis.

B. Region 11.

This region is an extension of the limiting case (b} which roughly corresponds
to b <« ~1 and b*/a® < —1. The recommended formulas in this region II are (see
Figs.6.5a-¢ and 6.6a-¢)

(ZN-II): Zhu-Nakamura given by Egs. (6.91) and (6.92).

The Barany’s approximation given by Eqs. (6.96) can not work well in this extended
region. This works well equally as the ZN-IT only up to a® < 2|62|. This is basically
because the contributions from the subdominant solutions on the Stokes lines are
taken into account in Egs. (6.91) and (6.92), as was mentioned before. In the
same way as in region I, the present ZN-II approximation can be ulilized even for
0> 6?7 > —1 but with a® > 0.2, Al a®> < 0.2 the Barany’s approximation works
better (see region IIT).

C. Region HI.

This is a small region defined as a® < 0.2 and —1 < t° < 0. The recommended

formulas are (see Figs.6.5a and 6.6a)

(B-I1I):Bardny given by Lgs. (6.96).
In this region the present approximation given by Eqgs.(4.29) do not work well com-
pared to the Barany's. Iiqs. (6.74) and (6.92) do notl give any significant difference
here. Egs. (6.96) are simple functions of p and &, bul these parameters should be
evaluated from the elliptic iype integral of Eq. (6.84).
D. Region 1V,

This corresponds to the weak coupling case, 1.e., the limiting case (¢). The first
order perturbation theory first forinulated by Bykhovskii, Nikitin and Ovchinnikova
{75] and implemented later by others[26, 62, 63] works all right. So the recommended

formulas are (see Figs.6.5d-¢ and 6.6d-e)
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(BNO-1V): Bykhovsky, Nikitin and Ovchinnikova given by

Egs. (6.106) and (6.107).
Asymmetry of this region with respect to the ordinate comes from the properties of
the Airy functions. This BNO-1V approximation becomes better for larger 2, but
works relatively well also in the regions 6%/a* > 1/2(b? > 0} and [6°|/a® > 1(b% < 0).
Eq. (6.109) works all right at 6* < 0 and a® > 10, but this region can be covered by
the ZN-IT approxtrnation . Besides, Eq. (6.109) gives only probability.
E. Region V.

This region corresponds to the situation that the four transition points are nei-
ther well separated, nor very close together. So none of the approximations works
well except for the region % < 0 which can be covered by the modified ZN-II ap-
proximation. Based on the present approximations U7" and UZY (see Eqs. (6.77),
(6.73) and (6.74)) for the Stokes constant U;, we have obtained the following fitting

formulas for U/,:

Uy=UEN 4+ AU, forb® >0 (6.115)
and
U, = UEN—)—AUB for b* < 0, (6.116)
where
. s oo (18558 — B)(? — 4657200
Us = (0.66+0.013a%+3.1-10734" 131 t108”
A4 (066 + ot a)52+57—01?a+61 10 gt
a? + 5.3 95q° b *52a2+§>4 a? +54
O 4.6 — =" b4y 22 0[5.2———— %] (6.117
[ 1.6 a? -+ 10.8 ]+I(12+‘27 b 421 [) a2 4+ 22 }( )
and
b — 285 a’ — 2.1 e’ +3
Alp = 10 L f 24159 Q[4.4— —|p? ]+ 06T i |67
|62] + 09327427 a? + 3.5 +15.6
19 226 24906 .
5.9aq+ I16.4% f N iy 1) (6.118)
a’ + 63 a® -+ 63 a’ + 63

Here ©[z] 1s an ordinary step function. These fitting formulas work almost perfectly
and can not be distinguished from the exact nurubers, if we draw a figure like Figs. 6.5
and 6.6. A wider mumerical test further confirms that the above equations can be

- . - . e . - 2
used In practical applications, if necessary, for a very wide range, 50 > a® > 1 and

any b?.
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6.7 Concluding remarks

In the light of the exact solution obtained in chapter 4 that the reduced scattering
matrix can be expressed in a compact form in terms of only one Stokes constant
U1, we have discussed analytical approximations to this constant U, for the Landau-
Zener case and proposed two new formulas. We have considered the connections
of asymptotic solutions along Stokes lines as well as anti-Stokes lines. Especially,
we have properly treated, for the first time, the connection matrix along the Stokes
lines to derive the reduced scattering matrix in the limiting case (b) at low cnergies
in which the four transition points are separated into lwo pairs on the Stokes lines.
That is to say, the contribution from the subdominant solutions on the Stokes lines
is properly taken into account. The resulting formula was shown to work well in a
wider range than that of Barany.[63]

The formulas proposed in this chapter are simple functions of the two parameters:
a*(effective coupling strength) and &?(effective collision energy). Neither sophisti-
cated special functions nor any integrals are necessary to be evaluated. For instance,
the nonadiabatic transition probability p {or one passage of crossing point valid at
high energies has a simple and compact form (see Eq. (6.113) ), and is yet much
better than the conventional Landau-Zener formula. This is very useful and can
replace the latter in wide range of practical applications.

A thorough numerical comparison was carried out with the best available {for-
mulas such as those of Bérany[63], Child[61], and Nikitin and coworkers.[75] The
validity region of cach formula was clarified, and the two dimensional parameter
(a?, b*)-plane was divided into five regions, in each onc of which the best recom-
mended formulas are proposed. In a region near crossing point at an imtermediate
coupling sirength with * > 0 no analytical approximation works satisfactorily, and
certain (almost perfect) fitling formulas are presented for the Stokes constant [/q. If

- - . a 2
necessary for practical application, these can be used for any values of o° and .
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Appendix

Derivation of the phase integrals
In order to evaluate the phase integrals such as Eqs. (6.19), (6.28), (6.51) and

{6.58) under the separability condition Egs. {6.25) or (6.55), we generally have to
deal with the following integrals:

Py (N, a,n)~—/ \/ t—=XP -t + X)) —n?dt for N —oc (6.119)

and

et ) = = ] Sl = x)7 =2t + X)* — 2ldt, (6.120)
where o and n? are complex, and
X% &+ 1) (6.121)

Under this condition, the sccond factor in the integrand of Eqs. (6.119) and (6.120)

can be expanded as

2
n

t+XP -1+ X)— . 6.122
i+ XP =0 = (4 X) = 5 (6.122)
Then we can obtain the following explicit expressions:
o CT N3 ) ’) ] 2 2 '
PN, n?) = ~2~[ 3 —(X°+ ?—f— ?)N — X{o* —=7n°)In V]
22X X, Y 2 ,
+ a? 5 + e Xa~ ln(m) — X7 In(2X)]
for N — oo (6.123)
and 2 gy )
Po(o? n) ~ fl—[ = &*Xln -7’ XIn2+ iX], (6.124)
273 —o? 2

where the first term in Eq. (6.123) exactly cancels the divergent terms in Eqs. (6.19)

and (6.51). From Egs. (6.123) and {6.124), we can easily prove that

N —N - - :
(/x' + /;\- )\/[(/ - X)) = r_v?}[(u‘. + X)) — ‘fﬂdﬂ
= P(N;o7 ) — PUNw o)
= —2(5— ﬁ') InN — (-3 In2—

SRS

L

2

(7 — 89

— A'In(2X =)+ 2In(2XV—=0?) N — oo (6.125)
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and

R Y (= s e
a?N3

= — [ X+ (B+F)/XIN +® for N> o0, (6.126)

where
al X
= — — 2 A200( 2 2
¢ = 5[ it-x7 =l x0)r = a
= P, ) + P, o)
2¢°X% 1 V—a? A
= - N+ Al / 12
Tt g+ @+ () (62)
with ,
f=sa’Xa’ (6.128)
and :
G = ga:}X?]?. (6.129)

Directly applying the above formulas, we can obtain phase integrals in the text for

the limiting cases (a) and (b).




Chapter 7

Analytical approximations for the
Stokes constant and scattering
matrix: Nonadiabatic tunneling
case

Based on the analysis of distributions of the transition points and the Stokes lines
in chapter 5, the semiclassical solution of the reduced scattering matrix for the
nonadiabatic tunneling case is obtained in this chapter. There are two limiting cases
in which the four-transition-point problems can be reduced to two two-transition-
point problems. But, there is one case in which the four transition points must be
treated as a whole. Again, The new analytical formulas obtained in this chapter are

simple and explicit functions of the two parameters ¢ and 62,

7.1 Introduction

In this chapter we shall deal with the casc of the opposite sign of slope of two
linear diabatic potential curves with constant coupling. This case is called "nonadi-
abatic tunneling.”[60] This presents a quantum mechanical tunneling accompanied
by nonadiabatic transition and represents one of the very basic mechanisms of state
or phase change in various fields of physics, chemistry and biology [28] It should be
noted that this nonadiabatic tunneling is quite different from the ordinary tunneling

through a single potential.[81]
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In chapter 6 we derived analytical approximations for the Stokes constant / in
very compact forms for the Landau-Zener case (the same sign of slopes of two linear
potential curves). The distributions of the four transition points and Stokes lines
are generally classified into the following four cases: two limiting cases in which the
transition points are well separated into two pairs either along anti-Stokes lines or
Stokes lines, and a limiting case that they are located very close together to the
origin. In the fourth case, they are neither well separated nor close together. In
the former two cases the exact connection matrix was approximately reduced to a
product of the two connection matrices of the Weber equation.

In this chapter, we will derive analytical approximations for the Stokes constant
Uy in the nonadiabatic tunneling case. As in the Landau-Zener case, there are also
four cases, three of which correspond to [6?] > 1 and are structurally similar to
those in the Landau-Zener case. Approximate solutions of the Stokes constant t;
can be found by using the same ireatment as in chapter 6 in these three limiting
cases. Based on the complete analysis of the corresponding Stokes phenomenon, we
propose practically useful new analytical formulas for the reduced scattering matrix.
Employing the phase-integral method of Froman and Fréman[77] in the adiabatic
state represenlation, Coveney ct al.[67] derived certain analytical formulas. Their
formula for 4 > 1 works all right (almost equally well as ours), but the one for
b* < —1 does not work at all. For the latter case, they proposed a certain empirical
working equation only for nonadiabatic transition probability. Based on this formuia
and the fact that the reduced scaticring matrix is expressed in terms of only one
Stokes constant in our exact treatment, we can obtain new analytical formulas for
the Stokes constant both in the present framework and in theirs. The former (our
formula) is found to work slightly better than the latter; besides ours is a simple
function of a® and b* compared to theirs which require elliptic type of integral. The
fourth case is peculiar to nonadiabatic tunneling, corresponding to [6?] < 1, namely,
to the collision energy lower than the bottom of the upper adiabatic potential and
higher than the top of the lower adiabalic potential. Four transilion points are
neither separated into any two pairs nor close together to origin. The distribution
of transition points and Stokes lines is very different from the other cases. In this
case we starl with a new comparison cquation method based on the exactly solvable
special differential equation which can be reduced to Whittaker equation and finally

give a good fitting formula for the Stokes constant Uy, The two-parameter (a2, 5?)-
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plane is divided into five regions and the best recommended formulas of reduced
scattering matrix are proposed for each region.

This chapter is organized as follows: The section 7.2 discusses various expressions
of the reduced scattering matrix , which facilitate physical interpretation in terms
of Stokes constant /;. In the section 7.3 analytical approximation for the Stokes
constant U/, is considered for the case |6?| > 1 by using the connection matrices
along either anti-Stokes lines or Stokes lines. The section 7.4 summarizes the various
analytical formulas of reduced scattering matrix and clarifies their mutual relations.
An accurate fitting formula for the Stokes constant is provided for the case [b%] < t
based on a new comparison cquation method. Elaborate numerical comparison is
made in section 7.5 and the best working formulas are recommended for each one of
the five regions into which the whole two-parameier plane is divided. The section

7.6 presents concluding remarks.

7.2 Various expressions of reduced scattering
matrix

As was derived in chapter 4, the quantum mechanically exact reduced scattering

matrix S in the diabatic representation is given by

gt 1 _ ( } g'?‘) (7.1)
‘ 14+ 0 U, V2% ] '
with )
v, = 2l (7.2)
Wi — o7

and nonadiabatic tunneling probability by
(Iml/, fa?)?
[V U — 1/ (da)]? + (Iml]; fo?)?

where Stokes constant U, is, of course, a function of the two hasic parameters o

Py = |SE* =

and 2. In this chapler our central task is to derive approximate solution of /.

In the following the exact reduced scattering matrix is rewritten in a lew different
forms so that physical interpretation can be facilitated and also nice comparison with
other formulas can be attained. As can be easily seen from Bas. (7.1) and (7.2), the
matrix elements S and 5% can be rewritten as follows

I dat|U, [ 2

51 = — = = 7.
M b gt U 2eE 0 L+ (1 = p)ed=E (74)
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J— 1 o
- _Q —(Q + 1)eE-r/2)’ (7.5)

41a*|U1| cos = V1 —peos=
Sy =— — =2 - 7.6
12 1 + dat|U;|?e?= zl—i—(l—p)e?‘; (7.6)
, Q(Q + 1}cos =
g VORE Vs &
G (@ N
and 0 a2
2cos’ =2
Py = ST = 7.8
S ey T ) (9
4 1)cos? =
_ Q@+ Neoss .
14+4Q(Q + 1) cos? =
where
p=1-4a*|U,|?, (7.10)
= =argl; — n/2, (7.11)
Q = 1/(4a*|U,]F = 1) (7.12)
and

1 ,
_ . Scrarg(U)
U, = ’Za?\” p o et tEEL (7.13)

Eqs. (7.4) and (7.6) show a nice correspondence with the semiclassical approxima-
tion for[28] and p defined by Eq. (7.10) satisfies 0 < p < 1 for 6% > 1 and has a clear
physical meaning of nonadiabatic transition probability for one passage of crossing

Eand F — /2 in the treatment by

point. The p and = exaclly correspond to ¢
Coveney et al.[67] The present treatment made clear the relations between these
physical quantities and the Stokes constant {7}, PFurthermore, Eq. (7.6) {or (7.8))
gives the quantum mechanical proof that "complete reflection”, P, = 0, cccurs at
arg(U1) = nw(n = 0,1,2,...). This can happen al many energies, since arg(l/,) in-
creases with 6 — 4oo. Eqs. (7.5) and (7.7) give the following direct correspondence

with the treatment of Coveney et al.[67] for 6% < —1:

() e— ¢ and T e— ¢+ /2. (7.14)

Furthermore, Bq. {7.9) possesses the same form as that found in the section 4.5
te, Py = [WP/1+|W/[) with [W]? = 4Q(Q + 1) cos*Z. Since arg(l/y) — 0 for

b? — —oc0, i, does not oscillate but monotonically decreases for 6% < —1.



7.3 Analytical approximation for U; in the case
=

In the case of the opposite sign of slopes , there are also the following two limiting
cases: The case that the four transition points are well separated into two pairs on
the anti-Stokes lines (real axis) which is called limiting case (a} and the case that
they are separated on the Stokes lines which is called limiting case (b). Using the
same treatment as in chapter 6, the approximate connection matrix in each case can
be obtained and a comparison with the exact one expressed in terms of the Stokes
constant U; can lead to an approximate expression of {/;. The separability condition
and consistency condition are derived in the process in the same way as in chapter

6.
A. Limiting case {a)
The exacl connection matrix along anti-Stokes lines is defined by the asymptotic

solutions of the basic differential equation (4.30) of the section 4.2B,

By(t) — Aq_”“(f)exp[i/l_: q”g(t)leBffl“(t)exp[f-“/ﬂ: ¢!P(1)di]  (7.15)

t— 400

and

i
Bi(t) — Cq (1) exp[s ql’fz(t)dt]+Dq71’,4(1‘)exp[—i/; g'F(t)di] (7.16)

t——co
Gy _ [ ln ng) (A) _ (/‘1)
(D) - (L'_)] ng B/ L B/’ (717)

where the reference points zy and —zy will be specified later (see Fig.7.1) The

with

connection matrix [ can be expressed in terms of Stokes constant U, and phase
integrals as (sec Eqs. (3.84), (3.79) and (3.80) of chapter 3, and (4.69) of the section
4.5B)

: 4a? ‘
U2616_+n5+ (] + U]Ug)czé*_“s"'

where the Stokes constanl U5 is defined in Bq. (7.2), aud 5, and §_ are calenlated

) — U, S—1d_ Hady 1 0373'5,—:(5.'.
e ((1 UrUs)e Use ) | (718

{rom

t
i/ ql",g('{)f'ﬁ mem (1) = Int + 28,

Jrg [ ks =]

e — x

4
z/ G0t s iP{) — Ind+ i (7.19)
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with N
a*t

3
In order to find an approximate connection matrix, let us start with the distri-

— b%t). (7.20)

P(t) = 5

bution of four transition points which was analyzed in the section 5.2B. Instead of

using z, and z,, here we use zo and Az defined by

and
Az = (27 —z1}/2. (7.22)

Then, from Eqgs. (5.16), (5.17) and (5.18) of chapter 5 we have

b?
B+ = '+,
1
y(Az)zy = oY)
and
62 1 b2 1
3 2 . 2
(210_213) atz? (EE) oot (7.23)

In these new notations ¢(¢) in Eq. (4.31) of the section 4.2B can be rewritten as

4

a . o 3 . 3
9(1) = 1t = 20)” = (Az = w) [t + 20)” = (Ax + iy)?). (7.24)
The separability condition is now explicitly given by
22> |Ar £ iyl (7.25)

under which we can trace the WKB solutions in Egs. (7.15) and(7.16) on path

2in Fig.7.1 from { — 400 to # — —oo. Then the whole conneclion matrix can be
decomposed as

Lo = FQF@ F] - ]ﬂ(ﬂg).pop(ﬁ}l), (72{‘])

where the matrix 7 1s obtained from the Weber equation given in Eq. (3.35) of the

seclion 3.2A, and the matrix #; Is defined as

- tiil(b {;
Fo= ( 0 f:"")

. -10 3
@ :] g7 (1)t
e

with

—
-1
[S]
o]

—
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Figure 7.1: Phase-integral paths in the limiting case {a).



By using the same treatment as in chapter 6, the parameters £, and £, in Eq. (7.26)

can be obtalned as

1 9
G = iaQIO(A:c —y)” (7.29)
and '
ﬂg = 5@2.’20(&1‘ + zy)z (730)
A simple manipulation with use of Eqgs. (7.23) gives
20 = fy+ o= (14 =) (731)
R z3 '
and
P — B2 =—1. (7.32)
Finally, the connection matrix L®7 in Eq. (7.26) turns out to be explicitly given by
2 4 :
Lapp _ : : Wﬁ0€—28ﬁ0+1¢—t‘1> + 62#;33 €:¢,
1 T8 (1 + 15)
Lf;gp = 4 v .2’1'? 6wﬁgl2+1r,51e—i31+iﬁ'zin(e"ﬁy]—i¢'
. I"(2f5)
b BT nBnBi 2,8 Inie B i
1 (*"%80)
Lg;;’l’ — \/‘?‘W 6Wﬁ2+ﬂ'ﬁ1f3€—iﬁx+iﬁ1 In(e™ 8y )—1d
T(1+ i)
- 3 27( 8#,81+7r132/2€iﬁ2—:,{32 In{ei™@; )+1d
I\(]. - ‘F.‘Bo)
and
. . 2 . . L
Lf‘-}?jp — 8277[306—2‘3’ + E1'rg3g CQtﬁo—u;AnCI” (733)

(1 — i)' (—i80)

where

$ = 6 In{e’™3)) + B In(e'™6,). (7.34)

Next, let us calculate the phase integrals in Iigs. (7.19) and (7.28}). By using the

integral formulas given in Appendix of chapier 6, we finally obtain

203 1 X
G = “;0 + By + 56— fo In{S3a”), (7.35)
S =6, —5_ +a=1d (7.36)

and

- q : - . 1 i o i : 2 s =
Sy = 8p+0_+m=1ln2+ §+ )[ﬁ] (™5 ) — Baln(e™ )] + 4 In a2/ (8ag). (7.37)

<
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It should be noted that the first and higher order terms with respect to Az £1y|* /2]
are neglected under the separability condition Eq. {7.25). Since the ratio Lia/ Ly

does not depend on the Stokes constants, as is seen from Eq. (7.18), we require

Ly L 1 :
= m ¥R (7.38)
Lo Ly 4at
From this requirement we find ]
- 7.39
fo 8a’zy ( )
which leads to the consistency condition
zp > 1 (7.40)

in comparison with Eq. (7.31). Furthermore, from Eq. (7.18) we find that the Stokes
constant I/, should satisfy

Ul = (ngelé‘ - 1)61.62/1121. (741)

If we use LePP given in Eqs. (7.33), we have

U,EN(E approximate ;) = %(1 - 672“30)1/2"3!"/) (7.42)
2a
with
2a° . : - T
i) = Tlg — Bylnzd + 28, + o ln fo + arg T(if) + %) (7.43)

where 3, is defined by Eq. (7.39) and z} can be solved as

(7.44)

from Eqs. (7.23) under the consistency condition Eq. (7.40). Eq.(7.44) implies that
b2 > 1 is a necessary condition for maintaining the separability in I'ig.7.1.
B. Limiting case (b)

In the case of % € -1 the four transition points are well separated into two pairs
along Stokes lines {imaginary axis). As in chapter 6, we consider the counection
along this linc. The exact connection matrix along Stokes lines is defined by the

following asymptotic solutions of the hasic equation (4.30} of chapter 4 :

=]

W

n
—

Bt —  Alin, e+ B, ip), (7.

frel T 2o
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and
¢(t) —  Cl=wy,t)+ D(t, —iy)s, (7.46)

f—emi¥/250
where y will be specified later, the suffices s and d mean subdominant and dominant,

respectively, and

L

£
(t',4") = g~ (t) expli / 2 (1)dt). (7.47)
tn'
The connection matrix is given by
b) = (e an)(5)=¢(5)
(0)= (¢ an)(5)=c(5) (7:48)

Since the connection matrix along Stokes lines for a general four transition point
problem was analyzed in chapler 3, we here use Eqs. (3.93)—(3.98) of chapter 3 and
Eqs. (4.69) of the section 4.3B. Then we can easily obtain

_ N 2 _ 4 2 _ 1 il
G=em [(Reth)"— /(50 Qﬂjﬂf”' ) i iﬁﬁ}lm) (7.49)
with
A=Ay —A 421 (7.50)
and
Ag= Ay + A — 9, (7.51)
where A, and A_ can be estimated {rom
[tqm(t)dttﬁ:; P+t A,
- Jiy /2 e
[_i_y g 3 (1)dt o P i+ A (7.52)

Let us next find an approximate conneciion matrix. Il is assumed that the four

iransition points are well scparated on the Stokes lines as in 1'g.7.2. The reference

points 2y in Igs. (7.52) satisly (Eq. {5.18) of the section 5.2)
IR 1 b 1

)
(27 + =) = = = (=) — = (75
a arly r [#3

=]

o

[
—

The q(¢) in Eq. (4.31) of the section 4.2B can be rewritten in the present case as

1) = Tl —ig)? = [0+ i) — 23],

—
—~1
1

—
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Figure 7.2: Phase-integral paths in the limiting case {b).




where 22 and z2 are given in Egs. (5.16) and (5.17) of the section 5.2. The separa-
bility condition is defined by
y* > |zl + 1a3l, (7.55)

under which we can trace the WKB solutions Eqs. {7.45) and (7.46) on path 2
in Fig.7.2. Then we obtain

G = HyHoHy = H{oo)HoH{(—0n), (7.56)

where the matrix H is defined by Eq. (3.58) of the section 3.2B, and Hj 1s given by

Hy = (6_‘6 0—) (7.57)

0 el@
with
~ vy
& :/, g2 (1)t (7.58)
—y
The same procedure as in chapter 6 can be utilized to determine the parameters «,
and o- as
1
& = —2a'y2] (7.59)
and :
oy = Eagymg. (7.60)

With help of Eqgs. {(5.16), (5.17) and (5.18) of the section 5.2, we have

and
o Hag = 1. (7.62)

Finally, G*F in Eq. (7.56) can be explicitly obtained as

6—20[)4-(..*6—1‘2)

™ t (i’

G = — sin’ + cos? .
! 2" (W%)r(ao)f‘(l + o) cos”(mao)e™,
ooy — EMO_) Lar—az In(ar) 1
12 - : Al (‘ t.
) V2 20 (o)
_ (‘,():-‘.(ﬂ'ao) - bl ﬁm--r.lln((‘—-xm)cﬂf)’
l(—n’o)
G — ﬁ SiII(QTt’OJo) 1__m+mln(ﬂﬂ'xm);ﬁﬂb
21 - T o . F &
22T (1 + ag)
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V2 -
g2 +og ]n(ag)el¢

— COS(WCXQ)m
and
GEF = COSQ(?TCX{))S-i&) + 27 p2a0—9 1% (7.63)
I'(—a)T(1 — o) ’
where
¢ =a;lIn(e ™" ay) — o In(as). (7.64)

Our next task now is to determine the phase integrals defined in Eqgs. (7.52) and
{7.58). With help of the integral formulas in Appendix of chapter 6, we obtain the

following results:

B 9273 I
i = 3@' + ap — cro In(8a’y?) + %, (7.65)
Ay =& 47, (7.66)
and
1 1 :
iNg = —5= In/a?/(2y) + 5[% In(e™ ay) + asIn(as)]. (7.67)
From Eq. (7.49) we require
Gy a 1 _.
oo B (7.68)
721 G da
from which we obtain
1
= Gty (7.69)
Comparison of Eq. {(7.69) with Eq. {7.61) leads to the consistency condition
¥’ > 1. (7.70)
On the other hand, the Stokes constant Uy in Eq. (7.49) satisfies
R(,’(fl = Glgtfzﬂz (771)
and ]
/ (Fype ™! 772
W = ilome® + 1) (1.12)

I we insert G of Eqgs. (7.63) into these equations, we can obtain

= S et
(OH(TQO)[ —bln (merg) = AL |, (7.7

RHe UgN = Re(approximate (7)) = 202 g (o) T(—cw)
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and

. 9 i 9 )
sin(moyg) _ mCos (Troto)e_w + m o2 _ o COS(ZTFO(O)]UQ, (7.74)

2%\ fog - 20(a)? ['(—an)?

ImUZY =

where «q is given in Eq. (7.69) and

2(12 3 2
3y + 200 — &g m(i-o). (7.75)

b=
Under the consistency condition of Eq. (7.70), y? can be approximately solved as

182 o1
v =l - o) (7.76)

28 g2 at  a

This implies that 7 < —1 is a necessary condition for the validity of the Stokes
constant U; given by Iqs. (7.73) and (7.74).

7.4 Mutual relations among analytical formulas

Now it is time for us to make clear the mutual relations among the presently derived
formulas and other available analytical approximations for reduced scattering ma-
trix. The comparison is made by reformulating the other formulas in terms of the
Stokes constant U;. The reduced scattering matnx is, of course, given by Eqgs. (7.1)
and (7.2). Discussions are given for the following four cases separately: (A) 82 > 1,
in which limiting case {a) is included, (B) " < —1, in which limiting case (b) is
included, {C) [6?] < 1 and (D) a? 3» 1. Tt should be noted that the separability
condition and the consistency condition given in chapter 7.3 arc very important in

order to make validity of each formula clear.
A b2 >1

In this case analylical approximation for the Stokes constant Uy can be generally

expressed in a unified form as

(1— &™) 72

—_
=1
-~}
-1

pa—

The following three approximations are considered:

1. Present formula:U/, = UJ" (Eq.(7.42))
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[=Tzy =75

and
2a? . T
Y= 1zy = Tﬂ,o FoIn 10 + 25+ Boln Gy + arg I'(15s) + T (7.78)
where
1
= 7.79
o 8alzy (7.79)
and
. 1.b7 bt 1
2= -] 7.80
Lo = 2{(1_ + ad (I‘J ( )
2. Formula of Coveney, Child and Bardny:[67] U, = U5“Z
F - FCCB — (5
and
S5 6 )
Y =1gcp = U—i————ln——%-argl“(zr—)—lrz, (7.81)
om0 T 4
where ¢ and & are defined by
. é“ - 1 f' 2 .
—g — 16 = / di  for b® > 1. 7.82
2 L 4/ a? -8 { )
3. Formula of Child:[61] ¢/, = U§
F = r(; = 71'50 (TSS)
and
, 2h3 b T N
Y= 1pe = — — S ln(—=) + Spln g + arg T'(26p) + — (7.84)
Ja a2 4’
where
1 -
So = Sob (7.85)

As is seen from the above three formulas, there holds the following correspon-

dence among the parameters:

b .
fo = — — by, (7.86)
T &>l
2a? —f—ﬂ [7) | ( 3) 243 5 ( b ) (_ %’")
— — = g — — — oy ln{—= 78T




and
Yoy = ¢CCBE;;¢C- {7.88)

Numerical comparisons indicate that UF" and U§®F are better than US and
that all three coincide in the limit 5% > 1.
B. b < -1

Following the representation of Eqs. (7.73) and (7.74), we will give here approx-
imate analytical expressions of Rel/;y and ImU,.
1. Present formula: Up = ULY (see Egs.(7.73) and (7.74) )

Repgi _ slran) [Fein(rag)e™ VI (7.89)
202 /ag V2 T(ag) T'(—ag)
and
d 4 Vd
N _ 1/2
= ~08( 2 —_—— 7.90
ImU7} e {cos( Wao)[sinz(frag) + COSQ(QWCKQ)] sin (7o) }r ( )
where
d = 4a* (RelUEY)?/ cos?{ray), (7.91)
. 2 ’2, 3 2
§= X 490y — apIn(L), (7.92)
3 oy
. (7.93)
g = 57
and e
1. b ool
1';’2 — W[ﬁw 40— — _] (7.94)

2 @l al at
The imaginary part of Stokes constant UAY here is modified from Eq. (7.74).
Eq. (7.74) was found not to work well for y* < 1 which corresponds to a region
a® > |b°| with b < —1. Since the real part (Eq. (7.89)) remains good in this region,
the tmaginary part (apart from sign) was determined first by using the working
formula for nonadiabatic transition probability of Coveney ct al.[67] and the ex-
act formula obtained in chapter 4. Then Eq. (7.90) was finally obtained with a
slight modification from this expression by & numerical comparison with the exact
phase of the Stokes constant /1. The nonadiabatic transition probability in this

approximation is thus given hy

] e
o 4 sin” ey ZweV
AN ( O) —~ !

BT g4 ’—lsing(wr,m) - g I (evg)? + Ve

(7.95)
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2. Formula of modified Coveney, Child and Barany: Up = U}“CF

ReUg"CCB __ ™ cos(mp) pSte—plup (7.96)

2p a’T'(—p)
and
1 d 4 V'
[MCECB 2, 12 _ 7.
tml 5 4a? {COS( T'0)[8111 *(mp) + cos?(2mp) sin{mp) }’ (7.97)
where
d' = da* (RelU NPV ) cos(mp) {7.98)
and lf 1
_ - 1/2
2mp— if = / dt forb? < —1. 7.99
TP — 1 2\/; t—i—b? or ( )

The real part Eq. (7.96) was obtained by comparing the approximate expression
for reduced scattering matrix of Coveney et al.[67] and the exact one obtained in
chapter 4. Then, the imaginary part Eq. (7.97) was determined in the same way as
before, namely, by using the working formula for nonadiabatic transition probability
of Coveney et al {(Lq. (7.100) below) and Eq. (7.96). The nonadiabatic transition
probability is thus given by[67]

. 4sin*(rp) Blp)e™
PEYP = = 7.100
B d'+ dsin’(wp) 1+ B{p)e ( )

with o
2rpPeT=r

Pl (p)?

3. Formula of Ovchinnikova[G1, GG]

B(p) = (7.101)

In this approximation only one pair of transition points in Im¢ > 0 are taken
into account and the results are not very correct. Furthermore, it is not possible to
derive an expression for the Stokes constant U/, and only the nonadiabatic transition

probability is given as,
¢2¢ — 28 — 487 {3 ~ ey
f’)g = et ;0'3 2‘0(3 Ho* 34| (I]D‘Z)

where
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Correspondence among the parameters in the above three approximations is

found to be as follows:

1
= p o Go= — ,
o P, O 8a|b]) (7.104)
and
2 2,3 2
=Y +ao—ozoln(£;) = & (7.105)
3 o4

It should be noted that compared to Eqs. (7.96) and (7.97), Egs. (7.89) and (7.90)
contain extra terms corresponding to the first term of Eq. (7.89). These represent a
contribution from the subdominant solutions on Stokes lines and make the present
approximation better than Eqs. (7.96) and (7.97) al 6 — —1. More details are

given later.

C. || <1
As is described in Appendix, based on the exactly solvable special differential
equation in the section 3.4C, we have derived the approximate solution for the
Stokes constant U/;. However, since the phase part of this approximate solution is
valid only for @* > 1| and the amplitude f should be numerically fitted, we have
tried to relax the condition @ > 1 and to find explicit expressions for both 8 and f
by a numerical fitting. By a comparison with the exact U/; we finally obtained the
following expressions: _
7

VEY = = fe v, (7.106)

where

%[(1 + 1.5:;51)1/3 _ £O.1362+D.87)b2} for a? > 4

(Datyl/3
= : 352 0.087(a® " +9.9)b S pu
A= %{(1.11+1—§25—)1/3~[*~;“W+0.%]W} (7.107)
for 0.25 <a” <4

3.330" Ine®—6972 91327245548 S-S
(lne?+1.74)428 +0'054lna2+0.6b +0'0"qu- 240,19 for a 2 {

— ad 421,25 g1 al?+3.72 a9, 1 FYRIN
f=q —0.00444 25522000 4 (0641 5521000 — 0.334] -1 1092

+1.066[ 5545177 for 0.25 < o < 4.

(7.108)
In the limit o 3 1, Eq. (7.107) does not exactly coincide with approximate solution
of f 1n appendix, but the difference 1s not significant there. These formulas can not
go beyond a® < 0.25, because the distribution of four transition poinis in this region
becomes like Fig.5.3d of chapier 5, which can not be taken care of by the differential

equation of the section 3.4C.



The working formula by Coveney et al.[67] can not give an expression for the

Stokes constant U; and only the nonadiabatic transition probability is given as

—-26

pecE ¢ 7.109
c 1+€_'_)5! ( )
where ,
_ 1 T
= — )t for 1B < 1. 7.
i gmfmbz(mb?) or b7 < (7.110)

This formula works well in the region a® < 0.25.
D. a® > 1(Perturbative formulas[61, 86] )

When the diabatic coupling is very weak (a? >» 1), the perturbation formula for
the Stokes constant U/; can be given also in the form of Eq. (7.77), in which the

parameters ¢ and [' now become

:[1: FL) = —EII]“ *W(B;(—I/)—}‘fl?(—b’))}
and
=y rct ['}l"(_fj)] T (7.111)
U = = arctan o e
v . Bi(—v) 2’
where .2
= 75 (7.112)

and A;(X) and B;(X) are the Airy functions.[80]
Since the Airy functions should be small enough in this approximation, |¢%/a] <
1is required. Considering this condition, the following simplified formula for tran-

sition probability is often utilized.[67]
= 71’2(1.74!3/1;“)(—bza_g"'s). (7.113)

However, we recommend here the formula,

]
i

e 7.1
TR (7.114)

Py =

becanse it can be shown that the exact expression for nonadiabatic transition prob-
ability is given in the fractional form like B, (7.114) as proved in the section 4.5.

Numencal resulls also confirm that £ iz nwch betler than /.
D i3



82:~10b6 a2:6b2

Figure 7.3: Five regions (I-V) in (a?, %) plane. Recommended formulas for reduced
scatiering matrix are provided for cach region. @ = 0.25 and @, = 15.0.
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7.5 Numerical comparisons and recommended
formulas

The separability condition given by Eq. (7.25) for limiting case (a) or Eq. (7.55) for
limiting case(b) and the consistency condition of Eq. (7.40) for limiting case (a) or
Eq. (7.70) for imiting case (b) provide a qualitative and clear definition of validity
condition for each approximate formula. Numerical results indicate, however, that
each approximation can work well in a wider region than predicted by these condi-
tions. In this section, detailed numerical comparisons among the various formulas
listed in the previous section are made for the Stokes constant U/, as well as for
the nonadiabatic transition probability Fj,. From these numerical comparisons it
turned out that we can divide the whole (o, 8%)-plane (a® > 0) into five regions
I-V, as is shown in Fig.7.3. For each region, the best recommended formulas are
proposed for the Stokes constant I/;. The reduced scattering matrix is given by
Eqs. (7.1) and (7.2). Sec also the expressions in Iigs. {7.4)-(7.9). It should be noted
that the boundary lines in Tig.7.3 are not exact, but fuzzy.

Figs.7.4a-d show the Stokes constant U for a® = 0.1,1.0, 10.0, and 20.0 as a func-
tion of 2. Arg(Si} is also shown there. Figs 7.5 present the results of nonadiabatic

transition probability for the same values of 2.
A. Region 1

‘This region corresponds to the case in which the four transition points are sep-

arated along the anti-Stokes lines (see Fig.7.1). The recommended formulas in this

region are
(ZN-I): Zhu-Nakamura given by Eqs. (7.78).
and
(CCB-1): Coveney, Child and Bardny given by Eqs. (7.81).
The probability p and phase = in Egs. (7.10) are equal to p = ¢ and = = 4,

respectively. The above two approximations work equally well.
It should be noted, however, that the ZN-i formulas are explicit simple functions
of ® and &7, white the elliptic type of integral (Eq. (7.82)) should be evaluated in

the CCB-1 approximation. Actually, p® = ¢72"% in the ZN-I approximation can
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be simply expressed as

L exp[m%réo—b—]. (7.115)

da%zg azp

pi" = expl--

with

b 2 1/2
azxy - [1 + m}

where pypz = e ?"% is nothing but the conventional Landau-Zener formula which

coincides with Eq. {(7.115) in the limit 6% > 1. As is seen in Fig.7.6, Eq. (7.115)

works better than the conventional Landau-Zener formula at large 4%; but the latter

(7.116)

!

works acceptably well for the whole range of 6% > 1, although the Stokes constant
(or reduced scattering matrix) is not very good with this formula. In contrast to
the case of the same sign of slopes (Landau-Zener case), the region [6°] < 1 can not

be covered by the formulas here and should be treated separately.

B. Region IT

This region corresponds to the case in which the four transition points are sepa-
rated along the Stokes lines (see Fig.7.1). The recommended formulas in this region
are

(ZN-11}: Zhu-Nakamura given by Eqgs. (7.89) and (7.90).
The MCCB formulas given by Eqs. (7.96} and(7.97) can work equally well for tran-
sition probability, but they become slightly worse for the Stokes constant Uy when
4% approaches -1. The reason for this is as follows. The extra terms in ZN-11 which
represent a contribution from the subdominant solutions on the Stokes lines make
the ZN-11 formula work slightly better. This situation is the same as in chapter 6.
Besides the ZN-1T formula is a simple function of o? and 6%; and thus we recommend

only the ZN-II herc.
C. Region III

This corresponds to the weak coupling case. The recommended formulas are
(N-II11): Perturbation formula given by Egs. (7.111).
Asymmetry of this region seen in Fig.7.3 for &2 > 1 and 07 < —1 comes from the
properties of Airy functions, At relatively small a?, the formula with one Airy
function {especially Eq. (7.114)} works much better (see Pig.7.5¢). As is seen [rom
Eqgs. (7.111), this formula breaks down when the argument of the logarithmic func-

tion becomes negalive, which happens at &7 smaller than a certain negative value
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(see Figs.7.4c, 7.4d, 7.5¢, and 7.5d). Although this formula works all right at a* > a2
(see Fig.7.3) for any 6% > 1 (see Figs.7.4d and 7.4d), we put a boundary line as in
Fig.7.3. This is because the formulas (ZN-I) and (CCB-I) work equally well there;
besides the (ZN-T) is simpler than the others and more useful.

D. Region IV

In this region, the recommended formulas are
(ZN-1V}): Zhu-Nakamura given by Eq. (7.106) with Egs. (7.107) and
(7.108).
The perturbation formula meniioned above can work acceptably well for a? » 1,

but not as well as this.
E. Region V

In this region, good approximation for the Stokes constant /; could not be {ound,
unfortunately. For nonadiabatic transition probability, however, we can recommend

(CCB-V): Coveney, Child and Bardny given by Eq. (7.109).

7.6 Concluding remarks

In chapter 4 of this thesis, we have obtained the exact solutions of reduced scattering
matrix for the two cases: Landau-Zener and nonadiabatic tunneling. These are
expressed in terms of the only one Stokes constant {7, which is solved in the form

- - . . . >
of infinite series as a {function of the basic paramelers a® and 67

Furthermore, in
chapter 6 we have derived new compact approximate analytical solutions for the
Landau-Zener case by decomposing the connection matrix along either anti-Stokes
lines or Stokes lines into a product of two matrices based on the Weber equation.
The new method of connection along Stokes lines led us to a new formula in the
region 6* < —1 which works better than the other available ones.

In this chapter we considered analytical approximation {or the nonadiabatic tun-
neling case. It was demonstrated that the methods employed in chapter 6 can be
directly applied to the case |67] > 1. Two new compact approximale analytical so-
lutions were again derived, and the one for §* < —1 was found to be better than the
other. These new formulas obiained here are simple functions of a® and £, namely,

netther any special funciions nor any integrals are required. A new simple expres-
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sion for nonadiabatic transition probability p for one passage of crossing point was
obtained for 62 > 1, but it turned out that the conventional Landau-Zener formula
works acceptably well in this region as far as p is concerned. Furthermore, in this
region the exact reduced scattering matrix was found to have a nice correspondence
with the semiclassical approximation.

The case |B?| < 1is very difficult to deal with analytically. There is no analogy
in the Landau-Zener case. We started with a comparison equation method based on
the exactly solvable case of ¢{t) = agt* + a,¢ (see chapter 3) which can be reduced to
the well known Whittaker equation. Because of the asymmetry of our problem, this
method did not work quantitatively well, unfortunately. With usc of the knowledge
obtained from this comparison equation method, however, we could finally propose
good fitting formulas for the phase and the amplitude of the Stokes constant U/,.

A thorough numerical comparison was carried out with the formula of Coveney
et al.,[67] the one modified from theirs and the perturbative one[86] The whole
range of the two parameter (a?, £%)-plane was divided into five regions, and the best

recommended formulas were proposed in each region.
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Appendix

Comparison equation method in the case 6] < 1.

In this special case, the distributions of transition points and Stokes lines have
two subcases as is shown in Figs.5.3¢c and 5.3d of chapter 5. In neither of them the
transition points can not be considered to be well separated and should be taken into
account as a whole. The case of Fig.5.3c of chapter 3, however, has a topologically
similar distribution of transition points to the case of g{z) = asz* + a;z in chapter
3(see Fig.3.8), in which one of the zeros z; is located at origin and the others are
symmetrically distributed on a circle.

Next, let us consider the distribution of four transition points in Fig.7.7 (sece
Fig.5.3c of chapler 5). If Figs.3.8 and 7.7 are assumed to has topologically the same
distribution of Stokes lines, we can consider Eq. (3.101) in chapter 3 as a comparison
equation of Eq. (4.30) in chapter 4. Thus, the connection matrix Z in Eq. (7.18) may
be approximately put equal to the connection matrix Ly in Eq. (3.112) of chapter
3. If we set

Loz = (Lo)n (7.117)

and assume that the phase relation 8% = §° in L, approximately holds for 4, and

5_ defined by Eqgs. (7.19),
Sy =4 withzg =0, (7.118)

then from Egs. (7.2) and {7.18) we have

U, —U: . :
. : = —e 7T+ 2eos(27Q4)]. (7.119)

L > IIﬁU it
ar Ui =3/ (a0)

The approximate solution for {/) is thus obtained as

app g . ( - —2m [
[P~ %,—3\/{-{»2(:(}5[2?@1)@ 9 (7.120)

It should be noted that we obtain the same results when we sel up equality of the
other matrix elements between L and Lo.

Now, our next task is to relate the quantity @ in terms of the basic parameters
¢® and ¥ in Bq. (4.10) of chaptler 4. This can be done by comparing the phase

integrals of the two equations (3.101) and {1.30). These phase integrals are given
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0, = /WD Jaezt + ayzdz = \/af; Ve(z —il)[(z +il/2)* = 3i2/4]ds (7.121)

with
5

(—il)® = (7.122)

(7}

and

[l U= 0)(E — ta)(t = t3)(t — 1)l

= %];M JHE =2 [+ i@y — o) — 22}dt,  (7.123)

I
g
I}

where y,z, and 2, are defined in Eqs.(5.16)-(5.18) of chapter 5. We have chosen
these phase integrals because of the symmetry. In comparison of these two integrals,

the following relations may be required:

!, = QIEII,
42
Vg = ";)*J
2l
5 = t(2y — [1]),
and
312 .
T = % (7.124)

These conditions can not be satisfied simnultaneously, because that would correspond
to the exact coincidence of Tigs 3.8 and 7.7.
If we usc the first three equations of Eqs. (7.124) with help of Eq. {7.122) and

the definition @4 of the section 3.4C, then we obtain

and

|21 = u, (7.126)

which leads to (see Eqs. (5.16)-(5.18) of chapter 5)

! (1 — 872 |) = -

2q°

‘Illii —_
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where the condition a® > 1 is used in the second equality. Finally, ¢ can be
expressed explicitly in terms of a? and #? as

1 b?

Ql P 5[1 -— W] {Of a2 >> 1 (7128)

Unfortunately, numerical comparison with the exact Stokes constant /] shows that

Eq. (7.120) with (7.128) is not accurate enough and should be modified as

app __ _ -7
where
=0, =1 1 o for a® > 1 7.130
/B:Ql—g[—m} or a® > 1. ()

Here the function f is to be determined only by numerical fitting, unfortunately.
Since numerical fitting turned out to be unavoidable for f, we have decided to give
a fitting formula also for the phase /7 so that we can cover much wider range than
a® > 1 for {4*] < 1. The results are given in the text. This unfortunate result of
the present comparison equation method would probably be due to the syminetry
of the problem, because our problem (Fig.7.7) never becomes totally symmetric like

Fig.3.8.
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