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Two spacecraft or more are assumed fo be in a state of loose formation flying around a collinear Lagrangian point
in the Sun-Earth Circular Restricted Three-Body Problem (CR3BP) system. The orbit reference of choice for the
leader is a Halo orbit and the followers are assumed to follow nearby and be constrained either geometrically or in
size. This type of formation could be useful in the future for constructing space ports, space telescopes, astronomical
spacecraft requiring sun shields and with greater numbers, spacecraft swarm missions. A unique feature of this type
of formations, unlike precise formations, loose formations is geared heavily towards saving fuel consumptions-rather
than accuracy in size or in shape. The formations are envisaged to exclude the divergent and the convergent modes
from the relative motions.

The formation design method is constructed by firstly seeking the local coordinate system from the monodromy
matrix through extraction of the independent bases which span the space of a halo orbit. A halo orbit reference can
be found numerically with sufficient accuracy by using differential correction method. Carrying analysis on the
monodromy matrix reveals that the eigenvalues equal with one has algebraic multiplicity of two but its geometric
multiplicity is only one. This makes the monodromy matrix is defective hence its original eigenvectors are ﬁot fully
suitable to be the bases of the formations. By simple observation, the properties of the monodromy matrix (M) can
be predicted. From the periodicity of halo orbits, it can be seen that the matrix's determinant must be equal to one.
The monodromy matrix shows maps of the initial state vectors (Xo) to the final state (Xy) after one period (T).
Moreover, its flow map from the initial to final time is unknown, as is the analytical expression of the state transition
matrix. However, we can devise an approximation of the fundamental set solutions, if we can establish the bases of
the monodromy matrix.  This can be achieved by analyzing the independent state vectors that span the space of
the matrix. The monodromy matrix of a halo orbit has six eigenvalues (A1, Az, As, A4, As and A¢) that can be grouped
into three pairs.  The first pair (A1, A2) has a self-product of one, the second pair (As, As) is @ complex conjugate with
a magnitude of one and the third pair (s, Ae) is real with a magnitude of one.

The first pair represents stable (e1) and unstable (e;) manifolds, so if the initials are set in the direction of this pair's
eigenvectors, the shape and magnitude of the formation will be radically changed, making it unsuitable for
establishing a loosely kept formation within one period. This is because the eigenvalue of one has only one
eigenvector (es = eg), so that algebraic multiplicity is two but geometric multiplicity is one, which means that the
monodromy matrix is defective.

Inspection of the four other eigenvalues reveals that two modifications are needed to their eigenvectors in order to
construct bases for the formation design. Firstly, the eigenvectors (e3, e4) of the complex pair eigenvalues are
linearly combined to form two real vectors, ewsim=(€3 + €4)/2 and ewwi=(es-es)/2i. Secondly, a generalized
eigenvector representing the change of energy is introduced by finding a generalized eigenvector that perpendicular
to &6, in the nullspace to overcome the defectiveness. The monodromy matrix does not, however, give any other
useful information. However it gives very important information that in order to nullify the diverging and converging
motions, we just need to confine the relative motion inside the periodic subspaces only. _

Since the size of the formation discussed is significantly smaller than that of the halo orbit, the formation design
method can fundamentally be stated as a process of linearly combining these approximations to achieve the desired
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formations. Two types of formations are studied in this thesis, natural loose formations and periodic loose formations
with impulsive control. In natural formations there is no artificial acceleration considered, consequently the formation
design only relies on the natural dynamics. Two modes of relative motion within natural formations, long-term and
short-term motions are identified. In this study, the long-term motion is approximated by deriving a discrete
formulation of independent directions based on the eigenvectors of the monodromy matrix, while for the short-term
motion, to remedy the lack of analytical expressions for halo orbits, the fundamental set solutions are modeled using
Fourier series and additional linear functions. The linear functions represent secular motions within one period. The
short-term and the long-term motions can be integrated to form formula for short-term motion at the ny, period. A
design example for natural formation is given in this thesis, where short-term oscillation in x-axis successfully
suppressed.

The motivation for artificial periodic relative motions is that natural formations only allows limited design space so
for more complex missions, the design space can be extended by adding impulsive control and periodically
constrained. The use of single, two and three impulses are specially discussed in detail and an example of artificial .
periodic relative motion with arbitrary initial positions is also given in this thesis to confirm the validity of the design
method. In the artificial periodic, the basic idea is to connect positions at the inner and outer points in one period with
impulsive control. In doing so, there is increment of n linear DOF for n trajectories connected. Additional DOF also
arises when the time of connecting points are also considered. Different with the natural formations, DOF of periodic
relative motion with impulsive control doesn't depend on the accuracy of the modeling used in the fundamental set
solutions (basic motions) hence the full nonlinear bases can be utilized whenever it's required.
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