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Stokes phenomenon and two-state linear curve

crossing problems
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The Stokes phenomena of the standard second-order ordinary differential equations with the
coefficient functions of the certain n-th order polynomials are investigated. Four cases of the
coefficient function g(z) are solved to find analytical solutions of the Stokes constants: (i) ¢(z) =
aon 2N + TN a2 (i) q(2) = ean—122V 7N+ BN, 6527 (iil) ¢(2) = Tj=00s27; and (iv)
q(2) = E?:o a;2’. The case (iil) can be immediately applied to the two-state linear curve crossing
problems which represent the most basic models for non-adiabatic transition processes in atomic
and molecular physics. The two-state linear curve crossing problems are generally classified into
the following two cases: (1) the same sign of slopes of two diabatic potential curves(Landau-Zener
case), and (2) the opposite sign of slopes(nonadiabatic tunneling case). The reduced scattering
matrix for each case has been found to be expressed in terms of only one Stokes constant Uy, which
is solved exactly and analytically in a form of convergent infinite series. This means that exact
quantal solutions of the reduced scattering matrices for both cases are analytically found for the
first time. Furthermore, new semiclassical solutions of the reduced scattering matrices for both
cases are derived in simple compact forms. Especially, the case that the collision energy is lower
than the crossing point is correctly dealt with for the first time. Both quantal and semiclassical
solutions for the reduced scattering matrix are made possible by expressing the connection matrix,
which is a crucial bridge to link physics and mathematics, in terms of Stokes constants. Among
the fruitful results obtained, one of the most notable ones is about a derivation of a new formula to
replace the widely used Landau-Zener formula for nonadiabatic transition probability. The new one
is as simple as the Landau-Zener, but works much better than the latter. On the the other hand, by
fully analyzing the distributions of the four transition points and the Stokes lines in complex plane
for the basic equations of the two-state linear curve crossing problems, the validity conditions are
made clear for the present and the other available semiclassical formulas of the reduced scattering

matrices.

Chapter 1

This thesis begins with the asymptotic solutions of the second-order differential equations for
the four cases mentioned above. The asymptotic solutions are found exactly in the form of infinite
series, in which the recurrence relations among the coefficients are given explicitly. This is made
possible by transforming the original differential equations from the complex-z plane to a new
complex-¢ plane in which all the Stokes lines coincide with the real axis. At the same time, the
standard asymptotic WKB solutions are introduced for convenience as reference functions to define
Stokes constants. The Stokes phenomenon is reviewed and explained briefly so that physicists and

chemists can get quickly an insight on the topics discussed in this thesis.
Chapter 2

A central task in the subject of Stokes phenomenon is to find analytical solutions of Stokes
constants. The standard asymptotic WK B solutions are proved to be quite useful for the present
type of analysis, especially for deriving the relations among Stokes constants. Actually, three inde-
pendent relations for all Stokes constants U; defined in the complex-z plane are easily established.
They are very useful for many physical problems although they are not enough to have a complete.
A further deduction is made by transforming the asymptotic solutions from complex-z plane to the

complex-¢ plane where the Stokes constants 7} are defined. One-to-one simple correspondence is
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obtained between U; and T;. What is fascinating about the complex-¢ plane is that all Stokes con-
stants T; can be simply related to only one, for instance, Tj, by using a particular transformation
under which the differential equation in the complex-¢ plane is invariant. The conclusions obtained
up to now hold not only for the four cases mentioned above but generally. The remaining most
difficult problem is how to find an analytical solution for 7 for each case. By generalizing the
coupled-wave-integral- equations method devised by Hinton, Stokes constant 73 is finally shown to
be expressed in the analytical form of a convergent infinite series as a function of the coefficients
q(z) for all four cases.
Chapter 3

A connection matrix presented in this chapter represents an important physical quantity i.e.,
scattering matrix, and bridge between the Stokes phenomenon in mathematics and the two-state
linear curve crossing problems in physics. If the standard WKB solutions are used in the asymptotic
region |z| — oo of the complex plane, the connection matrix is exactly expressed in terms of the
Stokes constants. This matrix can connect solutions in one asymptotic region in complex plane
to solutions in another asymptotic region, such as physical important connections between two
anti-Stokes lines, two Stokes lines, and one anti-Stokes and Stokes lines. What is fascinating about
expressing the connection matrix in terms of Stokes constants is as follows: A physically required
connection matrix sometimes can not be well-approximated by following traditional semiclassical
path. It is much more flexible and versatile to try to find Stokes constants. Based on the knowledge
of the distributions of transition points and Stokes lines, such a path which may not correspond to
the physical connection matrix can be designed to derive the best semiclassical solution from Stokes
constants. Excellent examples will be given in chapters 5 , 6 and 7 for semiclassical solutions of the
reduced scattering matrices for the cases of energy lower than the crossing points. The connection
problems for one transition point and two transition points are briefly reviewed, and those for
three transition points and four transition points are presented in detail. The last case is mainly
concerned with the curve crossing problems discussed in the subsequent chapters.
Chapter 4

The classic problems of the two-state linear curve crossing were initially discussed by Lan-
dau, Zener and Stueckelberg. As mentioned before, there are the following two cases: (1) the
same sign of slopes of two diabatic potentials(Landau- Zener case), and (2) the opposite sign of
slopes(nonadiabatic tunneling case). It is well known that the reduced scattering matrices for these
two problems can be described in terms of the two parameters a?(effective coupling strength) and
b?(effective collision energy). Finding the exact analytical quantal solutions for the reduced scat-
tering matrices is very challenging and very difficult question. The answer to this question is given
in this chapter. The starting point is the basic differential equation of the case (iii) mentioned be-
fore. By using the connection matrix obtained in chapter 3, the reduced scattering matrix for each
case is first expressed in terms of three Stokes constants. Then by taking into account two extra
conditions in addition to the unitarity of reduced scattering matrix, it is shown to be expressed
finally in terms of only one Stokes constant U;. Finally, this one Stokes constant is given exactly
and analytically by a convergent infinite series which is a direct result from chapter 2. Another
work reported in this chapter is a new numerical method to solve reduced scattering matrix for

the nonadiabatic tunneling case. The original coupled equations suffer from very rapid oscillation



asymptotically and can not give stable and reliable numerical results. New coupled equations are
presented which involve ordinary sine and cosine solutions asymptotically. Numerical results of
reduced scattering matrix can be obtained with any desirable accuracy.
Chapter 5

The distributions of the four transition points and the Stokes lines are fully analyzed for both
Landau-Zener and nonadiabatic tunneling cases in the whole plane of the two parameters a? and
b2. This analysis is, of course, important in itself, but what is more significant about this is that
the structure of the distributions essentially determines which path in complex plane is the best
for obtaining good semiclassical solutions of the reduced scattering matrices. The semiclassical
method used here and in the following chapters should be potentially useful for other problems in
physics and chemistry.
Chapter 6

The semiclassical solution of the reduced scattering matrix for the Landau-Zener case is obtained
in this chapter. Since the reduced scattering matrix is expressed in terms of one Stokes constant
U; in chapter 4, question now is how to find an approximate solution for U;. The distributions
of transition points and Stokes lines analyzed in chapter 5 clearly show that there are two best
choices of path to get good approximate solutions of U;. One path corresponds to the connection
on the anti-Stokes lines along which the four transition points are separated in two paris. Another
path corresponds to the connection on the Stokes lines along which the four transition points are
again separated in two pairs. The former(latter) corresponds to high(low) energy limit. In each
limiting case, the exact connection matrix can be approximately decomposed into a product of the
two matrices, each of which represents the connection matrix based on two transition points as is
given in chapter 3. Finally, two new compact analytical formulas for the reduced scattering matrix
are derived and compared with available ones. The a? — b? plane is now divided into five regions,
in each one of which the best recommended formulas are proposed. The new formulas proposed
are simple and explicit functions of the two parameters a? and b%. Especially, a simple formula
which works much better than the conventional Landau-Zener formula is obtained for nonadiabatic
transition probability for one passage of crossing point.
Chapter 7 V

The semiclassical solution of the reduced scattering matrix for the nonadiabatic tunneling case is
obtained in this chapter. The reduced scattering matrix is, of course, given in chapter 4 in terms of
one Stokes constant U;. The distributions of transition points and Stokes lines in this case are more
complicated than the previous case. There are two limiting cases, b2 > 1 and % « —1, which are
similar to the Landau-Zener case. Therefore, the two new formulas for reduced scattering matrix
are obtained in these two limiting cases again by simple functions of the two parameters a? and 2.
Especially formula for 2 < —1 is the first one ever obtained. The distributions of transition points
and Stokes lines in the tegion [b?| < 1 are very different from and have no correspondence to the
former Landau-Zener case. Based on the solvable special differential equation given in chapter 3, an
approximate expression for Stokes constant U; is found with use of a fitting procedure. Again, the
a? — b? plane is divided into five regions and the best recommended formula for reduced scattering
matrix is proposed for each region. Thus, a complete picture of the nonadiabatic tunneling case is

attained.
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