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Abstract

Optimization and enumeration problems have been actively studied. There are not

only academic interests but also real world applications as many researches have been

done for industrial purpose. However, despite the recent advancements in computer

technology, there are still difficult problems to solve. To break this situation, we focus

on technologies in solving propositional satisfiability (SAT). Although SAT technolo-

gies are not so focused as a method for optimization and enumeration problems, the

recent progress of SAT technologies is so tremendous that it can be expected to become

a potential approach.

In this thesis, we study a method called incremental SAT solving. It incrementally

computes the satisfiability of a sub-problem obtained from a given original problem

until a given goal condition is satisfied. We review how previous approaches utilizing

SAT technologies are explained by this solving method. Following that, we also review

several applications of it and how to utilize learned clauses for acceleration. The main

contribution of this thesis is applying this incremental SAT solving to the following

optimization and enumeration problems.

We apply incremental SAT solving to an optimization problem, the two-dimensional

strip packing problem (2SPP). In this problem, we are given a set of rectangles and one

large rectangle called a strip. The goal of the problem is to pack all rectangles without

overlapping, into the strip by minimizing the overall height of the packing. Although

the 2SPP has been studied in operations research, some instances are still hard to
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solve. Our method solves the 2SPP by translating it into SAT problems through a

propositional encoding called order encoding. The size of translated SAT problems

tends to be large; thus, we apply several techniques to reduce the search space by sym-

metry breaking and positional relations of rectangles. Besides that, to compute the

minimum height of a 2SPP, we apply incremental SAT solving with reusing learned

clauses. For evaluation, we make comparisons with a constraint satisfaction solver

and ad-hoc methods of 2SPP on 38 instances obtained from the literature.

We then apply incremental SAT solving to the minimal active pathway finding

problem that we propose to analyze metabolic pathways. In systems biology, identi-

fying vital functions like glycolysis from a given metabolic pathway is important for

better understanding of living organisms. The goal of the problem is to identifying

such functional reaction sets in a given metabolic pathways. More specifically, we fo-

cus on enumerating minimal active pathways producing target metabolites from source

metabolites. We translate laws of biochemical reactions into propositional formulas

and apply incremental SAT solving to solve the problem. An advantage of our method

is that each solution satisfies qualitative laws of biochemical reactions. Moreover, we

can calculate such solutions for a cellular scale metabolic pathway within a few sec-

onds. For evaluation, we apply it to a whole Escherichia coli metabolic pathway and

make comparisons with previous approaches.

In this thesis, we mainly investigate applications of SAT technologies. Appar-

ently, it is simple and seems difficult to apply it to real world problems. However,

it has remarkable potential to be core solvers for problems such as optimization and

enumeration problems as we show throughout this thesis.
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Chapter 1

Introduction

1.1 Background

This thesis dedicates to a study of a solving method for optimization and enumeration

problems by computing satisfiability and models of encoded propositional formulas.

Optimization is an important task in our life. In fact, we go through our days

completing many optimization tasks, though we are not aware of it. For instance, we

can see such tasks in a trip. There will be our demands, e.g., to arrive to a destination

as early as possible, to see around tourist spots as much as possible in a limited time.

In other words, the former demand is to minimize its traveling time and the later is

to maximize the number of spots to see. These kinds of optimization tasks are also

essential for industry; thus, it has been studied in many research domains.

Enumeration is another important task. We can sometimes not decide a parameter

to be optimized. In this case, we may want to generate possible solutions to choose

one from the other candidates. Enumeration is also useful when we want to have

all solutions that give us utility information, such as statistics, common parts etc.

Although both optimization and enumeration problems are important, some of them

are strongly believed that there is no efficient procedure i.e. these problems cannot
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be solved in polynomial time.

We thus need to use heuristics for solving these problems effectively. Moreover,

considering practical applications, the following two conditions are necessary: being a

general method that is applicable to several kinds of problems, being a flexible method

that allows addition of constraints. As such a method to solve these problems, this

thesis studies a method based on technologies that have been studied in a research

domain of propositional satisfiability (SAT). In the following section, we provide an

overview of SAT research.

1.1.1 Overview of SAT

The propositional satisfiability problem (or the Boolean satisfiability problem), the

SAT problem for short, is a problem that has been paid much attention in computer

science. When a propositional formula is given, the solution of the SAT problem is

whether there is an assignment satisfying the given formula or not. Many researches

from not only computational logic but also electronic design automation have studied

SAT technologies until today. We briefly review its progress from mid-19th. Shannon

first applies propositional logic to a design and simplification of electronic circuits in

1940 [123]. This was a novel work on the point that he used logic for representing

electronic circuits because studies in logic were mainly motivated to explain human

thought at that time.

Twenty years later, Davis and Putnam reported a paper containing several tech-

niques each of which is inherited until today [35]. Specifically, they introduced three

rules: (I) rule for the elimination of one-literal clauses, (II) affirmative-negative rule,

and (III) rule for eliminating atomic formulas, each of which evolves into unit clause

rule, pure literal rule, and resolution by other literature. Their procedure called DP

consists of these rules is applied to conjunctive normal form formulas. Just two years

later, an improved procedure called DPLL (Davis-Putnam-Logemann-Loveland) is re-
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ported in the literature by Davis et al. [34]. Apparently, their procedure is similar to

DP; the only difference is that they replace the rule (III) with (III∗) splitting rule. It

works with less memory compared with DP and becomes the basis of modern SAT

solvers. In addition to these practical researches, the SAT problem is first established

NP-complete problem by Cook [30]. This raises the importance of the SAT problem

in computational complexity domain and it places in the center of computer science

today.

Afterward, there have been developed many variations of DPLL and other type of

SAT solvers. In particular, many solvers were proposed from 90’s. Some researches

focus on how to choose a decision variable. Jeroslow and Wang proposed a heuristic

which roughly choose a literal appeared in a large number of short clauses in current

formulas in 1990 [77]. Following this, improved heuristics in term of the performance

of unsatisfiable problems are proposed by Freeman [49], and Böhm and Specken-

meyer [21]. In this age, in contrast to DPLL based solvers, Selman et al. proposed a

SAT solver doing local search, which is called GSAT [121]. This solver becomes Walk-

sat implementing an enhanced local search with random walk strategy [122]. Among

studies for SAT, one important feature of SAT solvers is appeared in GRASP [94] that

employs clause learning, which is an essential technique for modern SAT solvers.

Since 2000, the effective implementation of SAT algorithms becomes a popular

topic as well as the search strategies. A SAT solver Chaff features two literal watching

mechanism and it is outstanding to others [102]. Eén and Sörensson polished up

implementations of previous solvers and provided an extensible search procedure that

becomes the basic implementation of many solvers of nowadays [42]. In addition to

those individual researches, SAT solver competitions are regularly held by year since

2002, which help to push up the quality of SAT solvers. These enormous researches

trigger the extension of SAT researches as we describe in the next section.
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1.1.2 SAT for Problem Solving

Since propositional formulas can directly represent electronic circuits as Shannon pro-

posed, this is a major application of SAT solvers. For instance, the combinational

equivalence checking, which is the problem of determining whether two given circuits

implement the same function, is a typical one [57]. In these applications, SAT solver is

mainly used for checking satisfiability of a given formula: the result of unsatisfiability

tells us a given property holds; satisfiability tells us the existence of a counter example

for the property.

Another remarkable aspect of SAT solvers is that almost all solvers can be used

as a model generator for propositional formulas. That is, in addition to satisfiability,

solvers can find a satisfiable assignment, a model, of a given propositional formula. It

is very useful property for problem solving; it allows us to solve a variety of problems

through propositional encoding. For instance, Crawford and Baker apply it to the

job-shop scheduling problem [32]. They represent their problem in a propositional

formula and obtain the problem solution by decoding a model of the formula. Since

encoding methods affect problem solving performance, propositional encoding has

gathered attention since ’90s. For instance, in the research domain of constraint

satisfaction problem (CSP), much effort has been spent for better encoding: there are

many researches such as direct encoding [136], log encoding [76], support encoding [55],

log support encoding [52], order encoding [127], and compact order encoding [129,

130]. In addition to above SAT-based approaches, there are several researches that

utilize SAT search techniques. These researches do not encode their problem into

propositional formulas but use recent techniques that are developed in SAT solving

such as the DPLL procedure, clause learning, lazy data structure etc. For instance, the

following researches include several SAT techniques: Answer Set Programming [92, 53],

Quantified Boolean Formula [118] and MaxSAT [90, 66]. Nevertheless many SAT-

based approaches have been studied, there are still challenging problems for which
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not enough focus is paid. In particular, by multiple execution of a SAT solver, we can

reach other types of problems. This topic is very attractive. In the next section, we

explain this topic.

1.1.3 Incremental SAT Solving

Since the SAT problem is a decision problem, the SAT solver basically returns the

satisfiability of a given formula. We thus need some extension to apply it to a wide

range of problems. An extension is to incrementally execute a SAT solver to solve suc-

cessive problems one by one, which we call incremental SAT solving. In 1992, Kautz

and Selman first apply a SAT solver to solve a classical planning problem [81]. They

divided the original problem into sub-problems so that each of them is a problem of

deciding whether there is a plan of a given length or not. Then, they encode each sub-

problem into a SAT problem. In their method, sub-problems are incrementally solved

from a small length and the length of the problem that is firstly decided as satisfiable

is the shortest plan length. In 1999, Biere et al. apply SAT techniques to symbolic

model checking [19]. They focus the detection of counter examples of a fixed length

and generate a SAT problem that is satisfiable when there is a counter example. They

introduce the notion of bounded model checking; the bound corresponds to the maxi-

mum length of a counterexample and they increment the bound one by one. Following

that, Eén and Sörensson apply their incremental method to temporal induction that

checks safety properties on finite state machines. Crawford and Baker proposed an

encoding method for the job-shop scheduling problem [32]. However, they treat it as a

decision problem and do not mention a way to approach the optimal value. Soh et al.

studies their encoding method and apply Multisat, which is a meta-heuristic solver,

to the job-shop scheduling problem and show how it computes the optimal value of

the problem [125, 74]. Besides above researches, Hooker proposed a variant of DPLL

procedure that is adapted to incrementally solve multiple problems [70]. Bennaceur
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et al. proposed an incremental branch-and-bound method which includes Lagrangean

relaxations, meta-heuristics, and judicious jumping back [18].

Considering these approaches, we think that it has great potential and more studies

are needed for the incremental SAT solving methods. In particular, we are interested

in its potential for a variety of problems because of the recent progress of SAT tech-

nologies. Optimization problems are part of our target. Besides that, we apply it to

a new domain as we describe in the next section.

1.1.4 Further Applications

Many researchers from Computer Science start to apply their own technology to bi-

ology. In addition to well known combinatorial problems, we think that SAT-based

approach, particularly incremental SAT solving, can be an effective approach for prob-

lems of biology. We here particularly focus on a novel research domain called Systems

Biology, which is expected to be a key approach to promote a more systematic under-

standing of living cell and life.

An accepted way in Systems Biology is to capture the interactions of biological ob-

jects by a network. It is a strong tool and has been studied by a lot of researches; there

are various ways to interpret biological interactions to it. A longstanding approach is

to represent such networks as a system of differential equations. These equations are

constructed from a given network using laws in chemistry and biology, such as laws

of mass action, Michaelis-Menten kinetics. This method allows detailed analyses e.g.

concentrations of each metabolite with time variation on continuous values. However,

there are some problems. At the first place, it is difficult to measure precise value in

organisms. Besides, it is sometimes difficult to develop differential equations captur-

ing interactions of biological objects due to its difficult parameter tuning. Moreover,

although there are attempts, it is not easy task to compute a solution of differential

equations and not scalable consequently.
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On the other hand, systems of networks over discrete values, rather than continuous

values, have been proposed. In the following, we review those methods. As such a

method, Petri net has been used to represent systems of networks. It is originated by

Carl Adam Petri in his thesis in 1962 [108], and used in a wide range of research areas

today. General aspect of the Petri net is well summarized by Desel and Juhas [39].

It is first applied to systems biology in the literature in 1993 [117]. Following this,

Hofestädt report another one [69]. Recent progress on systems biology using Petri net

is summarized in the literature [98, 27]. In addition to Petri net approaches, there are

some researches on analyses of metabolic pathways. In 2000, the elementary flux mode

analysis is proposed and has been widely used for analyses of metabolic pathways until

today [120]. This method can treat multi-molecular reactions while taking into account

stoichiometry. Beasley and Planes proposed an optimization approach to metabolic

pathway analyses [14]. They perceived stoichiometry of reactions by constraints and

modeled possible pathways as optimized solutions.

Although researches have been proposed in Systems Biology, there are still some

problems. One of them is scalability; it is still difficult to analyze cell scale pathways in

many methods. Although elementary flux mode analyses can treat large pathways, it

generates a number of solutions that is not tractable to analyze. To analyze cell scale

pathways, we think that a method equips following features is necessary: scalable to a

cell scale pathway; capable to treat biological constraints; flexible to allow additional

constraints. We believe that our method based on SAT technologies is a key method

that qualifies those features.

1.2 Contributions

In this thesis, we study a general framework of incremental SAT solving: it incremen-

tally computes the satisfiability and models of propositional formulas until a given
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goal condition is satisfied. We then review how previous approaches utilizing SAT

technologies are represented in this framework. The main two contributions of this

thesis are applying this incremental SAT solving to the following two problems.

First contribution is our study on applying incremental SAT solving to solve the

two-dimensional strip packing problem (2SPP). In this problem, we are given a set of

rectangles and one large rectangle called a strip. The goal of the problem is to pack

all rectangles without overlapping, into the strip by minimizing the overall height

of the packing. Although the 2SPP has been studied in Operations Research, some

instances are still hard to solve. Our method solves the 2SPP by translating it into SAT

problems through a propositional encoding called order encoding. The translated SAT

problems tend to be large; thus, we apply several techniques to reduce the search space

by symmetry breaking and positional relations of rectangles. To solve the 2SPP, that

is, to compute the minimum height of a 2SPP, we need to repeatedly solve similar SAT

problems. We thus apply incremental SAT solving to 2SPP. To evaluate our approach,

we obtain results for 38 instances from the literature and made comparisons with a

state-of-the-art constraint satisfaction solver and an ad-hoc 2SPP solver.

Second contribution is our study on applying incremental SAT solving to identify

necessary reaction sets in metabolic pathways by minimal model generation. In sys-

tems biology, identifying vital functions like glycolysis from a given metabolic pathway

is important for better understanding of living organisms. We particularly focus on the

problem of finding minimal active pathways producing target metabolites from source

metabolites. We translate laws of biochemical reactions into propositional formulas

and apply incremental SAT solving to compute its minimal models. An advantage of

our method is that it can treat reversible reactions and cycles. Moreover, the trans-

lation enables us to obtain solutions for large pathways. We apply our method to a

whole Escherichia coli metabolic pathway. As a result, we have found the conventional

glycolysis pathway described in a biological database EcoCyc.
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1.3 Thesis Organization

The organization of this thesis is as follows. Section 2 provides an introduction of

propositional logic and SAT problems. We then describe SAT technologies; in par-

ticular, we focus on the mechanism of conflict-driven clause learning (CDCL) solver

based on the DPLL procedure. This type of solver is used through the remainder of

this thesis. Following that, we explain model generation based on SAT solvers. The

details of this procedure are also given in this section. Although recent progress of

SAT solvers is enormous, we need an extension to apply it to a wide range of problems.

To do that, we introduce incremental SAT solving. Section 3 provides how to apply

incremental SAT solving to optimization and enumeration problems. We also give a

better way to solve this problem by reusing learned clauses. In Section 4, we apply

incremental SAT solving to solve the two-dimensional strip packing problems. For

this problem, a SAT encoding method called order encoding is introduced. We briefly

give the explanation of this encoding and discuss why this is effective compared with

other encoding methods. In Section 5, as a new application of SAT technologies, the

minimal active pathway finding problem is introduced. We then apply incremental

SAT solving to this problem. In experiments, we give not only a computational eval-

uation but also a biological evaluation. Finally, Section 6 gives the conclusion of this

thesis and a discussion of future research topics.
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Chapter 2

Propositional Logic and SAT

In this chapter, we give an explanation of propositional logic. Following that, the

definition of the SAT problem is given. We then introduce foundations of SAT solvers;

in particular, we focus on the mechanism of conflict-driven clause learning (CDCL)

solvers. Above contents in Section 2.1 and 2.2 are adapted from [20, 26, 75, 103, 134].

Almost all SAT solvers can be seen as a model generator. We briefly explain this

feature and give how to generate minimal models with SAT solvers in the end of this

chapter.

2.1 Propositional Formulas and its Satisfiability

2.1.1 Syntax

A proposition is a sentence that can be evaluated as either true or false. A propositional

variable is a symbolic representation of a proposition. We often represent propositional

variables in alphabetical symbols such as, p, q, r, . . . , x, y. We represent the set of

propositional variables in V . Logical connectives consist of the unary connective ¬ and

binary connectives ∧, ∨, → and ↔. A propositional formula consists of propositional

variables and logical connectives.
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Definition 1 Propositional formulas are defined as follows:

1. A propositional variable p ∈ V is a propositional formula.

2. If α and β are propositional formulas, then: ¬α, α∨β, α∧β, α → β and α↔ β

are propositional formulas.

Above definition gives a general form of propositional formulas. We then introduce a

special form of formulas called conjunctive normal form (CNF), which is widely used

in computational logic. We give necessary definitions as follows. A literal is either a

variable or its negation. A literal is positive if it is a propositional variable, and is

negative if it is a negation of a propositional variable. For a literal l, l denotes the

complement of l, i.e., when p is a propositional variable, p = ¬p and ¬p = p. A

clause is a disjunction of literals. The length of a clause is the number of literals in

the clause. The clause of length zero is called the empty clause. In the rest of this

thesis, we sometimes use the symbol � as the empty clause. A unit clause is a clause

of length one. A literal appears positively (or negatively) in a clause if it appears as a

positive (or negative) literal in the clause. A conjunctive normal form (CNF) formula

is a conjunction of clauses. A CNF formula is identified with a set of clauses, and is

also simply called a formula in the rest of this thesis.

In SAT research domain, this CNF is usually used. Any propositional formula can

be converted into a CNF formula in exponential time. We thus can limit the form to

CNF without loss of generality. However, sometimes the number of converted clauses

becomes huge. Tseitin thus provides a translation method from any propositional

formula into an equi-satisfiable CNF formula [111]. In the method, we introduce

new variables that represent sub-formula of the given original formula. For instance,

Suppose that F = (p∧ q)∨ (r ∧ s) is given. We then introduce two new propositional

variables x and y and clauses representing x ↔ (p ∧ q) and y ↔ (r ∧ s). Finally, the

translated formula will be F ′ = (x ∨ y) ∧ (¬x ∨ p) ∧ (¬x ∨ q) ∧ (¬p ∨ ¬q ∨ x) ∧ (¬y ∨

r) ∧ (¬y ∨ s) ∧ (¬r ∨ ¬s ∨ y).
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2.1.2 Semantics

The symbols True and False are called truth values. We often use abbreviations for

truth values such as T for True and F for False. An interpretation (or an assignment)

of a propositional formula is given by a (partial) mapping I : V → {T, F}.

Definition 2 Let ψ, α, β be propositional formulas over V . Let I be an interpretation.

We say that I satisfies ψ, and write I |= ψ, if True is assigned to ψ by I. We also

write I 6|= ψ, otherwise. The truth value of ψ is recursively defined as follows:

1. I |= p if and only if I(p) =T, where p ∈ V .

2. I |= ¬ψ if and only if I 6|= ψ.

3. I |= α ∨ β if and only if I |= α or I |= β.

4. I |= α ∧ β if and only if I |= α and I |= β.

Definition 3 When an interpretation I satisfies a propositional formula ψ, we say

that I is a model of ψ. In this case, we also say that ψ is true in I.

Definition 4 Let Σ be a set of propositional formulas, and I satisfies for every formula

ψ ∈ Σ. Then I is a model of Σ. If Σ has a model then Σ is satisfiable. Otherwise, it

is unsatisfiable.

Above definitions give semantics for general propositional formulas. Accordingly,

we can say followings for CNF formulas: For a negative literal ¬p, I |= ¬p iff I(p) = F .

For a clause c = l1 ∨ · · · ∨ ln, I |= c iff I |= li for some literal li (1 ≤ i ≤ n). For a

CNF formula ψ = c1 ∧ · · · ∧ cm, I |= ψ iff I |= cj for every clause cj (1 ≤ j ≤ m).

Following semantics of propositional formulas, we give the definition of the SAT

problem in the next section.
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2.1.3 SAT Problem

The propositional (or Boolean) satisfiability (SAT) is well known as the first estab-

lished NP-complete problem [30]. Each SAT instance is a propositional CNF formula,

and is called a SAT problem. The definition is given as follows.

Definition 5 Propositional satisfiability

Input. A propositional formula ψ.

Output. The satisfiability of ψ.

For SAT problems, we use abbreviation SAT and UNSAT to represent “satisfiable” and

“unsatisfiable,” respectively. For instance, suppose that the following formula ψ is the

input of a SAT problem:

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x3 ∨ x4) ∧ (¬x3 ∨ ¬x4) ∧ (x1 ∨ ¬x3) ∧ (¬x2 ∨ ¬x4).

A satisfiable assignment (x1, T ), (x2, T ), (x3, T ), (x4, F ) exists for ψ; thus, the output

of the problem is satisfiable (SAT).

2.2 Modern SAT Solvers and Techniques

In this section, we review the progress of SAT techniques. As said before, we use

a word SAT as the decision problem of satisfiability for propositional formulas in

conjunctive normal form (CNF). Also, we call each SAT instance a SAT problem, and

call a procedure for SAT a SAT solver.

Many researches on SAT solvers have been made particularly since 90’s. Thanks

to such progress, the state-of-the-art solver can solve problems that consist of over ten

million clauses. Surprisingly, although a number of SAT solvers have been developed,

almost all SAT solvers originated from a procedure called DPLL (Davis-Putnam-

Logemann-Loveland)[34], which is an algorithm with backtracking proposed in 1962.
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Since then, many improvements have been made to the procedure. In the beginning,

some researches focus on how to choose a decision variable. For instance, Jeroslow and

Wang proposed a heuristic which roughly choose a literal appeared in a large number

of short clauses in current formulas [77]. In addition, several solvers with look-ahead

variable selection are proposed [49, 21, 91, 38, 67]. In the late 90’s, a clause learning

mechanism is first employed to a SAT solver GRASP, which analyzes a conflict of the

current truth assignment for literals [94]. Following that, the effective implementation

of SAT algorithms becomes a popular topic as well as the search strategies. Chaff

features two literal watching scheme and it outstands others [102]. Eén and Sörensson

polished it up and provided an extensible search procedure which becomes the basis

of many solvers of nowadays [42]. Those solvers described in the above, performs

systematic search, and can decide both the satisfiability and the unsatisfiability of

SAT problems. When a SAT problem is unsatisfiable, a complete solver terminates

once all possible truth assignments have been examined, proving that the problem is

unsatisfiable.

In the following section, we review conflict-driven clause learning (CDCL) solvers

following the DPLL procedure. We particularly focus on the clause learning mecha-

nism, which is employed in incremental SAT solving described in the next chapter.

2.2.1 DPLL Procedure

Before the explanation of DPLL, we give preliminaries. A propositional formula ψ is

given as a CNF formula over the set of variables V . Let x be a propositional variable

such that x ∈ V . Let σ be an assignment to the set V such that: σ : V → {T, F}.

Let ρ be a partial assignment for a formula ψ. Those assignments are also represented

in a set of pairs of variables and assignments such that (x, T ). We also introduce

two mappings related to literals. Let var a mapping such that var(x) = x and

var(¬x) = x. Let sign a mapping such that sign(x) = T and sign(¬x) = F .
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DPLL(CNF ψ, Partial Assignment ρ)

begin

1: (ψ, ρ) := UnitPropagation(ψ, ρ);

2: if ψ is empty then

3: output ρ;

4: return SAT;

5: if � ∈ ψ then return UNSAT;

6: Select an unassigned variable x by some heuristic;

7: if DPLL(ψ, ρ ∪ {(x, T )}) is SAT then return SAT;

8: return DPLL(ψ, ρ ∪ {(x, F )});

end

UnitPropagation(CNF ψ, Partial Assignment ρ )

begin

9: while � 6∈ ψ and some unit clause {l} exists in ψ do

10: ρ := ρ ∪ {(var(l), sign(l))};

11: ψ := ψ|ρ;

12: return (ψ, ρ);

end

Figure 2.1: DPLL Algorithm

We denote the simplified formula obtained by a partial assignment ρ as ψ|ρ. In

the simplified formula ψ|ρ, satisfied clauses by ρ are removed, and in the remaining

clauses, literals assigned to F by ρ are removed from ψ. Suppose that a CNF formula

ψ = (x1 ∨ x3 ∨ ¬x4) ∧ (x4) ∧ (x2 ∨ ¬x3) is given and a partial truth assignment ρ is a

set {(x4, T )}. Then ψ|ρ = (x1 ∨ x3) ∧ (x2 ∨ ¬x3).

The DPLL algorithm is shown in Figure 2.1. The algorithm DPLL takes a CNF-

formula ψ and a partial assignment as inputs. We explain this algorithm as follows.
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At Line 1, a procedure UnitPropagation(ψ, ρ) is invoked. The procedure simplifies

the input ψ with every unit clause {l} ∈ ψ (Line 9-12). Specifically, the partial

assignment ρ is extended to ρ ∪ {(var(l), sign(l))} by an unit clause {l} (Line 10).

Then, ψ is simplified to ψ|ρ (Line 11). In this simplification, a conflict is detected

whenever empty clause is detected. These assignment extension and simplification are

iterated until (i) no more propagation is possible or (ii) an empty clause is detected.

The end of the unit propagation, the simplified formula ψ and the extended assignment

ρ are returned to the DPLL procedure.

At Line 2, the result of UnitPropagation is checked: if ψ|ρ is empty, the assignment

ρ is outputted and SAT is returned. At Line 5, if ψ contains the empty clause then

UNSAT is returned. Otherwise, at Line 6, the DPLL selects a variable x by some

heuristic, such as the one by Jeroslow and Wang [77], and MOMS [49]. In the next,

if DPLL(ψ, ρ ∪ {(x, T )}) returns SAT, then SAT is returned (Line 7); otherwise, return

the result of DPLL(ψ, ρ ∪ {(x, F )}) at Line 8. Accordingly, the procedure returns

SAT whenever ψ is empty, or it returners UNSAT if it cannot find satisfiable assignment

after an exhaustive search by recursively invoking DPLL. Nowadays, almost all modern

SAT solvers are based on this procedure and Many improvements have been added

since it was born. In particular, a clause learning mechanism extends its ability to

be applicable to large SAT problems. In the next section, we explain those solvers

employ this mechanism.

2.2.2 CDCL Solvers and Techniques

In recent years, almost all DPLL-based SAT solvers implement a clause learning mech-

anism. Since this mechanism controls its entire procedure, we call such solvers conflict-

driven clause learning (CDCL) solvers. Before the explanation of the algorithm of

CDCL Solvers, we give some preliminaries. As we described in the previous section,

DPLL-based procedures including CDCL Solvers iterate UnitPropagation and the vari-
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able selection. During such a process, the value of each variable is assigned either

by two ways. We distinguish those variables as follows: (I) a variable assigned by

a variable selection process is called a decision variable; (II) a variable assigned by

UnitPropagation is called an implied variable. As same as the previous section, we use

ρ to represent current partial assignments. We call the number of decision variables

included in ρ the current decision level. Let level be a mapping such that level(x)

denotes the decision level where the value of the variable x is assigned.

The algorithm of the CDCL Solver is given in Figure 2.2. At Line 1, the decision

level Dlevel and the assignment ρ is initialized. Then the loop begin and the first

UnitPropagation runs and returns the simplified formula ψ and the updated assignment

ρ. The process then goes either of three ways according to the state of ψ (Line 4, 7 or

13): (a) the formula is satisfied; (b) the empty clause is detected i.e. a conflict occurs;

(c)otherwise. In the following, we explain each branch (a), (b) and (c). (a) If the

formula is empty then it outputs ρ and returns SAT (Line 5-6). This operation is same

as the DPLL procedure. The difference appears in how to treat the obtained conflict.

(b) If a conflict is detected at Line 7, then the current decision level is checked (Line

8). If the level is equal to 0 that means there is no assignment to satisfy the given

formula, then UNSAT is returned. Otherwise, a procedure ConflictAnalysis is invoked

to analyze the conflict. The procedure decide the backtrack level and generate a

learned clause that permanently avoids the same conflict (Line 9). Following that,

the formula ψ, the current assignment ρ, and the decision level are updated (Line

10-13). We give a detailed explanation of the procedure ConflictAnalysis in the next

section. (c) Otherwise, the situation must be that there is no empty clause and there

are remaining unsatisfied clauses. Then, the decision level is counted up and the

procedure updates the assignment ρ with an unassigned variable x and its value value

selected by some heuristic, which is typically the one called VSIDS first proposed

in the literature [102] (Line 15-17). Above operations are iterated until ψ becomes
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CDCL Solver(CNF ψ)

begin

1: Dlevel := 0; ρ := {};

2: while (TRUE) do

3: (ψ, ρ) := UnitPropagation(ψ, ρ);

4: if ψ is empty then

5: output ρ;

6: return SAT;

7: else if � ∈ ψ then

8: if Dlevel = 0 then return UNSAT;

9: (c,Blevel) := ConflictAnalysis(ψ, ρ);

10: Removed literals and clauses after Blebel in ψ are recovered;

11: ψ := ψ ∪ {c}

12: ρ := {(x, value) ∈ ρ | level(x) ≤ Blevel};

13: Dlevel := Blebel;

14: else

15: Dlevel := Dlevel + 1;

16: select an unassigned variable x and its value by some heuristic;

17: ρ := ρ ∪ {(x, value)};

end

Figure 2.2: Algorithm of CDCL Solvers

empty or a conflict is detected at the decision level zero. An important feature of

the algorithm is ConflictAnalysis. It dramatically enhances the performance of SAT

solvers. In the following section, we explain how it works.
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2.2.3 Clause Learning

Since the appearance of GRASP and Relsat [94, 11], clause learning is one of the most

essential techniques to accelerate SAT solving. In this section, we explain how CDCL

solvers generate learned clauses. In CDCL solvers, an implication graph is processed

implicitly during UnitPropagation. Let N be a set of nodes representing assignments

and decision levels for every assigned variable. For instance, a node representing a

variable x that is assigned to F at the decision level i is labeled as ¬x@i. Let A a set

of arcs representing the propagation occurred in the current UnitPropagation. Let G

be a directed graph such that G = (N,A). Let Dlevel be the current decision level.

The implication graph G is constructed as follows:

1. N is initialized as a set of nodes representing assignments to variables whose

decision levels lv such that lv < Dlevel.

2. add a node representing the assignment of the latest decision variable to N .

3. While there exists a clause C = (l1∨· · ·∨lk∨l)) satisfying that nodes of l1, . . . , lk

have already existed in N :

(a) add a node labeled l@Dlevel to N if it does not exist in N .

(b) add arcs {(li@j, l@Dlevel)|1 ≤ i ≤ k, j ≤ Dlevel, li@j ∈ N, }, if each of

them does not exists in A.

(c) if two nodes l@Dlevel and l@Dlevel simultaneously exist in N , i.e., a con-

flict is detected, then the construction of G is terminated and var(l) is

generated as a conflict variable.

If a conflict of x is detected during the construction of G, then it is called a conflict

graph and we call x and ¬x conflict literals. In CDCL solvers, an implication graph (or

a conflict graph) is constructed during the UnitPropagation. If a conflict is detected,

we then analyze the conflict graph and obtain a learned clause as follows. At first,
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the graph is split into two sub-graphs: reason side and conflict side. The reason side

includes all decision variables; the conflict side includes the conflict literals. Usually,

there are many ways to split the conflict graph. We here explain a de-fact standard.

Suppose that paths from the latest decision variable to the conflict variable. The

unique implication points (UIP) are the nodes which all such paths include. First UIP

is the UIP which is the closest to the conflict variable. In the literature [141], Zhang

et al. empirically proved that it is better to split the graph just after the first UIP.

Nowadays, first UIP is the accepted scheme for SAT solvers. The leaned clause is

constructed from the complement of each literal corresponding to nodes on the reason

side that have at least one edge going to the conflict side. In the following we explain

the learned clause generation with a specific example.

Example of Learned Clause Generation

We here explain a generation of learned clauses with the following 9 clauses.

c1 = {¬x1,¬x5, x8, x11} c6 = {x7,¬x8}

c2 = {¬x2,¬x3,¬x6} c7 = {x5, x7}

c3 = {¬x2, x4, x6, x10} c8 = {x7,¬x9}

c4 = {¬x3,¬x4} c9 = {x9,¬x11}

c5 = {¬x7,¬x10}

Suppose that x1, x2 and x3 are selected as decision variables, and each of them is

assigned to T . When x3 is assigned to T , then unit propagation makes x4 to F by

c4 and x6 to F by c2, and this propagation cause a conflict of the assignment of x11.

This sequence of assignments is shown as a conflict graph in Figure 2.3. We repeat

that each node represents each assignment to a variable with its decision level. Black

nodes represent variables assigned at earlier decision levels and white nodes represent

variables assigned in the current level. In this case, the conflict occurs at the decision
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Figure 2.3: Example of an Implication Graph

level 3. Then we need to split the implication graph into two sides: (i) one is the

conflict side which includes the conflict variable and does not include black nodes, (ii)

the other one is the reason side. In Figure 2.3, x7 is the first UIP. The learned clause is

generated based on the set of literals which have arcs from reason side to conflict side,

that is, {x1,¬x7} which represents the reason of the conflict. Finally, c = {¬x1, x7} is

generated as a learned clause. According to the decision levels of the literals included

in the learned clause, the value of x7 can be decided in the decision level one. In this

case, the procedure ConflictAnalysis returns one as the backtrack level and c as the

learned clause.

2.2.4 Other Important Techniques

Watched Literals

The procedure of UnitPropagation dominates large portion of the computational time

of SAT solvers. To accelerate UnitPropagation is a critical mission for all complete
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SAT solvers. The first thing to do in the procedure is to detect unit clauses. A naive

method is as follows. For each variables x, the method prepare a list that represents

a set of clauses including the variable x. When some value is assigned to x, the

method searches the list of x and detects the following status: (a) an unit clause, (b)

satisfied, (c) conflicted, and (d) others. This method is implemented in GRASP [94]

and Relsat [11]. In practice, we want to find only the status of (a) and (c); however,

almost all clauses are neither (a) nor (b). To resolve this problem, another method

called watched literals is introduced in Chaff [102]. Let c be a clause c = {l1, . . . , ln}. A

clause c is called active unless the clause is removed from the original formula, that is,

the clause is satisfied under the current assignment. The watched literal scheme tries

to keep two literals li, lj which are not yet assigned in each active clause. Note that

in the CDCL procedure, detected unit clauses and satisfied clauses are immediately

removed from a given formula; thus, the scheme can always have such two literals in

all active clauses. When one of the literals li is assigned to T , all clauses including li

is satisfied and removed from the formula; when one of the literals li is assigned to F ,

the scheme performs either two operations: (i) if there is some unassigned literal lk

then the watched two literals will be changed to lk and lj, (ii) if there is no unassigned

literal then the clause is detected as an unit clause. By this scheme, we only need to

search watched literals in active clauses to detect unit clauses and conflicts.

The benefits of this scheme are summarized as follows. First, when some value

is assigned to a variable x, we only need to search clauses watching x. It extremely

reduces the number of clauses compared with the naive method. Second, we need to

perform nothing when the procedure backtracks. This watched literal scheme becomes

an essential function of modern SAT solvers as well as clause learning.
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Restart Strategy

Since the SAT problem is NP-complete, SAT solvers need to implement several heuris-

tics and the behavior of solvers is difficult to expect. For instance, some problem can

easily be solved but it can sometimes be difficult even if we only replace names of

variables. This phenomenon that the behavior of SAT solvers surprisingly changed

with a little possibility is known as heavy-tailed behavior [59]. To make SAT solvers

behavior stable, Gomes et al. suggested it is effective to restart a process by a rel-

atively short span [60]. In CDCL solvers, the span is often decided by the number

of conflicts. At the restart, it backtracks to the decision level zero and restart search

with conflict clauses obtained so far. By keeping conflict clauses, it can avoid previous

fails. Besides, to ensure the completeness of the procedure, the span is getting longer

within the process. Since the appearance of Chaff, many SAT solvers employ frequent

restart strategies [109, 5]. A comparison of restart strategies are well summarized in

[72].

Variable Selection

When a CDCL solver cannot decide the satisfiability of a given problem after the

first UnitPropagation, it needs to pick a variable and assign some value to it. How

do we choose such variable? It is very difficult problem and it extremely affects the

performance of SAT solvers. There have been several heuristics are proposed, such

as maximum occurrence in clauses of minimum size (MOMS) [49], BOHM [21], and

variable state independent decaying sum (VSIDS) [102].

In particular, we here describe the heuristics called VSIDS [102], which is commonly

used in most of CDCL solver as follows: (a) the heuristic uses counters for each

literals l in a given formula and gives zero to it, (b) each counter is increased by every

generation of a learned clause including the literal l, (c) by every fixed span, the value

of every counter is divided by a constant. At the variable selection in a solver process,
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the heuristic performs either two operations: (i) pick up the literal with the highest

counter, or (ii) randomly pick up a literal with some probability. By (b) and (c),

the heuristic tends to choose a variable included in learned clauses that are recently

generated by conflicts. It accelerates local search around the conflict; consequently, it

helps to resolve the conflict. Since values of counters are not changed unless a conflict

is occurred, the VSIDS heuristic focuses to resolve a conflict compared with MOMS

and BOHM. Other feature of VSIDS is its less small computational cost because we

only need to increase each counter when a conflict is occurred.

2.3 Model Generation by SAT Solvers

So far, we briefly explain CDCL solvers. In this section, we first explain several model

generators in propositional logic. We then explain that SAT solvers are also used as

a propositional model generator. Besides model generation, there is a research topic

of model counting (or #SAT) based on DPLL, which is the problem of computing

only the number of models. It is also studied actively and applications to probabilistic

inference are reported in recent years [6, 139, 56] but we do not treat this topic here.

In 1986, Bryant proposed a Boolean function representation called the reduced

ordered binary decision diagrams (ROBDDs), which recently expands to several re-

search domains in computer science [23]. It is also utilized as a model generator

applied to model checking [24]. Following that, there are some attempts utilizing the

techniques of BDDs to solve SAT problems as well as model generation [114, 61]. Be-

sides, Hasegawa et al. propose a model generation procedure called MGTP [64, 63]. In

particular, MGTP computes minimal models, which are explained later. To compute

such models, it starts with an empty set as an initial model candidate. If the candidate

does not satisfy a given model, MGTP then extends the candidate. This procedure is

repeated until a model is found or unsatisfiability is confirmed.
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Model Generation (Ψ)

begin

1: Σ := ∅ ;

2: result := SAT

3: while (result != UNSAT)

4: (result, I) = Solve(Ψ) ;

5: if result = SAT then

6: Σ := Σ ∪ {I} ;

7: ψblock :=
∨

p∈I ¬p ∨
∨

q∈I q;

8: Ψ := Ψ ∧ ψblock;

9: return Σ;

end

Figure 2.4: Model Generation

In addition to approaches described above, since a model of a propositional formula

is given as its satisfiable assignment, almost all SAT solvers can be seen as a model

generator. Besides, there are some researches for all model enumeration by SAT

solvers [78, 101, 86, 95].

In the following, we explain model generation methods using SAT solvers. Let

V = {x1, x2, . . . , xi} be a set of propositional variables that are in a formula Ψ. As

we explained in the previous section, a model for a CNF formula Ψ is an assignment

σ where all clauses are satisfied. In addition to this mapping representation, models

can also be represented in the set of propositional variables to which it maps True.

Suppose that I is a model and I is its complement such that I = V \ I. Then, the

model mapping x1 to T , x2 to F , x3 to T is represented by the set I = {x1, x3}; its

complement is represented by the set I = {x2}. In the remainder of this chapter, we
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represent a model in this set notation.

Then, the model generation (enumeration) algorithm is then shown in Figure 2.4.

In the algorithm, Σ denotes a set of models. Line 1 and 2 are for initialization. Then,

the first model is obtained at Line 4 if a given formula Ψ is satisfiable, and the model

is added to Σ (Line 6). Following that, a block clause is constructed at Line 7 to

avoid to generate same models. Although we here show the simplest block clause,

refinements have been studied in [78, 101]. Following that, the block clause is added

to Ψ at Line 8. This procedure is iterated until UNSAT is returned by solve. Finally,

the set of models of Ψ is returned as Σ.

In some applications, we sometimes want more essential models in which we are

really interested instead of computing all models. For this purpose, a notion of minimal

is useful. We here show how to generate minimal models by a SAT solver. We start

the definition of minimal models and its preliminaries.

Definition 6 Let Vp ⊂ V be a set of propositional variables and Ψ a CNF formula.

A model I is a minimal model of Ψ with respect to Vp iff I is a model of Ψ and there

is no model I ′ of Ψ such that I ′ ∩ Vp ⊂ I ∩ Vp.

For instance, suppose that Ψ is a propositional formula (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧

(¬x2 ∨x3). Then, all models of Ψ are {x1}, {x2, x3}, {x1, x3} and the minimal models

of Ψ are {x1} and {x2, x3}.

Intuitively, minimal models are mutually excluded and these are more essential

than other models. Niemelä report a theorem which is the basis of the computational

treatment of minimal models [106]. Koshimura et al. extends one of his proposi-

tions [106], which gives a method to compute a minimal model with respect to a set

of propositional variables [86]. The theorem [86] is given as follows:

Theorem 1 Let Ψ be a CNF formula, I a model of Ψ, and Vp a set of propositional

variables. I is a minimal model of ψ with respect to Vp iff a formula Ψc = Ψ∧¬(x1 ∧

28



Minimal Model Generation (Ψ, Vp)

begin

1: Σ := ∅ ;

2: while (True)

3: (result, I) := Solve(Ψ) ;

4: if result = UNSAT then return Σ ;

5: else

6: Vx := I ∩ Vp ;

7: Vy := I ∩ Vp ;

8: Ψc := Ψ ∧
(∨

xi∈Vx
¬xi

)
∧
(∧

yj∈Vy
¬yj

)
;

9: (result, Ic) := Solve(Ψc) ;

10: if result = UNSAT then Σ := Σ ∪ {I} ;

11: Ψ := Ψ ∧
(∨

xi∈Vx
¬xi

)
;

end

Figure 2.5: Minimal Model Generation Procedure [86]

x2 ∧ . . . ∧ xi) ∧ ¬y1 ∧ ¬y2 ∧ . . . ∧ ¬yj is unsatisfiable, where I ∩ Vp = {x1, x2, . . . , xi},

I ∩ Vp = {y1, y2, . . . , yj}.

For instance, suppose that Ψ is the same one as the previous example, that is,

Ψ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ x3). Besides, suppose we want to detect

whether a model {x2, x3} is minimal or not. Then we try to check the satisfiability of

Ψc = Ψ ∧ (¬x2 ∨ ¬x3) ∧ ¬x1. The formula Ψc will be UNSAT, and thus it is detected

as a minimal model. In contrast to the minimal model {x2, x3}, the model {x1, x3} is

detected not to be a minimal model by this procedure.

Koshimura et al. also report a minimal model generator based on a SAT solver by

utilizing the above theorem (see Figure 2.5). The procedure receives a CNF formula Ψ

and a set of variables Vp as inputs. At Line 3 and 9, a function Solve corresponds to a
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SAT solver that generates whether a given formula is satisfiable (SAT) or unsatisfiable

(UNSAT) and a model I if the formula is satisfiable. In the iteration (Line 2-11), Solve

is invoked with Ψ at first. If the result is UNSAT then a set of models Σ is returned

(Line 4). Otherwise, Solve is invoked with Ψc to check whether the obtained model I

is a minimal model or not (Line 9). If it is minimal model then the model is added to

Σ (Line 10). Following that, the formula Ψ is updated with a block clause and resume

procedures from the top of the iteration. This is continued until all minimal models

are generated. Minimal model generation can be applied to real world problems and

it actually very useful. We show an instantiation of such an application in Chapter 5.
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Chapter 3

Incremental Satisfiability Solving

In this chapter, we study an approach to solve optimization and enumeration problems

by multiple execution of a SAT solver, which we call incremental SAT solving. We

give its general framework: it incrementally computes the satisfiability and models

of propositional formulas until a given goal condition is satisfied. We also show how

learned clauses are reused to accelerate incremental SAT solving.

3.1 Architecture of the Solving Method based on

SAT Technologies

In this thesis, our objective is roughly to solve a variety of problems by utilizing SAT

technologies. A natural architecture for this objective is shown in Figure 3.1. In the

figure, the original problem is first encoded into a propositional formula. The formula

is then passed to a SAT solver. As we mentioned in the preceding chapter, almost

all SAT solvers can generate a model when a given formula is satisfiable. They thus

can be used as a model generator. If the formula is satisfiable, then a model is (or

models are) generated and we obtain a solution (or solutions) of the original problem

by decoding; otherwise, no solution is returned. This architecture has an advantage
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Figure 3.1: Solving Method based on SAT Technologies

that its core procedure is replaceable. It always allows us to employ the state-of-the-

art SAT solvers. Moreover, we can follow its progress without modification of other

parts of the architecture.

In this architecture, there are two technical issues should be considered. The

first one is encoding from the original problem into a propositional formula. Many

propositional encoding methods have been studied [136, 76, 55, 52, 127, 129, 130] and

are available for various kinds of constraints. However, applications of the architecture

are still limited only with these encoding methods. Thus, the second issue is to extend

the architecture to break this limitation. In the following, we focus on a method that

incrementally executes a SAT solver, which enables SAT technologies to be applied to

a more wide range of problems such as optimization and enumeration problems.
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Figure 3.2: Incremental SAT Solving

3.2 Incremental Satisfiability Solving

In this section, we give the explanation of the incremental satisfiability solving (in-

cremental SAT solving), which incrementally computes the satisfiability and models

of propositional formulas until a given goal condition is satisfied. We can capture the

incremental SAT solving is an extension of the solving method based on SAT tech-

nologies shown in Figure 3.1, which encodes the original problem into a propositional

formula. We incrementally use that method to compute the solution of a given original

problem. We show the architecture of incremental SAT solving in Figure 3.2. The

flow of the incremental SAT solving is as follows: (I) at first, the method receives

an initial formula Ψinit encoded from a bounded original problem and substitutes the

initial formula into the current formula Ψ. (II) then, the method computes the satis-
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fiability and models of Ψ by a model generator; precisely, it depends on the original

problem whether we need to obtain both satisfiability and a model (or models), or

not. (III) we then checks whether our goal condition, which is typically the current

formula is SAT (or UNSAT), is satisfied or not. (IV) if it is satisfied then the method

generates outputs, otherwise the current formula is converted by an update procedure.

The update procedure constructs an updated formula from the current formula Ψ by

adding a set of clauses ψ+ and removing a set of clauses ψ−. That is, the current

formula Ψ is updated to Ψ∪ψ+ \ψ−. The procedure from (II) to (IV) is incrementally

continued until the goal condition is satisfied. Note that, in the process (II), we do

not keep all computed models in most cases. Typically, we only need the model of the

current formula when the goal condition is satisfied. In the case of solving optimiza-

tion problems, computing the satisfiability is enough to compute the optimal value.

If we also need optimal solution then its model is used for decoding.

The architecture shown here is so general that it can solve a wide range of problems.

Note that, since there is no limitation for the update procedure, we could have no

intersection between the current formula and its updated one. However, considering

applications, it is natural to assume that Ψ ∩ Ψ′ 6= ∅ holds and there is not so large

changes, where Ψ and Ψ′ are the current formula and its updated one. In addition,

the update procedure is interchangeable with a manual procedure such as human

operations. This is useful property when we embed the incremental SAT solving

method into human interaction system e.g. graphical user interface. From the next

section, we explain more detail of incremental SAT solving. In particular, we focus

on the following three features to characterize several approaches of incremental SAT

solving: (1) the initial formula, (2) the update procedure and (3) the goal condition.
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3.3 Stepwise Approach to Optimization Problems

In this section, we first explain the stepwise approach of incremental SAT solving: it

constructs a sub-problem by bounding the original problem and incrementally solve

sub-problems with increasing its bound until a solution is found. We characterize this

approach as follows:

(A1) Initial Formula. A propositional formula encoded from a problem bounded

by the initial bound i.

(A2) Update Procedure. Convert the current formula to the formula that corre-

sponds to the problem bounded by i+ 1.

(A3) Goal Condition. The current formula is SAT.

As we reviewed in Section 1.1.3, several methods using SAT technologies to solve

planning, bounded model checking and job-shop scheduling problems have been pro-

posed [81, 19, 32, 43, 125, 74]. In the following, we show how the approaches for

planning [81], bounded model checking [19], and scheduling problem [125, 74] are

represented in this stepwise approach of incremental SAT solving.

Planning problem [81]. Kautz and Selman proposed a method that solves the

classical planning problem by encoding it into SAT problems [81]. Following their

studies, there are several researches studying this subject [82, 74, 104].

By using the plan length as the bound, the incremental SAT solving for this prob-

lem is considered as the following: (A1) the initial formula corresponds to the original

planning problem bounded by the initial bound i. That is, this formula corresponds

to the problem of deciding whether there is a plan of the length i or not. (A2) the

update procedure converts the current formula to the next formula corresponding to

the problem bounded by the incremented plan length i + 1. (A3) the goal condition

is that the current problem is SAT. When the goal condition is firstly satisfied, there
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must be a satisfiable formula whose model represents the shortest plan of the original

problem.

Suppose that there is a planning problem that has the shortest plan length 4.

One way to solve this problem is as follows. We construct an initial formula Ψ1

corresponding to the planning problem bounded by the plan length 1. The satisfiability

of Ψ1 is then computed and we suppose that UNSAT is returned. Then, the update

procedure converts Ψ1 to Ψ2. This process is repeated such as Ψ1, Ψ2, Ψ3, . . ., and

suppose that Ψ4 is firstly decided as SAT. Then, the plan length 4 is found as the

shortest plan of this planning problem and we can obtain the actual plan of this

length by decoding the obtained model of Ψ4.

Job-shop Scheduling Problem [32, 74]. Crawford and Baker proposed a method

for the decision version of the job-shop scheduling problems that is a problem of de-

ciding whether all jobs can be done by a given makespan or not [32]. They encode

this decision problem into a SAT problem. However, they did not consider the opti-

mization version of the job-shop scheduling problem that is an optimization problem

of computing the optimal makespan. Inoue et al. studied their approach and show

how the optimal value is computed by finding the boundary of the satisfiability [74].

By using the makespan as the bound, the incremental SAT solving for this problem

is represented as follows: (A1) the initial formula corresponds to the original job-

shop scheduling problem bounded by the initial makespan i, which is typically its

lowest bound. That is, this formula corresponds to the problem of deciding whether

there is an ordering of operations that can complete all jobs by the makespan i.

(A2) the update procedure converts the current formula to the next current formula

corresponding to the problem bounded by the incremented makespan i + 1. In other

words, the updated procedure converts the current problem to the next one of an

incremented makespan. (A3) the goal condition is that the current problem is SAT.
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When the goal condition is firstly satisfied, there must be a satisfiable formula whose

model represents an ordering that can complete all jobs in the shortest makespan.

There are several approaches solving this problem by the bisection method [125,

74, 104]. We will explain this bisection method in a later section.

Bounded Model Checking [19]. Biere et al. proposed a method for verifying

reactive systems and they particular focus on symbolic model checking [19]. They

represent the original problem in linear temporal logic (LTL) and encode LTL into

propositional formulas. Their basic ideas is to consider a path of a finite length k and

identify a counter example. They call this method as bounded model checking (BMC).

In BMC, they bound the original model chocking problem by path length k.

The incremental SAT solving for this problem is represented as follows: (A1) the

initial formula corresponds to the original model checking problem bounded by the

initial length k. That is, this formula corresponds to the problem of deciding whether

there is a counter example of length k or not. (A2) the update procedure converts the

current formula to the next current formula corresponding to the problem bounded by

the incremented path length k+1. In other words, the updated procedure converts the

current problem to the next one that has a counter example of an incremented length.

(A3) the goal condition is that the current problem is SAT. When the goal condition is

firstly satisfied, there must be a satisfiable formula whose model represents the shortest

counter example of the original problem. In addition to the research in [19], Eén and

Sörensson proposed to apply the incremental SAT solving to temporal induction [43]

and they also reported how to utilize learned clauses.

In the above, we show that how incremental SAT solving is applied to problems

such as planning, job-shop scheduling problem and bounded model checking. Among

them, the job-shop scheduling problem is a typical optimization problem. It means

that we can apply incremental SAT solving to optimization problems.
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Figure 3.3: Computation Time around the Optimal Value on 2SPP

Optimization problems are a very important research subject in Operations Re-

search, Constraint Programming and Artificial Intelligence. Tremendous numbers of

research have been done for this subject. There are well known problems, such as

the job-shop scheduling problem, the traveling salesman problem, the strip packing

problem and the knapsack problem, just to name a few. In the following, we explain

three ways to solve optimization problems by incremental SAT solving. One way is

approaching the optimal value from the lowest bound, which is a standard way to

reach the optimal value and same as the stepwise approach of the incremental SAT

solving described above. Thus, in solving this problem, we start to solve Ψlb and

continue to solve Ψlb,Ψlb+1, . . . until some Ψi is firstly decided to SAT. Simultaneously,

the bound i is proved as the optimal value.

As we have seen, we can bound an optimization problem and divide it into multiple

sub-problems such that each of them has each fixed bound. For instance, suppose that
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an optimization problem that has 4 as a lowest bound and 12 as an upper bound. In

this case, we first bound the original optimization problem into a problem bounded

by 4. Obviously, an encoded formula from this problem is SAT if the bounded problem

has a solution and UNSAT otherwise. Suppose that, we obtained the satisfiability of

bounded problems as follows: UNSAT at 4, UNSAT at 5, SAT at 6, SAT at 7 and so

on. Then, the optimal value of the original problem is proved as 6. That is, the

optimal value exists at the bound between UNSAT and SAT. As a practical example of

the computation of incremental SAT solving, Figure 3.3 shows an experimental result

for an optimization problem instance of the two-dimensional strip packing problem

(2SPP), which we will detail in Chapter 4. The graph shows computation time for

each height that is the value to be optimized, and the height of 50 is the optimal value

for this instance. In these experiments, we invoke a SAT solver from scratch for each

instance.

As we can read from the figure, almost all problems of larger height than the

optimal value, which are SAT problems, are easier. In contrast to SAT ones, problems of

lower height than the optimal value, which are UNSAT problems, become difficult as the

value is getting close to the optimal value. An interesting point is that computational

time of the problem of the height of 49 and 50 are dramatically different. The one

reason of the difference is that we need to search larger space to prove unsatisfiability

of the height of 49 because this problem is almost satisfiable.

Though there is slightly a difference, many optimization problems basically fol-

low this property: bounded problems closed to optimal value, especially unsatisfiable

problems, are difficult to solve. Thus, the stepwise approach described in the above

is not always appropriate to reach the optimal value because it needs to solve a num-

ber of unsatisfiable problems. We thus explain two more approaches for optimization

problems in addition to the stepwise approach of incremental SAT solving.

One is approaching the optimal value from the highest bound, which is called the
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decremental approach. This is the reverse way of the stepwise approach of incremental

SAT solving. There is an optimization problem that has a bound value i whose

highest bound is ub. Then, the decremental approach of incremental SAT solving is

constructed as follows:

(B1) Initial Formula. A propositional formula Ψi=ub encoded from an optimization

problem bounded by the bound ub.

(B2) Update Procedure. Convert the current formula to the formula that corre-

sponds to the problem bounded by the bound i− 1.

(B3) Goal Condition. The current formula is UNSAT.

In solving this problem, we start to solve Ψub and continue to solve Ψub,Ψub−1, . . .

until the satisfiability of Ψi is decided to UNSAT. If the satisfiability of Ψi is UNSAT,

then the value i+ 1 is proved as the optimal value.

The third way is approaching to the optimal value by the bisection method. If

the lower bound lb and the upper bound ub are known in advance, we can use the

bisection method. It reaches the optimal value to iteratively reduce the possible value

region by half. In other words, it chooses a half value of the range between a current

lower bound and a current upper bound. The purpose of the bisection method is to

approach the bound of SAT and UNSAT as fast as possible. The update procedure takes

the satisfiability of Ψi as an input, and then it proceeds the following calculation:

(lb, ub) =


(lb, i) Ψi is SAT

(i+ 1, ub) Ψi is UNSAT

In the next, the region is split using updated bounds as i′ = b(lb + ub)/2c and the

updated Ψi′ is returned. The goal condition is given as that the current lower bound

lb and upper bound ub do not satisfy lb < ub.
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Bisection method (Initial Formula Ψ, Lower Bound lb, Upper Bound ub)

begin

1: while lb < ub

2: o := b(lb+ ub)/2c;

3: Ψ := Ψ ∪ ψo;

4: (result, ψ) := solve (Ψ);

5: if result is SAT then ub := o;

6: else lb := o+ 1;

7: Ψ := Ψ \ ψo;

8: return ub;

end

Figure 3.4: Bisection Method

(C1) Initial Formula. A propositional formula Ψi encoded from a problem bounded

by a bound i such that i = b(lb+ ub)/2c.

(C2) Update Procedure. Convert the current formula Ψi to the formula Ψi′ that

corresponds to the problem of the value i′.

(C3) Goal Condition. The current bounds do not satisfy lb < ub.

An algorithmic representation of this procedure is shown in Figure3.4. The algo-

rithm consists of an iterative procedure. The iteration will continue until the bound

between SAT and UNSAT is found, which is shown as lb < ub in the algorithm (Line

1). In the iteration, it splits the range by half and o will be the half value of the

current range (Line 2). It then invokes a function solve, which corresponds to a model

generator, with a CNF formula Ψ ∪ ψo representing a problem with the value o (Line

3 and 4). The function solve then returns the result of satisfiability of the given CNF

formula. Then, the result is checked. If it is SAT, then the upper bound of the range is
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updated to o. Otherwise, the lower bound is updated to o+ 1. Finally, the algorithm

returns the latest upper bound as the optimal value. Note that the latest upper bound

after the iteration indicates the lowest value that is satisfiable.

This bisection approach of the incremental SAT solving is studied and applied to

the job-shop scheduling problem in [125, 74, 104]. For instance, suppose that there

is a job-shop scheduling problem whose upper and lower bounds are respectively set

to 48 and 393. By the bisection approach, the bounded makespan is changed as: 48

(UNSAT), 393 (SAT), 221 (SAT), 134 (UNSAT), 178 (SAT), 157 (SAT), . . ., and the range

of the optimal makespan is getting small (see Figure 3.5).

3.4 Stepwise Enumeration

Slightly different to these problems in the previous section, we sometimes want to

have more or all solutions rather than single solution. In particular, there are several

applications of enumeration of all solutions [99, 78]. Since the core procedure of incre-

mental SAT solving is a model generator as is shown in Figure 3.2, we can enumerate
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all solutions in each bounded problem. This stepwise enumeration exploits interesting

problem domains such as biological problems. In such problems, it is sometimes not

adequate to generate single solution on the smallest bound and we want to continue

to enumerate solutions until a solution in which we are interested is found. We call

this solution as a preferred solution. Besides, we call the model decoded to a preferred

solution as the preferred model. In this case, the goal condition is that the preferred

solution is found instead of just obtaining SAT (or UNSAT). This stepwise enumeration

of the incremental SAT solving is constructed as follows:

(D1) Initial Formula. A propositional formula encoded from a problem bounded

by the initial bound i.

(D2) Update Procedure. Convert the current formula to the formula that corre-

sponds to the problem bounded by i+ 1.

(D3) Goal Condition. The preferred model is found in computed models.

We will show the specific application of this stepwise enumeration in Chapter 5.

3.5 Reusing Learned Clauses

In this section, we show how to utilize learned clauses to accelerate the incremental

SAT solving. As we described in Section 2.2.2, CDCL-solvers can avoid a same conflict

in its search by learned clauses. Since there is at most the difference of a few clauses

between the current formula and its updated formula in most cases, if it is possible

to reuse learned clauses to the next search, we can avoid redundant conflict occurred

while computing previous formulas. In the following, we explain a condition of learned

clause reusability that is formally confirmed by Nabeshima et al. [104].

We follow their explanation using Figure 3.6. The figure shows any conflict graph

constructing a conflict between literals l and l. Let ψ be a CNF formula and c be the
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learned clause generated from this conflict graph. In the figure, l1, . . . , lm represent

literals such that c = l1 ∨ · · · ∨ lm. The white node denotes a literal l1 implied in

the current decision level and it is also an UIP. The Black nodes denote literals that

are implied earlier than the white node in all decision levels. The white box contains

nodes assigned after l1. Let D1, . . . Dn be the set of clauses used for constructing

this conflict graph. In the following, we introduce three mappings S, T, U such that

Di =
∨

la∈S(Di)
la ∨

∨
lb∈T (Di)

lb ∨U(Di) . Specifically, those are defined as follows. Let

S be a mapping such that S(Di) representing a set of literals in the clause Di, each of

which is either the UIP literal l1 or a literal implied after l1. That is, for lj ∈ S(Di), lj

must be an elements of the conflict graph and these are included in the white box or

the complement of the UIP literal. Obviously, S(Di) 6= ∅ holds. Let T be a mapping

such that T (Di) representing a set of literals in the clause Di that are implied earlier

than l1. That is, T (Di) is a set of literals assigned to False before this conflict graph

is made and every clause in T (Di) is a black node in the above conflict graph. Let U
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be a mapping such that U(Di) represents the literal that is lastly assigned in a clause

Di. That is, lj = U(Di) must be an elements of the conflict graph and it is included

either in the white box or the conflict literals. We then have the following properties.

Proposition 1 (Nabeshima et al. [104]). Let D1, . . . , Dn be clauses constructing the

above conflict graph. Then, the length of any clauses Di is two or more.

Proof. Since U(Di) = lj, S(Di) 6= ∅ and lj 6∈ S(Di), each clause Di has at least two

literals. �

Theorem 2 (Nabeshima et al. [104]). Let Ψ be a CNF formula and c be any learned

clause generated while solving Ψ. Then c is a logical consequence of a set of some

non-unit clauses in Ψ.

Proof. Let D1, . . . , Dn be clauses in Ψ constructing the conflict graph shown in Figure

3.6, which causes a conflict l ∧ l and generates a learned clause c = l1 ∨ · · · ∨ lm. We

show that any model of D1 ∧ · · · ∧Dn satisfies c, that is D1 ∧ · · · ∧Dn |= c, through a

proof by contradiction. We assume that there exists a model I of D1 ∧ · · · ∧Dn that

does not satisfy c = l1 ∨ · · · ∨ lm. That is, every literal li (1 ≤ i ≤ m) is assigned

to False by I. Thus, I satisfies l1 ∧ · · · ∧ lm. However, if l1 ∧ · · · ∧ lm is true, then

it immediately causes the conflict l ∧ l by the conflict graph. Thus, I cannot be a

model of D1 ∧ · · · ∧Dn and it contradicts the assumption. Hence, D1 ∧ · · · ∧Dn |= c

holds. Therefore, since the length of each clause of D1, . . . , Dn is more than two by

Proposition 1, c is a logical consequence of a set of non-unit clauses {D1, . . . , Dn}

included in Ψ. �

Finally, we obtain the reusability condition by Nabeshima et al. as follows.

Proposition 2 (Reusability Condition by Nabeshima et al. [104]). Let Ψ and Ψ′ be

CNF formulas. Then, any leaned clauses generated while solving Ψ are reusable for

solving Ψ′ if the following condition holds: Ψ′ includes all non-unit clauses of Ψ.
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Proof. It can be proved from Theorem 2.

By this condition, we can reuse any learned clauses generated while solving Ψ to

solve Ψ′. Thus, we can avoid to re-search meaningless search space that is confirmed

while solving Ψ. Eén and Sörensson also mentioned the above condition and proposed

an interface of a SAT solver that only allows removals of unit clauses [42]. In their

implementation, those unit clauses are added during particular single solving, and then

automatically removed from the solver instance. By this restriction of the removal,

they indicated that all learned clauses are not needed to remove whenever some clauses

are removed from formulas. This feature is implemented in a SAT solver Minisat [42].

3.6 Related Work

In the research domain of the constraint satisfaction problem (CSP), there are several

researches that study a problem of solving a sequence of CSPs [37, 50, 100, 88, 46].

This kind of problem is referred to as dynamic constraint satisfaction problem (DCSP),

whose notion is first introduced by Dechtor and Dechtor [37]. They consider a sequence

of constraint networks that each one constructed from a change in the preceding one.

They showed that such changes between two networks are represented in addition or

removal of constraints and variables. Following that, Freeman-benson proposed the

DeltaBlue algorithm that can handle the removal and the addition of constraints [50].

Their algorithm uses the current solution as a guide to finding the next one rather than

starting from scratch. Mittal and Falkenhainer proposed a variant of DCSP [100]. In

their definition, the changes between two CSPs are given by the appearance of optional

variables. Besides, those optional variables are controlled by activity constraints that

are a function of the current assignment. Other variant of DCSP called open constraint

satisfaction problem is proposed in [88, 46]. In their definition, the changes of values

in variable domains as well as constraints are allowed.
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In addition to the above, there are more variants of DCSP. These are well summa-

rized in the literature [135]. In contrast to those researches, we focus on the solving

method rather than formalization of problems to apply SAT technologies to opti-

mization and enumeration problems. Although our attention is on limited domain

compared with DCSP, the motivation to apply the state-of-the-art SAT techniques to

a more wide range of problems is important.

Hooker proposed a notion of incremental satisfiability (incremental SAT) prob-

lem [70] as follows: given that a set Ψ of propositional clauses that is satisfiable, check

whether Ψ∪{c} is satisfiable for a given clause c. He proposed a variant of the DPLL

procedure that is adapted to incrementally solve multiple problems [70]. Bennaceur

et al. slightly generalized Hooker’s definition to allow to add a set of clauses [18]

and proposed an incremental branch-and-bound method, which includes Lagrangean

relaxations, meta-heuristics, and judicious jumping back [18]. In contrast to those

researches, the update procedure of the incremental SAT solving allows both addition

and removal of clauses. Besides, we consider that the next formula is not given until

the computation for the current formula ends.

Whittemore et al. reported a solver called SATIRE that is intended to solve the

sequence of CNF formulas [140]. In addition to CNF formulas, it can treat pseudo-

Boolean constraints. The solver SATIRE is based on CDCL SAT solvers. Their idea

is also to reuse learned clauses generated while solving previous problems. Although

they allow removal of any clauses, they need to record clauses that are responsible

for each learned clause. In our case, we can reuse any learned clauses without any

concern by Proposition 2.
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3.7 Summary

SAT technologies have been applied to several kinds of problems such as bounded

model checking, planning and scheduling [19, 81, 32, 125, 74], which are shown in

this chapter. These methods convert their original problems into SAT problems and

compute the satisfiability of each problem to solve the original problems. In this

chapter, we review their approaches and show how those approaches are represented

in incremental SAT solving and how it is applied to optimization and enumeration

problems. In addition, we show a condition of the reusability of learned clauses, which

is shown in [104], to effectively solve problems. In the following two sections, we apply

the incremental SAT solving to two problems. One is an optimization problem called

two-dimensional strip packing problem. In solving this problem, we also show the

effectiveness of reusing learned clauses. The other one is an enumeration problem

called minimal active pathway finding problem. We propose this problem to analyze

metabolic pathways in Systems Biology and show how incremental SAT solving is

applied to this problem.
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Chapter 4

Two-dimensional Strip Packing

Problem

In this chapter, we give a specific application of SAT technologies. We apply incre-

mental SAT solving to the two-dimensional strip packing problem (2SPP), which has

been studied in Operations Research. We give a propositional encoding of the problem

and compare our method with state-of-the-art ad-hoc methods of 2SPP.

4.1 Introduction

Packing problems have many practical applications such as truck loading, LSI layouts

and assignments of newspaper articles [41, 68, 113]. There has been a great deal of

research on these problems, for instance, knapsack problems and bin packing prob-

lems. In this chapter, we consider a SAT-based exact method for the two-dimensional

strip packing problem (2SPP) [10, 93]. This problem is NP-hard in the strong sense,

because the one-dimensional bin packing problem, which is strongly NP-hard, can be

transformed into a 2SPP [51].

The input of the 2SPP is a set R = {r1, . . . , rn} of n rectangles. Each rectangle
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has width wi and height hi. We are also given a large rectangle, called a strip, of

width W . The goal is to pack all rectangles without overlapping into the strip by

minimizing the height H of the strip. Although rectangles are allowed to be rotated

90 degrees in several real-world applications, we assume that the rectangles cannot be

rotated according to the convention of previous research [97, 3, 138, 4]. Furthermore,

we assume that only integer values are allowed for wi, hi,W , and H.

The 2SPP has been extensively studied in the last decade. There are two main

ways to solve it: incomplete and exact. Many studies have focused on incomplete

methods [3, 138, 25, 105]. Recently in 2008, Alvarez-Valdes et al. [3] applied the

GRASP algorithm [31] to the 2SPP; the GRASP algorithm is an iterative procedure

combining a constructive phase and an improvement phase. Their method can pack

over thousand rectangles while keeping the quality of the solutions. However, in-

complete methods cannot prove the optimality of the solution, i.e., it cannot decide

whether the computed height is minimum or not. Incomplete methods can confirm

that a solution is optimal only when the solution corresponds to the lower bound of the

problem. On the other hand, the exact method can compute the optimal solution of

the problem. In 2003, Martello et al. [97] proposed a branch and bound algorithm and

reported good lower bounds produced from a relaxation of the problem. They applied

these bounds in their exact procedure and obtained results on 38 instances. In 2008,

Alvarez-Valdes et al. proposed hybrid method contains both a branch and bound

method and an incomplete method [4]. Their hybrid method tries to narrow down

the range of optimal heights with the incomplete method, and if the last solution does

not correspond to the lower bound, the hybrid method executes a branch and bound

method. Although both complete and incomplete methods have been well studied, it

is still difficult to compute the optimal height even for small problems consisting of

less than 200 rectangles.

To solve such hard problems, we propose a SAT-based method. As far as the
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authors are aware, this is the first article about solving the 2SPP with a SAT solver.

One advantage of our method is that it can utilize several SAT techniques which have

been actively studied in recent years [58]. Most of SAT solvers are based on the

Davis–Putnam–Logemann–Loveland (DPLL) algorithm [34] and use heuristics such

as backjumping, variable selection, restart, and clause learning [94, 102, 72]. For

instance, using clause learning, SAT solvers generate learned clauses when a conflict

occurs, and it avoids the same conflict later in the search. These techniques make

SAT solvers applicable to huge SAT problems consisting of over millions of clauses.

In order to solve the 2SPP with a SAT solver, we represent the problem as a

constraint satisfaction problem (CSP) and solve the CSP through a SAT encoding

called order encoding [127]. This encoding is a generalization of the one used to encode

the job-shop scheduling problems by Crawford and Baker [32]. In order encoding, a

comparison x ≤ a is encoded into a Boolean variable. For the 2SPP, it enables more

compact encoding compared with other encodings such as direct encoding. Still, the

translated SAT problems quantitatively grow with the number of input rectangles.

Therefore, we propose five techniques to reduce the search space. Two of them break

symmetries and others utilize relations between rectangles to solve the 2SPP more

efficiently. To compute the optimal solution, we apply incremental SAT solving to the

2SPP. We thus reuse the learned clauses generated from the previously solved problem.

We also reuse assumptions that restrict the height of the 2SPP. For evaluation, we

made three comparisons for 38 instances from the literature [97]. First, we made

a comparison with the state-of-the-art CSP solver. Second, we made a comparison

between our own reduction and reuse techniques. Third, we made a comparison with

the branch and bound method proposed by Alvarez-Valdes [4] and other method by

Kenmochi et al. [83].

This chapter is based on the literature by Soh et al. [126], and contains new mate-

rials including wider comparison with other methods and extensive discussion on SAT
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encoding methods. The remainder of the chapter is organized as follows. Section 4.2

provides preliminaries on the 2SPP and related concepts. Section 4.3 describes how to

encode a decision-version of the 2SPP into SAT. Section 4.4 explains how to compute

the optimal height of a 2SPP and several techniques to solve problems more efficiently.

Section 4.5 shows computational results. Section 4.6 discusses the effectiveness of our

method and Section 4.7 introduces related work. Section 4.8 concludes this chapter.

4.2 Preliminaries

In this section, we give preliminaries to present a SAT-based approach to solving the

2SPP. In the following, N denotes the set of natural numbers and Z denotes the set

of integers.

4.2.1 2SPP and 2OPP

We consider a SAT-based approach to solving the two-dimensional strip packing prob-

lem (2SPP). Although we want to obtain the optimal height of the 2SPP, SAT solvers

can only determine the satisfiability of a given problem. We thus bound the 2SPP

and obtain two-dimensional orthogonal packing problems (2OPPs), which is a decision-

version of the 2SPP. The difference between the 2SPP and the 2OPP is that a strip

height is given in advance in the 2OPP. We describe the detail of how to give such a

fixed height in Section 4.4.1. We here define the 2SPP and the 2OPP as follows [10].

Definition 7 Two-dimensional strip packing problem (2SPP)

Input. A set R = {r1, . . . , rn} of n rectangles, where each rectangle ri ∈ R has width

wi and height hi (wi, hi ∈ N), and a strip of width W ∈ N.

Constraint. Each rectangle cannot overlap with the others and the edges of the strip,

and the rectangles are parallel to the horizontal and vertical axes.
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Question. What is the minimum height such that the set of rectangles can be packed

in the given strip?

Definition 8 Two-dimensional orthogonal packing problem (2OPP)

Input. A set R = {r1, . . . , rn} of n rectangles, where each rectangle ri ∈ R has width

wi and height hi (wi, hi ∈ N), and a strip of width W and height H (W,H ∈ N).

Constraint. Each rectangle cannot overlap with the others and the edges of the strip,

and the rectangles are parallel to the horizontal and vertical axes.

Question. Can the set of rectangles be packed in the given strip?

We represent the 2OPP as a constraint satisfaction problem (CSP). A CSP is a

triple 〈V,D,C〉, where V is a finite subset of integer variables and D is a function that

maps every variable in V to a subset of Z. We use D(x) as the subset of Z mapped

from x ∈ V and call the set D(x) the domain of x. C is a finite set of constraints over

a set of variables in V .

A CSP formulation of the 2OPP is as follows. Let xi and yi be integer variables

such that the pair (xi, yi) of variables represents the position of lower left coordinates

of the rectangle ri in the strip (see Figure 4.1). The domains of xi and yi are as follows.

D(xi) = {a ∈ N | 0 ≤ a ≤W − wi}

D(yi) = {a ∈ N | 0 ≤ a ≤ H − hi}
(4.1)

These domains represent possible values of the coordinates of the rectangle ri and

guarantee that ri must not overlap the edges of the strip. For each pair of rectangles

ri and rj (1 ≤ i < j ≤ n), we associate the following non-overlapping constraint,

which is introduced in the literature [96].

(xi + wi ≤ xj) ∨ (xj + wj ≤ xi) ∨ (yi + hi ≤ yj) ∨ (yj + hj ≤ yi) (4.2)
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4.2.2 Order Encoding

There have been several studies on translations to encode CSPs into SAT problems.

One is the direct encoding reported by Walsh [136]. In this encoding, if the CSP vari-

able x is assigned to an integer constant c then the Boolean variable p(x, i) must be

true. Since this translation is natural and simple, direct encoding is widely used. Be-

sides the direct encoding, there are many other studies such as support encoding [55],

log encoding, log support encoding [52] and comparisons of those encodings in solving

graph coloring problems [112].

There have also been many studies on translation methods that encode inequalities

into SAT. Warners [137] reported a translation method for encoding inequalities into

SAT and conducted experiments on the frequency assignment problem. In particular,

that method was more efficient than the previous method using CPLEX. Bailleux

and Boufkhad [7] and Sinz [124] reported a translation from cardinality constraints

into SAT problems. Bailleux and Boufkhad [8] also showed an encoding from counting

constraints into SAT problems. Eén and Sörensson [44] and Bailleux et al. [9] reported

a translation from pseudo-Boolean into SAT.

Among them, order encoding by Tamura et al. [127] is a generalization of the one

used to encode job-shop scheduling problems by Crawford and Baker [32]. It encodes

a comparison x ≤ a by using a different Boolean variable for each integer variable

x and integer value a. While direct encoding [136] represents constraints as points,

order encoding can represent them as a single region. We discuss the differences

between those methods in Section 4.6. Order encoding aims to make a more natural

explanation of the order relation of integers.

There are two encoding steps in the order encoding. Let x be an integer variable,

xi’s integer variables, ai’s non-zero integers, c, d integers and `, u mappings respec-

tively to the lower and the upper bound. A primitive comparison is in the form of

x ≤ d. Let us consider the encoding for a constraint
∑n

i=1 aixi ≤ c which has n integer
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variables. In the first step, the constraint is translated into primitive comparisons as

follows:

∧
bi

∨
i

(aixi ≤ bi)
# (4.3)

where the parameters bi’s satisfy
∑n

i=1 bi = c − n + 1 and `(aixi) − 1 ≤ bi ≤ u(aixi).

The translation ()# is defined as follows.

(ax ≤ b)# ≡


x ≤ b b

a
c (a > 0)

¬(x ≤ d b
a
e − 1) (a < 0)

(4.4)

In the second step, we translate the obtained primitive comparisons xi ≤ c into

new Boolean variables p(xi, c); that is, xi ≤ c is satisfied if and only if p(xi, c) is true.

We also need to introduce the following axiom clauses A(x) for each integer variable

x in order to represent the bound and the order relation.

A(x) = {{¬p(x, `(x) − 1)}, {p(x, u(x))}} ∪ {{¬p(x, c− 1), p(x, c)} | `(x) ≤ c ≤ u(x)}

(4.5)

Although {¬p(x, `(x) − 1)} is always false and {p(x, u(x))} is always true, we use a

wider range here for ease of explanation.

Example. We illustrate order encoding with a simple constraint x1+1 ≤ x2 (x1, x2 ∈

{0, 1, 2, 3}), which indicates a non-overlapping constraint between rectangles r1 and r2

shown in Figure 4.1. This constraint is encoded into the set of primitive comparisons

as follows:

¬(x2 ≤ 0), (x1 ≤ 0) ∨ ¬(x2 ≤ 1), (x1 ≤ 1) ∨ ¬(x2 ≤ 2), (x1 ≤ 2)

These constraints are then translated into the following clauses:

¬p(x2, 0), p(x1, 0) ∨ ¬p(x2, 1), p(x1, 1) ∨ ¬p(x2, 2), p(x1, 2)
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Figure 4.1: Example of a 2SPP

The following axiom clauses are also needed:

¬p(x1, 0) ∨ p(x1, 1), ¬p(x1, 1) ∨ p(x1, 2), ¬p(x2, 0) ∨ p(x2, 1), ¬p(x2, 1) ∨ p(x2, 2)

4.3 Encoding from 2OPP into SAT

In this section, we explain how to translate the 2OPP into a SAT problem with order

encoding. Let ri, rj ∈ R (i 6= j) be two rectangles in a 2OPP. Let (xi, yi) and (xj, yj)

be the lower left coordinates of the rectangles ri and rj, respectively. Let e and f be

any integer. Then, the SAT encoding of a 2OPP uses the following Boolean variables:

lri,j is true if ri is placed to the left of the rj. udi,j is true if ri is placed below rj.

p(xi, e) is true if xi is less than or equal to e. p(yi, f) is true if yi is less than or equal

to f .

Using those variables, we can encode constraints of the 2OPP into the clauses. For

each rectangle ri, and integer e and f such that 0 ≤ e < W −wi and 0 ≤ f < H−hi,

we have the 2-literal axiom clauses (4.5),

¬p(xi, e) ∨ p(xi, e+ 1)

¬p(yi, f) ∨ p(yi, f + 1)
(4.6)

For each rectangle ri, rj (i < j), we have the following 4-literal clauses as the non-
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overlapping constraints (4.2):

lri,j ∨ lrj,i ∨ udi,j ∨ udj,i (4.7)

For each rectangle ri, rj (i < j), and integer e and f such that 0 ≤ e < W − wi and

0 ≤ f < H − hi
1, we also have the following 3-literal clauses that represent meanings

of lri,j, lrj,i, udi,j and udj,i:

¬lri,j ∨ p(xi, e) ∨ ¬p(xj, e+ wi)

¬lrj,i ∨ p(xj, e) ∨ ¬p(xi, e+ wj)

¬udi,j ∨ p(yi, f) ∨ ¬p(yj, f + hi)

¬udj,i ∨ p(yj, f) ∨ ¬p(yi, f + hj)

(4.8)

Supposing that W = H, the number of clauses of a SAT-encoded 2OPP are O(n2),

where n is the number of rectangles (see Figure 4.3).

Example. Consider the simple 2OPP which is obtained from a 2SPP shown in Fig-

ure 4.1a. We are given four rectangles (w1, h1) = (1, 2), (w2, h2) = (1, 2), (w3, h3) = (2, 1),

(w4, h4) = (1, 1) and a strip (W,H) = (4, 4). The result of the encoding is shown in

Figure 4.2. A part of the feasible assignment of this SAT problem is as follows:

p(x1, 0) = F, p(x1, 1) = T, p(x2, 0) = T,

p(x3, 1) = F, p(x3, 2) = T, p(x4, 1) = F, p(x4, 2) = T

p(y1, 0) = T, p(y2, 0) = T, p(y3, 0) = F, p(y3, 1) = T, p(y4, 0) = T

These assignments are converted into the following assignments of the 2OPP:

x1 = 1, x2 = 0, x3 = 2, x4 = 2, y1 = 0, y2 = 0, y3 = 1, y4 = 0

These assignments represent the feasible placement shown in Figure 4.1b.

1Note that, for Boolean variables p(xi, e + wj) and p(yi, f + hj), integer e and f satisfy 0 ≤ e <

W − wj and 0 ≤ f < H − hj , respectively.
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Variables

p(x1, 0), p(x1, 1), p(x1, 2), p(y1, 0), p(y1, 1),

p(x2, 0), p(x2, 1), p(x2, 2), p(y2, 0), p(y2, 1),

p(x3, 0), p(x3, 1), p(y3, 0), p(y3, 1), p(y3, 2),

p(x4, 0), p(x4, 1), p(x4, 2), p(y4, 0), p(y4, 1), p(y4, 2).

Axiom Clauses (4.6)

¬p(x1, 0) ∨ p(x1, 1), ¬p(x1, 1) ∨ p(x1, 2), ¬p(y1, 0) ∨ p(y1, 1),

...

¬p(x4, 0) ∨ p(x4, 1), ¬p(x4, 1) ∨ p(x4, 2), ¬p(y4, 0) ∨ p(y4, 1), ¬p(y4, 1) ∨ p(y4, 2).

Non-overlapping Constraints (4.7), (4.8)

lr1,2 ∨ lr2,1 ∨ ud1,2 ∨ ud2,1,

...

lr3,4 ∨ lr4,3 ∨ ud3,4 ∨ ud4,3.

¬lr1,2 ∨ ¬p(x2, 0), ¬lr1,2 ∨ p(x1, 0) ∨ ¬p(x2, 1),

¬lr1,2 ∨ p(x1, 1) ∨ ¬p(x2, 2), ¬lr1,2 ∨ p(x1, 2),

...

¬ud3,4 ∨ ¬p(y3, 0), ¬ud3,4 ∨ p(y4, 0) ∨ ¬p(y3, 1),

¬ud3,4 ∨ p(y4, 1) ∨ ¬p(y3, 2), ¬ud3,4 ∨ p(y4, 2).

Figure 4.2: Example of a SAT-encoded 2OPP

4.4 Solving 2SPP by Incremental SAT Solving

In Section 4.3, we explained how to translate the 2OPP into a SAT problem. In this

section, we show how to compute the optimal height of the 2SPP by the incremental

SAT solving.
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2OPP Number of rectangles n

Integer variables 2n

Constraint clauses
n(n− 1)

2

SAT-encoded 2OPP Boolean variables O(nW )

Axiom clauses O(nW )

All constraints O(n2W )

Figure 4.3: Size of the Encoded SAT problem

4.4.1 Searching for Optimum Height of 2SPP

Let ub and lb be the upper and lower bounds of a solution to a 2SPP, respectively. In

practice, the lower bound is given by exact methods and the upper bound is given by

either exact or incomplete methods. Let o be an integer value such that lb ≤ o ≤ ub−1.

We introduce a new Boolean variable p(h, o) which is true if all rectangles are packed

within height o. To solve the 2SPP, for each rectangle ri, and height o such that

lb ≤ o ≤ ub− 1, we have 2-literal clauses:

¬p(h, o) ∨ p(yi, o− hi) (4.9)

Furthermore, for each o (lb ≤ o ≤ ub−1), we have 2-literal axiom clauses due to order

encoding:

¬p(h, o) ∨ p(h, o+ 1) (4.10)

Let Ψ be the set of clauses consisting of all clauses obtained from (4.6), (4.7), (4.8),

(4.9) and (4.10). Then, we can decide the satisfiability of a 2OPP with the height H

by solving the following set of clauses2:

Ψ ∪ {p(h,H)} (4.11)

2That is, we use p(h,H) to restrict the upper bound of the y-coordinate of each rectangle instead

of restricting the domain of each rectangle that was defined in Section 4.2.1.
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Figure 4.4: Framework for Solving 2OPP

Note that Ψ is common in all 2OPPs associated with the 2SPP. In other words, we

bound the 2SPP by adding p(h,H).

Figure 4.4 shows the framework of incremental SAT solving for 2SPP. The optimal

height of a 2SPP can be obtained by incrementally solving formulas encoded from

2OPPs. The bisection method, which is shown in Section 3.3, is used here. First, we

set the lower bound lb and the upper bound ub; then we construct a formula Ψinit of

a height which divides the bound region in half. If we find that the encoded 2OPP

is satisfiable (SAT), the upper bound is updated by the height; otherwise, the lower

bound is updated by the height. Then, we compute a new height i′ = b(lb + ub)/2c.

We incrementally perform these operations until we obtain the optimal height, which

is on the boundary between the satisfiable and unsatisfiable problems. In this case,

the incremental SAT solving is constructed as follows.

60



(C1) Initial Formula. A propositional formula Ψinit encoded from the 2SPP bounded

by the initial bound i.

(C2) Update Procedure. Convert the current formula Ψi to the formula Ψi′ that

corresponds to the problem bounded by i′.

(C3) Goal Condition. The current bounds do not satisfy lb < ub.

For instance, let us consider a 2SPP which has an optimal height of 140. To

compute the optimal height, suppose that the lower bound is 48 and that the upper

bound is 393. Then the height would change as: 48 (UNSAT), 393 (SAT), 221 (SAT),

134 (UNSAT), 178 (SAT), 157 (SAT), . . . . The solution area becomes more and more

constrained until the optimal height is obtained.

4.4.2 Reusing Learned Clauses

We repeat that when the current assignment leads to a conflict, a new clause indicating

the incompatible assignment is generated as a learned clause. For instance, when

(x1, x2, x3) = (T, T, F ) is the source of a conflict, the clause ¬(x1 ∧ x2 ∧ ¬x3) =

¬x1 ∨ ¬x2 ∨ x3 is generated.

Our SAT encoding approach generates SAT problems incrementally. These SAT

problems are similar to each other; that is, Ψo+1 includes all non-unit clauses of Ψo.

Specifically, in solving the 2SPP, any two 2OPPs in the form (4.11) differ only in their

unit clauses p(h,H), which satisfies the reusability condition of learned clauses shown

in Proposition 2. We can thus reuse the learned clauses produced while solving the

previous 2OPPs in the sequence of encoded 2OPPs.

In addition to reusing learned clauses, we consider to reuse assumptions with the

bisection method. In the previous section, we show how to decide the satisfiability at

any height of 2SPP, and we need to add a unit clause {p(h,H)} to the problem. How-

ever, if Ψ∪{p(h,H)} is not satisfied, we cannot continue the bisection method without
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removing {p(h,H)} from the problem. To resolve this issue, Eén and Sörensson pro-

posed a particular set of unit clauses called assumptions [43] and implemented this

idea in Minisat. An assumption is added before solving the problem and is then re-

moved from the problem. By adding p(h,H) as an assumption, we can perform the

bisection method until the optimal height is obtained.

For instance, let Ψ be an encoded 2SPP with lb = 4, ub = 10, and the optimal

height is 6. First, we give Ψ and {p(h, 7)} as an assumption to the solver, and it returns

SAT. Now we reuse the assumptions by adding {p(h, 7)} to Ψ. Next, we give the SAT

solver the problem Ψ ∪ {p(h, 7)} and an assumption {p(h, 5)}, and it returns UNSAT.

Finally, we give the solver the problem Ψ ∪ {p(h, 7)} ∪ {¬p(h, 5)} and an assumption

{p(h, 6)}, and it returns SAT. In this way, we can avoid having a redundant search

space.

4.4.3 Reduction Techniques

The generated SAT problems grow with the number of input rectangles as shown in

Figure 4.3. We thus propose techniques to reduce the search space. We evaluate these

techniques in Section 4.5.3.

Large Rectangles. If we are given large rectangles ri and rj that satisfy wi +wj >

W , we can assign lri,j = false and lrj,i = false by using the size relation of the pair

of rectangles. We thus can delete all clauses which contain either the literal ¬lri,j

or ¬lrj,i and all other occurrences of the literals lri,j, lrj,i in every other clause. The

condition wi + wj > W means we cannot pack rectangles ri and rj in the horizontal

direction (see Figure 4.5). This reduction technique can also be used in the vertical

direction.

Domain reduction. To prune the search space, we reduce the domain of the largest

rectangle by symmetry breaking (see Figure 4.5a). There are three cases wherein
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a. Original b. Point Symmetry

c. Reflective Symmetry
         (horizontal)

d. Reflective Symmetry
(vertical)

rd

rd

rd

rd

ri

e. Overlap in Horizontal Direction

f. Same Rectangles

ri

rj

rj

ri

Figure 4.5: Symmetry Breaking and Reduction Techniques

largest can refer to width, height, or area. We choose the rectangles that have the

largest width in this chapter. Let (xd, yd) be the lower left coordinate of the rectangle

rd and a an integer. Then we can reduce the domain of xd as follows:

D(xd) =

a ∈ N

∣∣∣∣∣∣∣ 0 ≤ a ≤

W − wd

2




Similarly, the domain of yd can be reduced as follows:

D(yd) =

a ∈ N

∣∣∣∣∣∣∣ 0 ≤ a ≤

H − hd

2




In Figure 4.5a, black dots denote the original domain of xd and yd, and circles denote

the reduced domains described above. The domain D(xd) is reduced from {0, 1, 2, 3}

to {0, 1}.

Applying this reduction, if the rectangle ri satisfies wi >

W − wd

2

 then we can

assign lri,d = false; that is, we can thus delete all clauses which contain the literal
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lri,d and all other occurrences of the literals ¬lri,d in every other clause. In Figure

4.5a, we can see that the rectangle ri, which has wi = 2, cannot be packed to the left

of the rectangle rd because the domain D(xd) is now {0, 1}. This reduction is also

possible in the vertical direction.

Same Rectangles. If we are given rectangles ri and rj which have the same di-

mensions (wi, hi) = (wj, hj), we can fix the positional relation of those rectangles (see

Figure 4.5f). We consider, for instance, two same rectangles ri and rj. If rectangle ri

is placed at the left of rj in one solution, there must be another solution in which rj

is placed at the left of ri. We thus assign lrj,i = false and add the clause lri,j ∨¬udj,i

to restrict the positional relation of ri and rj.

One Pair of Rectangles. We can fix the positional relation between only one pair

of rectangles. See Figure 4.5e, by symmetry breaking, we can restrict the positional

relation between ri and rj. Hereby, we can assign lrj,i = false and udj,i = false. Note

that this symmetry breaking cannot simultaneously be used with domain reduction.

Exclusive Constraints. Supposing that the rectangle ri is placed at the left of the

rectangle rj, lri,j is assigned true and then lrj,i must be assigned false. Since lri,j and

lrj,i can never be true simultaneously. We thus can add clauses ¬lri,j∨¬lrj,i. Although

such a clause may not be necessary, it can accelerate unit propagation during SAT

solving.

4.5 Experimental Results

4.5.1 Benchmarks and Environments

We used the following benchmarks to evaluate our method. The set HT consists of 9

instances by Hopper and Turton [71]; BENG consists of 10 instances by Bengtsson [16];
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CGCUT consists of 3 instances by Chiristofides and Whitlock [28]; GCUT consists of

4 instances; and NGCUT consists of 12 instances by Beasley [12, 13]. The total of 38

instances is available at “DEIS - Operations Research Group Library of Instances” [1].

All experiments were executed on a Xeon 2.6GHz. We implemented the program

based on Sugar [127] and Minisat [42]. These benchmark sets included some instances

which were very hard to solve. In particular, HT08, CGCUT02, CGCUT03, GCUT02 and

GCUT04 have not been solved by [97, 3, 138, 4, 105].

4.5.2 Results for 2OPP Instances

Before evaluating proposed method for 2SPPs, we make a comparison with a CSP

solver for 2OPP instances. We convert the 2OPP formalized as CSP into the XML

format used in the CSP Solver Competition [2].

Table 4.1: Comparison with a CSP Solver [107]

Instance Height SAT/UNSAT
CPU Time (sec)

cpHydra Proposal.

HT01(c1p1) 19 UNSAT — 8.00

20 SAT 282.61 0.83

HT02(c1p2) 19 UNSAT — 39.76

20 SAT — 2.01

HT03(c1p3) 19 UNSAT — 20.24

20 SAT 317.65 0.83

HT04(c2p1) 14 UNSAT — —

15 SAT — 73.71

HT05(c2p2) 14 UNSAT — —

15 SAT — 43.76

HT06(c2p3) 14 UNSAT — —

15 SAT — 1.95
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Instance Height SAT/UNSAT
CPU Time (sec)

cpHydra Proposal.

HT07(c3p1) 29 UNSAT — —

30 SAT — 370.62

HT09(c3p3) 29 UNSAT — —

30 SAT — 369.32

BENG01 29 UNSAT — 886.95

30 SAT — 1.54

BENG02 56 UNSAT — —

57 SAT — 65.80

BENG03 83 UNSAT — —

84 SAT — 1246.93

BENG06 35 UNSAT — —

36 SAT — 3.70

CGCUT01 22 UNSAT — 443.60

23 SAT 1.08 0.82

GCUT01 1015 UNSAT 23.38 9.11

1016 SAT 1.08 1.39

GCUT03 1802 UNSAT — —

1803 SAT 13.70 20.85

NGCUT01 22 UNSAT — 1.17

23 SAT 1.08 0.60

NGCUT02 29 UNSAT — 14.79

30 SAT 281.70 0.86

NGCUT03 27 UNSAT — —

28 SAT — 1.41

NGCUT04 19 UNSAT 1.09 0.41
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Instance Height SAT/UNSAT
CPU Time (sec)

cpHydra Proposal.

20 SAT 1.09 0.51

NGCUT05 35 UNSAT — 3.20

36 SAT 8.37 0.78

NGCUT06 30 UNSAT — 52.64

31 SAT 18.78 0.76

NGCUT07 19 UNSAT 1.09 0.29

20 SAT 1.09 0.51

NGCUT08 32 UNSAT — 2.87

33 SAT 383.58 0.75

NGCUT09 49 UNSAT — 694.51

50 SAT — 11.18

NGCUT10 79 UNSAT — 18.08

80 SAT 31.73 0.85

NGCUT11 51 UNSAT — 13.41

52 SAT 284.16 0.94

NGCUT12 86 UNSAT — 1.23

87 SAT 281.28 1.67

Each instance is given one less than the optimal height and the optimal height of

the 2SPP in advance e.g., a 2SPP instance NGCUT01 which has the optimal height 23,

is converted into two 2OPP instances given height H = 23 and H = 22, respectively.

We choose cpHydra [107] as the CSP solver to be compared. This CSP solver is

a portfolio type solver which consists of three solvers, abscon [89], choco [80], and

mistral [65], which have different characteristics. The reason why we chose cpHydra is

that this solver won the CSP solver competition overall. It came first in four of the

five categories.
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Table 4.2: Results for 2SPP Instances: HT09, NGCUT09

Instance Height SAT/UNSAT no-

reduce

large domain same pair exclusive

HT09 34 SAT 0.19 0.17 0.16 0.21 0.20 0.16

32 SAT 0.18 0.18 0.20 0.22 0.25 0.18

31 SAT 0.25 0.25 0.20 0.34 0.39 0.19

*30 SAT 595.05 705.15 13.42 719.94 206.74 1265.77

NGCUT09 53 SAT 0.05 0.04 0.08 0.05 0.06 0.05

51 SAT 0.05 0.07 0.09 0.07 0.07 0.05

*50 SAT 0.15 6.91 0.25 2.25 1.28 5.95

49 UNSAT 614.71 675.68 191.82 110.31 489.13 1014.62

In particular, it won “N–ARY–INT” category that included non–binary CSPs such

as 2OPP. Table 4.1 shows the results of the comparison on the set of benchmarks

reported by Martello et al. [97]. All experiments here were executed within 3600

seconds. Note that the problems which cannot be solved by both cpHydra and our

method are omitted from the table. Columns 1–3 show the characteristics of each

2OPP instance, such as the instance name, given height, and satisfiability. Column 4

shows the computational time of the CSP solver. “—” indicates time out. Column 5

shows the results of the SAT-based method.

The results listed in the table demonstrate the effectiveness of our SAT-based

method. It solved a larger number of instances than cpHydra. cpHydra solved 18

instances, whereas the SAT-based method solved 44 instances.
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Table 4.3: Comparison between Combined Methods

Instance n W LB/UB
CPU Time (sec)

Value
Normal LCR LCR+RM

HT01 16 20 20/25 1.77 1.41 1.40 20

HT02 17 20 20/25 5.90 5.64 3.80 20

HT03 16 20 20/22 1.28 1.22 1.26 20

HT04 25 40 15/17 33.79 101.03 13.88 15

HT05 25 40 15/18 8.11 10.14 23.45 15

HT06 25 40 15/16 4.69 3.24 3.24 15

HT07 28 60 30/35 — 98.23 168.25 30

HT08 29 60 30/35 — 2131.97 — *30

HT09 28 60 30/37 706.51 252.99 28.81 30

BENG01 20 25 30/37 2.55 2.07 2.44 30

BENG02 40 25 57/64 — 22.97 105.92 57

BENG03 60 25 84/89 — 1309.17 823.77 84

BENG05 100 25 134/142 — — 3355.16 134

BENG06 40 40 36/38 15.39 10.44 11.15 36

CGCUT01 16 10 23/27 1.44 1.37 1.28 23

GCUT01 10 250 1016/1016 1.58 0.63 1.02 1016

GCUT03 30 250 1803/1803 23.53 4.34 5.98 1803

NGCUT01 10 10 23/25 0.77 0.80 0.74 23

NGCUT02 17 10 30/33 1.60 1.57 1.45 30

NGCUT03 21 10 28/30 1.86 1.90 1.94 28

NGCUT04 7 10 20/20 0.41 0.40 0.41 20

NGCUT05 14 10 36/37 1.03 1.05 0.97 36

NGCUT06 15 10 31/35 1.33 1.36 1.32 31

NGCUT07 8 20 20/20 0.50 0.48 0.52 20

NGCUT08 13 20 33/38 1.18 1.23 0.97 33

NGCUT09 18 20 49/57 823.85 4325.41 4.71 50

NGCUT10 13 30 80/81 1.10 1.05 1.00 80

NGCUT11 15 30 50/57 1.52 1.40 1.25 52

NGCUT12 22 30 87/87 1.90 1.70 1.70 87

Number of Solved Instances 24 28 28
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4.5.3 Results for 2SPP Instances

We evaluated the reduction and reusing techniques described in Sections 4.4.3 and

4.4.2. Table 4.2 shows the results for 2SPP instances with the bisection method. All

experiments here were executed within 7200 seconds. We performed the method with

each reduction technique on HT09 and NGCUT09. Columns 1–3 show the characteristics

of each 2OPP instance, such as the instance name, given height, and satisfiability. “*”

indicates that the height is optimal. Columns 4–9 show the CPU time of the reducing

techniques: no-reduce means the method without reducing techniques, domain means

symmetry breaking with the largest rectangle, large means reduction with large rectan-

gles, same means reduction with the same rectangles, pair means symmetry breaking

with the largest pair of rectangles, exclusive means adding exclusive constraints. We

can see that there are difficult problems around the boundary between the satisfiable

and unsatisfiable problems. We found that the symmetry breaking techniques domain

and pair performed well on SAT and UNSAT problems. same outperformed the other

techniques for the NGCUT09 instance because the instance includes five pairs of the

same rectangles out of 18 rectangles.

To solve the problems more efficiently, we combined the reduction and reuse tech-

niques. Table 4.3 lists the results. Note that the problems which cannot be solved

by all methods are omitted from the table. Columns 1–4 show the characteristics of

each instance, such as the instance name, number of input rectangles, strip width W ,

and the lower bounds from the literature [97]. In this experiment, we used the upper

bounds generated by the best-fit algorithm [25]. Although there are more strict lower

and upper bounds, we used those for the wider evaluation between our own tech-

niques. In Column 5, Normal shows the results of the method without any reducing

and reusing. In Column 6, LCR shows the results of the method with learned clause

reusing. In Column 7, LCR+RM shows the results of the method with learned clause

reusing and a combination selected from all 24 combinations of reducing methods.
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Figure 4.6: Computed Placement of HT08

Specifically, we select the following combination, which solves the largest number of

instances with shortest CPU time: reducing with domain and same.

Column 9 shows the optimal value computed by these three methods. “*” indicates

the optimal height that has not been discovered by both exact and incomplete meth-

ods [97, 3, 138, 4, 105]. Table 4.3 shows the effectiveness of learned clause reusing.

While Normal solved 24 instances, LCR and LCR+RM solved 28 instances. It indicates

that the reusing of learned clauses effectively avoid the redundant search space. Fur-

thermore, LCR computes the optimal height of 30 for HT08 (see Figure 4.6) while the

best height given by many previous incomplete and exact methods [97, 3, 138, 4, 105]

is 31. It also indicates a hidden potential of incremental SAT solving. This is because

HT08 cannot be solved by even if we directly compute the 2OPP of its optimal value

as we showed it in Figure 4.1. Thus, incremental SAT solving can also be considered

as a potential approach for such difficult problems. Besides, reducing techniques are

also useful. Although methods of LCR and LCR+RM solved the same number of in-

stances, LCR takes 8297.68 seconds in total while LCR+RM takes 4567.79 seconds. The
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Table 4.4: Comparison with the Exact Method by Alvarez-Valdes et al. [4]

Instance n W LB/UB [4]
Proposal. Exact Method [4]

Value Time (sec) Value Time (sec)

HT08 29 60 30/31 *30 886.0 31 —

CGCUT02 23 70 63/66 66 — 65 —

CGCUT03 62 70 652/681 681 — 671 —

GCUT02 20 250 1184/1191 1191 — 1190 —

GCUT04 50 250 2995/3003 3003 — 3003 —

NGCUT08 13 20 33/34 *33 0.9 *33 0.1

NGCUT09 18 20 49/50 *50 74.0 *50 48.7

NGCUT11 15 30 51/52 *52 1.2 *52 1.7

method LCR+RM includes the reduction same, which is particularly effective on NGCUT

that includes a relatively large number of same-sized rectangles. Thus, LCR+RM solved

NGCUT09 quite faster than LCR. However, it slows down on HT08 which is a perfect pack-

ing problem and contains only one pair of same rectangles. The combination same

and domain might mislead the search on this instances. Although there is sometimes

an exception and we need to adjust combinations, the reduction averagely accelerates

searches as is shown by its computation time.

4.5.4 Comparison with Previous 2SPP Method

Recently in 2008, Alvarez-Valdes et al. [4] reported a new branch and bound method

for 2SPP. They have reported new lower bounds and used an incomplete method

called reactive GRASP [3] for computing upper bounds. They obtained good bounds

for the 2SPP instances described above and found optimal values for 30 out of 38

instances before they applied their new branch and bound method, i.e., their upper
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bounds correspond to lower bounds in 30 instances. There are thus only 8 instances

remaining to be solved with the branch and bound procedure. Table 4.4 lists results

for those 8 instances. Columns 1–4 show the characteristics of each instance, such as

the instance name, number of input rectangles, strip width W , and lower bounds from

the literature [4]. Columns 5 and 7 show the best value computed by our method and

the one by [4]. “*” indicates that the value is optimal. In the case of that the optimal

value is computed, we describe CPU time for both methods in columns 6 and 8. Their

methods were implemented in C++ and CPLEX, and they were run on a Pentium4

2GHz within 1200 seconds. Our method was also executed within 1200 seconds on

the environment shown in Section 4.5.1.

In this experiment, we compared their new branch and bound method with the

following method, whose result is the best from all combinations for 8 instances:

reducing with same and reusing learned clauses. We used their lower and upper

bounds [4]. Table 4.4 shows that the NGCUT instances are easy to solve and both

methods solved them within 80 seconds. In contrast, CGCUT and GCUT are very hard

problems, and both methods could not find the optimal solutions. Our method found

the optimal value for instance HT08, whereas their method could not find a solution.

A direct comparison of computational times is not possible because of the difference

in machine specs. To give an approximate comparison, their computing times should

be divided by 1.3, because we used a Xeon 2.6GHz processor, while Alvarez-Valdes

et al. used a Pentium4 2GHz. Even if their method could solve HT08 just after 1200

seconds, its computation time become 923 seconds while our method solved it with

886 seconds.

Besides that, we compare our method with an ad-hoc exact method that employs a

branch and bound algorithm by Kenmochi et al. [83] for 38 instance described above. It

is also difficult to have direct comparison because they use a Pentium4 3GHz processor

while our processor is a Xeon 2.6GHz. Table 4.5 shows the result of the number of
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Table 4.5: Comparison with the Exact Method by Kenmochiet al. [83]

Name #Instances LCR LCR+RM G-STAIRCASE[83]

HT* 9 9 8 9

BENG* 10 4 5 9

GCUT* 4 2 2 —

CGCUT* 3 1 1 1

NGCUT* 12 12 12 10

solved instances by each method. The columns of LCR and LCR+RM indicate the results

shown in Table 4.3. Nevertheless our processor is slower, LCR solved the same number

of instances for two benchmark sets: HT* and CGCUT*. Although the proposed

methods are inferior in BENG*, both LCR and LCR+RM overcome in NGCUT*. There

is no description about the result of GCUT* in their literature [83].

In this section, we compared our methods with two ad-hoc exact methods. Con-

sidering above results, we can say that our proposal is competitive with ad-hoc 2SPP

methods for those instance sets.

4.6 Discussion

There are also other well studied encodings that is worth investigating. To consider the

difference between order encoding and the others, we compare order encoding with di-

rect encoding, which has been widely used [136]. Let (wi, hi) = (2, 2), (wj, hj) = (2, 2)

and place ri at (xi, yi) = (3, 3) (see Figure 4.7). We can represent non-overlapping

constraints between ri and rj as follows:

(xj ≤ 1) ∨ (xj ≥ 5) ∨ (yj ≤ 1) ∨ (yj ≥ 5)
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Figure 4.7: Representation of Conflicts

In direct encoding, we assign to a SAT variable p(x, a) = true if and only if the CSP

variable x has the domain value a, and the non-overlapping constraints are encoded

into the following clauses:

CSP : (xj ≤ 1) ∨ (xj ≥ 5) ∨ (yj ≤ 1) ∨ (yj ≥ 5)

SAT (direct) : ¬p(xj, 2) ∨ ¬p(yj, 2) ¬p(xj, 2) ∨ ¬p(yj, 3) ¬p(xj, 2) ∨ ¬p(yj, 4)

¬p(xj, 3) ∨ ¬p(yj, 2) ¬p(xj, 3) ∨ ¬p(yj, 3) ¬p(xj, 3) ∨ ¬p(yj, 4)

¬p(xj, 4) ∨ ¬p(yj, 2) ¬p(xj, 4) ∨ ¬p(yj, 3) ¬p(xj, 4) ∨ ¬p(yj, 4)

SAT (order) : p(xj, 1) ∨ ¬p(xj, 4) ∨ p(yj, 1) ∨ ¬p(yj, 4)

Clauses encoded by direct encoding represent conflict points (see Figure 4.7a), and

the size of the encoded constraint is O(n2W 2). In contrast, clauses encoded by order

encoding represent these constraints as a single conflict region (see Figure 4.7b), and

the size of the encoded constraint is O(n2W ). To encode constraints consisting of

comparisons such as x ≤ a, we can say that order encoding is more suitable than

direct encoding. This indicates the SAT-based approach with order encoding would

be suitable not only for the 2SPP, but also for other geometric problems such as the
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shop scheduling problem.

In this chapter, we use a SAT solver Minisat as a model generator, which is intended

to develop for general purpose, and our method on this model generator competes with

the latest ad-hoc methods [4, 83]. We think reasons of this good performance are as fol-

lows. One is solvers’ sophisticated heuristics and optimized implementation that have

been accumulated in the last two decades. Another one is a variety of propositional

encodings. In the CSP research domain, there are several effective constraint propa-

gation. Those can be emulated by unit propagation in the DPLL procedure through

diverse encodings as follows: forward checking; direct encoding [136], maintaining arc

consistency; support encoding [55], bounds propagation; order encoding [127, 129].

By choosing appropriate encoding methods, we can do constraint propagation on the

established computational engine. Although further analyses are needed, these things

can be a reason for the good performance.

4.7 Related Work

There are reports on methods which solve an optimization problem through encoding

that translate a problem into a set of decision problems. Bekrar et al. [15] reported an

approach to the two-dimensional guillotine strip packing problem which is a variant of

the 2SPP. They represent the problem as CSPs and find the optimum by using the

bisection method. The difference from our work is that they directly solved the CSPs

whereas we used a SAT-based method. Thereby, we can apply several incremental

SAT techniques and use a state-of-the-art SAT solver.

There are several studies on SAT-based methods for other optimization problems.

Inoue et al. [74] proposed Multisat that can execute several SAT solvers in parallel.

They applied it to SAT Planning and the job-shop scheduling problem. The solvers

included in Multisat exchange learned clauses derived by conflict analysis among dif-
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ferent SAT solvers. Nabeshima et al. [104] reported another approach. Their method

shares learned clauses between sub-problems. Our SAT-based approach is an enhance-

ment of these studies; besides reusing learned clauses, we reuse assumptions and newly

applied it to the 2SPP. While we applied incremental SAT techniques and symmetry

breaking to the 2SPP, Claessen and Sörensson reported a similar method for finding

finite models of unsorted first-order logic clause sets [29]. Although there is a differ-

ence between our application and theirs, their method includes several incremental

SAT techniques and is worth investigating.

4.8 Summary

In this chapter, we apply incremental SAT solving to the two-dimensional strip packing

problem. This problem has been mostly investigated from an Operations Research

perspective. As far as we know, this is the first attempt that solves the 2SPP with

a SAT solver. We compared our method with the state-of-the-art CSP solver, and

our method outperformed that solver on 2OPP instances. Besides, we showed that

incremental SAT solving is competitive with the previous 2SPP method. In particular,

we found the optimal value of HT08, which had not been found by almost all of the

previous exact and incomplete methods. The result of HT08 also indicates hidden

potential of incremental SAT solving. This is because HT08 cannot be solved even

if we directly compute the 2OPP of its optimal value by a simple SAT solving as is

shown in the experiment. Thus, incremental SAT solving can also be considered as a

potential approach for such difficult problems. These results indicate that even though

SAT-based approaches have been widely studied, there are still challenging topics.

There are several important topics to be tackled. A comparison with other SAT-

encoding methods is needed to evaluate the effectiveness of order encoding. Applying

order encoding to different problems is important. Enabling rotation of the input
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rectangles and the application of other constraints such as gravity would be interesting.

We could also study other reuse techniques such as the least number heuristic [29].

Finally, there is a possibility that a hybrid system composed of incomplete and exact

methods can be used to solve larger problems.
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Chapter 5

Minimal Active Pathway Finding

Problem

In this chapter, we give another application of SAT technologies. We apply incremental

SAT solving to a problem in a cross-over research domain, Systems Biology. We

propose a new problem to analyze metabolic pathways of organisms. After given

the propositional representation of the problem, we explain how to apply incremental

SAT solving to it. Following that, we show the experimental results and discuss its

meanings from a biological viewpoint.

5.1 Introduction

Living organisms, such as animals, bacteria, fishes and humans, are kept alive by a

huge number of chemical reactions. In Systems Biology, interactions of such chemical

reactions are represented in a network called pathway. Analyses of pathways have been

active research field in the last decade and several methods have been proposed [79,

131].

A longstanding approach is to represent pathways in a system of differential equa-
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tions [133]. Although it is sometimes not easy task to develop it to represent real cell

behaviour due to its difficult parameter tuning, this method allows detailed analyses

e.g. concentrations of each metabolite with time variation. On the other hand, there

are methods aiming for scalable and abstracted analyses have been proposed [33, 115,

110, 120]. This is important because scalability is an important feature for a macro-

scopical analysis of complex networks like cells. Besides, it is a fundamental goal in

Systems Biology. These methods employ discrete approaches rather than continuous

ones. The advantage is that it can macroscopically analyze relatively large pathways.

These methods are different from each others in their problem formalization and solv-

ing methods; however, they share the same purpose, which is to identify biologically

functional reaction sets from a given pathway.

One approach relying on graph is proposed by Croes et al. [33]. They represent a

pathway in a weighted bipartite directed graph and apply a depth-first search algo-

rithm to find the lightest paths from a source compound to a target compound. Planes

and Beasley proposed to solve the same problem using a constraint-based method [110].

An advantage of these two methods is that an evaluation of the quality of the solution

is provided. We can then choose an objective value to reduce the number of solutions

that should be provided to biologists. However, this approach can only generate paths,

whereas sub-graphs would be a more natural representation. Moreover, this approach

sometimes generates invalid paths from a biological viewpoint because it can easily

take non-meaningful shortcuts via common metabolites e.g. water as it indicated by

[36].

In this chapter, we propose a new analysis method for metabolic pathways that

identifies an active pathway, whose form is a sub-graph, which produces a set of target

metabolites from a set of source metabolites. In particular, we formalize the problem

as finding minimal active pathways, which have the property of not containing any

other active pathways. That is, all elements of each minimal active pathway are
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qualitatively essential to produce target metabolites. By this property, we can restrict

the number of solutions. We represent laws of biochemical multi-molecular reactions

in propositional formulas and translate the problem into conjunctive normal form

(CNF) formulas. We then use a minimal model generator based on a state-of-the-art

SAT solver to solve the problem effectively. Our translation and recent progresses in

the SAT domain now make it possible to apply our method to cell-scale pathways.

Realistic metabolic pathways include a lot of reversible reactions and cycles. Previous

approaches thus needed pre-processing or post-processing, which is possibly costly, to

deal with those cycles [110, 128]. We also show how such redundant cycles are avoided

in minimal active pathways.

We compare our method with previously proposed approaches [14, 110] for a sim-

plified pathway of Escherichia coli (E. coli) consisting of 880 reactions. We also test

our method with a whole E. coli pathway [84] consisting of 1777 reactions. In order to

evaluate computed active pathways, we use conventional active pathways described in

the literature [14] and EcoCyc [84], which are provided by biological experiments and

existing knowledge. As a result, we have identified every conventional active pathway

of all pathways we used in the experiments.

In the reminder of this chapter, we explain the minimal active pathway finding

problem in Section 5.2. We show the translation from the active pathway finding

problem into propositional formulas in Section 5.3. In Section 5.4, we show the ex-

perimental result. In Section 5.5 and 5.6 respectively discuss related work and future

work.

5.2 Minimal Active Pathway Finding Problem

This section provides the definition of the minimal active pathway finding problem

(MAPF) on which we are focusing.
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Let M a set of metabolites and R a set of reactions. For M and R, M ∩ R = ∅

holds. Let A ⊆ (R ×M) ∪ (M × R) a set of arcs. Let m, r be a metabolite and a

reaction such that m ∈ M and r ∈ R, respectively. A pathway is represented in a

directed bipartite graph G = (M,R,A) where M and R are two sets of nodes, A is a

set of arcs. We here define MS ⊂ M as a set of source metabolites and MT ⊂ M a

set of target metabolites such that MS ∩MT = ∅. A pathway instance is represented

in a five tuple π = (M,R,A,MS,MT ). A metabolite m ∈ M is called a reactant of

a reaction r ∈ R when there is an arc (m, r) ∈ A. On the other hand, a metabolite

m ∈ M is called a product of a reaction r ∈ R when there is an arc (r,m) ∈ A.

A reaction is called a reversible reaction if it can occur in both directions between

reactants and products. In this research, we distinguish a reversible reaction as two

reactions. For instance, if there is a reversible reaction r1 which has m1 and m2 as

reactants and m3 and m4 as products. In this case, we split the reaction r1 into two

reactions r1a and r1b: one of them has m1 and m2 as products and m3 and m4 as

reactants.

Let s : R → 2M be a mapping from a set of reactions to a power set of metabolites

such that s(r) = {m ∈ M | (m, r) ∈ A} represents the set of metabolites which are

needed to turn the reaction r activatable. Let p : R → 2M be a mapping from a

set of reactions to a power set of metabolites such that p(r) = {m ∈ M |(r,m) ∈ A}

represents the set of metabolites which are produced by a reaction r. Let s′ : M → 2R

be a mapping from a set of metabolites to a power set of reactions such that s′(m) =

{r ∈ R|(m, r) ∈ A}. Let p′ : M → 2R be a mapping from a set of metabolites to a

power set of reactions such that p′(m) = {r ∈ R|(r,m) ∈ A}.

Let t be an integer variable representing time. In this research, an unit of time

represent the time of processing any reaction. Besides, we use it to represent order

relation of reactions and metabolites. Let M ′ ⊂ M be a subset of metabolites. A

metabolite m ∈ M is obviously producible at time t = 0 from M ′ on G if m ∈ M ′
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holds. A reaction r ∈ R is activatable at time t > 0 from M ′ on G if for every m ∈ s(r),

m is producible at time t − 1 from M ′. A metabolite m ∈ M is producible at time

t > 0 from M ′ on G if there is at least one activatable reaction r at time t such that

m ∈ p(r).

In this research, we assume that source metabolites are being produced until all

target metabolites are generated. This is because common metabolites, e.g. water,

can be sufficient amount in a cell and we consider that other source metabolites are

enough produced. Thus, reactions using those metabolites can continue to be acti-

vatable. Similarly, products of such reactions are continued to be producible. Hence,

the following two property hold in pathways. If r is activatable at time t then r is

activatable at a time t+ 1. If m is producible at time t then m is producible at time

t+ 1.

Definition 9 Active Pathway

Let π = (M,R,A,MS,MT ) be a pathway instance and G = (M,R,A) a bipartite

directed graph representing a pathway. A sub-graph G′ = (M ′, R′, A′) of G is an active

pathway of π if it satisfies the following conditions:

(α1) MT ⊂M ′

(α2) M ′ = MS ∪ {m ∈M | (m, r) ⊆ A, r ∈ R′} ∪ {m ∈M | (r,m) ⊆ A, r ∈ R′}

(α3) A′ = {(m, r) ∈ A | r ∈ R′} ∪ {(r,m) ∈ A | r ∈ R′}

(α4) For every m ∈M ′, m is producible from MS on G′ = (M ′, R′, A′)

From Definition 9, active pathways consist of a set of metabolites and reactions

which are producible and activatable from MS on G′ such that all target metabolites

MT are producible. A number of active pathways depend on the combination of

MS and MT but there is generally a large number of active pathways in a metabolic
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pathway. We thus particularly focus on minimal ones rather than active pathways.

We give the definition as follows:

Definition 10 Minimal Active Pathway

Let G = (M,R,A) and G′ = (M ′, R′, A′) be active pathways of π, respectively.

G is smaller than G′ and represented in G ⊂ G′ if R ⊂ R′. An active pathway G is

minimal active pathway of π iff there is no active pathway of π which is smaller than

G.

From Definition 10, any reactions included in a minimal active pathway cannot be

deleted to produce target metabolites. Intuitively, we can understand it as that each

of the elements of a minimal active pathway is essential. Finally, the minimal active

pathway finding problem is given as follows:

Definition 11 Minimal Active Pathway Finding Problem (MAPF)

Input. A pathway instance π = (M,R,A,MS,MT ).

Output. All minimal active pathways of π.

Let z be time to bound the minimal active pathway problem. Specifically, we

consider a problem of enumerating all minimal active pathways producing all target

metabolites by time z. We call this problem as the minimal active pathway finding

problem with regard to z.

Definition 12 Minimal Active Pathway Finding Problem with regard to z

Input. A pathway instance π = (M,R,A,MS,MT ) and z.

Output. All minimal active pathways of π by time z.

We can enumerate all minimal active pathways of the original instance by incremen-

tally solving the problems bounded from z = 1 to z = |R|. In practice, we start to

bound the problem to z = 1. Then, we compute the resulting minimal active pathways
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and analyze those. If we need more solutions, then we increase the bound to z + 1

and continue the enumeration. Similar to the above problems, we call the problem

of enumerating active pathways as the active pathway finding problem and the active

pathway finding problem with respect to z, respectively.

5.3 Incremental SAT Solving for MAPF

In this section, we explain how to apply the stepwise enumeration of incremental SAT

solving, which is shown in Section 3.4.

5.3.1 Overview

As we describe in the previous section, in most cases, we do not need to enumerate

all minimal active pathways of a given pathway instance. In practice, we continue

to enumerate solutions until we found a solution in which we are interested. We

call this solution as a preferred solution. This time, we define the preferred solution

in terms of conventional pathways. Specifically, the preferred solution is a pathway

included in the conventional pathway of a given pathway instance. Besides, we call

the minimal model decoded to a preferred solution as the preferred minimal model.

To obtain preferred minimal model, we first bound the minimal active pathways by

time z. Then, we solve the minimal active pathway finding problem with regard to z

and increase the bound z one by one.

(D1) Initial Formula. A propositional formula encoded from MAPF with regard to

z = i, which is the initial bound.

(D2) Update Procedure. Convert the current formula to the formula that corre-

sponds to MAPF with regard to i+ 1.

(D3) Goal Condition. The preferred model is found in computed models.
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Figure 5.1: The Architecture for Analyzing Metabolic Pathways

The architecture of this approach is shown in Figure 5.1. At first, we are given the

minimal active pathway finding problem and bound it to the lowest bound value, which

depends each situation but typically it is z = 1. Then, the stepwise enumeration of

incremental SAT solving is used. We compute all solutions of the MAPF with regard

to z and increment the bound z if we cannot find our preferred minimal models. In

solving MAPFs, we need a minimal model generator. This time, we use the minimal

model generator proposed by Koshimura et al. [86] described in Section 2.3.

5.3.2 Reduce Reactions for Encoding

When a pathway instance π = (M,R,A,MS,MT ) is given, we can omit a set of

reactions that cannot be activated from a given source metabolites MS. By deleting

such reactions before the encoding, we can reduce the number of clauses. We can find

such un-activatable reactions from MS by the procedure SearchActivatableReactions

shown in Figure 5.2. Let Σ be a set of metabolites and Ω a set of reactions that can
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SearchActivatableReactions (G = (M,R,A), MS)

begin

1: Σ := MS;

2: Ω := {};

3: while (Σ 6= {})

4: mark ∀mi ∈ Σ as producible;

5: Σ′ = {};

6: while mi ∈ Σ do

7: while rj ∈ s−1(mi) do

8: if rj /∈ Ω and ∀mk ∈ s(rj) is producible then

9: Ω := Ω ∪ {rj};

10: while mk ∈ p(rj) do

11: if mk is producible then Σ′ := Σ′ ∪ {mk};

12: Σ := Σ′;

13: return (Ω);

end

Figure 5.2: Procedure for Reduction

be activated from MS. In the procedure, the first loop begin with the set of source

metabolites MS (Line 1 and 3). Then every metabolites in Σ is marked as producible

(Line 4). At Line 8, for every reactions that uses some mi ∈ Σ as reactants are checked

whether activatable or not on current metabolites that are marked as producible. If

it is producible then added to Ω that contains activatable reactions. At Line 11,

metabolites that can be producible by the reaction rj are added to Σ′ that will be the

next seeds of the first loop (Line 11 and 12). Finally, the set of activatable reactions

is returned as Σ. By using this, we can reduce the number of encoded clauses.
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5.3.3 Encoding

To apply incremental SAT solving to MAPF, we represent it in a propositional formula.

An advantage of propositional encoding is that it is flexible for adding biological

constraints.

Let i, j be integers denoting indices for metabolites and reactions. Let t an integer

variable representing time. Let π = (M,R,A,MS,MT ) a pathway instance. Let z an

integer constant representing a given upper bound of the problem. Let V the set of

propositional variables which are used in this translation. We introduce two kinds of

propositional variables. Let m∗
i,t ∈ V be a propositional variable which is true if a

metabolite mi ∈ M is producible at time t. Let r∗j,t ∈ V be a propositional variable

which is true if a reaction rj ∈ R is activatable at time t. In the following, we explain

the encoding of the minimal active pathway finding problem with regard to z.

For every reaction and metabolite, we have the following formula:

ψ1 =
∧

0≤t<z

∧
mi∈M

(
m∗

i,t → m∗
i,t+1

)
ψ2 =

∧
1≤t<z

∧
rj∈R

(
r∗j,t → r∗j,t+1

)
These formulas represent that once a metabolite (or a reaction) is changed to pro-

ducible (or activatable), then it remains in the producible state (or the activatable

state).

For each reaction rj ∈ R, we have the following formula representing that if a

reaction rj is activatable at time t then its reactants must be producible at time t− 1:

ψ3 =
∧

1≤t≤z

∧
rj∈R

r∗j,t → ∧
mi∈s(rj)

m∗
i,t−1


For each reaction rj ∈ R, we have the following formula representing that if a

reaction rj is activatable at time t then its products must be producible at time t.

ψ4 =
∧

1≤t≤z

∧
rj∈R

r∗j,t → ∧
mi∈p(rj)

m∗
i,t


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Table 5.1: Size of Clauses of Ψz

Formula length #Clauses

ψ1 2 |M | ∗ z

ψ2 2 |R| ∗ (z − 1)

ψ3 2 |Amr| ∗ z

ψ4 2 |Arm| ∗ z

ψ5 more than 3 |M | ∗ z

ψ6 1 |M |

ψ7 1 |MT |

For each metabolite mi ∈ (M \MS), we have the following formula representing

that if a reaction mi is producible then either two states hold: the metabolite mi is

producible at t− 1 or at least one reaction rj is activatable.

ψ5 =
∧

1≤t≤z

∧
mi∈(M\MS)

(
m∗

i,t → m∗
i,t−1 ∨

∨
rj∈p′(mi)

r∗j,t

)

An initial condition and a target condition are given as follows:

ψ6 =
∧

mi∈MS

m∗
i,0 ∧

∧
mi′∈M\MS

¬m∗
i′,0

ψ7 =
∧

mi∈MT

m∗
i,z

Finally, we have the translated formula Ψz as the conjunction of ψ1, ψ2, . . ., ψ7.

The length of clauses of ψ6 and ψ7 is 1, the length of ψ1, ψ2, ψ3 and ψ4 is 2, ψ5 is

more than 3. Let Arm be a set of arcs such that Arm = {(r,m) ∈ A} and Amr be a

set of arcs such that Amr = {(m, r) ∈ A}. The size of this encoding is summarized

in Table 5.1. Recent SAT solvers are capable to treat over ten millions of clauses; it

indicates that the encoding is capable to treat pathways whose number of reactions is

over thousands in terms of the size of clauses.
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The next proposition gives the soundness and completeness of the encoding for the

active pathway finding problem with regard to z.

Proposition 3 Given π = (M,R,A,MS,MT ) and z, let Ψz be the translated formula

as above. There is a model I of Ψz iff Gsol = (M sol, Rsol, Asol) is an active pathway of

π producing all target metabolites by time z, where

M sol = {mi | m∗
i,z ∈ I},

Rsol = {rj | r∗j,z ∈ I}, and

Asol = {(mi, rj) ∈ A | rj ∈ Rsol} ∪ {(rj,mi) ∈ A | rj ∈ Rsol}.

Proof. (=⇒) Let I be any model of the translated formula Ψz. In the following, we

prove that Gsol satisfies all conditions in Definition 9.

At first, obviously, Gsol is a sub-graph of G. Since Ψz |= ψ7, G
sol satisfies the

condition α1. Since Ψz |= ψ6, for mi ∈ MS, m∗
i,z ∈ I holds. Since Ψz |= ψ1 ∧ ψ3 ∧ ψ4,

if r∗j,z ∈ I then for any mi ∈ s(rj) ∪ p(rj), m
∗
i,z ∈ I holds. Thus Gsol satisfies the

condition α2. Since the definition of Gsol, it satisfies the condition α3. We prove the

condition α4 by mathematical induction on the integer variable k such that 0 ≤ k ≤ z.

(Basis of induction) We prove the case of k = 0. Since Ψz |= ψ1 ∧ ψ6, if m∗
i,k=0 ∈ I

then a metabolite mi ∈M sol is obviously producible from MS on Gsol.

(Induction step) Assume that, if m∗
i,k ∈ I then mi ∈ M sol is producible from MS on

Gsol. On this induction hypothesis, we prove that if m∗
k+1 ∈ I then mi ∈ M sol is

producible from MS on Gsol. Since Ψz |= ψ5, if m∗
i,k+1 ∈ I then either the following

two cases must hold: (a) m∗
i,k ∈ I, (b) for at least one reaction rj ∈ p′(mi), r

∗
j,k+1 ∈ I

holds. In the case of (a), by the induction hypothesis, mi is producible from MS at

time k. Thus, since the definition of producibility, mi is producible at time k + 1.

In the case of (b), since Ψz |= ψ3, for any ma ∈ s(rj), m
∗
a,k ∈ I holds. Since the

induction hypothesis, every metabolite ma ∈ s(rj) is producible at time k. Then, by

the definition, rj is activatable at time k + 1. Thus, any metabolites mi which are

product of rj are producible at time k + 1. In both cases (a) and (b), mi ∈ M sol is
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producible at time k + 1. Thus, by the mathematical induction, for any k, mi ∈M sol

is producible from MS on Gsol. Hence, Gsol satisfies the condition α4. Therefore, Gsol

is an active pathway of π.

(⇐=) Let Ga = (Ma, Ra, Aa) be an active pathway of π by time z. We prove that if

there exists Ga then there must be a model of Ψz that constructs Ga.

Let Ia be a set of propositional variables that constructs Ga. Since Ga is an active

pathway, for every miinM
a, mi is producible from MS. Besides, since MT ⊂ Ma,

Ia |= ψ5 ∧ ψ6 ∧ ψ7. Moreover, since the conditions α2 and α3, Ia |= ψ3 ∧ ψ4. For

every metabolite mi ∈ Ma (or reaction rj ∈ Ra), since if mi (or rj) is producible (or

activatable) at time t then the state remains at time t+1, Ia |= ψ1 ∧ψ2 holds. Hence,

Ia |= Ψz holds. Therefore, if there exists an active pathway of π then there must be

a model of Ψz that constructs the active pathway. �

Let V z be a set of propositional variables of reactions such that V z = {r∗i,z|ri ∈ R}.

The next proposition gives the soundness and completeness of the encoding for the

minimal active pathway finding problem with regard to z.

Proposition 4 Given a pathway instance π = (M,R,A,MS,MT ) and z, let Ψz be

the translated formula as above. Imin is a minimal model of Ψz with respect to V z

iff Gsol = (M sol, Rsol, Asol) is a minimal active pathway of π producing all target

metabolites by time z, where

M sol = {mi | m∗
i,z ∈ Imin},

Rsol = {rj | r∗j,z ∈ Imin}, and

Asol = {(mj, ri) ∈ A | ri ∈ Rsol} ∪ {(ri,mj) ∈ A | ri ∈ Rsol}.

Proof. (=⇒) By the proposition 3, Gsol is an active pathway of π. Assume that there

exists G′ = (M ′, R′, A′) such that G′ ⊂ Gsol. By the definition, R′ ⊂ Rsol holds. Then,

by the proposition 3, there exists a model I ′ of Ψz, and I ′ ∩ V z ⊂ Imin ∩ V z holds.

However, it contradicts with the definition of the minimal model. Thus, there cannot

be such an active pathway. Therefore, Gsol is a minimal active pathway.
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Figure 5.3: Example of Reversible Reactions

(⇐=) By the proposition 3, any minimal active pathway has a corresponding model

of Ψz. Let Imin be a model that constructs Gsol. Assume that there exists a model I ′

such that I ′ ∩V ′ ⊂ Imin ∩V ′. Then, an active pathway G′ constructed from I ′ mush

satisfy G′ ⊂ Gsol. However, it contradicts with the definition of the minimal active

pathway. Therefore, if there exists a minimal active pathway then there must be a

minimal model of Ψz with regard to V z. �

5.3.4 Treating Reversible Reactions and Cycles

Treatment of meaningless reversible reactions and cycles frequently become a prob-

lem in pathway analyses because these cause the expansion of the number of use-

less solutions. For this problem, some previous approaches took pre-processing or

post-processing which breaks reversible reactions and meaningless cycles in a path-

way [14, 110, 128]. Unlike those approaches, our method resolves the problem by

considering the minimality to produce all target metabolites.

For instance, we consider an example including reversible reactions shown in Figure

5.3. Two sets of metabolitesMS = {m1} andMT = {m4} are given as initial condition.

At first, pathways including the reactions r6, r7 or r8 cannot be active pathways

because these reactions are not activatable from MS. Then, suppose that four active

pathways G1, G2, G3 and G4, which consist of R1 = {r1, r3, r5}, R2 = {r1, r2, r3, r5},

R3 = {r1, r3, r4, r5} and R4 = {r1, r2, r3, r4, r5}, respectively. Obviously, three active

pathways G2, G3 and G4 including reversible reactions. However, since there are
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smaller active pathways G1, three active pathways G2, G3 and G4 cannot be minimal

active pathways. In this way, we can avoid inclusion of meaningless reversible reactions

and cycles in minimal pathways. From minimal pathways, we can see a property that

every reaction is essential, that is, none of them can be removed from minimal active

pathways to produce target metabolites.

5.3.5 Biological Applications

By the encoding described above, we can obtain minimal active pathways in a normal

cell. However, we sometimes want to know minimal pathways in a mutant cell, or

there are sometimes other qualitative constraints in actual metabolic pathways. In

order to adapt several situations, we can add optional constraints. In the following,

we show some of them.

Restricting the Producibility and the Increase of Metabolites

We often encounter the case of that there is a set of metabolites that we do not want

to produce in the application such as drug design. In this case, we can add constraints

that forbid making such metabolites producible. It can be represented in the following

formulas for each time t (0 ≤ t ≤ z):

∧
mi∈Mf

¬m∗
i,t

where M f is a set of metabolites which are forbidden to be producible. Those con-

straints are useful to refine outputs when we know such forbidden metabolites in

advance.

While analyzing organisms, there is a case that producing a metabolite is allowed,

but the metabolite must be consumed by some reactions to avoid the increase of the

metabolite. In this case, at least one reaction whose reactants include the metabolite

must be included in a solution pathway. Let M ′ be a set of such metabolites. The
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constraints represented in the following formulas for each time t (0 ≤ t < z):

∧
mi∈M ′

m∗
i,t →

∨
rj∈s′(mi)

r∗j,t+1

Constraints related to Gene Regulatory Networks

Besides the producibility of metabolites mentioned above, there is an important con-

straint related to gene regulation in cells. In general, enzyme, which has an important

role of reaction activation, is translated from a gene in the genome. Thus, if there is

an exclusive relation between two genes, it means that the two reactions transformed

from those genes cannot be activatable, simultaneously. We can add this constraint

by the following formulas for each time t (1 ≤ t ≤ z):

¬r∗i,t ∨ ¬r∗j,t

where reactions ri and rj are catalyzed by inhibited enzymes, respectively. This inhi-

bition relation refines output active pathways of the method.

The method allows us to simulate the difference between pathways of wild-type

organisms and pathways of mutants or gene knockout organisms. For instance, we

can obtain the effect of a gene knock out by removing the reaction ri related to the

gene that we want to delete. This is achieved by adding the following formula for each

time t (1 ≤ t ≤ z).

¬r∗i,t

As we have shown in this section, not only the standard constraints but also

optional constraints can be added. This could make it possible to combine a metabolic

pathway with other pathways such as signaling and gene regulatory networks. After

adding such constraints, an important property that every reaction is essential is still

inherited to solution pathways.
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5.4 Experiments and Results

To evaluate the proposed method, we use two reaction databases of E. coli K-12. One

is from the supplemental data of the literature [14]. Another one is from a well-known

biological database EcoCyc [84] which gathers results of biological experiments and

existence knowledge of E. coli. We downloaded the latest version 13.6 of the reaction

database of EcoCyc.

In the following experiments, we use conventional active pathways as preferred

solutions. Specifically, we said this is a preferred solution when it is included in

the conventional pathway. Conventional pathways are respectively obtained from the

literature [14] and the database EcoCyc [84]. We modified the Main class of the SAT

solver Minisat2 [42] and used it as a minimal model generator by Koshimura et al. [86].

In the experiments, before translating a given pathway instance to a propositional

formula, we avoid un-activatable reactions from given source metabolites. It is done

by a polynomial time procedure based on breadth first search. Its computation time

is included in the time of each experiment.

Each experiment has been done using a PC (2.53GHz CPU and 2GB RAM) run-

ning Ubuntu Linux 9.04. We have developed a graphical user interface integrating

the proposed method, which aims for smooth evaluation. To place the nodes, we use

the fast organic layout in the Java library Jgraph. In this layout method, vertexes

connected by edges should be drawn close to one another and other vertexes should

not be drawn to close to one another. Figures 5.4 and 5.5 are screen shots of our

experimental results on the interface.

5.4.1 Comparison with Previous Methods

We compared our method with two previous methods. One is a method using opti-

mization modeling for pathway analyses [14]. An input of this method is a reaction
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Table 5.2: Results for Pathways from the Literature [14]

Pathway#
Proposal [14] [110]

z #S Time (sec) cor. cor. (a) cor. (b) cor.

Gluconeogenesis 9 5 1.53 yes yes no no

Glycogen 3 1 0.36 yes yes no yes

Glycolysis 9 35 2.57 yes yes yes no

Proline Bio-synthesis 4 1 0.49 yes yes no no

Ketogluconate Metabolism 5 6 0.76 yes no no yes

Pentose Phosphate 6 7 0.95 yes yes no yes

Deoxythvmidine Phosphate 4 1 0.53 yes yes no yes

Kreb’s Cycle 8 35 2.71 yes no yes no

NAD Biosynthesis 5 16 0.69 yes yes no yes

Arginine Biosynthesis 8 1 0.98 yes yes no yes

Total 10 8 2 6

database with stoichiometry. Another one is a constraint based method for path find-

ing [110]. An input of this method is a reaction database without stoichiometry as

same as the proposed method. The comparison between these two methods [14, 110]

has also shown in the literature [110]. We use same source and target metabolites

according to the literature [14]. As right solutions, the method by [110] used liner

paths which are chosen from the conventional active pathways of [14]. Similarly, we

used those conventional active pathways deleted bypass reactions as right solutions.

The results are shown in Table 5.2. The first column shows 10 pathways we used in

this experiment. The second column shows the value of z where the preferred solution

was found. The third column shows the number of solutions found by z shown in

the second column. The fourth column shows the computation time for each pathway.
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The time indicates the total time from z = 1 to the value shown in the second column.

Columns 5-8 show each result of whether each method could find the pathway or the

path corresponding to the conventional one. In columns 6 and 7, (a) represents the

objective of minimizing the total number of reactions and (b) represents the objective

of maximizing the production of ATP in the literature [14].

As a result, we found every minimal active pathway corresponding to the conven-

tional pathway with time z ≤ 9. Moreover, the number of solutions is less than 10

except the pathway #3, #8 and #9. By the table, we compare our method with other

two methods. However, note that it is difficult to make a direct comparison due to the

differences of each input, problem formalization and the number of solutions. While

the optimization modeling using stoichiometry information by [14] generates one so-

lution for each pathway, it cannot identify two conventional pathways. Constraint

based path finding approach [110] outputs the best 10 paths for each pathway but it

cannot identify four conventional pathways. Among three methods, only our method

identifies all conventional pathways with tractable number of solutions. The average

computation time of the optimization approach is reported that it is 11 seconds over

10 pathways for the two objectives and the longest time is 85 seconds on a machine

with 3GHz CPU [14]. There is no mention of computation time in [110]. In contrast,

the average computation time of our method over 10 pathways is only 1.2 seconds.

5.4.2 Evaluation on the Whole E. coli Metabolic Pathway

from EcoCyc

We also apply our method to a whole metabolic pathway of E. coli. A bipartite

directed graph representation of this pathway is shown in Figure 5.4. In the following,

we use the naming of metabolites and reactions used in EcoCyc [84].

We choose source metabolites by calculating percentage of the presence of each

metabolites as same as the literature [14]; we define the percentage of the presence

97



Figure 5.4: Glycolysis Active Pathway on a Whole E. coli Pathway
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Table 5.3: Computed Minimal Active Pathways

Reaction Name (used in [84])
Reactions of 9 Pathways

a b c d e f g h i EC

2.7.1.121-RXN X

2PGADEHYDRAT-RXN X X X X X X X

3PGAREARR-RXN X X X X X X X

6PFRUCTPHOS-RXN X X X

6PGLUCONOLACT-RXN X

ADENYL-KIN-RXN X

DLACTDEHYDROGNAD-RXN X X

F16ALDOLASE-RXN X X X

F16BDEPHOS-RXN X

GAPOXNPHOSPHN-RXN X X X X X X X

GLU6PDEHYDROG-RXN X

GLYOXIII-RXN X X

KDPGALDOL-RXN X

METHGLYSYN-RXN X X

NAD-KIN-RXN X

NADPYROPHOSPHAT-RXN X

PEPDEPHOS-RXN X X X

PEPSYNTH-RXN X X X X

PGLUCISOM-RXN X X X X X X X X X

PGLUCONDEHYDRAT-RXN X

PHOSGLYPHOS-RXN X X X X X X X

RXN0-313 X X X X X X

RXN0-4401 X

TRIOSEPISOMERIZATION-RXN X X

Total Number of Reactions 5 6 6 7 7 8 8 8 8 11
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Figure 5.5: Computed Glycolysis Active Pathway of the E. coli pathway

of a metabolite m as prm = (nm ÷ |R|) × 100, where nm represents the number of

reactions in which the metabolite m appears. According to the value of prm, the first

6 of 1073 metabolites are chosen: PROTON, WATER, ATP, ADP, |pi| and NAD. In addition,

GLC-6-P and PYRUVATE are given as the source metabolite and the target metabolite,

respectively. We then apply our method to find a glycolysis pathway in a whole E.

coli pathway. As we can see it on biological literature such as [47], glycolysis is known

to a pathway constructed by 8 steps. In this experiment, z = 8 is thus given, and a

number of reactions of pathways is limited to less than 8, which is implemented by

constraints of a sequential counter by Sinz [124].

As a result, we found 9 minimal active pathways by incremental SAT solving

from z = 1 to z = 8. The total computation time is only 3.61 second. All 9 min-

imal active pathways are shown in Table 5.3. In the table, the first column shows

reaction names constructing pathways. Columns 2-10 show each found minimal ac-
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tive pathway. The 11th column EC shows the conventional glycolysis pathway de-

scribed in EcoCyc. Among 9 pathways, the computed pathway h corresponds to

the conventional pathway. We here consider the computed pathway h shown in Fig-

ure 5.5. All reactions included in the computed active pathway are included in the

conventional active pathway. However, some reactions included in the conventional

glycolysis active pathway are not included in the computed active pathway. This is

because conventional pathways in EcoCyc sometimes contain bypass reactions. In

the case of the glycolysis active pathway, TRIOSEPISOMERIZATION-RXN is such a by-

pass reaction, which consumes DIHYDROXY-ACETONE-PHOSPHATE as a reactant and pro-

duces GAP. The reason why E. coli needs this bypass reaction is that accumulation of

DIHYDROXY-ACETONE-PHOSPHATE is harmful for its cell [48]. Thus, some organisms in-

cluding E. coli have detoxification pathways of DIHYDROXY-ACETONE-PHOSPHATE [47].

That is, this metabolite is needed to be consumed by some reactions when it is pro-

duced. As we mentioned in the previous section, if we have such biological knowledge

in advance, we can add optional constraints. In this case, we add a constraint rep-

resenting that if the metabolite DIHYDROXY-ACETONE-PHOSPHATE is included in the

solution pathway then there must be at least one reaction whose reactants including

the metabolite. After adding this constraint, our solution pathway correctly includes

this bypass as same as the conventional pathway. However, there are other two reac-

tions in the conventional pathway which are not included in the solution pathway. To

analyze why these are needed in glycolysis is a future topic to be considered.

5.5 Related Work

As far as the authors are aware, the exactly same problem of the minimal active

pathway finding problem has not yet been formalized. Schuster et al. propose a

method called elementary mode analyses [120]. They focus on metabolic flux distri-
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butions, which are computed by matrix calculus, corresponding to sets of reactions in

metabolic pathways. This method can treat multi-molecular reactions while taking

into account stoichiometry, and its computational scalability is enough to analyze large

pathways. However it tends to generate a large number of solutions without ordering

e.g. over 20000 solutions are generated for a pathway including 100 reactions [85].

Even though found solutions are potentially interesting, analyzing all of them through

biological experiments would be infeasible task. There are other difference from our

method. They use stoichiometry information to solve their problem while our prob-

lem only needs the topology of a pathway. Besides, their approach needs to strictly

define source metabolites with fixed amount that must be consumed. In contrast,

our method treats these as candidates that will be utilized; thus, we can flexibly give

source metabolites. Availability of optional constrains is also a merit of the use of

our method. Küffer et al. report an approach using a Petri net [87]. Although their

approach considers producibility and activatability of metabolites and reactions, they

do not consider subset minimality of the solution. Croes et al. report the path finding

problem with weighted graphs. They add a weight for each metabolite node according

to its degree. The results are improved compared with the original graph but there is

still a remaining problem as it indicated by [36].

Tiwari et al. propose a method using a weighted Max-SAT solver [132] to analyze

signaling pathways. They translate reaction laws into soft constraint represented in

weighted clauses to compute ordered solutions. However, its ordering is sometimes

not acceptable from a biological viewpoint since reaction laws that must be held are

sometimes violated.

Handorf et al. propose the inverse scope problem [62]. This is the problem of finding

necessary source metabolites from target metabolites. The two differences between

their problem and our proposal are as follows. One is that they only calculate the

cardinality minimal solution. While their approach, we can generate subset minimal
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solution with a SAT solver based minimal model generator. Another one is that each

of their solution includes all reactions which are activatable from source metabolites

which are needed to generate target metabolites. For instance, if there are two ways

to produce a metabolite from source metabolites then both are mixed in one solution,

that is, we cannot distinguish the two ways. Our method can distinguish such two

ways and we think that it is important to detect functionally minimal pathways for the

analyses of metabolic pathways. Schaub and Thiele apply answer set programming

(ASP) to the inverse scope problem [119]. There is another research using ASP. Ray

et al. report a method using ASP to compute the steady states of a given pathway

and complete lacking reactions [116]. Unlike their approach, we use minimal model

generation to compute essential reactions to produce target metabolites.

5.6 Summary

In this chapter, we formalized the minimal active pathway finding problem that detects

minimal reaction sets to produce target metabolites. We then apply the incremental

SAT solving to the problem and have an experimental evaluation. Our method based

on incremental SAT solving has the following features. It can treat reversible reac-

tions and cycles without pre-processing and post-processing. Besides, it is capable

to treat a whole E. coli metabolic pathway and optional constraints are additional

without modification of the computing procedure. As far as the authors know, there

are still few methods have been reported for analyses of a whole organism pathway.

Our method provides a new analysis method for a cell-scale metabolic pathway and

could treat extended pathways combined with other pathways such as signaling and

gene regulatory networks by additional constraints over pathways. As a future topic,

considering ranking method for obtained solutions and translating more biological

knowledge are important for the analyses of the extended pathways.
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Chapter 6

Conclusions and Future Work

This thesis investigates the studies on applying incremental SAT solving to optimiza-

tion and enumeration problems. So far, SAT problems and solvers have been paid

much attention in computer science. Due to its progress, methods based on these

techniques are now capable to tackle to a wide range of real world problems. This

chapter draws the conclusions from the previous chapters and discusses several future

topics.

6.1 Incremental SAT Solving and Applications

Following the consecutive papers by Davis et al. in 60’s, a large number of researches

have been done for both theoretical and practical aspects of SAT. Since around 2000,

sophisticated implementations have been reported besides improving algorithms. Sev-

eral SAT solver competitions push up its practical potential. This thesis particularly

studies how to apply SAT techniques to optimization and enumeration problems,

which is explained as incremental SAT solving, and apply it to real world problems.

So far, some researchers report incremental methods for their specific problems. We

construct the incremental SAT solving method consisting of an initial formula, an

update procedure and a goal condition. This is so general definition that it could be

104



applied to many problems. In this solving method, we can utilize learned clauses to

effectively compute a sequence of formulas.

We then show that how to solve a variety of problems by the incremental SAT

solving and evaluate it in the following two problems. One is the two-dimensional

strip packing problem (2SPP). This problem has been actively investigated from an

Operations Research perspective. As a new approach for 2SPP, we apply incremental

SAT solving. As far as we are aware, this is the first research to solve the 2SPP

by SAT technologies. Some of the obtained results are as follows: we compared

our method with the state-of-the-art CSP solver, and our method outperformed it

on 2OPP instances; we found learned clause reusing and reducing techniques are

effective for solving 2SPP instances; we showed that our method is competitive with

the previous ad-hoc 2SPP methods. In particular, the result of HT08 indicates hidden

potential of incremental SAT solving. This is because HT08 cannot be solved even

if we directly compute the 2OPP of its optimal value by a simple SAT solving as is

shown in the experiment. Thus, incremental SAT solving can also be considered as a

potential approach for such difficult problems. These results indicate that even though

SAT-based approaches have been widely studied, there are still challenging topics.

In addition, we investigate to apply incremental SAT solving to Systems Biology,

which has not been paid so much attention as application of SAT technologies. To

analyze metabolic pathways, we propose the minimal active pathway finding problem.

This is the problem of identifying necessary reactions to produce target metabolites.

Besides, we presented a translation from the problem into a propositional formula. We

use the incremental SAT solving to the problem and it has the following features: it

can treat reversible reactions without pre-processing and post-processing; it is capable

to treat a whole E. coli metabolic pathway and optional constraints are additional

without modification of the computing procedure. As far as we are aware, there are

few methods have been reported for the analysis of a whole organism pathway. Besides
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its computational performance, we found 9 minimal active pathways and one of them

corresponds to the conventional glycolysis metabolic pathway of E. coli. Moreover,

we explain that the capability of additional constraints and show it improves solution

pathways. These results indicate that the minimal active pathway finding problem is

a potential approach for the analysis of metabolic pathways.

6.2 Future Work

6.2.1 Encoding Methods and Other Representation

This thesis addressed the incremental SAT solving and applications to real world

problems. In this process, we first need to encode problems in propositional formulas;

however, propositional encoding is not unique even for a same problem [76, 136, 55, 52,

127, 129, 130]. Since computational performance of SAT solving depends on encoding,

getting more understanding of the relation between encoding and problem structure

and finding better encoding are necessary. Both must push up the potential of SAT-

based applications. On the other hand, except propositional formulas, there are several

ways to represent problems. For instance, many problems can be represented in other

frameworks such as constraint satisfaction problem (CSP), answer set programming

(ASP). For each representation, there is its own method to solve the problem with

its own representation. It is still open problem that which approach is the best.

There are some researches that analyze the difference between two approaches [45, 17,

40, 22, 54]. However, more practical and theoretical analyses are necessary. Besides

representation, there is another way to solve the problem represented in CSP and

ASP, with SAT solvers using some encoding method; Actually, several researches

have been done to solve CSP and ASP with SAT solvers [127, 92, 54]. Under this

circumstance, we can say that propositional representation e.g. CNF now becomes

a kind of assemble language because it is more simple and tractable for computers.
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More integrated analysis over several representations is an interesting future topic.

6.2.2 Accelerating Incremental SAT Solving

Besides representation, accelerate solving process for multiple formulas should be con-

sidered. For this issue, of course, the development of SAT solvers, is one direction.

Another one would be better management of learned clause reusing and variable selec-

tion for the incremental SAT solving. Different to single SAT solving, we can measure

another statistics while solving previous problems. To utilize such information is a

potential direction. In the CSP research domain, a various techniques have been

proposed to solve a sequence of CSPs [135]. Transporting these techniques to the

incremental SAT solving is important. As we have seen in this thesis, incremental

SAT solving can be applied to a wide range of combinatorial problems including op-

timization and enumeration problems. As a general and powerful approach, it is a

promising method and we should have more study on this issue.

6.2.3 Further Applications and Extensions

This thesis describes an application to 2SPP solving. Around this, other important

future work is to extend SAT-based methods to other optimization problems and

having a comparison with ad-hoc methods. There are many challenging problems that

have not been solved by SAT-based methods. Accumulating these comparisons reveals

strong and weak points of the methods, and it would promote the better understanding

of the advantage of the SAT-based methods. The other application we focused in this

thesis is the minimal active pathway finding problem. Since it is difficult to uniquely

define which solution is the best one, we need to enumerate solutions in this kind of

problems. Although all obtained solutions are possible candidates for the problem,

we want to order those in preferred ordering. There is a preceded research on this

topic [73]. To adapt such solution ranking method is an interesting topic. In recent
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years, symbolic approaches to Systems Biology are rising up. Since propositional

formulas are suitable for symbolic representation, it is a good application of SAT

solving methods. From a biological perspective, extending the notion of minimal active

pathways to other biological network such as gene regulatory networks and signaling

networks is important. We believe that this method provides a new approach to whole

cell analyses.
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spective on metabolism. Journal of Theoretical Biology, 252(3):530 – 537, 2008.

[63] R. Hasegawa, H. Fujita, and M. Koshimura. MGTP: A model generation the-

orem prover: Its advanced features and applications. In D. Galmiche, editor,

Automated Reasoning with Analytic Tableaux and Related Methods, volume 1227

of LNCS, pages 1–15. Springer, 1997.

[64] R. Hasegawa, M. Koshimura, and H. Fujita. MGTP: A parallel theorem prover

based on lazy model generation. In D. Kapur, editor, Proceedings of the 11th

Conference on Automated Deduction (CADE-11), volume 607 of LNCS, pages

776–780. Springer, 1992.

[65] E. Hebrard. Mistral, a constraint satisfaction library. In Proceedings of the Third

International CSP Solver Competition, pages 31–39, 2008.

[66] F. Heras, J. Larrosa, and A. Oliveras. Minimaxsat: An efficient weighted max-

sat solver. Journal of Artificial Intelligence Research, 31:1–32, 2008.

[67] M. Heule. SmArT solving: Tools and techniques for satisfiability solvers. PhD

thesis, Delft University of Technology, Delft, The Netherlands, 2008.

[68] D. S. Hochbaum and W. Maass. Approximation schemes for covering and pack-

ing problems in image processing and VLSI. Journal of the ACM, 32(1):130–136,

1985.
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