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Chapter 1

(General Introduction

Proteins fold into the unique three-dimensional structures (tertiary structures) from random-
coil states in the time scale of miliseconds to minutes. Although the structures of proteins
seem to depend on the environment in the cell where they are synthesized, it was shown
by experiments in wvitro that the unfolded protein can refold back into their native confor-
mations once the denaturants are removed [1]. This implies that the tertiary structures of
proteins are determined by their amino-acid sequence information and that the structure
of a native protein corresponds to the conformation with the lowest free energy. Much
efforts have been invested to find such conformations for peptide and protein molecules
without complete success (for a review, see, for instance, Ref. [2]). There are two diffi-
culties in predicting the tertiary structure of a protein. One is how to give the accurate
energy function of the system. Especially, the effects of solvent surrounding a protein
are non-trivial to incorporate, because the number of solvent molecules that have to be
considered is very large. The other difficulty is due to the fact that there exist a huge
number of local minima in the potential energy function, which makes it prohibitively
difficult for conventional simulation methods to search for the global minimum.

There are many ways to incorporate solvent effects. One of the simplest and least
time-consuming methods is probably to use the distance-dependent dielectric function [3].
Simulations with this method were performed in Refs. [4, 5]. Note that it only involves
the electrostatic interactions. Other solvent contributions (namely, hydrophobic inter-
actions and Lennard-Jones interactions between protein and solvent) are not included.
Another commonly used term that represents solvent contributions is the term propor-

tional to the solvent accessible surface area of protein molecule [6, 7). It is thus implicitly



assumed that the range of protein-solvent interactions is confined to the first solvent hy-
dration shell. The validity of these assumptions were supported by the experiments which
showed that the transfer {ree energies of many nonpolar molecules vary linearly with the
solvent-accessible surface area [8, 9]. The proportionality constants are determined from
experimental data of small molecules, and hence this solvation term, in principle, includes
all the contributions from solvent. In this thesis we used the parameters of Ref. [10].

There are a few methods for including solvent effects that are based on the statistical
mechanics of liquids. One of such approaches is RISM [11, 12]. Recently, this algorithm
was used in simulations of protein folding [13]-[15]. This method is very powerful, but
computationally demanding. The scaled particle theory [16, 17] is another method based
on the statistical mechanics of liquids, which is known to give a good account of the
hydration free energy of a non-polar solute. The method requires much less computa-
tion time compared to the RISM method; thus, larger molecules can be treated. This
method can calculate cavity formation free energy term. Then together with the electro-
static interactions obtained by solving Poisson-Boltzmann equations [18] and Lennard-
Jones interactions between protein and solvent, this theory can give an accurate solvation
frec energy. Another accurate but time-consuming method is to include explicit solvent
molecules directly in simulations.

As for the simulation algorithms, we adopt Monte Carlo simulated annealing [19]
and multicanonical algorithm [20]. Simulated annealing [19] is based on the process
of crystal making. Namely, by starting a simulation at a sufficiently high temperature
(much above the melting temperature), one lowers the temperature gradually during the
simulation until it reaches the global-minimum-energy state (crystal). The application
of Monte Carlo simulated annealing to the prediction of protein tertiary structures was
proposed almost a decade ago by a few groups [21]-[25]. Since then this method has been
extensively used in the protein folding and structure refinement problems (for reviews,
see Refs, [26, 27]).

While a regular Monte Carlo method generates states according to the canonical distri-
bution, multicanonical algorithm [20] generates states so that a one-dimensional random

walk in energy space is realized. The application of multicanonical algorithm to the pro-



tein folding problem was proposed several years ago [28]. Since then there have been
many works based on this method and its variants in protein and related systems [29]-[47]
(for reviews, see Refs. [27, 48]).

In this thesis, we discuss the folding problem of oligopeptides with all-atom models.
The organization of the thesis is as follows. In Chapter 2, we explain the energy function
and the sampling algorithms that we used. In Chapter 3, we present the results of Monte
Carlo simulated annealing simulations of a penta peptide, Met-enkephalin, in gas phase
and in a model solvent. We estimate a rigorous cavity-formation term in the solvation free
energy by the extended scaled particle theory. This is the first attempt to combine Monte
Carlo simulated annealing and the extended scaled particle theory. In Chapter 4, we give
the results of a multicanonical simulation of Met-enkephalin in gas phase and demonstrate
the effectiveness of the multicanonical simulation algorithm. In Chapter 5, we study helix-
coil transitions of amino-acid homo-cligomers of length 10 (homo-alanine, homo-valine,
and homo-glycine) in aqueous solution by multicanonical Monte Carlo simulations. The
solvent effects were included by the term that is proportional to the solvent-accessible

surface area. Finally, Chapter 6 is devoted to conclusions.
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Chapter 2

Simulation Methods
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The simulation methods that were employed in this thesis are overviewed in this chapter.
In section 2.1 we summarize the energy functions of protein systems that we used in our
simulations. In section 2.2 we review efficient sampling algorithms for protein folding

simnulations.

2.1 Potential Energy Function

The potential energy function that we used in this thesis is given by the sum of two terms:
the conformational energy ( E'p) of the protein molecule itself and the solvation free energy

(£sor) for the interaction of the protein with the surrounding solvent:
Eror = Ep + EsoL - (2.1)

Here, the solvation effects are included not by the solvation energy of fixed coordinates
of water molecules, but by the solvation free energy, because we want to estimate the
average solvation effects for many configurations of water molecules around each fixed
solute conformation. In the following we discuss in detail each component of the above

terms that we actually used in our simulations.

2.1.1 Conformational Energy Function

The conformational energy function Ep (in keal/mol) is given by the sum of the elec-
trostatic term Eg, 12-6 Lennard-Jones term FEp;, and hydrogen-bond term Eyg for all

pairs of atoms in the protein molecule together with the torsion term Eyop for all torsion

angles:
Ep = Ec¢c+ Epy+ Eng+ Eror .
' 332 giq;
By = Y 2ol
() €T
! 1: Ba"
Evy = 3 ( S r_ﬁj) = (2:2)
(i) VT 3
: Cy D;
b = X (55-52)
(ig) Wi ]

Eror = ZU.- (1 + cos(nix' + H.,-}) :

e |-
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Figure 2.1: Dihedral angles in a protein molecule (¢; and t; in the main chain of each
residue ¢ and x7{ in its side chains).

Here, r;; is the distance (in ,31] between atoms ¢ and j, ¢ is the dielectric constant, and
x' is the torsion angle for the chemical bond i. Each atom is expressed by a point at its
center of mass, and the partial charge ¢; (in units of electronic charges) is assumed to be
concentrated at that point. The factor 332 in E¢ is a constant to express energy in units
of kcal/mol. The parameters in the energy function as well as the molecular geometry
are based on ECEPP/2 (1]. The computer code KONFY0 [2, 3] is modified to incorporate
various solvation effects and simulation algorithms. The dielectric constant € is set equal
to 2. The peptide-bond dihedral angles w are fixed at the value 180° for simplicity. The
remaining dihedral angles (¢; and ¥ in the main chain of each residue i and 'q,_f in its
side chains) constitute the degree of freedom in the simulations (see Fig. 2.1). One Monte
Carlo (MC) sweep consists of updating all these angles once with a Metropolis evaluation

[4] for each update.

2.1.2 Solvation Free Energy

There are many ways to incorporate solvent effects. In this thesis we use the two methods

described below.

- 14 -



Solvation Free Energy Function Based on Scaled Particle Theory

The solvation free energy of interactions between a solute molecule and solvent molecules

can be divided into three contributions in general:
Esor = Ecav + Epr + €k, - (2.3)

The first term is the cavity-formation term, which corresponds to the work required to
create a cavity having the shape of the solute molecule in solution. The second term
represents the Lennard-Jones interaction term between the solute and solvent molecules.
The third term is the electrostatic interaction term (including the hydrogen-bond energy)
between the solute and the solvent molecules. In this thesis, we only use the cavity for-
mation term &c 4y, which corresponds to the hydrophobic effects, because the evaluation
of the other two terms are much more time-consuming.

The extended scaled particle theory [3, 6] is used to calculate the cavity-formation

term (€ av) by scaling up a solute molecule in the solvent:
Ecav =W(A=1), (2.4)

where ) is the scaling parameter, which varies from 0 (material point) to 1 (real size),
and W(A) is the work required to dissolve the scaled solute particle to the solvent. The

theory assumes that W(A) can be represented for all positive values of A by
W(A)=A+B\+ ;;C'JF + PVi(}), A=0, (2.5)

where V.{A) is the excluded volume of the scaled solute and P is the macroscopic pressure
of the solvent. The term PV_ is very small for A = 1 under a pressure of one atmosphere,
and are neglected. The coefficients A, B, and C' are determined using the continuity
conditions up to second derivatives at A = 0. The explicit expressions for these coefficients

are as follows [6]:

A = —kgTIn(1 - pV.(0)),
1 av;
b = "’Brl-pmun”(m)m’ e

! PV, S () )
& = *BTI—pb}(ﬁi"(au)lz.:.”giil-wn' (0))2” ((ﬁ)xzn) ’
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where kg is the Boltzmann constant, T' is the absolute temperature, and p is the number
density of the solvent molecules. The analytical evaluations of the excluded volume (V.( 1))
and its derivatives are carried out using the code in Rel. [7]. Together with the electrostatic
term, £ in Eq. (2.3), obtained by solving the Poisson-Bolizmann equations [8, 9] and
the Lennard-Jones term, &y, in Eq. (2.3). between the solute and the solvent, this theory

can give a good account for the solvation free energy.

Solvation Free Energy Function Based on the Term Proportional to the Solvent-
Accessible Surface Area
Although the method based on the extended scaled particle theory described in the pre-
vious subsubsection gives an accurate estimate for the cavity-formation free energy (one
of the three terms in Eq. (2.3)), it is computationally very demanding if we include all the
contributions to the solvation free energy (in Eq. (2.3)). Therefore, for a larger system
we want to use an empirical method that gives an approximation to the whole solvation
free energy. We adopt the term proportional to the solvent-accessible surface area.

In this approach the total free energy of hydration of a solute molecule is thus given
by

AEBu = ZG.-“L' (2.7)

where the summation extends over all groups 1 of atoms, and A; is the corresponding
solvent accessible surface area. The constant of proportionality o; represents the contri-
bution to the solvent free energy of group i per unit accessible surface area. There exist
several parameter sets in use. The validity of five of them was recently investigated and
it was concluded that those of Refs. [10, 11] are valid ones [12]. In this thesis we use the
parameters of Ref. [10]. Accessible surface areas are computed for seven classes of atoms
or groups, listed in Table 2.1. The groups containing hydrogen atoms in Table 2.1 are
treated as “united atoms”. The accessible surface area A; is obtained by the surface area
of fused spheres centered at each united atom. The radius of the sphere is R; + R,,, where
i, is the effective radius of the solvent molecule. Here we set R, to van der Walls radius

in Table. 2.1 and R, to 1.4 :i\'[l'[]]. For the calculation of solvent-accessible surface area,

-16-



Table 2.1: Van der Waals radii and the computed coefficients for the thermodynamic
parameters.

i Class of chemical group van der Waals radius R, A o (keal /mol - A?)
1 Aliphatic —CHz, —CH; —, >CH- 2.00 0 0.008
2 Aromatic =CH- 1.75 —0.008
3 Hydroxyl —OH 1.10 —0.172
1  Amide and amine —NH—,—NH, 1.58 —0.132
5 Carboxyl and carbonyl >C= 1.55 0.427
6 Carboxyl and carbonyl O= 1.10 ~0.038
7 Sulfur —5- and thiol —5F 2.00 —0.021

we use the computer code NSOL [13], which is based on the code NSC [14]

2.2 Efficient Sampling Algorithms for Protein Fold-
ing Simulations

Once the appropriate energy function is given, we next have to employ a simulation
method that does not get trapped in states of energy local minima. In this thesis we
employ the Monte Carlo simulated annealing method [15] and multicanonical algorithm

[16].

2.2.1 Simulated Annealing Method

In the regular canonical ensemble at a given inverse temperature 3 = 1/kgT, the proba-

bility weight of each state with energy E is given by the Boltzmann factor:
wg(E;T) = exp(—BE). (2.8)
The probability distribution of energy is then given by
Fp(E;,T) xn(E)ws(E;T), (2.9)

where n(E) is the density of states. Since n(E) is a rapidly increasing function and

wg( F; T) decreases exponentially, Pg(E;T) generally has a bell-like shape (see Fig. 2.2).

-17 =



a) b) c)
nNE) Wg(E)=exp(-BE) PslE) = E)WH(E)
) i |

Figure 2.2: The density of stales n(E) (a), the Boltsmann weight factor wg(E;T) (b),
and the probability distribution Pg(E:T) (¢) as a function of energy E.

When the temperature is high, 3 is small, and wg(E;T) decreases slowly with E. The
probability distribution Pg(E;T) then has a wide bell-shape. On the other hand, at low
temperature 3 is large, and wg( L; T ) decreases rapidly with E. The probability distribu-
tion Pg(E;T) has a narrow bell-shape (and in the limit T — 0 K, Pg(T, E) x 8( E— Egs),
where Egg is the global-minimum energy). The canonical probability distributions at dif-
ferent temperatures are illustrated in Fig. 2.3. However, it is very difficult to obtain
canonical distributions at low temperatures with conventional simulation methods. This
is because the thermal fluctuations at low temperatures are small and the simulation will
certainly get trapped in states of energy local minima.

Simulated annealing [15] is based on the process of crystal making process. Namely,
by starting a simulation at a sufficiently high temperature (much above the melting tem-
perature), one lowers the temperature gradually during the simulation until it reaches the
global- minimum-energy state (crystal). If the rate of temperature decrease is sufficiently
slow so that thermal equilibrium may be maintained throughout the simulation, only the
state with the global energy minimum is obtained (when the final temperature is 0 K).

In this thesis, we adopt the following annealing schedule: The temperature is lowered
exponentially from Ty = 1000 K to Tr = 150 K. The temperature for the n-th MC sweep
is given by

To=Tiy", (2.10)

- 18-
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Figure 2.3: The probability distributions Pg(E;T) in the canonical ensemble at high,
middle, and low temperatures.

where v is a constant which is determined by T}, Tr, and the total number, Ns, of MC
sweeps of the run. Namely, we have

__ 1 Tr
TS =1 7,

(2.11)

2.2.2 Multicanonical Algorithm

While the regular Monte Carlo method is based on the Boltzmann weight which vields
the canonical distribution, the multicanonical algorithm [16] is based on a non-Boltzmann
weight factor. In the muliicanonical ensemble the probability distribution P,,(E) is
defined in such a way that a configuration with any energy enters with equal probability
[16]:

Pl E) o n(F)u,E) = const, (2.12)
where n(E) is the density of states. The probability distribution P,,(E) is shown in
Fig. 2.4. Each energy has equal probability, and thus the multicanonical simulation

performs a one-dimensional random walk in energy space, which enhances the escape

from states of energy local minima.

-19-



PouolE} = n(E)W,,(E]}] = const
i
PmulE)

Figure 2.4: The probability distribution P,,,{ F) in the multicanonical ensemble.

From Eq. (2.12), it follows that the multicanonical weight factor w,,(E) should have
the form

W E) x n\(E). (2.13)

Since this weight factor 1s not a prier: known, one has to determine it for each system
by a few iterations of trial simulations. There are a few procedures to determine the
multicanonical weight factor w,,,. In the following we give three versions of the procedures

[17]-[19].
1. The multicanonical weight factor w,,, is defined by [17]
Wis(E) = e HEVE-(E) (2.14)

(1) Perform a short canonical Monte Carlo simulation at sufficiently high tempera-
ture Tp, namely a( EF)=0 and 3(E)= 3 with 3, = 1/RT;. The weight factor for this
simulation is given by w!® (E)=e % Initialize the array S°©)(E) to zero, where E
is discretized with bin width ¢ E(=1 kcal/mol in the present work).

(2) Store the energy distribution obtained with the weight wl) (E) (i > 0) as a
histogram H')(E) with the same bin width as for $(E). In the first iteration (step
1 above) determine E,,,. as the value near the mode where the histogram has its
maximum ( E,... is fixed throughout the iterations). Let E,.;, be the lowest energy
obtained throughout the preceding iterations. For all HU(E) with entries greater

than a certain minimum value and for the energy range F,.; < E < E,..., update

=20 -



]
*

the array SUHD(E) by

SUE)+ I HO(E), if HO(E) > 1,

SUH(E) = { SE(E), if HO(E) = 0.

(2.15)

(3) Calculate the following multicanonical parameters o+"(E) and g0+"(E) from

the array STV (E):

ﬂu: _ ) rﬂf E E F:mn.:ra
.'3“'"”{5} = ﬁu_-l- 5‘.=+1?{F:E:‘t§r+1}ﬁﬂ“r’ for Epin < E < E' < Emezs f'Z.lEi)
AN Ein), for B < Epin
and
. 0 for £ = E
EET B < . 1 ) ) = Limaxa
s { QGHI(E) 4 (BEHE") = B4NEE, for E < Epee, 1
where E and E’ are adjacent bins in the array SUH(E).
(4) Start a new simulation with the multicanonical weight factor defined by
wit(E) = g~ B UE)E-alHNE) (2.18)

(5) Iterate the last three steps until the obtained distribution H({E) becomes rea-

sonably flat in the chosen energy range.
The multicanonical weight factor w,,, iz defined by [18]
W (E) = e 3E} (2.19)

(1) Perform a short canonical Monte Carlo simulation with $9(E) = 0.
(2) Store the energy distribution obtained with the weight w(! (E) (i > 0) as a
histogram HU(E).

(3) Calculate the multicanonical parameters SU+V(E) by

; YE)+ I HO(E), if HY(E) > 1
(i+1)( Py — 5.[ )+ In (E), i { )21
S { SW(E), if HO(E) = 0. 2:20)
(4) Start a new simulation with the multicanonical weight factor defined by
wlt(F) = e=SHIUE) (2.21)

(5) Iterate the last three steps until the obtained distribution H({E) becomes rea-

sonably flat in the chosen energy range.
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3. The multicanonical weight factor w,,, is defined Ly [19]
wi{B) = € E) = g HUEIEFalE) (2.22)

(1) Perform a short canonical Monte Carlo simulation at sufficiently high tempera-
ture, namely o £) = 0 and 3(E) = 0.
(2) Store the energy distribution obtained with the weight w()(E) (i > 0) as a

histogram HY(E).
(3) Calculate

: ()¢ gy i)
iy _ _HW(EYHY(E) B
9% (E) = oy + #0(E)" (2i%0)
The normalized weights
_ ()
@ NE) = —.—jﬂ-{—-—]ﬁ—,u—, (2.24)
g HE) + 95 (E)
JdNE)=1-gNE) (2.25)
are determined by the recursion
gUI(E) = ¢E) + g (E), go(E) = 0. (2.26)

We can estimate the following multicanonical parameters o'*')(E) and gU+1(E):
BU(E) = B(E) + §6"(E) x [ln HO(E') — In H(E))/$E (2.27)

and

o (E) = ol (E') + [B040(E) - g4+, (2.28)

where H(E) =max[1, H(E)].

(4) Start a new simulation with the multicanonical weight factor defined by
wit(E) = e=#** 1 (EVE+aHIE) (2.29)

{3) lterate the last three steps until the obtained distribution H(E) becomes rea-

sonably flat in the chosen energy range.

Once the weight factor wn,(E) is determined, one performs with this weight factor a

long multicanonical simulation. Monitoring the energy in this simulation, one would see
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that a random walk between high energy states and the ground-state configurations are
realized. In this way information is collected over the whole energy range. Finally, from
this simulation one can not only locate the energy global minimum but also calculate
the ensemble average of any physical quantity at any temperature for a wide range of
temperatures by the reweighting techniques [20] as cxplained in detail below.

The reweighting technique were originally developed to obtain the information of the
canonical distributions at various temperature from a MC run at a single temperature
[20]. Suppose this single MC run was performed at temperature 7' = T, , the probability
distribution of energy is given by

n{E)e~5E
JdEn(E)e-/%E’

Po(E;T,) = (2:30)

where 8, = 1/kgT,. The probability distribution at another temperature T, = 1/kg3; is

th(‘!]’l i‘l,l'en b}r
g Pu(E;T, Py(E,T,)e~P-=Fo)E ‘}
B(E;T,) = [dEPS(E, T,)e—0r=B0)E ° (231)

This means that once we have the distribution at temperature T,, we can use this distri-

butions to calculate the canonical distributions at another temperature T, by Eq. (2.31).
However, canonical distributions are usually rather localized, and the reweighting is valid
only for temperature in the vicinity of T,. Multicanonical algorithm, however, allows one
to explore all parts of the energy surface with equal probability. Thus the combination
of reweighting techniques and multicanonical algorithm yields the canonical distribution

over a wide range of temperatures from a single simulation run as follows:

qu[E]w;L{E;T}E_'EE
JdE Py (E)wz (E;T)e"E’

Pg(E;T) = (2.32)

where P, (FE) is the distribution of energy obtained by the multicanonical simulation.
The thermodynamic average of a practical quantity A at temperature T is then obtained
by

_ fdE A(E)Pg(E;T)

A
sA= TdE Ps(E:T)

(2.33)
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3.1 Introduction

The penta peptide Met-enkephalin in gas phase is one ol the biomolecules most frequently
studied by computer simulations.[1]-[11]. The global-minimum-energy conformation in gas
phase is known [2] and the low-energy conformations have been studied in detail [4, 5, 9].
In this chapter we combine Monte Carlo simulated annealing [12] and the extended scaled
particle theory (ESPT) [13, 14] to study the low-energy conformations of Met-enkephalin.
The scaled particle theory [15, 16] is a method based on the statistical mechanics of
liquids, which is known to give good account of the hydration free energy of a non-polar
solute. It has been successfully used to estimate the solvation free energy of biomolecules
with a fixed conformation [13, 14], but has never been applied to simulations of protein
folding. We performed Monte Carlo simulated annealing simulations of Met-enkephalin
in gas phase and in aqueous solution which is represented by the cavity-formation free
energy. The simulations were repealed twenty times from randomly generated initial
conformations, and the low-energy conformations were classified into groups of similar

structures for both environments.

3.2 Computational Details

We employ the Monte Carlo simulated annealing (SA) for obtaining the lowest-energy con-
formation and the scaled particle theory for including solvent effects. For Met-enkephalin
(whose amino-acid sequence is Tyr-Gly-Gly-Phe-Met), the number of degrees of freedom
(namely, the number of dihedral angles to be updated) is 19. One Monte Carlo (MC)
sweep consists of updating all 19 angles once with a Metropolis evaluation [17] for each
update. In the present work, each SA run of Met-enkephalin consisted of 10000 MC
sweeps with the initial temperature of 1000 K and the final temperature of 150 K. The
temperature was lowered exponentially [18] (see the subsection 2.2.1). We made 40 SA
runs altogether, starting from random initial conformations. Twenty SA runs were carried
out for a simulation in gas phase (namely, with only the conformational energy term (Ep)

(see Eq. (2.3)). The other twenty SA runs were for a simulation in the solvent (namely,
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with both the conformational energy term (£p) and the cavity-formation {ree energy term
(Ecav) (see Eqgs. (2.3), (2.3), and (2.6))).

For the caleulation of £ 4y, which is based on ESPT (see the subsection 2.1.2), we
used a constant temperature of 208.15 K for simplicity. The density of the water molecules
was thus set equal to 1.0 g/fem®. To calculate the excluded volumes, all hydrogen atoms
i Lthe system were regarded as being absorbed into the united atoms. The radii of all the
united solute atormns were fixed to 1.9 A for simplicity. That of the water molecule was

taken to be 1.4 A.

3.3 Results and Discussion
3.3.1 Previous Results

In this subsection, we summarize the results of previous works [5, 9] that classified low-
energy conformations of Met-enkephalin. In Rel. [5] Monte Carlo simulated annealing
[12] simulations in gas phase with Met-enkephalin were performed and the 40 obtained
lowest-energy conformations were analyzed by the root-mean-square distances. These
conformations were classified into four characteristic groups of similar structures (they
were referred to as groups A, B, C, and D). These conformations correspond to the local-
minimum energy conformations of Met-enkephalin.

On the other hand, in Ref. [9] the pattern of hydrogen bonding was used to characterize
groups of low-energy structures of Met-enkephalin. However, the investigations focused
on conformations with energies little above the ground state and therefore found here only
structures corresponding to groups A (the lowest-energy state) and B {the second-lowest-
energy state) in Ref. [5]. The conformations in group A have two hydrogen bonds between
Gly-2 and Met-5 and form a type [I' #-turn involving Gly-Gly-Phe-Met. They correspond
to the most stable structure of Met-enkephalin in gas phase. The conformations in group
B have hydrogen bonds between Tyr-1 and Phe-4 and form a type Il S-turn involving

Tyr-Gly-Gly-Phe.
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3.3.2 Ramachandran Plots

We first study Ramachandran plots, which are the distributions of dihedral angles {¢.17),
for the lowest-energy structures obtained by the present simulations. The results in gas
phase and in the solvent are shown in Fig. 3.1(a) and Fig. 3.1(b), respectively. Those
for each individual residue are separately shown in Fig. 3.2. The distributions of points
for the amino-acid residues, except for Gly, are limited mostly to the second and third
quadrants (¢ < 0), while those for Gly are observed in all regions. This is in accord with
the distributions obtained from a protein database, implying that our simulations were
effective. From Figures 3.1 and 3.2, we also find that the distributions of the dihedral
angles in gas phase are slightly more localized than those in the solvent. This seems to
indicate that solvation tends to smooth out the free energy landscape of Met-enkephalin.
However, the results in both cases are amazingly alike, and these Ramachandran plots

cannot infer any definite conformational differences between the two cases.
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Figure 3.1: Distribution of dihedral angles (¢,¢%) of the lowest-energy conformations of
Met-enkephalin obtained in each of the 20 Monte Carlo simulated annealing runs in gas
phase (a) and in the solvent (b).
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3.3.3 Definition for Classification of Conformations

In order to compare the three-dimensional structures obtained by the present simulations
in more detail, we calculated the root-mean-square distances (RMSD) between all pairs of
the 40 lowest-energy conformations and four structures which were obtained in a previous
work [19] as the characteristic conformations. We took into account only the atoms in
the backbone. From these results, we classified the conformations into a few groups of
similar structures. We define a group of conformations as follows [18]. Let W be the set
of all conformations under consideration. A subset Y (with more than one conformation)
of W is called a group of similar structures if it satisfies the following condition: For
any conformation K in Y, there exists at least another conformation K' in Y so that
RMSD between conformations K and K’ is less than a cutoff ¢. (The definition depends
on the value of ¢.) Each group corresponds to a specific tertiary structure and its small

variations.

3.3.4 Detailed Results of Classification in Gas Phase

The RMSD in gas phase are listed in Table 3.1. The conformations from column 2 to
column 5 (A, B, C, and D) are the lowest-energy structures obtained previously in gas
phase, which represent the four groups found in Ref. [19]. The other 20 conformations (VI,
V2, .-+, and V20) are the lowest-energy structures obtained by the present simulations
in gas phase. The numbers enclosed in the solid lines, and the dashed lines in Table 3.1
indicate that the corresponding pairs of conformations form a group of similar structures
with the cutoff ¢ = 1.0 A and ¢ = 1.5 A, respectively. We thus have, respectively, six
groups (six boxes in solid lines) and three groups (three boxes in dashed lines) for the
two cutoff values. The numbers in bold in Table 3.1 from the second to the fifth column
are the entries that are less than or equal to 1.0. These entries imply that the group
which includes conformations V1, V2, and V3 has similar structures to A. Likewise, the
group which includes conformations V6, V7, and V8 has similar structures to D, and
that including V10 and V11 to B. Hence, we refer to these three groups as groups A,

(including V1,V2, and V3), D(including V6, V7, and V8), and B,(including V10 and
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VI11) (as defined with cutoff ¢ = 1.0 A). Furthermore, the underlined numbers in Table
3.1 indicate that they are more than 1.0 and less than or equal to 1.5. These entries
imply that conformations V13, V14, V17, and V18 have similar structures to group B.
We thus refer to the group including V13, V14, V15, and V16 as B} and thatl including
V17 and VI8 as B! (as defined with cutoff ¢ = 1.0 A). The remaining group was named
Ey (including V19 and V20). With the cutoff ¢ = 1.5 X, it is found that conformation
V4 and those of group A, form a single group, which we refer to as group A, and that
conformations V9 and V12 and those of groups D;, B, B}, and B} constitute a single
group, which we refer to as group B;. All these results of classifications are listed in Table

3.2,

- 34—



Table 3.1 : The root-mean-square distances (A) among pairs of the twenty lowest-energy conformations obtained by Monte Calro
simulated annealing simulations in gas phase.®

A C B D J‘v’l V2 V3 V4 V5 V6 VT V8 V9 V10 V11 V12 V13 V14 V15 VI6 VIT VIS V19 V20

V1 0.2 23 2.7 1.1 03 03111201919 20 2325 26 26 27 27 27 27 28 26 28 28
V2 0.22226 1.7003 0.3 1.2:1.9 1918192225 25 25 26 26 26 2.6 2.7 26 28 28
vy 0.22226 1710303 11.1,1919018192224 25 25 26 26 26 26 27 26 28 29
Vi L1 2326 L7[1.1 1_.;__1_1__!2.1 1918192024 26 24 25 26 26 25 28 2.7 28 29

V5 2.0 1.7 1,7 1,8(2.0 1.9 1.9 2.1 1.71716 18 1.6 _I.THZ._I_ 1.9 _1;9__2.1'1_2,2 20 19 27 23
Ve 19 2516 09(1.919 1919 1.7

0.7 0014 16 1.8 18 I T9 20 20 I8 T8122 25
Vi 1.8 2518 0.7[19 1.8 1.8 1.8 1.7[0.7  07[1.3 1.4 1.7 1.7 1.9 20 19 1.9 20 19125 26
V8 1.9 23 1.7 0.8[20 191919 1600907 Jl214 16 14 1.8 L9 1§ 1.8 18 1.7}24 25
V9 22 2115 14(2322222018W41312 12 15 12 17 17 16 17 18 17,25 26
V10 2.5 1.9 1.0 1.6 (2.5

2524 24 1.611.6 1.4 1.4 1.3 TTll4 16 LT 16 LT 17 1627 29
V11 2.6 2.0 0.7 1.8(2.6 2.5 2.5 2.6 1.711.8 1.7 1.6 1.5 0.9 14 14 15 14 15 15 15025 25
V1226 2.1 15 1626252524 2111.81.7141214 14 1.7 1.7 16 16 14 13123 24
V13 2.6 2212 192726 2625 19118 1.9 1.8 1.716 14 1.7 00 T1 LZ]17 L7124 26
V14 2.7 2.1 14 2.0(2.7 26 2.6 2.6 1.911.9 2.0 1.9 1.7 1.7 1.5 1.7 |0.9 0.7 0.7]1.5 14[27 2.9
V15 2.6 2.1 1.6 19127 2.6 2.6 2.6 2.0)2.0 1.9 1.8 1.6 1.6 1.4 16 |11 0.7 03117 1628 29
V16 2.6 2.0 1.7 20{2.7 262625202019 181717 15 1.6[1.2 0.7 0.3 1.7 15'29 3
VIT 2.8 21 13 20128272728 2011.820181817 15 14 1.7 1.5 17 17 04121 23
VIS 28 1.9 1.3 1.9(26 262627191819 1.7 1716 1.5 1.3 1.7 14 16 15|04 2.3 2.5
V10 2.8 3.0 2.3 2228 2828 28 272325219527 25 23 24 27 28 20 21 23 0.8
V20 2.8 3.1 25 231(28252929 282526252629 25 24 26 29 29 30 23 25]08

*Conformations from column 2 to column 5 correspond to the lowest-energy conformations in groups A, B, C, and D obtained by
previous simulations. The other 20 conformations (V1, V2,---, and V20) correspond to the lowest-energy conformations obtained
by the present simulations in gas phase. The numbers enclosed in solid lines and dashed lines indicate that the corresponding
conformations form a group of similar structures with the cutoff ¢ = 1.0 A and ¢ = 1.5 A, respectively. The numbers in bold from
the second to the fifth column are the entries that are less than or equal to 1.0. The underlined numbers indicate that they are more
than 1.0 and less than or equal to 1.5.



Table 3.2: The results of classification of the lowest-energy conformations obtained by the
present simulations in gas phase.

¢ (A) Group

|

|
|
*

_Lnu*ﬂst-energ y¢ (kcal/ Tnf}"

1.0 A;=1{1,2,3} 3 =112
D,={6,7,8) 3 ~-7.3
By={10,11} 2 —-9.7
B,={13,14,15,16) 1 -7.2
BY={17,18} 2 -7.0
E,={19,20} 2 —8.2

1.5 A,={4} U A, 4 ~11.2
B,={9,12} U D, U B, U B, UB{ 13 -9.7
E.=E,; 2 —8.2

* ¢ is the cutoft value.
® n is the number of structures in each group.
® In the fourth column we list the lowest-energy value in each group.

We now summarize the main features in the results of the classification. The lowest-
energy conformation obtained throughout the present simulations (global-minimum-energy
structure) is essentially identical with that obtained in previous simulations [19, 2| and
belongs to group A,. Groups A; and B; are dominant in gas phase. Group D, represents
an intermediate structure between group A, and group B;.

After the classification of the conformations into groups of similar structures is finished,
we now examine the structural characterizations of each group in detail. Here, we only
consider conformations of the six groups (A, Dy, By, B}, BY, and E, in Table 3.2) obtained
with the cutoff ¢ = 1.0 A. In Fig. 3.3 we show the lowest-energy conformations (left-hand
side) and the superposed backbone structures of all conformations (right-hand side) in
each group.

As can be seen in Fig. 3.3(a), the structures in group A, have two hydrogen bonds
between the amide nitrogen of Gly-2 and the carbonyl oxygen of Met-5 backbone and
between the carbonyl oxygen of Gly-2 and the amide nitrogen of Met-5 backbone. This
structure is actually a type II' 3-turn invelving the residues Gly-Gly-Phe-Met. Moreover,
OH in the Tyr-1 side chain is hydrogen-bonded to the carbonyl oxygen of the Gly-3

backbone. It was found that the side-chain structures of Tyr-1 and Met-5 are very stable,
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while that of Phe-4 is slightly more flexible. The structure of group A, is very stable,
because of these intrachain hydrogen bonds. For instance, the conformations in group A,
are more similar to each other than those in the other groups (RMSD are as small as 0.3
A in Table 3.1).

As can be seen in Fig. 3.3(b), the structures in group B; have two hydrogen bonds
between the amide nitrogen of Tyr-1 and the carbonyl oxygen of Phe-4 and between the
carbonyl oxygen of Tyr-1 and the amide nitrogen of Phe-4 backbone. This structure is
actually a type Il 3-turn involving the residues Tyr-Gly-Gly-Phe. These structures are
also stable, because they have two intrachain hydrogen bonds and this group has the
second-lowest energy among the six groups (group A; has the global-minimum energy).

The main-chain structures of groups B and B are similar to those of group By, as can
be seen in Figs. 3.3(c) and 3.3(d). The structures in these groups are slightly distorted
from those in group By in the sense that they have only one of the two intrachain hydrogen
bonds of group B; formed. Group Bj has only one hydrogen bond between the amide
nitrogen of Tyr-1 and the carbonyl oxygen of Phe-4, and B has a hydrogen bond between
the carbonyl oxygen of Tyr-1 and the amide nitrogen of Phe-4, These structures have
slightly higher energies than those of group B;. Also note that the side-chain structures
are more deviated compared to the backbone.

As can be seen in I'ig. 3.3(e), group D, has intermediate structures between group A,
and By. This group has a hydrogen bond between the carbonyl oxygen of Gly-2 and the
amide nitrogen of Phe-4, and forms a 5 turn. As in the case for group A;, OH in the
Tyr-1 side chain is hydrogen-bonded to the carbonyl oxygen of the Gly-3 backbone, and
the side-chain structure of Tyr-1 is stable. Group I); has a considerably higher energy
than groups A; and B,.

In group E; (Fig. 3.3(f)), the main chain is more extended than that of the other
groups. There is no intrachain hydrogen bond in the backbone. There is a hydrogen bond
between OH of the Tyr-1 side chain and the carbonyl oxygen of the Phe-4 backbone,
which seems to stabilize the structure.

In summary, we found that groups A and B are dominant and stable in gas phase

(they correspond to the global-minimum-energy state and the second-lowest-energy state,
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respectively). These structures are stabilized by two intrachain backbone hydrogen bonds.
As is shown in Tables 3.1 and 3.2, however, the number of obtained structures of group

B (including B} and BY) is larger than that of group A.

-38-



Figure 3.3: The structural characterization of groups A,, Dy, B,, B}, B}, and E, (from

Table 3.2) obtained by Monte Carlo simulated annealing simulations in gas phase. The
left-hand side is the lowest-energy conformation in each group, and the right-hand side is
the superposition of the backbone structures of all the conformations in each group.

(a) Group A, (Conformation V1 in Table 3.1).

(b) Group B, (Conformation V10 in Table 3.1).

(c) Group B} (Conformation V13 in Table 3.1).

(d) Group B} (Conformation V17 in Table 3.1).

(e) Group D; (Conformation V6 in Table 3.1).

(f) Group E; (Conformation V19 in Table 3.1).

We use a simplified notation such as 02 and N3, which stand for the carbonyl oxygen of
the Gly-2 backbone and the amide nitrogen of the Met-5 backbone, respectively.
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3.3.5 Detailed Results of Classification in Model Solvent

We now present the results of simulations in the solvent. In Table 3.3, the RMSD in
the solvent are listed. The conformations from column 2 to column 7 correspond to the
lowest-energy conformations in groups A, Dy, By, B, BY, and E; obtained by the present
simulatlions in gas phase, and actually arc V1, V10, V13, V17, V6, and V19 in Table 3.1,
respectively. The other 20 conformations (51, 52, ---, and 520) are the lowest-energy
conformations obtained by the present simulations in the solveni. The numbers enclosed
in solid lines and dashed lines in Table 3.3 indicate that the corresponding conformations
form a group of similar structures with the cutoff ¢ = 1.0 Aande=15A, respectively.
We thus have three groups (boxes in solid line and dashed line) for the two cutoff values.
The numbers in hold in Table 3.3 from the second to the seventh column are those entries
that are less than or equal to 1.0. These entries imply that conformations 54 and S5
have similar structures to B,. Hence, we refer to the group including S4, S5, and S6
as group Bs (as defined with cutoff ¢ = 1.0 A). Furthermore, the underlined numbers
in Table 3.3 indicate that they are more than 1.0 and less than or equal to 1.5. These
entries imply that the group which includes conformations S1 and 52 have intermediate
structures between By and D,. We refer to the group including S1 and S2 as group B}
(as defined with cutoff ¢ = 1.0 A). The remaining group including 59 and 510 was named
F5. As for the classifications of groups having similar structures with the cutoff c = 1.5
A (boxes in dashed lines), it is found that conformations S3, S7, S8, S11, and $12 and
groups Bj, Bs, and F; form a single group, which we refer to as group By, and that
conformations 514, 515, and S16 constitute a single group, which we refer to as group Gy.
The remaining group includes 517, S18, and 519, which we refer to as group E4, because
two of the entries in this group are less than 1.5 A from group E;. We thus find that for
e =15 A, there are three groups (By, Gy, and E;). All of these results of classifications
are summarized in Table 3.4. We remark that the lowest-energy conformation obtained
throughout the present simulations (global-minimum-energy structure) belongs to group
B, (Conformation S1). In the case of the cutoff ¢ = 1.5 A, this structure belongs to the
main group By.

After the classification of conformations into groups of similar structures iz finished, we
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Table 3.3: The rool-mean-square distances (A) among pairs of the twenty lowest-energy conformations chtained by Monte Calro
simulated annealing simulations in solvent.®

Ay, D; B, B B E, [S: S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 SI2 SI3 S14 S15 SI5 S17 SIS SI9 S20
TOT 364 38 386 39 37.5 38.5|23.7 26.5 29.8 35.0 31.7 26.1 25.7 31 33.5 33.3 33.9 37.9 35.3 20.2 31.2 334 30.6 27.5 33.5 33.3
SOL 47.6 45.3 48.3 46.2 44.5 46.8(24.6 27.9 26.2 40.3 40 27.9 24.4 39.6 40.7 41.1 32.4 31 37.3 32.3 25.4 272 26.2 22.5 27.6 316
GAS -11.2 -7.3 9.7 -T2 -T -831-09 -14 36 -44 -83 -18 13 -86 -72 -7T3 1.5 69 -2 -3.1 58 62 44 5 59 L7
g1 24 11 13 LY 168 24 OE |14 14 L1 3% 15 LS 1.8 20 26 24120 26 %0 27 30 2.7 30 25
82 24° 1.3 12 15 17 25 o8 19 14 1% 19 14 13 18 90 26 24019 4% 3h 9% 30 9T 2n 2%
83 93 16 13 19 20 235 04 19 14 14 L7 18 121 L7 18 24 2328 29 29 27 30 29 29 25
S4 26 15 1 19 17 22 )14 14 13 0 10|18 15 16 1.6 24 20321 30 39 28 29 28 28 23
Sh 27 16 09 15 14 24 |1.1 1.3 14 |10 1.511.5 18 15 1.8 26 24 21 26 30 27 3.0 27 28 23
S8 28 18 16 22 10 19 1% 19 1.7 110 15 29 14 18 18 20 Hl 18 28 23 24 24 25 23 2
ST 25 16 15 09 1.7 28 (15 14 18 15 1.5 22 20 1.8 2.0 3.1 21 24 31 28 30 24 30 24
5% 90 I4 LY 21 2221 hs 13 LY 1A 1E 16 20 1.8 1.7 22 19' 18 2% 95 94 26 2§ 25 23
89 23 1% L7 18 19 22 11§ L8 17 L6 L5 18 18 18 08)22 19] 20 26 26 2.5 25 24 24 21
S0 29 18 90 21 21 21 130 20 18 16 185 16 20 L7 |08 19 15 21 27 24 23 23 24 21 19
511 20 24 29 31 246 1796 286 24 24 2% 24 91 22 T2 19 14 21 3.0 19 21 20 25 20 24
512 27 21 26 28 25 18|24 24 28 20 24 1.8 28 10 19 15 14 ;22 31 24 25 20 25 22 26
S13 24 1.8 22 19 1.3 1.7 (20 L9 23 21 21 18 20 18 20 21 21 22 20 2 19 %8 14 21 2
GE4: 30 25 7 24 22 28 26 LT 29 30 26 28 4 29 26 ¥ 80 3 ROV AT 1T4]3s 17 25 19
gls 24 98 31 32 27 19 130 30 24 29 340 23 3.1 25 26 24 19 24 22 121 14118 21 18 18
i 23 25 98 28 24 10037 27 27 2B 27 24 98 24 25 23 ‘31 25 19 44 14 JL7 1.8 20 1.6
817 27 28 32 30 26 14 |30 30 30 29 30 24 30 26 25 23 20 20 20 E:i_l,s_l,?_l“ R
S1g’ 96 96 29 93 21 17|27 27 29 38 27 25 24 26 24 24 25 25 17 LT Tl 1813 L4] 2.1
G519 29 2.8 31 29 24 14 |30 29 29 28 28 23 30 26 24 2.1 2D 22 21 25 1.8 24 !LI_H__ 2.1
990, 1.0 23 924 24 25 23 |25 25 25 23 22 20 24 23 21 19 24 28 20 19 18 16 22 21 23’

*Conformations from column 2 to column 7 correspond to the lowest-energy conformations in group A,, Dy, By, B}, BY, and E,

cbtained by the present simulations in gas phase and actually are V1, V10, V13, V17, V6, and V19 in Table 1, respectively. The other
40 conformations (51, 52, - -, and 520) correspond to the lowest-energy conformations obtained by the preseat simulations in solvent.
The nurbers enclosed in solid lines and dashed lines indicate that the corresponding conformations form a group of similar structures
with the cutoff ¢ = 1.0 A and ¢ = 1.5 A, respectively. The numbers in bold friom the second to the seventh column are the entries
that are less than or equal to 1.0. The underlined numbers indicate that they are more than 1.0 and less than or equal to 1.5.



Table 3.4: The results of classification of the lowest-energy conformations obtained by the
present simulations in solvent.

“*(A) Group n’ Lowest-energy® (kcal/mol)
1.0 B;={1.2} N
Bs;={4.5,6} 3 26.1
F3=1{9.10} 2 33.5
1.5 B,={3,7,8,11,12,13} UB, UB; UF; 13 23.7
Gy={14,15,16} 3 29.2
E.={17,18,19} 3 27.5

* ¢ is the cutoff value.
“ n is the number of structures in each group.
¢ In the fourth column we list the lowest-energy value in each group.

now examine the structural characterizations of each group in detail. In Fig. 3.4 we show
the lowest-energy conformations (left-hand side) and the superposed backbone structures
of all conformations (right-hand side) in each group. As can been seen in Fig. 3.4(a),
the structures in group B; have a hydrogen bond between the amide nitrogen of Tyr-1
and the carbonyl oxygen of the Phe-4 backbone. Moreover, the side-chain of Tyr-1 is
close to that of Met-5. As can be seen in Fig. 3.4(b), the structures in group By have
two hydrogen bonds between the amide nitrogen of Tyr-1 and the carbonyl oxygen of
Phe-4 and between the carbonyl oxygen of Tyr-1 and the amide nitrogen of Phe-4. The
structures of group By actually form a type Il 3-turn involving the residues Tyr-Gly-Gly-
Phe. These structures are very similar to those in group B in gas phase. The structures
in group Fj (Fig. 3.4(c)) do not have any intrachain hydrogen bonds. However, the shape
of the main chain is similar to that of group B in gas phase.

In groups G4 and E4 (Figs. 3.4(d) and 3.4(e)), obtained with the cutoff ¢ = 1.5 A,
the main chain is more extended than that of the other groups. There is no intrachain
hydrogen bond in the backbone. However, the structures in these groups form a circular
shape in which the main chain is extended, but the side chain of Tyr-1 is close to that of
Met-5.

We now summarize the main features in the resulis of classification. Two charac-

teristics of conformations can be obtained from the results of the present simulations in



solvent. One is that conformations tend to have the backbone of the structures in group
B obtained in gas phase. (The structures in group B have a hydrogen bond between the
amide nitrogen of Tyr-1 and the carbonyl oxygen of Phe-4 backbone.) The other is that
the side chain of Tyr-1 tends to be close to that of Met-5, forming a circular shape as
a whole, while the backbone is extended. The main-chain conformations are similar to
those of group I, obtained in gas phase. These facts imply that the backbone structures
obtained by simulations in the solvent do not differ significantly from those in gas phase.
The side-chain structures, however, can be quite different. For instance, the lowest-energy
conformation in group B, (Fig. 3.3(b)) and that in group B (Fig. 3.4(a)) have very sim-
ilar backbone structures (RMSD=1.3 A) but completely different side-chain orientations.
Also note that the global-minimum-energy structure in gas phase (group A;) has a rather

higher energy in solution, and is not found by the present simulations including a solvent.
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Figure 3.4: The structural characterization of groups B, Ba, Fy, Gy, and E4 (from Table
3.1) obtained by Monte Carlo simulated annealing simnlations in the solvent. The left-
hand side is the lowest-energy conformation in each group, and the right-hand side is the
superposition of the backbone structures of all the conformations in each group.

(a) Group B (Conformation S1 in Table 3.4).

(b) Group B; (Conformation S6 in Table 3.4).

(¢) Group F, (Conformation S5 in Table 3.4).

(d) Group G4 (Conformation S14 in Table 3.4).

(e) Group E4 (Conformation S18 in Table 3.4).

We usge a simplified notation such as 02 and N5, which stand for the carbonyl oxygen of
the Gly-2 backbone and the amide nitrogen of the Met-5 backbone, respectively.
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Fig. 3.4 (Continued)
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3.3.6 Characteristics of the Lowest-Energy Conformations Ob-
tained in Gas Phase and in Model Solvent

The total energy (Lyor) used in the present simulations was
Eror = Ep (3.1)

for gas-phase case and

Eror = Ep + Ecav (32.]]

for the in-solvent case, where Ep is the conformational energy (see Eq. (2.3)) and £z 4y is
the cavity-formation term (see Eqgs. (2.5) and (2.6)). In order to see how stable the low-
energy conformations in gas phase are when they are placed in the solvent, we calculated
the cavity-formation term (£c.av ) for six conformations (A,, Dy, By, B}, By, and E;) and
list the values in Table 3.3 (see the third row in the table). As can be seen from Table
3.3, these cavity-formation terms are significantly larger than those of conformations (S1,
52, .-+, and 520) obtained by simulations in the solvent, suggesting that these gas-phase
conformations are unstable in the solvent. Note thal the entries in Table 3.3 are the
root-mean-square distances of the backbone structure only. The fact that some of the
values between the conformations in gas phase and those in the solvent are small (see the
entries in bold face and underlined numbers) seems to imply that when the low-energy
conformations in gas phase are placed in the solvent, they rearrange the side-chain orien-
tations so that the backbone structures remain stable. An exception is the conformation
in group A;. The side-chain structures (especially that of Tyr-1) are also constrained for
these conformations so that they cannot be rearranged to find a stable conformation in the
solvent. The backbone of the lowest-energy structure in the solvent has a shape similar
to that of the second lowest-energy structure in gas phase; the global-minimum-energy
conformation in gas phase was not found in the simulations in the solvent. Furthermore,
as can be seen from Tables 2 and 4, the energy difference between the lowest-energy group
and the second lowest-energy group is 1.5 kcal/mol in gas phase (A; versus B;) and 3.8
kcal /mol and in the solvent (B4 versus IHy), respectively. Therefore, there is only one
dominant low-energy structure in the solvent, while there are two dominant ones in gas

phase. It seems that the solvent effects decrease the number of low-energy local minima.



We now focus our attention on the conformations obtained in the solvent which have
a low cavity-formation free energy (£c4v ). These are conformations S1, 52, S3, 56, S7,
S135, 516, 517, 518, and 519 (sec Table 3.3). By examining the structures in detail, we
found two characteristics. One is that the conformations with a hydrogen bond between
the amide nitrogen of Tyr-1 and the carbonyl oxygen of Phe-4 backbone have low cavity-
formation free energies. These conformations are S1, S2, S3, and S7, which are shown in
Fig. 3.5(a). The other is that the conformations have low cavity-formation free energies
when they form a circular shape in which the N-terminal side chain (Tyr-1) is close to the
C-terminal one (Met-5) and the main chain is extended. These conformations are S6, S15,
S16, 517, S18, and S19, which are shown in Fig. 3.5(b). In Fig. 3.6, cavity-formation
free energy of the lowest-energy conformations obtained by each simulation in the solvent
as a function of the accessible surface area is shown. The accessible surface areas of the
obtained conformations were calculated by the code developed in Ref. [20]. It is found
that there are two parts in Fig. 3.6. Oune part (Part 1) corresponds to the structures
that have high cavity-formation free energies and small accessible surface areas. These
conformations are similar to those of group B in gas phase, which have two intrachain
hydrogen bonds and have low conformational energies. In this case, the conformational
energies are responsible for the conformational stability in the solvent. On the other
hand, the second part (Part 2) in Fig. 3.6 corresponds to the structures that have low
cavity-formation free energies and large accessible surface areas. These structures have
either circular shapes in which the main chain is extended, but the N-terminal side chain
(Tyr-1) is close to the C-terminal one (Met-5), or have a hydrogen bond between the
amide nitrogen of Tyr-1 and the carbonyl oxygen of Phe-4 (one hydrogen bond of group
B are broken); also, these conformations have low cavity-formation free energies. In this
case, the cavity-formation free energy is responsible for the conformational stability in

the solvent,
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(a)

S1 S2

S3 ST

Figure 3.5: Two kinds of conformations with low cavity-formation free energy: Confor-
mations 51, S2, S3, and 57 (a), and S6 and from S15 to S19 (b).

Structures in (a) have a hydrogen bond between the amide nitrogen of Tyr-1 and the car-
bonyl oxygen of Phe-4 backbone. Structures in (b) have circular shapes in which the main
chain is extended and the N-terminal side-chain (Tyr-1) is very close to the C-terminal

one (Met-5).

-50-



(b)

S6 S15

S16 S17

S18 519

Fig. 3.5 (Continued)
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3.3.7 Relation between the Cavity-Formation Free Energy and
the Accessible Surface Area

We now consider in detail the relations among the solvent-accessible surface area, the
solvent-excluded volume, and the cavity-formation free energy. We performed three SA
runs of 10000 MC sweeps in the model solvent with the initial temperature of 1000 K and
the final temperature of 150 K. One of the simulation runs, which we refer to as Run 1,
was made so that it reproduces the one that gave the lowest-energy conformation in Part
1 of Fig. 3.6. Another run (Run 2) reproduces the lowest-energy conformation in Part 2 of
Fig. 3.6. The third run (Run 3) was newly made. One conformation at each temperature
with an increment of 1 degree (T=150, 151, 152, .-, and 1000 K) was chosen for the
analyses (total of 851 conformations for each run).

In Fig. 3.7, we show the solvent-excluded volume of these conformations as a function of
their accessible surface area. The excluded volumes of these conformations were calculated
by the code developed in Ref. [20]. It was found that the excluded volume is almost
proportional to the accessible surface area.

In Fig. 3.8, the cavity-formation free energies of the conformations as a function of the
accessible surface area are shown. In Fig. 3.8(a), the data from all 851 x 3 conformations
are shown. The data in Fig. 3.8(b) and Fig. 3.3(c) are from the conformations which
have Evor < 40 keal/mol in Run 1 and Run 2. respectively (the results of Run 3 are
omitted because they turned out to be similar to those of Run 2). From Fig. 3.8, it is
found that the low-energy conformations obtained in these simulations remain in Part
I or Part 2 of Fig. 3.6. Fig. 3.8(b) implies that the cavity-formation free energy of
the lower-energy conformations ( Eror < 40 kcal/mol) in Run 1 is proportional to the
accessible surface area. On the other hand, Fig. 3.8(c) suggests that the cavity-formation
free energy of low-energy conformations ( Frar < 10 keal/mol) in Run 2 has no correlation
with the accessible surface area. These results show that cavity-formation free energy is
not necessarily proportional to accessible surface area for a small peptide, such as Met-

enkephalin, and depends on the microscopic structures of the peptide. This conclusion is
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in accord with the results of simulations of Met-enkephalin with RISM theory [21].
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Figure 3.6: Cavity-formation free energy (kcal/mol) of conformations as a function of
solvent-accessible surface area (A?). The conformations are the lowest-energy conforma-
tions obtained in each of the 20 Monte Carlo simulated annealing runs in the solvent.
[t is found that there are two parts. One part (Part 1) corresponds to the structures
that have high cavity-formation free energies and small accessible surface areas. These
conformations are similar to those of group B in gas phase, which have two intrachain
hydrogen bonds. The second part (Part 2) corresponds to the structures that have low
cavity-formation free energies and large accessible surface areas. These structures have
either circular shapes in which the main chain is extended but the N-terminal side chain
(Tyr-1) is close to the C-terminal one (Met-3) or have a hydrogen bond between the amide
nitrogen of Tyr-1 and the carbonyl oxygen of Phe-4 (one hydrogen bond of group B are
broken).
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Figure 3.7: The solvent-excluded volume (A?) of conformations obtained by three SA
runs as a function of their accessible surface area (A?). One of the simulation runs,
which we refer to as Run 1, was made so that it reproduces the one that gave the lowest-
energy conformation in Part 1 of Fig. 3.6. Another run (Run 2) reproduces the lowest-
energy conformation in Part 2 of Fig. 3.6. The third run (Run 3) was newly made. One
conformation at each temperature with the increment of 1 degree (T'=150, 151, 152, - .-,
and 1000 K) was chosen for the analysis {total of 351 conformations for each run).
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Figure 3.8: Cavity-formation free energies of the conformations as a function of accessible
surface. The data from all 851 x 3 conformations are shown (a) (see the caption of
Fig. 3.7). The data for (b) and (c) are from the conformations which have Eror < 40
kcal/mol in Run 1 and Run 2, respectively.
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4.1 Introduction

In the previous Chapter, we studied the low-energy conformations of Met-enkephalin
by Monte Carlo simulated annealing [1]. Simulated annealing is powerful and easy to
implement, but information only in the vicinity of the lowest-energy state can be obtained
by this method. In order to study the [olding of the peptide from a random coil state,
the detailed, systematic analyses of the conformations as a function of temperature have
to be performed. This is the purpose of the present chapter. The algorithm we adopt is
multicanonical algorithm [2], which allows one to obtain various thermodynamic quantities
as a function of temperature. In this work we first classify the low-energy conformations of
Met-enkephalin into several groups of similar structures. We then present the distributions
of conformations, hydrogen bonds, and dihedral angles as a function of temperature, which

gives much information about the free energy landscape of Met-enkephalin.

4.2 Computational Details

In this work we adopted multicanonical simulation to obtain various thermodynamic quan-
tities as a function of temperature. Only the conformational energy term (Ep) (see the
subsection 2.1.1) [3, 4, 5| is estimated, because we want to compare the results by mulii-
canonical simulation in the present work with those by simulated annealing simulation in
gas phase. For Met-enkephalin (whose amino-acid sequence is Tyr-Gly-Gly-Phe-Met), the
number of degrees of freedom is 19. One Monte Carlo (MC) sweep consists of updating
all these 19 angles once with Metropolis evaluation [6] for each update. For our study
of Met-enkephalin, we first made a preliminary canonical simulation at T,=1000 K with
100 000 Monte Carlo sweeps. We iterated this process thirteen times to determine the
optimal weighting factor w,,,, (L) by using version 1 in subsection 2.2.2. After the optimal
weighting factor w,,,(E) was determined we then made one production run with 1 000 000
Monte Carlo sweeps and obtained various thermodynamic quantities as a function of tem-
perature by the reweighting techniques [7|. Analysis of the time series of energy showed

that the present choice of multicanonical weight factor indeed realizes a random walk in
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potential energy space, which keeps the simulation from getting trapped in a local mini-
mum (see Fig. 4.1). The random walk visits the lowest-energy region (E = —12 keal /mol)
several times in 1 000 000 Monte Carlo sweeps. The visits are separated by excursions

into high-energy regions, which ensures de-correlation of the configuration.
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<E=

20
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0 100000 200000 300000 400000 500000 600000 700000 BOODGO 200000 1e+06
MC Nsweep

Figure 4.1: The time series of the total potential energy Ep (keal/mol) obtained by the
multicanonical production run.

The large changes in energy imply large conformational changes that occur in the
course of the simulation. Because large parts of the configuration space are sampled,
the use of the reweighting techniques is justified to calculate thermodynamic quantities
over a wide range of temperature. As an example, we calculated the average energy as a
function of temperature (see Fig. 4.2) and the results were in good agreement with those

in previous multicanonical simulations.[8, 9, 10]
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Figure 4.2: The average total potential energy as a function of temperature.

4.3 Results and Discussion
4.3.1 Distributions of Hydrogen Bonds

In order to study the characteristics of the obtained conformations in detail, we first
examine the distributions of intrachain hydrogen bonds in the backbone. In this work,
we use the following abbreviations for the atoms in the backbone. The amide nitrogen
and carbonyl oxygen of the i-th residues are referred to as Ni and O, respectively. For
example, 02 and N5 stand for the carbonyl oxygen of Gly-2 and the amide nitrogen
of Met-5, respectively. Moreover, the intrachain hydrogen bond between Ni and Oj
is denoted by Ni-0j. Let dyo be the distance between the amide hydrogen and the
carbonyl oxygen, and #yyo the angle spanned by the amide nitrogen, amide hydrogen,
and carbonyl oxygen (i.e., the angle between two vectors NH and Hb]. We adopt the
following criterion for hydrogen-bond formations. We consider that a hydrogen bond

between the amide nitrogen (donor) and carbonyl oxygen (acceptor) is formed if

dy < dpo < dp (4.1)
Onmo < 0c | '
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where we take

dp=15A, dp =25 A, and 0 = 60° . (4.2)

Since adjacent residues do not form hydrogen bonds, there are 12 possible hydrogen-
bond patterns (namely, N1-O3, O1-N3, N1-O4 , O1-N4, N1-03, 01-N3, N2-04, 02-
N4, N2-05 , 02-N5, N3-05, and O3-N5 ). Using the reweighting techniques, we have
calculated the probability distributions of these hydrogen-bond formations as a function
of temperature. The results are shown in Fig. 4.3.

It 1s found in Fig. 4.3 that the distributions of the hydrogen bonds O2-N5 and N2-
05 are very high at low temperatures and monotonically decreasing as the temperature
increases. More than 90 % of the conformations have these two hydrogen bonds below 150
K. As the temperature is raised, four more hydrogen bonds (N1-04, O1-N4, O1-N3, and
(02-N4) appear. The temperatures of the peak of the distributions are about 300, 300,
350, and 350 K, for N1-04, O1-N4, O1-N3, and O2-N4 respectively. As the temperature
is further raised, other hydrogen bonds will also appear, but their contributions are rather

small.

4.3.2 Classification of Conformations

As was done in earlier work [11, 12, 10], the patterns of intrachain hydrogen bonds can
naturally be used for classification of conformations in a small peptide such as Met-
enkephalin. In particular, we try to classify the structures by the patterns of hydrogen
bonds that connect a pair of residues. For this purpose we introduce the following no-
tations: We say that the hydrogen bond R;-R; between a pair of residues R; and R,
(7 > 1+ 1) is formed when at least one of the hydrogen bonds Ni-Oj and Q:¢-Nj are
formed. For instance, R,-Rs can mean that N1-03 or 01-N3 or both N1-03 and O1-N3
are formed. There are six such hydrogen bonds (namely, R;-Rs, R;-Ry, Ri-Rs, Ri-Ry,
Ri-R;, and Ra-R;). We can therefore classify the obtained conformations into six groups
of similar structures, which we respectively refer to as C13, Cl4, C15, C24, C25, and C35.
Schematic drawings of these six groups are shown in Fig. 4.4. A conformation can in prin-
ciple have more than one hydrogen-bond pattern R;-R;. and then we have an ambiguity

as to which group the conformation belongs to. For example, a conformation can have
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Figure 4.3: The distributions of hydrogen bonds as a function of temperature.

two hydrogen bonds, R,-Ry and Ra-Rs, and the conformation can belong to either group
€24 or group C25. In these cases we use the most external hydrogen bond for the classi-
fication because external hydrogen-bonds will constrain the structure more than internal
ones. For instance, il a conformation has two types of hydrogen bonds R;-R5 and R;-R;,
we consider that the conformations belongs to groups C15, because the hydrogen bond
R;-R3 does not restrict the structure of the C-termina! residue Met-5. The exception is
the case when a conformation has hydrogen bonds R;-Ry and R;-Rs. By examining such
conformations obtained by the present simulation in detail, we found that their backbone
structures have more similarity to group C14 than to group C15. We thus consider that
the conformation belongs to group Cl4 instead of group C15.

As discussed in the preceding subsection, the conformations were classified into four
groups (A, B, C, and D) by using the root-mean-square distances in the previous work [13].

In the present criterion of classification, the groups A, B, C, and D) actually correspond
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to the groups C25, C14, C15, and C24, respectively. Similarly, groups C25 and Cl4
correspond to structures (2),(b) and (1),(a), respectively, in Ref. [10].

After the definition of groups of similar structures is given, we now study the distri-
butions of conformations in these groups as a function of temperature 7. The results are
shown in Fig. 4.5. As can be seen in the Figure, group C25 is dominant at low tempera-
tures, Conformations of group C14 start to appear from T = 100 K. At T = 300 K, the
distributions of these two groups, C25 and C14, balance ( 2= 25 % each) and constitute the
main groups. Above T 2 300 K, the contributions of other groups become non-negligible
(those of group C24 and group C13 are about 10 % and 8 %, respectively, at T' = 400 K).
Note that the distribution of conformations that do not belong to any of the six groups
monotonically increases as the temperature is raised. This is because random-coil confor-
mations without any intrachain hydrogen bonds are favored at high temperatures. These

results are in agreement with Refs. [9, 10].
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4.3.3 Details of the Six Classified Structures

After the distributions of the six groups are established, we now study the characteristics
of each group in detail. In Fig. 4.6 we show the lowest-energy conformations in each
group. Conformations were obtained by minimizing (with Newton-Raphson method) the
lowest-energy conformations found in each group during the multicanonical simulation.
We remark that the minimization did not alter the structure much at all, but energy
values were lowered from —12.2, —10.1, —8.3, —6.0, —7.0, and —1.7 kcal/mol to —12.2,
—11.1, —9.8, —9.1, —8.8, and —5.0 keal/mol for groups €25, C14, C24, C13, C15, and
C35, respectively. The four of these structures (('25, Cl4, C24, and C13) in Fig. 4.6 are
essentially identical with the lowest-energy conformations of the four groups found previ-
ously in Ref. [13] including the side-chain structures, although the previous classification

used root-mean-square distances instead of hydrogen-bond patterns.
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As is shown in Fig. 4.6(a), the conformation of group C25 has two hydrogen bonds,
N2-05 and 02-N5, and forms a type 11" -turn. The energy of the conformation is —12.2
keal /mol, and this conformation corresponds to thie global-minimum-energy state of Met-
enkephalin in gas phase. The conformation of group Ci4 (Fig. 4.6(b)) has two hydrogen
bonds, N1-O4 and O1-N4, and forms a type II F-turn. The energy is —11.1 kecal/mol, and
this conformation corresponds to the second-lowest-energy state. The groups €25 and
(14 are the dominant groups in the energy landscape of Met-enkephalin as shown above
(see Fig. 4.5).

The conformation of group C24 (Fig. 4.6(c)) has only one hydrogen bond, 02-N4,
(because the distance between N2 and O4 is larger than 2.5 A) and forms a y-turn. The
energy is —9.9 kcal/mol, and this conformation corresponds to the third-lowest-energy
state. We remark that the structures of group C24 can be obtained from that of group C25
by small rearrangements of the intrachain hydrogen bonds. In group €25 of Fig. 4.6(a),
02 and N4 are already close to each other. By cutting the two hydrogen bonds, N2-05
and O2-N5, we can easily lead the conformation to that of group C24. Note that the OH
of Tyr-1 side chain is hydrogen-bonded to the carbonyl oxygen of Gly-3 in both groups
C25 and C24.

The conformation of group C13 (Fig. 4.6(d)) has only one hydrogen bond, 01-N3, and
also forms a 4-turn. The energy is —9.1 kcal /mol and this conformation corresponds to
the fourth-lowest-energy state. The structure of group C13 can be obtained from that of
group Cl4 by small rearrangements of the intrachain hydrogen bonds. In group C14 of
Fig. 4.6(b), Ol and N3 are already close to each other (see Fig. 1.6(b) also). By cutting
the two hydrogen bonds, N1-O4 and O1-N4, we can easily lead the conformations to that
of group Cl13.

The conformation of group C15 (Fig. 4.6(e)) has only one hydrogen bond, O1-N5,
the energy 1s —8.8 kecal/mol and this conformation corresponds to the fifth-lowest-energy
state. As can be seen in Fig. 4.5, the probability distribution for this group is rather low
compared to the four previous groups (C25, C14, C24, and C13).

The conformation of group C35 (Fig. 4.6()) has only one hydrogen bond, O3-N5. The

backbone of this conformation is extended and the energy is rather high { 5.0 kcal/mol).
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As can been seen in Fig. 4.5, the probability distribution for this group is also low com-

pared to the first four groups (C25, C14, C24, and C13).

Finally, in Table 4.1 we list the root-mean-square distances between pairs of the six

conformations in Fig. 4.6. Ounly the atoms in the backbone are taken into account. The

entries are all more than or equal to 3.0 A, and this implies that these structures are

indeed quite different.

Table 4.1: Root-mean-square distances (A) of the coordinates of the backbone atoms
among the lowest-energy conformations® in each of the six groups (C13, C14, C15, C24,

€25, and C35).

C13 Ci4
C13| 00 3.3
Cl4 | 33 0.0
C15| 3.2 4.3
C24 | 3.1 3.0
C2 | 5.2 4.1
35| 3.1 4.0

C24 025 C35

31 52 31
30 41 4.0
34 4.7 3.0
0.0 39 3.1
39 00 5.1
31 51 00

* These six conformations are shown in Fig. 4.6.
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(c) c24 {d) cia

{e) C15

Figure 4.6: The lowest-energy conformations in each group obtained by the present simula-
tion. These conformations were obtained by minimizing (with Newton-Raphson method)
the lowest-energy conformations found during the multicanonical simulation. The lowest-
energy conformations correspond to groups C25(a}, Cl4(b), C24(c), C13(d), C15(e), and
C35(1)

4.3.4 Hydrogen Bond formations in Each Group of Similar Struc-
tures

In Fig. 4.3 we saw the distributions of all possible intrachain hydrogen bonds as a function
of temperature. We now examine the possible hydrogen bonds as a function of tempera-
ture for each group separately in order to study how the conformations in each group are

disordered as the temperature is raised. The results are shown in Fig. 4.7. We only show
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results for groups C25 and Cl4, because these groups are dominant. Here, we used the
following weaker conditions for hydrogen-bond formations in Eq. (4.1) in order to judge

which group cach conformation belongs to:
d,=15A, dy=3.0 A, and 6 = 90° , (4.3)

because we want to include conformations that do not have hydrogen bonds in a strict
sense but yet have similar structures (and the actual distributions of hydrogen bonds were
calculated by the definition with Eq. (4.2)).

For group C25 (Fig. 4.7(a)), the distributions of the two characteristic hydrogen bonds,
N2-05 and 02-N5, are equally high at low temperatures. This implies that the lowest-
energy conformation in Fig. 4.6(a) is quite stable. We remark that at very high temper-
atures hydrogen bond O2-N3 is stronger than N2-05, suggesting that in group C25 the
external hydrogen bond (N2-05) is easier to break than the internal one (02-N5). The
third hydrogen bond, O2-N4, also appears at higher temperatures when the conforma-
tion is slightly deformed by thermal fluctuations, opening a possibility of transition of
structures from group C25 into group C24 as discussed above.

For group C14 (Fig. 4.7(b)), the distributions of the two characteristic hydrogen bonds,
N1-04 and O1-N4, are high but not equal at low temperatures. At very low temperatures
about 80 % of the conformations have the two hydrogen honds and the remaining 20 %
have only one hydrogen bond, O1-N4. We remark that at higher temperatures hydrogen
bond N1-O4 is stronger than O1-N4, implying that in group (14 the internal hydrogen
bond (01-N4) is easier to break than the external one (N1-O4). The third hydrogen bond,
O1-N3, also appears at high temperatures, suggesting that a transition of structures from
group C14 to group C13 is possible when the conformation is slightly deformed by thermal
fluctuations as discussed above.

For groups C24 and C13 (data not shown), conformations have only one characteris-
tic hydrogen bond (respectively N2-04 and O1-N3) at low temperatures and the other
hydrogen bond (respectively O2-N4 and N1-03) does not exist, because they both form

a y-turn.
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Figure 4.7: The distributions of 12 possible hydrogen-bond patterns in groups C25 and
('14 as a function of temperature.

4.3.5 Distributions of Backbone Dihedral Angles

Our analyses so far imply that there are two very stable structures {groups C25 and
C14) at low temperatures. They respectively form type II'’ 3-turn and type Il S-turn.
There are two more stable structures (groups C24 and C13) which form v-turns. The
remaining two groups (C15 and C35) turned out to be less stable. These results imply
thal there are at least four well-defined valleys in the energy landscape of Met-enkephalin
in gas phase. We now study the distributions of backbone dihedral angles. For each
group we separately make Ramachandran plots of conformations obtained in the course

of the multicanonical simulations. Here, we again use the weaker definition (Eq. (4.3))
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for hydrogen bonds in Eq. (4.1) to judge which group each conformation belongs to.
Twao zets of Ramachandran plots are made for each residue. The first set is taken from
conformations with energy E in the range F.;, £ F < Eqn + 3 (keal/mol) and the
other set is from the range E. +3 < E < Epip + 6 (keal fmol), where E,.;. stands for
the lowest-energy in each group obtained during the multicanonical simulation. (Namely,
Eoiw=-122 =101, —8.3, —6.0, —7.0, and —1.7 kcal/mol for groups C25, Cl4, C24,
C13, C15, and C35, respectively.) We consider that the group in question is a well-defined
valley in the energy landscape if the second set of Ramachandran plots are distributed
more widely than the first set and contain the first set as a subset.

The results are shown in Fig. 4.8. We only show data for groups C25, Cl4, C24,
and C13. For groups C25 (Fig. 4.8(a)) and C14 (Fig. 1.8(b)), the numbers of samples
are large, and the above criterion is certainly met. These groups are thus well-defined
valleys in the energy landscape. This can also be checked directly by minimizing the
configurations. They all converge into the same local-minimum state. For group €25 the
distributions are well localized except for & of Tyr-1 (¢;). This implies that the structure
is very stable. For ¢, the angle is [ree to vary because it is located at the end of the
peptide and no hydrogen bond stabilizes the structure there. On the other hand, for
group C14 the C-terminal dihedral angles (s, 1'5) are free to move because the hydrogen
bond R;-R, does not consirain the Met-5 structure.

For group C24 (Fig. 4.8(c)) and group C13 (Fig. 4.8(d)), the numbers of sample dots
are not as large as those for group C25 and group C14, but the criterion for valley in the
energy landscape is again satisfied. These two groups can thus be said to correspond to
local-minimum states. We remark that the distributions for group C24 is rather similar to
those for group C25 except for those of Phe-4 and Met-5. It is therefore easy for these two
structures to interchange with each other as discussed above. Note also that the structure
of Met-5 is flexible for C24 because no hydrogen bond stabilizes it. The distributions for
(13 is likewise similar to those for C14 except for those of Gly-3.

For C15 (Fig. 4.8(e)) and C35 (Iig. 4.8(f)), the numbers of samples are rather small
and we cannot conclusively claim that these groups correspond to valleys in the energy

landscape. If they do, they are shallower than those of the previous four groups.
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Using the reweighting techniques, we can calculate the distributions of the backbone
dihedral angles of Met-enkephalin as a function of temperature. The results at 100 K,
300 K, and 1000 K are shown in Fig. 4.9. At T = 100 K (Fig. 4.9(a)) the distributions
are well-localized, and at this temperature one conformation (C25) is dominant. At
T =300 K (Fig. 4.9(b)) the distributions are still localized but we see a trace of the second
conformations (group C14) appearing. Note that these results are in complete agreement
with our analyses of the energy landscape of Met-enkephalin in Refs. [14, 15], where we
used the overlap functions to characterize the energy landscape. There, the backbone
dihedral angles themselves were taken as the order parameter and again we observed the
change in the free energy landscape as a function of temperature indicating the transition
between a unique ground state and an ensemble of other well-defined structures. Finally
at 7' = 1000 K (Fig. 4.9(c)) the distributions are widely spread, implying the large thermal
fluctuations. These results correspond to the observed transition between an ensemble of

well defined compact states and extended coil structures observed in Refs. [14, 13].
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Figure 4.8: Ramachandran plots in each residues of conformations obtained in the course
of the multicanonical simulation. We show the results for C25(a), C14(b), C24(c), C13(d),
Cl5(e), and C35(f). Two sets of Ramachandran plots are made for each residue. The
first set is taken from conformations with energy E in the range Enin € E < Epin + 3
(keal/mol) (left-hand side) and the other set is from the range Epin +3 < E < Epin +
6 (kcal/mol) (right-hand side), where £, ;. stands for the lowest-energy in each group
obtained during the simulation. (Namely, F.;, = —12.2,-10.1,-8.3,—6.0, —-7.0, and
—1.7 keal/mol for groups C25, C14, C24, C13, C13, and C35, respectively.). Abscissa is
the dihedral angle ¢ and ordinate 1s the dihedral angle #.
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Figure 4.9: Distributions of the backbone dihedral angles of Met-enkephalin as a function
of temperature. The results at T' = 100 K{a), 300 K(b). and 1000 K(c) are shown.

-B2 -



Gly-3 Phe-4

Fig. 4.9 (Continued)

-83-



oooooo
=2RBERE

Fig. 4.9 (Continued)

Phe-4

0.04
0.03
0.02
0.0




(c) T=1000 K
Tyr-1

Gly-2

o

;L'J' i
v ﬁﬂ
A\ ‘““"-L

Fig. 4.9 (Continued)

—B5—

Phe-4

LR A
(RN
1 5)‘" o :‘f*“‘ el



Bibliography

[1] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Seience 220, 671 (1983).
[2] B. A. Berg and T. Neuhaus, Phys. Lett. B267, 249 (1991).

(3] a) F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga, J.
Phys. Chem. 79, 2361 {1975).
b) G. Némethy, M. 5. Pottle, and H. A. Scheraga, J. Phys. Chem. 87, 1883
(1983).
¢) M. J. Sippl, G. Némethy, and H. A. Scheraga, J. Phys. Chem. 88, 6231
(1984).

[4] H. Kawai, Y. Okamoto, M. Fukugita, T. Nakazawa, and T. Kikuchi, Chem.
Lett. 1991, 213.

[5] Y. Okamoto, M. Fukugita, T. Nakazawa, and H. Kawai, Prolein Eﬂ‘g. 4, 636
(1991).

[6] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. J.
Teller, J. Chem. Phys. 21, 1087 (1953).

[7] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).
[8] U. H. E. Hansmann and Y. Okamoto, J. Comp. Chem. 14, 1333 (1993).
[9] U. H. E. Hansmann and Y. Okamoto, Physica A 212, 415 (1994).

[10] F. Eisenmenger and U. l1. E. Hansmann, J. Phys. Chem. B 101, 3304 (1997).

{11] G. H. Paine and H. A. Scheraga, Biopolymers 26, 1125 (1987).

—BE—



[12] B. Von Freyberg and W. Braun, J. Compul. Chem. 21, 1065 (1991).
[13] Y. Okamoto, T. Kikuchi, and H. Kawai, Chem. Lett. 1992, 1275.

[14] U. H. E. Hansmann, M. Masuya, and Y. Okamoto, Proc. Natl. Acad. Sci.
1.5.4. 94, 10652 (1997).

[15] U. H. E. Hansmann, Y. Okamoto, and J. Onuchic, PROTEINS: Struet.
Funct. Genet. 34, 472 (1999).

=87 =



Chapter 5

a-Helix Propensities of
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5.1 Introduction

Helix-coil transitions of peplide and protein systemis provide important insight into protein
folding problem. There exist extensive recent studies both in experiment [1]-[8] and in
theory [9]-(20].

In a previous work,[17] thermodynamics of helix-coil transitions of home-oligomers
in gas phase were studied by multicanonical algorithms [21]. Multicanonical algorithm
15 particularly useful for studying helix-coil transitions. because a single simulation run
can give information about wide range of temperatures covering both helix phase at
low temperatures and coil phase at high temperatures. Homo-oligomers of length 10
were considered for three characteristic amino acids, alanine (helix former), valine (helix
indifferent ), and glycine (helix breaker). It was shown that the obtained helix propagation
parameters s of the Zimm-Bragg model [22] for the three amino acids were in remarkable
agreement with the experimental values [17]. The helix-coil transition from an ideal helix
to a random coil was observed in homo-alanine. It turned out, however, that the transition
temperature was above 400 K and unrealistically high [17]. It was conjectured that the
lack of solvent effects in the analysis caused this discrepancy.

In this chapter, we study thermodynamics of helix-coil transitions in amino-acid homo-
oligomers of length 10 in aqueous solution by multicanonical algorithm and compare
the results with those in gas phase. Homo-alanine, homo-valine, and homo-glycine are
considered. We calculate average values of total potential energy, its component terms,
helicity, and specific heat as a function of temperature. Zimm-Bragg s and o parameters
are also obtained as a function of temperature. The helix-coil transition temperature for

homo-alanine in aqueous solution is indeed found to be much lower than that in gas phase.

5.2 Computational Details

In this chapter we employ the multicanonical simulation to estimate various thermody-
namic quantities as a function of temperature. The solvation free energy that we used is

the sum of terms that are proportional to 1he solvent-accessible surface area of the atomic
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groups of the solute (see Eq. (2.7)).

In the present work, the numbers of degrees of freedom (dihedral angles) are 30, 50,
and 20 for (Ala)ya, (Valhp, (Gly)io. respectively. One Monte Carlo (MC) sweep consists
of updating all these angles once with Metropolis evaluation [23] for each update. For the
calculation of multicanonical weight lactors, we used version 3 of the iterative procedure
in subsection 2.2.2; it required between 110 000 MC sweeps in gas phase and 400 000 MC
sweeps in aqueous solution for {Ala)yg, 900 000 MC sweeps in gas phase and 1 000 000 MC
sweeps in aqueous solution for (Val}a, and 450 000 MC sweeps in gas phase and 250 000
MC sweeps in aqueous solution for (Gly)e. After the optimal weighting factor wy,,(E)
was determined we then made one production run with 1 000 000 MC and obtained varions
thermodynamic quantities as a function of temperature by the reweighting techniques (see

Egs. (2.32) and (2.33)). Initial conformations were randomly generated.

5.3 Results and Discussion

5.3.1 Time Series of the Total Potential Energy

We first examine how much of the configuration space the multicanonical simulations
explore. As explained in section 2.2, a simulation in the multicanonical ensemble performs
a one-dimensional random walk in the potential energy space. It should visit not only
the ground-state regime but also states with very high energy. This ensures that the
simulations avoid getting trapped in configurations with energy local minima. We display
in Fig. 5.1 the “time series” of the total potential energy Fror for (Ala)e, (Val)yo, and
(Gly )i 1n aqueous solution. The results indeed exhibit a random walk in energy space
covering a range of 60 — 100 kecal/mol. We confirmed that random walks in energy space
for (Ala)yg, (Val)ig, and (Gly )y were also obtained in gas phase (data not shown). Since
configurations are sampled over a large range of energies, the reweighting techniques allow
one to calculate thermodynamic quantities as functions of temperature for a wide range

of temperatures (see Egs. (2.32) and (2.33)).
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Figure 5.1: Time series of the total potential energy Eror (kcal/mol) for (Ala)e (a),
(Val)ig (b), and {Gly)ig (c) in aqueous solution.
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5.3.2 The Lowest-Energy Conformations

We investigate the lowest-energy conformations of homo-oligomers obtained during the
present simulations. In Tables 5.1 and Table 5.2, we list the dihedral angles of the lowest-
energy conformations for (Ala)yg, (Val)ie. and (Gly)ie in gas phase and in aqueous solu-
tion, respectively.

For (Ala)ye in both environments the dihedral angles from residue 2 to residue 9 are
in a-helix state. Here, the criterion we adopt for a-helix state of residue is as follows:
We consider that a residue is in the a-helix configuration when the dihedral angles (¢,
) fall in the range (—T0 £ 30°, —37 + 30°). The length ¢ of a helical segment is then
defined by the number of successive residues which are in the helix configuration. The
lowest-energy conformations for (Ala)o have the helix length £ = 8§ and are completely
helical conformations (the terminal residues tend to be frayed). The side-chain structures
of (Ala)g is also uniquely determined for the lowest-energy conformations in both envi-
ronment; namelyv, the values of y are close to one of 60°, —60°, and 180°, which are all
equivalent angles because of the 3-fold rotational symmetry of the alanine side chain.
These lowest-energy conformations for (Ala)ye in gas phase and in aqueous solution are
shown in Fig. 5.2 (a) and Fig. 5.2 (b), respectively. These conformations have six intra-
chain backbone hydrogen bonds that characlerize the a-helix and are indeed completely
helical.

As shown in Tables 5.1 and 5.2, the dihedral angles of (Val)yo for the lowest-energy
conformations in both environments are again in almost ideal helix state (from residue
2 to residue 9 in gas phase and from residue 2 to residue 8 in aqueous solution). These
lowest-energy conformations are shown in Fig. 5.2 (c¢) and Fig. 5.2 (d). We remark that
the lowest-energy conformation of (Val),y in aqueous solution discussed here was actually
obtained by another multicanonical simulation run that was made separately from the
one shown in Fig. 5.1 (b) (the energy difference between the lowest-energy conformations
obtained by the two runs was only about 1 kcal/mol). This run, however, got trapped
in the ground state region and did not preform a random walk in energy space. We thus
used the results of the run in Fig. 5.1 (b) instead for the calculation of thermodynamic

quantities as a function of temperature (which are presented below). The thermodynamic
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Table 5.1: The dihedral angles of the lowest-energy conformations in gas phase for
(Ala)yg (a), (Val)ye (b), and {Gly)ye (c).

(a)
residue i P ;«-
| —-24 —42 —68
2 —66 =338 =67
3 -68 —136 65
1 —-66 —38 G5
G —-69 =35 =57
6 -7l =35 63
7 =73 =30 177
5 =75 =36 al
] =75 =34 =30
10 —153 a7 l'@_
(b)
residue qﬁ"-“ t}_ X Y* Y’
1 3 =20 65 -3l 177
2 -70 =34 IT3 —-67 =39
3 —64 =31 173 172 54
4 -73 -39 174 -G8 60
D —64 34 166 A7 39
6 —66  —34 163 50 =T1
T -3 =36 163 170 19
5 63 —¥ 161 =72 a0
9 —~T8 =17 166 48 168
10 -39 91 —176 178 —AT
(c)
residue @ W
1 122 =50
2 160 86
3 —-148 69
1 61 —109
5 -56 =52
f -79 T8
T 146 —34
8 84 31
9 170 174
10 -5l 144
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Table 5.2: The dihedral angles of the lowest-energy conformations in aqueous solution for
(Ala)e (a), (Val)yg (b), and (Gly)ye (€).

(a)
residue @ ¥ x
1 19 149 62
2 -76 —=29 166
3 —-68 =38 —I75
4 —-74  —33 174
5 -69 -39 46
i —-67 36 63
T -68 —10 67
8 —64 =36 69
9 -T70 —42 63
10 —154 107 174
(b)
residue @ ¥ ! P
1 13 =32 62 -5l 55
2 —-62 --33 173 —63 —48
3 —67 -40 171 172 62
4 —-68 -35 170 48 173
3 —65 —34 163 -6 —72
6 17 -39 165 -T2 -T2
i —60 --40 162 —73 42
8 ~79 —47 170 -72 55
9 —106 84 -—-172 -63 7l
10 -79 128 175 -61 57
(c)
residue i th
1 107 -—83
2 79 -89
3 170 —46
4 -78 173
3 61 35
6 62 39
7 80 44
8 —152 29
9 176 172
10 —69 —79
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quantities were calculated for the temperature range between 200 K and 700 K, which
the ground state corresponds to the temperature 0 K. Thus, it does not matter whether
the run did reach the ground state or not, as long as it performs a random walk in the
relevant energy range.

For (Gly);o in gas phase, the dihedral angles of the lowest-energy conformation seem
to imply that it is a coil structure (see Table 5.1). The lowest-energy conformation of
(Gly)1p in aqueous solution, on the other hand, has a left-handed a-helix from residue 5
to residue 7 (see Table 5.2). Both conformations are compared in Fig. 5.2 (e) and 5.2
(F). It is apparent that they are rather compact and round. A close examination of the
structures revealed that both conformations have J-sheet-like characteristics. Namely,
they are stabilized by the intrachain backbone hydrogen bonds that are found in 3-sheet
structures. For the lowest-energy conformation in gas phase (Fig. 5.2 (e)), the carbonyl
oxygen (and amide nitrogen) of residue 3 and amide nitrogen (and carbonyl oxygen) of
residue 6 are hydrogen bonded. There also exist two such hydrogen bonds that connect
residues 4 and 9. For the lowest-energy conformation in aqueous solution (Fig. 5.2 (f)),

there exist two such hydrogen bonds between residue 2 and residue 9.
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(a)

(b)

Figure 5.2: The lowest-energy conformations of (Ala)y ((2) and (b)), (Val)ye ({c) and
(d)), and (Glyho ((e) and (f)) in gas phase and in aqueous solution, respectively.



(c)

(d)

Fig. 5.2 (Continued)
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(e)

(f)

Fig. 5.2 (Continued)




5.3.3 Distributions of Backbone Dihedral Angles

The lowest-energy conformations discussed in detail in the last subsection correspond to
the conformations at low temperatures. We next calculated the distributions of the back-
bone dihedral angles of homo-oligomers in aqueous solution as a function of temperature
in order to study how these conformations change as the temperature is raised. In Fig. 5.3
we show the distributions of the backbone dihedral angles of the sixth residue of {Ala),q,
(Val)yg, and (Gly )i in aqueous solution at T = 200 K and 1000 K. For (Ala);, there is
a single peak at T = 200 K and this peak corresponds to the dihedral angle of a right-
handed a-helix state. The distributions for other residues have essentially the same peak
except for the terminal residues. This implies that around T = 200 K there exists only
a completely helical conformation. At T = 1000 K the distributions are widely spread,
implying the large thermal fluctuations. These results suggest the existence of a transi-
tion between an ensemble of well-defined compact conformations (ideal a-helix state) and
random-coil structures.

For (Val);q (see Fig. 5.3 (b)), the results are similar to these for (Ala);g in the sense
that at 7' = 200 K there is a dominant peak in the distribution that corresponds to the
lowest-energy conformation and that at T = 1000 K the distribution is widely spread
(random-coil state).

The situation is slightly different for (Gly)io. Since glycine dose not have a side
chain, (Gly);p is nuch more flexible than the other two homo-cligomers. We observe two
dominant peaks in the distributions at T = 200 K (sec Fig. 5.3 (¢)), which implies that
this temperature is not low enough to single out the lowest-energy conformation. The

large flexibility of (Gly)yo is most clearly seen in the distributions at T = 1000 K.



e o o o0

(b)

Figure 5.3: Distributions of the backbone dihedral angles of (Ala)y (a), (Val)ye (b), and
(Gly)io (c) in aqueous solution as a function of temperature. The results for the sixth
residue from the N-terminus at T' = 200 K (left-hand side) and 1000 K (right-hand side)
are shown. The values for each case were calculated from one multicanonical production
run of 1 000 000 MC sweeps.
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5.3.4 Average Energy and Specific Heat

We investigate how each energy term varies as a [unction of temperature. We calculated
the average values of total energy and its component terms of the homo-oligomers, (Ala)q,
(Val)o, and (Gly)o. as a function of temperature in gas phase and in aqueous solution.
In Fig. 5.4 the results are shown, For homo-alanine in gas phase, all the conformational
energy terms increase monotonically as temperature increases. The changes of each com-
ponent terms are very small except for the Lennard-Jones term, Eyv, indicating that Ey
plays an important role in the folding of homo-alanine [17|. The Lennard-Jones term, in
principle, has contributions [rom all possible pairs of atoms, while hydrogen-bond term
is only from the donor-acceptor pairs. Therefore. the Lennard-Jones lerm is responsible
for the large conformational changes from a random coil to an ideal helix. Once the
(near- Jhelical conformation is obtained, the hydrogen-bond term further stabilizes it.

[n aqueous solution the overall behaviors of the conformational energy terms are very
similar to those in gas phase. The solvation term, on the other hand, decreases mono-
tonically as temperature increases. These results imply that the solvation term favors
random-coil conformations, while the conformational terms favor helical conformations.
This is because the solvation free energy of conformations at high temperatures (ran-
dom coil) is lower than that at low temperatures (a-helix conformations) and because
the conformational energies at high temperatures (random coil) are higher than those at
low temperatures (a-helix conformations). The rapid changes (decrease for the solvation
term and increase for the rest of the terms) of all the average values occur at the same
temperature (around at 420 K in gas phase and 340 K in solvent). This suggests the
existence of a certain phase transition. As was shown in gas phase in Rel. [17] and is
discussed below for the case with solvent, this transition indeed corresponds to a helix-coil
transition. It is interesting to note that the helix-coil transition in solvent is the result
of two conflicting effects between conformational energy and solvation free energy, which
lowers the helix-coil transition temperature compare to the gas-phase value.

In Fig. 5.5 the average energy values as a function of temperature for (Val)ye and
(Gly)ig in agqueous solution are shown. For homo valine and homo-glycine, the behaviors

of the conformational energy terms in aqueous solution are quite similar to those in
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gas phase (data not shown) and all the conformational terms increase monotonically as
temperature increases. The solvation term, on the other hand, decreases monotonically as
a function of temperature. For homo-valine and homo-glycine, the change in total energy
is not as conspicuous as in homo-alanine. Hence, the helix-coil transition in homo-valine

and homo-glycine is not as clearly observed as in homo-alanine.
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Figure 5.4: Average total energy Eqor and averages of its component terms, Coulomb
energy Eq, hydrogen-bond energy £y, Lennard-Jones energy £y, torsion energy Er, and
solvation free energy Egsop (only for the case in aqueous solution) for homo-alanine as
a function of temperature T in gas phase (a) and in aqueous solution (b). The values
for each case were calculated from one multicanonical production run of 1 000 000 MC
SWeeps.
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Figure 5.5: Average total energy Eror and averages of its component terms, Coulomb
energy Ec, hydrogen-bond energy Ey, Lennard-Jones energy Ey, torsion energy Er, and
solvation free energy Espy, (only for the case in aqueous solution) for homo-valine (a) and
home-glycine (b) as a function of temperature T in aqueous solution. The values for each
case were calculated from one multicanonical production run of 1 000 000 MC sweeps.
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We calculated the specific heat for the homo-oligomers as a function of temperature.

The specific heat here is defined by the following equation:

2 . 2
= f? f:i’E’L}T T?...ETQ_T ZT

e(1) . ,

(5.1)

where N (= 10) is the number of residues in the oligomer. In Fig. 5.6 we show the specific

heat as a function of temperature for (Ala)yy in gas phase and in aqueous solution. We
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Figure 5.6: Specific heat €' as a function of temperature T' for (Ala)y in gas phase and
in aqueous solution. The values for each case were calculated from one multicanonical
production run of 1 000 000 MC sweeps.

observe sharp peaks in the specific heat for both environment, which implies the existence
of some phase transition. The temperatures at the peak, transition temperatures, are
1. = 420 K and 340 K in gas phase and in aqueous solution, respectively. The transition
temperature T, for (Ala),g in aqueous solution is thus significantly lower than that in gas

phase and much closer to experimentally relevant temperatures.
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5.3.5 Helicity of Homo-Oligomers

We calculated the average number of helical residues < n >7 in a conformation as a
function of temperature. In Fig. 5.7 we show the average helicity < n > as a function of

temperature for (Ala)ig, (Val)io, and (Gly)ig in gas phase and in aqueous solution. The
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Figure 5.7: Average helicity < n >7 as a function of temperature T for (Ala)q, (Val)yo,
and (Gly)ip in gas phase (a) and in aqueous solution (b). The values for each case were
calculated from one multicanonical production run of 1 000 000 MC sweeps.

average helicity tends to decrease monotonically as the temperature increases because of
the increased thermal fluctuations.

At T = 200 K, < n >¢ for homo-alanine in both environment are 8. If we neglect the
terminal residues, in which a-helix tends to be frayed, n = 8 corresponds to the maximal

helicity, and the conformation can be considered completely helical. Then homo-alanine
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in both environment is in an ideal helical structure at T = 200 K. Around the room
temperature, (Ala)yy in gas phase and in aqueous solution is still substantially helical
(== 80 and = 70 % helicity), respectively. This is consistent with the fact that alanine
is a strong helix former. For homo-alanine, at transition lemperatures (around 420 K in
gas phase and 340 K in aqueous solution), < n >r is 3 (50 % helicity). This implies
that the phase transitions observed above by the peak in specific heat are indeed a helix-
coil transition between an ideal helix and a random coil. Ience. as far as the helix-coil
transition is concerned, the solvation effects do not alter the nature of the transition and
just shift the transition temperature.

As is shown in Fig. 5.7, the average helicity of homo-glycine in aqueous solution is
similar to that in gas phase and is verv low (< 20 % helicity). It is apparent that
homo-glycine does not favor helix formation over the whole temperature range in both
environment. The average helicity of homo-valine in aqueous solution is lower than that
in gas phase and is less than 40 % helicity for a wide range of temperatures. The percent
helicity lies between that of alanine and glycine. All these results are consistent with the
fact that alanine is a helix former and glycine is a helix breaker, while valine comes in
between the two.

We next calculated the percent helicity as a function of residue number for the three
homo-oligomers. The results at T' = 200, 340, and 1000 K are shown in Fig. 5.8. The
percent helicity is in general lower at the terminal residues, than in the internal residues
(i.e., fraying is observed) for a wide range of temperatures, because the dihedral angles of
terminal residues are less constrained than those of the internal residues. For (Ala)yo and
(Val)jo, the internal residues are significantly helical at T = 200 K. For (Gly)yo the
residues prefer a coil state rather than helix for a wide range of temperatures. We do
observe fraying of for all cases. The contrast is most outstanding for (Ala);p because it
has high helicity. The increase of fraying as the temperature is raised is also clearly seen

for (Ala)e.
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Figure 5.8: Percent helicity as a function of residue number for (Ala)o (a), (Val)ie (b),
and (Gly )y (c) in aqueous solution at T' = 200, 340, and 1000 K. The values for each case
were calculated from one multicanonical production run of 1 000 000 MC sweeps.
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5.3.6 Zimm-Bragg s and ¢ Parameters

Finally, the helix propagation parameter s and nucleation parameter o of Zimm-Bragg
model [22] were calculated as a function of temperature.
According Lo the Zimm-Bragg model, the average number of helical residues < n >r

and the average length < ¢ >7 of a helical segment are given for large N by

<n>r _ 1 1—3
N 2 2. /(1 - )2 + 1s0 '
2.
<l>r = 1+ = (5.2)

i—s+\/{l - 5)t 4 dso ’
where N is the number of residues. Note that from Eq. (5.2) the temperature where
s = 1 holds corresponds to 50 % helicity, which in turn gives the helix-coil transition
temperature. From these equations with the values of =32 and < ¢ > calculated from the
multicanonical production runs, one can obtain estimates of s and o parameters.

In IFig. 5.9 we show the s and o values for alanine as a function of temperature. The s
parameter monotonically decrease as the temperature increases. It is shown that s{Ala)
in aqueous solution decreases more rapidly than that in gas phase as the temperature
increases. As noted above, the helix-coil transition temperature T, can also be identified
as the temperature where s =1 holds (i.e., 50 % helicity) in Fig. 5.9 (a). It is 420 K in
gas phase and 340 K in aqueous solution in agreement with the previous estimates by the
peaks of specific heat (see Fig. 5.6).

As is clear from Fig. 5.9 (b), in the helix phase (T' < T.) the o parameter for alanine is
small and constant, but in the random-coil phase (T > T.) o starts to grow as temperature
increases. This growth of o value reflects the increased thermal fluctuations that prevent
the formation of a long helix. That is, below T. cooperatively for helix formation wins
over thermal fluctuations, but above T, thermal fluctuations win and no long helices can
be formed.

We next make a comparison hetween the s values ohtained by the present simulations
and those by experiments [1]-[8]. In Table 5.3 we list s for the three amino acids at T' =
273 K in gas phase and in aqueous solution obtained by simulations together with those

by experiments. The values in agueous solution are slightly smaller than those in gas
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Figure 5.9: Helix propagation parameter s (a) and nucleation parameter ¢ (b) of the
Zimm-Bragg model as a function of temperature T for alanine in gas phase and in aqueocus
solution. The values for each case were calculated from one multicanonical production
run of 1 000 000 MC sweeps.

phase but not too much different except for valine. The s value for valine is significantly
lower in aqueous solution than in gas phase. One finds that our values in aqueous solution

are in remarkable agreement with those determined by experiments.
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Table 5.3: The helix propagation parameter s and nucleation parameter o of Zimm-Bragg
model for alanine (Ala), valine (Val), and glycine (Gly) at T = 273 K in gas phase (Gas)
and in aqueous solution (Sol) together with the experimental values (Exp).

Amino acid s (Gas) s (Sol) s (Exp)

Ala 1.67 151 1.5~ 2.19
Val 136 031 0.2 ~0.93
Gly 0.17 021  0.05 ~ 0.57
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Chapter 6

Conclusions

There are two difficulties that one has to overcome in the protein folding problem. One is
how to give the accurate energy function of the system. Especially, the effects of solvent
surrounding a protein molecule are non-trivial to incorporate. The other is that there
exist a huge number of local minima in the potential energy function, which renders the
range of the configuration space that can be sampled by conventional simulation methods
very narrow.

In this thesis we explored the ways to alleviate the above difficulties. As for solvation
theory, we tried to incorporate a term that is based on the extended scaled particle theory
[1, 2] and a term that is proportional to the solvent-accessible surface area of the solute
molecule [3]. As for the simulation methods, we employed the Monte Carlo simulated
annealing method [4] and multicanonical algorithm [5]. We tested the effectiveness of a
few combinations of the above methods with a penta peptide, Met-enkephalin, and three
amino-acid homo-oligomers of length 10, homo-alanine, homo-valine, and homo-glycine.

We first tried to combine the extended scaled particle theory and the Monte Carlo
simulated annealing method (Chapter 3). The extended scaled particle theory gives a
rigorous cavity-formation free energy of solvent. This was the first attempt to combine
the extended scaled particle theory and Monte Carlo simulated annealing. Low-energy
conformations of Met-enkephalin were successfully classified into several groups of simi-
lar structures. The backbone of the lowest-energy conformation in solvent has a shape
similar to that of the second lowest-energy structure in gas phase; the global-minimum-
energy conformation in gas phase had much higher energy in the simulations in solvent.

It seems that the solvent effects decrease the number of low-energy local minima. More-
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over, we studied in detail the relations between the solvent-accessible surface area and
the cavity-formation free energy. It was shown that the cavity-formation free energy of
the obtained conformations is not necessarily proportional to the accessible surface area
for a small peptide such as Met-enkephalin. We remark that the lowest-energy conforma-
tion of Met-enkephalin obtained by simulations with a rigorous solvation theory (RISM)
is fully extended in agreement with the results of NMR experiments [6]. However, the
lowest-energy conlormation obtained by the present simulations using the extended scaled
particle theory is rather round, although some of the low-energy conformations have ex-
tended backbone structures. Hence, we find that the neglected contributions (especially,
the electrostatic interactions beltween solute and solvent molecules) are also important
when we try to compare the simulation results with experiments. The next thing one
should do is probably to combine the rigorous solvation theory and multicanonical algo-
rithm. The work 1s in progress but it is computationally very demanding, and we tried a
simplified solvation theory instead in this thesis.

We performed a multicanonical simulation of Met-enkephalin in gas phase (Chapter
4). We obtained the distributions of hydrogen bonds in backbone. We used the patterns
of hydrogen-bond formations to classify conformations into groups of similar structures.
It was found that there are at least four well-defined groups which correspond to local-
minimum-energy states, The global-minimum-energy state forms a type II' g-turn, the
second-lowest-energy state forms a type Il F-turn, and the third and fourth states form
s-turns. While with simulated annealing we must repeat many simulations from different
initial states to obtain information near the lowest-energy state, multicanonical algorithm
allows us to calculate various thermodynamic quantities as a function of temperature for
a wide temperature range from a single simulation run. The results such as distributions
of conformations as a function of temperature give essential information about the free
energy landscape of the peptide. Hence, multicanonical algorithm is a more effective
simulation method than the simulated annealing method.

Finally, we performed multicanonical Monte Carlo simulations to study helix-coil tran-
sitions of homo-oligomers in aqueous solution based on the solvent-accessible surface area

(Chapter 5). Homo-oligomers of length 10 were considered for three characteristic amino
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acids, alanine (helix former), valine (helix indifferent) and glycine (helix breaker). Vari-
ous thermodynamic quantities as a function of temperature were calculated and compared
with those obtained in gas phase. It was found that solvation effects reduce helix forma-
tion slightly (in fact, it was shown that random-coil conformations are most favored by the
solvent), bul that overall nature of the helix-coil transition is unaltered by the addition of
solvent. For instance, for homeo-alanine we still observed in solvent a helix-coil transition
from a completely helical conformation at low temperatures to random-coil conformations
at high temperatures. This agreement can presurnably be accounted for by the fact that
we dealt with only nonpolar amino acids. with which we can minimize the complications
of electrostatic interactions between the homo-oligomer (side chains) and solvent. It was
also shown that the helix-coil transition temperature for homo-alanine gets significantly
lowered in aqueous solution compared with that in gas phase. This indeed rectified the
unrealistically high value in gas phase, which was the most serious discrepancy between

theory and experiments found in the previous work [7].
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