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Abstract

Nonlinear interaction between static magnetic islands generated by an external field

and a resistive interchange mode driven by pressure gradient is investigated in straight

heliotron configurations by means of a numerical method based on the reduced mag-

netohydrodynamics (MHD) equations. For the comprehensive understanding of the

interaction, two aspects are studied by utilizing different MHD equilibria. One is ef-

fects of the interchange mode on the change of the static island and the other is effects

of the static island on the growth of the interchange mode.

Firstly, the former interaction aspect is studied with an equilibrium corresponding

to nested magnetic surfaces. In this case, the interchange mode grows in spite of

existence of a static magnetic island. The island width is changed in the nonlinear

saturation phase of the interchange mode. The situation of the increase or decrease of

the width depends on whether the diffusion of the equilibrium pressure in the direction

parallel to the magnetic field is taken into account or not. In the case without the effect

of the diffusion of the equilibrium pressure, there exist two solutions corresponding

to the increase and the decrease of the island width. In this case, in spite of the

nonlinear interaction, the total poloidal flux is approximately given by the linear sum

of the poloidal flux generated by the interchange mode without a static island and the

external poloidal flux for the generation of the static island. In the case with the effect

of the diffusion of the equilibrium pressure, there exists only one solution corresponding

to the increase of the width. This is due to the fact the parallel diffusion term generates

a pressure term corresponding to the increase of the island width.

Next, the latter interaction aspect is studied. For this study, equilibria including

static magnetic islands are necessary because the equilibrium pressure profile consistent

with the magnetic islands has possibility to affect the stability of the interchange mode.

We have developed a numerical code (FLEC) to calculate the equilibria and found that

there exist two kinds of solutions. One is the equilibrium of which the pressure profile

is flat at not only the O-point but also the X-point. In this case, the pressure gradient
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is continuous at the separatrix. The other is the equilibrium of which the pressure

profile is flat at the O-point and steep at the X-point. In this case, the pressure

gradient is discontinuous at the separatrix of the magnetic island. The finite beta has

a contribution to increase the island width.

Since it is known that the pressure profile with annular local flat structure around

the resonant surface have a stabilizing contribution to the interchange mode, effects

of the static island on the interchange mode is studied for the equilibrium with the

steep gradient at the X-point. The linear growth rate of the interchange mode is

decreased and the saturation level is reduced as the island width is increased. The

mode is completely stabilized when the width exceeds threshold value. In the case

that interchange modes are unstable in an equilibrium with a thin island width, there

are two cases of the increase and the decrease of the island width in the nonlinear

saturation of interchange modes as obtained in the study for the former interaction

aspect.
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Chapter 1

Introduction

In magnetic confinement of fusion plasmas, existence of nested magnetic surfaces is

desirable for the good confinement. However, error magnetic fields originated from

misalignment of field coils and the terrestrial magnetism induce static magnetic is-

lands. The static islands have a possibility to degrade the plasma confinement sub-

stantially. Therefore, it is one of the essential themes in magnetic confinement systems

to understand how such islands grow or decay in finite beta plasmas. Hence, such

island behavior has been studied extensively in both tokamaks and heliotrons [1]. In

tokamaks, a lot of efforts are paid for the control of the edge localized mode with the

island generation by the application of resonant magnetic perturbations (RMP) [2]. In

heliotrons, the growth and the decay of the static magnetic islands at finite beta are

studied. Particularly, in the large helical device (LHD) [3], which is the largest he-

liotron device, the local island divertor (LID) coils are installed in the system [4]. The

RMP or the error field can be generated actively by the currents in the LID coils and

utilized for the study of the static islands behavior. The static magnetic islands are

generated by the error field mainly with (m,n)=(1,1) and they affect plasma confine-

ment and magnetohydrodynamics (MHD) properties. Here m and n are the poloidal

and toroidal mode numbers, respectively. Spontaneous change in the islands and the

influence on the confinement are analyzed in the experiments by controlling the static

islands. Ohyabu et al. [5] studied the beta dependence of the self-healing of the islands.

They found that the onset beta value of the self-healing is increased and nearly pro-

portional to the externally imposed resonant error field. Narushima et al. [6] examined

the dependence of the self-healing on the beta and the collisionality. They also showed

that the sign of the perturbed magnetic field reversed suddenly when the beta exceeded

the critical value of the self-healing.
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The magnetic islands can also be generated by resistive MHD instabilities. In the

heliotron configurations such as LHD, a net toroidal current is not needed for the

generation of the confinement field. Therefore, tearing modes are not excited except

a special case where a net toroidal current with a quite peaked profile flows in the

plasma [7]. Instead, a magnetic hill usually exists in the plasma confinement region.

Therefore, a resistive interchange mode driven by a pressure gradient can be excited in

the configurations. Since the interchange modes can cause a collapse of the plasma [8],

the stability control is important for a good confinement at high beta.

Thus, the interchange modes are the crucial MHD modes in the heliotron config-

urations, and therefore, a lot of theoretical analyses have been done for the behavior.

Particularly, Ichiguchi et al. and Ishizawa et al. [9–11] showed that magnetic islands

are generated by nonlinear saturation of interchange modes numerically. Therefore,

it is expected that the change of the static island width is caused by the interchange

modes. On the other hand, magnetic islands have a potential to affect the stability

of interchange modes. That is, the magnetic islands and the interchange modes can

interact with each other.

However, comprehensive theoretical study about the direct interaction between the

interchange mode and the static islands has not been carried out. Only a few works

treated the dynamics of the interchange mode in the existence of the static islands.

Unemura et al. [12] discussed the variation in the island width and the pressure profile

due to the nonlinear evolution of the interchange mode in a straight heliotron con-

figuration. However, they used multi-helicity perturbations and evaluated the island

width in transitional regions of the time evolution. Garcia et al. [13, 14] also studied

the nonlinear coupling of a static magnetic island and the interchange mode. In the

studies, the diamagnetic effect is involved to investigate the shear flow effect. Because

of the diamagnetic flow, the island width is oscillating even in the saturation state of

the interchange mode. Therefore, the fundamental mechanism in the interaction of

the islands and the interchange mode is difficult to be understood from these previous

works.

Thus, we analyze the fundamental interaction between the static magnetic islands

and the dynamics of the interchange mode numerically based on the reduced MHD

equations [15]. A straight LHD configuration is employed as the magnetic configu-

ration to see the interaction clearly. In order to investigate the fundamental interac-

tion, we focus on the interaction between the static islands with the mode number of

(m,n)=(1,1) and the interchange mode with the same mode number.
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Two aspects of the interaction are studied. One is the effect of the interchange

mode on the change of the static island and the other is the effect of the existence of

the static island on the growth of the interchange mode. We examine these aspects

separately by employing two procedures with different pressure profiles.

For the analysis of the former aspect, a pressure profile corresponding to a nested

magnetic surface is employed. In this case, we obtain an equilibrium with the pressure

profile which is unstable for the interchange mode, firstly. Therefore, effects of the

static island on the equilibrium quantities are not included. Then, both of an error field

generating a static island and the perturbation of the interchange mode are imposed

simultaneously. Since there exists a finite pressure gradient inside the separatrix of

the island, the interchange mode grows. In the growth, the interchange mode interacts

with the static island nonlinearly. We follow the nonlinear evolution of the mode and

evaluate the change of the island in the saturation phase of the nonlinear evolution.

This procedure is suitable for the study of the effect of the interchange mode on the

static island because the growth of the mode is guaranteed. This procedure is also

employed in the studies of Ref. [12–14].

For the analysis of the latter aspect, we employ a pressure profile corresponding

to the island geometry. When the beta value is increased gradually from the vacuum

magnetic surfaces without the self-healing of the island, an equilibrium is achieved

with a pressure profile of which the gradient inside the separatrix is reduced. In the

equilibrium, the growth of the interchange mode is affected by the pressure profile. In

order to study the island effect on the mode, we develop a numerical code to calculate

such an equilibrium with the pressure profile corresponding to the island geometry.

Since the behavior of the interchange mode is examined with the reduced MHD equa-

tions, the equilibrium equations have to correspond to the reduced MHD equations,

and therefore, they are coupled equations for the pressure and the poloidal magnetic

flux.

The development of numerical codes to solve an equilibrium including magnetic

islands has a long history. The pioneering work is the code developed by Chodura

and Schlüter [16]. In this code, an equilibrium is obtained by minimizing the potential

energy with a friction method on cylindrical coordinates based on the variational prin-

ciple. Hender et al. developed the NEAR code by improving the Chodura-Schlüter

code with the employment of vacuum flux surfaces for the reference coordinates [17].

Recently, the PIES code [18] and the HINT code [19,20] or the HINT2 code [21] have

been developed and widely used for the stellarator equilibrium studies. Both codes are
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based on an iteration scheme of two steps. In the first step, the pressure profile con-

sistent with the magnetic geometry with the magnetic field fixed. In the second step,

the magnetic field satisfying the force balance equation is obtained with the pressure

fixed. In the present work, we basically employ the two-step scheme.

The treatment in each step is different between the PIES and the HINT codes. In

the first step of the PIES code, the pressure satisfying the equation of B · ∇P = 0 for

a given magnetic field B is obtained with the field line tracing. In the second step,

the plasma current is calculated by using this pressure P and the field is obtained by

solving the Ampére’s law directly. Then, quasi magnetic coordinates are constructed

with the field, and the next iteration is operated on the coordinates. The HINT code is

based on the numerical scheme which was developed by Park et al. [19] for the reduced

MHD equations, and is extended to the full MHD equations. Especially, the coordinate

system twisted along the toroidal direction is employed for saving calculation regions.

In the first step, the pressure satisfying B · ∇P = 0 is obtained as in the PIES code.

The code by Park et al. and the original HINT code solve the equation by making the

magnetic sound wave decay. The HINT2 code is improved so as to solve the equation

B · ∇P = 0 directly by tracing the field lines. In the second step, a relaxation precess

of the field is conducted with the equation of motion and the Faraday’s law with P

fixed for obtaining the magnetic field satisfying the force balance condition.

In the present study for the latter effect, two kinds of numerical approach are

employed in developing the equilibrium code. Both of them are based on the two-

step scheme employed in the code by Park et al. and the HINT code, however, the

numerical approach in each step is different. One is the combination of a diffusion

equation for the pressure and an ordinary equation for the force balance. The other is

the combination of a field line tracing method for the pressure and a relaxation method.

The equilibrium solutions are different depending on the approach, particularly in the

structure of the pressure profile.

By utilizing the equilibrium solutions, we examine the dependence of the linear

stability and the nonlinear saturation of the interchange mode on the island width.

Particularly, we focus on the effect of the existence of the finite pressure gradient at

the X-point, because the interchange mode is driven by the pressure gradient. The

stabilization effect of the annular flat structure of the pressure profile was analyzed

by Ichiguchi et al. [22, 23]. However, the effect of the local flat structure with a finite

gradient at the X-point has not been examined. Thus, we study the dependence of

the linear growth rate and the saturation level on the island width by utilizing the
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equilibrium with such structure. We also analyze the effect of the nonlinear saturation

of the interchange mode on the change of the island structure as well.

The framework of this thesis is shown in Fig.1.1. In Chapter 2, the reduced MHD

equations used in the analysis of the interchange mode dynamics and the introduction of

the static island are explained. In Chapter 3, the results of the effect of the interchange

mode on the change of the static island with the pressure profile corresponding to the

nested magnetic surfaces are shown. We mainly focus on the changes of the width and

the phase of the island in the saturation of the interchange mode. We also show the

dependence of the island change on the effect of the equilibrium pressure diffusion in

the parallel direction of the field line and discuss the mechanism of the island behavior.

In Chapter 4, the equilibrium calculation including the static island is discussed. The

two approaches of the equilibrium calculation are explained. The obtained solutions

are compared with each other and the reason of the difference is discussed. In Chapter

5, the effect of the existence of the static island in the equilibrium on the behavior of

the interchange mode is studied. We discuss the dependence of the linear stability and

the nonlinear saturation level. In Chapter 6, conclusions are given.
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to nested magnetic surfaces
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Conclusions
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Model equations and expression of static magnetic islands

MHD equilibria including

static magnetic islands

Figure 1.1: Framework of this thesis.
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Chapter 2

Model Equations and Expression of

Static Magnetic Islands

2.1 Reduced MHD equations

We study the interaction between the static islands and the interchange mode with

(m,n)=(1,1). For the behavior of the plasma with such low mode numbers, the

toroidally averaged field line curvature plays a dominant role. Therefore, the reduced

MHD equations [15] are useful for this analysis, which are the equations for poloidal

magnetic flux Ψ, stream function Φ and plasma pressure P . In a straight heliotron

configuration, the normalized reduced MHD equations with the cylindrical coordinates

(r,θ,z) are given by the Ohm’s law,

∂Ψ

∂t
= −B · ∇Φ +

1

S
Jz, (2.1)

the vorticity equation,

dU

dt
= −B · ∇Jz +

1

2ε2
∇Ω×∇P · z + ν∇2

⊥U (2.2)

and the plasma pressure equation,

dP

dt
= κ⊥∇2

⊥P + κ‖(B · ∇)(B · ∇)P. (2.3)

The magnetic field B(r, θ, z) is expressed as

B(r, θ, z) = z + z×∇Ψ(r, θ, z), (2.4)

where z denotes the unit vector in the z direction. Here Jz, U and ∇Ω denote the

current density in the z direction, the vorticity in the negative z direction and the
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averaged magnetic field line curvature, respectively. The convective time derivative is

given by
d

dt
=

∂

∂t
+ v⊥ · ∇. (2.5)

Here the velocity v⊥ is given by

v⊥ = ∇⊥Φ× z, (2.6)

where the operator ∇⊥ is defined as

∇⊥ = ∇− z

(
∂

∂z

)
. (2.7)

The resistivity, the viscosity, the perpendicular and parallel heat conductivities are

introduced with the coefficients of S, ν, κ⊥ and κ‖, respectively. Here, S denotes the

magnetic Reynolds number expressed as

S = τR/τA, (2.8)

where the Alfvén time τA and the resistive diffusion time τR are given by τA =

R0
√

µ0ρ/B0 and τR = µ0a
2/η, respectively. The quantities R0, µ0, ρ, B0, a, η and

ε denote the major radius of the corresponding torus, the vacuum permeability, the

mass density, the magnetic field at the magnetic axis, the plasma radius, the resis-

tivity and the inverse aspect ratio, respectively. In this study, we employ ε = 0.16,

which corresponds to the LHD plasma. The quantities (r, z, t, Ψ, Φ, P, U, Jz, ν, κ⊥, κ‖)

are normalized by (a, R0 , τA, a2B0/R0, a2/τA, B2
0/2µ0, 1/τA, B0/µ0R0, ρa2/τA, a2/τA,

R2
0/τA), respectively.

We analyze the interaction by tracing the time evolution of the interchange mode

with the NORM code [9] numerically. The original NORM code solves the reduced

MHD equations without the effect of the static islands. The equations are formulated

in the time evolution form of the perturbed variables in the following way:

∂Ψ̃

∂t
= −B · ∇Φ̃ +

1

S
J̃z, (2.9)

dŨ

dt
= −(B · ∇J̃z + B̃ · ∇Jz eq) +

1

2ε2
∇Ωeq ×∇P̃ · z + ν∇2

⊥Ũ (2.10)

and
dP̃

dt
= (z×∇Φ̃) · ∇Peq + κ⊥∇2

⊥P̃ + κ‖(B · ∇)(B · ∇)P̃ . (2.11)
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The subscript of‘eq’refers to the equilibrium quantity. The tilde means the perturbed

quantity. The magnetic field B is written as

B = Beq + B̃, (2.12)

where Beq and B̃ are defined as

Beq = z + z×∇Ψeq and B̃ = z×∇Ψ̃, (2.13)

respectively. Here, J̃z and Ũ are expressed as

J̃z = ∇2
⊥Ψ̃ and Ũ = ∇2

⊥Φ̃, (2.14)

respectively, where ∇2
⊥ is given by

∇2
⊥ =

1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂θ2
. (2.15)

For the study of the interaction, we modify Eqs.(2.9)-(2.11) so as to include the effects

of the islands. The modified equations are expressed in Chapter 3 and 5.

We study the direct interaction between the static island with the mode number

of (m,n) = (1, 1) and the interchange mode with same mode number. In order to see

the interaction clearly, we assume that the perturbations have a single helicity with

n/m = 1/1 as follows:

Ψ̃(r, θ, z) =

Npe∑
n=0,m=n

Ψ̃m,n, Ψ̃m,n = Ψ̂m,n(r) cos(mθ − nz), (2.16)

Φ̃(r, θ, z) =

Npe∑
n=0,m=n

Φ̃m,n, Φ̃m,n = Φ̂m,n(r) sin(mθ − nz), (2.17)

P̃ (r, θ, z) =

Npe∑
n=0,m=n

P̃m,n, P̃m,n = P̂m,n(r) cos(mθ − nz), (2.18)

where ”∧” means the Fourier coefficients. Here, Npe denotes the highest mode number

used in the numerical calculation. In this study, we employ Npe = 30.

The NORM code solves Eqs.(2.9)-(2.11) as an initial value problem. As the initial

perturbations for X̂m,n = (Ψ̂m,n, Φ̂m,n, P̂m,n), the function of

X̂m,n = σf(r) (2.19)
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is employed. Here, σ denotes the sign taking the value of +1 or -1 and f(r) should be

a small and arbitrary function except eigenfunctions. In this study, the function of

f(r) = 10−16
{

1− 4

(
r − 1

2

)2 }2

(2.20)

is used.

We monitor the time evolution of the these quantities to know how the mode grows.

For this purpose, the kinetic energy EK and the magnetic energy EM are calculated,

where EK and EM are given by

EK =

Npe∑
n=0,m=n

Em,n
K , Em,n

K =
1

2

∫
|∇⊥Φm,n sin(mθ − nz)|2dV (2.21)

and

EM =

Npe∑
n=0,m=n

Em,n
M , Em,n

M =
1

2

∫
|∇⊥Ψm,n cos(mθ − nz)|2dV, (2.22)

respectively. Here,
∫

dV denotes the integral over the plasma volume. The growth rate

of the interchange mode γ is calculated from EK as

γ =
1

2

1

EK

dEK

dt
. (2.23)

2.2 External poloidal flux

The static island generated by an error field is incorporated by assuming that the

(m,n)=(1,1) component of the poloidal flux has a finite value at the boundary, r = 1.

Here, we introduce an external poloidal flux Ψext
m,n given by

Ψext
m,n(r, θ, z) = Ψ̂ext

m,n(r) cos(mθ − nz). (2.24)

Since the external poloidal flux Ψext
m,n does not induce any current density, Ψext

m,n satisfies

the equation

∇2
⊥Ψext

m,n = 0 (2.25)

with the boundary conditions,

Ψ̂ext
m,n(r = 0) = 0 (2.26)

and

Ψ̂ext
m,n(r = 1) = Ψb = constant. (2.27)
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Figure 2.1: Magnetic surfaces for Ψb = +2.0×10−3. Blue line indicates the separatrix

of the island. The island width is 1.01× 10−1 normalized by plasma radius.

Here, Ψb denotes the external poloidal flux at r = 1. Substituting Eqs.(2.15) and (2.24)

to Eq.(2.25), Eq.(2.25) becomes

d2Ψ̂ext
m,n

dr2
+

1

r

dΨ̂ext
m,n

dr
− m2

r2
Ψ̂ext

m,n = 0. (2.28)

The solution of Eq.(2.28) is the linear combination of rm and r−m. In the case of

(m,n) = (1, 1), Ψext
1,1 (r) is given by

Ψext
1,1 = Ψ̂ext

1,1 (r) cos(θ − z), Ψ̂ext
1,1 (r) = Ψbr. (2.29)

Figure 2.1 shows magnetic surfaces for Ψb = +2.0 × 10−3. Blue line indicates the

separatrix of the island. The island width is 1.01× 10−1 normalized by plasma radius.

The static island width can be controlled by changing the value of Ψb.
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Chapter 3

Effects of Interchange modes on

Behavior of Static Magnetic Islands

3.1 Introduction

The effect of the interchange modes on the change of the static islands is studied in

this Chapter. In order to understand the effect clearly, we assume an MHD equilibrium

having nested magnetic surfaces firstly, then we impose the static island and perturba-

tions of the interchange mode. We obtain the equilibrium quantities by averaging the

three-dimensional equilibrium quantities based on the modified stellarator expansion

method [24]. Such a treatment of the static island is also utilized in Ref. [12–14]. This

situation may be close to the experiment by Sakakibara et al. [25]. They observed a

collapse in the profile of the electron temperature (Te). The Te profile had a finite

gradient at the´ι = 1 surface before the collapse in spite of that a natural error field

with (m,n) = (1, 1) existed, where´ι indicates the rotational transform. The formation

of local flat structure is observed in the Te profile during the collapse at the´ι = 1

surface. This observation may indicate the static island appeared when an instability

occurred.

We focus on the change of the island width and the island phase after the nonlinear

saturation of the interchange mode. For this purpose, we trace the nonlinear time

evolution of the interchange mode by using the NORM code. The mechanism of the

changes in the island by the nonlinear saturation is discussed. As a general property

of the interchange mode, the linear growth rate is increased with the mode number in

the case without the dissipation effects of viscosity and heat conductivity. Inclusion
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of the dissipations reduces the growth rate the more effectively for the higher mode

number. Since we study the interaction between the interchange mode and the static

island with the mode number of (m,n) = (1, 1), we choose appropriate coefficients of

the dissipations so that the (m,n)=(1,1) mode has the largest growth rate in the single

helicity perturbations.

We also study the effect of the heat conductivity for the equilibrium pressure in the

direction parallel to the magnetic field. This conductivity gives a qualitative difference

to the island behavior because the conductivity term is an inhomogeneous term in the

reduced MHD equations. This term generates an initial perturbation of the interchange

mode.

This chapter is organized as follows. In Section 3.2, the equilibrium and the linear

analysis are described, and then, the change of the magnetic island in the nonlinear

evolution of the interchange mode is discussed. In Section 3.3, the effect of parallel heat

conductivity for equilibrium pressure on the island behavior is analyzed. In Section

3.4, a summary is given.

3.2 Change of magnetic island in nonlinear evolu-

tion of interchange modes

3.2.1 Equilibrium and linear analysis

We use a straight heliotron equilibrium corresponding to the LHD configuration with

the vacuum magnetic axis located at 3.6m. The equilibrium is constructed by utilizing a

three-dimensional equilibrium, which is calculated with the VMEC code [26] under the

no net toroidal current and the free boundary conditions. We employ the equilibrium

pressure profile given by

Peq = β0(1− r4)2. (3.1)

Here, the beta value at the axis of β0 = 4.0% is employed. Figure 3.1 shows the profiles

of Peq,´ι and Ωeq. The profile of Ωeq is given by [24]

Ωeq(r) =
1

4π2

∫ 2π

0

dθ

∫ 2π

0

dζ

(
R

R0

)2
(

1 +
|B3D

eq −B3D
eq |2

B2
0

)
, (3.2)

where ζ and R are the toroidal angle and the major radius, respectively. Here, B3D
eq

denotes the three-dimensional equilibrium field. The bar denotes the quantity averaged
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toroidally over a field period. Dashed lines show the position of the rational surface

with´ι = 1. The surface is located at r = 0.85 where a substantial pressure gradient

exists. The gradient of Ωeq is positive at the surface, which corresponds to a bad

curvature of the field line and indicates a potential to drive a resistive interchange

mode.

For the study of the interaction with the (m,n)=(1,1) island, the (m,n)=(1,1)

component in the interchange mode has to be dominant in the nonlinear state. In

order to obtain this situation, we determine the dissipation parameters of ν, κ⊥ and

κ‖ so that the component of (m,n)=(1,1) has the largest linear growth rate. We also

employ a high resistivity to enhance the effect of the interchange mode. The NORM

code is also utilized for the linear analysis. As the initial perturbations, Eq.(2.19) is

employed. As the result of the linear mode analysis, the parameters of

S = 104, ν = 8.0× 10−5, κ⊥ = 10−5, κ‖ = 1.0 (3.3)

are found to be suitable for the present analysis. Figure 3.2 shows the dependence of

γ given by Eq.(2.23) on n for Ψb = 0 and σ = +1. Only the n = 1 and n = 2 modes

are unstable, and the others are stable. The growth rate of the n = 1 mode is 1.9

times larger than that of the n = 2 mode. Figure 3.3 shows the linear eigenfunctions

of the n = 1 mode. The poloidal flux Ψ̂1,1 is a nearly odd function with respect to

the resonant surface of´ι = 1. The stream function Φ̂1,1 and the pressure P̂1,1 are

nearly even functions, both of which are localized around the resonant surface. These

eigenfunctions show typical mode structures of the resistive interchange mode. In the

change of σ, the sign of the eigenfunctions is opposite and the growth rate is unchanged

because they are linear solutions.

3.2.2 Behavior of interchange mode without static magnetic

islands

Before the discussion of the case with the static islands, we examine the dynamics of

interchange modes under no static island. In the study of this Section, Eqs.(2.9)-(2.11)

are utilized. Figure 3.4 shows the nonlinear time evolution of the kinetic energy and

the magnetic energy for Ψb = 0 and σ = +1.

After the linear growth(t & 8500τA), a steady state appears. The n = 1 component

is dominant in the steady state. Figure 3.5 shows the mode structure of the n = 1

component at t = 10000τA. The structure is similar to that of the linear eigenfunctions
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Figure 3.1: Profiles of (a) pressure, (b) rotational transform and (c) average field line

curvature in the straight heliotron equilibrium at β0 = 4.0%. Dashed lines show position

of the resonant surface.
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Figure 3.2: Linear growth rate γ of the interchange mode with Ψb = 0 as a function of

toroidal mode number n for S = 104, ν = 8.0× 10−5, κ⊥ = 10−5 and κ‖ = 1.0.

shown in Fig.3.3, which implies that the properties of interchange mode remain in the

steady state after the nonlinear saturation. As shown in Fig.3.5(a), Ψ̂1,1 has a substan-

tial value at the rational surface with´ι = 1, which corresponds to a magnetic island

with a significant width. This is due to the assumption of the cylindrical geometry and

the large resistivity. The sign of the mode structure changes depending on the value

of σ.

In order to evaluate the width of the magnetic islands, we introduce the helical

magnetic flux, which is defined as

Ψh(r, θ, z) = Ψeq(r)− r2

2

n

m
+ Ψ̃(r, θ, z). (3.4)

Figure 3.6 shows the contour of the helical magnetic flux in the z = 0 cross section at

t = 10000τA for Ψb = 0 and σ = +1. The flow pattern of the vortex calculated from Φ̃

is also plotted. The m = 1 magnetic island is seen in Fig.3.6(a). The X-point and the

O-point are located at θ = 0 and θ = π, respectively. The width evaluated from the

contour is 5.3×10−2. The vortices are seen in Fig.3.6 (b). The radial flow at θ = 0 and

θ = π is weak but finite. Compared with Fig.3.6 (a), the direction is radially outward

at the X-point and inward at the O-point. In the case of σ = −1, an island with an

opposite phase is obtained where the X-point and the O-point is located at θ = π and

θ = 0, respectively. The vortices have the flow in the opposite direction. Since the

positions of the X-point and O-point are exchanged and the flow direction is reversed,
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Figure 3.3: Profiles of linear eigenfunction for (a)Ψ̂1,1, (b)Φ̂1,1 and (c) P̂1,1.
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the flow direction is still radially outward in the X-point and inward in the O-point

even in the change of σ.

Figure 3.7 shows the variation of the pressure profile along the line connecting the

points of (r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) between t = 0 and t = 10000τA

for Ψb = 0 and σ = +1. The deformation due to the interchange mode around the

resonant surface with´ι = 1 is seen. This deformation is generated by the convection

of the radial flow. The pressure is increased in the X-point at θ = 0 and decreased in

the O-point at θ = π. It is also obtained that the pressure is decreased at θ = 0 and

increased at θ = π for σ = −1.

3.2.3 Interaction between static magnetic island and inter-

change mode

Development of interchange mode with static magnetic island

Next, we consider the nonlinear time evolution of the interchange mode under the

existence of the static island with the mode number of (m,n) = (1, 1). In this Chapter,

the effect of the external poloidal flux Ψext
1,1 given by Eq.(2.29) is included in Ψ̃1,1 like

Ref. [12–14]. By solving Eqs. (2.9)-(2.11) under the boundary condition,

Ψ̂1,1(r = 1) = Ψb, (3.5)

we can analyze the dynamics including the effect of static island. For the analysis, the

boundary condition of Eq.(3.5) has to be satisfied even in the finite beta plasma where

the interchange mode develops. However, the boundary condition of Eq.(3.5) was not

satisfied in the original NORM code. Therefore, the code is improved so that the

boundary condition of Eq.(3.5) should be satisfied. The improvement of the NORM

code is explained in Appendix A. Here, Ψ̃1,1 coincides with Ψext
1,1 at t = 0. It is noted

that the force balance is satisfied even in the case of Ψb 6= 0 because Ψext
1,1 does not

induce any current density. However, the equilibrium pressure given by Eq.(3.1) is not

constant along the field line in the case of Ψb 6= 0.

Here, Ψext
1,1 generates no initial perturbation. Therefore, the initial condition of Ψ̂1,1,

Ψ̂1,1 = σf(r) + Ψbr (3.6)

is used. We employ Eq.(2.19) as the initial perturbation except Ψ̂1,1. The value of Ψb

varies from −2.0 × 10−3 to +2.0 × 10−3 in this Chapter. Figure 3.8 shows the time
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Figure 3.4: Time evolution of (a) kinetic energy and (b) magnetic energy for Ψb = 0

and σ = +1.
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Figure 3.5: Profiles of (a)Ψ̂1,1, (b)Φ̂1,1 and (c)P̂1,1 for Ψb = 0 at t = 10000τA.
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(a)

(b)

Figure 3.6: (a) Contour of helical magnetic flux and (b) flow pattern in z=0 poloidal

cross section at t = 10000τA for Ψb = 0 and σ = +1. Dashed line shows position of the

resonant surface.
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Figure 3.7: Pressure profile at t = 0 and t = 10000τA for Ψb = 0 and σ = +1 along the

line connecting (r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0). Radial coordinate at

θ = π is made negative.

evolution of the kinetic energy and the magnetic energy of the interchange mode for

Ψb = +2.0×10−3 and σ = +1. The n = 1 component is dominant in the whole region as

in the case of Ψb = 0. There exists a steady state after the linear growth(t > 8000τA).

Since the static island is incorporated, E1,1
M is large from t = 0. In the case of σ = −1,

the time evolution of the kinetic energy and the magnetic energy are the same as those

in the case of σ = +1.

There exists a difference in the linear growth rate of each component between the

cases of Ψb = 0 and Ψb 6= 0. In the case of Ψb = 0, the linear growth rate of En,n
K

and En,n
M except for n = 0 increases with n as shown in Fig.3.4. On the other hand,

the linear growth rates of En,n
K and En,n

M except for E1,1
M in the linear region are almost

the same in the case of Ψb 6= 0. The reason of this difference is explained as follows.

When the component of (m,n) = (1, 1) is dominant, the Ohm’s law for Ψ̃n,n can be

approximated as

∂Ψ̃n,n

∂t
' −∇Ψ̃1,1 ×∇Φ̃n−1,n−1 · z. (3.7)

Assuming the time dependence of Ψ̃n,n and Φ̃n,n in the linear region to be eγnt and eγ′nt,

respectively, we obtain

γn ' γ1 + γ′n−1. (3.8)
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Figure 3.8: Time evolution of (a) kinetic energy and (b) magnetic energy for Ψb =

+2.0× 10−3 and σ = +1.
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In the case of Ψb = 0, γn is given by

γn ' nγ1 (3.9)

because γn = γ′n for each n. On the other hand, in the case of Ψb 6= 0, E1,1
M is large

and almost constant in the linear region. It implies γ1 ' 0, and therefore, γn ' γ′n−1

for n ≥ 2. Since γn ' γ′n for n ≥ 2, the relation of

γn ' γ′1 (n 6= 1) (3.10)

is obtained. Hence, En,n
K and En,n

M except for E1,1
M have almost the same growth rate.

This feature of the growth rate is common for all Ψb 6= 0.

Behavior of magnetic islands in saturation of interchange mode

Behavior of the magnetic islands at the steady state after the saturation of the inter-

change mode is discussed. Figure 3.9 shows the dependence of the island width on Ψb.

Positive values correspond to the islands with the X-point at θ = 0 and the O-point at

θ = π. Negative values correspond to the islands with the X-point at θ = π and the

O-point at θ = 0. Here, wh is the island width evaluated from the Ψh-contour. The

subscript‘i’and‘s’denote the initial static island width at t = 0 and the island

width after nonlinear saturation at t = 10000τA, respectively.

The initial static island width wh
i increases with Ψb as shown in Fig.3.9. On the

other hand, in the cylindrical geometry, the island width with the poloidal mode num-

ber m can be evaluated by [27]

wB
i = 4Ψ̂m,n

√
1

mr|Ψ̂m,n|́ι′

∣∣∣∣∣
r=rs

, (3.11)

where rs is the radius at the resonant surface. Here, the prime denotes the derivative

with respect to r. The blue line in Fig.3.9 shows wB
i with Ψ̂1,1 given by Eq.(3.6). Good

agreement between wh
i and wB

i is obtained, which confirms that wh
i has the dependence

of
√

Ψb.

The magnetic islands are changed by the nonlinear saturation of the interchange

modes. There is a global tendency that ws approaches wi as |Ψb| increases as shown in

Fig.3.9. For a fixed σ, the sign of ws − wi is independent of Ψb, which is the same as

the sign of ws for Ψb = 0. On the other hand, the change in the structure of the island

is different depending on Ψb. Not only the width but also the phase of the islands can
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Figure 3.9: Dependence of island width on Ψb. Squares show the width of the initial

static island. Triangles and circles show the width of the island at t=10000τA in the

saturation region of the interchange mode. The values indicated by these marks are

evaluated from the Ψh-contour. Solid lines are the plots of the analytic expressions

given by Eq.(3.11) (blue) and Eq.(3.15) (red, green). Positive and negative values

correspond to the islands with the X-point located at θ = 0 and at θ = π, respectively.

change. The change of the island structure can be classified by introducing a function,

Cw =
|ws| − |wi|
|ws − wi| . (3.12)

The values of Cw > 0 and Cw < 0 indicate the increase and the decrease of the island

width, respectively. In the case of |Cw| = 1, the phase of the island does not change,

that is, the X-point and the O-point after the saturation exist on the same positions of

the static island. In the case of |Cw| < 1, the island phase changes and the positions of

the X-point and the O-point exchange each other. Figure 3.10 shows Cw as a function

of Ψb. In the case of σ = +1, the island width increases for Ψb & −2 × 10−4 and

decreases for other value of Ψb. The island phase changes for −4× 10−4 . Ψb < 0 and

does not change for other value of Ψb.

As shown in Fig.3.9 and Fig.3.10, for a fixed value of Ψb, we obtain two different val-

ues of ws depending on the value of σ. However, it is obtained that the relations of ws,

ws(−σ,−Ψb) = −ws(σ, Ψb), X̂1,1(−σ,−Ψb) = −X̂1,1(σ, Ψb) for X̂1,1 = (Ψ̂1,1, Φ̂1,1, P̂1,1)
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are valid in the accuracy with the relative error less than 0.6%. Therefore, only the

case of σ = +1 is discussed in this section.

Figures 3.11, 3.12 and 3.13 show the contours of the helical flux and the flow patterns

for Ψb = +3.0× 10−4,−5.0× 10−4 and −3.0× 10−4, respectively, which correspond to

Cw = +1,−1 and −0.14. Figures 3.11 and 3.12 show the case of the increase and the

decrease of the width without the change of the phase, respectively. Figure 3.13 shows

the decrease of the width with the change of the phase. As shown in Figs.3.11(c),

3.12(c) and 3.13(c), the flow direction is the same independent of Ψb. As shown in

Fig.3.14, where the profile of Φ̂1,1 for Ψb = +2.0 × 10−3, 0 and −2.0 × 10−3 and the

maximum value of Φ̂1,1 as a function of Ψb are plotted, not only the direction but also

the absolute value of the flow is almost constant for all Ψb.

Since the phase of the island changes depending on Ψb, the relation between the

phase of island and the direction of flow varies. In the case of Ψb = +3.0 × 10−4, the

flow direction is radially outward at the X-point and inward at the O-point of the initial

static island as shown in Fig.3.11(a) and (c). In the case of Ψb = −5.0× 10−4, the flow

directions are radially inward at the X-point and outward at the O-point as shown in

Fig.3.12(a) and (c). These results imply that if the phase of island does not change,

the island width increases when the flow direction is radially outward at the X-point
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(a)

(b)

(c)

Figure 3.11: Contour of helical magnetic flux at (a) t = 0 and (b) t = 10000τA and

(c) flow pattern at t = 10000τA for Ψb = +3.0× 10−4 and σ = +1. Dashed lines show

positions of the resonant surface.
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(a)

(b)

(c)

Figure 3.12: Contour of helical magnetic flux at (a) t = 0 and (b) t = 10000τA and

(c) flow pattern at t = 10000τA for Ψb = −5.0× 10−4 and σ = +1. Dashed lines show

positions of the resonant surface.
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(a)

(b)

(c)

Figure 3.13: Contour of helical magnetic flux at (a)t = 0 and (b) t = 10000τA and (c)

flow pattern at t = 10000τA for Ψb = −3.0 × 10−4 and σ = +1. Dashed lines show

positions of the resonant surface.
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and σ = +1 and (b) dependence of maximum amplitude of Φ1,1 on Ψb for σ = +1.
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of the initial static island, and the island width decrease when the flow direction is

radially inward at the X-point. In the case of Ψb = −3.0 × 10−4, the flow direction is

radially inward at the X-point and outward at the O-point of the initial static island

as shown in Fig.3.13(a) and (c). This result implies that the phase of the island can

change when the flow direction is radially inward at the X-point of the static islands.

The phase change occurs in either case of the increase or the decrease of the width.

The radially outward shift of the plasma shrinks the distance between the flux surfaces,

which enhances the reconnection of the field lines. Therefore, it is considered that the

radial direction of the flow is consistent with the driven reconnection of the field lines.

Mechanism of change in magnetic islands

We consider the mechanism of the change of the magnetic island due to the nonlinear

interaction with the interchange modes. Since the island width is determined by the

perturbed poloidal flux, we focus on the time evolution of Ψ̂1,1. Figure 3.15 shows the

profiles of Ψ̂1,1 at t = 0 and t = 10000τA for Ψb = +3.0 × 10−4, −3.0 × 10−4 and

−5.0× 10−4. Compared with Fig.3.5(a), this figure indicates that Ψ̂1,1 at t = 10000τA

for Ψb 6= 0 is given by a superposition of Ψbr corresponding to the initial static island

and Ψ̂1,1 at t = 10000τA for Ψb = 0. In order to confirm it, we evaluate the contribution

by the interchange mode to Ψ̂1,1 at t = 10000τA, which is defined as

Ψ̂Int
1,1 (Ψb, r) = Ψ̂1,1(Ψb, r)−Ψbr. (3.13)

As shown Fig.3.16, Ψ̂Int
1,1 at r = rs is almost constant independent of Ψb. This means

that Ψ̂Int
1,1 is hardly affected by the existence of the static islands. Therefore, we can

set Ψ̂Int
1,1 (Ψb, r) ' Ψ̂Int

1,1 (Ψb = 0, r) for any Ψb. As a result, we obtain

Ψ̂1,1(Ψb, r) ' Ψ̂Int
1,1 (Ψb = 0, r) + Ψbr. (3.14)

From this equation, we can conclude that Ψ̂1,1 for a finite Ψb is almost given by the

linear sum of the poloidal fluxes of the initial static island and of the interchange mode

without the static island, in spite of the fact that Ψ̂1,1 is obtained as a result of the

nonlinear interaction of them.

By using Eq.(3.14), the island width after the nonlinear saturation of the inter-

change mode can be evaluated. Substituting Eq.(3.14) into Eq.(3.11), we find

wB
s ' 4

Ψ̂Int
1,1 (Ψb = 0, r) + Ψbr√

mr´ι
′|Ψ̂Int

1,1 (Ψb = 0, r) + Ψbr|

∣∣∣∣∣
r=rs

. (3.15)
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Figure 3.15: Profiles of Ψ̂1,1 at t = 0 and t = 10000τA for (a)Ψb = +3.0 × 10−4, (b)

Ψb = −3.0× 10−4 and (c) Ψb = −5.0× 10−4 and σ = +1.
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The value of CB
w can also be evaluated by substituting Eq.(3.15) into Eq.(3.12). Good

agreements between wh
s and wB

s and between Ch
w and CB

w are obtained as shown in

Figs.3.9 and 3.10. Furthermore, we can explain the reason why the island width after

the saturation of the interchange mode approaches the initial static island width in the

increase of |Ψb|. From Eq.(3.15), the difference of the widths ∆w = |wB
s | − |wB

i | can

be written as

∆w = 4

√
|Ψ̂Int

1,1 (Ψb = 0, rs) + Ψbrs| −
√
|Ψbrs|√

mrs´ι
′

. (3.16)

This equation implies that ∆w approaches to zero as |Ψb| increases since Ψ̂Int
1,1 is con-

stant.

The relation of the poloidal flux given by Eq.(3.14) also allows us to understand

the change of the width and the phase of the islands due to the interchange mode. For

σ = +1, Ψ̂Int
1,1 (Ψb = 0, rs) is positive. In the case of Ψb > 0, Ψ̂Int

1,1 (Ψb = 0, rs) has the

same sign as Ψbrs. Therefore, the absolute value of Ψ̂1,1 is increased from the value of

Ψbrs after the nonlinear saturation of the interchange mode. This change of the island

corresponds to the superposition of two islands with the same phase, and therefore,

the island width increases with keeping the phase. On the other hand, in the case of

Ψb < 0, the sign of Ψ̂Int
1,1 (Ψb = 0, rs) is different from that of Ψbrs. This case corresponds

to the superposition of two islands with the opposite phase. In this case, the change

of the island depends on the size of |Ψ̂Int
1,1 (Ψb = 0, rs)| and |Ψbrs|. When |Ψb| is large

enough to satisfy |Ψbrs| > |Ψ̂Int
1,1 (Ψb = 0, rs)|, that is, Ψb < −Ψ̂Int

1,1 (Ψb = 0, rs)/rs, the

sign of Ψ̂1,1 is not changed by Ψ̂Int
1,1 . Therefore, the island width decreases without the

change of the phase. In the case of |Ψbrs| < |Ψ̂Int
1,1 |, that is, Ψb > −Ψ̂Int

1,1 (Ψb = 0, rs)/rs,

the phase of the island changes because the sign of Ψ̂1,1 is different from that of Ψbrs.

In this case, the island width increases for Ψb > −Ψ̂Int
1,1 (Ψb = 0, rs)/(2rs), and decreases

for Ψb < −Ψ̂Int
1,1 (Ψb = 0, rs)/(2rs).

As a summary of the change for σ = +1, the width decreases without the phase

change for Ψb < −Ψ̂Int
1,1 (Ψb = 0, rs)/rs, the width decreases with the phase change, for

−Ψ̂Int
1,1 (Ψb = 0, rs)/rs < Ψb < −Ψ̂Int

1,1 (Ψb = 0, rs)/(2rs), the width increases with the

phase change for −Ψ̂Int
1,1 (Ψb = 0, rs)/(2rs) < Ψb < 0, and the width increases without

the phase change for Ψb > 0. Above discussion can be applied to the case of σ = −1.
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Figure 3.16: Dependence of contribution of interchange mode in total poloidal flux at

t = 10000τA on Ψb.

Effect of static magnetic island on saturated pressure profile

The static islands affects the variation of the pressure profile in the nonlinear evolution

of the interchange modes. Figure 3.17 shows pressure profiles at t = 0 and t = 10000τA

along the line connecting the points of (r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0)

for Ψb = +2.0 × 10−3 and Ψb = −2.0 × 10−3 in the case of σ = +1. The X-point and

the O-point are located at θ = 0 and θ = π for Ψb = +2.0 × 10−3, respectively, and

located at θ = π and θ = 0 for Ψb = −2.0× 10−3. The pressure profiles varies around

the rational surface with´ι = 1 in both cases as shown in Fig.3.17. Here, we define the

variation of pressure profile at the surface as

∆P (θi, Ψb) = P (rs, θi, z = 0, Ψb, t = 10000τA)− P (rs, θi, z = 0, Ψb, t = 0), (3.17)

where θi takes the value of zero or π. Both cases in Fig.3.17 show ∆P (θi = 0, Ψb) > 0

and ∆P (θi = π, Ψb) < 0 as in the case of Ψb = 0 shown in Fig.3.7. Therefore, each

position of the increase or the decrease of the pressure does not depend on the phase

of the island. This is due to the fact that the flow direction the vortices is independent

of Ψb as shown in Fig.3.14 and the convection due to the flow brings the pressure

variation. However, the absolute value of ∆P is different depending on the sign of Ψb

even at the same θi. This difference is attributed to the topology of the initial static

island at θ = θi, X-point or O-point. In order to clarify the effect of the topology of

the static island on the pressure variation, we compare the two pressure profiles for
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Figure 3.17: Pressure profile at t = 0 and t = 10000τA along the line between (r =

1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) for (a)Ψb = +2.0× 10−3 and σ = +1 and (b)

Ψb = −2.0× 10−3 and σ = +1. Radial coordinate at θ = π is made negative.
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Figure 3.18: Difference of pressure variation between at X-point and at O-point given

by Eq. (3.18).

|Ψb| and −|Ψb|. In this case, the topology of the initial static island at θ = θi is always

different, that is, one is the X-point and the other is the O-Point as in the case of

Fig.3.17. By utilizing δP (θi, Ψb) defined as

δP (θi, Ψb) = |∆P (θi, |Ψb|)| − |∆P (θi,−|Ψb|)|, (3.18)

we can examine the difference of the pressure variation between at the X-point and at

the O-point. In the case of θi = 0, the first and second terms of the right hand side

in Eq.(3.18) show the pressure variations at the X-point and the O-point of the initial

static islands, respectively. Therefore, δP (θi = 0, Ψb) means the subtraction of the

pressure variation at the X-point from that at the O-point. Similarly, δP (θi = π, Ψb)

is the subtraction of the pressure variation at the O-point from that at the X-point.

As shown in Fig.3.18, δP (θi = 0, Ψb) ≤ 0, δP (θi = π, Ψb) ≥ 0 for any Ψb. Hence, the

pressure variation at the O-point of the initial static island is larger than that at the

X-point, whichever the pressure increases or the decreases.

3.2.4 Discussion

In this section, we discuss the reason why there exist two independent solutions of

the saturated islands for each value of Ψb as shown in Fig.3.9 and the reason why the

poloidal flux in the saturation is almost given by the linear sum of the poloidal fluxes

of the initial static island and the interchange mode without the static island.

37



At first, we discuss the reason for the existence of two solutions for each value of Ψb.

This result is attributed to the fact that the parallel heat conductivity of equilibrium

pressure is not included in Eq.(2.11). In this case, imposing the static islands dose

not excite any interchange modes, because the static island generates no current as

shown in Eq.(2.25). If we put σ = 0 in the initial condition given by Eq.(3.6) for

Ψ̂1,1 and Eq.(2.19) for other perturbations, nothing grows even in the case of a finite

Ψb in principle, although an unphysical current corresponding to the static island due

to truncation errors can excite the interchange mode in actual numerical calculations.

On the other hand, the interchange mode with Ψb = 0 has two solutions for finite

initial perturbations or σ = ±1. The solutions of the poloidal flux have different signs

depending on the choice of σ as shown in Fig.5. The solutions are physically identical,

however, the finite Ψb affects each solution in a different way. That is, it increases or

decreases Ψ̂1,1 if Ψb has a sign the same as or opposite to the sign of Ψ̂1,1 obtained with

Ψb = 0, respectively. As a result, two different solutions exist for each Ψb. Note that

the amplitude of f(r) in Eqs.(2.19) and (3.6) is chosen to be large enough so that the

effect of the truncation error should be negligible in the calculations for Fig.3.9. If the

parallel heat conductivity of the equilibrium pressure exists, the finite Ψb can induce

an initial perturbation with a definite sign and an amplitude larger than that of the

truncation error even in the case of σ = 0. Therefore, a single solution is obtained

corresponding to the initial perturbation for each Ψb in this case.

Next we consider the reason for the linear relation given by Eq.(3.14). The reason

is attributed to the following factors : the (m,n) = (1, 1) component is dominant

compared with other components, the parallel heat conductivity of Peq is not included

as mentioned above, and Ψb is small. By integrating the Ohm’s law given by Eq.(2.9)

formally, we obtain the solution for Ψ̃1,1 given by

Ψ̃1,1 = Ψbr cos(θ − z) +

∫ t

0

dt

{
−Beq · ∇Φ̃1,1 − (B̃ · ∇Φ̃)1,1 +

1

S
J̃z1,1

}
. (3.19)

The first term is the initial condition which is kept during the time evolution owing

to the boundary condition Eq.(2.27). The second integral term corresponds to Ψ̂Int
1,1

in Eq.(3.13). The integrand becomes zero at the saturation of the interchange mode.

In the integrand, the dominant terms are the first and the third terms because the

(m,n) = (1, 1) components are dominant in the perturbations. Therefore, the solution

of Ψ̃1,1 at the saturation is almost determined when these terms are balanced including

Φ̃1,1. On the other hand, the saturation of the interchange mode occurs when the

gradient of average pressure given by Peq + P̃0,0 is reduced sufficiently and a local
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Figure 3.19: Profiles of Ψ̂1,1 for Ψb = 2.0× 10−3 at t = 0 (dashed line) and saturation

phase (solid line) and for Ψb = 0 (dashed and dotted line) in the case of S = 104,

ν = 6.4× 10−5, κ⊥ = 0.8× 10−5 and κ‖ = 0.8.

flat region is generated in the average pressure profile around the resonant surface.

The effect of the static island on the generation of the flat region is weak because

only the parallel heat conductivity of the perturbed pressure is included and not the

equilibrium pressure. The value of Φ̃1,1 at the saturation is determined mainly by the

average pressure with the flat region in the vorticity equation of Eq.(2.10). Therefore,

the Φ̃1,1 is almost independent of Ψb. This situation is confirmed with the results

in Fig.3.14. Hence, the integrand of Eq.(3.19) is also almost independent of Ψb, and

therefore, the integrand with finite Ψb is approximated by that with Ψb = 0, as shown

in Fig.3.16. It follows that the value of Ψ̂1,1 at the saturation is mainly given by the

sum of Ψbr and Ψ̂Int
1,1 with Ψb = 0.

On the contrary, when the parallel heat conductivity of Peq is included, the profile

of the average pressure profile at saturation can be changed depending on Ψb. Then,

there is a possibility that the integrand also depends on Ψb through the change of Φ̃1,1.

Besides, the integrand can depend on Ψb if the contribution of the second nonlinear

term of the integrand becomes significant, even when the parallel heat conductivity

of Peq is not included. In the second nonlinear term, Ψb is included in the form of

∇[Ψbr cos(θ− z)]×∇Φ̃2,2 · z. Therefore, when both Ψb and Φ̃2.2 are large enough, this

term affects the linear relation of the poloidal fluxes. We obtain one of the examples

of such case, which is shown in Fig.3.19. In this case, we employ the dissipation
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parameters as S = 104, ν = 6.4 × 10−5, κ⊥ = 0.8 × 10−5 and κ‖ = 0.8 instead of

Eq.(3.3). In the time evolution, the growth rate of the (m,n) = (2, 2) component is

slightly larger than that of the (m,n) = (1, 1) component in the linear phase, while

the (m,n) = (1, 1) component is dominant in the magnetic energy in the saturation

phase. As shown in Fig.3.19, the sum of Ψ̂Int
1,1 (Ψb = 0) and Ψbr is much larger than

Ψ̂1,1(Ψb = 2.0 × 10−3) at the resonant surface. We also obtain that the linear sum is

still a good approximation in the case of a smaller Ψb (Ψb = 1.0× 10−4) for the above

dissipation parameters. Since we focus on the interaction between the (m,n) = (1, 1)

static island and the interchange mode of which the dominant component has the

same mode number in the present work, systematic analysis of the cases where the

(m,n) = (2, 2) component has the largest linear growth rate is out of our scope.

3.3 Effect of parallel diffusion of equilibrium pres-

sure on island behavior

3.3.1 Island evolution due to interchange mode

In the previous Section, two solutions are obtained for a given error field depending on

the sign of initial perturbations in the nonlinear saturation phase of the interchange

mode. One corresponds to the increase in the island width and the other the decrease.

In the previous Section, effect of the diffusion parallel to the magnetic field is included

only for the perturbed pressure. As the next step to consider more realistic situation,

we include the effect of the parallel diffusion for the equilibrium pressure in this Section.

In this case, the term of the parallel diffusion of the equilibrium pressure in the plasma

pressure equation automatically generates an initial perturbation. Therefore, the solu-

tion can be uniquely determined, which corresponds to the increase or the decrease of

the island width. The plasma pressure equation including the parallel diffusion of the

equilibrium pressure instead of Eq.(2.11), which is given by

dP̃

dt
= (ẑ ×∇Φ̃) · ∇Peq + κ⊥∇2

⊥P̃ + κ‖(B · ∇)(B · ∇)(Peq + P̃ ). (3.20)

Here, the term of equilibrium pressure,

Q = κ‖(B · ∇)(B · ∇)Peq, (3.21)

is involved. Equations (2.9) and (2.10) are employed as the Ohm’s law and the vorticity

equation, respectively.
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Figure 3.20: Time evolution of (a) kinetic energy and (b) magnetic energy for Ψb =

2.0× 10−3.
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Figure 3.21: Time evolution of (a) kinetic energy and (b) magnetic energy for Ψb =

1.0× 10−12.
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(a)

(b)

Figure 3.22: Contour of helical magnetic flux on z = 0 poloidal cross section for

Ψb = 2.0× 10−3 at (a) t = 0 and (b) t = 720τA.
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evaluated with the analytic expression (3.11). Triangle and circles show the width in

the saturation of interchange mode for Ψb = 0 and finite values of Ψb, respectively.

We follow the nonlinear evolution of the interchange mode with the static island

by introducing finite Ψb. In this case, at the first time step of t = ∆t, the parallel

diffusion of the equilibrium pressure Q generates an initial perturbation of pressure P

Pb = Q∆t|t=0 = −κ‖(1 −́ ι)Ψb
dPeq

dr
∆t. (3.22)

Therefore, any explicit external initial perturbation is not given.

Figure 3.20 shows the time evolution of the kinetic energy and the magnetic energy

of the interchange mode for Ψb = 2.0× 10−3. The dissipation parameters of

S = 104, ν = 1.5× 10−4, κ⊥ = 10−5, κ‖ = 1.0 (3.23)

are employed so that the n = 1 component is dominant. A steady state is obtained

after the nonlinear saturation of the interchange mode. Linearly growing phase does

not appear for Ψb = 2.0×10−3, not like the case without a static island. This difference

is due to the fact that the inhomogeneous term Q is added continuously in Eq.(3.20).

As shown in Eq.(3.21), the absolute value of |Q| is decreased as |Ψb|. It is obtained

that the linearly growing phase becomes seen explicitly as |Ψb| is decreased as shown

in Fig. 3.21.

In order to observe the change in the island due to the nonlinear saturation of

the interchange mode, we plot the contour of the magnetic helical flux Ψh. Figure

3.22 shows the flux surfaces at t = 0 before the growth of the interchange mode and
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Figure 3.24: Profiles of P̂1,1 and Ψ̂1,1 for Ψb = 0 in the saturation phase of interchange

mode. Dashed and chain lines indicate the positions of r = rs and r = rm, respectively.

t = 720τA after the nonlinear saturation of the mode. The island width is 0.105 at

t = 0 and 0.153 at t = 720τA. Figure 3.23 shows the dependence of the island width

on Ψb. The sign of the island width means the island phase as Fig.3.9. The blue

line shows the island width at t = 0, which is obtained by the analytical expression

Eq.(3.11). The agreement between wB and the island width evaluated by Ψh contour is

already confirmed in Fig.3.9. The red circles show the island width after the saturation

of interchange mode for each Ψb. For finite Ψb, the island width after the saturation

is always larger than that at t = 0. That is, the island width increases due to the

nonlinear evolution of the interchange mode. The phase of the island is not changed

by the mode. This property is independent of the sign of Ψb.

The island width after the nonlinear saturation increases as |Ψb|. However, the

increment of the island width due to the interchange mode is almost independent of

|Ψb|. This is attributed to the fact that the increase of the island width after the

saturation is mainly brought by that of the static island width.

3.3.2 Mechanism of increase in island width

Here we discuss the reason why the island width increases due to the interchange mode

in the case with the parallel diffusion of equilibrium pressure. For this purpose, we

consider the property of the mode structures of the interchange mode by utilizing the

case Ψb = 0 at first. In this case, Pb given by Eq.(3.22) is zero. Therefore, in the case

without external initial perturbations, nothing happens. Thus, we employ a pressure
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Figure 3.25: Profiles of (a)Pb × 105 and P̂1,1 at t = 720τA and (b) Ψ̂1,1 at t = 0 and

t = 720τA. Dashed and chain lines indicate the position of r = rs, and r = rm,

respectively.

perturbation given by

Pini = σf(r) (3.24)

as the initial perturbation for the calculation. Here, σf(r) is given by Eq.(2.19). In

this case, there exist two solutions with the same absolute value and different sign

depending on the value of σ as shown in Figs. 3.23 and 3.24.

Equation (3.24) and Fig.3.24 show that the sign of the initial and the saturation

values of P̂1,1(rm) is positive for σ = +1 and negative for σ = −1, where rm denotes the

position where the saturated P̂1,1 has the maximum absolute value. That is, the sign

of the saturated P̂1,1(rm) is determined by that of Pini. This is because the function of
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Pini involves a component which grows to the saturated P̂1,1, and therefore, the sign

of the component is succeeded to the saturated P̂1,1. Figure 3.24 also shows that the

signs of Ψ̂1,1(rs) and P̂1,1(rm) are the same in the saturation of the interchange mode

in either case of σ. Note that rm < rs.

We utilize this property of the interchange mode in the consideration for the case

of finite Ψb. In this case, Pini is given by Pb instead of Eq.(3.24). Figure 3.25 (a) shows

the profile of Pb and the saturated P̂1,1 for Ψb = 2.0 × 10−3. The profile of Pb has a

positive value for r < rs. Therefore, P̂1,1 grows so as to be positive at r = rm. Figure

3.25 (b) shows the initial and the saturated profiles of Ψ̂1,1. At t = 0, Ψ̂1,1 already has

a positive value at r = rs because Ψ̂1,1 is given by Ψbrs with positive Ψb. The change

of Ψ̂1,1(rs) due to the interchange mode is also positive because P̂1,1(rm) > 0. As a

result, the absolute value of Ψ̂1,1(rs) increases as the mode grows. This means that

the island width is increased because the width is proportional to the square root of

|Ψ̂1,1(rs)|. The same result is obtained also in the negative Ψb case.

3.4 Summary

The effect of the resistive interchange mode with the mode number of (m,n)=(1,1)

on the static magnetic island with the same mode number generated by an externally

imposed poloidal flux and in a straight heliotron plasma is studied numerically. The

single helicity perturbations are employed and the poloidal uniform flow is not included.

A high resistivity is assumed for the enhancement of the effect of the interchange

mode. The viscosity and the heat conductivity are chosen so that the (m,n)=(1,1)

component of the interchange mode is dominant in the nonlinear calculation. All

physical quantities are evaluated at the steady state after the saturation of interchange

mode.

Since we employ high resistivity (S = 104), a significant island is generated in the

nonlinear saturation of the interchange mode even without the static island. In the

case with the static island, the interchange mode grows and saturates nonlinearly as

in the case without the static island. The width of the magnetic island is changed

by the nonlinear saturation of the interchange mode. The situation of the increase or

decrease of the width depends on whether the diffusion of the equilibrium pressure in

the direction parallel to the magnetic field is taken into account or not.

In the case without the effect of the diffusion of the equilibrium pressure, there exist

two solutions increasing and decreasing the island width for a given external poloidal

47



flux. Such changes of the island are determined by the total perturbed poloidal flux

in the saturation state. In spite of the nonlinear interaction, the total poloidal flux is

given by the linear sum of the poloidal flux generated by the interchange mode without

a static island and the external poloidal flux for the generation of the static island. The

poloidal flux generated by the interchange mode is almost constant for the variation

of the external poloidal flux. Therefore, the changes of the width and the phase of the

island depend on the value of the external poloidal flux. As the absolute value of the

external poloidal flux increases, the contribution of the poloidal flux generated by the

interchange mode becomes relatively small. Since the island width is proportional to

the square root of the total perturbed poloidal flux, the island width after the saturation

approaches the width of the static island as the absolute value of the external poloidal

flux increases.

It is obtained that the stream function after the nonlinear saturation is almost

constant for the variation of the external poloidal flux. However, the relation between

the phase of the static island and the flow is changed depending on the sign of the

external poloidal flux. In the case where the radially outward flow is generated at the

X-point of the static island, the island width increases without the phase change. In

the case where the radially inward flow is generated at the X-point, the phase change

occurs or the island width is decreased. From the point of view of the driven magnetic

reconnection, the flow direction is consistent with the change of the width and the

phase of the island.

The flow generated by the interchange mode brings the local variation of the pres-

sure through the convection. In the case with the static island, since the flow direction

is not changed for the change of the external poloidal flux, the positions of the pres-

sure increase and the pressure decrease are fixed independent of the topology at the

position, X-point or O-point. However, the absolute value of the pressure variation

depends on the topology at the position. The absolute value is larger at the O-point in

the initial static island than at the X-point. This tendency is obtained in either case

of that the pressure increases or decreases.

In the case of the effect with the diffusion of the equilibrium pressure, only the

saturation solution indicating the increase of the island width is obtained. This result

is due to the fact that the parallel diffusion term generates a pressure component which

increases the poloidal flux at the resonant surface. The term also accelerates the growth

of the interchange mode to reduce the duration of the linear phase. Other property

in the behavior and the interchange mode is similar to those in the case without the
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parallel diffusion.
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Chapter 4

MHD Equilibria including Static

Magnetic Islands

4.1 Introduction

Next, we study the effect of the existence of the static island on the growth of the

interchange mode. For this study, an equilibrium with the pressure consistent with

the static magnetic island is required. Thus, in this Chapter, we develop a numerical

code to obtain MHD equilibria consistent with the static magnetic island with the

mode numbers of (m,n)=(1,1), which correspond to the reduced MHD equations in a

straight heliotron configuration.

As mentioned in Chapter 1, the numerical calculation method in this study is based

on the two-step approach of the code by Park et al. [19] and the HINT code [20] which

are developed for the three-dimension equilibrium including the magnetic islands and

stochastic regions. In the first step, the equation of B · ∇P = 0 is solved, and in the

second step, the force balance equation is solved. Since we treat more simple geometry,

we develop a more effective method to solve the equations than these codes. We develop

two kinds of equilibrium code with the different treatment of continuity of the pressure

gradient across the separatrix of the island. One gives a solution with a continuous

pressure gradient at the separatrix and the other gives a solution with a jump of the

pressure gradient at the separatrix.

In the former code, the Fourier expansion is employed in the poloidal and the

toroidal directions. In the first step, a method utilizing a diffusion equation parallel

to the magnetic field is employed. The continuity of the pressure gradient is naturally
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Figure 4.1: Flow chart of the schemes.

assumed in the formulation of the diffusion equation. In the second step, an ordinary

differential equation derived from the force balance equation is solved. In general, not

only the pressure diffusion parallel to the field but also the diffusion perpendicular to

field can affect the equilibrium pressure profile. Thus, we extend the code so as to

include the diffusion perpendicular to the field in the first step and study the effect on

the equilibrium.

In the calculation with the parallel diffusion equation, the resultant equilibrium

pressure profile is flat at both the O-point and the X-point of the magnetic island. The

equilibrium is useful for the study of the effect of the local annular flat structure of

the pressure profile on the stability of the interchange mode, but not for the pressure

profile which is steep at the X-point and flat at the O-point. Ichiguchi et al. [22, 23]

examined the effect of the annular flattening of the pressure profile on the stability

of the interchange mode. They showed that the marginal width is about quater of

the half-width of the mode in the case without the flattening. However, they did not

show the stability for the case with the pressure gradient at the X-point. Thus, we
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improve a numerical scheme to calculate equilibria with such pressure profile. In this

scheme, a field line tracing method is utilized in the first step. We keep the continuity

of the pressure at the separatrix by fixing the initial points of the field line tracing. In

the second step, a relaxation method is employed, which is similar to the method by

Park et al. [19]. This scheme allows us to obtain both solutions of which the pressure

gradient is continuous and discontinuous.

This Chapter is organized as follows. The equilibrium equation to be solved is

explained in Section 4.2. The scheme with the diffusion equation is explained and

the result is discussed in Section 4.3. The tracing field line method is explained in

Section 4.4. It is shown that two different solutions are obtained with this method.

The difference of the two solutions is discussed in Section 4.5. Summary is given in

Section 4.6.

4.2 Coupled equations for equilibrium calculation

The equilibrium corresponding to Eqs.(2.1)-(2.3) has to satisfy the condition that the

pressure is constant along a field line, which is given by

B · ∇P = 0, (4.1)

in arbitrary topology and the force balance equation,

−B · ∇Jz +
1

2ε2
∇Ω×∇P · z = 0. (4.2)

Equations (4.1) and (4.2) are the coupled equations for P (r, θ, z) and Ψ(r, θ, z) to be

solved. The coupled equations are iteratively solved by utilizing two steps employed in

the codes of Refs. [18–21]. For the equilibrium calculation, the Field Line Equilibrium

Calculation (FLEC) code is developed. The details of the numerical schemes are ex-

plained in Appendix B. Here, B is given by

B(r, θ, z) = z + z×∇Ψ(r, θ, z). (4.3)

We express Ψ(r, θ, z) as the sum of the cylindrical symmetry component and other

components as follows:

Ψ(r, θ, z) = Ψsym(r) + Ψext
1,1 (r, θ, z) + Ψ̃(r, θ, z). (4.4)

Here, ”sym” denotes the symmetry components which gives a reference equilibrium

with nested magnetic surfaces, and Ψext
1,1 is the external poloidal flux given by Eq.(2.29).
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The tilde indicates the variation quantity of equilibrium due to the static island. In

this Chapter,´ι(r) is decomposed corresponding to the components of Ψ as

´ι(r) =´ιsym(r) +˜´ι(r), (4.5)

where

´ιsym(r) =
1

r

dΨsym(r)

dr
and ˜´ι(r) =

1

r

dΨ̂0,0(r)

dr
. (4.6)

Here, Ψ̂0,0 indicates the Fourier component of Ψ̃ with mode number (m,n)=(0,0).

Hereafter, we utilize the model expression for the vacuum field in the straight helical

configuration, Ωeq which is given by [28]

Ωeq(r) =
Ntε

2

l

(
r2

´ιsym + 2

∫
r´ιsymdr

)
, (4.7)

where Nt and l are the toroidal period number and the pole number, respectively.

We solve MHD equilibria with two different methods. Figure 4.1 shows the flow

chart of the schemes for the equilibria calculation. Left and right charts show the

two schemes. In the left chart, the parallel diffusion equation is utilized in the first

step. The pressure is solved until the steady state is obtained. In the second step,

Ψ satisfying the force balance is obtained by solving an ordinary equation. In right

chart, a field line tracing method is utilized to make the pressure constant along the

field line in the first step. In the second step, Ψ satisfying the force balance is obtained

by utilizing a relaxation method. In both charts, the coupled equations are iteratively

solved until the island width is converged. When the island width is converged, we

judge that MHD equilibrium is obtained.

4.3 Equilibrium calculation utilizing diffusion equa-

tion parallel to the field line

4.3.1 Numerical method

In this Section, MHD equilibrium is discussed by means of the method utilizing diffusion

equation parallel to the field line. Here, P is expressed as the sum of the cylindrical

symmetry component and other components as in Eq.(4.4)

P (r, θ, z) = Psym(r) + P̃ (r, θ, z). (4.8)
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In the case that the system is cylindrical symmetry without an external field, any

functions of r for Psym(r) and Ψsym(r) are the solutions of Eqs.(4.1) and (4.2).

We express P̃ and Ψ̃ with the Fourier series to solve Eqs.(4.1) and (4.2) as follows:

P̃ (r, θ, z) =
∑
m,n

P̃m,n, P̃m,n = P̂m,n(r) cos(mθ − nz). (4.9)

Ψ̃(r, θ, z) =
∑
m,n

Ψ̃m,n, Ψ̃m,n = Ψ̂m,n(r) cos(mθ − nz). (4.10)

In the case that there exists only the static magnetic island with a single mode, only

the single helicity modes of m/n = const. are sufficient in the expression of Eqs.(4.9)

and (4.10) because of the helical symmetry.

We solve Eqs.(4.1) and (4.2) in two separate steps as shown Fig.4.1. These two

steps are iterated until the MHD equilibrium is obtained. In the first step, P satisfying

Eq.(4.1) is obtained with Ψ fixed. In this Section, in order to solve Eq.(4.1), we employ

a diffusion equation parallel to the field given by

∂P

∂t
= κ‖(B · ∇)(B · ∇)P. (4.11)

The pressure P constant along the field line is obtained when the stationary state of

Eq.(4.11) is achieved. This equation is expanded in the Fourier series. In the present

calculation, the modes in the range of 0 ≤ n ≤ Np with Np = 2 are employed in

Eq.(4.9). Then, P is expressed as

P (r, θ, z) = Psym(r) +
2∑

n=0

P̂n,n(r) cos(nθ − nz). (4.12)

The Fourier component of Eq.(4.11) for each mode number of n is written as follows:

∂P̂0,0

∂t
=

κ‖Ψb

2

[(1 −́ ι)

r
P̂1,1 +

Ψb

r

d

dr
(Psym + P̂0,0) + (1 −́ ι)

dP̂1,1

dr
−

d´ι
dr

P̂1,1

+Ψb
d2

dr2
(Psym + P̂0,0)− Ψb

2

(d2P̂2,2

dr2
+

3

r

dP̂2,2

dr

)]
, (4.13)

∂P̂1,1

∂t
= κ‖

{
− (1 −́ ι)[(1 −́ ι)P̂1,1 + Ψb

d

dr
(Psym + P̂0,0)]

+
Ψ2

b

4

(d2P̂1,1

dr2
+

1

r

dP̂1,1

dr
− 1

r2
P̂1,1

)
+

3Ψb

2
(1−́ι)

dP̂2,2

dr
+3Ψb(1−́ι)

P̂2,2

r
−Ψb

d´ι
dr

P̂2,2

}
(4.14)

and
∂P̂2,2

∂t
= κ‖

{
− 2(1 −́ ι)[2(1 −́ ι)P̂2,2 +

Ψb

2

(dP̂1,1

dr
− 1

r
P̂1,1

)
]
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+
Ψb

2

[1 −́ ι

r
P̂1,1 +

Ψb

r

d

dr
(Psym + P̂0,0) +

d´ι
dr

P̂1,1 − (1 −́ ι)
dP̂1,1

dr

]

−Ψb
d2

dr2
(Psym + P̂0,0) +

Ψ2
b

2

(d2P̂2,2

dr2
+

1

r

dP̂2,2

dr
− 4

r2
P̂2,2

)}
. (4.15)

In order to judge the achievement of the steady state of Eq.(4.11), we define a

parameter of Kn for each mode number as

Kn =

∫ 1

0

{P̂n,n(r)}2rdr. (4.16)

We calculate the growth rate γn given by

γn =
1

Kn

dKn

dt
(4.17)

and dγn/dt every time step in the time evolution. When both conditions of

|γn| < εp and
∣∣∣dγn

dt

∣∣∣ < εp (εp << 1) (4.18)

are satisfied simultaneously for each mode, we judge that the steady state is achieved.

In the second step, Eq.(4.2) is solved with P fixed, which is obtained by the first

step. To obtain the equilibrium including static magnetic island with the single mode

of (m,n)=(1,1), we employ the modes in the range of 0 ≤ n ≤ NΨ with NΨ = 1 for Ψ̃.

In this case, Eq.(4.4) is written as

Ψ(r, θ, z) = Ψsym(r) + Ψbr cos(θ − z) + Ψ̂0,0(r) + Ψ̂1,1(r) cos(θ − z). (4.19)

In this case, Jz is expressed as

Jz(r, θ, z) = Jzsym(r) + Ĵz0,0(r) + Ĵz1,1(r) cos(θ − z). (4.20)

In this study, no current condition for cylindrical equilibrium, Jzsym = 0 is assumed.

We also expand Eq.(4.2) in the Fourier series. The n = 0 component of Eq.(4.2) is

satisfied trivially in this case. The n = 1 component is written as

−z · ∇J̃z1,1 − [Ψsym + Ψ̃0,0, J̃z1,1]− [Ψext
1,1 + Ψ̃1,1, J̃z0,0] +

1

2ε2
[Ωsym, P̃1,1] = 0, (4.21)

where [f, g] is the Poisson bracket which is defined as

[f, g] = ∇f ×∇g · z. (4.22)

Equation (4.21) has the solution of

Ψ̃1,1 = J̃z1,1 = 0 (4.23)
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and Ψ̃0,0 satisfying

dĴz0,0

dr
= − 1

2ε2Ψbr

dΩsym

dr
P̂1,1. (4.24)

Thus, the force balance equation (4.2) is reduced to an ordinary differential equation

for Ψ̂0,0. We obtain the solution for Ψ by solving Eq.(4.24) for Ψ̂0,0 and substituting it

into Eq.(4.19).

The width of the magnetic island wN is evaluated by using the solution of Ψ, where

the subscript of N means the number of the iteration. The two steps described above

are iterated until the width wN is converged. When the change rate δwN satisfies the

condition,

|δwN | < εw (εw << 1), (4.25)

we judge that the MHD equilibrium is obtained, where δwN is defined as

δwN =
wN − wN−1

wN−1

. (4.26)

The island width is calculated from the shape of the magnetic island. The shape

can be drawn by tracing the field line equations given by

dr

dz
=

Br

Bz

(4.27)

and
dθ

dz
=

Bθ

rBz

. (4.28)

In the case of the helical symmetry with the mode numbers of (m,n), the magnetic

island shape can be drawn in an efficient way rather than tracing the Poincaré plots.

We express the solution for Eqs.(4.27) and (4.28) as (r(z), θ(z)) for the initial condition

of (r(z0), θ(z0)) at z = z0. In the change of the z direction, the magnetic islands rotate

(m/n)(z − z0) in the θ direction with keeping the shape. We can obtain the island

shape at the cross section of z = z0 by plotting the line of (r(z), θ(z)− (m/n)(z− z0)).

This procedure corresponds to subtracting the phase (m/n)(z− z0) in θ direction from

the solution θ(z). Figure 4.2 shows magnetic surface at z = 0, which corresponds to

the separatrix of the static island for Ψb = 2.0× 10−3. Blue line and red dots indicate

the line of (r(z), θ(z) − (m/n)(z)) and the Poincaré plots, respectively. The Poincaré

plots are on the line of (r(z), θ(z)− (m/n)(z)). It is confirmed that magnetic surfaces

are plotted continuously by utilizing the line.

In the case of the magnetic island with (m,n), there exist X-point and O-point

at the points where the right hand side of Eq.(4.28) equals to m/n. When the mode
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Figure 4.2: Magnetic surface at z = 0 corresponding to the separatrix of the static

island for Ψb = 2.0 × 10−3. Blue line and red dots indicate the line of (r(z), θ(z) −
(m/n)(z)) and the Poincaré plots, respectively.

numbers are (m,n)=(1,1), Eq.(4.28) combined with Eqs.(2.4), (4.6), (4.19) and (4.23)

become
dθ

dz
=´ι +

Ψb

r
cos(θ − z). (4.29)

In the case of positive Ψb, there exist X-point at θ = 0 and O-point at θ = π in the

z = 0 cross section. The radial coordinates r’s for X-point and O-point satisfy

´ι +
Ψb

r
= 1 and ´ι−

Ψb

r
= 1, (4.30)

respectively. Therefore, the radial positions of X-point, O-point and the rational surface

with´ι = 1 are different because of the finite value of Ψb.

4.3.2 Resultant equilibrium

By using the method explained in Section 4.3.1, we obtain the MHD equilibria including

static magnetic islands in a straight heliotron plasma. The pressure profile,

Psym(r) = β0(1− r4)2, P̂n,n(r) = 0 (0 ≤ n ≤ 2) (4.31)
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Figure 4.3: Time evolution of (a) Kn, (b) |γn| and (c) |dγn/dt| for κ⊥/κ‖ = 0. Dashed

lines indicate the times when the steady state condition is satisfied and the second step

is conducted.
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with β0 = 0.16% is used for the initial condition. The profile of the initial rotational

transform profile is shown in Fig.3.1(b). The profile of Ψsym is obtained by applying

this profile to Eq.(4.6). The value of Ψb and the initial condition for Ψ̂m,n are set to

be Ψb = 10−3 and Ψ̂m,n = 0, respectively. We employ εp = 5.0 × 10−7 and εw = 10−6

as the convergence parameters.

Figure 4.3 shows the time evolution of Kn, |γn| and |dγn/dt| over the whole iteration.

Dashed lines show the times when the steady state condition in the first step is achieved

and the second step is conducted. It is found that the steady state of each component

P̂n,n is smoothly achieved for each iteration. Figure 4.4 shows wN and |δwN | at the

times of the dashed lines in Fig.4.3 as functions of N . As N increases, the island

width becomes converged. The convergence condition is satisfied and the equilibrium

is obtained at N = 12.

Figure 4.5 shows the profiles of the components of the equilibrium pressure P̂n,n.

The component of P̂0,0 is dominant and P̂2,2 is much smaller than P̂1,1. The ratios of

the maximum value of |P̂2,2| to those of |P̂0,0| and |P̂1,1| are |P̂2,2|/|P̂0,0| = 7.1×10−4 and

|P̂2,2|/|P̂1,1| = 1.4× 10−2, respectively. This result confirms that Np = 2 is adequate in

the first step calculation.

Figure 4.6 (a) and (b) show the contour of the constant pressure and the magnetic

surfaces at the z = 0 cross section in the resultant equilibrium. Since P̂2,2 is much

smaller than P̂0,0 and P̂1,1 as described above, the contribution of P̂2,2 to the pressure

contour is negligible. For this reason, we exclude P̃2,2 in Eq.(4.12) when we plot the

pressure contour in Fig.4.6(a). Figure 4.6 (a) and (b) show a good agreement between

the pressure contour and the magnetic surfaces. The separatrix exists also in the

pressure contour which corresponds to that of the magnetic island. Figure 4.6 (c)

shows the relative error δC in the pressure along the field line. The definition of δC is

given by

δC(r, θ − z) =
P (r, θ − z)− P (r0, θ0 − z0)

P (r0, θ0 − z0)
. (4.32)

The relative error is evaluated along the field line of the total pressure without the

component of n = 2. Since the phase angle θ−z varies along the field line, we evaluate

δC as a function of θ − z. The subscript‘0’means the coordinates of the starting

point of the field line. In Fig.4.6 (c), θ0 = π and z0 = 0 are used. The field lines

corresponding to r0= 0.329, 0.591, 0.781, 0.816 and 0.950 are chosen here. For fixed

values of θ0 and z0, the radial coordinate r0 identifies the magnetic surface on which

the field line is traced. The field lines of r0 =0.329, 0.591 and 0.781 are on the magnetic
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surfaces inward of the separatrix (red, brown and green), r0 = 0.816 on the separatrix

(blue) and r0 = 0.950 the surface outward of the separatrix (purple), respectively. Each

line in Fig.4.6(c) corresponds to the magnetic surface with the same color in Fig.4.6(b).

Figure 4.6(c) shows that the largest error of the pressure appears on the field line of

the separatrix (blue). Even in the case, however, the value is quite small and less than

5.0× 10−3. Therefore, Eq.(4.1) is satisfied in a good accuracy.

Figure 4.7 (a) shows the equilibrium pressure profile along the line connecting (r =

1, θ = 0, z = 0) and (r = 1, θ = π, z = 0). Figure 4.7 (b) and (c) are the enlarged figures

around the magnetic island at θ = 0 and θ = π, respectively. The pressure profiles

of both cases with and without P̃2,2 are plotted in Fig.4.7. However, the difference

between the cases is too small to be distinguished because |P̂2,2| is much less than

others as shown in Fig.4.5. The pressure profile is flat not only at the O-point but

also at the X-point. This property is explained with the expression of the Fourier

component of B · ∇P . In the equilibrium, each Fourier coefficient of B · ∇P is zero.

The (m,n) = (1, 1) coefficient is given by

(B · ∇P )1,1 = (1 −́ ι)P̂1,1 + Ψb
d

dr
(Psym + P̂0,0) (4.33)

under the condition of P̂n,n = 0 for n ≥ 2. Since the first term equals to zero at the

´ι = 1 surface, the relation of d/dr(Psym + P̂0,0) = 0 must be satisfied. This equation

indicates that the pressure profile is flat in the annular region near the surface involving

both the O-point and the X-point.

In Fig.4.7 (b) and (c), the horizontal purple line shows the pressure value corre-

sponding to the separatrix in the pressure contour shown in Fig.4.6 (a). These figures

show that the pressure has the same value at the X-point and at the separatrix at

θ = π of the magnetic surfaces. This result also confirms that the separatrix in the

pressure contour coincides with the separatrix in the magnetic surfaces.

We confirm that the resultant pressure satisfies Eq.(4.1) in another way. We cal-

culate an averaged pressure along the field line going through a given point Q defined

as

P̄Q =

∫
P
B

dl∫
1
B

dl
(4.34)

by using the resultant pressure P . Here, dl is the length of the arc along the field

line. Then, we replace the pressure with P̄Q along the field line. It is followed that

the pressure profile determined by P̄Q automatically satisfies Eq.(4.1). This method

is employed in the HINT code [21, 29]. Figure 4.8 shows the profiles of the resultant
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pressure and the averaged pressure along field line with P̄Q. Red solid line and green

dashed line show the profiles of the resultant equilibrium pressure and the averaged

pressure, respectively. Good agreement is obtained, which confirms that the resultant

pressure satisfies Eq.(4.1).

4.3.3 Pressure profile with perpendicular heat conductivity

In the magnetically confined plasma with a pressure gradient, the pressure is diffused

following Eq.(2.3). The time scale of the parallel diffusion is much shorter than that of

the perpendicular diffusion. Therefore, in the steady state, a static MHD equilibrium

corresponding to the condition B · ∇P = 0 is considered to be achieved in a short

time as the lowest approximation. As the next approximation, we consider to include

the perpendicular diffusion. In the steady state of this case, a flow consistent with the

diffusion should be taken into account. However, the incorporation of such a flow is

quite complicated because the flow is determined not only by the pressure equation

but also other transport equations. Thus, we assume the steady state with no flow

for the approximation. Furthermore, for the steady state including the perpendicular

diffusion, a heat source SP is needed in the pressure equation to compensate the decay

of the total pressure. Here we also assume the source term corresponding to the form

of SP = −∇2
⊥Psym in the pressure equation. Then, the resultant equation is given by

κ⊥∇2
⊥P̃ + κ‖(B · ∇)(B · ∇)P = 0. (4.35)

By solving this equation together with Eq.(4.2), we can obtain a steady state with

the perpendicular pressure diffusion with no flow including a static magnetic island.

The solution is not an MHD equilibrium because the condition of B · ∇P = 0 is not

satisfied. However, we can obtain the contribution of the perpendicular diffusion on the

MHD equilibrium from the solution. To solve the equations, we employ the diffusion

equation given by
∂P

∂t
= κ⊥∇2

⊥P̃ + κ‖(B · ∇)(B · ∇)P (4.36)

instead of Eq.(4.11) for the first step and utilize the same scheme as in the Subsection

4.3.2 for the second step.

Figure 4.9 shows the time evolution of Kn, |γn| and |dγn/dt| over all the iterations

in the case with κ⊥/κ‖ = 10−7. In the first step, the steady state of Eq.(4.36) is

obtained as in the case of κ⊥/κ‖ = 0. As shown in Fig.4.4(b), the convergence for

the island width is also obtained in the result of the two-step iteration. In the case
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of κ⊥/κ‖ = 10−7, the equilibrium is obtained at N = 6. Similar time evolutions are

obtained in the cases with κ⊥/κ‖ = 10−6, 10−8, 10−9 and 10−10 as shown in Fig.4.4(a).

The island width in the equilibrium state decreases compared with the vacuum width in

the case of κ⊥/κ‖ = 0 while the island widths increase in the cases of κ⊥/κ‖ 6= 0. Figure

4.10 shows the dependence of the equilibrium pressure profile along the line connecting

(r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) on κ⊥/κ‖. As κ⊥/κ‖ increases,

the pressure gradient at the X-point enhances. In the case with κ⊥/κ‖ = 10−7, the

flat region almost disappears at the X-point. The local flat structure at the O-point is

maintained for the finite value of κ⊥/κ‖, however, the width of the flat region decreases

with the increase of κ⊥/κ‖.

In spite of that we do not take the diffusion for Psym(r) into account, the reduction

of P (r = 0) in the resultant equilibrium is seen in Fig.4.10(a). This is due to the fact

that P̂0,0 has a negative finite value at r = 0 generated by the diffusion perpendicular to

the field as shown in Fig.4.11. Two kinds of contribution of the perpendicular diffusion

on P̂0,0 around the rational surface and the magnetic axis lead to the negative value of

P̂0,0(r = 0). As shown in Fig.4.5, the profile of P̂0,0 locally has a negative value region

just inside the rational surface in the case of κ⊥/κ‖ = 0. In the case of finite κ⊥/κ‖, the

radial diffusion term works so as to reduce the curvature of the profile. It is followed

that the region with the negative P̂0,0 is enlarged. On the other hand, in the region

around the magnetic axis, P̂0,0 is almost zero in the case of κ⊥/κ‖ = 0 as shown in

Fig.4.5, because the island effect is limited to the region around the rational surface.

In the cases of finite κ⊥/κ‖, the first term is dominant in Eq.(4.36), and therefore, P̂0,0

satisfies the equation of

(∇2
⊥P̃ )0,0 =

d2P̂0,0

d2r
+

1

r

dP̂0,0

dr
= 0, (4.37)

in this region. The solution of Eq.(4.37) which is regular at the axis is a constant.

Therefore, the finite value of κ⊥/κ‖ makes the pressure profile constant around the

axis. Since the solution of P̂0,0 has to be continuous between the regions around the

rational surface and the axis, P̂0,0 has a finite and negative value at r = 0 as shown

in Fig.4.11. That is, P (r = 0) is decreased in the cases with finite value of κ⊥/κ‖.

The absolute value of the decrease of P̂0,0(r = 0) does not change monotonously for

the increase of κ⊥/κ‖ as shown Fig.4.10(a). This is because the two contributions are

almost in a trade-off relation. In the increase of κ⊥/κ‖, the maximum absolute value of

P̂0,0 around the rational surface is decreased because of the reduction of the curvature

of P̂0,0 while the contribution making P̂0,0 constant is enhanced.
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Figure 4.4: Variation of (a) wN and (b) δwN for the number of iteration N . The plot

of κ⊥/κ‖ = 0 corresponds to the case of Fig.4.3.
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Figure 4.5: Profiles of P̂n,n. Dashed lines indicate the position of the rational surface.

Blue lines indicate the position of the separatrix of the island at θ = π.
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Figure 4.6: Plots of (a) pressure contour and (b) magnetic surfaces of the resultant

equilibrium at β0 = 0.16% on z = 0 cross section and (c) relative error of pressure

along field lines. Each field line in (c) is on the surface with the same color in (b).
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Figure 4.7: Profile of resultant equilibrium pressure (a) along the line connecting (r =

1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) and its enlargements at (b) θ = 0 and (c)

θ = π. Red solid line and brown dashed line show the profiles of Psym +
1∑

n=0

P̃n,n and

Psym +
2∑

n=0

P̃n,n, respectively. Black line shows the profile of Psym. Vertical dashed lines

indicate the position of the rational surface. Blue lines indicate the positions of the

separatrix of the magnetic island at θ = π. Green line indicates the position of the

O-point. Horizontal purple line indicates the value of pressure at the separatrix in the

pressure contour surfaces in Fig.4.6(a), P = 3.942× 10−4. Brown line includes P̃2,2.
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Figure 4.8: Profiles of the resultant equilibrium pressure and the averaged pressure

along field line (a) along the line connecting (r = 1, θ = 0, z = 0) and (r = 1, θ =

π, z = 0) and its enlargements at (b) θ = 0 and (c) θ = π. Red solid line and green

dashed line show the profiles of the resultant equilibrium pressure and the averaged

pressure, respectively. Black line shows the profile of Psym. Vertical dashed lines

indicate the position of the rational surface. Blue lines indicate the positions of the

separatrix of the magnetic island.
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Figure 4.9: Time evolution of (a) Kn, (b) |γn| and (c) |dγn/dt| for κ⊥/κ‖ = 10−7.

Dashed lines indicate the times when the steady state condition is satisfied and the

second step is conducted.
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Figure 4.10: Profiles of resultant pressure (a) along the line connecting (r = 1, θ =

0, z = 0) and (r = 1, θ = π, z = 0) and its enlargements at (b) θ = 0 and (c) θ = π for

κ⊥/κ‖ = 0, 10−9, 10−8 and 10−7.
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Figure 4.11: Profiles of P̂n,n for (a) κ⊥/κ‖ = 10−9 and (b) κ⊥/κ‖ = 10−7. Dashed

lines indicate the position of the rational surface. Blue lines indicate the position of

the separatrix of the island at θ = π.
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4.4 Method by tracing field line

4.4.1 Averaged pressure along the field line

In the previous Section, Eq.(4.11) is employed to obtain the equilibrium pressure.

However, the resultant pressure is flat at not only the O-point but the X-point. In

this Section, we seek the equilibrium pressure with a finite gradient at the X-point by

means of a field line tracing method.

One way to obtain the equilibrium pressure with a finite pressure gradient is the

method averaging Psym along the field line by using Eq.(4.34).

Figure 4.12 shows the profile of P̄ for Ψb = 1.0 × 10−3. Here, Psym(r) is defined

in Eq.(4.31). Red dots and black line show the averaged pressure P̄ and Psym, re-

spectively. Vertical blue lines indicates the separatrix of the static island. Here, rX ,

ra and rb indicate the radial coordinate of the X-point, the radial coordinates of the

inside and outside of the separatrix at θ = π, respectively. The averaged pressure P̄

is discontinuous at the X-point. The reason is as follows. The field line which starts

from (r0 < rX , θ = 0) reaches (rπ < ra, θ = π), where r0 and rπ denote the radial

coordinate of the starting point and of the arrival point at θ = π of the field line.

Since Psym(rπ) is larger than Psym(r0), P̄ (r0) > Psym(r0) at θ = 0 for r0 < rX . On the

other hand, the field line which starts from (r0 > rX , θ = 0) reaches (rπ > rb, θ = π).

Since Psym(rπ) is less than Psym(r0), P̄ (r0) < Psym(r0) at θ = 0 for r0 > rX . When a

field line traces the separatrix, the field line goes through both of r = ra and r = rb.

Therefore, both lim
r0+→rX

P̄ (r0) and lim
r0−→rX

P̄ (r0) do not equal to P̄ (rX). As a result, the

averaged pressure P̄ (r0) is discontinuous at the X-point. For this reason, averaged field

line method defined as Eq.(4.34) is not employed in this study.
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Figure 4.12: Profile of the averaged pressure along the field line (a) along the line

connecting (r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) and its enlargements at

(b) θ = 0 and (c) θ = π for Ψb = 1.0 × 10−3 and β0 = 0.16%. Red dots and black

line show the averaged pressure P̄ and Psym, respectively. Vertical blue lines show

the positions of the separatrix of the magnetic island. Vertical green line shows the

position of the O-point. Here, rX , ra and rb are the radial coordinate of the X-point,

the radial coordinates of the inside and outside of the separatrix at θ = π, respectively.
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4.4.2 Calculation procedure with field line tracing method

In Section 4.3, we obtain an MHD equilibrium consistent with a static island by utilizing

a diffusion equation parallel to the field line for the pressure calculation. In this case,

the resultant equilibrium pressure profile is flat at both the O-point and the X-point

of the magnetic island. The equilibrium is useful for the study of the effect of the local

annual flat structure of the pressure profile on the stability of the interchange mode,

but not for the pressure profile which is steep at the X-point and flat at the O-point.

Thus, we develop a numerical scheme to calculate equilibria with such pressure profile

in this Section.

We solve Eqs.(4.1) and (4.2) in two separate steps as in Section 4.3. However, we

develop a different method for each steps. In the first step, where Eq.(4.1) is solved for

P with Ψ fixed, a field line tracing method is employed. We trace a field line from the

initial point of (r0, θ0, z0) and set the pressure as P (r, θ, z) = Psym(r0) along the field

line to make the pressure constant. Here, Psym(r) is the pressure profile corresponding

to the nested magnetic surfaces without magnetic islands. We fix θ0 as θ0 = θX which

is the azimuthal angle of the position of the X-point for given z0. By changing r0, we

can trace every field line outside the separatrix. The pressure inside the separatrix of

the island is set to the constant value of Psym(rX).

In the second step, where Eq.(4.2) is solved for Ψ with P fixed, a relaxation process

is utilized, which solves the following equations:

∂Ψ̃

∂t
= −B · ∇Φ̃ +

1

S
J̃z, (4.38)

∂Ũ

∂t
= −B · ∇J̃z +

1

2ε2
∇Ω×∇P · z + ν∇2

⊥Ũ . (4.39)

We regard the steady state as the equilibrium state as in Ref. [19]. To accelerate the

relaxation process, we drop the convection term in Eq.(2.2). In order to judge the

achievement of the steady state, we observe the growth rates of the kinetic energy EK

and the magnetic energy EM given by

γK =
1

EK

dEK

dt
and γM =

1

EM

dEM

dt
, (4.40)

respectively, where

EK =
1

2

∫
|∇Φ̃× z|2dV and EM =

1

2

∫
|z×∇Ψ̃|2dV. (4.41)
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When the conditions of

|γK | < εγ and |γM | < εγ, (4.42)

are satisfied simultaneously, we judge that the steady state is achieved. Since we

introduce a small value of 1/S for the numerical stability in Eq.(4.38) of this step, we

also check the force balance condition of Eq.(4.2) by evaluating ∆FN defined as

∆FN =
|FB + FP |
|FB|+ |FP | , (4.43)

where the subscript of N denotes the number of iteration. Here, FB and FP are given

by

FB =

∫
(−B · ∇J̃z)dV and FP =

∫ ( 1

2ε2
∇Ω×∇P · z

)
dV, (4.44)

respectively.

As in Section 4.3, the two steps described above are iterated until the condition of

Eq.(4.25) is satisfied.

4.4.3 Resultant equilibrium

We employ the magnetic configuration parameters of Nt = 10 and l = 2, which corre-

spond to the LHD configuration. We vary the value of Ψb from 0 to +1.0 × 10−3. In

the case of positive Ψb, the X-point is located at θX = 0 and z = 0. Hence, we set the

initial point of the field line tracing as θ0 = 0 and z0 = 0 in the first step. The pressure

profile Psym(r) in Eq.(4.31) is used, and the central beta value of β0 = 1.5% is em-

ployed. Since we use Psym(r) of Eq.(4.31) as the pressure at the initial point (r0, θ0, z0)

at each iteration, the profile at (r, θ0, z0) for any r, and therefore, the gradient at the

X-point is fixed over the whole iterations. In the second step, dispassion parameters

are set to be S = 102 and ν = 10−6. We employ εγ = 10−6 and εw = 10−4 as the

convergence parameters.

Figure 4.13 shows the resultant equilibrium pressure for Ψb = 1.0 × 10−3. We can

obtain an equilibrium pressure profile which is steep at the X-point and flat at the O-

point with the present scheme. Figure 4.14 shows the variations of ∆FN , δwN and wN

in the iterations for several Ψb’s. In the final states, ∆FN < 10−2 is satisfied as shown

in Fig.4.14 (a), which indicates that the equilibrium is obtained in a good accuracy.

Figure 4.14 (b) shows that the island width is converged in the finite number of iteration

for each Ψb. The converged equilibrium island width is larger than the vacuum width

w0 as shown in Fig.4.14 (c). The contour of the constant pressure coincides with the
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magnetic surfaces as shown in Fig.4.15. That is, the equilibrium pressure has the same

structure as that of the island. Figure 4.16 shows the dependence of the island width

on Ψb. The island width is increased by the finite beta. The increment is increased

with Ψb.

4.5 Discussions

The equilibrium pressure profile obtained in Section 4.4 is steep at the X-point and

flat at the O-point as shown in Fig.4.13. On the other hand, the equilibrium pressure

profile obtained in Section 4.3 is flat at not only the O-point but also the X-point as

shown in Fig.4.7. The difference in the pressure gradient at the X-point is attributed

to the continuity of the pressure gradient across the separatrix except the X-point. The

pressure gradient in Fig.4.13 is discontinuous across the separatrix which is obtained

with the field line tracing method explained in Section 4.4. This discontinuity is in-

evitable for the existence of the finite gradient at the X-point. In Section 4.3, in order

to obtain the pressure satisfying Eq.(4.1), we calculate the steady state of Eq.(4.11).

In the right hand side of Eq.(4.11), the derivatives in r and θ directions are included.

The continuity of the derivatives are naturally guaranteed in the numerical calculation.

Therefore, the pressure gradient is continuous even at the separatrix. This continuity

makes the profile at the X-point flat.

The situation that the continuous pressure gradient across the separatrix leads to

the flat structure at the X-point can be confirmed also with the field line tracing scheme.

We start the field line tracing from the initial point of (r0, θ0 = π, z0 = 0) instead of

(r0, θ0 = 0, z0 = 0) used in the calculation for the pressure profile with steep gradient

at the X-point. We assume Psym(r) which is plotted with the purple solid line in the

region of −1 ≤ r ≤ 0 at θ = π in Fig.4.17 instead of Eq.(4.31). Here, Psym is defined

as

Psym(r) = β0

{
1− (1− r4

s)
2

r8
a

(r4
a − r4)2 + (1− r4

s)
2

}
(0 ≤ r ≤ ra), (4.45)

Psym(r) = β0(1− r4
s)

2 (ra < r < rb), (4.46)

Psym(r) = β0
(1− r4

s)
2

(1− rb)4

{
(1− rb)

2 − (r − rb)
2
}2

(rb ≤ r ≤ 1), (4.47)

where β0 = 1.5% is employed. The gradient of this profile is continuous at the sepa-

ratrix. In this case, we obtain the profile plotted with the red solid line in the region
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of 0 ≤ r ≤ 1 at θ = 0 in Fig.4.17 as the result of the field line tracing method. This

result shows that the gradient at the X-point is zero for the continuous gradient at

the separatrix. This result also means that the present field line tracing method can

generate the equilibrium solutions with which the pressure profile is flat at the X-point

as well.

4.6 Summary

To study the effect of the (m,n)=(1,1) static island on the interchange mode, the equi-

librium code, FLEC, is developed. An MHD equilibrium including a static magnetic

island for the reduced MHD equations is obtained in a straight heliotron configura-

tion by means of the code. The equilibrium equations to be solved are the coupled

equations for the poloidal flux and the pressure. The equations are solved by iterating

two numerical steps. In the first step, the equation of B · ∇P = 0 is solved with the

poloidal flux fixed so that the pressure constant along the field line is obtained. In

the second step, the force balance equation for the poloidal flux, which is derived from

the vorticity equation, is solved with the pressure fixed. The equations are solved by

iterating two numerical steps.

We have developed two kinds of numerical scheme to solve the equilibrium equa-

tions. In one scheme, we employ the Fourier series in the formulation. A diffusion

equation parallel to the field line and an ordinary equation are utilized for the first

step and the second steps, respectively. In the first step, the steady state solution of

the diffusion equation corresponds to the pressure constant along the field line. Three

Fourier components of P̂0,0, P̂1,1 and P̂2,2 are necessary at least to obtain the steady

state. In the final equilibrium pressure, P̂2,2 is negligibly small compared with other

components at β0 = 0.16%, and therefore, it is not necessary in the second step. Nev-

ertheless, P̂2,2 is needed for the sufficient steady state solution in the first step. In the

second step, the force balance equation for the poloidal flux, which is derived from the

vorticity equation, is solved with the pressure fixed. Since P̂2,2 and higher pressure

components can be neglected, the Fourier series of the equation is truncated up to

n = 1. In this case, the condition of Ψ̃1,1 = 0 and an ordinary differential equation for

Ψ̃0,0 are derived from the force balance equation. Therefore, only Ψ̃0,0 is updated with

the solution of the ordinary equation in the second step.

In the resultant equilibrium, we obtain a pressure profile which corresponds to the

island structure. A separatrix is seen also in the pressure contour plot, however, the

77



pressure gradient is zero at the O-point and the X-point. Therefore, local flattening

appears at not only the O-point but also the X-point. The equilibrium depends on the

symmetry part of the pressure and the poloidal flux, Psym and Ψsym, which are used

as the initial condition, even if the magnetic field is almost vacuum one.

It is noted that this scheme of the second step cannot be applied to higher beta

cases as it is. At the low beta case such as β0 = 0.16%, we obtain a satisfying accuracy

in the calculation with only a small number of the Fourier series for Ψ̃ and P̃ . This

is attributed to the fact that the solution of the magnetic field is close to the vacuum

field. At higher beta, the deviation of the magnetic island shape from the vacuum one

is enhanced, which degrades the accuracy of the approximation with the small number

of the Fourier modes. Therefore, higher components are necessary in the second step

for keeping the accuracy. In this case, the force balance equation becomes coupled

equations for multiple number of Ψ̃n,n, not a single ordinary differential equation.

It is also obtained with this scheme that the pressure gradient is enhanced at the

X-point as the perpendicular diffusion coefficient increases. A pressure profile flattened

only at the O-point not the X-point can be obtained for a sufficiently large coefficient.

The pressure at the axis is also affected by the perpendicular diffusion so as to be

decreased through the change in the radial profile of P̃0,0. The present result is obtained

under the assumption of no flow steady state with a special type of heat source. Precise

analysis with more realistic flow and heat source remains as a future work.

In the other scheme, a field line tracing method and a relaxation method are utilized

for the first and the second steps, respectively, for the solution with the pressure profile

with a finite gradient at the X-point. In the first step, we calculate the pressure along

a field line by replacing with a fixed value at a given azimuthal angle. By setting the

azimuthal angle as that including the X-point, θX , we obtain an equilibrium with a

finite pressure gradient at the X-point. Therefore, this scheme guarantees the finite

pressure gradient at the X-point. The resultant equilibrium shows that the island width

is increased by the finite beta value.

We conclude from the results of the two schemes that there exist two kinds of

equilibrium solutions depending on the gradient at the X-point, finite or zero. The

difference of the equilibria is related to the continuity of the pressure gradient at the

separatrix of the island except the X-point. The gradient at the X-point can be finite

in the case where a discontinuous pressure gradient is allowed, while the gradient at

the X-point must be zero in the case where only a continuous pressure gradient is

allowed. In the former case, the solution is determined uniquely if the radial pressure
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profile at θ = θX is specified. Since the pressure gradient is discontinuous at the

separatrix, the second derivative of the radial pressure profile is infinite. On the other

hand, in the latter case, the second derivative is finite. By rounding the radial pressure

profile at the separatrix in the former solution or giving a finite second derivative to

the former profile, we can obtain the latter solution. In this case, there exist various

solutions depending on the shape of the roundness or the value of the second derivative.

Therefore, the former solution can be considered as a special case of the latter case and

the two solutions may be considered as a bifurcation. In the scheme of the field line

tracing and the relaxation, it is assumed that the pressure is flat inside the separatrix

in the present scheme. If a pressure profile corresponding to the magnetic surfaces

inside the separatrix is incorporated, the freedom of the solution is increased.

It is interesting to obtain an equilibrium with a stochastic magnetic field by multi-

helicity islands. However, the scheme developed here cannot be applied to the calcu-

lation of the equilibrium including a stochastic region. In the scheme of the parallel

diffusion and the ordinary equation, a lot of Fourier mode are required for the expres-

sion of the stochastic region. Therefore, the scheme should be significantly modified

so that such many modes can be treated. In the scheme of the field line tracing and

the relaxation, we fix a radial pressure profile at a given azimuthal position so that the

solution should have the profile at the position. This treatment is possible only for the

cases with radially separated islands. In the stochastic case, it is impossible to predict

the pressure profile to be fixed at any azimuthal position before the calculation.
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Figure 4.13: Equilibrium pressure profile (a) along the line connecting (r = 1, θ =

0, z = 0) and (r = 1, θ = π, z = 0) and its enlargements at (b) θ = 0 and (c) θ = π for

Ψb = 1.0 × 10−3 and β0 = 1.5%. Blue lines indicate the position of the separatrix of

the island at θ = π. Green lines indicate the position of the rational surface.

80



(a)

0 10 20
0

1.0

2.0

3.0

4.0

5.0
[×10

-2
]

N

∆F
N

 Ψb=1.0   10
-3

 Ψb=5.0   10
-4

 Ψb=3.0   10
-4

 Ψb=1.0   10
-4

 Ψb=2.0   10
-4

(b)

0 10 20
-5

-4

-3

-2

-1

0

N

lo
g
 (

|δ
w

N
|)

 Ψb=1.0   10
-3

 Ψb=5.0   10
-4

 Ψb=3.0   10
-4

 Ψb=2.0   10
-4

 Ψb=1.0   10
-4

εw

(c)

0 10 20
0

0.05

0.10

0.15

N

w
N

 Ψb=1.0   10
-3

 Ψb=5.0   10
-4

 Ψb=3.0   10
-4

 Ψb=2.0   10
-4

 Ψb=1.0   10
-4

Figure 4.14: Variation of (a) ∆FN , (b) δwN and (c) wN for the number of iteration N .
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(a)

(b)

Figure 4.15: Plots of (a) contour of constant pressure and (b) magnetic surfaces for

Ψb = 10−3 and β0 = 1.5%. The island width is 1.04× 10−1.
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Figure 4.17: Pressure profile (a) along the line connecting (r = 1, θ = 0, z = 0) and

(r = 1, θ = π, z = 0) and its enlargements at (b) θ = 0 and (c) θ = π for Ψb = 1.0×10−3

and β0 = 1.5%. Purple and red lines show the assumed profile of P (r0, θ0 = π, z0 = 0)

with continuous gradient at the separatrix and the profile obtained by the tracing field

lines starting from (r0, θ0 = π, z0 = 0), respectively. Blue lines indicate the position of

separatrix of island at θ = π. Green lines indicate the position of the rational surface.
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Chapter 5

Stability of Interchange Modes in

Equilibrium including Static Island

5.1 Introduction

In this Chapter, the effect of the static island with the mode number (m,n)=(1,1) on

the interchange mode with same mode number is studied. For this study, the equilibria

with the pressure consistent with static magnetic islands obtained in Chapter 4 are

utilized.

In Chapter 4, two kinds of solutions are obtained. One is the solution with a locally

flat pressure profile at the X-point and the other is the solution with a finite pressure

gradient at the X-point. In the former case, the flat structure in the pressure profile is

almost annular around the separatrix. Ichiguchi et al. [22,23] numerically examined the

linear stability of the ideal interchange mode for the equilibria with locally flat pressure

profiles in such annular region around the resonant surface. They showed that the local

flat structure reduces the growth rate of the mode and the mode is stabilized where the

radial width of the flat structure is beyond a quarter of the half-width of the stream

function obtained for the equilibrium pressure profile without local flat structure. Thus,

we study whether the interchange mode can be stabilized by the local flat structure of

the pressure profile even in the case where the finite gradient is kept at the X-point. For

this study, we employ the equilibria obtained with the scheme of the field line tracing

and the relaxation in Chapter 4. We examine the dependence of the linear growth rate

and the nonlinear saturation level on the island width by utilizing the NORM code [9].

The island structure can be also affected by the nonlinear evolution of the interchange
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mode as in the case of Chapter 3. Therefore, we also study the change of the island

width and the phase.

This Chapter is organized as follows. In Section 5.2, the island effect on the linear

stability is showed. We show that the interchange mode can be stabilized for the

equilibrium with substantial island width. In Section 5.3, the nonlinear interaction

between static islands and interchange modes is discussed. We show that the island

width is increased or decreased by the nonlinear saturation of the interchange modes

as in the case of Chapter 3. Summary is given in Section 5.4.

5.2 Island effect on linear stability

The effect of the static island on the interchange mode is studied by using the equi-

librium obtained in Chapter 4. For this purpose, the reduced MHD equations in the

expression of
∂Ψ̃

∂t
= −Beq · ∇Φ̃− B̃ · ∇Φ̃ +

1

S
J̃z, (5.1)

dŨ

dt
= −Beq · ∇J̃z − B̃ · ∇(Jzeq + J̃z) +

1

2ε2
∇Ω×∇P̃ · z + ν∇2

⊥Ũ (5.2)

and
dP̃

dt
= z×∇Φ̃ · ∇Peq + κ⊥∇2

⊥P̃ + κ‖{(Beq · ∇)(Beq · ∇)P̃ (5.3)

+(Beq · ∇)(B̃ · ∇)(Peq + P̃ ) + (B̃ · ∇)(Beq · ∇)P̃ + (B̃ · ∇)(B̃ · ∇)(Peq + P̃ )}
are employed. In this Chapter, equilibrium quantities have the dependence of not only

r but also θ and z. We express the equilibrium quantities with the Fourier series as

follows:

Ψeq(r, θ, z) = Ψsym(r)+Ψext
1,1 (r, θ, z)+ΨJ(r, θ, z), ΨJ(r, θ, z) =

Neq∑
n=0,m=n

Ψ̂J
m,n(r) cos(mθ−nz)

(5.4)

Peq(r, θ, z) = Psym(r) + P J(r, θ, z), P J(r, θ, z) =

Neq∑
n=0,m=n

P̂ J
m,n(r) cos(mθ − nz), (5.5)

where the superscript of ”J” refers the variation of the equilibrium quantity due to

the static island. Here, ΨJ corresponds to Ψ̃ in Eq.(4.4). For the maximum number

of Fourier series Neq = 15 is used. As in previous Chapter 4, the same parameters of

Nt = 10, l = 2 and β0 = 1.5% are employed. Since Beq and Peq satisfy

Beq · ∇Peq = 0, (5.6)
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Figure 5.1: Time evolutions of kinetic energy for (a) wi = 0 (Ψb = 0) and σ = +1 and

(b) wi = +2.8× 10−2 (Ψb = +5.0× 10−5) and σ = +1.

where Beq is given by Eq.(2.13), the parallel diffusion term Q given by Eq.(3.21) be-

comes

Q = κ‖{(Beq + B̃) · ∇}(B̃ · ∇)Peq. (5.7)

Therefore, Q does not give any initial perturbations even in the case Ψb 6= 0 if B̃ = 0.

Therefore, we provide an initial condition given by Eq.(2.19) for the present analysis.

The dissipation parameters

S = 104, ν = 8.5× 10−6, κ⊥ = 2.0× 10−5, κ‖ = 2.0 (5.8)

are used so that (m,n)=(1,1) component is dominant.

Figure 5.1 shows the time evolutions of the kinetic energy for (a) wi = 0 (Ψb = 0)

and σ = +1 and (b) wi = +2.8 × 10−2 (Ψb = +5.0 × 10−5) and σ = +1, where wi
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Figure 5.2: Dependence of γ in the linear region on wi.

indicates the island width at t = 0 as in Chapter 3. The linear phase is obtained

and the (m,n) = (1, 1) component is dominant in the whole region for the both cases.

There exists the difference feature between the cases of wi = 0 and wi = +2.8 × 10−2

in the linear growth rates of En,n
K . The growth rate of each component is almost the

same in the case of wi = +2.8× 10−2. This feature is common for the cases of wi 6= 0.

This is attributed to the fact that the component of (m,n) = (1, 1) is dominant and

the relation of |Ψ̂J
1,1| >> |Ψ̂1,1| is satisfied in the linear region, as discussed in Section

3.2.3. The steady state appears after the linear growth in these cases.

Figure 5.2 shows the dependence of γ in the linear region on wi, where γ is given by

Eq.(2.23). As wi is increased, γ is decreased. The linear growth rate is independent of

σ. We find that there exists the stabilization effect as well as Ref. [22,23] in spite of the

existence of the steep pressure gradient at the X-point shown in Fig.4.13. Figure 5.2 also

shows a marginally stable island width, which is |wi| = 5.7× 10−2 (|Ψb| = 2.3× 10−4).

Beyond the width, the mode is completely stabilized. Figure 5.3 shows the profiles of

the normalized Φ̂1,1 for wi = 0 (Ψb = 0) and wi = +4.6 × 10−2 (Ψb = +1.5 × 10−4).

The sign of the eigenfunctions change depending on σ as in the case of Fig.3.3. The

half-width of the stream function, wH , is 6.5×10−2 for wi = 0 (Ψb = 0) and 6.6× 10−2

for wi = +4.6×10−2 (Ψb = +1.5×10−4). Here, wH is normalized by the plasma radius.

Here, we define the relative change of wH

δwH =
|wH(wi)− wH(wi = 0)|

wH(wi = 0)
. (5.9)

The value of δwH is 1.5× 10−2 << 1 for wi = +4.6× 10−2 (Ψb = +1.5× 10−2), which

means wH is almost independent of wi. We find that the interchange mode can be
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Figure 5.3: Normalized Φ̂1,1 for wi = 0 (Ψb = 0) and wi = +4.6 × 10−2 (Ψb =

+1.5 × 10−4). Vertical dashed line shows the position of rational surface. The half-

width wH is 6.5 × 10−2 for Ψb = 0. Vertical black solid lines indicate the position of

half value of the normalized Φ̂1,1 for Ψb = 0.

stabilized with wi ≥ 0.88wH (wi = 0). Compared with the annual fattening case, the

marginal width is much broader than that of Ref. [22,23].

5.3 Nonlinear interaction between static magnetic

islands and interchange modes

As shown in Fig.5.1, the steady state appears after linear growth when the interchange

modes are unstable. The island structure and the pressure profile are changed by

nonlinear saturation of the interchange modes. In this Section, we discuss the property

of the changes.

Figure 5.4 (a) shows the dependence of the saturation level of the kinetic energy EK

on wi evaluated in the steady state where the condition of |γ| < 10−5 is satisfied. In the

increase of wi, EK is decreased. This dependence is similar to that of the linear growth

rate as shown in Fig.5.2. Figure 5.4 (b) shows the profile of Φ̂1,1 in the steady state.

As wi is increased, the absolute value of Φ̂1,1 is decreased. Figure 5.4 (c) shows the

dependence of δwH in the steady state on wi. Even in the steady state, δwH(wi = 0) is

3.0× 10−2 << 1, and therefore, the half-width is almost independent of wi. Thus, the

decrease of EK in the steady state is attributed to the decrease of the absolute value
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of Φ̂1,1.

We evaluate the island width in the steady state. Figure 5.5 shows the dependence

of the island width on Ψb. The sign of the island width indicates the phase of the

island as shown in Figs.3.9 and 3.23. The diamonds show the island width in vacuum.

Blue circles show wi in the equilibrium. Blue squares show the marginal island width

(|wi| = 5.7×10−2). Red circles and green triangles show the island width in the steady

state ws for σ = +1 and σ = −1, respectively. In the region |wi| ≥ 5.7 × 10−2, the

island width does not change because the interchange modes are stable. In the region

|wi| < 5.7×10−2, there are two cases of the change depending on σ. One is the increase

of the island width and the other is the decrease of the width as in the case of Fig.3.9.

The island width and the pressure profile are changed by the nonlinear saturation.

We see the changes for wi = 0 (Ψb = 0) at first. Figure 5.6 (a) shows magnetic surfaces

for wi = 0 (Ψb = 0) and σ = +1 at t = 10000τA. In this case, two O-points appear

in the magnetic surfaces. One is the O-point located at θ = π shown by the blue line.

The other is the O-point located at θ = 0 shown by the green line. This is a mixed

structure of the m = 1 and the m = 2 islands. However, the island width with the

O-point located at θ = π is +5.2× 10−2 and the other is −5.8× 10−3. Since the ratio

is 0.11, the m = 1 island is dominant. The flow pattern of the vortices calculated from

Φ̃ at t = 10000τA is plotted in Fig.5.6 (b). The radial flow at θ = 0 and θ = π is

weak but finite. In the case of σ = −1, the phase of the magnetic surfaces is opposite

and the direction of the flow is reversed. Figure 5.7 shows the pressure profile along

the line connecting the points of (r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0)

at t = 0 and t = 10000τA for wi = 0 (Ψb = 0) and σ = ±1. The deformation by

the m = 1 interchange mode is observed around the resonant surface with´ι = 1. This

deformation is generated by the convection of the radial flow. The equilibrium pressure

inside rational surface is higher than that outside rational surface. The flow direction

is radially outward at θ = 0 and inward at θ = π for σ = +1 as shown in Fig.5.6 (b).

Therefore, the plasma with the higher pressure inside the rational surface is carried to

outside of the rational surface at θ = 0 and the plasma with the lower pressure outside

the rational surface is carried to inside at θ = π for σ = +1. As a result, the pressure

is increased at θ = 0 and decreased at θ = π for σ = +1. This mechanism is the same

for σ = −1.

Next, we examine the case of wi 6= 0 (Ψb 6= 0). Figure 5.8 (a) and (b) show

magnetic surfaces for wi = +2.8× 10−2 (Ψb = +5.0× 10−5) and σ = +1 at t = 0 and

t = 14000τA, respectively. In the time evolution, the island width of the (m,n)=(1,1)
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island is increased and the small island with the O-point located at θ = 0 is generated

by corresponding to the (m,n) = (2, 2) island. Figure 5.8 (c) shows the flow pattern for

wi = +2.8× 10−2 (Ψb = +5.0× 10−5) and σ = +1 at t = 14000τA. The flow direction

is radially outward at the X-point and inward at the O-point of the initial static island.

Figure 5.9 (a) and (b) show magnetic surfaces for wi = +2.8×10−2 (Ψb = +5.0×10−5)

and σ = −1 at t = 0 and t = 14000τA, respectively. Figure 5.9 (c) shows the flow

pattern for wi = +2.8 × 10−2 (Ψb = +5.0 × 10−5) and σ = −1 at t = 14000τA. In

this case of the time evolution, the width of the (m,n)=(1,1) island is decreased and

the phase of the island is changed so that the O-point is located at θ = 0. The flow

direction is radially inward at the X-point and outward at the O-point of the initial

static island. The island width increases when the flow direction is radially outward

at the X-point of the initial static island and the island width decrease when the flow

direction is radially inward at the X-point. Therefore, the mechanism of the change of

the island is the same as that in Chapter 3.

Figure 5.10 shows the variation of the pressure profile along the line connecting the

points of (r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) between t = 0 and t = 14000τA

for wi = +2.8 × 10−2 (Ψb = +5.0 × 10−5) and σ = ±1. The pressure is increased at

θ = 0 and decreased at θ = π at the rational surface for σ = +1. The pressure is

increased at θ = π and decreased at θ = 0 at the rational surface for σ = −1. The

change of the pressure is due to the convection of the radial flow as in the case of

Ψb = 0. This feature is also same as in the case of Chapter 3. In both cases, the flat

structure in the separatrix is kept in the nonlinear saturation.

5.4 Summary

The effect of the static magnetic island with the mode number of (m,n) = (1, 1)

on the resistive interchange mode with the same mode number is studied by using

the equilibrium including the static island with a finite pressure gradient at the X-

point. The linear growth rate is decreased with the increase of the island width. The

interchange mode is stabilized by the static island with a substantial width in spite of

the existence of the pressure gradient at the X-point. The marginal island width is 88%

of the half-width of the stream function obtained in the case without the static island.

The marginal island width is broader than that in the case of the annual flattening

pressure profile.

When the interchange mode is unstable for the small island width, the steady state
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due to the nonlinear saturation is obtained after the linear growth. The amplitude

of the stream function in the steady state is decreased with the increase of the static

island width. On the other hand, the half-width of the mode is almost independent

of the static island width even in the steady state. The decrease of the amplitude of

the stream function leads to the reduction of the kinetic energy in the steady state.

This seems to be consistent with the experiment by Yamada et al. [30]. They studied

the stabilization effect of the static island generated by the LID coil current on the

(m,n)=(1,1) interchange mode in the configuration with the plasma aspect ratio of

Ap = 8.3. They showed that the pressure gradient at the resonant surface is decreased

and the magnetic fluctuation is reduced as the LID coil current is increased.

The island width and the phase of the island are changed by the nonlinear saturation

of the interchange mode. The flow generated by the interchange mode brings the

local variation in the pressure profile through the convection. The radially inward

and the outward flows increase and decrease the pressure, respectively. The island

width increases when the flow direction is radially outward at the X-point of the initial

equilibrium island and the island width decreases when the flow direction is radially

inward at the X-point. The relation between the change of the island width and the

radial direction of the flow is consistent with the driven reconnection of the field lines

as discussed in Chapter 3. In the present study, we observed a small (m,n) = (2, 2)

structure of the island. This result depends on the choice of the dissipation parameters.

If we would take the parameters so that the linear growth rate of (m,n) = (2, 2) mode

should be much smaller than that of the (m,n) = (1, 1) mode, the structure would

disappear.
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Figure 5.4: (a) Dependence of the kinetic energy in the steady state on wi, (b) profiles

of Φ̂1,1 in the steady state. Vertical black solid lines indicate the position of half value

of Φ̂1,1 in the steady state for Ψb = 0. (c) Dependence of δwH on wi.
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(a)

(b)

Figure 5.6: (a) Magnetic surfaces and (b) flow pattern at t = 10000τA for wi = 0

(Ψb = 0) and σ = +1.
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Figure 5.7: Profile of pressure (a) along the line connecting (r = 1, θ = 0, z = 0) and

(r = 1, θ = π, z = 0) and its enlargements at (b) θ = 0 and (c) θ = π for wi = 0

(Ψb = 0) and σ = ±1. Black solid line shows the equilibrium pressure profile. Red and

green solid line show the pressure profile in the steady state (t = 10000τA) for σ = +1

and σ = −1, respectively. Vertical dashed lines indicate the position of the rational

surface.
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(a)

(b)

(c)

Figure 5.8: Magnetic surfaces at (a) t = 0 and (b) t = 14000τA and (c) flow pattern at

t = 14000τA for wi = +2.8× 10−2 (Ψb = +5.0× 10−5) and σ = +1.
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(a)

(b)

(c)

Figure 5.9: Magnetic surfaces at (a) t = 0 and (b) t = 14000τA and (c) flow pattern at

t = 14000τA for wi = +2.8× 10−2 (Ψb = +5.0× 10−5) and σ = −1.
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Figure 5.10: Profile of pressure (a) along the line connecting (r = 1, θ = 0, z = 0) and

(r = 1, θ = π, z = 0) and its enlargements at (b) θ = 0 and (c) θ = π. Black solid

line shows the equilibrium pressure profile. Red and green solid line show the pressure

profile in the steady state (t = 14000τA) for wi = +2.8 × 10−2 (Ψb = +5.0 × 10−5)

and σ = ±1, respectively. Vertical dashed lines indicate the position of the rational

surface.
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Chapter 6

Conclusions

The interaction between the static magnetic island with mode number of (m,n) = (1, 1)

and the resistive interchange mode with the same mode number is studied by utilizing

the reduced MHD equations in straight heliotron configurations. The single heliciity

perturbations are employed and the poloidal uniform flow is not included. We assume a

high resistivity and choose appropriate dissipation coefficients so that the (m,n)=(1,1)

mode has the largest growth rate. Two aspects of the interaction are studied by using

different MHD equilibria. One is the effect of the interchange mode on the change of

the static island and the other is the effect of the existence of the static island on the

growth of the interchange mode.

The former aspect of the interaction is studied by using the equilibrium with the

pressure profile corresponding to nested magnetic surfaces. The growth of the inter-

change mode is obtained as in the case without the static island. The linear growth

rate of each component is almost the same. This is attributed to the fact that the com-

ponent of (m,n) = (1, 1) is dominant and each mode couples with the (m,n) = (1, 1)

component of the equilibrium. It is also obtained that the stream function after the

nonlinear saturation is almost constant for the variation in the external poloidal flux.

Both solutions corresponding to the increase and the decrease of the island width in the

nonlinear evolution of the interchange mode are obtained when the parallel diffusion

of the equilibrium pressure is neglected. In this case, in spite of the nonlinear inter-

action, the poloidal flux corresponding to the island in the saturation phase is almost

determined by the linear sum of the poloidal flux for the vacuum static island and the

poloidal flux generated by the interchange mode without the static island. In the case

with the effect of the parallel diffusion, only the increase of the island is obtained. This

results from the fact that the parallel diffusion term generates the component of the
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interchange mode which increases the poloidal flux at the resonant surface.

For the study of the latter aspect of the interaction, a numerical code solving MHD

equilibria including the static island based on the reduced MHD equations is developed.

The equilibrium is obtained as a solution of coupled equations for the pressure and the

poloidal flux. We develop two different schemes based on a two-step procedure. One

is the scheme utilizing a parallel diffusion equation and an ordinary equation. The

other is the scheme utilizing a field line tracing and a relaxation method. The former

scheme gives a solution with a locally flat pressure profile at not only the O-point but

also the X-point. In this case, the pressure gradient is continuous at the separatrix.

The latter scheme can also give a solution of which the pressure profile is flat at the

O-point and steep at the X-point. In this case, the pressure gradient is discontinuous

at the separatrix of the island. The island width of the equilibrium is increased due to

the finite beta.

The latter aspect of the interaction is studied by utilizing the equilibria with a

finite gradient at the X-point. Since it is already known that the annular flat structure

of the pressure profile has a stabilizing contribution to the interchange mode. We

examine the equilibrium with the steep pressure gradient at the X-point. The stability

dependence on the island width is analyzed. The linear growth rate is decreased with

the increase of the island width. The mode is completely stabilized when the island

width exceeds a marginal value in spite of the existence of the pressure gradients at the

X-point. The marginal island width is 88% of the half-width of the stream function

obtained for the equilibrium without a static island. The marginal width is broader

than that in the case of the annual flattening. When the interchange mode is unstable

with the static island, the steady state is obtained due to the nonlinear saturation

after the linear growth. The amplitude of the stream function in the steady state is

decreased with the increase of the static island width, while the half-width is almost

independent of the island width. Therefore, the saturation level of the kinetic energy

decreases with the increase of the static island. This tendency seems to be consistent

with the experimental result [30] that the magnetic fluctuation is reduced when the

local flat structure in the pressure profile is observed in the increase of the amplitude

of the resonant error field generated by the LID coils.

We also examine the behavior of the island in the nonlinear evolution of the mode

for the equilibrium including the static island. Both solution of the increase and the

decrease of the island width exist. The island width increases when the flow direction

is radially outward at the X-point of the initial static island, while the island width
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decrease when the flow direction is radially inward at the X-point. The relation between

the radial direction of the flow and the change of the island width is consistent with

the driven reconnection of the field lines. These features are common with the case of

the nested magnetic surface equilibrium studied for the former aspect.

Following points are considered as future works. In this study, the effect of the

uniform poloidal flow is not included. If the effect is included, the islands are possible

to rotate by the flow due to interchange modes. The effect can affect the results in

the island behavior and the mode stability. As another future work, it is consider to

employ multiple helicity perturbations. Single helicity perturbation m/n = 1 is em-

ployed in order to see the same mode interaction clearly. When the multiple helicity

perturbations are employed, the interchange modes at rational surfaces different from

the island surface can be excited. If such modes grow substantially, they can interact

the island indirectly through the change in the structure of the magnetic field and the

pressure profile. In the equilibrium with the steep gradient at the X-point, the pressure

gradient at the rational surface´ι = 1 is zero except the X-point. However, the gradient

just outside of the separatrix is increased by the existence of the static island. The

increase of the gradient can destabilize the interchange mode at the surfaces in the

vicinity of the island. Actually, Watanabe et al. [31] studied the effect of the static

island with mode number of (m,n) = (1, 1) on the MHD activity experimentally. The

(m,n)=(3,4) fluctuation was observed by the enhancement of the static island. Incor-

porating the effect is necessary for the comprehensive understanding of the stabilizing

contribution of the static islands.
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Appendix A

Improvement of the NORM code

To study the effect of the interchange mode on the static island, the boundary condition

of Eq.(3.5) has to be satisfied even in the finite beta plasma where the interchange mode

develops. However, the boundary condition of Eq.(3.5) was not incorporated in the

original NORM code. Therefore, the improvement of the NORM code is needed to

follow the time evolution of the mode including the static island. The procedure of the

improvement of the NORM code is as follows.

In Chapter 3, the static island is introduced by satisfying the boundary condition

given by Eq.(3.5). We assume that the same external poloidal flux always exists at

r = 1 even in the finite beta plasma. This assumption is also employed in Ref. [12–14].

To introduce static islands, we need to change the initial condition and the boundary

condition of Ψ̂1,1 because Ψ̂1,1(r = 1) = 0 is used in the time evolution in the original

NORM code. At first, we change the initial condition as follows. In the case with

(m,n) = (1, 1), Eq.(2.14) is given by

d2Ψ̂1,1

dr2
+

1

r

dΨ̂1,1

dr
− Ψ̂1,1

r2
= Ĵz1,1. (A.1)

Since the second-order accurate central-difference scheme is employed as the radial

derivative in the NORM code, Eq.(A.1) can be written by

∇2
⊥Ψ̂1,1(i) = LiΨ̂1,1(i−1) + CiΨ̂1,1(i) + RiΨ̂1,1(i+1) = Ĵz 1,1(i), (A.2)

where Li, Ci and Ri are given by

Li =
1

(∆r)2
(1− 1

2i
), Ci =

−1

(∆r)2
(2 +

1

i2
), Ri =

1

(∆r)2
(1 +

1

2i
). (A.3)

Here, i and ∆r mean the number of each grid point and the grid size, respectively. By
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using the boundary conditions of

Ψ̂1,1(r = 0) = 0 (A.4)

and

Ψ̂1,1(r = 1) = Ψb. (A.5)

Equation (A.2) for i = 1 and i = Ng − 1 are given by

C1Ψ̂1,1(1) + R1Ψ̂1,1(2) = Ĵz 1,1(1) (A.6)

and

LNg−1Ψ1,1(Ng−2) + CNg−1Ψ1,1(Ng−1) + RNg−1Ψb = Jz 1,1(Ng−1), (A.7)

respectively. Here, Ng is the total number of grid points. The matrix corresponding to

(A.2), (A.6), (A.7) is as follows.




C1 R1 0 · · · 0

0 L2 C2 R2 0 · · · ...
... 0

. . . . . . . . . . . .

· · · . . . . . . . . . . . . 0

· · · 0 LNg−2 CNg−2 RNg−2

0 · · · 0 LNg−1 CNg−1







Ψ̂1,1(1)

...

Ψ̂1,1(Ng−2)

Ψ̂1,1(Ng−1)




=




Ĵz 1,1(1)

...

Ĵz 1,1(Ng−2)

Ĵz 1,1(Ng−1) −RNg−1Ψb




(A.8)

In Eq.(A.8), the term RNg−1Ψb of LHS in Eq.(A.7) is moved to RHS. The new subrou-

tine solving Eq.(A.8) for the initial condition of Ψ̂1,1 with the recurrence formula [32]

is developed in the NORM code.

Next, we consider to incorporate the boundary condition of Eq.(A.5) in the case of

t > 0. In the NORM code, Eq.(2.9) is integrated by Crank Nicolson method and the

improved Euler’s method. This method is composed of two steps. The first step of the

method for Eq. (2.9) is given by

Ψ
j+ 1

2

(i) −Ψj
(i)

(∆t/2)
= −Bj

(i) · ∇Φj
(i) +

1

S

(
1

2
∇2
⊥Ψj

(i) +
1

2
∇2
⊥Ψ

j+ 1
2

(i)

)
, (A.9)

where ∆t and j are the time step size and the number of time step, respectively.

Equation (A.9) becomes

(
1− 1

2

1

S

∆t

2
∇2
⊥

)
Ψ

j+ 1
2

(i) = Ψj
(i) +

∆t

2

(
−Bj

(i) · ∇Φj
(i) +

1

2

1

S
∇2
⊥Ψj

(i)

)
. (A.10)
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Equation (A.10) has the same structure as Eq.(A.2) if∇2
⊥ is replaced with

(
1− 1

2
1
S

∆t
2
∇2
⊥
)

and Jz is replaced with RHS of Eq.(A.10). Therefore, by substituting L′i, C ′
i and R′

i

defined as

L′i = −1

4

∆t

S
Li, C ′

i = 1− 1

4

∆t

S
Ci, R′

i = −1

4

∆t

S
Ri, (A.11)

into Eq.(A.8) for Li, Ci and Ri and using 1
4

1
S
∆tRNg−1Ψb for −RNg−1Ψb, the boundary

condition of Eq.(A.5) for first step is satisfied even the case of t > 0. In the second

step, equation corresponding to (A.10) is given by

(
1− 1

2

1

S
∆t∇2

⊥

)
Ψj+1

(i) = Ψj
(i) + ∆t

(
−B

j+ 1
2

(i) · ∇Φ
j+ 1

2

(i) +
1

S

1

2
∇2
⊥Ψj

(i)

)
. (A.12)

By replacing ∆t/2 of Eq.(A.10) with ∆t and using 1
2

1
S
∆tRNg−1Ψb for −RNg−1Ψb, the

boundary condition of Eq.(A.5) for the second step is satisfied for t > 0 as well as for

the first step.
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Appendix B

Development of the FLEC code

To study the effect of the static island on the interchange mode, MHD equilibrium

including the static island is required. Therefore, the FLEC code solving the coupled

equations given by Eqs. (4.1) and (4.2) is developed. The coupled equations are solved

iteratively by means of the two steps as shown in Fig.4.1. The FLEC code is composed

of two parts. One is the method utilizing parallel diffusion and the other is the field

line tracing method. In this Appendix, the details of the schemes are explained.

B.1 Numerical scheme of method utilizing parallel

diffusion

In this method, we employ the Fourier series for P̃ (r, θ, z) and Ψ̃(r, θ, z) as expressed

in Eqs.(4.9) and (4.10), respectively. The boundary conditions of P̃ and Ψ̃ at r = 0

df̂0,0

dr

∣∣∣
r=0

= 0 and f̂n,n(r = 0) = 0 (n 6= 0) (B.1)

are employed, where f corresponds to P̃ and Ψ̃. The boundary condition of P̃ and Ψ̃

at r = 1

f̂n,n(r = 1) = 0 (B.2)

is employed.

In the first step, Eqs.(4.13)-(4.15) are solved. The expression of the right hand side

of Eq.(4.13)-(4.15) in the central finite difference form, DPn,n is given

DP1,1(t) =
κ‖Ψb

2

[1 −́ ι(i)

r(i)

P̂1,1(i) +
Ψb

r(i)

Psym(i+1) + P0,0(i+1) − Psym(i−1) − P0,0(i−1)

2∆r
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+(1 −́ ι(i))
P̂1,1(i+1) − P̂1,1(i−1)

2∆r
−´

ι(i+1) −́ ι(i−1)

2∆r
P̂1,1(i)

+Ψb

Psym(i+1) − 2Psym(i) + Psym(i−1) + P̂0,0(i+1) − 2P̂0,0(i) + P̂0,0(i−1)

∆r2

−Ψb

2

( P̂2,2(i+1) − 2P̂2,2(i) + P̂2,2(i−1)

∆r2
+

3

r

P̂2,2(i+1) − P̂2,2(i−1)

2∆r

)]
, (B.3)

DP2,2(t) = κ‖
{
−(1−́ι(i))

[
(1−́ι(i))P̂1,1(i)+Ψb

Psym(i+1) − Psym(i−1) + P̂0,0(i+1) − P̂0,0(i−1)

2∆r

]

+
Ψ2

b

4

( P̂1,1(i+1) − 2P̂1,1(i) + P̂1,1(i−1)

∆r2
+

P̂1,1(i+1) − P̂1,1(i−1)

2r(i)∆r
− P̂1,1(i)

r2
(i)

)

+
3Ψb

2
(1 −́ ι(i))

P̂2,2(i+1) − P̂2,2(i−1)

2∆r
+ 3Ψb(1 −́ ι(i))

P̂2,2(i)

r(i)

−Ψb́

ι(i+1) −́ ι(i−1)

2∆r
P̂2,2(i)

}
(B.4)

and

DP3,3(t) = κ‖
{
− 2(1 −́ ι(i))

[
2(1 −́ ι(i))P̂2,2(i) +

Ψb

2

( P̂1,1(i+1) − P̂1,1(i−1)

2∆r
− P̂1,1(i)

r(i)

)]

+
Ψb

2

[1 −́ ι(i)

r(i)

P̂1,1(i) +
Ψb

r(i)

Psym(i+1) + P0,0(i+1) − Psym(i−1) − P0,0(i−1)

2∆r

+́
ι(i+1) −́ ι(i−1)

2∆r
P̂1,1(i) − (1 −́ ι(i))

P̂(i+1) − P̂(i−1)

2∆r

]

−Ψb

Psym(i+1) − 2Psym(i) + Psym(i−1) + P0,0(i+1) − 2P0,0(i) + P0,0(i−1)

∆r2

+
Ψ2

b

2

( P̂2,2(i+1) − 2P̂2,2(i) + P̂2,2(i−1)

∆r2
+

P̂2,2(i+1) − P̂2,2(i−1)

2r(i)∆r
− 4

r2
(i)

P̂2,2(i)

)}
. (B.5)

Here, the subscript of‘i’denotes the radial grid number. Equation (4.13)-(4.15) are

integrated by the improved Euler’s method as

Pn,n(t + ∆t/2) = Pn,n(t) +
∆t

2
DPn,n(t) (B.6)

and

Pn,n(t + ∆t) = Pn,n(t) + ∆t{DPn,n(t + ∆t/2)}. (B.7)

In the second step, Ψ̃0,0 satisfying Eq.(4.24) is calculated from

∇2
⊥Ψ̃0,0 = −

∫
1

2ε2Ψbr

dΩsym

dr
P̂1,1dr. (B.8)

The integration in the RHS of Eq.(B.8) is performed with the Simpson’s rule. The

LHS is represented as

∇2
⊥Ψ̃0,0 = LiΨ̂0,0 + C0

i Ψ̂0,0 + RiΨ̂0,0, (B.9)
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where C0
i is given by

C0
i =

−2

(∆r)2
. (B.10)

Equation (B.9) has the same structure as Eq.(A.2). Therefore, by replacing Ci with

C0
i , Eq.(B.9) can be solved with the same way in the case of Eq.(A.1).

B.2 Numerical scheme utilizing field line tracing method

In this method, we mainly utilize the real grids in the r and θ directions. In the first

step, the pressure is calculated by field line tracing. Substituting Eqs.(4.3) and (4.4)

into Eqs.(4.27) and (4.28), we obtain

dr

dz
= Ψb sin(θ − z)− 1

r

∂Ψ̃

∂θ
(B.11)

and
dθ

dz
=´ιsym +

Ψb

r
cos(θ − z) +

1

r

∂Ψ̃

∂r
. (B.12)

The equations are integrated by the 4th-order Runge-Kutta method given by

φ1 = φ(z) + ∆zh{φ(z)}, (B.13)

φ2 = φ(z) + ∆zh

{
φ(z) + φ1

2

}
, (B.14)

φ3 = φ(z) + ∆zh

{
φ(z) + φ2

2

}
, (B.15)

φ4 = φ(z) + ∆zh(φ3) (B.16)

and

φ(z + ∆z) =
1

6
(φ1 + φ2 + φ3 + φ4), (B.17)

where φ denotes r or θ and h corresponds to RHS in each equation of (B.11) and

(B.12).

The second-order accurate central-difference scheme is employed for the derivatives

of the radial and azimuthal direction. The values of´ι and Ψ̃ are calculated by means

of the linear interpolation with the values at the nearest four grid points.

In the second step, we solve Eqs.(4.38) and (4.39). We utilize the improved Euler’s

method combined with the Crank-Nicolson method to solve Eq.(4.38). In this case,
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the time evolution for one time step is composed of two steps. The formulation of this

method for Eq.(4.38) is given by

Ψ̃(t + ∆t/2)− Ψ̃(t)

∆t/2
= −(B · ∇Φ̃)(t) +

1

2
[J̃z(t) + J̃z(t + ∆t/2)] (B.18)

and

Ψ̃(t + ∆t)− Ψ̃(t)

∆t
= −(B · ∇Φ̃)(t + ∆t/2) +

1

2
[J̃z(t) + J̃z(t + ∆t)]. (B.19)

Equations (B.18) and (B.19) are represented as

4f Ψ̃(t + ∆t/2) = − 1

(∆t/2)
2SΨ̃(t) + 2S(B · ∇Φ̃)(t)− J̃z(t) (B.20)

and

4sΨ̃(t + ∆t) = − 1

∆t
2SΨ̃(t) + 2S(B · ∇Φ̃)(t + ∆t/2)− J̃z(t), (B.21)

where 4f and 4s are given by

4f = ∇2
⊥ −

2S

(∆t/2)
, 4s = ∇2

⊥ −
2S

∆t
, (B.22)

respectively.

The second-order accurate central-difference scheme is employed for the radial

derivative and the azimuthal direction. Here, by utilizing helical symmetry of n/m = 1,

the derivative in z direction is replaced as

∂

∂z
= − ∂

∂θ
. (B.23)

Therefore, RHSs of Eqs.(B.20) and (B.21) A1, A2 are expressed as

A1(i) = − 1

(∆t/2)
2SΨ̃(i,k)(t)+2S

[(
r(i)´ι(i)−r(i)+Ψb cos θk+

Ψ̃(i+1,k) − Ψ̃(i−1,k)

2∆r

)(Φ̃(i,k+1) − Φ̃(i,k−1)

2∆θ

)

+
(
Ψb sin θk − 1

r(i)

Ψ̃(i,k+1) − Ψ̃(i,k−1)

2∆θ

)(Φ̃(i+1,k) − Φ̃(i−1,k)

2∆r

)]
(t)− J̃z(i,k)(t), (B.24)

A2(i) = − 1

∆t
2SΨ̃(i,k)(t)+2S

[(
r(i)´ι(i)−r(i)+Ψb cos θk+

Ψ̃(i+1,k) − Ψ̃(i−1,k)

2∆r

)(Φ̃(i,k+1) − Φ̃(i,k−1)

2∆θ

)

+
(
Ψb sin θk − 1

r(i)

Ψ̃(i,k+1) − Ψ̃(i,k−1)

2∆θ

)(Φ̃(i+1,k) − Φ̃(i−1,k)

2∆r

)]
(t + ∆t/2)− J̃z(i,k)(t),

(B.25)

112



respectively, where k and ∆θ denote the grid number in the θ direction and the grid

size in the θ direction, respectively. Here, A1(i) and A2(i) are expanded in the Fourier

series given by

A1(i) =

Nθ−1∑
n=0

Â1,n,n(i) cos(nθ − nz), A2(i) =

Nθ−1∑
n=0

Â2,n,n(i) cos(nθ − nz), (B.26)

respectively. The poloidal flux Ψ̃(i)(t) is also expanded as

Ψ̃(i)(t) =

Nθ−1∑
n=0

Ψ̂n,n(i)(t) cos(nθ − nz), (B.27)

where Nθ is the total grid number in the θ direction. Here, Nθ = 45 is employed in this

study. Therefore, Eqs.(B.20) and (B.21) for each Fourier component can be expressed

as

LiΨ̂n,n(i+1)(t + ∆t/2) + S1
i Ψ̂n,n(i)(t + ∆t/2) + RiΨ̂n,n(i−1)(t + ∆t/2) = Â1,n,n(i), (B.28)

LiΨ̂n,n(i+1)(t + ∆t) + S2
i Ψ̂n,n(i)(t + ∆t) + RiΨ̂n,n(i−1)(t + ∆t) = Â2,n,n(i), (B.29)

respectively. Here, Li and Ri are given in Eq.(A.3), and S1
i and S2

i are given by

S1
i =

−1

(∆r)2
(2 +

n2

i2
)− 2S

(∆t/2)
, S2

i =
−1

(∆r)2
(2 +

n2

i2
)− 2S

∆t
(B.30)

respectively. As in the case of Appendix A, by solving Eqs.(B.28) and (B.29) with the

recurrence formula under the boundary conditions

Ψ̃(r = 0, θ, z) = Ψ̂0,0(r = 0) and Ψ̃(r = 1, θ, z) = 0, (B.31)

we obtain Ψ̂n,n(i)(t + ∆t/2) and Ψ̂n,n(i)(t + ∆t).

Equation (4.39) is solved with the improved Euler’s method. The formulation for

this equation is given by

Ũ(t + ∆t/2) = Ũ(t) +
∆t

2

[
− (B · ∇J̃z)(t) +

1

2ε2
∇Ω×∇P · z + ν∇2

⊥Ũ(t)
]

(B.32)

and

Ũ(t+∆t) = Ũ(t)+∆t
[
−(B·∇J̃z)(t+∆t/2)+

1

2ε2
∇Ω×∇P ·z+ν∇2

⊥Ũ(t+∆t/2)
]

(B.33)

and the boundary conditions for Ũ are

Ũ(r = 0, θ, z) = 0 and Ũ(r = 1, θ, z) = 0. (B.34)
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In order to solve Eqs.(4.38) and (4.39) simultaneously, we have to solve Eq.(2.14) to

obtain Φ̃. We utilize the Fourier series of Ũ and Φ̃ given by

Ũ(r, θ, z) =

Nθ−1∑
n=0,m=n

Ũm,n, Ũm,n = Ûm,n(r) sin(mθ − nz), (B.35)

and

Φ̃(r, θ, z) =

Nθ−1∑
n=0,m=n

Φ̃m,n, Φ̃m,n = Φ̂m,n(r) sin(mθ − nz), (B.36)

respectively. Then, Eq.(2.14) has the form of

d2Φ̂m,n

dr2
+

1

r

dΦ̂m,n

dr
− m2

r2
Φ̂m,n = Ûm,n. (B.37)

In this case, Eq.(B.37) is represented as

LiΦ̂m,n(i−1) + Cm
i Φ̂m,n(i) + RiΦ̂m,n(i+1) = Ûm,n, (B.38)

where Cm
i is given by

Cm
i =

−1

(∆r)2
(2 +

m2

i2
). (B.39)

Equation (B.38) is also solved with the same way in the case of Eq.(A.1).

After we obtain the Fourier components of Ψ̂n,n(i)(t + ∆t) and Φ̂n,n(i)(t + ∆t), we

calculate the values at the real grid points, Ψ̃(i,k)(t + ∆t) and Φ̃(i,k)(t + ∆t), which are

used for the calculation of the next time step.
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