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Chapter 1

Introduction

Contents
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Previous Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Scope of Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Problem Statement

Halo orbits are periodic, three dimensional orbits which naturally exist at the collinear

points, L1, L2, L3, of a Circular Restricted Three Body Problem (CR3BP). Since the

conception of Halo orbits in [Farquhar 1968], many deep space missions have been sent

to utilized these orbits. Considering the bene�ts they o�er, to name a few, periodicity,

weak-gravity environment, constant wide access to the sky or to either of the primary

bodies and also allow natural insertion to Halo orbits, there are a number of space

missions being prepared and planned to use these orbits. L2 point gives additional

advantages such as stable thermal environment which is suitable for sensitive hardware,

uninterrupted observations since the Sun, Earth, and Moon reside within the orbit of L2
point. So unsurprisingly L2 point is considered as a highly attractive location for deep

space missions either employing a single spacecraft mission or in spacecraft formation

�ying.

Space missions at Halo orbit are mostly for observation missions and so far each

mission constitute only single spacecraft. However the progress on formation �ying

within the last few decades has opened new possibilities of using multiple spacecraft.

While thus far spacecraft formation �ying mostly has been researched for Earth orbit-

ing satellites[Scharf 2005b, Scharf 2005a] utilizing mostly the well known CW-equations

[Clohessy 1960], in this thesis the possibility of implementing formation �ying at Halo

orbits to harvest the bene�t of collinear points have to o�er is attempted and examined.

1.2 Previous Contributions

Based on how the precision qualitatively enforced to the formation, we can distin-

guish two types of formation �ying, loose formation and precise formation. A for-

mation �ying falls into precise formation category when it requires accuracy domi-

nantly above all. Typically the precision requirement for this type of formation is
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less than one meter or even much smaller. On the other hand loose formation has

much less restricted precision but might demand tighter fuel cost budget. Inspect-

ing literature thus far there are no previous works ever done on loose formation �ying

around halo orbits despite the huge interest spacecraft formation �ying has received

thus far. Most of works[Folta 2004, Roberts 2005, K. C. Howell 2003, Gill 2004] have

been reported are allocated to discuss precise formation �ying subjected into fuel cost

optimization[Kyle T. Alfriend 2010]. It's important to consider the potential implemen-

tation of loose formation �ying such as future space port concept around Halo orbits,

Sun-shielded space telescopes and detached spacecraft's components (e.g. high gain an-

tenna with pointing mechanism) to reduce structural vibration e�ect which inadequate

if approached with the concept of precise formation. For the spaceport concept, the

daughter spacecraft is admitted to move freely in the neighborhood the mother space-

craft or in the case of a Sun shielded telescope, the shield has large �exibility to move as

long as it protects the telescope from the solar radiation. In the case of detached high

gain antenna, provided it has accessibility to communicate with the Earth within permis-

sible range from the mother spacecraft, the detached antenna doesn't need correction

control.

1.3 Scope of Present Work

Loose formation �ying may require control maneuvers to maintain and recon�gure the

formation, but no strict accuracy requirements need be imposed in order for the forma-

tion to function correctly as designed. In the case of maneuvers being necessary, fuel

optimization is implemented in order to achieve optimum mission life. What are particu-

larly being considered at present are natural loose formations and arti�cial periodic loose

formations in the vicinity of Halo orbits. In practice, the �rst one is de�nitely extreme

cases since theoretical zero fuel cost is very di�cult to achieve in real space missions,

but it is still meaningful to examine the limitations of natural motion before addressing

periodic loose formations with impulsive control. Natural loose formations are estab-

lished as the product of searched out, orderly initial sets of velocities and positions, and

fully rely on natural dynamics. Since searching randomly is clearly an arduous task, in

this thesis a design method which allows these initial values to be found systematically

and comparatively simple is proposed. While on the periodic loose formations with im-

pulsive control, fundamentally the impulsive control is used to connect natural motions

for achieving periodic relative motions. In particular the use of impulsive control from

single impulse, two and three impulses are expounded in detail.

This thesis is organized as follows:

• Chapter 2: Background study is presented in this chapter. This background study

includes the adoption of dynamic model of Circular Restricted Three-Body and

development of tools for studying motion around Halo orbits.

• Chapter 3: Systematic design of natural loose formations is elaborated in this

chapter. Modelling of the relative motion both for short-term and long-term
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relative motions are explained in detailed. Further the design method and an

example for natural loose formations is provided in this chapter as well.

• Chapter 4: This chapter focuses on periodic loose formations with impulsive con-

trol. Analysis on single, two and three impulses are disclosed to exemplify the

design concept.

• Chapter 5: Some concluding remarks and recommended future works, from and

based on this thesis are presented.





Chapter 2

Background

Contents
2.1 Dynamical Model of Circular Restricted Three-Body Problem . . 5

2.2 Motion around Halo Orbits . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Halo Orbits around L2 Point . . . . . . . . . . . . . . . . . . . 6

2.2.2 The Variational Equations and the State Transition Matrix . 7

2.2.3 Monodromy Matrix Analysis . . . . . . . . . . . . . . . . . . . 8

2.1 Dynamical Model of Circular Restricted Three-Body

Problem

Although this work is applicable to any three body problem but for the sake of clear

discussion, the Sun-Earth system is adopted for all numerical computations in this paper.

Perturbation forces such as solar radiation pressure (SRP), perturbation by other planets

are presently ignored. Since the spacecraft is massless compared to the two primaries and

the motion of the Earth (secondary primary body) relative to the Sun(�rst primary body)

is nearly circular, then Circular Restricted Three Body Problem (CR3BP) is accurate

enough to model the motion of the spacecraft (see Fig. 2.1).

In a rotating, barycentric, normalized with the Sun-Earth distance, coordinate system

with the smaller primary (the Earth) on the positive x-axis, the di�erential equations of

motion for the circular three-dimensional restricted problem are given as[Szebehely 1967]

Ẍ � 2Ẏ =
∂U

∂X
(2.1)

Ÿ + 2Ẋ =
∂U

∂Y
(2.2)

Z̈ =
∂U

∂Z
(2.3)
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The e�ective potential gravity U is de�ned as

U =
1

2

(
X2 + Y2

)
+

1 � µ

r1
+
µ

r2

r1 = [(X + µ)2 + Y2 + Y2]
1
2

r2 = [(X � 1 + µ)2 + Y2 + Z2]
1
2

µ = m2

1 � µ = m1

µSun-Earth ≈ 3.0038× 10�6

(2.4)

X, Y, Z are coordinates with respect to the rotating frame of the spacecraft from the

barycenter while m1 and m2 are normalized mass of the the �rst primary and the sec-

ondary primary bodies respectively.

2.2 Motion around Halo Orbits

2.2.1 Halo Orbits around L2 Point

The discussion in this paper is applicable to Halo Orbits at any collinear Lagrangian

points but to provide a concrete example, L2 point is chosen. The linearized model

shows that collinear point has center × center × saddle stability[Koon 2008]. However

when we move to nonlinear region high enough, the unstable dynamics can be decoupled

from the center dynamics hence gives us a good approximation of the dynamics in the

center of manifold. In this region there exits nonlinear, 3D, periodic orbits, which in

Poincare section appears to be �xed points, called Halo Orbits. As shown by Howell

[Connor Howell 1984] we can �nd these Halo Orbits numerically by di�erential correction

X

Y

Z

1− µ

µ

r

r1

r 2
L1

L2

L3

m1

s/c

m2

ω = ωẑ

Figure 2.1: Circular Restricted Three Body Problem
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method. Principally the di�erential correction method use Newton's method to adjust

initial state vector of a reference orbit until desired accuracy achieved. The adjustment

is computed numerically by making use of the State Transition Matrix (STM) of the

reference orbit. The period of these orbits are approximately six months. Figures 2.2

and 2.3 show a Halo Orbit with amplitude in the Z axis, Az, equal with 303, 280Km in

normalized rotating coordinate system using following initial set values, and subsequently

used in all numerical computations carried here.

X0 =

[
R0

V0

]
=

[
1.0112 0 0.0020 0 �0.0095 0

]T
(2.5)

0.998 1.000 1.002 1.004 1.006 1.008 1.010 1.012
X [au]

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

Y
[a

u] Earth

Figure 2.2: XY View

−0.006 −0.004 −0.002 0.000 0.002 0.004 0.006
Y [au]

−0.004

−0.002

0.000

0.002

0.004

0.006

Z
[a

u]

Figure 2.3: YZ View

2.2.2 The Variational Equations and the State Transition Matrix

In this subsection, variational equations which describe how perturbations evolve along a

reference trajectory, assumed to be the leader's orbit, is brie�y explained. As previously

stated, the formation �ying in our interest is in the vicinity of a Halo Orbit and since

the size of the formation is much smaller than the size of the Halo orbit itself we can

use the variational equations to represent the dynamics of the formation.

Equations (2.1) to (2.3) can be easily arranged in the form,

Ẋ = F(X), X =
[
X Y Z Ẋ Ẏ Ż

]T
(2.6)

The trajectories with X(0) = X0 is conveniently written in �ow map φ(t;X0) so we can

rewrite Eq. (2.6) as
dφ(t;X0)

dt
= F(φ(t;X0)) (2.7)
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where

φ(t0;X0) = X0 (2.8)

Accordingly the relative position between the leader and the follower spacecraft in the

rotating frame is simply expressed by

ẋ(t) = F(φ(t;X0follower)) � F(φ(t;X0leader)) (2.9)

with

x =
[
x y z ẋ ẏ ż

]T
=

[
r

v

]
(2.10)

is the state vector of relative motion referred to reference trajectory. As the size of forma-

tion is signi�cantly smaller than the state vector of the Halo Orbit, we can approximate

the relative motions by linearization at the the leader and obtain,

ẋ(t) = DF(φ(t;X0leader))x(t) = A(t)x(t) (2.11)

where,

A(t) =

[
0 I3
Ψ 2Ω

]

Ω =




0 1 0

�1 0 0

0 0 0




Ψ =



Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz




(2.12)

This equation obviously is a state space equation of linear time variant system, and its

solution has general form known as variational equations.

x(t) = Φ(t,X0)x0, Φ(t, t0) =
∂φ(t;X0)

∂X0
(2.13)

and the State Transition Matrix, Φ(t, t0), de�ned as

Φ(t, t0) =
∂φ(t;X0)

∂X0
(2.14)

In retrospect, we can see that the state transition matrix obtained for �nding a Halo

Orbit can be used to study the motion of the formation �ying.

2.2.3 Monodromy Matrix Analysis

Monodromy matrix (M) is basically a State-Transition Matrix (Φ) for periodic orbit

which maps the state vector x0 at initial time t0 to �nal state vector (xT) after one

period T. This can be stated as

xT = Φ(t0 + T, x0)x0 = Mx0 (2.15)
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In spite of the lack of analytical expression of Halo orbits, the Monodromy matrix can

be obtained numerically when the reference Halo Orbit is found. We can expect the

properties of the Monodromy matrix (M), from simple observation, due to the periodicity

of the Halo orbits that its determinant has to be equal with one. The Monodromy matrix,

shown in maps the initial state vectors (x0) to the �nal state (xT) after one period (T).

Moreover its �ow map from initial to �nal time is unknown, and neither analytical

expression of the state transition matrix. However we can devise approximation of the

fundamental set solutions, as elaborated in subsection 3.1 if we could establish the basis

of the Monodromy matrix. This can be achieved by analyzing the independent state

vector which span the space of the Monodromy matrix.

The Monodromy matrix of a Halo orbit has six eigenvalues (λ1,λ2,λ3,λ4,λ5,λ6)

which can be grouped into three pairs [Gomez 2001, Koon 2008] (see Table. 2.1). The

�rst pair (λ1,λ2) has self-product of one, the second pair (λ3,λ4) is complex conjugate

with magnitude of one and the third pair (λ5,λ6) is real and has magnitude of one. The

�rst pair represents stable (e1) and unstable manifold (e2), so if the initials are set in the

direction of this pair's eigenvectors, the shape and the magnitude of the formation will

be changed radically therefore unsuitable for establishing loosely kept formation within

one period. Inspecting the other four eigenvalues reveals two modi�cations are needed to

their eigenvectors to construct basis for the formation. Firstly, the eigenvectors (e3, e4)

of the complex pair eigenvalues are linearly combined to form two real vectors erotsum =

(e3+e4)/2 and erotdi� = (e3 � e4)/2i. Secondly since eigenvalue of one has eigenvector

only one (e5 = e6), algebraic multiplicity is two but geometric multiplicity one, means

the Monodromy matrix is defective[Marchal 1989], hence a generalized eigenvector which

represents the change of energy is introduced. However the Monodromy matrix don't

give us other useful information. Since the Jordan Canonical Form (JCF) provides the

map of the independent eigenvectors, we could use it to look for additional valuable

feature. Unfortunately the Monodromy matrix is defective so it can't be used readily

because the availability of the independent vectors are less than the dimension of the

state vector. To remedy this, we can use the generalized eigenvector [Strang 2003,

Weintraub 2008] to �nd a replacement basis of the eigenvector of the eigenvalue equal

with one. The generalized eigenvector (ê6) for λ6 can be found by solving

ê′6 = Ker (M � λ6I)
2 (2.16)

Considering that the dimension of ê′6 is two, so actually any vector within the nullspace

is available to choose. But it is preferable to choose a vector which have geometrical

meaning therefore we select the vector (ê6) which lies in the nullspace and perpendicular

with e5. Since e5 represents the along track direction accordingly ê6 represent the

cross track direction. ê6 is found by applying Gram-Schmidt procedure to the nullspace

and e5. The process of establishing bases in the neutrally stable manifold is shown in

Figure 2.4.

Hence now we have a complete independent set of basis, which consists of three

eigenvectors (e1, e2, e5), one generalized eigenvector (ê6) and two ordinary vectors which

perpendicular to each other (erotsum , erotdi�), to �nd the JCF. In sum the basis are:
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Table 2.1: Eigenstructure of the Monodromy Matrix

Eigenvalue

λ1 1522

λ2 6.572e-04

λ3 9.789e-01+0.205i

λ4 9.789e-01+0.205i

λ5 1

λ6 1

Eigenvector

e1
[
�0.374 0.123 �0.022 �0.823 0.393 �0.118

]T

e2
[
0.374 0.123 0.022 �0.823 �0.393 �0.118

]T

e3
[
0.099i 0.509 �0.472i 0.500 �0.411i �0.300

]T

e4
[
�0.099i 0.509 0.472i 0.500 0.411i �0.300

]T

e5
[
0 0.670 0 0.608 0 0.429

]T

e6
[
0 0.670 0 0.608 0 0.429

]T

1. e1, lies in the diverging manifold, renamed edivergence(ed).

2. e2, lies in the converging manifold, renamed econvergence(ec).

3. erotsum or for short ers.

e5

ê6

ê′6

Figure 2.4: Obtaining ê6
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4. erotdi� or for short erd.

5. e5, renamed ealong track(eat) since it represents along track direction.

6. ê6 renamed ecross track(ect) since it represents cross track direction.

With the newly formed basis, we can establish the Jordan Canonical Form (JCF).

J = P�1MP (2.17)

where

P =
[
ed ec ers erd ect eat

]
(2.18)

The JCF is found to be in the form

J =




λ1
λ2

cos θ � sin θ

sin θ cos θ

1 ε

0 1



6×6

(2.19)

where θ = 11.5617 degree and ε = �0.0255 for the Halo orbit used above. From the

Jordan Canonical Form (JCF) we can also observe that there are four Jordan blocks

which represent three invariant manifolds: the stable, unstable, rotational and neutrally

stable manifolds. These group manifolds give meaningful geometrical representations as

previously desired. These manifolds can be grouped into subspaces:

1. The Non Periodic Subspace comprise of:

• Eunstable = span{eu}

• Estable = span{es}

2. The Periodic space comprise of:

• ENeutrally Stable = span{eat, ect}

• ERotational = span{ers, erd}

And the characteristics of these manifolds are shown in Figures 2.5 and 2.6. Based on

the grouping of the manifolds above, obviously seen that in order to construct natural

stable motion, we must use only the periodic subspace which spanned by only the four

obtained basis. This subspace which is also known as the center manifolds allows the

motion nearby a Halo orbit exclude the diverging and converging components of the

natural dynamics.
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erd

ers

X(t)

Figure 2.5: Rotational Manifold

eat

ect

X(t)

Figure 2.6: Neutrally Stable Manifold
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3.1 Modelling of the Relative Motion

3.1.1 Relative Motion Expressed with Fundamental Set Solutions

As obtained from the Monodromy matrix analysis, we have managed to establish a local

coordinate system with independent directions or basis. The summary of the fundamen-

tal motions, complete basis, their eigenstructure are provided in Table 3.2. In the table

the long-term motion is shown as discrete map of each basis for consecutive periods,

while the short-term motion, the fundamental set solutions are shown both for in-plane

and outplane motions. The fundamental set solutions basically are the propagation of

the basis previously established from the Monodromy matrix. Consequently the relative

motion nearby a Halo orbit reference is the linear combination of the fundamental set

solutions. However we can see easily through the subspaces construction extracted from

the four Jordan blocks of the Monodromy matrix, that in order to have non diverging

nor converging motions, we simply need to nullify the non periodic subspaces or in other

words in order to have stable motion, it must be limited within the center manifolds.

Henceforth natural loose formation is designed using only four vectors, ers, erd, eat, ect
or in other words con�ned within the center manifolds thus has only four degree of

freedom. Subsequently in the loose formation �ying the relative motion is described as,

x(t) = αxrs(t) + βxrd(t) + γxeat(t) + κxect(t) (3.1)
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3.1.2 Modelling Long-Term Relative Motions

Long term motion is viewed as a discrete relative motion after consecutive periods there-

fore can be approached from the eigenstructure of the Monodromy matrix. Moreover,

the Monodromy matrix analysis has shown that we can inspect the motion in the rota-

tional manifolds and neutrally stable manifolds independently.

It can be readily seen from the Jordan canonical form the mapping within one period

as,

MP = PJ (3.2)

This means that for the rotational manifold, we can express the rotation matrix for n� th

period, based on its corresponding Jordan block (JR),

JR =

[
cos nθ � sin nθ

sin nθ cos nθ

]
(3.3)

thence the mapping after n period for rotational manifold becomes,

[
xrs(nT) xrd(nT)

]
=
[
αxrs(0) βxrd(0)

]
JR (3.4)

thus the long term motion for the rotational manifold, obtained as

xR(nT) = (α cos nθ � β sin nθ)xrs(0)

+ (α sin nθ + β cos nθ)xrd(0)
(3.5)

While for the neutrally stable manifold the matrix transformation for n � th period is

given by

JN =

[
1 nε

0 1

]
(3.6)

so we can express the mapping after n � th period as

[
xat(nT) κxct(nT)

]
=
[
γxat(0) κxct(0)

]
JN (3.7)

consequently the long-term motion in the neutrally stable manifold, acquired as,

xN(nT) = (γ + nεκ)xct(0) + κxat(0) (3.8)

Suitably the long-term within the center manifolds is summed as

x(nT) = xR(nT) + xN(nT) (3.9)

for n = 0, 1, 2, 3, ....

3.1.3 Modelling Short-Term Relative Motions

The motion between the two spacecraft within one period its regarded as short term

relative motion. Unlike the long term, the Monodromy matrix provides no information

about the short term. No other mathematical tools available to model and to analyze
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the formation other than numerical integration. When small displacements in the design

vectors integrated numerically, as envisaged the linear behavior exhibited. This means

if we can approximate the fundamental set solutions with su�cient accuracy we can

combine them linearly to represent the motion within the center manifolds. As exempli-

�ed in the Table 3.2, the short term relative motions display nearly periodic behavior.

This inspired us to use Fourier Series to approximate the short term relative motion.

Our interest presently is mainly on the relative positions hence the approximation only

carried for the position components of the fundamental set solutions. However, as illus-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [Dimensionless Time]

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

y r
d

[K
m

]

Nonlinear
Pure-2nd order FS, ssr=0.159Km2

Modified-2nd order FS, ssr=0.005Km2

Figure 3.1: Approximation Model Comparison for yrd

trated in Fig. 3.1, which uses 2nd order of pure and modi�ed Fourier series with sample

data,(m = 10000), we need to adjust pure Fourier series to accurately approximate the
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motion, hence the modi�ed Fourier series, Eq. (3.10),

x̃(*)(t) = a0(*) +
n=∞∑

n=1

an(*) cos(2fnπ
t

T
)

+
n=∞∑

n=1

bn(*) sin(2fnπ
t

T
) + c(*)(

t

T
)

(3.10)

where (*) = rs, rd, at, ct, is used as general approximation model instead. As a matter

of fact, full periodic behavior only displayed by motion in the direction xat, for the rest

of other directions, xrs, xrd, xct, slight modi�cation, adding a linear function, is given to

approach the motion to improve �tting accuracy of pure Fourier series . This is required

due to rotational behavior within the rotational subspace for xrs, xrd and the in�uence

of ε for xct. Clearly for xat, the value of c is zero. The approximation is conducted by

using the least-square algorithm[Strang 2003] . This algorithm used here approximates

the nonlinear propagation (pi) by minimizing the sum of squared residuals (SSR) with the

approximation model (f(qi)) , as described below. The summary of the approximation

model is given in Table 3.1.

SSR =
m∑

m=1

(pi � f(qi))
2 (3.11)

Table 3.1: Approximation Model's Coe�cients for Short-Term Motions

Fourier Series Coe�cients Linear Term Fitting Accuracy

a0 a1 a2 b1 b2 c SSR

ersx 3.48E-04 -1.20E-03 -7.51E-04 3.20E-02 1.04E-02 -5.13E-04 1.22E-02

ersy 2.98E-04 9.91E-02 -2.90E-03 3.47E-03 1.35E-04 -2.38E-03 2.43E-02

ersz -7.93E-03 8.39E-03 -3.40E-04 -2.80E-02 -1.52E-03 1.82E-02 9.62E-04

erdx -8.20E-04 1.44E-02 8.93E-03 4.02E-03 1.30E-03 -1.93E-04 3.82E-03

erdy -1.40E-02 1.25E-02 -3.64E-04 -4.10E-02 -1.61E-03 2.77E-02 4.76E-03

erdz -1.49E-02 -2.90E-02 4.03E-03 -3.52E-03 -1.93E-04 2.29E-03 3.06E-03

eatx -2.40E-05 -2.90E-05 -1.20E-05 3.34E-02 7.37E-03 - 1.20E-02

eaty 8.17E-06 1.04E-01 -5.74E-03 -4.51E-06 -4.00E-06 - 1.59E-01

eatz -1.71E-07 -4.45E-06 -9.04E-07 3.81E-02 -4.46E-03 - 6.00E-03

ectx -1.97E-02 1.50E-02 -1.17E-03 -8.89E-04 -2.02E-04 -1.41E-04 4.68E-04

ecty 1.77E-03 -2.66E-03 1.48E-04 -4.34E-02 5.70E-03 -3.53E-03 2.51E-03

ectz 2.49E-02 1.14E-01 -7.96E-03 -9.59E-04 1.24E-04 6.18E-05 8.12E-03

This is due to displacements within these directions experience changing in the

period. As in the true motion, then the approximated short term motion is also linear

combination of the approximated fundamental set solutions, for (0 ≤ t ≤ T),

x̃(t) = αx̃ers(t) + βx̃erd(t) + γx̃eat(t) + κx̃ect(t) (3.12)

This approximation is valid only for the �rst period of the Halo orbit while for the n-th

period we need to consider the in�uence of the long term motion. Using Eq. (3.9) and by
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Table 3.2: Summary of Motions in the Center Manifolds (δ = 10�9)
erotsum erotdi�

ealong track ecross track

State vector after one period Mers = cos θers � sin θerd Merd = sin θers + cos θerd Meat = eat Mect = ect + εeat

Inplane Poincare Section
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taking into account that the long term motion is a step function hence constant during

the period, we can express the short term motion during the n-th cycle, (nT ≤ t ≤ (n+1)T

) as

x̃(t′) = α(nT)x̃rs(t
′) + β(nT)x̃rd(nT)

+ γ(nT)x̃eat(nT) + κ(nT)x̃ect(t
′)

(3.13)

where

t′ = t � nT (3.14)

and considering Eq. (3.12), the approximated short term motion obtained as

x̃(t′) = (α cos nθ � β sin nθ)x̃rs(t
′)

+ (α sin nθ + β cos nθ)x̃rd(t
′) + κx̃eat(t

′)

+ (γ + nεκ)x̃ect(t
′)

(3.15)

As clearly seen by now, the proposed approximation allows the motion in the center

of manifolds to be analyzed and be known its characteristics without have to conduct

nonlinear propagation. Additionally analyzing the long term and the short term motions

can be carried either simultaneously or independently in algebraic forms instead of in

di�erential equation form, thus relatively simpler to handle in design process.
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3.2 Design of Loose Natural Formations

Previously the tools needed to design loose formation �ying around a Halo orbit have

been constructed, so then we can sum up the design process succinctly as described

in Fig. 3.2. Halo orbit is presumably computed accurately, and Monodromy matrix

STEP 0
Find Halo orbit
ref. & establish
fund. set sols.

STEP 1
Assume motion
as x̃(α, β, γ, κ)

STEP 2
Define reqs. F (x̃(t))

STEP 3
Impose reqs.
F (α, β, γ, κ)

STEP 4
Solve F

STEP 5
Obtain Xf0 =
Xref0

+ x̃0

α, β, γ, κ

Figure 3.2: NLFF Design Chart

analysis is carried subsequently. Monodromy matrix analysis provides the basis and the

fundamental set solutions is obtained by approximating the nonlinear propagation with

small initial displacements along each of basis.

The design process is started by assuming the approximated relative motion, long-

term and short-term, as linear combination of the basis and the fundamental set solutions

accordingly. We then de�ne the requirements the desired formation �ying. These re-
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quirements are expressed usually in the terms of positions or velocities. Imposing the

requirements to the relative motion gives us the algebraic problems in terms of α,β, γ,κ.

This consequently means the design problem transformed into algebraic problems where

α,β, γ,κ are design parameters. Obviously subsequently we have to solve the algebraic

equations. Solving the equations will deliver the expected design parameters so �nally

we can acquire the initial state vectors of the desired motion with respect to the refer-

ence orbit by adding the total component of the product between corresponding design

parameters with the basis.

3.3 A Design Example

As an example design, lets assume a loose formation �ying contains of two spacecraft.

The leader orbits the Halo orbit reference and oscillation of x-axis motion of the follower

is desired and its long-term displacement in the direction of cross track need to be

nulli�ed for the �rst period (n = 1). This design example is resolved below in accord

with the design chart in Figure 3.2

STEP 0: We use the Halo orbit, its consecutive Monodromy matrix analysis which

obtained in previous sections and have the fundamental set solutions respectively.

STEP 1: The long-term and short-term motion are assumed as in Eqs. (3.9)

and (3.12) respectively.

STEP 2: Based on the statement problem, we can express the formation require-

ments as, for long-term motion

F1(x̃(t)) = x̃ct(1*T) = 0 (3.16)

and for short term,

F2(x̃(t)) = x̃(t) ' 0 (3.17)

STEP 3: Imposing the requirements into the assumed motions transformed the

design problem into algebraic problem. Using Eq. (3.8) the long-term displacement

becomes

F1(α,β, γ,κ) = γ + ε1κ = 0 (3.18)

and by algebraic manipulation, we can rearrange the linear combination of the short-term

motion of x-axis of the follower up to 2nd and by ignoring higher order terms (HOT) as,

F2(α,β, γ,κ) = Ao + A1f1(
t

T
) + A2f2(

t

T
) + A3(

t

T
) + HOT (3.19)
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in which f1 and f2 are periodic functions in t
T and

A1 =
(
αa1xrsx + βa1xrdx

+ γa1xatx
κa1xctx

)2

+
(
αb1xrsx + βb1xrdx

+ γb1xatx
κb1xctx

)2

= 0

A2 =
(
αa2xrsx + βa2xrdx

+ γa2xatx
κa2xctx

)2

+
(
αb2xrsx + βb2xrdx

+ γb2xatx
κb2xctx

)2

= 0

(3.20)

STEP 4: Solving F1 gives, the relation between κ, γ must be in the form

γ = �εκ (3.21)

and If we are interested to suppress the oscillation up to 2nd so we can ignore high order

term, order then formation requirement for short-term motion,

f1 = f2 = 0 (3.22)

Considering Eqs. (3.20) and (3.21) we see system of equations of one degree of freedom.

So we can either de�ne the value of κ or γ and then solve the equations simultaneously.

Say we choose κ = 1, then γ = �ε and then consequently we can solve Eq. (3.22)

numerically. The optimized results are obtained as α,β = 0.10562765, �0.63046903.

These results are not exact solutions since Eq. (3.22) gives four equations to be solved

hence the total number of equations exceed the number of variables.

STEP 5: With the complete set of α,β, γ,κ we can easily �nd the initial state

vector of the follower. As expected in Fig. (3.3), the nonlinear propagation shows

suppressed motion in x direction. The solution also results suppressed motion in y

direction. Furthermore Fig. (3.4) illustrates how the resulted has dominant motion in z

direction compared with the in-plane motion.

x̃0 = αx0ers + βx0erd
+ γx0eat + κx0ect (3.23)

so we can have the initial state vector of the follower as,

Xf = Xref0 + x̃0 (3.24)
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Figure 3.3: Motion with Suppressed x(t)
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Figure 3.4: Outplane Motion of the Follower
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4.1 Design of Loose Formation with Impulsive Control

Periodic motions are not only mathematically interesting but also very useful in orbit

design for space missions either for Earth satellites or for deep space missions. Periodic

motions provide predictability and regularity in position and velocity which allow us to

construct useful applications such as orbits for remote sensing, scienti�c observations,

guidance and navigation, communication and broadcasting, and military. Periodic rela-

tive motions in the vicinity of Halo orbits, as previously explained, can be used to achieve

loose formations. However, as explained in Chapter 3, natural motions in the vicinity of

Halo orbits provides only one design's degree freedom, along-track direction, for periodic

relative motions. This lack of design degree of freedom is too restrictive in designing

the loose formations and gives less space for mission designers. To remedy this problem,

control maneuvers are introduced to the dynamics to expand design's

This chapter elaborates the use of impulsive control to achieve arti�cial periodic

motions. The impulsive control in this study is assumed to change the dynamics instantly.

The basic idea of arti�cial periodic motions with impulsive control is to change the natural

motion into from one state into another state. In other words, the impulsive control

connect two or more di�erent natural motions to form cyclical motions.

Figure 4.1 illustrates the schematic of arti�cial periodic motions with impulsive con-

trol. In the �gure n trajectories are connected at τi by n impulsive control. The schematic
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r(t)

t0
Thτ1 τm τm+1

r1(α1,β1, γ1,κ1, t)

rm(αm,βm, γm,κm, t)

rm+1(αm+1,βm+1, γm+1,κm+1, t)
rn(α3,β3, γ3,κ3, t)

Figure 4.1: N Impulsive Control Schematic

requires the position at the connecting points must be the same and the position after

one period must return to the origin. The position requirements comprises of inner

condition,

rm(τm) = rm+1(τm), (4.1)

where

m = 1, 2, 3, . . . , n � 1, (4.2)

and initial/terminal condition,

r1(0) = rn(Th). (4.3)

The inner condition yields 3(n � 1) equations while the initial/terminal conditions supply

three equations, hence in total Eq. 4.1 and Eq. 4.3 give 3n equations. As the number

of trajectory to be connected increases we expect to gain additional design's degree of

freedom. It has been established previously that motions in the center manifolds are

de�ned by the four parameters,

rn = rn(αn,βn, γn,κn), (4.4)

so for m trajectories, are to be connected by imposing Eq. 4.1 and Eq. 4.3, theoretically

the number of design's DOF becomes,

DOF = 4n � 3n = n, (4.5)

Or in other words, the number of expected design's DOF is equal with the number of

impulses.

While the velocities required for control maneuvers are easily found by inspecting the

velocity di�erences at each connecting points or the amount of ∆v to be given at each

impulse,

∆vm = |vm+1 � vm|, (4.6)

∆vn = |vn � v0|, (4.7)
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and the total ∆v per cycle is the sum of all ∆vn,

∆vtotal =
n∑

1

∆vm. (4.8)

In the following sections, the systematic design is applied and elaborated for single,

double and triple impulses. Additionally generalization for N Impulses is also made

available.

4.2 Single Impulse Periodic Relative Motions

Based on Section 4.1, the schematic for single impulse periodic loose formation is illus-

trated in Figure 4.2. It's easy to see that for single impulse only initial/terminal condition

is necessary as the number of trajectory is only one. Using Eq. 4.3 for single impulse

r(t)

t0
Th

r(α, β, γ,κ, t)

Figure 4.2: Single Impulsive Control Schematic

case produces,

r1(0) = r2(T), (4.9)

which in detail provides,

αrrs(0) + βrrd(0) + γrat(0) + κrct(0) =

αrrs(Th) + βrrd(Th) + γrat(Th) + κrct(Th).
(4.10)

The relationship between initial and terminal positions is described by Eq. 3.10, by

providing t = Th,

rat(Th) = rat(0),

rrs(Th) = rrs(0) + crs,

rrd(Th) = rrd(0) + crd,

rct(Th) = rct(0) + cct,

(4.11)

then equations 4.10 and 4.11 is reduced into,

αcrs + βcrd + κcct = 0, (4.12)
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which can be written in matrix form as,


crsx crdx cctx
crsy crdy ccty
crsz crdz cctz




︸ ︷︷ ︸
A1



α

β

κ




︸︷︷︸
p1

= 0, (4.13)

or simpli�ed as

A1p1 = 0. (4.14)

Inspecting the equation above, obviously seen that the trivial solution is,

α = β = κ = 0,

γ ≡ free parameter.
(4.15)

This trivial solution implies when the initial relative motion is kept to have only compo-

nent in the along-track direction, single impulse periodic motion is achieved with ∆v = 0.

Or in other word, the introduction of single impulse into the dynamics, the number of

design's DOF as expected is one, γ. The value of γ can be chosen freely to meet the

size of the formations as desired. This also reinforce the knowledge revealed in natural

formations that along-track direction is periodic. On the other hand nontrivial solution,

generally is not available since in most cases the determinant of A1 aren't zero. The

value of the matrix depends on the Halo orbit chosen as reference. If a periodic relative

motion is desired, then clearly the orbit reference must be searched to comply with the

determinant requirement.

4.3 Two Impulses Arti�cial Periodic Relative Motions

As detailed in Section 4.1, the schematic for two impulses case can be constructed as in

Figure. 4.3. In two impulses case, there are two trajectories connected by employing the

r(t)

t0
Thτ

r1(α1, β1, γ1,κ1, t)
r2(α2, β2, γ2,κ2, t)

Figure 4.3: Two Impulsive Control Schematic

�rst impulse at τ and the second impulse at Th. Evaluating Eq. 4.1 and Eq. 4.3 give,

r2(Th) = r1(0),

r2(τ1) = r1(τ1),
(4.16)
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when expanded yields,

α2rrs(Th) + β2rrd(Th) + γ2rat(Th) + κ2rct(Th)

�(α1rrs(0) + β1rrd(0) + γ1rat(0) + κ1rct(0)) = 0
(4.17)

and

α2rrs(τ) + β2rrd(τ) + γ2rat(τ) + κ2rct(τ)

�(α1rrs(τ) + β1rrd(τ) + γ1rat(τ) + κ1rct(τ)) = 0.
(4.18)

Equation. 4.18, can be rewritten as,

(α2 � α1)rrs(τ) + (β2 � β1)rrd(τ) + (γ2 � γ1)rat(τ) + (κ2 � κ1)rct(τ) = 0 (4.19)

and with Eq. 4.11, also can be rearranged as,

(α2 � α1)rrs(0) + (β2 � β1)rrd(0) + (γ2 � γ1)rat(0) + (κ2 � κ1)rct(0)

+α2crs + β2crd + γ20+ κ2cct = 0
(4.20)

By de�ning,

∆α = (α2 � α1), (4.21a)

∆β = (β2 � β1), (4.21b)

∆γ = (γ2 � γ1), (4.21c)

∆κ = (κ2 � κ1), (4.21d)

Eqs. 4.18 and 4.17, can be rewritten in matrix form as

[
rrs(0) rrd(0) rat(0) rct(0) crs crd 0 cct
rrs(τ) rrd(τ) rat(τ) rct(τ) 0 0 0 0

]




∆α

∆β

∆γ

∆κ

α2
β2
γ2
κ2




= 0. (4.22)

The matrix above shows that

γ2 ≡ free parameter. (4.23)

Then �nally the algebraic equation for two impulses can be expressed as

[
rrs(0) rrd(0) rat(0) rct(0) crs crd cct
rrs(τ) rrd(τ) rat(τ) rct(τ) 0 0 0

]

6×7




∆α

∆β

∆γ

∆κ

α2
β2
κ2




= 0. (4.24)
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Equation 4.24, shows there is an additional one degree of freedom. This means any of

∆α,∆β,∆γ,∆κ,α2,β2,κ2, can be selected as the given parameter. Presently κ2 is

selected as the given parameter then,

[
rrs(0) rrd(0) rat(0) rct(0) crs crd
rrs(τ) rrd(τ) rat(τ) rct(τ) 0 0

]

︸ ︷︷ ︸
A2(τ)




∆α

∆β

∆γ

∆κ

α2
β2




︸ ︷︷ ︸
p2

= �κ2




cctx
ccty
cctz
0

0

0




︸ ︷︷ ︸
q2

, (4.25)

or can be rewritten in compact form as

A2(τ)p2 = �κ2q2. (4.26)

So two impulses case confers in total two degree of freedom (DOF). It is worth to

mention here, from Eq. 4.26, κ2 can be interpreted as magni�cation factor which can

scale down or up the size of the trajectories in the case of two impulses case.
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Figure 4.4: The value of |A2|
�1

Two examples are provided to demonstrate the arti�cial periodic orbits with two

impulses. The �rst example use τ = 0.3Th, while γ2,κ2 are chosen to be equal with

one. Table 4.1 give the obtained parameters for the two connected trajectories. Fig-

ures 4.7,4.9,4.11 depict the motions of the two trajectories at each axis respectively. It
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appears the two trajectories are close to each other. The values in table 4.1 con�rm this

result, since the parameters of the trajectories have close values.

Table 4.1: Two Impulses Example Case

Parameters τ = 0.3Th τ = 0.5Th

α1 0.0683 -0.7136

α2 0.0681 0.70

β1 0.1368 -0.0369

β2 0.1442 0.0832

γ1 1.0028 2.3466

γ2 1.0 1.0

κ1 1.0062 0.9996

κ2 1.0 1.0

As a matter of fact, these trajectories are found typical for most of τ . When the value

of determinant A2 plotted against τ as shown in �gure 4.4, the determinant has generally

small values except when τ is nearby 0, Th
2 and Th. This causes, with moderate value

of κ2, the parameters between the two trajectories are similar. This is also elaborated

by �gures 4.5 and 4.6, which show the coeefcients are indeed small within the range of

τ previously stated.

Table 4.2: ∆v Cost for Two Impulses

Case 1 (mm/s) Case 2 (mm/s)

∆v1 0.0006 0.0417

∆v2 0.0026 0.0291

∆vtotal 0.0032 0.0708

The second example, τ = Th
2 , as expected gives a more di�erent trajectories. Fig-

ures 4.8, 4.10 and 4.12 shows the two trajectories become more dissimilar. The con-

nected trajectories for the two cases are illustrated in �gures 4.15 and 4.16, both for

in-plane and out-plane, while the cost of ∆v is given by table 4.5.
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Figure 4.5: p2 for 0.01T < τ < 0.495T
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [dimensionless]

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

x
[K

m
]

r1(t)

r2(t)

Figure 4.8: Approximated x(t) Case 2
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Figure 4.9: Approximated y(t) Case 1
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Figure 4.10: Approximated y(t) Case 2
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Figure 4.11: Approximated z(t) Case 1
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Figure 4.12: Approximated z(t) Case 2
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Figure 4.13: In-plane Arti�cial Periodic Or-

bit with Two Impulses Case 1
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Figure 4.14: In-plane Arti�cial Periodic Or-

bit with Two Impulses Case 2
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Figure 4.15: Out-plane Arti�cial Periodic

Orbit with Two Impulses Case 1
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4.4 Three Impulses Arti�cial Periodic Relative Motions

The schematic of three impulses is given in Fig. 4.17. In three impulses case, there

are two inner connecting points, at τ1 and τ2. Based on the schematic �gure above,

r(t)

t0
Thτ1 τ2

r1(α1, β1, γ1,κ1, t)

r2(α2, β2, γ2,κ2, t)

r3(α3, β3, γ3,κ3, t)

Figure 4.17: Three Impulses Schematic

imposing Eq. 4.1 and Eq. 4.3 for three impulses case yields,

r1(0) = r3(Th), (4.27a)

r1(τ1) = r2(τ1), (4.27b)

r2(τ2) = r2(τ2). (4.27c)

Expressing each trajectories as function of the linear parameters. Eq. 4.45a, gives,

(α3 � α1)rrs(0) + (β3 � β1)rrd(0) + (γ3 � γ1)rat(0) + (κ3 � κ1)rct(0)

+α3crs + β3crd + γ30+ κ3cct = 0,
(4.28)

Eq. 4.45c,

(α2 � α1)rrs(τ1) + (β2 � β1)rrd(τ1) + (γ2 � γ1)rat(τ1)

+(κ2 � κ1)rct(τ1) = 0,
(4.29)

and Eq. 4.45d,

(α2 � α1)rrs(τ2) + (β2 � β1)xrd(τ2) + (γ2 � γ1)rat(τ2)

+(κ2 � κ1)rct(τ2) = 0.
(4.30)

To make the equation to be more compact, de�ned,

∆αji = αj � αi, (4.31a)

∆βji = βj � βi, (4.31b)

∆γji = γj � γi, (4.31c)
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∆κji = κj � κi, (4.32)

and observing that,

∆αkj � ∆αji = αk � αj � αj + αi = αk � αj. (4.33)

The de�nition is exempli�ed by

∆α31 � ∆α21 = α3 � α1 � α2 + α1 = α3 � α2 = ∆α32. (4.34)

Considering that

γ3 ≡ free parameter, (4.35)

therefore these three equations can rewritten as



L(0) c 0

0 0 L(τ1)

L(τ2) 0 �L(τ2)




9×11




∆p31
p3

∆p21




11×1

= 0, (4.36)

and

∆p31 =




∆α31
∆β31
∆γ31
∆κ31


 , (4.37)

∆p21 =




∆α21
∆β21
∆γ21
∆κ21


 , (4.38)

which can be simpli�ed as

p3 =



α3
β3
κ3


 , (4.39)

where

L(t) =
[
rrs(t) rrd(t) rat(t) rct(t)

]
, (4.40)

and

c =
[
crs crd cct

]
. (4.41)

This equation in theory has three degree of freedom (DOF). They are the free parameter

α3 and any of two from the other parameters.

To demonstrate the three impulses case, γ3 and κ3 as given parameter, then we can

write the equation as



L(0) crs 0

0 0 L(τ1)

L(τ2) 0 �L(τ2)




9×9




∆p31
α3

∆p21




9×1

= �β3

[
crd
0

]

9×1
� κ3

[
cct
0

]

9×1
(4.42)
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Table 4.3: Three Impulses Example Case

Parameters τ1 = 0.4Th

τ2 = 0.6Th

α1 -3.0740

α2 -0.4301

α3 2.5387

β1 0.5402

β2 1.8945

β3 1.0

γ1 6.6484

γ2 3.8274

γ3 1.0

κ1 0.9896

κ2 0.3358

κ3 1.0

Table 4.4: ∆v Cost for Three Impulses

(mm/s)

∆v1 0.1193

∆v2 0.1210

∆v3 0.1307

∆vtotal 0.3710

De�ning,

A(τ1, τ2) =



L(0) crs 0

0 0 L(τ1)

L(τ2) 0 �L(τ2)




9×9

, (4.43)

In compact form the previous equation above becomes

A(τ1, τ2)p = �β3

[
crd
0

]
� κ3

[
cct
0

]
. (4.44)

Hence three impulses case permits increment in degree of freedom compared with the

two impulses case so in total there are three DOFs available.

An examples are provided presently, the �rst example uses τ1 = 0.4Th, τ2 = 0.6Th.

For both this example the design parameters are chosen with values, β3 = γ3 = κ3 = 1.

The obtained parameters as de�ned in Eq. 4.44 after solving the algebraic equation

are given in table 4.3 and the ∆v is shown in table 4.4. Figures 4.18-4.20 display the

motion in each axes respectively for the three trajectories and the connected trajectories

for in-plane and out-plane respectively are given in �gure 4.21 and �gure 4.22.



36

Chapter 4. Systematic Design of Periodic Loose Formations

with Impulsive Control

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
t [dimensionless]

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

x
[K

m
]

r1(t)

r2(t)

r3(t)

Figure 4.18: Approximated x(t) Three Im-

pulses Case
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Figure 4.19: Approximated y(t) Three Im-

pulses Case
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Figure 4.20: Approximated z(t) Three Impulses Case
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Figure 4.21: In-plane Arti�cial Periodic Or-

bit with Three Impulses Case
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Figure 4.22: Out-plane Arti�cial Periodic

Orbit with Three Impulses Case
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Figure 4.23: Expanded Design Space

4.5 Design Example: Arti�cial Periodic Relative Orbits

with Arbitrary Initial Positions

Natural relative motion in the center manifolds as has been shown, generally only allows

one DOF to achieve periodic motions, namely the along-tack direction. Unfortunately

this also means that the initial positions of the followers are restricted in one dimension

if the followers are expected to periodic. As illustrated in Fig. 4.23, the naturally allowed

initial positions are represented by the green line, the along-track direction while other

direction within the sphere are prohibited. In order to have initial positions can be

arbitrary chosen, additional impulses are introduced accordingly to obtain extra DOF.

To maintain the design problem as linear problem, moreover since the main point of this

example is to demonstrate the design method when design space expansion is needed, the

problem of periodic relative motions with arbitrary initials positions is approached with

three impulses. With three impulses the number of linear DOF, excluding connecting

times, is three and this is the same number of variables that de�nes the arbitrary initial

positions of a follower spacecraft.

In arti�cial periodic relative orbits with three impulses case, for connecting the three

trajectories, requires,

r1(0) = r0 (4.45a)

r3(Th) � r1(0) = 0 (4.45b)

r2(τ1) � r1(τ1) = 0 (4.45c)

r3(τ2) � r2(τ2) = 0 (4.45d)
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These four equations can be written in matrix form as,

G(τ1, τ2)




α1
β1
γ1
κ1
α2
β2
γ2
κ2
α3
β3
γ3
κ3




=




r0x
r0y
r0z
0

0

0

0

0

0

0

0

0




(4.46)

where,

G =



rsx(0) rdx(0) atx(0) ctx(0) 0 0 0 0 0 0 0 0
rsy(0) rdy(0) aty(0) cty(0) 0 0 0 0 0 0 0 0
rsz(0) rdz(0) atz(0) ctz(0) 0 0 0 0 0 0 0 0
�rsx(0) �rdx(0) �atx(0) �ctx(0) 0 0 0 0 rsx(T) rdx(T) atx(T) ctx(T)
�rsx(0) �rdx(0) �atx(0) �ctx(0) 0 0 0 0 rsy(T) rdy(T) aty(T) cty(T)
�rsx(0) �rdx(0) �atx(0) �ctx(0) 0 0 0 0 rsz(T) rdz(T) atz(T) ctz(T)
�rsx(τ1) �rdx(τ1) �atx(τ1) �ctx(τ1) rsx(τ1) rdx(τ1) atx(τ1) ctx(τ1) 0 0 0 0
�rsy(τ1) �rdy(τ1) �aty(τ1) �cty(τ1) rsy(τ1) rdy(τ1) aty(τ1) cty(τ1) 0 0 0 0
�rsz(τ1) �rdz(τ1) �atz(τ1) �ctz(τ1) rsz(τ1) rdz(τ1) atz(τ1) ctz(τ1) 0 0 0 0

0 0 0 0 �rsx(τ2) �rdx(τ2) �atx(τ2) �ctx(τ2) rsx(τ2) rdx(τ2) atx(τ2) ctx(τ2)
0 0 0 0 �rsy(τ2) �rdy(τ2) �aty(τ2) �cty(τ2) rsy(τ2) rdy(τ2) aty(τ2) cty(τ2)
0 0 0 0 �rsz(τ2) �rdz(τ2) �atz(τ2) �ctz(τ2) rsz(τ2) rdz(τ2) atz(τ2) ctz(τ2)


(4.47)

and the arbitrary initial positions are de�ned as

r0 =



r0x
r0y
r0z


 (4.48)

Let see an example below to demonstrate the design method. The initial positions

used in this example are

r(0) = r(T) =



1

1

�2


 Km (4.49)

Obviously the ∆v's that must be given are a function of the connecting times, τ1, τ2,

and hence the matrix G(τ1, τ2) consequently. Despite the relative motions are linear

in term of the constant parameters, but inherently they are nonlinear function of the

connecting times.

The optimization process in �nding the total ∆v, can be carried out numerically. For

this case, the minimum ∆v is obtained as shown in Table 4.5. As comparison Table 4.6

gives total ∆v if τ1 =
1
3T, τ2 =

2
3T are used as the connecting times.

The column at each of the tables, labeled as 2ndOrder are results obtained when the

basic motions, or the fundamental set solutions are given by the approximation, while

the nonlinear column are results when the basic motions are fully nonlinear. In arti�cial
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Table 4.5: Optimum ∆v for Arbitrary Initial Positions

2nd Order Non Linear

τ1 0.8496 0.8496

τ2 2.2489 2.2489

∆vtotal (mm/s) 4.3753 3.3395

periodic relative motions with impulsive control, the DOF is not changed when higher

order of approximation is used. While using 2ndOrder Fourier series approximation o�ers

easier numerical computation, but going to higher order even up to fully nonlinear basic

motions, found using numerical propagation of the bases, doesn't add complexity in

computation or in�uence the DOF since the value of matrix G is the connecting points.

Table 4.6: ∆v for Arbitrary Initial Positions (τ1, τ2 = 0.25T, 0.75T)

2nd Order Non Linear

∆vtotal (mm/s) 4.7279 3.5866

If the results from the 2ndOrder approximation and the nonlinear compared, the

total ∆v are certainly di�erent even when the optimum connecting times are not much

di�erent. This happens due to the velocity components of the fundamental set solutions

are not perfectly approximated using only 2ndOrder approximation, thus give di�erent

∆v. However the 2ndOrder approximation doesnt't give exagerated results either, hence

still useful to predict rough ∆v to attain the periodicity. The resulted trajectories are

given in Figures 4.24, 4.25 and 4.26. The combined in-plane and out-plane are given in

Figures 4.27 and 4.28.

4.6 Nonlinear e�ects

As presented in previous section, the proposed design method succeeded to achieve ar-

ti�cial periodic relative orbits with impulsive control for arbitrary initial positions case.

It's important to highlight again here that the degree or approximation of the funda-

mental set solutions doesn't reduce or add DOF to the design but improve the accuracy

of the results when tested in full nonlinear environment. However since the fundamen-

tal set solutions are obtain from nonlinear propagation of the extracted bases from the

monodromy matrix, it's reasonable to check if the bases are free from the non periodic

modes, the divergent and convergent motions. Furthermore the ∆v and the connecting

times, e.g. τ1, τ2 should be checked as well to see nonlinear e�ects.

Solving Eq. 4.46, gives the design parameters, αn,βn, γn and κn, at certain τ1, τ2, in

the example optimal values were used, and consequently initial positions and the ∆v to

be applied. Figures 4.29 and 4.30 show the in-plane and out-plane motions, labeled with

NLP (nonlinearly propagated), where initial positions from the design requirements, the
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Figure 4.27: In-plane of the approximated motion
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Figure 4.28: Out-plane of the approximated motion
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design parameters calculated from 2ndOrder approximation and initial velocities from the

bases in Table 3.2. The �gure indicate that the nonlinearly propagated motion doesn't

comply with the approximated motions. This is due to two things, di�erence in initial

positions, and ∆v found using the approximation. This �gure doesn't present nonlinear

e�ects per se, but shows the limitation of the 2ndOrder approximation for calculating

initial state vectors, thus include the non-periodic modes. If the initials state vectors

fully from the approximations, Eq 3.10, the nonlinearly propagated results shows larger

deviation than the obtained results in Figures 4.27 and 4.28, as shown in Figures 4.31

and 4.32. The fact that the approximated fundamental set solutions doesn't model

the initial state vectors accurately is contrasted when the design parameters and the

bases are used to get the positions and velocities at initial point in Figures 4.33 and

4.34. In this two �gures, although the combined relative motions aren't connected, the

non-periodic modes however are ruled out.

There are two approach to improve the results in Figures 4.33 and 4.34, either

introducing ∆v correction at τ2 and T like Fixed Time Arrival (FTA) technique or

improving accuracy of the approximation model. The latter are shown here, since it

corresponds on inspecting the bases of the center manifolds free from the non-periodic

modes and also from practical point of view, the full non linear are already made available

during establishing the approximation model in Chapter 3. When the fundamental set

solutions used in �nding matrix G are the full nonlinear ones, the linear combination of

the fundamental set solutions (FSS) and the initial state vectors, τ1, τ2 and ∆v1,∆v2 are

perfectly in agreement as provided in Figures 4.35 and 4.36. This suggests that bases only

contain the periodic motions, free from both the convergent and the divergent modes

and the nonlinear e�ects can be safely ignore as long as the size of the formations are
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Figure 4.32: Out-plane motion with initial from the approximations
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kept signi�cantly smaller than the size of the halo orbits.
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Figure 4.33: In-plane motion with initial from the bases
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Figure 4.34: In-plane motion with initial from the bases
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Figure 4.35: In-plane motion with full nonlinear FSS
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Figure 4.36: Out-plane motion with full nonlinear FSS





Chapter 5

Concluding Remarks

Contents
5.1 Recommended Future Works . . . . . . . . . . . . . . . . . . . . . . 50

In this thesis design of loose formation �ying around halo orbits has been presented.

The design address two types of formations, natural loose formations and periodic loose

formations with impulsive control. The proposed design method is established by con-

�ning the relative motion within the center manifolds to nullify the converging and the

diverging components of the follower spacecraft. Thanks to the extracted bases based

on the Monodromy matrix, we have managed to treat the relative motion as linear

combination of the fundamental set solutions with constant coe�cients α,β, γ and κ.

Additional importance of using the bases obtained is also obvious since the bases are not

simply independent directions but they also intentionally constructed to have geometrical

interpretations hence help to visualize the design process.

For natural formations two modes of motion, long-term and short-term, were iden-

ti�ed. It was discovered that the long-term motion could be approached as a discrete

mapping for the n � th period and that the short-term motion could be �tted well with

modi�ed Fourier series having an additional linear term. This thesis has shown how

the proposed design method transforms the formation design problem from the domain

of di�erential equations to that of algebra. This makes solution of the design problem

simpler and, moreover, allows long-term and short-term motion to be treated simultane-

ously or independently. The validity of the proposed design method was demonstrated

in a set of example problems which involved both long-term and short-term motion.

Natural loose formation however only allows limited space in designing formations.

To remedy this lack of degree of freedom, impulsive control is introduced. Impulsive

control is used to achieve arti�cial periodic relative motions that loosely controlled. It was

found by adding the number of impulsive control, the degree of freedom does increase.

In single impulsive the solution is only the trivial while in two and three impulsive cases,

the nontrivial solutions are also available. Numerical examples were given to demonstrate

the concept of the design of periodic loose formations proposed in this thesis. Although

only elaborated in up to three impulses, basically the systematic design is expandable

to larger number of impulses. The nonlinear basic motions can be utilized to obtained

trajectory for arti�cial periodic orbits with better accuracy. Second order approximation

is insu�cient to model the initial state for periodicity hence may contain the convergent

motions, but still can utilized as approximation model and used FTA to enhance the

accuracy and correct the velocity.
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5.1 Recommended Future Works

There are two subjects recommended for future works.

• Fuel cost optimization for arti�cial periodic loose formations. As has been shown,

for the cases where number of impulses larger than 2, the time, τ , where the

impulsive control is exerted can be selected as desired. Addition to the variation

of the design parameters, τ , also in�uences the magnitude of ∆v cost. Study on

how these parameters interact locally or globally, will elucidate the optimum fuel

cost for maintaining periodic loose formation in the vicinity of Halo orbits.

• Formation insertion and deployment. How to deploy the loose formation is also an

important aspect in bringing the loose formation in the nearby Halo orbits to come

into reality. Various aspects, such as on board navigation and control instruments,

orbit determination and scienti�c tasks must be discussed wholly and in detail.

• Study on eccentricity e�ects is also important to address and including other

sources of perturbation forces will bring this study closer into real practice in

future space missions.
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Nomenclature

D Jacobian matrix

J Jordan canonical form

M Monodromy matrix

T Halo orbit's period

ê Generalized eigenvector

e Eigenvector or basis

x State vector of the relative motion

Φ State transition matrix

α Design parameter in the rot-sum direction

β Design parameter in the rot-di� direction

δ Scaling factor for linear region

γ Design parameter in the along-track direction

κ Design parameter in the cross-track direction

λ Eigenvalue

µ Mass ratio

X State vector of the reference trajectory

E Subspace





Design of Loose Spacecraft Formation Flying around

Halo Orbits

-Abstract-

Two spacecraft or more are assumed to be in a state of loose formation �ying around

a collinear Lagrangian point in the Sun-Earth Circular Restricted Three-Body Problem

(CRTBP) system. The orbit reference of choice for the leader is a Halo orbit and the

followers are assumed to follow nearby and be constrained either geometrically or in

size. This type of formation could be useful in the future for constructing space ports,

space telescopes, astronomical spacecraft requiring sun shields and, with greater num-

bers, spacecraft swarm missions. The formation design method is constructed by �rstly

seeking the local coordinate system from the monodromy matrix through extraction of

the independent bases which span the space of the Halo orbit. To nullify diverging and

converging motion, we con�ne the relative motion to within the periodic subspaces. Two

types of formations are studied in this thesis, natural loose formations and periodic loose

formations with impulsive control. For natural formations, two modes of relative motion

within these subspaces, long-term and short-term motions. In this study, the long-term

motion is approximated by deriving a discrete formulation of independent directions

based on the eigenvectors of the monodromy matrix, while for the short-term motion

the fundamental set solutions are modeled using Fourier series and additional linear func-

tions. Since the size of the formation discussed is signi�cantly smaller than that of the

Halo orbit, the formation design method can fundamentally be stated as a process of

linearly combining these approximations to achieve the desired formation. Consequently,

use of this approach transforms formation design from a di�erential equation problem

into an algebraic one, and furthermore enables the long-term and short-term motion

design problems to be handled either jointly or separately. To increase design degree of

freedom impulsive control is introduced to the formation problem. The use of single, two

and three impulses are specially discussed in detail. Design examples, both for natural

and with impulsive control formation are presented to demonstrate the validity of the

design method. Keywords: Restricted Circular Three-Body Problem, Loose Formation

Flying, Halo Orbits, Impulsive Control




