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ABSTRACT

Quantum coherence and its dephasing by coupling to a dissipative environment
play an important role in time-resclved nonlinear optical response as well as noadi-
abatic transitions in the condensed phase. Nonlinear optical processes of a multi-
state one-dimensional system with Morse potential in a dissipative environment
were discussed. This was based on a numerical study using the multi-state quan-
tum Fokker-Planck equation for a colored Gaussian-Markovian noise bath, which
was expressed as a hierarchy of kinetic equations. This equation can treat strong
system-bath interactions at a low temperature, where quantum effects play a major
role. The approach applies to linear absorption measurements as well as pump-probe
and photon echo spectroscopy. Laser induced photo dissociation and predissociation
were studied for the potential of Cs;. Nuclear wavepackets were calculated in the
Wigner representation and compared with femtosecond pump-probe spectroscopy
for various displacements of potentials and heat-bath parameters. The pump-probe
spectra show the dependence of displacement and exhibit dissociation and predis-
sociation dynamics. We demonstrated that the photon echo signals can detect the
effect of anharmonicity of potential surface as broadening of peaks. Numerical cal-
culations of probe absorption spectra for strong pump pulse were also presented
and discussed. The results show dynamical Stark splitting, but, in contrast to the
Bloch equations which contain an infinite-temperature dephasing, we found that at

finite temperature their peaks have different heights even when the pump pulse is on
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resonance. Furthermore we observed effect of the diabatic coupling between excited

and dissociative states as peaks on spectra.
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Chapter 1

General Introduction



Most chemical reactions take place in a condensed phase, such as a liquid state
environment[l]. It is therefore not surprising that scientists have a great interest in
the exploration of the dynamics in the condensed phase. Such system is, however,
relatively difficult to understand because the system is disturbed from the envi-
ronment. For example linear absorption measurements provide information on the
energetics; however, this information is often obscured by the broad linewidths at
room-temperature,

The developments in the generation of ultrafast laser pulses, with pulse dura-
tions close to the typical vibrational period of molecular vibrations[2], have led to
a situation that nonlinear ultrafast spectroscopic measurements can now easily be
conducted. The absorption and emission spectrum of the dissolved probe are char-
acterized by broad and structureless bands, but the nonlinear optical spectroscopies
provide us with a wealth of information about the physical system being studied,
and may allow the experimentalist to overcome the problems of environment-induced
obscurities of the signal. Furthermore, ultrafast nonlinear optical experiments give
us information regarding relaxation timescales, which is not available from ordinary
absorption experiment for a dissipative system.

In the last decade, many nonlinear optical effects have been explored in studies
of nuclear dynamics in condensed phases, and it was shown that each technique
projects onto certain types of molecular motion. For instance, while the optical
Kerr effect probes solvent motions associated with anisotropic Raman polarizabili-

ties, far-infrared spectroscopy only senses dipolar molecular motions, while optical
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absorption and emission spectroscopies cover all molecular motions that couple to
optical transition.

Optical spectroscopic techniques differ in the characteristics of the excitation
fields applied to the sample. Generally two classes can be defined, the time domain
and the frequency domain spectroscopy. In the time domain experiments the tem-
poral duration of the excitation pulse can be regarded as short on the timescales
of the dynamics of the system, which is on the order of tens or hundreds of fem-
toseconds. Spectrally this is equivalent to the condition that the spectrum of the
excitation source exceeds the linewidth of the relevant optical transition. The selec-
tivity of probing the dynamics in the time domain, relaxes the particular sensitivity
in the spectral domain. Different classes of time domain experiments such as pump-
probe[3, 4, 5] and photon echol6, 7, 8] spectroscopy have been used to investigate the
problem of dynamics for a dissipative system. The frequency domain experiments
distinguish themselves by their selectivity in the frequency domain. Inherently to
the spectral sensitivity, temporal resolution is relaxed. Also in the frequency do-
main, the techniques such as picosecond CARS[9] and absorption/emission[10] spec-
troscopy have been applied as probes of a condensed phase system as well.

The time domain and the frequency domain spectroscopies are complementary
in terms of their sensitivity with respect to time scale and it is therefore essential
to consider both domains in order to acquire a complete picture of dynamics of the
system. While Fourier-transform relations exist both for linear and nonlinear optical
susceptibilities, time domain optical experiments have the possibility of creating a
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time-window through which molecular motion can be explored{11]. In this thesis
various time domain nonlinear optical methods are studied to unravel the optical
dynamics of a dissipative system.

The understanding of such highly resolved measurements demands theoretical de-
seriptions which go far beyond simple models. A tremendous insight has been gained
by comparing qualitative arguments, quantitative analytical calculations([15, 16], and
numerical studies[17, 18, 19, 20, 21] with experiments. By using the multimode
Brownian oscillator or spin-boson Hamiltonian, a phenomenological description of
molecular motions in condensed phase has been investigated theoretically[12, 13].
The response function approach|22], which is based on a perturbative expansion of
the optical polarization in powers of the laser fields, has been successfully applied
to study four-wave[12, 23], and six-wave mixing experiments[24, 25]. Calculation
of the response functions involves integration over the nuclear degrees of freedom.
Thus, one could obtain the response function only for a system with harmonic po-
tential surfaces. It is possible to include any coordinate dependence of transition
dipole moments on coordinates (non-Condon effects) or a weak anharmonicity into
the Nth-order response function by using a nonequilibrium generating functional,
which is obtained by the path-integral approach[15, 16, 26]. Applicability of this
approach is, however, still limited.

To investigate the nonlinear optical process one can also use wavepacket representation[14].
With ultrashort pulses one can now prepare a molecular wavepacket and probe its

evolution and observe molecular reactions in the time domain|27, 28]. For a long
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time the wavepacket had no real practical use because their generation seemed im-
possible. However, recent advances in the physics and chemistry of laser interactions
with atoms and molecules have brought actual wavepacket in experiments. The ex-
perimental work on femtosecond excitation and the observation of the subsequent
wavepacket dynamics are quite extensive and reviewed recently. For example, it
became possible to prepare wavepacket by exciting atoms to Rydberg states with
short pulses[29].

One of the major reasons for studying wavepacket dynamics of a molecule is the
possibility of enhancing, or controlling chemical reactions by careful application of
pulses of light with optimal frequency, intensity, duration, and timing[30, 31, 32].
A simple example, which can be called 'controlled’, is the photodissociation of a
molecule theoretically. Here new products are formed by using a light pulse to
transfer a stable ground state wavepacket to an unstable dissociative potential. In
a recent experiment, controlling over the dissociation of Nal was demonstrated[33].
Another approach is using multi pulses of light. A typical problem is to overcome a
barrier on the ground state potential and this is achieved in two steps. The method
can be generalized to overcome barriers on excited states and the concepts of control
theory can be used to design optimally shaped light pulses to produce the desired
products[34, 33].

The femtosecond timescale often allows one to exclude the spontaneous decay
of the excited state population by calculations. However, in the processes following

the excitation it can play a role and it may interfere with the excitation process
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itself. There is a related problem in the treatment of molecular system in the
condensed phase, which neglected the effect of environment. In general Shrodinger
equation can’t contain the effect of heat bath, but one can treat the dissipation by
using quantum Fokker-Planck equation. The quantum kinetic equation for reduced
density matrix elements can treat arbitrary potential surface and shape of laser
field. In this thesis we study various optical processes by calculating time-evolution
of wavepacket.

In the remainder of thesis we shall consider nonlinear spectroscopy for a dissi-
pative system by using multistate quantum Fokker-Planck equation for a Gaussian-
Markovian noise bath. In the next chapter, we describe the model Hamiltonian for
a dissipative system and present the multi-state quantum Fokker-Planck equation.
Chapter 3 presents the procedure for calculating the absorption, pump-probe and
impulsive two pulse photon echo spectrum. In Chapter 4, we calculate the linear
absorption, pump-probe spectra and two-pulse photon echo signals for various dis-
placement and heat-bath parameters. The spectra show the effect of heat bath
and displacement. Chapter 5 is devoted to concluding remarks. We explain the

possibilities of quantum Fokker-Planck approach.
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2.1 Introduction

Optical processes can be calculated using a direct integration of the equations of
motion in the presence of fields. By calculating the relevant wave function or density
matrix elements, it becomes possible to explore optical processes for a system with
arbitrary potential surfaces. A difficulty with this approach is the proper treatment
of dephasing processes induced by a heat bath. These can be incorporated using
equations of motion for a reduced density matrix, such as the quantum master
equation or the quantum Fokker-Planck equation. Effects of the bath are then
taken into account by introducing a damping operator, which can be obtained by
assuming Gaussian-white noise fluctuations and a bilinear system-bath interaction
expressed as Heg = RY cutn = Lenlat + a7) (b} + b;;), where a* and b} are
the creation and annihilation operators corresponding to the system and the bath
coordinates, respectively. We should notice that the reduced density matrix equation
with the bilinear interaction can be applied only to the high temperature system, i.e.,
hw./kgT < 1, where w, is the characteristic frequency of the system. If one applies
these equations beyond this limitation, then one obtains unphysical results such as
the negative probability of density matrix elements. For the master equation, this
phenomenon is known as breaking of dynamic positivity[36], which is the limit of the
reduced equation of motion approach. If one modifies an interaction in the resonant
form (or the rotating wave approximation form), i.e., Hgy = L ea(ath, + a b))

then this temperature limitation can be relaxed. We should notice, however, that
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this modification of the Hamiltonian alters the dynamics described by the original
Hamiltonian, though the obtained equation of motion can be applied to the low
temperature system. The neglect of the off-resonant terms a~b, + a*b} can be
systematically performed by using the averaging method for the generalized master
equation before taking the long-time (white-noise) limit.

We can relax this temperature limitation without modifying Hsp by employ-
ing the colored Gaussian-Markovian noise bath instead of the Gaussian-white noise
bath. The time correlation function of noise fluctuation, €1(t), in the Gaussian-white
noise is expressed as < Q(¢)(t') >= §(t—t'), whereas < Q(t)82(t') >= exp[—7(t—1')]
in the Gaussian-Markovian case. If the characteristic time scale of the system, 1/w,,
is much longer than the correlation time of noise, 7 = 1/v, then one may regard
the noise as the § function in {. In the present case of femtosecond experiments,
however, the noise must be treated as a finitely correlated function of time. Thus,
the generalization to the Gaussian-Markovian is also requirements of describing a
system in the realistic condition.

We could obtain a hierarchy of kinetic equations for reduced density matrices
which can describe the system interacting with the colored Gaussian-Markovian
noise bath[37]. Physically, one can think of this hierarchy of equations as dealing
with a set of density matrices modeling the various numbers of phonons excited
states in very special way. This equation was originally obtained for a discrete
two-level system, and can be regarded as a generalization of the quantum master

equation. We then showed that a similar hierarchy of kinetic equations could be
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obtained for a system in the coordinate representation, which can be regarded as a
generalization of the quantum Fokker-Planck equation[38, 39]. In principle, we can
choose any representation to describe quantum dynamics of a system. Practically,
however, the coordinate representation has some advantages to study a system with
anharmonic potential surfaces. First, the coordinate description allows us to make
direct interpretations of the dynamics. Thus, we may easily discuss the classical and
the quantum systems on the same basis. Second, we can suppress the open bound-
ary conditions, where the wavepacket can go out from the edge of potential. In the
discrete state representation, the eigenstates become continuous for an open bound-
ary system, which makes impossible to integrate the equation of motion. Thus, if
one has to deal with the problem with the open boundary such that the problem of
photo dissociation, one needs to adapt the coordinate space representation. Third,
calculations are easier. One has to calculate a number of eigenstates and eigen ener-
gies to describe a system in the discrete state representation. Various interactions,
such as laser interactions and the system-bath interactions are then expressed as
matrices in this basis. Such calculations are computationally intensive except for a
system with harmonic potential surfaces. In the coordinate representation, we can
avoid such calculations for any shape of potentials and interactions.

The quantum Fokker-Planck equation was originally aiming to study a single
potential surface system. By a simple and straightforward generalization, we can
derive the multi-state quantum Fokker-Planck equation to apply to a system with

multi-potential surfaces.[40]
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2.2 Multi-State Quantum Fokker-Planck Equation
for a Gaussian-Markovian Noise Bath

First we consider a diatomic molecular system. Here we assume the molecular struc-
ture allows the following approximation: the Born-Oppenheimer approximation|[41,
42, in which it is supposed that the nuclei, being so much heavier than electron,
move relatively slowly and may be treated as stationary while the electrons move
relative to them. We can therefore think of the nuclei as being fixed at an arbitrary
relative coodinate, and then solve the Shrodinger equation for the wavefunction of
the electrons for the nuclear separation. Then we can choose a different separation
and repeat the calculation, and so on. In this way we can explore how the energy
of the molecule varies with bond length, and obtain a molecular potential energy
curve. It is called a potential energy curve because the kinetic energy of the nuclei
is zero as they are stationary. The Born-Oppenheimer treatment yields adiabatic
energy curves which do not cross if they are of the same symmetry. An alternative
representation involves diabatic surfaces that can cross. Diabatic surfaces preserve
the dominant characteristics of the electronic wave functions, but the surfaces have
non-zero interaction matrix elements which control the rate of trasition from one
surface to the other. The diabatic basis is a unitary transformation of the adiabatic
electronic basis.

Then we employ the electronic states denoted by |j>, and the Hamiltonian of
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the system is expressed as

2
Hs =2 4 515 > Usilq) < kl. (2.1)
M 4

Here, g is a nuclear coordinate strongly coupled to the electronic state and p is its
conjugate momentum. The diagonal element Uj;(q) is the potential surface of the
jth electronic surface, and the off-diagonal element Uji(q) with j # k represents
the diabatic coupling between the jth and kth states. In the laser spectroscopy
experiment the system interacts with the laser fields, then the Hamiltonian in the

rotating wave approximation is expressed by

HY(0 = Hs + 3 By((eHr %yt +hrtig), (22)
=1

where Fj(t) are the temporal envelopes of the laser pulses, and p; = ple >< g| and
i, = plg >< e| are the dipole operators of molecular system. In the Hamiltonian
(2.2) we have made the dipole approximation, thus neglecting the interaction of
higher-order multipoles with the electromagnetic field.

The multi-state density matrix for the Hamiltonian Eq. (2.2) may be expanded

in the electronic basis set as

pt) =317 > pirlaL, qrit) < k. (2.3)

3k
Here, p;k(qL, gr; t) is expressed in the coordinate representation.

We assume that the primary nuclear coordinate is coupled to a bath which
is represented by a set of harmonic oscillators with frequencies w,, masses m,,

coordinates g, and momenta p,. The interaction between the system and the nth

16



oscillator is assumed to be linear with a coupling strength ¢,,. The total Hamiltonian

is then given by [43]
Halt) = H(t) + H . (2.4)

where

2 2 2
s | P med (g "

i = ; [Emn s 2 (q“ mﬂwﬁ) } ’ (2.5)
Character of the heat-bath is specified by the spectral distribution: All information

about the bath which is required for a reduced description of the system dynamics,

is contained in its initial temperature and its spectral density

J(w) = wg ( n ) (8w — wn) + 6{w + wn)). (2.6)

dmpw?
The function J(w) is related to the symmetric correlation function of a collective

bath coordinate (X = ¥ c.72,),
% < X)X + XX(1) >= ﬁfde(u}cnth (%) cos(wt), (2.7)

where § = 1/kgT is the inverse temperature of the bath, and the time evolution
of X is determined by the pure bath Hamiltonian (Eq. (2.5) with ¢ = 0). Here

< -+- > denotes tr{e #H ...} /tr{e ?"}. We assume an Ohmic dissipation with the

Lorentzian cutoff,

_ M(¢ wy?
T 2m 42 4w’

J(w) (2.8)

With the assumption of the high temperature bath Shw < 1, this spectral density

represents a Gaussian-Markovian noise where the symmetric correlation function of
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the noise induced by the heat bath, is given by

% < X()X + XX (t) >= Mge“’r*, (2.9)

Thus, ¢ and v correspond to the friction and the relaxation time of the noise,
respectively. In this case, one can trace over the heat-bath degrees of freedom and
obtain the equation of motion in the hierarchy form [37, 38, 39]. The important
point is that restriction for condition does not involve the system frequencies (which
can be small or large compared to 37'), but only a high temperature requirement
with respect to the bath, which is much easier to meet. For the nth member of

hierarchy, pﬂ: , where j and k represent diabatic states, the equation of motion is

expressed as{40]

a R L a*
Iﬁaﬂ;e}{%:fm: t} - IM (ﬂtﬁ - ﬁ‘ﬁg) Pgukj {QL,Q'H; t}

+ [Ulge) = U{';"RHP;?:}(QL: qr;t)

+ (g~ QRJP_;J: (g, gr; ), (2.10)
9 B2 (8 &\
tﬁ.a{ﬂ {QIH qr; t] = T M (aqi R aqi) p_]'k [QLH qr: ]

+ [Ulge) = Ular))PSK (ar, qr; t)

2 2
— ihyp$(aL ari ) + (a1 — qR)PSR (9L, Gr; t)

RECy 2\ o ,
T (E}QL B 3@&) Py (4L, 9ri 1)
M
+ ﬁﬁ (a2 — ar)ASy (ar. ar; ), (2.11)
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and

@ (n) I Y I W ‘
ihapow (Q:arit) = = 537 5~ 3 A% (i, ar; 1)

+ [Ulg) — Ulgr)PSy (ar,9r;t)

— inhyply (qr.qrit) + (gr — ar)PSe " (aL, arit)
”ﬁzﬁ‘r( 0 0 ) (n—1)
22 - QR t

M =
* nc; (QL - QR]P_-EJ; ”(';'h qr; t]: {2,12}

where { is the friction constant. The hierarchy elements of reduced density matrix
p;:] are defined in the path integral form[38, 39]. The equation of motion is de-
rived by performing time derivative of these hierarchy elements. This hierarchy of
equations handle a set of reduced density matrix, modeling the states of the sys-
temn with various numbers of phonons excited in the bath. In this formulation, pﬁ}
includes all order of the system-bath interaction and is the exact solution for the
Hamiltonian Eq. (2.4). Then pﬂc}, pﬁ}, 5553 E';] describe the distribution functions
with a smaller set of the system-bath interaction, corresponding to the complete set
of the system-bath interactions minus lst, 2nd, ..., nth order of the system-bath
interaction, respectively. Thus, one can think that this formulation takes the op-
posite direction to the conventional perturbative expansion approaches, where the
zeroth member does not include any system-bath interaction, then the first, second,
third, etc, members gradually take into account the higher-order interactions and
approach to the exact solution. We shall be interested only in the zeroth member of
the hierarchy pﬁ} which is identical to p;; defined in Eq.(2.5). The other elements
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n # () are not related to the physical observable and introduced for computational
purposes. For the element of large hierarchy number N+ > w, where w, is the char-
acteristic frequency of the system such as the frequency of the harmonic potential,

the above hierarchy can be terminated by{38]

h? a9 i N)
oM aqi . aq% ij (';IL-l qr; }

+ [Ulgr) - Ulgr))psy (. ar; t)

a
iheple (0 amit) = —

— iNhypl (gL, ar;t)
ih( )

d
N T{q;. qr) (a—% - ;37?—) P_{].F:}(QL:QR;t]

o (gr.qr; 1)

.""l'rhzg"}' 3 ﬂ (N-1)
— Rt
+ 5 (a% aqn) Pir (gL, grit)

NCyM "
+ (:rg (QL. - QH]PEI: H('ﬂd I 'f-}: {213}

Using this hierarchal structure we may deal with strong system-bath interactions in
addition to a colored noise. In the white noise limit v 3 w, we may terminate the
hierarchy of Eqs. (2.10)-(2.13) by setting N = 0, obtaining the multi-state quantum

Fokker-Planck equation for a Gaussian- white noise bath:

<o G R &

+ [Ulge) — Ulgr)]pix(qr. gr;t)
= —C{‘IL — qr) ( i ai ) Pik(qL, grit)

- zé‘;{(fn —qr)(qL — qr)Pik(qL, qr: t), (2.14)
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If we consider a system with a single potential surface, then the above equation fur-
ther reduces to the quantum Fokker-Planck equation that was obtained by Caldeira
and Leggett[44]. Since we have assumed 3hy < 1, the temperature limitation of the
Gaussian-white case is more stringent than the Gaussian-Markovian case.

We can switch to the Wigner (phase space) representation[45, 46, 47, 48, 49]

Wik(P, R;t) f dreP M pu (R — /2, R+1/2;t). (2.15)

Eﬂ'h

and the density matrix may then be written as

W{t} = E |_j‘ = ij{:P, R; f,:] < kl [E‘Iﬁ]

ik

The Wigner representation has the following advantages; first it allows us to com-
pare the quantum density matrix directly with its classical counterpart. Second,
using phase space distribution functions, we can further easily impose the necessary
boundary conditions (e.g. periodic or open boundary conditions), where particles
can move in and out of the system. This is much more difficult in the coordinate
representation. Third, in the numerical calculation the Wigner representation re-
quires less memory than the coordinate representation, because the number of grid
for momentum need not as large as that for position.

In the Wigner representation the equation of motion is given by [40]

d
at

P 8
}EaR

_ h hﬁz[xmp P, ROy WS(P', R; 1)

+ X (P—-P Rt)WH(P, R;t)

WP, Rit)= — Wi (P, R;t)

21



d
Wik (P, R;t) =

2 i) (b, Rit) =

+ ;;:_ Wi (P, R;t), (2.17)

P 3
LfﬂR
- zﬂthXm{P P, RiWi(P', R;t)
+ Xpu(P—F ROWENP, RY)]

3

WP, R;1)

- WP, 55 Wik (P R;1)

P, R;t) +
+ Cy (P & %ip) WD (P,R;t), (2.18)

P
- MaRij}{PRE}

- h = hz[xjm{.n P ROWSNP', Rit)

+ Xo(P-F, R;t}W}ﬂ(P +R; t)]

- nyWP(P,R;t) + wf““*” P, R;t)

+ nly (P +— ip) Wi (B R; 1), (2.19)

and anchor equation for large N

ad
at

rEN}{P R: tJ i

2.8
MBR

27.3}1 ;[xjm(f* - P, R OWU(P', R;t)

Wiﬁ"*tP R;t)

E
X2 (P =P R tyWS(P', R; )]

M a
ﬁ aP

M 8
Ny (P 7 ap) Wiy (P, R; ). (2.20)

NAWS (P, R;t) + qaip (F ) Wi (P, R;t)
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Here,
X (P, R;t) =1 f dre"T MU (R — r/2;1) (2.21)
and
X;(P,Rit) = —i f dreP MU (R +1/2:t) (2.22)
are the Fourier transform representation of the potential terms which are convenient
for studyving the quantum effects.
In a similar way the multi-state quantum Fokker-Planck equation for a Gaussian

white noise bath is expressed as

a
at

WP, Rit)= — f!aiwf“*w R;t)

- ﬁf%ﬁE[X:mP P Ri)WS(P', R;t)

+ X (PP, ROWN(P, R;t)]

M 8

O p p.
+ ggj—}( ,ﬁ'&P)W (P, R; ). (2.23)

In the numerical calculation, we employed the dimensionless coordinate and mo-

mentum defined by r = R\/Mw/h and p = P,/1/Mhw,, respectively, where wy is

the system characteristic frequency. Then the equation of motion is expressed as

; {a}{p,f t)= - wupa {P rit)
- H _2"1?ZTX:‘miPmptr;f}WéfE(P':f:t)
+ Xpalp =P s )W (', 75t)]

+ ;H’[ Y(p,Tt), (2.24)
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a
ot

D (p, it
at {P: T j

EW{"}(IL rit) =

Pt = -

wapai Wi (1)
+ | B SXon(p = 8 OW S i)
Xolp =o' m YW, 73 )]

"yﬁ”m(p rit) + WEW;ﬁ}{p,n t)

op
1 9
o (0 ) VR O (2:29)

wupg;w{“] (p,r;t)
= f = Z[Xj-m[p - P )W (o 7it)
Xoilp — 2 ri )W (', 73 t)

T a n
Wi (p,rit) + wna—pﬁfék W (p,r;8)

mﬁ' 1 8 T T—
(+W$) Wi (p,r;0), (2.26)

iﬁ*’m}{p,r;t}
X L )W, i)
EZ[ m(p— P\ i )Wo' (P, 73
p— o, ) Win' (¢, 7 1))
AN 1 &
N":"ij!::‘j{pl TI;ﬂ' + C@ (P‘l‘ _“_P) LN](F:T t]

i (p+ 1 o ) Wi (p, 7). (2.27)

Bhwe dp
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and

Xii(p,r;t) = ijdr'ei"f[,-r,-j{r—  12:4),

X;(prit) = —i f dr'e? Uy (r +1/2;1). (2.28)
2.3 Bath Coodinate Representation

In this section, we present another representation of quantum Fokker-Planck equa-
tion for a Gaussian-Markovian noise bath. The multi-state density matrix for the

Hamiltonian Eq. (2.1) may be expanded in the electronic basis set as

At) =D _ i > pirlqe, ar, i t) < k. (2.29)
I

Here, pjk(qv.,qr, S%;t) is expressed in the coordinate representation, which includes
bath coordinate 2. The system-bath dynamics is described by evolution of wavepack-

ets pi; (g, gr, ). The equation of motion has the form [50]

L 1 i
ihEij[QL:QR;ﬂ;ﬂ = ~5f (&Ii - ﬂq}}) pik(qr, gr, S 1)

+ [Vilg) — Vilgr)lpixlar, ar, 2 t)

+ iw% (ﬂ +{J‘%) Pik(qr, ar, Qi 1)

— Qge — qr)pik(aL, 9r, i t)

+ %{'r (3%; = 52;) %ij(fhﬂ?ﬂfﬂ; t),  (2.30)
where

o = MCMkgT. (2.31)
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Here () represents collective bath coordinate, which contains the effect of the bath.
The bath coordinate € can be regarded as the Stochastic variable in the Kubo's
stocastic Liouville equation[51]. Equation (2.29) is thus idential to the stochastic
equation of motion obtained by Tanimura and Kubo (Eq. (4.25)) of [37], although
here we exress the equation in the oordinate space. We can also treat the system
coupled to the Gaussian-Markovian noise bath by using this equation.

In the Wigner (phase space) representation
1 i
Wik(P, R, Q; 1) = h f_m dre" Mo (R —r/2, R+ r/2,;1), (2.32)
and the density matrix may then be written as

W(t)=3_1i > Wi(P,R,Q;t) <kl (2.33)
ik

The equation of motion is given by

) : 9 ,
3 (o, Vit) = — wupa—ij(p,r,ﬂ;t}

1 ; r

+ Xnlp— p’,r;t}ﬂ im0, 58]
i .0 i
+ ’}'E\'ﬁ ( + Eﬁ) Wik(p, 1, ;1)

o ,#‘f’:fw O Wilr, i)

fMuC‘T d
kgT 8ﬂ‘

“ik(py T, U3 ), (2.34)

where we have introduced the dimensionless coordinate and momentum defined by

r = Ry/Muwy/h, p= Py/1/Mluw, and ' = /0, respectively.
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We may deal with strong system-bath interactions in addition to a colored noise

by using this £ bath representation.
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Chapter 3

Linear and Nonlinear
Spectroscopy

Y. Tanimura and Y. Maruyama,

“Gaussian-Markovian quantum Fokker-Planck approach to nonlinear spectroscopy
of a displaced Morse potentials system: Dissociation, predissociation, and optical
Stark effects”,

J. Chem. Phys. 107 (1997)1779.

Y. Maruyama and Y. Tanimura,
“Pump-probe spectra and nuclear dynamics for a dissipative molecular system in a
strong laser field: predissociation dynamics”,

Chem. Phys. Lett. 292 (1998) 28.
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3.1 Linear Absorption and Pump-Probe Spectroscopy

In a pump-probe experiment, the molecular system is prepared by a first laser pulse
(the “pump”) into a nonstationary state, the time evolution of which is probed
by a time-delayed second laser pulse (the “probe”). In the impulsive pump limit,
in which the duration of the pump is much shorter than the nuclear dynamics
timescale, vibronic motions in phase space may result in coherent oscillations (its
quantum beats). In most pump-probe experiments only the energy of the probe
pulse is measured. By dispersing the probe pulse, having a broad spectrum, in a
spectrograph after it has passed through the sample, one can achieve high-resolution
time-dependent absorption and dispersion spectra. [52, 53]

We consider a molecular system with electronic states strongly coupled to a single
nuclear coordinate. The Hamiltonian is expressed by Eq. (2.1). In this chapter,
we study a linear and nonlinear spectroscopy in a multi-level system with Morse
potential surfaces[54] denoted by |g>, |e>, |¢'> and |f>.(Fig. 3.1) The transition
frequency between g and e and between e and f are denoted by wg. and we;. We
assume that the system is initially in the ground equilibrium state p,=|g>p,<gl,
where p, is the equilibrium distribution function of the ground potential surface. In
a pump-probe experiment, the system subjected to two light pulses: with frequencies
and wave vectors are £, k, and £, ko, respectively. We assume that the carrier
frequency of the pump laser €, is close to the electronic transition frequency between

g and e. The probe frequency €2, is chosen to (i) §2; = wy. for a measurement
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between ¢ and e, and (ii) Q3 = w,y for a measurement between e and f. The total

Hamiltonian is then given by

Hg{t] = HS + El {t}[efk[r—iﬂﬂﬂi} % e—ik1r+iﬂ;1“1—]

i Eﬁ{ﬂ(eikzr—iﬂzt#;+E—ik,r+iﬂgt#2—}, {31}

where E(t) and E5(t) are the temporal envelopes of the pump and probe pulses,
and uf = ple >< g| and pu7 = plg >< e| are the dipole operators of the pump.
The dipole of the probe is chosen to be u; = ple >< g| and p; = plg >< ¢| for
(i) and p3 = p|lf >< €| and p; = ple >< f| for (ii). The electronic transition
dipole matrix element p in general depends weakly on the nuclear coordinate. For
simplicity we hereafter neglect that dependence and set p = 1.

The observable in optical measurements is the polarization defined by

P(r,t) = tr{pp(r, 1)}, (3.2)

where yp = p3 + i5 and p(r,t) is the total density matrix. Here, tr is the trace
operator to obtain the sum of diagonal element. The r dependence comes through

the laser interactions. We next expand the polarization in k space

P(r,t) = 3 €™ B(t). (3.3)

Optical measurements are most commonly carried out using one of the following
two detection schemes. First, in homodyne detection one simply measures the out-
going field in a specified direction k¢; (1) S(t) = | Pk, (t)|*. Second, in the heterodyne
detection mode, the outgoing field is mixed with a reference field denoted as Eyo
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(local oscillator), and the signal is given by (2) S(t) = Im[Epo(ks, )Py (t)]. Ex-
amples of (1) are four-wave mixing and coherent Raman which are observed in the
ks = 2k; — k; direction, whereas the pump-probe experiment with ky = k; —k; +k2
corresponds to the heterodyne detection. In this section, we study the pump-probe
spectrum.,

We calculate the optical signal to the lowest order of the probe field, E,(r,t),
but to arbitrary order of the pump field, E,(r,t). The probe absorption spectrum is
commonly detected by spectrally dispersing the transmitted probe, and the signal is

measured as a function of the dispersed frequency w,[12]. The dispersed spectrum

is given by
Slwe] = —2Im{ Bafws] Py [w2]}, (3.4)
where
AT
Eg[wg] = \E j—m dte™? Ez{f.), (35]
and
1 (%
Piy[wa] = Ej:-m dte™* Py, (t). (3.6)

We assume a weak probe and expand the polarization to first order in E;. The

polarization in the k; direction is then given by
I b ' o, —iflat’ - + gl
Paalt) = 3 fm dt' Ey(¢)e Y < [z (1), ut (¢)] > +e.c., (3.7)
where

<[pg(t),u3 () > = tr{{pz (), 13 (t)]pg}
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= tr{pzec

}

£ [ drH§ fy _|' drHY ﬂiffmdrHﬂ
—+
f

~x [l dr i

- tr{pzer Al ey

(3.8)

in which the exponential functions with arrows indicate time ordered exponential

and p*(t) are the operators in the interaction picture

i [ g g0 —ift gryo
,ui[t)=e£;j"” ‘*p*ej‘r‘““ x (3.9)

Here,
HY(t) = Hg + B, (t)(err— "ty 4 emtartiut, ), (3.10)

The expression Eq. (3.7) together with Eqgs. (3.4)-(3.6) is commonly used for a

measurement driven by a strong continuous wave (cw) laser. [55, 56, 57]

A. Linear Absorption Spectroscopy

The linear absorption spectrum is a probe absorption without the presence of the
pump-pulse. We can obtain the signal only in the case (i), since |f >< e|p, = 0.

Then, by setting F,(t) = 0 in Eq. (3.7) with Eq. (3.10), we have (Fig. 3.2)

Pu(t) = - f dt' Ey(t )-'“=
i'.ir;' 2 pgei'_‘-rl; drits

X tr{us e~ } +ee (3.11)

The correlation function part can be calculated by integrating the Liouville equation
L (t) = —(Hs, p(0); (3.12)
dt h

till time ¢ with the initial condition p(0) = p3 p, and by taking the element tr{u; p(t)}.
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B. Probe Absorption for an Arbitrary Shape and Strength of
Pump Pulses

Vibrational spectroscopy have proven to be an effective probe of interatomic potentials.[58]
In the pump-probe spectroscopy, the pump pulses transfer a small fraction of the
ground state distribution to the excited state, thereby creating a "particle” in the
excited state and a "hole” in the ground state. The particle and the hole then evolve
during the delay period 7, which are detected by the probe absorption signal. It

will be convenient in the following calculations to express the spectrum using ex-
pectation values rather than a correlation function. This can be done as follows.

Let us consider the evolution of the system subject only to the pump field. The
Hamiltonian is given by Eq. (3.10) and corresponding solution of Liouville equation

is denoted p°(t):

d g0 1 0
=) === [H3(2), P (2)]. (3.13)
We next introduce a modified Hamiltonian which includes only the negative fre-

quency component of the probe pulse E,
H,(t) = HS(t) + Ea(t)e . (3.14)

The solution of the Liouville equation with this Hamiltonian will be denoted p'(t):

é’% (t) = —%[HLUL p(t))- (3.15)

If we expand p/(t) to the first order in the probe, we obtain[59)]

P(t) =~ 2tr{uz (¢ (t) - p"(1))}
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= —i /_ ‘ dt' By (t)e ™" <[5 (), ud (t)] > +. .. . (3.16)

The above expression agrees with the intensity of the probe absorption. We can thus
calculate the probe absorption with the frequency wq by subtracting the solution of

p"(t) from that of g'(t), which can be expressed in the form

Slwa) = "EI?H{Ez[wzlfdtﬁm"‘tf[IiE (#'(t) = (D]} (3.17)

This scheme can be applied to a system driven by pump pulses of arbitrary number,

shape, and strength.

C. Impulsive Pump-Probe Spectroscopy

If the pump and probe pulses are weak and impulsive, we can further simplify
the procedures. We expand the correlation function in Eq. (3.16) with respect to
the pump interaction. In the case (i), by taking up to the second order in pump

interactions, we have

t:’"{[p; {t},g[t‘}]py} = -/: dr’ -/;:ITJ I.'i"il""El(T’]E[{T")E“'IHI{T’—T"}

4
SRyt E, 7, 18
j=1
where (Fig. 3.3a-d)
~if drH -3 _’“ drH,
Rl[t, tJ!TF! Tﬁ'} _— tr{f-‘IZ_EEE fr Sru.::Eq.—EJr oo Spg
i (7 drH i (Y drH i [ gl
x ehJ=? spl'eif* Sﬂéﬂif' 1,
~4 [ arH —i [" arH
Ro(t, ¥, 7, 7") = LT{MEEFEL Sp{'efr-xf““ Spg
i (7 drH i ‘:, T H i [ drig
w EE}I_M S”]—eﬁfr d Sﬂﬁif* .‘5},
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i i i ¢
L - =} JydrHs o —% [ drHs
Ra[ts E, 74T = tr{f-‘ﬂ ee iy B & Py

i ¥
L[" drHs _ i (" drH tdrH
clf""“ 15 E-’ia‘[’ : s#{eif” 223

—i [t drH . !:dh' - r:drH
R(t,t,7',1") = triugect I 7He gk o drte o gk Sindrts

1'“ f
- drH L drH
et loeedrls ) b Jdrtisy

(3.19)

Eq. (3.19) is the commonly used description of the response functions for a two-level
system|[12].

In the case (ii), we have

tr{[pz (t), 3 (t)lpg} = j; dr’ j: dr" By (') By (r")e 7' =)
X i Ry(t, ¢, 7', 7"), (3.20)
=3

where (Fig. 3.4a,b)

i [t drH =1 an
RS[!': t', TJ', T_u} e ti"{,u-sft-—ﬁ Lr ¥ 5#;.’3{_]{ Jrr S“T
o | ;
- drH L [T drH i ogrl
Ejf‘“ 5;19&5-‘{'” i s,u"eErf" : ¥

1 ¥

Ltk . — [ deH
R v ) = tr{#ieJI‘ " Sp;eﬁﬁ‘ e

—ﬂ'" drHs ,";j"" drHs -J" dris
e e presir" }.

X e :

Pq (3.21)

In the impulsive limit, the pump and the probe pulses are short compared with the
dynamical time scales of the solvent and solute nuclear degrees of freedom. We can

therefore make the following assumption,
E], (f.} = ﬂ|5{ﬂ, Ezl[f} = Hgﬁ[i = T}., {322]
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where @, and 6, are their areas and we take ¢#; = 6; = 1. Then Eq. (3.7) with Eqgs.
(3.19) or (3.21) reduces to

Py, (t) = Im{e™™™" i Ri(t,7)} (3.23)

i=]

with (Fig. 3.3e,f)

_ =i [drH
Ri(t,r) = Rat,r) = tr{pzect " o ()t

L[t drH
EE\‘L i 5}!

X (3.24)
Ry(t,7) = Ra(t,7) = tr{p, et ﬁfﬁsnipg
x eldrerfisy (3.25)
or
Py, (t) = Im{e™™™" il R.(t,7)} (3.26)
with (Fig. 3.4c)
Ry(t,7) = Ry(t,7) = tr{ngej I dTHS,u;’pc[f}
X eif: = Hs}, (3.27)
respectively, where
pe(T) = et f"rdrﬁs;ﬁpypl'eij; S (3.28)

In the case (i) u3 = e >< g| and 3 = |g >< €|, both Egs. (3.24) and (3.25)

contribute to the spectrum. The contribution from Eq. (3.25) does not depend on
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the pulse duration 7 and coincides with the expectation value in the linear absorption
spectrum Eq. (3.11). Thus, we can evaluate it using the same procedure as explained
for the linear absorption. The contribution from Eq. (3.24) can be calculated by the
following steps; (1) Calculate the initial equilibrium distribution p,. (2) Calculate
pe(t) by integrating the Liouville equation (3.12) from ¢ = 0 to t = 7 with the initial
condition p.(0) = |e > p, < e|. (3) Calculate p.,(7) by integrating the Liouville
equation (3.12) from ¢ = 7 to t = ¢ with the initial condition p..(7) = pep3. The
off-diagonal element of density matrix p.,(t) agrees with the contribution Eq. (3.24),
Le, Ri(t,7) = Ra(t,7) = peglt).

The contribution Eq. (3.27) of (ii) can be calculated from the same procedure
as Eq. (3.24) of (i). Once we calculate Py(t), the probe absorption spectrum is then

obtained from Eq. (3.6).
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Fig. 3.1. Model potential surfaces of a molecular system. Figure is for a four-level
system denoted by |g>, |e>, |¢'> and |f>, respectively. The resonant frequency

between |g> and |e>, and |e> and |f> are, respectively, expressed by w.y and w,;.
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| €eg
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Fig. 3.2. Double-side Feynman diagrams for linear absorption in a two-level system.
In a Feynman diagram, the two vertical lines represent the ket and bra of the density
matrix. The wavy arrow denotes interactions with the external field. Time increases
from bottom to top. The system is initially at thermal equilibrium in the electronic

ground state.
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Fig. 3.3. Double-side Feynman diagrams for pump-probe in a two-level system.
(a), (b), (c) and (d) denote the response functions R, Rz, H; and Ry respectively.
(e) and (f) denotes the response functions R, = Rpand R3 = Ry, respectively, in

impulsive limit.

40



(@ (b)

|f> <f] |f> <f|
k k
fe f fe f
ee - ee
ki1 k4
eg ,H#’l ge

::H k1

lg> <dg lg>  <dl

(c)

f> <
——————J\ Kkt
fe
k2
ee
K1 k1
lg> <g|

Fig. 3.4. Double-side Feynman diagrams for pump-probe in a three-level system.
(a) and (b) denote the response functions Ry and R}, respectively. (c) denotes the

response function Ry = R, in impulsive limit.

41



3.2 Impulsive Two-Pulse Photon Echo

In this section, we study a photon echo experiment in a two-level system, which
is described by the Hamiltonian (3.1) with gy = pe = p. Beside the pump-probe
experiment, the photon echo is another widely used technique for probing dynamical
processes in various systems. The photon echo technique can be utilized to eliminate
homogeneous broadening selectively, which is in principle impossible using the linear
response, We can apply one pulse preparing the system someway, let it evolve freely
for a time, apply a second pulse, and then watch the response. If the time between
pulses is less than dipole decay time, the polarization will rephase to some extent
after additional free evolution. This repahsed polarization emits an “echo” field even
in the absence of applied field. Photon echo was named in analogy with the NMR
“spin echo”.

Invoking the rotating wave approximation the directions of two pulse photon

echo are +k, = +(2ks — k;), then the third order nonlinear polarization is given by

PO = (_%)S/jmdt’ f_l;ndf"[_;dT"Ez(t;}EE{T']EI(T"]

x e T IR (RO o ) 4 R (1,67, 7)), (3.29)

where (Fig. 3.5a,b)

P drH I s
Ryt 0, ' r") = tr{n‘m-ﬁf" ’ 5;1“"64-*"““ spg

it o ) )
__drHs driz : drig
EE:I o m ei‘r p:""eﬂj*' 1,

_i fYarH ~4 Y arH
Ry, ', r") = tr{_u‘et—r‘r‘ g s,u*eq_xf‘“ i Sp,
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1 i
X eif"" fr p‘eifr" drHs

T Ei‘r" e }. (3.30)

In the impulsive limit, the response functions of two pulse photon echo are re-

duced to (Fig. 3.5¢)

Ra(t,r) = Rolt,r) = triu-ect 47 b Jo 71 ()

L [Tdr'Hs 4 [Par'H
X eif“ " s,u"'ei‘r* }: (3.31)

where the initial condition is expressed as

-+ [0 _drHs  §[° ar'Hs
ﬂgeﬁf

po(0) = ex (3.32)

Then the photon echo signal is proportional to the absolute square of a complex-

valued electric polarization, P (t):

Sipe = |PO(t))?

= |Ra(t,7) + Ralt,7)|% (3.33)

This response function corresponds to the time evolution of molecular system as
follows: The first pulse creates a coherence between |¢g> and |e> states. The total
polarization immediately begins to dephase, due to a variety of factors including pure
dephasing, inhomogeneous distribution of resonant frequencies, and anharmonicity
of vibrational modes. The second pulse arrives at a variable delay time 7, after the
first pulse, and interacts twice with the sample and causes a rephasing.

The time evolution of density matrix can be calculated by integrating the Liou-
ville equation (3.12). The contribution from Eq. (3.32) can be calculated by the
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following steps; (1) Set the initial equilibrium distribution p, following the procedure
described in Sec. 4.1. (2) Calculate p,. by integrating the Liouville equation (3.12)
from 0 to 7 with the initial condition. (3) Operate dipole operators p* to p,e(T)
from left and right sides to obtain p.,(7). (4) Calculate p,, by integrating from 7 to

7+ t. (5) Take the element of tr{pp.,(T +t)}.
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Fig. 3.5. Double-side Feynman diagrams for two-pulse photon echo in a two-level
system. (a) and (b) denote the response functions R; and Rj, respectively. (c)

denotes the response function R; = Ry in impulsive limit.

45



Chapter 4

Numerical Calculation

Y. Tanimura and Y. Maruyama,

“Gaussian-Markovian quantum Fokker-Planck approach to nonlinear spectroscopy
of a displaced Morse potentials system: Dissociation, predissociation, and optical
Stark effects”,

J. Chem. Phys. 107 (1997)1779.

Y. Maruyama and Y. Tanimura,
“Pump-probe spectra and nuclear dynamics for a dissipative molecular system in a
strong laser field: predissociation dynamics”,

Chem. Phys. Lett. 292 (1998) 28.
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4.1 Linear Absorption Spectrum

We consider the displaced Morse potentials system defined by (see Fig. 4.1);

Up(R) = E{1l—e (PP},
D‘et;l:R} = Eg'{l = ﬂ“ﬂiﬂu DQ}}E + -ﬁwgej

Uy(R) = E.{1—e *F"P032 4 hwge + wye), (4.1)

where E,, a, and D; are the dissociation energy, the curvature of the potential, and
the displacement, respectively. At the end of next section, we will also include the

dissociative state, ¢’ and the diabatic coupling between e and ¢’ described by

UEE*{R] - Ege-‘zn’fﬂ-uﬂ?]_kfwgm

Ue(R) = Ae &R-Ds)" (4.2)

Hereafter, we employ the dimensionless coordinate and momentum defined by r =
Ry Muy/hand p= Fm, respectively, where wy is the system characteristic
frequency and set aswy = \/U_;;(r}. The displacement and curvature of the potential,
Dy, D, a, ete. are also measured in this unit. We set E, = 3649.5[cm~], a =
0.6361, and D, = 40.598(4.64788[A]) as the ground state of the Cs; molecule[60, 61],
which has been studied by a variety of spectroscopic techniques[62, 63, 64, 65].
The fundamental frequency is then given by wp = 38.7[cm™']. We calculate linear
absorption and pump-probe spectra for various displacement d = Dy — D,. For
the dissociative state, the parameters were chosen to be o' = 0.6361, A = 1.0,
A = 300[cm™!], and d' = D3 — D, = 11.09, respectively. We have used two values
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of friction ¢ = 0.16[cm~!] (weak) and { = 47.8[cm™!] (strong) and have chosen the
inverse correlation time v = 4.8[cm™'], and the initial temperature T = 300K, which
satisfies the condition Shy = hy/kgT = 0.023 <« 1. We first calculate the initial
equilibrium state by integrating the equation of motion from time t = —f; to t =0

with the temporally initial condition,

Wi (p,r;—t;) = exp[—B(fuwop®/2 + Ugy(r))],

Wi, r—t;) = 0. (4.3)

Note that Eq. (4.3) is the equilibrium state of the system itself, but, it is not the
equilibrium state of the total system including the bath, since it neglects the initial
system-bath correlation. In the present formalism, such correlation can be taken into
account by the nonzero hierarchy elements, i.e., W}:}{p, r:t) # 0. By integrating
the equation of motion from time { = —¢; to ¢ = 0, the density matrix comes to
the "true” equilibrium state described by the full set of hierarchy W;;}[p, b =),
if we set t; for a sufficiently longer time than the characteristic time of the system.
In the following, we use the calculated full set of hierarchy W};}{p,r;: = 0) as
the true initial condition. The numerical integrations of these kinetic equations
were performed by using second order Runge-Kutta method for finite difference
expressions of the momentum and the coordinate space. The size of mesh was
chosen to be 30 x 231~130 x 1601 in the range =10 < p < 10 and 34 < r < 57 ~
—~34 < p < 34 and 34 < r < 106. On each mesh point, the kinetic operator pdW/or

is approximated by a left-hand difference, p;(W (p;, ;) — W(p;, m5-1))/ &r for p; > 0

48



and by a right-hand difference p(W(p;,7j41) — W{(pi, r;))/&r for p; < 0.[66] The
discrete Fourier expression is used for the potential kernel Eq. (2.28). We have
taken into account about 11~24 hierarchy elements for W™, The accuracy of the
calculations was checked by changing the mesh size and the number of terms in the
hierarchy.

After obtaining the equilibrium state, we calculate the linear absorption by inte-
grating the equation of motion Egs. (2.24)-(2.27) instead of the Liouville equation
Eq. (3.12) following the procedure explained in Chap. 3.

In Fig. 4.2 we present the linear absorption spectra between the g and e states
for different displacements: (a) the small d = 1; (b) the intermediate d = 3; and (¢)
the large d = 7. Thus, the linear absorption with and without the dissociative state
(€' state) give the same result. In each figure, we have calculated two cases of friction
¢ = 0.16[cm™] (weak) and ¢ = 47.8[cm™!] (strong). Since we assumed that probe
pulse connect only the g and e states, the contribution of the linear absorption is only
from We(p,r;t). Here, we set Aw = w — wy. Fig. 4.2a is for small displacement.
Each peaks represent the transitions between the vibrational levels of the ground and
the excited states. Since the Morse potential at the vicinity of potential minimum
is well approximated by the harmonic surface, in this small displacement case, the
absorption spectra resemble to those from the displaced harmonic oscillator system
with the fundamental frequency wy = 38.7[em~']. For d = 3, transitions to the
higher vibrational levels in the e state can take part in. Thus, we observe many

peaks in the weak damping case. Due to the anharmonicity of the potential, the
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interval of vibronic lines decreases as frequency increases. In the strong damping
case, each vibronic lines are broadened and we simply observe the envelope of the
corresponding spectrum. Because the resonant frequency between the ground and
excited state is not linear function of coordinate (see Fig. 4.1a) such a displaced
harmonic oscillators system, the envelope of peaks is not a symmetric Gaussian
in such a way that the blue side of the spectrum is amplified at the expense of
the red side. For d = 7, the transition mainly occurs between the ground state
and continuum dissociative state and the spectrum is widely spread out.[67] The
shape of spectra in the weak and strong damping cases are almost identical and
overlapped. This is because, in this large displacement case, a laser excitation
brings the wavepacket to the continuous dissociative states, where the wavepacket

cannot show coherent oscillations.
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Fig. 4.1. Potential surfaces of the displaced Morse oscillators system. Fig. 4.1a
is for a three-level system denoted by |g>, |e>, and |f>, respectively. We display
|e> state for three different displacements; d = 1(dashed line), d = 3(solid line)
and d = 7(dotted line). The resonant frequency between |g> and |e>, and |e>
and |f> are, respectively, expressed by w.s and w.s. Fig. 4.1b is for a system with

the dissociative state (|e'>). In this case, we only probe between the |¢> and |e>

states.
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4.2 Impulsive Pump-Probe Spectrum and Wavepacket
Dynamics

Next we present the impulsive pump-probe spectra for various displacement between
g and e states as a function of frequency and time. We have carried out the calcu-
lations for the weak and strong damping. However, since the difference of them is
mostly in the appearance of vibronic lines as seen in Fig. 4.2, hereafter we present
the results for the weak damping ({ = 0.16[cm~']) only. We show the result for
(i) probe absorption between g and e in Fig. 4.3 and for (ii) the probe absorption
between e and f in Fig. 4.4.

We calculated the signal following the procedure explained in Chap. 3 by inte-
grating the equation of motion Egs. (2.24)-(2.27) instead of the Liouville equation
Eq. (3.12). In the case (i), both the particle (Eq. (3.24)) and the hole (Eq. (3.25))
contributes to the signal. Fig. 4.3a shows the spectrum for small displacement
d = 1. As mentioned in Sec. 4.1, the system is well approximated by the displaced
harmonic oscillator, if the displacement is small, and the pump-probe spectrum is
therefore similar to the displaced harmonic oscillators case. The height of each peak
changes periodically with T = 1/wy = 861[fs] corresponding to the coherent motion
of the particle created by the pump-pulse. Fig. 4.3b shows the pump-probe spec-
trum for intermediate displacement d = 3. The small peaks in the figure correspond
to the vibronic bands as observed in Fig. 4.2b. The envelope of those small peaks

reflects the shape of excited wavepacket and the peak of the envelope shows oscil-
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lating motion with the period about 1000[fs]. Since the resonant frequency between
the ground and excited state (8w = [Uee(r) — Ugg(r)]/fi— weg) is not a linear function
of r, the shape of envelope as a function of dw is quite different from the original
shape of the wavepacket. For instance dw is a rapidly decreasing function of r in the
range © < o, where a is about 50 for d = 3, but gradually increases for r > « after
attained its minimum ( dw = —380[cm™"] for d = 3) at . Thus, if the wavepacket is
in the area of r < 50, the envelope corresponding to the wavepacket is broadened and
moves quickly, but if the wavepacket is in r > 50, the envelope becomes sharp and
moves slowly, compared with its actual shape and speed. Fig. 4.3c is for the large
displacement d = 7. In this case, the kinetic energy of the wavepacket is larger than
the dissociation energy and the wavepacket can escape from the potential. Com-
pared with Fig. 4.3b, the highest peak shifts from —380[cm™'] to —880[cm™"], since
the minimum of dw now becomes —880 at r = a = 54 for d = 7. Corresponding to
the dissociation processes, we have also new peak about O[cm™'|, which agrees with
the energy differences between the excited and the ground state at large r.

Fig. 4.4 shows (ii) the probe absorption spectrum between e and f As explained
in Chap. 3, the absorption between e and [ is a particle part of (i). Since we fixed
the position of the f state just above that of the g state, the displacement between
the e and f becomes —d. Thus, absorption peaks appear in the opposite direction
of Aw compared with case (i). As seen from Figs. 4.4a-c, we observe the coherent
motion of the envelope more clearly than the case of (i), since the spectra of (i)

involve the time-dependent particle and the time-independent hole contributions,
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whereas the spectra of (ii) involve only the time-dependent particle contribution.

Fig. 4.5 shows the time-evolution of the wavepacket We.(p, 7;t) for intermediate
displacement d = 3.0 and the weak damping { = 0.16{cm™!]. At time 7 = 0[ps|, the
wavepacket with the shape of the ground equilibrium state is created by the pump
pulse, then it moves in the positive coordinate direction. At time 7 = 0.4[ps], the
wave packet reaches to the right-hand side of a potential wall and then is bounced
back to the negative coordinate direction (v = 0.6[ps]). Due to the strong anhar-
monicity of the potential, distribution functions with different energy have different
eigen frequencies. Thus, anharmonic effects lead to a destruction of the initially
localized wavepacket as seen in figures at time 7 =0.6, 0.8 and 1.0[ps].

Fig. 4.6 shows W, (p,r;t) for large displacement d = 7. In this case, the
wavepacket is quickly broken up into small wavepackets because of anharmonic-
ity as explained in Fig. 4.1. The small wavepackets appeared at large r have larger
energy and some of them can escape from the potential. This is seen from the figure
at time 7 = 0.6 - 1.0[ps].

We next show the result with the dissociative state (¢’ state). Fig. 4.7 is for the
intermediate displacement d = 3 and the weak damping ¢ = 0.16[cm™']. Compared
with Fig. 4.3b, the peak at —380[cm™'| and 7 = 1.4[ps| is noticeably small. This
is because the population of wavepacket in the e state decreased after passing the
crossing point due to the predissociation process. This can be seen from the time-
evolution of the wavepacket shown in Fig. 4.8. In each figure, the upper one is

for |e> (the bound state) whereas the lower one is for |e'> (the dissociative state).
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Here, we use diabatic representation to display the time-evolution of wavepackets.
At 7 = 0.0[ps], the wavepacket in the e state moves in the positive coordinate
direction. The wavepacket in the e state, then, reaches (r = 0.2[ps]) and passes
(1 = 0.4[ps]) the curve crossing point (about r = 52). The transition mainly takes
place in the vicinity of the curve crossing point, and the €' population suddenly
increases when the e state wavepacket passes the crossing point (7 = 0.4[ps]). This
is because we considered the diabatic coupling between e and €' in the localized
form (see Eq. (4.2)). After passing the crossing point, the transferred wavepacket
starts to move into the ¢’ state potential surface (7 = 0.6[ps]). Since the €' potential
is not stable, the wavepacket in the €' state quickly moves to the positive direction

and then goes out from the edge of potential (7 = 0.8 and 1.0[ps]).

56



t_____. 'i’? e
Wi il v & &
i i Wy
e il
e L )

Fig. 4.3. Impulsive pump-probe spectra of three-level system for different displace-
ment in the weak damping case. Here, we probe between the [¢> and |e> states.

Here, we set Aw = W — Wee.
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Fig. 4.4. Impulsive pump-probe spectra of three-level system for different displace-

ment in the weak damping case. Here, we probe between the |e> and |f> states

and set Aw = w — wee.
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Fig. 4.5. The time-evolution of the wavepacket of the |e> state for the displacement

d = 3 in the weak damping case.
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Fig. 4.6. The time-evolution of the wavepacket of the |e> state for the displacement

d = 7 in the weak damping case.
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Fig. 4.7. Impulsive pump-probe spectrum of the system with the dissociative state
for the displacement d = 3 in the weak damping case (see Fig. 4.3). Here, we probe

between the |g> and |e> states.
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Fig. 4.8. The time-evolution of the wavepacket of the |e> state (the bound state)
and |e'> state (the dissociative state) for the displacement d = 3 in the weak damp-

ing case. In each figure, the upper one is for |e> whereas the lower one is for

le'>.
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4.3 Probe Absorption for Strong Pump Pulse: Op-
tical Stark Spectroscopy

The present Fokker-Planck equation approach can be applied to a system with any
shape of potentials driven by pulses of arbitrary number, shape and strength. Thus,
the present approach can generalize the earlier study of optical Stark spectroscopy
for a displaced harmonic oscillators system. Following the prescription discussed
in Sec. 3.1B, here, we have calculated the pump-probe spectrum for the displaced
Morse potential system under a strong pump pulse.

We assume that pump and probe pulses are Gaussian

E\(t) = 6iexp[—(t/n)?,

Ey(t) = 6yexp[—(t—1)*/73), (4.4)

with resonance central frequencies, i.e., {1} = )y = w,, We measure the transition
between the |g> and |e>> states only. The pulse durations were taken to be 7 =700[fs]
and 73=30[fs] and the time delay was varied between 7=~2.0[ps| to 7=1.0[ps], i.e.,
the pump and the probe pulse are overlapped. The pump intensity was pf, =
4.77[THz] and the probe was weak p@; = 1.59[GHz]. Considering ideal gas with
pressure of 1 [atm] at 300 [K], they are equivalent to 3.14 x 10°{W/m?] and 1.05 x
10%[W /m?], respectively, for the dipole moment u =1 [Debye]. In this study we
have calculated spectra in the case of Fig. 4.l1a with intermediate displacement
d = 3, large displacement d = 7 and the predissociation case of Fig. 4.1b for a weak

coupling. We choose the constant coupling between excited and dissociative states
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in this calculation:

Ueer (R) = A.

The other parameters were the same as in the impulsive case.

In Fig. 4.9, we show the pump-probe spectrum for the strong pulse excita-
tion. The curve at v = —2.0[ps| is similar to the linear absorption spectrum (Fig.
4.2b), since the pump is relatively weak and its effects are small at this early stage.
The vibronic side-band peaks are observed in the probe absorption spectrum cor-
responding to various vibronic absorption-emission processes. Due to the anhar-
monicity of potential and thermal effect, the vibronic transitions yield an asym-
metric line shape. The peak about —380[cm™'| corresponds to the absorption at
Aw = [Uee(r) — Ugg(r)]/h — wye = —380[cm™'] and is attributed to the movement
of wavepacket during non-impulsive probe detection. The curves at 7 = —1.5 and
—1.0[ps] show the dips about 0 [cm™'] caused by the unbalance between the popula-
tion and the coherent contribution of absorption spectrum (the coherent dips).[68]
When the pump pulse becomes stronger, the coherent dips are broadened. Each

vibronic transition shows a Stark splitting whose magnitude is given by the proper

Rabi frequency A, = ,/ Aw? + (RE\(t)/h)?, where Awpy, is the Rabi frequency
between the nth vibrational state of U, and mth vibrational state of U, with the
energy difference Awpy,. In the early time periods the splitting of the peaks near
the center are larger than the side peaks (see curves for 7 = —1.5 and —1.0[ps] in

Fig. 4.9). This is because the corresponding Rabi frequency A8,y changes signifi-
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cantly for small E(t) if wy, is small. The Stark peak of the origin (&w = 0), which
corresponds to zero vibronic line, then splits to the blue and to the red. The Stark
shifted peaks of the vibronic side bands can be observed outside of the Stark peaks
of the zero vibronic line. In between 7 = 0.0 and 1.0[ps], the vibronic mode seems to
be decoupled from the optical transition and we observe the spectra similar to the
one from the two-level system alone. This can be explained using an argument first
employed by Brewer[69, 70, 57]; under strong excitation, the relevant frequency of
the molecular system is not we, nor wy, but rather Rabi frequency AQ,,., & pE(t),
which represents the "dressed” states[71]. For very strong excitation, this frequency
is much larger than v and wy. Thus the oscillator cannot respond to the system
and the absorption spectrum approaches that of the isolated two-level system. This
decoupling at strong fields can potentially be used to eliminate intramolecular vi-
brational relaxation and to enhance the selectivity of laser induced processes. For
7 = 1.0[ps], the pump excitation becomes weak enough and the structure of vibronic
bands is recovered.

In Fig. 4.9, the blue Stark shift peak gives an absorptive contribution, whereas
the red one gives a gain contribution and becomes negative after 7 = —0.5[ps]. In
contrast, the Bloch equations or the stochastic Liouville equations predict both peaks
to be identical in this resonant excitation case. This phenomenon had been discussed
in a study of displaced harmonic oscillator system; Because of the Stark effect, the
system has two Stark shifted excited states (dressed states). If the pump field is on

resonance, and the temperature of the heat bath is infinite, then the populations of
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these two states are the same as predicted by the Bloch or the stochastic Liouville
equations. However, if the temperature of the bath is finite, the population of upper
Stark level can relax to the lower one which gives a gain of absorption from the
lower level to the ground state.

Figure 4.10 shows the probe absorption for a strong pump pulse for the displace-
ment d = 7. The spectra are widely spread out, but the peaks at Aw = —880[cm™|
are observed outside of the dynamical Stark splitting peaks. The intensity of this
peak increased from T = —2.0[ps] to T = —1.5[ps], then decreased and reached neg-
ative value after 7 = —1.5 [ps]. This phenomenon is explained as follows: At the
beginning the all population is on g state, the pump pulse transfer the population
from g state to e state. When the pump is relatively weak the wavepacket behaves
like an impulsive case (Fig. 4.3c), thus the peak at Aw = —880[cm™'] is positive
and increases with time. When the pump pulse becomes stronger, the population
of e state and that of g state become the same with Rabi oscillation. The excited
wavepacket is however relaxed to the minimum of the potential, which contribute
to the peak at —880[cm™'] as emission. Then the spectra shows negative peak at
—880[cm ™).

In Fig.4.11, we show the pump-probe spectrum for the strong pulse excitation in
the predissociation case. At 7=—1.0[ps] the spectrum shows many peaks in compar-
ison with the non-dissociative case (Fig. 4.9). This is understandable through the
following argument. The diabatic coupling between the e and €' states causes the

additional vibrational levels to the excited states around the energy at the crossing
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point. Since the laser interacts only between the g and e states, such additional levels
are dark for the laser excitation. Therefore at the beginning of the pump excitation
(r < —1.5[ps]), these dark levels do not play any role, and the probe absorption in
the displaced Morse oscillators (Fig. 4.9) and the displaced Morse oscillators with
the dissociative state (Fig. 4.11) show similar results. At time 7 > —1.0, when the
dissociative state exists, some population in the e state transfers into the dark levels
through the diabatic coupling as predissociation. Such reduction of population in
the e states induces the additional excitation from the g to e state, which appears
as many new peaks in the absorption spectra. For 7=1.0 [ps], the pump excitation
becomes weak enough thereby the structure of vibronic bands is recovered.

Fig. 4.12 shows the time-evolution of the wave packet W, (p,r;t) and W..(p, r; t)
for intermediate displacement d = 3. At 7=-1.5[ps] when the pump pulse is weak,
the wavepacket is close to the shape of the ground equilibrium state. Since we con-
sidered the Gaussian (non impulsive) laser excitation, the wavepacket goes up and
down between the ground and excited state potentials through the laser interaction,
therefore the shape of the ground state wavepacket is also changed. For 7 = —0.5[ps],
the population of the excited state increases due to the strong pump pulse, then,
for 7 = 0.0, 0.5 and 1.0{ps), it slightly decreases and increases because of Rabi flop-
ping. In comparison with the weak excitation case (Fig. 4.5), the wavepacket in the
excited state seems to be bounded due to the Stark effects.

In Fig. 4.13, we show the time-evolution of the wave packet W, (p,r;1) and
Weel(p, r;t) for large displacement d = 7. In this case the wavepacket on g and
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e state are bounded tightly on each potential and the wavepacket on the e state
cannot escape from potential by the strong pump pulse.

Figure 4.14 shows the time-evolution of the wavepackets W (p, 1), Wee(p, 3 t),
and Wy (p, r;t) for the predissociation case. In each figure, the upper one is for |e>
(the excited state), the middle one is for |¢'> (the dissociative state), and the lower
one is for |g> (the ground state). For 7=-1.0[ps|, the population of the excited
state increases due to the strong pump pulse, and the population transfer from
the g to e state takes place more quickly than that of the case of no dissociative
state. The wavepacket created in the e state is forced by the potential to move in the
positive coordinate direction. At the T = —0.5[ps] the wavepacket reaches and passes
the curve crossing point (about r=52). Although we have used a constant diabatic
coupling, the transition mainly takes place in the vicinity of the curve crossing point,
and the ¢ population suddenly increases when the e state wavepacket passes the
crossing point. This is because of the potential difference between e and €' states
SU(r) = |Uee(r) — Upe(r)]. The off-diagonal elements W, and We. are highly
oscillatory functions of time at positions far from the curve crossing point, where
8U(r) is large. Thus, W, can be large only near the crossing point, where §U(r)
is small.[40] After passing the crossing point, the transferred wavepacket starts to
move in the €' state potential surface. Since the €' potential is dissociative, the
wavepacket in the €' state quickly moves to the positive direction (r=-0.5[ps])
and then goes out from the edge of potential (v =0.0 [ps]). In comparison with

the bounded case (Fig. 4.12), at 7 =0.0[ps|, the positive momentum portions of the
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wavepackets on g and e are small due to predissociation. For  =0.0, 0.5 and 1.0 [ps],
the populations on g and e states slightly decreases and increases, respectively, and
the wavepackets oscillate on each potential surfaces. After the pump pulse vanishes,
those wavepackets reach to the thermal equilibrium position of each potential surface

after a long time.
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Fig. 4.9. Pump-probe spectrum for a strong excitation (uf, = 4.77[THz]) for the

displacement d = 3. 7 denotes pulse delay (ps).
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Fig. 4.11. Pump-probe spectrum for a strong excitation (uf, = 4.77[THz]) for the
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Fig. 4.12. The time-evolution of the wavepacket of the [¢g> and |e> states for strong
pump excitation for the displacement d = 3. In each figure, the upper one is for |e>

whereas the lower one is for |g>. (corresponding to the case of Fig. 4.9)
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Fig. 4.13. The time-evolution of the wavepacket of the |g> and |e> states for strong
pump excitation for the displacement d = 7. In each figure, the upper one is for |e>

whereas the lower one is for [g>. (corresponding to the case of Fig. 4.10)
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Fig. 4.14. The time-evolution of the wavepacket of the ground (|g>), excited (|e>)
and dissociative (|e'>) states for strong pump excitation for the displacement d = 3.
In each figure, the upper one is for |e>, the middle one is for |e¢'>, and the lower

one is for |[g>. (corresponding to the case of Fig. 4.11)
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4.4 Impulsive Two-Pulse Photon Echo

In this section we calculate impulsive two-pulse photon echo for a two-level system
by using Fokker-Plank equation in the bath coodinate representation. In addition
to the Morse potential system, we consider the displaced harmonic system defined

by
Ul(R) = Mw!R?,
UR) = Mw(R— D)?+ hwge, (4.5)

where M, w and D are the mass, frequency and the displacement. We set w, =
we = 38.7[cm™!] for the case (I) (Fig. 4.15a) and w, = 38.7[cm™}], w, = 55.7[cm™]
for the case (II) (Fig. 4.15b). We employed the dimensionless coordinate and mo-
mentumn defined by r = Ry Mwy/h, p = Pm and ¢' = ¢,/0, respectively.
Here wy is the system frequency. The displacement and curvature of the potential,
d, a, etc. are also used in this unit. The fundamental frequency is then given by
wy = wy in the harmonic systems. In the Morse potential system we set fundamental
frequency of Morse potential at minimum is 38.7 [em™']. In both cases, the displace-
ment of potentials is set d = 1.0. Note that various signals including photon echo
for displaced oscillator system with weak anharmonicity have been calculated from
responce function approach[16] and have compared with the results from present
approach for some special case to check the program. We have used the system-
bath coupling ¢ = 8.0[cm™'] and the inverse correlation time y = 4.8[cm™'] and its
temperature T = 300K, which satisfies the condition Ghy = 0.023 < 1 for the cases
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(I), (II) and the Morse potential system. In addition, we have used fast modula-
tion noise bath whose inverse correlation time is v = 48Jcm™'] and it satisfies the
condition Fhy = 0.23 < 1 for the Morse case.

We calculate the signal following the procedure explained in Sec. 3.2. The

temporally initial condition is set to be
Weolp, g5 —1) = & Blhwop? [24Ugq(r)) o —9"% (4.6)

The grid size was chosen to be 50 x 201 x 51 in the range —12 < p < 12,
~10 < v < 10 and =5 < ¢' < 5 for harmonic displaced system and 60 x 301 x 51
in the range —15 < p < 15, —10 < r < 20 and -5 < ¢' < 5 for Morse potential
system.

First we present the impulsive two pulse photon echo signal for the displaced
harmonic potential system. In Fig. 4.16, we display the photon-echo signals as a
function of both 7 and ¢. This figure shows absolute value of polarization |P(7,1)|
though photon echo signal is given by square of polarization. Fig. 4.16a is for the
case (I). The free induction decay peak at 7 = 0 and ¢ = 0 has been cut off for better
view the subsequent peaks; it is approximately 11 times higher than that shown in
the figure. We see an initial decay followed by oscillations. These are quantum beats,
resulting from modulation of the electronic polarization by a vibronic oscillation with
frequency wo = 38.7[cm~']. This is because P(7,t) contains the factor e *&wsm7,
where Awpy, is the energy difference between the nth vibrational state of U/, and

the mth vibrational state of U,... The photon echo signal corresponds to the peak
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along the 7 = { line. The peaks around (7,t) = (860,0), (0,860), (1720, 860) and
(860, 1720)[ps] would not be observed if inhomogeneity were present. Fig. 4.16b
shows signal for the case (II). The absolute value of polarization is very different.
In contrast with the case (I), the peaks are weaker, because the transitions between
lg> and |e> have decreased due to the frequency difference of the potential. The
peak around (7, t)=(600, 600) corresponds to the excited state vibration whereas
the peak around (860, 860) to the ground state one.

To investigate the effect of bath relaxation time, we calculate the signal for
relaxation time of the various bath. Fig. 4.17 shows photon echo signal for the
displaced Morse potential system coupled to (a) the slow and (b) the fast modulation
bath. For the case (a) the signal is similar to that for the case (I).(Fig. 4.17a)
Each peak is broadened, however, because the system has different periods in Morse
potential case.

For the case (b) the photon echo signal is very weak because the fast modulation

bath destroys the electronic coherence between g and e state quickly.
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Fig. 4.15. Potential surfaces of the displaced harmonic oscillators system. Fig. 4.15a
is for the same frequency case (w, = w,). Fig. 4.15b is for the different frequency

case (wy, < We).
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Fig. 4.16. Photon echo signal of the displaced hamonic oscillators system. (a) is for

(wo < we).

the case (I) (w, = w.) and (b) is for the case (II)

80



=
'.q L~
L]
o
Ionllr) =
A
~N s
LTS
-.‘---.*
o ‘h--.’.-----’--- §
-

M
A S
iees

g C

ion bath case.
lation bath case and (b) is for the fast modulation
slow modulation

81



Chapter 5

Conclusion
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Quantum activated events, in the absence of dissipation, can be easily studied
by a wide variety of numerical methods based on wave function. When dissipation
is important, such as liquid phase, wave-function-based methods are not appropri-
ate since dissipation requires the presence of many degree of freedom. Integrating
out degrees of freedom leads to a description in terms of equations of motions for
reduced density matrices. For a single potential surface, the equation of motion for
phase space distribution function is known as the quantum Fokker-Planck equation.
The quantum Fokker-Planck equation is generalized to a multistate system with
arbitary potentials and a coordinate dependent diabatic coupuling. This approach
is applicable for a strong system-bath coupling by introducing a hierarchy of kinetic
equations. This equation can also treat wavepacket dynamics at a low temperature
heat bath. The present multi-state quantum Fokker-Planck approach provides a
powerful means for the study of various chemical processes, where quantum effects
play a major role.

In this thesis we have presented a rigorous procedure for calculating the pump-
probe spectrum and two-pulse photon echo signal, and calculated the spectra for
a displaced Morse oscillators system by using multi-state quantum Fokker-Planck
equation for a Gaussian-Markovian bath.

In the dissociation process, we have shown the correspondence between the
pump-probe spectrum and the wave packet dynamics. For small displacement, the
spectra are similar to those obtained in the displaced harmonic oscillators case.

When displacement becomes large, then we observe the movement of wavepacket as
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the shift of the envelope of absorption peak. Then for large displacement, we observe
the peak corresponding to the dissociation. It is shown that for weak damping, the
wavepacket collapses into small packets with different eigen frequencies due to the
anharmonicity of the potential.

We have also presented numerical calculations of pump-probe spectra for a strong
Gaussian pump pulse. The results show interplay between vibronic transitions and
dynamical Stark splitting and the effect of diabatic coupling between bound and
dissociative states. In contrast to the results from the conventional Bloch equations
which contain an infinite-temperature dephasing, we find that at finite temperatures,
the Stark peaks have different heights even when the pump pulse is on resonance.
The time evolution of the wavepacket shows the interplay of the predissociation and
laser excitation in a dissipative environment.

Therefore the photon echo signals were given for various dissipative systems.
The photon echo signal in the different frequency is weaker than that in the same
frequency case. In Morse potential case the coherence is lost quickly by the fast
modulation bath .

Although in this study we limited our analysis to the system described by the
model potential surfaces, it is possible to compare the result of calculation with one
of experiments using the realistic potential calculated by ab initio MO or some other
method. For example the RISM-SCF can optimize the electronic potential surface
of solute including the effect of solvent distribution.[72, 73] Using such a potential

surface we can treat solvation dynamies more accuratly.
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Furthermore this approach adopt the chirped laser pulse technique. The chirped
pulse, which sweeps the frequency of the pulse, is studied theoretically[33, 74, 75, 76,
77, 78, 79] and experimentally[80, 81]. The shape of pulses with a controlled chirp
was also recognized for laser chemistry[82, 83], selective optical excitation|[84, 85|,
and the study of optical dynamics[86, 87, 88].

One can also generalize the present approach to study a two-dimensional sys-
tem, where the interplay between internal energy relaxation with various quantum
effects plays an important role. The advent of fast computers equipped with sev-
eral hundred Megabytes of memory make it possible to study such problems with

dissipation. We leave them for future studies.
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