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PREFACE

M-theory is an eleven dimentional theory and provides a useful framework to understand the
nonperturbative physics of superstring theory. M-theory can be regarded as a strong coupling
limit of Type IIA superstring theory and is related to other superstring theories through the S,
T and U-dualities. M2-branes and M5-branes exist as BPS objects and these branes reduces to
D-branes, NS5-branes, Kaluza-Klein monopoles and fundamental strings in superstring theory.
Until recently, the low energy effective theory of multiple M-theory branes has not been known.
However, triggered by the pioneer papers [1, 2, 3], fruitful developments about the multiple
M2-branes have been achieved in the recent past.

One of the novelties in the developments is the appearance of Lie 3-algebra [T%,T b,Tc] =
faobe, T4 for the gauge symmetry, and the theory based on this algebra has appropriate symme-
tries as the effective theory of multiple M2-branes. This is called Bagger-Lambert-Gustavsson
(BLG) theory. For the concrete expressions of Lie 3-algebra, it is known that the following
theories with maximal supersymmetry can be derived from the original BLG theory: 44 BLG
theory for two M2-branes [2], Lorentzian BLG theory for multiple D2-branes [4] [, [6], extended
Lorentzian BLG theory for multiple Dp-branes (p > 2) 7, 8], and Nambu-Poisson worldvolume
theory for a single M5-brane [9, 10] or finite number of multiple M2-branes [I1]. Another ap-
proach to construct the action of multiple M2-branes is given by [12], and this Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory describes an arbitrary number N of multiple M2-branes on
an orbifold C*/Z;,. This theory has U(N) x U(N) gauge symmetry and only in special cases it
can have a maximal supersymmetry. In fact, ABJM theory in a certain scaling limit reproduces
Lorentzian BLG theory [13], and the latter theory can be reduced to the 3-dim super Yang-Mills
theory through the new kind of Higgs mechanism [I4]. Therefore, the relation between M2-
branes and D2-branes can be understood only in the viewpoint of Lagrangians [13| 15l 16] (see
also [17, [18]). In addition, when we start from the extended Lorentzian BLG theory [7, 8] or the
orbifolded ABJM theory [19} 20], we obtain Dp-branes whose worldvolume is a flat torus 7?2
bundle over the membrane worldvolume. In these cases, the moduli of torus compactification
of M-theory is properly realized, and the U-duality transformation can be expressed in terms of
Lie 3-algebra or the quiver of Lie groups.

On the other hand, there has been a long time mystery about Mb-brane. It is known
that the low energy dynamics of M5-brane is described by 6-dim (2,0) SCFT, and that the
field contents are five scalars, a spinor and a self-dual 2-form field. However, the covariant
description of the self-dual field is not easy, and thus only the covariant action of single M5-
brane is known [21], 22] 23]. For the multiple M5-brane dynamics, it has not been known even
in the level of the equations of motion. Recently, however, Lambert and Papageorgakis [24]
proposed a set of equations of motion of the nonabelian (2,0) theory by using the Lie 3-algebra,
which may shed light on the underlying cause of the mystery. Starting from the supersymmetry

transformations of the multiple D4-branes theory, they conjectured those of the nonabelian



(2,0) theory. Note that they introduce an auxiliary field which doesn’t appear in the abelian
case. Although this theory seems simply reduced to 5-dim super Yang-Mills theory and might
be nothing more than the reformulation of D4-brane theory, this is the first step toward the
covariant description of multiple M5-branes.

This thesis is organized as follows. In part I, we give a brief review about M-theory and
its brane solution. According to the AdS/CFT correspondence, we can extract the expected
properties about dual field theories. In part II, we take a quick look at the recent developments
about multiple M2-branes. There are two types of Lie 3-algebras classified by the metric of
generators, namely Euclidean and Lorentzian. We first explain the general reduction of the
Lorentzian-BLG theory to D2-brane theory and confirm that the Lorentzian-BLG theory can be
regarded as a reformulation of D2-brane theory. However, such a formulation of Lorentzian-BLG
theory in terms of ordinary gauge theory enables us to connect this theory to the ABJM theory.

Then, in part III, we confirm that the 3-dim N' = 8 BLG theory based on the Lorentzian
type 3-algebra can be derived by taking a certain scaling limit of 3d N =6 U(N); x U(N)_g
ABJM theory whose moduli space is Sym® (C*/Z;,). The scaling limit which can be interpreted
as the In6nii-Wigner contraction is to scale the trace part of the bifundamental fields and an
axial combination of the two gauge fields. Simultaneously we scale the Chern-Simons level.
In this scaling limit, M2-branes are located far from the origin of C*/Z; compared to their
fluctuations and Zj identification becomes a circle identification. Furthermore, we show that
the BLG theory with two pairs of negative norm generators is derived from the scaling limit
of an orbifolded ABJM theory. The BLG theory with many Lorentzian pairs is known to be
reduced to the Dp-brane theory via the Higgs mechanism. Therefore our scaling procedure can
be used to derive Dp-branes from M2-branes. We also investigate the scaling limits of various
quiver Chern-Simons theories obtained from different orbifoldings. Remarkably, in the case of
N = 2 quiver CS theories, the resulting D3-brane action covers a larger region in the parameter
space of the complex structure moduli than the N' = 4 quiver CS theories. How the SL(2, Z)
duality transformation is realized in the resultant D3-brane theory is also discussed.

Moreover, we explain the recent progress on the application of Lie 3-algebra to Mb5-branes.
For Mb5-branes, its nonabelian action has not been discovered due to the lack of understanding
about consistent coupling between arbitrary number of tensor multiplets and Yang-Mills mul-
tiplets. Recently, however, it was suggested that the equations of motion of M5-branes can be
constructed by using Lie 3-algebra. We describe its consistency with the known string dualities
and confirm that the proposed system has to be modified to realize the dynamics of multiple
Mb5-branes [25]. We also comment about type ITA/IIB NS5-brane and Kaluza-Klein monopoles
by taking various compactification cycles. Because both longitudinal and transverse directions
to the worldvolume can be compactified in the proposed model, we can realize these systems.
This situation is entirely different from the case of BLG theory. Realization of the moduli

parameters in the U-duality group is also discussed.
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Part 1

Foundations of M-theory






Chapter 1

M-theory

1.1 11-dim supergravity

M-theory is an eleven-dimensional quantum theory whose low energy effective action is given by

11-dim N = 1 supergravity

1 1
mnlemnkl) W 503 N Fy N\ Fy. (1.1)
11 :

S = d"zy/—g (

1
2/4111 48
Here Fy = dC5 and k11 is a 11-dim gravitational coupling constant which is related to 11-dim

Newton’s constant and Planck length as
2 1 9
2k7; = 167Gy = 2—(27rlp) . (1.2)
T

The field content of 11-dim supergravity is quite simple. It consists of the vierbein E? ., a
Majorana spin 3/2 field (gravitino) v, and a completely antisymmetric tensor C,,,; where
m,n,l = 1,--- 11 are spacetime indices and a is a tangent space index. The action (L.T) is

invariant under the following supersymetry transformations

6E7an = E]‘_‘awﬂ’w
1 1
0 = Ome + 1‘*L)mab1—‘ab6 + @Fnklp (Fmrnklp + 12Fnkl5£¢> €,
0Cmnl = _3EP[mn¢l]- (1.3)

Note that the introduction of cosmological constant is not allowed by supersymmetry.
Now we consider the Kaluza-Klein reduction and reduce the 11-dim supergravity to 10-dim.

We take the eleven-dimensional metric to be
ds? = e 22Bg datdz” + 23 (da't + A,dat)? (1.4)

to describe ten-dimentional metric along with a 1-form A;, dilaton ¢. The 3-form C3 reduces to
the R-R 3-form and the NS-NS 2-form through a proper rescaling. Finally we obtain the 10-dim
Type IIA supergravity and its string coupling constant g is given by e®. From (4, we find



that [, = g;/ 315. Through the KK-reduction on a circle of radius Ry1, the Newton’s constant in

11-dim and 10-dim are related as

G11 = 2mR11Gho, (1.5)

while the 10-dim Newton’s constant is given by 167G = (27)715¢2.

(L2), we obtain the famous relation

Combining these with

Ry = gsls- (16)

This means that the strong coupling limit of Type ITA string theory is eleven dimensional. This
is the M-theory.

1.2 M2-branes and Mb5-branes in 11-dim supergravity

Here we describe the brane solutions of 11-dim supergravity (I.I]) obtained by solving the Killing

spinor equation

1 1
0Ym = Ome + Z(*‘-}mabpab6 + @Fnklp (Fmrnklp + 12Fnkl5g1> e=0 (17)

We don’t have to consider other SUSY variations because we take a bosonic background.
The flat coincident N M2-branes in 11-dim have SO(1,2) x SO(8) symmetry and the metric
and 4-from field strength are given by

ds* = H(r)"**n,,detdz” + H(r)3(dr? 4 r2d02), (1.8)
Fy=dz® Adx' Adx® NdH? (1.9)
where p,v =0,1,2 and H(r) is the harmonic function on Rg

R6

H(r) =1+ . (1.10)

Here R = (3272N)Y/ 67,. Note that F has nonzero time components and thus M2-branes are

electrically coupled to the 4-form flux. In the near horizon limit this solution becomes AdSy x S7

4 2
ds? = (1) mdatda” + (R) dr® + R2dQ2

R r
1
= R? [4dsQAdS + dQ%] : (1.11)
3
Fy= §R3€Ad5‘4 (1.12)

where we have rescaled the worldvolume coordinate of M2-branes and €44, is a volume form of
AdSy spacetime. According to the AdS/CFT correspondence, the dual field theory is expected
to be a 3-dim N =8 SCFT with SO(8) R-symmetry.
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The flat coincident N M5-branes in 11-dim have SO(1,5) x SO(5) symmetry and the metric
and 4-from field strength are given by

ds* = H(r)_1/377w,dx“dx” + H(r)?3(dr? + r2d03), (1.13)
Fy=+(da® Adzt ANda? Ao Ada® ANdHTY) (1.14)
where p,v =0,1,--- ,5 and H(r) is the harmonic function on Rj
RS
H(r)= 1+T—3. (1.15)

Here R = (ﬂ'N )1/ 3lp. We can easily show that the near horizon geometry of this solution is
AdS7 x §* and we expect that dual CFT is 6-dim N = (2,0) SCFT with SO(5) R-symmetry.

1.3 Exact vacua of M-theory

The on-shell 11-dimensional supergravity in superspace was formulated in [26]. There is a single
superfield W4, (x,0) whose local Lorentz indices are totally antisymmetric. All components of
the supertorsion and supercurvatures can be expressed in terms of W, and its first and second

covariant derivatives. The first few components of this superfield are

~

Wistu(,0)|0=0 = Frstu(z), (1.16)
(DaWestu(2,0))lo=0 = 6(virs Ditpuy) (), (1.17)

(Da(Dyt)s)lo ( Rrsmn™ + 5 [T TV By (1) P (1)
+ T D }Ftuw(x)kﬁ (1.18)

where Fl.g., = Frstu— 30,75ty is a (shifted) 4-form flux and 770 = (1/12%)(yrstuo 87[‘9’5“ ”}’").

The equation of motion is
(V"' D)o Wystu(z,6) = 0. (1.19)

In a generic background we can write down corrections to the RHS of equation of motion
involving superfields and derivatives of superfields. However, it was shown in [27] that there are
no corrections to the AdS; x S” and AdS7 x S* solutions in M-theory and thus they are exact.

The lowest component of the superfield W is given by 4-form flux. In the case of AdSy or
AdS7, 4-form flux is given by the volume form of AdSy or S* and these are covariantly constant.
The next component of the superfield (LI7) is derivative of gravitino and this vanishes due
to considering the bosonic background. From explicit computation or differentiating Killing
spinor equation, we can verify the component (I8 vanishes as well. The remaining higher
components are given by some derivatives of the previous ones and thus all vanish. Therefore

we see that W.g,, is supercovariantly constant.



Now we reconsider the correction to the equation of motion. Because W4, is supercovari-
antly constant, the possible corrections can depend only on W4, and other constant tensors
like v-matrices etc. The equation of motion is written in a form which have one free spinorial
index and so do the corrections. Although it is impossible to construct the one spinorial index
without using spinorial derivatives, however derivative terms are all nonzero. Therefore there
is no possible correction we can write down. This means that the AdSy x S7 and AdS; x S*

spacetimes are exact vacua of M-theory.

1.3.1 M2-brane entropy from the gravity dual

For n + 1 spacetime dimensions, the (Euclidean) gravitational action has two contributions

1 2n(n —1) 1
- ATt — / d"z VhK 1.2
167Gy /M TV (R+ L2 > 87GN Jom vh (1.20)

where GGy is n-dimensional Newton’s constant. The first term is the Einstein-Hilbert action

n(n—1)
2

K is the extrinsic curvature, h is the induced metric on the boundary. On the AdS background,

Tpuir + Isurf =

with cosmological constant A = — . The second term is the Gibbons-Hawking term. Here
both of these terms are divergent because of the noncompactness of the space. The modern
approach to circumventing this problem is to perform a “counterterm subtraction” [28], namely
a gravitational analogue of Minimal Subtraction scheme and the counterterm action is given by

1 n n—1 L L3 ab n 9
I = grGn /Wd v \/E[ 7 2(n—2)R+ 2(n — 4)(n — 2)2 <R“”R - 4(n—1)R > o
(1.21)

where R and R, are Ricciscalar and Ricci tensor for the induced metric h, respectively. These
three terms are sufficient to cancel divergence for n < 6.

Now we explicitly compute on Euclidean AdS background which has a boundary S". Ac-
cording to the AdS/CFT dictionary, it correspondes to the free energy of CFT on S". As a

metric of Euclidean AdS space, we choose

2
st = 2402, (1.22)
1+ 72
Then the bulk action is
nvol(S™) /7" s"
Touip = ——2 [ gs 2 1.23
kT RGN Sy VIR T 2 (1:23)

where we computed with a cutoff at the boundary located at r. Finally we will take r — oo

limit. By using the useful relation
VhK = L,Vh (1.24)

and the expression of unit normal vector to the boundary as n = /1 + 72/L29/9r, we obtain

n—1

1 nr r2
Tourr = — d" n = — 14+ —vol(S"). 1.2
1= T 8aGx /aM w Lav/h seay V1T gz volY) (125)




Combining these terms with the first two counter terms, we obtain

Trds, 1 = Tbuik + Lsurf + Iet (1.26)
vol(S™) /T/L t" 1 n L2
= dt —r NP2 L2t = 1) (14— ) |
e r Al Y, v B A S S T
(1.27)

Taking a limit » — oo, we find

wL?
2GN

vol(S?)

BrGL (2L? + O(1/r)) ~

Tads, = (1.28)

Let us rewrite this expression in terms of charge or number of M2-branes. As we will see later
in part IT of this thesis, the gravity dual of ABJM theory is known to be AdSy x S”/Z;. The

eleven dimensional metric and 4-from flux are given by

1
ds?, = R? <4d5,24d54 + d5§7/zk> , (1.29)
3
Fy = §R36Ads4. (1.30)

The radius R is determined by the flux quantization condition

(27l,)°Q = » «Fy = 6R%vol(S7 /Zy,). (1.31)
8

As expained in [29], the charge @ is related to the number of M2-branes as

Q_N—214<k—]1§). (1.32)

The four dimensional Newton’s constant is written as

1 2W6r2Q%2% 1

—_— 1.33
GN  9y/vol(S7/Zy,) R? (1.33)
Thus we finally obtain
TR? 276

I = =¥ 1.34
Ads = o0 = @ SvorsTz (1.34)

In the large N limit, @ =~ N and we find that the planar free energy

(0) 3\ _ 270 3/2 _ V21 o 3/2

—F S°) = === NV = — kN, 1.35

This is the famous strong coupling behaviour of the free energy of M2-branes.
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1.4 Supergravity on AdS,;x Hopf fibrations

Here we consider the way to obtain the gravity duals of SCFTs with less than 16 supercharges.
It is known that odd sphere can be considered to be a U(1) fibration over CP". Then the metric

is given by
dQonyi1 = d¥2, + (dz + A)? (1.36)

where the d¥3, is the Fubini-Study metric of CP™ and 1-form potential A has a field strength
given by F = 2J where J is the Kéahler form of CP™. The coordinate z has a period 4.
By taking S” to be a Hopf fibration over CP?, we obtain

ds3y = ds*(AdSy) + dX% + (dz + A)% (1.37)
Then we can Hopf reduce the AdSy x S” over the U(1) fiber and this gives the AdS,; x C'P3
ds?y = ds*(AdSy) + d¥2 (1.38)

which is a solution of 10-dim Type IIA supergravity. SO(8) isometry of S7 reduces to that of
CP3 x U(1) which is SU(4) x U(1).

In the gauged supergravity on AdS; with SO(8) gauge group, we have gravitino in 8
representation and gauge fields in 28 representation. Decomposing these representations into
SU(4) x U(1), we obtain

8s — la + 12 + 6o,
98 — 1o + 65 + 6_3 + 15. (1.39)

The U(1) neutral subsets survive under the Hopf reduction and only the 6y representation
remains for the gravitino. Therefore we conslude that bulk SUSY reduces from 4-dim N = 8 to
4-dim N = 6 and the dual field theory is 3-dim A" = 6 SCFT with SU(4) x U(1) R-symmetry.

Another way to obtain the nonmaximal supersymmetric gravity dual is to consider the
supergravity on AdSy x S7/Z;. In this case we identify the coordinate of U(1) fiber over CP3
with a period 1/k times than that of S7. Then only a subset of the original states which have
a U(1) charge ¢ = kn/2 remain in the massless spectrum on AdSy x S7/7Z;,.

For k = 2, charge projection condition becomes ¢ = n and all the gravitino are left. Thus
the bulk theory is maximally supersymmetric and we expect the dual theory is 3-dim N = 8
SCFT with SU(4) x SO(4)? x U(1) R-symmetry. As we will see later in part II, this corresponds
to U(N)2 x U(N)_2 ABJM theory.

For k = 3, charge condition becomes ¢ = 3n/2 and only the six gravitino 6y remain and bulk
theory has N/ = 6 SUSY. The corresponding field theory dual is thought to be 3-dim N = 6
SCFT with SU(4) x U(1) R-symmetry. Generically bulk theory has A’ = 6 SUSY in k > 3 and
the dual CFT becomes U(N )y x U(N)_ ABJM theory.
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Chapter 2

Low energy effective theory of
M2-branes

2.1 Bagger-Lambert-Gustavsson theory

We first briefly review the Bagger-Lambert-Gustavsson (BLG) theory and its symmetry proper-
ties. It is a (24+1)-dimensional nonabelian gauge theory with N' = 8 supersymmetries. It contains
8 real scalar fields X! = Doa XITe 1 =3,..,10, gauge fields A* = S AT ® T, u=0,1,2
with two internal indices and 11-dimensional Majorana spinor fields ¥ = )" W¥,7T* with a chi-

rality condition I'g1oW = W. The action of BLG theory is given by
L= —%Tr(D“XI, D, X" + %Tr(@,r“DMW) + %Tr(\I!,FU[XI, X7 0) - V(X)+ Leos. (2.1)
where D), is the covariant derivative defined by:
(DMXI)a = 8MX0{ - delizAucd(x)le‘ (2.2)
V(X) is a sextic potential term
V(X) = (X X, XK %, X7, X)), (2.3)
and the Chern-Simons term for the gauge potential is given by
Lcos = %euyk(fadeAuabauAAcd + ;deagfefgbA,uabAuch)\ef)' (2.4)
This action is invariant under the SUSY transformation
ox! = yerty,,
0¥, = D, X!Trrle— ébe X XK poed PITK ¢
0AL, = il I X W, AP, = Aucaf (2.5)
and the gauge transformation
oXT = Ap[T, T X1,
60 = AT T 0],

SAY, = DA AV = Agfed,, (2.6)



provided that the triple product [X,Y, Z] has the fundamental identity and Tr satisfies the
property discussed in the next subsection. The most peculiar property of the model is that the
gauge transformation and the associated gauge fields have two internal indices. This must come
from the volume preserving diffeomorphism of the membrane action [30, BI] but the concrete

realization of the gauge symmetry from the supermembrane action is not yet clear.

2.2 A specific realization of Lie 3-algebra
BLG theory is based on the Lie 3-algebra
(7%, T°, T¢ = fo%,1. (2.7)

where T is generator and 2 is structure constant of this algebra. In order to obtain the
consistent gauge transformations, this algebra must satisfy the generalized Jacobi identity, so

called fundamental identity
[T, 1%, [T, 7% T°) = ([T%, T, T, T T] + [T, [T*,T°, T, T°] + [T, T% [T*,T°, T°]]. (2.8)

If this identity holds, we can show that the gauge transformations generated by T%®T? form Lie
algebral. Namely, if we write T%X = [T, T® X], a commutator closes among the generators
j‘vab.
[T, TN X = [17°7T°[T° T X]] - [T° T4 [T T X]|
= ([T 1° 1%, T X] + [T [T T, T%, X]
— (fabeed | pabdreey x (2.9)

A specific choice of the 3-algebra satisfying the fundamental identity is given by [4, [5 [6]. It
contains an ordinary set of Lie algebra generators as well as two extra generators 7! and T.

The algebra is given by

[T, 7%, 1% =0,
0 i j 0] k
[T aTszj] = f”k:T )
[, 77, 7% = o7, (2.10)

where a,b = {—1,0,i}. T* is a generator of the Lie algebra and fij i 1s its structure constants.
Here T~ is the central generator meaning that its triple product with any other generators
vanishes. TV is also special since it is not generated by the 3-algebra and does not appear in the

right hand side of the triple product. One can easily check that this triple product satisfies the

1Strictly speaking, T satisfies ordinary Lie algebras only when they act on X. If we write the commutation
relations of T% without acting on X, they are not necessarily associative and contain associativity-violating
3-cocycles.
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fundamental identity. In order to construct a gauge invariant field theory Lagrangian, we need

the trace operation with the identity
Te([T%, 7%, T, T + Te(TC, [T, T°, T%) = 0. (2.11)
After a suitable redefinition of generators, such a trace can be given by

(T~ 7Y = Te(T7 1, 7% =0, Te(T" 7% = —1,
(7%, 7% =0, Tr(T°,7° =0, Te(T',T7)= hY. (2.12)

If we define fabed g fabed — fabe ped  gabed i totally antisymmetry.
The above construction of the 3-algebra contains the ordinary Lie algebra as a sub-algebra.

The generators of the gauge transformation can be classified into 3 classes.
e I={T'®T%a=0,i}
o A={T' o T")
o B={T"® T’}
Then it is easy to show that
Z,7)=[Z,A=[Z,B] =0, [A,A|= A, [A,B] =58, [B,B]=1 (2.13)

and hence the generators of A form a sub-algebra, which can be identified as the Lie algebra of
N D2-branes.

2.3 BLG theory to D2 branes

Now we decompose the modes of the fields as

x = x{r°+xI 77!+ XIT,
U = U1+ 0 7'+ 0,7,
-1 -1
Ay = T @A) — Ay @T
+ AT @ T — AjoT? @ T + AT @ T7. (2.14)

It will be convenient to define the following fields as in [6]

xX'=xITt, b =y7T
A, =24,0T", B, = f9,A,,T". (2.15)

The gauge field A,(_y) is decoupled from the action and we drop it in the following discussions.

The gauge field Au is associated with the gauge transformation of the sub-algebra A. Another
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gauge field B, will play a role of the B-field of the BF theory and can be integrated out. With

these expression the BLG action can be written as
L= T <;(15MX1 _BXI? 4 %@r#ﬁﬂ iU B, ¥ + %(ng)%[fd,f(ﬂ)?
(XL XY = SRR (X D] 4+ SX X7, Try ] + e By
~0,X] BuXT) + Lop, (2.16)
where the ghost term is
Lon = (0, X0)(0"XL)) —i¥_1T#9, V. (2.17)
The covariant derivative and the field strength
D, =0, X" +ilA,, X1, D, W =0,V+i[A,, V], F,=0,A —d,A,+ilA, A)] (2.18)

are the ordinary covariant derivative and field strength for the sub-algebra A. As emphasized
in [4, 5] 6], a coupling constant can be always absorbed by the field redefinition and there is no
tunable parameters in this model.

The supersymmetry transformations for each mode are given by

oxXl = derlw,,
60X, = qerlw_y,
sXT = el
¥y = 9, XiTrT e,
SU_y = {9,X', —Tr(B,, X" T e + éTr(XI, (X7, XE)D1/K,
o = D”XIFMFIE—B”X({FNFIH%Xg[XJ,XK]F”Ke,
§A, = e, DX — X1w),
6B, = e, I7[X! ). (2.19)
Here note that X’ 1 and W_; appear only linearly in the Lagrangian and thus they are

Lagrange multipliers. By integrating out these fields, we have the following constraints for the

other problematic fields associated with 7°;
*Xf =0, Tr9,¥,=0. (2.20)

This should be understood as a physical state condition 62Xé |phys) = 0. In the path integral
formulation, these constraints appear as a delta function §(9?X() and those fields are constrained
to satisfy the massless wave equations. In order to fully quantize the theory, we need to sum
all the solutions satisfying the constraints, but we here take a special solution to the constraint

equations and see what kind of field theory can be obtained.
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The simplest solution is given by
Xl =vél Uy =0
0 v 10> 0 y (221)

where v is some constant. This solution was considered in [4, Bl [6] and preserves all the 16
supersymmetries, the gauge symmetry generated by the subalgebra A, and SO(7) R-symmetry
rotating X4, A =3,...,9. Another interesting solution is given by

X{=v@E@’+2")5],, Yy=0 (2.22)

where v(z? 4 2') is an arbitrary function on the light cone coordinate. As we see the supersym-
metry transformation for Wy,

5o = 9, XJTHT e, (2.23)

the solution X0 = v(z® + 21)of 1o preserves half of the supersymmetries.
In both cases, if we fix the fields X0 and ¥, as above, we can integrate over the gauge field
B,, and obtain the effective action for NV D2 branes?

1 - 5 A 1 SA O 7z AA A S
L=Tr|=5 (DX )2+ 1#[}( JXP12 4 S YT DY — 2ij + U\II[X T1040]|, (2.24)
where A, B =3,---,9. The coupling v is given by the vev of X&O and it is either a constant or an

arbitrary function on the light-cone v(z® + z'). This may be identified as the compactification
radius of 11-th direction in M-theory, v = 2mwgsls. The supersymmetric YM theories with a
space-time dependent coupling are known as Janus field theories and originally considered to be
a dual of supergravity solutions with space-time dependent dilaton fields [32](see also [33] [34]).
A salient feature is that the 10-th spacial fields X'° completely disappear from the Lagrangian
by integrating out the redundant gauge field B,,. It is interesting that Janus field theories are
naturally obtained from BLG theory and we will discuss this point in the Appendix.

The v — 0 limit cannot be taken after integrating the redundant gauge field B,,. In the case

of vanishing v, the Lagrangian is simply given by
L=Tr |—2(D X"+ LaTD, b 2
—r_g(u )+§ U (2.25)
with a constraint F w = 0. The action is of course invariant under the full SO(8) R-symmetry.

2.4 Aharony-Bergman-Jafferis-Maldacena theory
The action of the ABJM theory is given by (we use the convention used in [35])
S = / &Pz tr[—(D,Za) D24 — (D W DEFW A + i\ T D¢ + iw T4 D yw Al

+ Scs —Svf - Sy, (2.1)

2The fermion here is a 32 component spinor satisfying I'912W = W. In order to recover the ordinary notation
for D2 branes, we rearrange it as U = (14 T10)¥. Then it satisfies I'10¥% = ¥ and the action is written in the
usual form (no I'ig in the last term).
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with A = 1,2. This is an N/ = 6 superconformal U(N) x U(N) Chern-Simons theory. Z is a

bifundamental field under the gauge group and its covariant derivative is defined by
DX =0, X +iAPX —iX A, (2.2)

The gauge transformations U(N) x U(N) act from the left and the right on this field as Z —
Uzvi.

The level of the Chern-Simons gauge theories is (k, —k) and the coefficients of the Chern-
Simons terms for the two U(N) gauge groups, ALL) and ALR), are opposite. Hence the action

Scg is given by

Scs = / &z 2K tr [AP 9, AT + %ALL)A,(,L)A(AL) ~ APg, A — %ALR)AS,R)A&R)].
(2.3)
The potential term for bosons is given by
Sv =~ i / Pr tr [YAYIYPYIYOY] + vivAv y By ly©
+4YAY YOV Iy Byl — 6y AV Y BY v Oy, (2.4)
and for fermions by
Sy, = & / Prtr YV AP — YAV IgpyPT 4+ 2y AV L 4y Pt — 2v Iy ByAty g
+ GABCDYijYCWD — eapepY MPTY Oy P (2.5)
Y4 and ¢4 (A =1---4) are defined by
YO ={z4 W}, yo = {eapCPe™* eapwPe /1Y, (2.6)

where the index C runs from 1 to 4. The SU(4) R-symmetry of the potential terms is manifest

in terms of Y4 and 4.
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Part 111

More details about M-theory branes
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Chapter 3

Derivation of Lorentzian BLG theory
from ABJM theory

3.1 Gauge structures and Inonii-Wigner contraction

We first look at the gauge structures of the Lorentzian BLG theory [4, 5, [6]. As we have seen,
BLG theory [2, 3] has a gauge symmetry generated by T%X = [T T?, X] and the Lorentzian
Lie 3-algebra is defined by

[T, 1 T =0, (3.1)
[T, 79, T% = f7*r 1, (3:3)

where a,b = {—1,0,i} and T are generators of the ordinary Lie algebra with the structure
constant f7* as [T%,T7] = i fijka. Moreover, the gauge generators of the Lorentzian BLG

theory can be classified into 3 classes
¢ I={T'®T%a=0,i}
o A={T°® T}
o B={T'®@T7}.

The generators in the class Z vanish when they act on X, hence we set these generators to zero
in the following. Since the generators in the class B always appear as a combination with the

structure constant, we define generators S% = f;kfjk. Then they satisfy the algebra
[T, T = if /T, [T 7] =if,/S*, [§%, 7] =0. (3.4)

The last commutator was originally proportional to the generators in the class Z. If we had kept
these generators, the algebra would have become nonassociative. The algebra ([B.4) is a semi
direct sum of SU(N) (or U(N)) and translations. In the case of SU(2), it becomes the 150(3)
gauge group, which is the gauge group of the 3-dimensional gravity. Lorentzian BLG theory
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has the above gauge symmetries and corresponding gauge fields Au and B, as we will see in the
next section.

On the other hand, the theory proposed by Aharony et.al. [I2] is a Chern-Simons (CS)
gauge theory with the gauge group U(N) x U(N). They act on the bifundamental fields (e.g.
XT) from the left and the right as X — UXVT. If we write the generators as 7% and T%, the
combination T% = Tt + T}, and S* = T} — T4 satisfy the algebra

(T8, T9) = if ", [T%,87) = if?S*, [S%,89) =ifT". (3.5)

By taking the Inénii-Wigner contraction, i.e. scaling the generators as S° — A~1S? and taking
A — 0 limit, the algebra (B.5]) becomes the algebra (B.4]) of the Lorentzian BL theory. Therefore
it is tempting to think that the Lorentzian BL theory can be obtained by taking an appropriate
scaling limit of the ABJM theory. We will see later that it is indeed the case. Interestingly,
even the constraint equations in the BL theory (obtained by integrating the Lagrange multiplier

fields) can be derived from this scaling procedure.

3.2 Lorentzian BLG theory and ABJM theory

We have shown that the Lorentzian BLG Lagrangian can be written as £ = Lo + L4, where

1. 1 e 1 s
Lo = tr —i(DuXI—BuXé)erZ(X(?)Z([XI,XJ])Q— §(X5[XI,X"])2

iquA-*pAlfAJAJ z Lz 1o >

+ YT DY + 0ol B, W — S WX (X7, Ty 0] + SUXG (X7, Ty, ]

1o .
+§e””AFWBA—8MXé B, X'|, (3.6)

and

Lo = (0, X)) (0" XL)) —iW_1T49, V. (3.7)

The ghosts X! 1 and W_; appear only linearly and can be integrating out. Then we obtain

the following constraints
’?xXf=0, T"9,¥y=0. (3.8)

The constraint equations (B.8]) and the Lagrangian £y are what we want to obtain from the
ABJM theory by taking a scaling limit.

ABJM theory is similar to the Lorentzian BLG theory, but different in the following points.
First, the gauge group of ABJM theory is U(N) x U(N) while it is a semi direct product of
U(N) and translations in the Lorentzian BLG theory. Accordingly the matter fields are in the
bifundamental representation in the ABJM theory. Furthermore the Lorentzian BLG theory
contains an extra field Xg and ¥ associated with the generator Ty, and they are required to

obey the constraint equations (B.8]).
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The bosonic potential terms in both theories are sextic, but the potential in the Lorentzian
BLG theory contains two Xé fields and four adjoint matter fields X! while the potential terms
in the ABJM theory are written in the product of six bifundamental matter fields Y4. Hence
it is natural to think that the trace part of Y4 will play a role of X in the Lorentzian BLG
theory. We will see that, if we separate the matter field Y4 into a trace and a traceless part,

the potential terms coincide in a certain scaling limit.

3.3 Scaling limit of ABJM theory

In order to take a scaling limit, we first recombine the gauge fields as

L R L R
G Al AP A
H H ) ’

B) ) (3.9)
then the gauge transformations corresponding to /1# and B, are Z — ei0aT? 7e=ioT" and
7 — ioaT® ZgiopT? respectively. They are vectorial and axial gauge transformations. Matter
fields are in the adjoint representation for the flu gauge fields. Hence the U(1) part of flu
decouples from the matter sector.

The covariant derivative can be written in terms of fl“ and B, as
DuZ = 0,7 +ilA,, Z) + i{ By, Z}
= D,Z +i{B,, 7}, (3.10)

where lA)M is the covariant derivative with respect to the gauge field Au- Scs can be written in
terms of flu and B, as
2

BBMBVBP], (3.11)

Scg = /d3a: 4K P tr [BMFW +

where FW is field strength of AM.
The gauge fields AM, B,, are associated with the gauge transformations generated by T’ “ and S°
in (B.5). Hence in order to take the Inénii-Wigner contraction to obtain the gauge structure of
the Lorentzian BL theory (8.4)), we need to rescale the gauge field B, as B* — AB* and take the
A — 0 limit. Simultaneously we need to scale the coefficient K by A"'K. Since the coefficient
K is proportional to the level of the Chern-Simons theory k as K = k/8m, the scaling limit
corresponds to taking the large k limit. In this scaling limit, the cubic term of the B, fields
vanishes and the Chern-Simons action coincides with the BF-type action in the Lorentzian BLG
theory:

Scs — /d?’:c 4K e™P tr Buﬁ’w. (3.12)

In order to match the covariant derivatives in the Lorentzian BLG action (3.0) and in the
ABJM theory (B.10), we separate the bifundamental fields into the trace and the traceless part,
and scale them differently. We write the matter fields Y4 as

Y = Yi'ey + VTS, (3.13)
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where T is the generator of SU(N).

Now we perform the following rescaling:

B, — A\B,,
}/OA N )\—I%A’
Wao — Ao,
K — \'K, (3.14)

where YOA and 140 is the trace part of Y4 and 4. All the other fields are kept fixed. Then
take the A — 0 limit. If we take the scaling limit, we can show that the covariant derivatives in
both theories exactly match.

In the following we consider the ABJM theory with the SU(N) x SU(N) gauge group. In
the presence of the U(1) x U(1) group, a little more care should be taken for the scaling of the
U(1) part of the B, gauge field.

In taking the above scaling limit, many terms vanish. The kinetic term of the ABJM action

becomes
1 1
tr | =3 0uYa 05" + 5300l 0 + 2000,Y, B*Y A + hoc)

—(D,Ya + 2iB,You) (DY A + 2iBHYGY) 4+ b\ T# Db — 20T TF Byt — 290 TH B |
(3.15)

The first and the second terms are divergent for small A. In order to make the action finite,
we need to impose that the trace part of the bifundamental fields must satisfy the constraint
equations

O*Y{ =0, TFIpa0 =0

in the A — 0 limit. They are precisely the same constraint equations (B.8) in the Lorentzian BLG
theory. In that case, the constraints are obtained by integrating out the Lagrange multiplier
fields X_1 and ¥_;. Here they arise from a condition that the action should be finite in the
scaling limit.

The other terms in (B.I5]) are finite in the scaling limit and it can be easily shown that they
are precisely the same kinetic terms as that of the Lorentzian BLG theory (after a redefinition
of the gauge field 2B, — B,, and setting K = 1/2). The trace part of the bifundamental fields
is identified with the fields X associated with one of the extra generators 7° in the Lorentzian
Bagger-Lambert theory. This is the reason why we have used the same convention with subscript
0 for both of the trace part of the bifundamental fields and the field associated with the generator
T°.

Now let us check the potential terms. The potential terms of the ABJM theory are invariant
under the SU(4) symmetries but not under full SO(8). By decomposing the matter fields Y4

22



into the trace part YOA and the traceless part Y4, the bosonic sextic potential becomes a sum of
Ve = ZTBLZO Vén), where VE(;") contains n Yy fields and (6 —n) Y fields. Since the coefficient of
the bosonic potential is proportional to K ~2, Vén) term scales as A>~". It can be easily checked
that the coefficients of Vén) vanishes for n > 3. On the other hand, the potential terms V]é") for
n < 2 vanish in the scaling limit of A — 0. Hence the only remaining term in the scaling limit
is VE(;Q). This part of the potential has the full SO(8) symmetry and becomes identical with the
potential in the Lorentzian BL theory. In order to see that the BL potential is obtained, we
assume that only the field Z! has the trace part for simplicity. Let us write the 4 complex scalar
field Y4 by 8 real scalar fields as

7' = Xg +iX§ +iX T - X217,

Z? =iX2T" — XT1°,

Wi =iX3T — X710

Wi = iX T — X517, (3.16)
Substituting them into Sy, and taking the scaling limit, we can obtain the following bosonic

potential:

1

TR

[ e (X2 + PP PP ). (3.17)
P! is defined by
PI = (P17X2,X3,X4,X6,X7,X8),
- (;(Y/A FVD, (7P - f/g)) , (3.18)
YA = (P, 22, Wi, W),

L XX5 - XX!

VX (X

We can rewrite it as,

Sy, = —8% /d3xtr [i(xgﬂ? (1%, X)) - % (Xg[XI,XJ])2] , (3.19)
where we have used X{ = (X{},0,0,0,X3,0,0,0). This is the potentials for bosons in the
Lorentzian BL theory ([B.0]). It is straightforward to see that the complete potential of the BL
theory can be obtained by considering general Xé and the full SO(8) invariance is restored.

It should be noted that the above potential term is written in terms of the commutators.
This shows that, if we replace more than two bosons by their trace components, the potential

)

vanishes. This assures that the would-be divergent terms V]gn for n > 3 vanish and the only
remaining term in the scaling limit is given by the above potential.
Finally consider the fermion potential. We expand the potential as V; = Zizo Vf(n) where

Vf(n) contains n trace parts and (4 — n) traceless parts. Since the coefficient of the fermion
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)

scales as A", Vf(n) for n > 1 diverges in the scaling
(0)

limit and their coefficients must vanish. Vf vanishes in the scaling limit A — 0. Hence the

potential is proportional to 1/K, Vf(n

only remaining finite terms are Vf(l). In the following we look at the potential term with one of

the bosons replaced by the trace part Xé. Such a term can be written as

7

Svy = gz Xo tr |~ [X° ] + O3X, ] + X0, hs] + 0] [X7, 0]
+ 9] [Va, ] + w3 [YS, 1) + wf[Va, ] + v [Ya!, vs]
+ ol Vs, 0] + 3 (V] 1] + 0l Vs, 0] + o[V, 0ba)
] [Ya, ] + LY ] + 03 [Ya, 0]+ esYS, o)
1

e Xo tr [ FU X ] — X ) — DX ] - X,
— ][, o] + W§[iY5, 1] + Gl [iVa, ] — PaliVy, ]
— ] [iVs, ¥s] + Yl [V, 1] + w][iVs, 9] — vy, v
Y, ] + Y ] + 0l ] — sl vl (3.20)

Here for simplicity we have assumed that the trace part of the boson X{ is nonvanishing for
I = 1,5 . This can be done by using the original SU(4) symmetry. Note again that these
potential terms are written as a form of commutators.

To get the 3-dimensional Majorana fermion as the BL theory, we rewrite the SU(4) complex

fermion in terms of the real variables 1.

Y1 =1x1— X5, Y2 =1iX2 — X6,
Y3 =1ix3 — X7, Y4 =1X4— X3, (3.21)

where x; are real 2-component spinors. We also expand the complex bosons as the real
ones (3.I06). Then the fermion potential (.20]) becomes by using the 8 x 8 I' matrice as

1 - -
SVf = _2K trWXé[XJaFIJW]’
W= (X1, X2, X35 X45 X5 X65 X7» X8) » (3.22)

where the indices I,J run from 1 to 8 and X{ = (X{,0,0,0,X5,0,0,0). The explicit forms
of the T" matrices are given in the Appendix [Gl This fermion potential has the same SO(8)
invariant form as that of the Lorentzian BLG action (8:6). In the same fashion as the bosonic

potential, the full SO(8) invariance can be seen easily by considering the general X{.

! When we give a VEV to the X part only, we will get 7 I’ matrices as in [36]. In our case we need 8 I'
matrices and their antisymmetrized-products because we give a VEV to a more general direction.
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Chapter 4

Generalizing the scaling procedure

4.1 Generalization of the Lorentzian BLG theory

In [§] (see also [7, 37]), the BLG theory based on the Lorentzian Lie 3-algebra was generalized
by adding d pairs of negative norm generators. Then, they showed that the worldvolume theory

of Dp-branes (p = d + 2) is produced. The proposed 3-algebra is

[

[0, Ua, T] = —imaTi

[uo, ijj] = imav0 4709 + Fi T£+n,

(T2, T3, TF) = f7*6p, o, (4.1)
where a,b = 1,--- ,d and l_;n_i,ﬁ € 7% a and b correspond to the label of the compactified

direction and 7 to the Kaluza-Klein momentum{® along the 79, f9* (i, 5,k =1,--- ,dim g) is a
structure constant of an arbitrary Lie algebra g. This 3-algebra actually satisfies the fundamental

identity. The nonvanishing part of the metric is

tr(ua,v?) = 0%, tr(T%, T ) 0965 7. (A=0,1,---,d) (4.2)

Following [§], we will rewrite the BLG action and derive the action of Dp-branes (p = d+2).
The steps are summarized as follows. First, we derive 3d N = 8 SYM through the Higgs
mechanism [I4]. The difference from the original L-BLG theory is that the resulting D2-brane
action has a Kaluza-Klein tower. Then, we obtain the Dp-brane action with a rearrangement
of fields corresponding to T-duality. The worldvolume of Dp-brane is given as a flat 7% bundle

over the membrane worldvolume M.

In the remainder of this subsection, we look at the above procedure more explicitly. For the

Instead, we can consider /i as the index describing open string modes that interpolate the mirror images of
a point in S' = R/Z in the spirit of Taylor’s T-duality [38].
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3-algebra (4.1]), we expand the fields as

X' = Xy Ty + X g + X0
¥ = Wiy T + U ua + 0 0,
, 1
AM = Au(z )(]ﬁ)TT% A\ T%» + *A (i) U0 A\ Tﬂ + A

m ua/\T,%
1
2

p(im)

+ —Afug Aug + A Ug A up + (terms including v4). (4.3)

"

Each bosonic component has the following role:

o X (]im) : These fields become scalar fields corresponding to the transverse coordinates of
Dp-branes and gauge fields along the fiber direction.

o X4 : Higgs fields whose VEVs determine the moduli of 7% and the circle radius in the
M-direction.

o X ﬁl : Ghost fields that can be removed by Higgs mechanism.
® A,um) : Gauge fields along M.

The other bosonic terms do not show up in the following discussion.
Because the ghost fields X and v appear linearly in the action, these fields become Lagrange

multipliers and can be integrated out. This gives constraint equations for X4 and ¢4:
Mo, X" =0, THIA =0. (4.4)

As a solution, we choose a constant vector X4 = X4 and it determines the (d+1)-dimensional
subspace R4 c R8. R is compactified on T4 and VEVs M4 give the moduli of the T¢

compactification and the M-theory circle. We can represent the metric of torus 7¢ as

GAB = XA . XB, (4.5)
The covariant derivative becomes
(DMXI)(im) = (DMXI)(”ﬁ) — AL(”?L)/\IO — Z'maA'u(iﬁ)/\Ia, (4.6)
where
(DuX ")y = 0uX iy — F5 Aoy Xy
:A(zm) - ZmaA (im) + f ZAH(]m ) (ki) - (47)

The Chern-Simons term is written as

1
Les = iA/(z'm) A Fli —m) + (total derivative), (4.8)
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where Fim) = OuAyim) — OvAuim) — 1 A# (7)) Av(k,m—n)- Integrating A’(m), Chern-Simons
gauge fields obtain a degree of freedom and the usual F? term emerges.

The bosonic potential term is given by the square of a triple product

X7, X7 XK iy = —ima AN X [+ fPANIOX T x (4.9)

The square of this term gives

ab I plJxJ A0S K] pjky[10 5T 5 K]
69 mamy X5 PR/ X7 5 — iAONL X o PO X X)L
3|GO(X 7, XKP) - 2((X° - %), X7, (4.10)
where
P sta_ OPALNG + N PAON — (0 Xa) AONS + MOAL)
" [XO2 X 2 = (X0 - X7)2 ’
Xy = Mg X°. (4.11)

By collecting all the results, we obtain the D2-brane action with Kaluza-Klein tower. Then,

we decompose X! as

. G°
1J yJ 10,70 10 la
x'=plx +@>\ (X0 )+(—G00)\ +A > (4.12)

and regard the Kaluza-Klein masses m, with the derivatives of fiber direction —id,, we obtain
the kinetic term of the fiber direction and the interaction term in the language of the Dp-brane
worldvolume.

As a result, we obtain the following standard Dp-brane action2

Lpy=La+ Lpp+ Lx + Lypot,

1 d? - 5 F 2>
ETe / (7%\/5 (Fity + 29 Fualp + 9°°g" FapFea),
GOa dd A
Lpp = gam / ) LV /G (4N E,Fy),
1 d’y IplJpy wJ o abfy wIplJ J
==/ & )d\f(DXP D, X7 + g*D, X" P" DyX),
GO [ dly IK ¥ K pJL yL2
Lyt = =1 | ya VIR X PIEXAP, (4.13)

whose worldvolume is M x T¢ with the metric
ds? = nudatdz” + gapdy®dy?, (4.14)

where gqp, = (GG — GOG)~! is the metric of dual torus.

The tilde indicates that the fields are (34+d)-dimensional: ®(z,y) = 3 @5 ()™, PI = ¢ — NMAx] is
a projector into the subspace orthogonal to all XA, where 74 is a dual basis satisfying Mg = 54,
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4.2 Orbifolding the ABJM theory

The ABJM theory is a 3d N = 6 U(N) x U(N) Chern-Simons matter theory. This theory is
conjectured to describe the low energy physics of N M2-branes probing C*/Z;. The bosonic
action of the ABJM theory is given by

S— / | — (D24 DF 27 + (D WA DAY — v (Z,1W)
k. 1 24 1
+ e Atr(Ag)aVAg) + §A§}>A,<}>A§>

2 @) 21 ,2) 42) 42
— AP0, AT — S AP AP A )} (4.15)

where A = 1,2. Z# and W4 are bifundamental matter fields and their covariant derivatives

are defined by
A A . A cr7 A
D, Z* = 0,2 +iAV z*4 —iz*AD,
D W4 =g, W +iAPwA —iwAAD. (4.16)

In [13], we explicitly show that the original L-BLG theory can be derived from the ABJM
theory. Motivated by the agreement of the gauge structure of these two theories through the

Inoéni-Wigner contraction, we performed the following rescaling:

Z3h — ATz

Wt — At
By = (AE}) N AELQ))/? — ABy,
k— A"k, (4.17)

to the ABJM theory and took the A — 0 limit, where Z§' and W§! are the VEV of Z4 and
WA, Then, we obtained the action of the L-BLG theory. This scaling limit corresponds to
locate the M2-branes very far from the origin of the Z; orbifold so as not to feel the singularity
and simultaneously take & — oo. Thus, this procedure is effectively the same as the ordinary
S compactification and that is why we obtain the L-BLG theory, which is almost D2-branes
theory.

As explained in [§], the Extended Lorentzian 3-algebra (4.1]) can be regarded as the original
Lorentzian 3-algebra with a loop algebra. Thus, it is natural to presume that even the Extended
L-BLG theory might be derived from an M2-brane theory in a certain scaling limit. So which
M2-brane theory is appropriate? In [19], it was shown that the D3-brane action can be derived
by orbifolding the ABJM theory and taking a limit. Because the Extended L-BLG theory with
d = 1 also reduces to the D3-brane theory via the Higgs mechanism, these two theories might
be connected directly. The main purpose of this paper is to clarify the relationship between the
orbifolded ABJM theory and the Extended L-BLG theory.
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In the remainder of this section, we review the orbifolded ABJM action. By applying the
standard orbifolding technique [39] to the ABJM theory or alternatively using the brane con-
struction, we can derive various quiver Chern-Simons matter theories. Here, we see a particular

3d N = 4 theory whose bosonic action i3

2n
S:/d?’:c[—trZ{(D#Z(S))TD“Z(S)+(D#W( N DrW Y — 1,
s=1

koo - 2-1) | 20 49— 1—1) 4(2l—1
e Y { Al Do, Al )+§Aff DA@=D A
=1

N
éAfl)A,(}l)Ag?”} . (4.18)

21 (20
_ AL )9, AP~
The explicit forms of the covariant derivatives and bosonic potential are given by

DHZ(Ql_l) — 8/1Z(2l_1) + iAl(El_l)Z@l_l) _ Z‘z(?l—l)AA/(LZZ)7
Duz(2l) — auz(Ql) + iALzl+1)Z(21) - iZ(zl)A(2l),

W
DMW(”‘” _ GMW@Z‘” i iAEfl)W(%_l) _ iW@l—l)Affl—l),
D, W = 9, W 4 AGHW D — (2D AGHD), (4.19)

_ Ayt T T Ayt Byt C vt
Vbos = 3k2 Z [ Y5 Y3 0, Yol Yooy Y1 Yo + 300Y5 Y4 o0 Ya Vi 0ol 1 Yo

T T C T A 1 B T C T
+ 3trY2l YA,21Y2l+1YB,21+1Y21+1YC,2l+1 Yo 1 Y g o1 Yo 1 Y o1 Yo Yoo

A B c A B c
+trYAT,2z—1Y2171Y1£ 211 Yor— 1Y(J,£2l 1Yol 1+3trYAT,2z—1Y2171Y1;21—1Y21 IYCT’QlYQZ
A B c
+ 3trYj,2l—1Y2l Y 2Yol Yg‘zzY% +trYj1 21 Y3l Y];2ly2l YCT’,QZYQI

A c B c B
+ 4trY2171Y;,2l—1Y2171Y2,2z—1Y21 IYC o1 + 12trY5) YB 2lY2l+1YAT,2l+2Y21+2YC 2+1
A c B A c B
+ 12try2l+1yg,2z+1y2l YAT,21_1Y21—1Y(§,25 + 4trYsy Yg,zzY% ijlym YCT,2l

— 6trYy 1Y; o1 Yol 1Y/§ o 1Yol 1Yc a1—1 — 0trYs Yz;r’ Y2l YAT,2IY th 2
6trY2l+1YB 2l+1Y21+1YA 21+1Y2l C 21 6“Y2l YB 2Yo0 Yj,2ly2?+1YC,2l+l
- 6trY2l—1YJ;2lY2l Yj,zl—ﬁ/zz-lyctgz-l — 6trYz'Y}] 2[—1Y2l—1Y,:{,21Y2?YCT’,2l
- 6trY21?+1YBi,2l+2Y2?+2Y,:£,2[+1}/Q?YCT’,QI - 6trY2’?Yg’ 21— 1Y2?—1Y£,21Y§?+1th,2l+1} , (4.20)
where we used SU(2) doublets

A={z0, w0ty vl ={z0wh},  (4=12) (4.21)

3This is the “non-chiral orbifold gauge theory” described in [35] and we use their notation. This theory can
also be regarded as case II in [40] and the na = np case in [41] with alternate NS5- and (k,1)5-branes. The
“generalized ABJM model” described in [19] is obtained by interchanging our Z®Y and WV in @IR).
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for each link I. The quiver diagram of this theory is given in Figure 41l

271

”T@

Figure 4.1: Quiver diagram for N' = 4 quiver CS theory ({I8]). This theory has global SU(2), x
SU(2)e symmetry and the SU(2), part rotates the fields on the odd links and the SU(2). part
corresponds to the even links.

This theory has product gauge group U(N)?" and its moduli space is Sym™ (C*/(Z,, x Zy,)).
Zyy. corresponds to the original ABJM orbifold action,

y1_>62m'/nky1’ y2_>627ri/nky2’ y3_>627ri/nky3, y4_>€27ri/nky4. (422)

Note that in order to have a correct moduli space, as explained in [40], the levels of the Chern-
Simons terms in (4I8)) must be +k, not +nk. Another Z, action is given by

y 27rz/ny17 y2_>y2’ y3_>627ri/ny3’ y1_>y4_ (423)

This kind of further orbifolding is essential for deriving the Extended L-BLG theory from the
ABJM theory. In [I3], we obtained a circle by taking a limit of the original ABJM orbifold
action and rescaling the fields. Therefore, in a similar fashion, the emergence of an additional
circle is expected in a suitable limit of Z,, action. Naively, it seems that the more we orbifold the
ABJM theory, the more we have additional circles. However, in this paper, we only consider the

case for one additional circle, namely, T? compactification of M-theory. We show that a proper
scaling limit leads to the Extended L-BLG theory with d = 1.

4.3 Scaling limit of N/ =4 quiver Chern-Simons theory

Here we explicitly show how the Extended L-BLG theory with d = 1 is derived from a N’ = 4

quiver Chern-Simons theory (4.I8])). First, we take linear combinations for the gauge fields as
APD £ A2y (s € 72) (4.24)

and decompose the bifundamental fields into trace and traceless parts as Y = Yolyxny + Y.
VEV Y} is interpreted as a classical position of the center of mass of the multiple M2-branes,

and Y = Y,T% is a fluctuation around it. T is the generator of SU(N). Next, we rescale the
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n. (1 n._.(2 n. (3 ne (4
Yy -1y = §Yo( 7 @) §Yo( ) Y5 1oy = §Yo( ) Y5 a1y — §Yo( )
) e ) Y
vi 4" Y oA"Y e " m e " m
(20-1) \/ﬁ \/5 ’ (21) \/ﬁ \@ ) (20-1) n 5 (20) n 5’
1— l —)(2l— T Im
A/(jr)(g N _, ¢ A, A,(L )(20-1) _, 4 Aﬂ(m) (4.25)

27

and finally take n — oo. Here, ¢ = e n and multiplying ¢"™ corresponds to the Fourier
transformation. The normalization is determined by ), ¢m = ndm0. Recalling that this N/ =4
quiver CS theory describes multiple M2-branes at the singularity of an orbifold C*/(Zx x Z),
this scaling limit corresponds to locating the M2-branes far from the origin of the orbifold and
simultaneously making each Z,, Z, identifications into the independent circle identifications.
This is effctively the same as the ordinary 7?2 compactification. Therefore, we can expect that
the Extended L-BLG theory with d = 1 emerges from this limit.

First, let us check the kinetic term. The covariant derivatives (£I9]) are scaled as

Ilm
q 1 N 1 1 . 1 _
DuZ@—n = =5 90X + A, YL ) = 2msmAy oy Ve 4+ 2mid ) Y3 + O )],
S S PG R ) @ o 2)
+0o(m™),
L™, oo, 4" @ 1, 2m5m @)1
DyWai—1) — 7 [Wauy(m) + Zﬁ[Au(n)’Y(n_m)] tmd Aum)Yo
2T 3)t _
—z%ql A;(m)YO() +O(n 1)},
Lrg™, cwi, a" @t g, 2r(s+Dm 4, ()1
DuWiay — 7 [Wauy(m) + ZE[AN(")’Yv(nfm)] + RV Aum)Yo
2m Im 7/ (4t -1
i A Yy + O )] (4.26)
The O(n~!) terms do not contribute to the action in the limit n — oc.
In our notation, complex scalar fields are decomposed to real fields as
A .
Yo = Xt + Xt
(A4) _  vA o A-+4
vl =iX{,) - XA (4.27)

We note that hermitian conjugation changes the sign of the label m such as

y Ot _ _Z-Xém) _ XA+ AL

. A — Ay(em)- (4.28)

(m) —
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Combining (£.26),([#.27) and ([@.28), we can write out a rescaled kinetic term using real fields.
Let us compare this kinetic term with that of the Extended L-BLG theory given by

1

1 I I _ I I . I o I
—5 (DuX ) (D* X (1)) = = 50X (L) 0" Xy — 100X () [ Ay X))
1 I I / 10 I . I1 I
Y 10 1 I1 I
— 1A A X s Au(=m)] + mAG AT X iy Au-m)]
1 / 10\2 1 2 11\2 . / I0y 11
(4.29)
Then, we see that if we identify
MO = —or(xt, x2, X3, X8, X5, X8, X0, X8),
A= _op (sxg, (s+1)X2,sX3, (s + 1) X4, X3, (s + 1) XS, sXT, (s + 1)X§)7 (4.30)

both kinetic terms completely agree.

For the Chern-Simons term, we can show the agreement easily:

ko n[ gi-1 @21-1) | 20, @1-1) 4(21-1) 4(21-1) 2l @) 20 a1y 4(20) 4(20)
e [Ag 0, ATV 4 AR AP AT — A0, AT — S AP A )AA}

K wx 4(-)@- 20-1 A (o) @2 (21— -)(21-1
:%g AAL )(21 1)FV(A )+§e“ /\AEL )(21 1)141(/ )(21 1)A(A )(21-1)
k u)\ql(m+n) / ik u)\qlm / ! /
256” n Ay Foam) + 376” ﬁAy(n) v(8) AN m—n—F)
k 14
- 5& AA;(m)FM(_m), (4.31)

where Fﬁlil) = 8,,AE\+)(2FI) - (%\A,(,H(m*l) + i[Al(,H(Ql*l), Ag\+)(2171)]. Note that we have chosen
k =1 in the BLG side.

In the Extended L-BLG theory, VEVs A4 are related to the metric of two-torus as (&.5).
By constructing the metric GAP from [30), we see that the metric components are connected

as
G = —5(s +1)G% + (25 + 1)G". (4.32)

Thus, in the scaling limit of the N/ = 4 quiver CS theory, only a specific class of the 7?2
compactification is realizable. This is because we have chosen a particular Z, orbifold. Owing
to the constraint (£32)), the complexified coupling constant 7 of the resultant D3-brane theory
is limited to the one that depends on only one real variable. We will return to this point in
Section 5.

Now, let us check the potential term. By decomposing the matter fields YZA into the trace
part YOA and the traceless part YIA, the bosonic sextic potential term becomes V3,5 = Zgzo v

bos

where Vb(o‘? contains s Y fields and (6 — s) Y fields. It can be easily checked that V!9 and v,*)

bos bos
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are indentically zero. Since Vb(osg scales as n3~ 2 1 = 52 in our limit (#29), Vb(o? and Vb(os)
vanish. Note that there is an additional factor n that comes from the relation ), qlm = N0
Therefore, the remaining terms are Vb(oi), Vb(oi)’ and Vb((i).

First, we consider the scaling limit of Vb(oi)‘ In this case, we can utilize the result in [I3] and
obtain the scaling limit easily. The key point is the fact that the relative difference of label [

becomes (’)(n_%) under the expansion ¢/™ = 1 + % +O(n=2):

Im

T = dYon) = O™ %), (4.33)

(Yar — Ya(ip) —

(2)

This means that in the scaling limit of V, /, the relative difference between the labels of

?’21 (or Ygl_l in the odd case) does not contribute to the result. To show this explicitly, let

us consider the scaling limit of the following substraction:
YouYy oY Yoy (Yauin — Ya) Yoy — O(n™") = 0. (4.34)

Note that if the numbers of Y ; and Y, are different, the situation entirely changes. Indeed, for
the scaling limit of V(3) and V(4) the relative difference between the labels of f’l is essential. The
relation like (Z34) holds in all the terms of (Z20). Therefore, even if we replace all the Y, 5(1+k)—

with Y3 | (and Y2(l gy With Y5}) in (E20), the resultant potential gives the same scaling hmlt

as long as we focus on the Yj;-squared term. We denote this new potential as V'

472 t Ot .
Vi=-— 3k2[trY YA,2ZY YB 2ZYZYC,21+3UY YA 21Y YB 21Y21 1Y(121 1

B
+ 3trYs YA,2ZY2l71YB,2l—1Y2171YCT‘,2Z—1 + trY2l71YA,2l—1Y2171YB,2Z—1Y21 1Yc 21—1

A B c A B c

+trYj,zquzz—lYB1 211 Yol 1YcT o1—1Y2i—1 +3trY;{ 211791 1Y5i,2171Y21—1Y0T,21Y21
T A T C
+3trY o 1 Y5 1YB ned YC’QZYQZ +trY, e YB Yol Yc 21 Yo

A c B c B
+ 4trY2l—1YBi,2l71Y2l—1Yj,Zlflyél—lYCT‘,Qlfl + 12605V 21Y21—1Yj1 AL YCT‘,2171
A c B A C B
+ 12t1"Y2zf1Y£3,21—1Y21 Yj,21—1Y2171YcT*,2z +4trY5 Y Yol Yj,zzyzz YcT 2

- 6’51”3/2’?—1Yg,2l—1y2?—1y,l,21—1Y§?—1th,2l—1 — 6trYs'Y} 2lY2leY,l,2lY2?YCT',2l
— 6trYy) 1Y1_£ 20— 1Y2lB71Y11,2171YQ?YCT‘,2l — 6trY3' Yy 2Yo Y,i o Yol 1YC 201
— 6trYy Y 2 Y Yj,zl—1Y2?—1Yg,m—1 — 6trY;) Y}, 11 Yol IYA L) ng
- 6tr}/2l—IYB,QlYQlngj72l—1Y2?YCT’,2l - GtrYleY;gz—1Y21—1YA,2zY21—1Yc,21—1 : (4.35)

V' is convenient because it can be simplified. If we rewrite each field as
Y1 =Y, Ya—= V7 Yo, =¥, Y-V (4.36)
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V' becomes
47T2 A/ / C/ A, : C/
- 3k2 [Y} YL Yy YOV + Y VY Y Y
+4Y1A'YE/,ZYEC'YL,ZYZB/Y&Z - GYZA,Yg,le}B/YAT,JYlC/Yg,J} , (4.37)

where A’, B’,C" =1,---,4. This is just the original ABJM potential with an extra label [. The
scaling limit of the original ABJM bosonic potential is already obtained in [I3] and the result is

tr(X))2([PHEXE, pTEXT])2, (4.38)
)

Using this result, we can obtain the scaling limit of V},(OQS :

2
2 T
v — o (XPPEXE) PIEXE ). (4.39)

bos

This agrees with the last term of (Z.I0]).

Next we consider the scaling limit of Vb(;i) and ‘/b(oi)’ As before, we can decompose V' as
V= Zgzo V'), Using the same argument, we see that only V', V/G) and V' remain in
the scaling limit.

In (@38), more insertion of X to XX gives zero. Therefore, V' () and V'™ are zero. This
means that the scaling limit of Vj,; — V' is the same as the scaling limit of V})(O? + Vb(oi). It is
convenient to consider Vs — V because it is much simpler than Vj,, itself. The explicit form

of Vs — V' is given by

Vios — V= Vi+Va, (440)
where
Vo 472 ayvA yi o yB oyt yC yi Yoyt
1= —@tr[ 21-1t A 21—1121-1 B,2l—1( 21-27C20-2 7 “2 0721)
c B A /A
+ 12Y5; Y2721_1%5—1Y&2z(Y21+1Y;,2l+1 - Y2l—1YBi,21—1)
A + B t C 1 Cry T
—6Y5 Yo Yo 1Y a0 (Yo oYoo o — Yo Yo o)
C A
—6Yy Yj,21_1Y21—1YCT,21(}3?+1Y;,2l+1 B Yf—lygv?l—l)]’ (4.41)
and
47? Avt Byt C 1 ¢ yi
Vo = —5tr[3Yy YauYa Yp o (Yor1 Yoo = Yai1 Yoo 1)

3k
c A A
+ 123/2171Y/T1,21Y2?YCT,2171(Y2172Y1;2172 — Yy YJ;QZ)

AT By T C t C T
—6Y5 Yy o) Yo Y o (Yori1 Yoo — Yoo1 Yoo 1)
c A B B
- 6Y25—1Y;{,21Y2l th,zz—1(y2l—2yg,2z—2 — Y5 Ygzl)]- (4.42)

Note that V; and V5 can be translated into each other by exchanging YQ‘? for YQ‘?_I and YQ’?_Q for

YQ’?H. Since the rescaling rule (£23]) is written as

Im v 2A Im y2A-1 Im v 2A-1
q Ym A q Ym A m A md Ym
YA, sgmdi_m yA _ gmd
20—2 204+1 \/i

ViVE Ty e

Yy — , (4.43)
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the above translation corresponds to a translation between Y;24 and Y,24+1,

Therefore, to obtain the scaling limit of V7 and Va2, we only need to calculate one of them.

The other one is obtained from the translation.

(4)

With the above simplifications, the scaling limit of V} ’ can be calculated more easily. The

result is

m?(167%)

(chchXQA 1X2A 1X2B lXQB 1
2

(3,;m) “*(i,—m)
+ch 1ch 1X§AX3AX(zm)X(z—

chXgCXZA 1X2B 1X(21Am)1X(2iB__nll)

2C—1y2C—1 324 2B
m) XO XO XO XO X(z m)X(z m)) (444)
This is just the first term of (AI0) with the assignment (£30). To see how the above terms
come from the Extended L-BLG potential, it is convenient to use an expression

)\[IO)\JIXK] )\[IO)\JlXK]

(4.45)
and substitute (£30) into this term. Then, we obtain (444). Note that the result does not
depend on s, because the s-dependent part of A\'! is proportional to A’° and the indices I, J,
and K are antisymmetrized so that s dependent terms are cancelled.

3)

Similarly, the scaling limit of Vb(o . is given by

@2m)*tr{(2m + n) X3 XA XGP XA X2C X2

+ngCXgCXQB—1X2A 1[X2B 1 Xz.?n 1n] " nXgCXgB—ngB—lXEnA 1[X20 ijsm 1n]
(2m—|—n)X20 1X2AX2BX2A[XQC 1 X%ﬁl n]
_ngC—ngc—lngXslA[X%B’ XEA ] + mXQC 1X2BX2BX2A[XQC 1 Xzfn n]}
(4.46)

Note that the overall signs of Vl(g) and V2(3) are opposite owing to the factors ¢=™ in (EZ3).
(#40) agrees with the second term of (£.10).

Fermionic sector We have seen the agreement of the bosonic sector. Here, we consider the
fermionic sector of the N' = 4 quiver CS theory and confirm the emergence of the Extended

L-BLG theory. The nontrivial part is the fermionic potential.
In the Extended L-BLG theory, the fermionic interaction term is given by

My - . 1_
2Py TN O )y + 1¢(i7ﬁ))‘]0 (X7 T 1] —m)- (4.47)

Lint = 4

Substituting ([A.12]) into (4.47T), we can indeed obtain the fermionic sector of the Dp-brane action.
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On the other hand, the fermionic potential of the N' = 4 quiver CS theory is given by
1L A B A B
Vierm = _Ztr [Yj,2lfly2lflqj2lil\IJBQZ*1 + YAT,2171Y2171‘I’21T‘I’B,2l

B B
+ Y2,2l}31?q12[i1\113,21—1 + YX’QZB’?\IIZZT\I/BW

A T By A + Bt
=Yy Yy 1 VB2V — Yo Yy 00 VB2 ¥y
A B A B
— Yy Yj,ﬂqj&?lﬂq’mil - Yy Yj,gl‘l’B,zl‘Pz[T
A B A B
+ 2Y2l—1yg,2l‘I’Ay2l‘1’21T—1 +2Yy Ygigl_l\I’A,Ql—l‘I’le
A B A B
+2Yy Yg,zl‘l’AQHl‘I’zzL + 2Y2[+1Y1;21+1‘I’A,2I\I/21T

A A
- 2YZ,21—1Y2118—1‘1’21T‘1’B,% - Qyj,zzyé?‘l’zzh‘l’ﬂﬂ—l

T B gAt T B At
- 2YA,21Y21+1‘I’21+1‘I’B,21 - 2YA,2I+1Y21 Vo VB o1

_ (ABCDyt

AB _CD
A,zl—1‘1’0,21—15/;,21—1‘1’&21—1 — B Py ]

A,Zl\I’CQlYBi,Ql\IJD,Ql

AB CD AB CD
2 Yj,2l—1‘P072l—1Yg,21‘IjB,2l+26 € Yﬁ,zz+1‘1’8,2chT,zz‘I’D,2l+1

C C
+ 6AB€CDY2‘?_1\IJ2ZT_1Y2?_1\II£T_1 + fABEC'DYf?\I}QZTYQJIB\IJZJf
B D C B
— 2eapecn Yy U VUS| — 2eapecpYi) Uy YOI (4.48)
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where ¢ = —e19 = 1 and we used doublets

YA ={Z0, w0 v = (-1 lem A0 ()l DT (A=12)  (4.49)

The label [ of () and w® was determined from the following orbifold projection of the n.N x nN
ABJM fermions:
0 ¢ 0 w@n—=1)

= 0o . , wp = w® 0

C(Qn—l) 0 w(?n—B) 0

CQ = dlag(C(Qn)a C(2)7 U 7<(2n—2)) ’ W2 = diag(w(Qn)vw(Q)a e 7w(2n—2)). (450)

Each ¢® and w® (l=1,2,---,2n) are N x N matrices.

Now, we investigate the scaling limit of (4.48). The appropriate rescalings of the fermions

are given by

(2) (1) (4) (3)
Im U Im U (1-2)ym U Im U
1 q m) 1 q (m) 2 q (m) 2 q (m)
\I/(2l71) - \/ﬁ 9 \II(QZ) - \/’Tl 9 \IJ(Qlfl) - \/ﬁ 9 \P(Ql) - %T (4.51)



In analogy with the bosonic potential, after the decomposition Y(’S = YOAl NxN + }7(’3, the
fermionic potential becomes Viepy, = Zi:o Vf(szm, where Vf(szm contains s Yy fields and (2 — s)
Y fields. Obviously, V;2),,

and V2

ferm:*

vanishes in the limit n — oco. Thus, the remaining terms are Vf(elgm

First, let us consider the Vf(e272m term. For simplicity, we consider the case where only the

1 2 . . . .
YO( ) and YO( ) are nonzero. Then the surviving terms in the limit n — oo are summarized as

2
dr*m 2y Py M ulu® vy @ gy
oy, a8 vy | wm

After the decomposition of the fermions into the 2-component Majorana spinors as

W A(m) = IXA(m) = XA+4(m)> (4.53)
we obtain various bilinear terms of X1(m), -, X8(m)- Using the appropriate Gamma matrices,
the assignment (430), and the identification w(j;n) = (Xip(m), e ,X;{(m)), we can show that these

bilinear terms agree with the first term of (£.47]). The explicit forms of the Gamma matrices are
written in the Appendix.

As for the Vf(elgm
just need to consider whether the index [ of YlA and \Ilf‘ is odd or even, namely, we can replace
all the Y/‘ (I € Z) with Y2‘?_1 or YQ’?. This denotes that the fermion potential of the original

ABJM theory with the additional labels !

term, the situation is the same as the Vb(fs) term. In the scaling limit, we
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+ e BOPY L W Y Wp ) — eapepY 00T, (4.54)

and the ij;)m term become coincident in the scaling limit. Therefore, using the result in [13]

that the ABJM fermionic potential scales as

OXG[X7, Ty, (4.55)

(1)

o, bETM is given by

we can say that the scaling limit of the V.

7T —
—%w(m)Xé[XJ, Cry9%](—m)s (4.56)

where w{m) = (Xr{(m), e ’XsT(m))' This agrees with the second term of (£.47]).

Therefore, we completely verify the emergence of the Extended L-BLG theory with two
Lorentzian pairs from the scaling limit of the A/ = 4 quiver CS theory. This means that we
obtain a concrete prescription for gaining D3-brane theory from the ABJM theory, because the
Extended L-BLG theory with d = 1 can be reduced to the D3-brane theory.
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4.4 Applications to the other quiver Chern-Simons theories

Thus far, we have only discussed a particular N' = 4 quiver CS theory (£I8). However, by
orbifolding the ABJM theory, we can obtain infinitely many quiver CS theories. Thus, here, we

apply our scaling limit to various quiver CS theories.

(I) C? x C?/7Z,

The Z, action [#23) was of the C? x C?/Z, type. As another example of this type, let us
consider the following Z,, orbifolding action®:

yl o @2milngl 2 =mifng2 33 44 (4.57)

This preserves N/ = 2 supersymmetry and SU(2) global symmetry. The covariant derivatives

are

DMZ(ZZ*U _ 8MZ(2’*1) 4 z’Affl*UZ@l*l) B z‘Z(Ql*I)Af”,
DHZ(2Z) — auz(Ql) + ZA/(EZ—}—I)z(Ql) _ iz(Ql)Al(fl—Q)’
D#W(2l—l) _ aMW(Ql—l) + iAl(L2l—2)W(2l—1) _ iW@l_l)Agl_l),
D, W@ =9, W 4 AGDW ) — D A@HD) (4.58)

where [ = 1,--- ,n. The Z@) W=D parts are changed from the N' = 4 case (£19). Figure
is the corresponding quiver diagram.

Figure 4.2: Quiver diagram for case (I).

In this theory, the Chern-Simons term is unchanged from the N = 4 case. Thus, its scaling
limit is completely the same as that of (£31]). As for the kinetic term, the covariant derivatives

are scaled as

Im Im Im lm
q @ . .4 ) 27(s + 2)mq (2)  .2mq (2)
DuZiary = =0 ) + 1 oA Yin )] = =2 Auem Yo~ 175 A Yo
—Im Im Im
q @), .4 @)t 2m(s + 1)mq (3)t
D W1y — maﬂy(m) T Z\/ﬁ[Au(n% Y(nfm)] + V2n Aum)Yo
2mg'™ (3)f
i A0 (4.59)

“This is the “chiral orbifold gauge theory” described in [35].
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Figure 4.3: Quiver diagram for case (II)-(i).

Again, through the assignments

MO = —2m(XJ, X3, X3, X3, X5, XG, X7, X5),
N =~ (X3, (s + 2) X3, (5 + 1XE, (5 + 1) X, X5, (s + 2) X8, (5 + DXE, (s + 1)X5),
(4.60)

we see that the kinetic term completely agrees with (4.29). The constraint for the metric of

two-torus is calculated as
GHM = —5(s +1)G% + (25 + 1)G" + 872[(X3)* + (X§)?]. (4.61)

The difference from the previous case is an appearance of a term (X3)% + (X§)2. This indicates
that we can cover a larger parameter space of the coupling constant 7 than the N' = 4 quiver

CS theories, as we will see in Section 4.

(IT) C x C3/7Z,
(i) Now, we consider the Zy, action given by

yl_)eQﬂ'i/2ny1’ 2_>€27m'/2n 27 y3_)€27ri/ny3’ y4_>y4. (462)

Y Y

The quiver CS theory based on this orbifolding also has N/ = 2 SUSY and SU(2) global sym-
metry. The quiver diagram of this theory is given in Figure The covariant derivatives are

given by

Dﬂz(?lfl) — auz(Zlfl) + ,l‘Al(flfl)Z@lfl) . iz(Qlfl)AELZl),
D2 = 9,2 4 ARV 7 _ ;7D 4@
D#W(Zl—l) — a‘uw(m—l) 4 iALQl+2)w(2l—1) _ Z.W(zl_l)Al(El_l),
D, W@ =9, W 4 AGDW ) — (2D 4@ (4.63)
where [ = 1,--- ,2n. The Z@) W=D parts are changed from (#19). The Chern-Simons term
is unchanged from the one in ([£I8) except that [ runs 1 to 2n.

In this case, we have to change the scaling limit (£.25) slightly. Because we took a Zay,
orbifolding, we must change n to 2n in ({25 and redefine ¢ as ¢ = e3n . Under this limit, the
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CS term of the Extended L-BLG theory is properly derived. The covariant derivatives are scaled

as
D.Z ¢ L0,y D +i i[A v - 2msmg™ v PLLUY v
ne(20) = \/7 m) \/ZR n(n)> ' (m—n) \/ZR n(m) \/47 p,(m) ’
—Im Im Im
q @)t .4 (3)t 27(s — 1)mgq 3)t
DuWer-1) = 7= 0n¥ gy + 1 =l Yoo ]+ =72 Auem Yo
27”1 y @1
= Au(m) ] (4.64)
Under the identifications
MO = —or(X}, X2, X3, X8, X5, X8, X{, X8),
AL = —277(5X3, sX2, (s — 1)X3, (s + 1) X8, sX3, X8, (s — X7, (s + 1)X§>7 (4.65)

we can show the agreement of kinetic terms. The constraint to the 72 metric is
GHY = —5(s +1)G% + (25 + 1)G" + 872[(X3)? + (X{)?). (4.66)

Note that we have a degree of freedom that corresponds to tuning [(X3)? + (X{)?] as with the

case (I).

(ii) Next, as another example of the C x C3/Z,, type, we consider the Zg, action given by

y1_>€2m'/6ny1’ y2_>e27ri/3ny27 y3_>€2m'/2ny3? y4_>y4' (467)

This orbifold projection also preserves N = 2 SUSY, but the remaining global symmetry is less
than before. The quiver CS theory obtained from this orbifold action has the following covariant

derivatives,
D'U‘Z(Qlil) _ auz(Qlfl) + iALQl*l)Z(Zlfl) . iz(Qlfl)AE?l)?
Duz(Ql) — 8uz(2l) + iA/SQl—l)z(Ql) - iz(Ql)Af?l—i-Q)’
D#W(2l_1) _ O“W(%_l) 4 iA}(El-f—4)w(2l—1) _ iw(Ql—l)Al(El—l)7
D, W =9, W 4 AGDW D) — (2D 4@ (4.68)
wherel = 1,--- ,6n. Again, the Z@) W=D parts are changed from (4.I9). The corresponding
quiver diagram is given in Figure [4.4]
For the Chern-Simons term, under the scaling limit (£25]) with n being replaced by 6n, the

agreement between both theories is easily shown as before. For the kinetic term, the covariant

derivatives are scaled as

Im lm Im
q @ . 4 2) 2m(s — 1)mg"™ @, 27" L@
DyZ ) — \/maﬂy(m) + Zm[Aﬂ(n)’Y(m—n)] - J12n — = AumYo" +i \/@AM(W)YO ’

—Im Im
q @)t , . g @)t 27 (s — 2)mg'™ 3)t
DulWai-n = ¥y 47 g Wt Yoo =9 7 Aum Yo

2mg'™ (3)t
_Z\/mAu(m)Yb '

(4.69)
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7(2)

Figure 4.4: Quiver diagram for case (II)-(ii).

The agreement of kinetic terms is achieved using the assignment

)\IO = —27['(X[%7 Xga ng XSLv Xg’ Xg)’ Xg’ Xg)’
Nt = —2r (sX8, (s = 1)XF, (s = 2)X8, (s + 1) X3, 5X3, (5 = DXE, (5 = 2)X0, (s + 1) XF).
(4.70)

In this case, the metric of T2 is constrained to satisfy
GH = —5(s + 1)G% + (25 + 1)G" + 872{(X2)? + (X5)?} 4+ 2472 {(X3)? + (XD)?).  (4.71)

Once again, we have a degree of freedom that corresponds to the sum of VEV squared.

(II1) C*/Z,

Finally, we consider the C*/Z,, type. When we consider the Z,, action given by
yl - e271'@'/ny17 y2 _ 627ri/ny27 y3 _ 6727ri/ny3’ y4 - 6727ri/ny4’ (472)

N =4 SUSY and SU(2) x SU(2) global symmetry are preserved. The covariant derivatives are
given by

D,Z® = g, 7= 4 z’ALQl*l)Z@l*l) _ iZ(Ql*I)Af”,
D,z = 8“2(21) i z’A,(fl_l)Z@l) _ iZ(Ql)ALQZ)’
DMW(21—1) _ aMW(Ql—l) T iAL2l—2)W(2l—1) _ iW(zz—l)Al(?lH)?
D, W =9, W 4 AQ2Ww e — @) ARD, (4.73)

where [ = 1,--- ,n. In this case, only the Z(=1 part is unchanged from @I9). The quiver
diagram of this theory is given in Figure

The CS term and its scaling behaviour are exactly the same as (£.18) and (£31]), respectively.
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Figure 4.5: Quiver diagram for case (III).

On the other hand, the covariant derivatives are scaled as

Im lm Im
g_ @ 4,4 (2) 2msmg (2 27Tq
DMZ(QZ) — \/ﬁau}/(m) + Z\/H[A#(n)yyv(m_n)] - TA (m)Yb \/» Aﬂ(m
—Im . Im s+ 2)m - o Im
DuWg_1y — qT@MY(S;))T —Hq%[A“(n), AU (£ iy @ 2T YO,

2
)Yo( ),

\/ﬁ M(m) \/ﬁ u(m
—Im lm ot 92 2 Ilm
DuWep — L0,y i gy @t gy (s+2mg™ @i _.27mq YOt

f (m) \F w(m)r  (n—m) \/ﬁ N(m) -t \/ﬁ u(m

(4.74)
Using the identifications
)‘IO = _27T(X(%aX§aX37X§7X87X8?X57Xg)7
M= o7 (SX&, X2 (s+2)X3, (s +2) X7, sX5, sXS, (s +2) X7, (s + 2)X§), (4.75)

we can show that the kinetic term of the Extended L-BLG theory emerges precisely. Therefore,

the T2 metric is limited to satisfy
G = —5(s +2)G% + (25 +2)G". (4.76)

In this section, we checked the emergence of the Extended L-BLG theory from the various
quiver CS theories for the kinetic and CS terms. Naively, whenever an additional circle exists,
independently of how to realize it, the Extended L-BLG theory and D3-brane theory are expected
to emerge. Therefore, it is just conceivable that independently of how the further Z,, orbifolding
acts on C*/Z;, namely, regardless of the remaining SUSY and global symmetry, the orbifolded
ABJM theories lead us to the Extended L-BLG theory from our scaling procedure. All the
examples we have studied display positive signs for this expectation. Further research in this

direction may be interesting.

4.5 T? compactification and SL(2,7) transformations

We have seen the emergence of the Extended Lorentzian BLG theory from the scaling limit of
quiver Chern-Simons theories. Our procedure realizes ordinary T2 compactification. However,
starting from the orbifolded ABJM theory, the resultant metric of two-torus GAZ (A, B = 0,1)

is constrained. This means that after the reduction to the D3-brane theory, the realizable
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parameter region of the complexified coupling constant 7 is also limited. In this section, we
focus on this constraint and a realization of SL(2, Z) transformations.

In section 2, we have seen that the Extended L-BLG theory with d = 1 is reduced to the
D3-brane worldvolume theory through the Higgs mechanism. The gauge sector of the resultant

D3-brane action is given by

1 dy 5 G dy _ ~
Lat+Lpp=—17m0 /27r VgHE” + Ye /%FF
1 1 ~
= / dy |Tm(7)F? + ~Re(1)FF |, (4.77)
8 2
where
F? = Fil/ + 2911FM1FN17
FF = (4y/ g e F 1 Fy . (4.78)

Thus, the complexified coupling constant 7 is represented as

G Jgu GOoLY 2

Note that we have chosen k& = 1.

GAB

In the previous section, we have seen that the 72 metric is constrained to satisfy a

certain relation. Now, we substitute these constraints into (£79]) and investigate the parameter

space of 7 and the SL(2, Z) transformations.

(I) N =4

First, we consider the N/ = 4 case. Substituting (430) into ([A79)), we obtain

GOl o1 Go1
T:_GW)+Z\/_<G()(’_S) ), (450
where
GO (R (X (X + (X st
G00_8+ (Xé)z : ( . )

This denotes that in a fixed s, namely, in certain linear combinations of the gauge fields (£.24]),
the realizable parameter space of 7 is limited to the one that depends on only one real parameter,
the ratio of the VEVs G /G%. Remarkably, s appears in 7 only through the real part. When
we shift s as s — s+a (a € Z), T changes as T — 7+a. Therefore, the linear combinations of the
gauge fields and the T-transformations have one-to-one correspondence. This is an extension
of the work in [19]. This correspondence also works in all the other examples (I), (II), (III) in

Section 4.

43



If we define 7 = x + 1y, the realizable region of the coupling 7 is represented as

25+ 1\2 1
<:z—i— S; > +y' =7 (4.82)

This is an upper part of a circle of radius 1/2 whose center depends on the combinations of
gauge fields.
Similarly, if we consider the constraint (L70), the realizable parameter space of 7 is repre-

sented as
(z+s+1)*+y2=1. (4.83)

Again, 7 becomes a one parameter curve.
In both cases, even if we move all the values of VEVs X{ and indices s (s € Z), we cannot

cover the full parameter space of the complex structure moduli 7.

I N =2
In the N' = 2 case, the situation slightly changes. Now, 7 is represented as
¢ (G -) [Sn-tv] +4, (w51
where
8r2((X2)2 + (X§)2)/G" for (G50),
A=< 8m3(X3)? + (X§)?/G™ for (4.60), (4.85)

B {(X5)? + (X0)*} + 24n*{(X5)? + (X()*})/G* for @TD).

Now, owing to the existence of the term A, we can move a larger region of the complex structure

7 than in the N/ = 4 case. The realizable region of 7 is represented as

25 +1\? 1
(x—f- 5; ) +yP =+ A (4.86)

Compared with case (I), we can change a radius of a circle by tuning A. Therefore, moving all
the values of allowed x (= —G°'/G"), s (s € Z), and A, we can realize the parameter space of
7 more widely. Hence, it seems that the one parameter dependence of 7 in the previous case is
the reflection of the fact that 3d N/ = 4 SUSY is very restricted.

Finally, we comment on the A term. Because A is bounded above, again the whole region
of the complex structure moduli cannot be reproduced. Naively, even if we consider the Z,
action that preserves no supersymmetry, the situation seems to be unchanged. This is slightly

mysterious and more work is required.
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Chapter 5

Lie 3-algebra in six dimension

5.1 6-dim (2,0) theory with Lie 3-algebra

In this section we consider the 6-dim (2,0) theory with Lie 3-algebra proposed in [24]. This
model was proposed for the purpose of constructing multiple M5-branes. Here we check the
consistency with various string dualities [25, 42]. The proposed set of equations of motion
(EOM) is given by

DXL HIOn BT, (0 X (0 X X = 0
“D, v, + T, CH X1 ¥, = 0
DyHypota + %WPMT[CA, xI, D" x1, + %euypoAT[cA, O,I70], = 0
Fule—CPHupaf ™ = 0
D,.CY = 0, (5.1)
and constraints
CtD, XL fe®, = CPD, Y f%, = C*DyH,peaf %0 = CLCY P, = 0. (5.2)

This theory has 6-dim A = (2,0) supersymmetry and nontrivial gauge symmetry, so this for-
mulation is expected to be a new approach to understand the multiple M5-brane dynamics.
Here the indices I = 6, - - - , 10 specify the transverse directions of M5-branes and p,v =0,---,5
indicate the longitudinal directions. a,b,--- denote the gauge indices.

The field contents are as follows: X! are scalar fields, ¥, is a spinor field, Ay ap is a gauge
field, and C% is a new auxiliary field. It is well known that the 6-dim N = (2,0) tensor
multiplet contains the 2-form field By, , besides X! and ¥,. In this theory, only its field

strength Hy,p0 = 30}, B appears and it satisfies the self-dual condition

vpla
1 oAT
Hw/p,a = gﬁpupakrﬂ a- (53)
The covariant derivative of the fields ® = X!, ¥, H, uvps CF is defined by

(Duq))a = auq)a - idebaA,u,cd(I)b s (54)
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where the notation is slightly different from the original one [24], so that the gauge field A, 4

becomes Hermitian.

Lie 3-algebra In general, Lie 3-algebra is defined with the totally antisymmetric 3-bracket
and the inner product
[Ta’ Tb, TC] — fabchd ’ <T(z’ Tb> — hab , (55)

where f9¢; is a structure constant and h® is a metric. For the closure of gauge transformation,

the structure constant must satisfy the fundamental identity
fabcffdefg + fabdffecfg + fabeffcdfg _ fcdeffabfg ) (56)
Also, we impose the invariance of the inner product
fabcehed — 7fzzbdehec7 (57)

which is required when one will write down the Lagrangian in the future. Unfortunately, La-
grangian of this nonabelian (2, 0) theory cannot be written down at this stage, since the self-dual
2-form field By, , cannot be properly defined. Although this is not the matter with our present

discussion, this must be a very important subject of future research.

Symmetry transformation The nonabelian (2,0) theory is invariant under the gauge sym-
metry transformation defined by

5AX¢£ = ]\bale ) 5A\I"a = ]\ba\pba 5AH;U/p,a = ]\baHp,up,ba

SACH = AP, Cl )AL, = DA, (5.8)
where Auba = Ayca fedb, and A, = Ay fedb,. And it is also invariant under the 6-dim N =
(2,0) supersymmetry transformation

o X! = qerlw,

1
12
SeHuvpa = 3i€l),, DV, + i€l Typ0[C7, X, V],

6 AL, = del,, Cr W e,
5.CH = 0, (5.9)

1
6.0, = TFTID, X! e+ FW,,Hg‘”pe—il“uFIJ[C“,XI,XJ]ae

where € and U are 32-component Majorana spinors under the chirality condition
LPorogase = €, Loiogas ¥ = —W. (5.10)

Thus the nonabelian (2,0) theory is equipped with the expected symmetries of multiple M5-
branes. The main purpose of our work is to explore its properties through the reduction to
branes in superstring theory and to clarify the availability of this formulation. In the next
section, starting from this theory, we will show that this theory actually reproduce the multiple

Dp-branes.
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5.2 Dp-brane theory from nonabelian (2,0) theory

First we briefly review how the nonabelian (2,0) theory reproduces D4-brane action [24]. In this

case, we use the Lorentzian Lie 3-algebra {T% ug,v°} defined by

[U[), Ta) Tb] = ifabCTC ’ [Ta, Tb7 TC] _ _ifachO ,
(Ta’ Tb> — hab’ <U0, UO> =1, otherwise =0, (5'11)

where T are generators of the ordinary Lie algebra, so this algebra is a central extension of
Lie algebra. Since ug — av® (o > 0) is a negative norm generator, the ug- and v%-component
fields become ghosts. Then we have to remove them in order to obtain a physical theory. It
is well known that this can be performed by the new kind of Higgs mechanism [6] [14]. In this
mechanism, we assign a VEV (vacuum expectation value) to the up-component field without
breaking gauge and supersymmetry. When we set a VEV for the longitudinal field Cf;,, D4-brane
worldvolume theory can be reproduced from the nonabelian (2,0) theory. In BLG theory, on the
other hand, we can obtain D2-brane worldvolume theory, when we set a VEV for the transverse
scalar field Xio. In both cases, the direction specified by the VEV becomes compactified and
then M-branes are reduced to D-branes in type ITA superstring theory. In fact, the VEV can
be interpreted as the compactification radius of the M-theory direction.

In this section, we show that the nonabelian (2, 0) theory can also reproduce Dp-brane system
(p > 4) on a torus TP~%. We realize this by using the central extension of Lorentzian Lie 3-
algebra, which is called the generalized loop algebra. The number of its centers corresponds to
the dimension of compactified torus. It is already known that BLG theory with this algebra
reproduces Dp-brane system (p > 2) on a torus 7P~2 [7, [§]. Therefore, the following discussion

is similar to BLG theory case.

Setup

Now we start with the generalized loop algebra {T%, u4, v} [7, 8] defined by

[0, Ua, Th] = ma T
[u ] MO 4 09 ifijkTT]%+ﬁ
0
(T TJ T*] —if 00
(T TJ> = h90s.n, (ua,vB) =068, otherwise =0, (5.12)

where n‘i,ﬁ,fe 7% A=0,1,---,dand a = 1,--- ,d. f9; (i,j,k =1,--- ,dimg) is a structure

constant of an arbitrary Lie algebra g defined as
[T, T9] = ifi,T*. (5.13)
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It can be easily shown that this Lie 3-algebra satisfies the fundamental identity (£.0) and the
invariant metric condition (5.7)). This algebra is characteristic in that the generators u4 are

A

not produced by any 3-brackets, i.e. [x,*,%],, = 0, and the generators v are the center of

A

the algebra, i.e. [v”,%,x] = 0. According to systematic discussion in [7], these conditions are

necessary if we want to remove ghost fields by the Higgs mechanism.
Actually, this algebra can be regarded as the original Lorentzian Lie 3-algebra (G.11]) with

an infinite dimensional Lie algebra {T%, uq, v*} given by

[ug,up) =0, [, Ts] = ma T, [T, T2 = mav® 707 +if I, TE -,

(TL T9) = h6z, 7, (uq,v’) =36, otherwise = 0. (5.14)
This is a higher loop generalization of the Kac-Moody algebra, and can be regarded as a Lie
algebra on a torus T¢. As we mentioned, the nonabelian (2,0) theory with Lorentzian Lie
3-algebra reproduces D4-brane theory. In our case, in the following discussion, we define the
higher dimensional fields by collecting the infinite Tfﬁ—component fields and using Fourier trans-
formation. In other words, we interpret the index m € Z? as the Kaluza-Klein momentum along
the torus T¢ to recover the higher dimension. As a result, we will obtain the higher dimen-

sional Dp-brane theory whose worldvolume is given by the flat torus 7¢ bundle over the original
D4-brane worldvolume M5 (i.e. p =4+ d).

Component Expansion
Then, we expand all the fields into their components of Lie 3-algebra as
O = DT + Dhug + o0t
Ay = Auamyin T ANTE+ %A;‘(im)m NTE + AlBug Aup + -+ (5.15)

where ® = X! ¥ H wvp, CF. For simplicity, we set AﬁB = 0 in the following. The omitted
terms in the expansion of A, are the terms including vA which never appear in EOM’s.

Each component of the covariant derivatives is written as

(Du®) iy = ([)Mcb)(im)+AL(im)<I>0+imaA2(m)<I>“
(Dﬂq))’uA = aﬂqyl
(D#(I)),Uo = 8#Q0 + ima(AZ(im)(I)(i,—ﬁi) + Au(iﬁi)(i,—m)@a)
ijk
— R Ay iy P (i)
(Du®)ve = 0uPy — ima(Ap i P (i,—m) + Apirs) (i,-) ) (5.16)
where
- ik 40
(Du®) iy = Ou®Pm) + 17 A m—m) (ki)
Aoy = e Ay + F A i) (5.17)
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Solving the ghost sector

The generalized loop algebra (5.12) has d + 1 negative norm generators uy — av? (a > 0), so
the uy and v3-component fields become ghosts. Then one may wonder whether this theory is
unitary. However, as we will see, it doesn’t matter because these ghosts can be removed by the
Higgs mechanism. The detailed procedure is as follows.

First, we consider u4-component fields. Their EOM’s are

XM =0, TrOU"=0, O,H., =0, 9,0 =0. (5.18)

vpo] =
The gauge transformation is given by

XM =0, 5wr=0, 6yHj, =0, SCM =0, (5.19)

and the supersymmetry transformation is

0 X' =dertwd st =110, X e, S H,, = 3iel,, 0,0,

5.CH = 0. (5.20)
This means that we can insert the VEV’s as

X4 = const., ¥4 =0, H:‘Vp = arbitrary, CH4 = arbitrary (5.21)

without breaking gauge symmetry and supersymmetry. Then, in the following, we consider
cHo — )\Oég, XTa = )\l otherwise = 0, (5.22)
where A are constant vectors in R? (the transverse directions of M5-branes), namely,
X e R C R, (5.23)

In the following, we use {X%} as the basis of R%. Therefore, it is useful for later discussion to

define the dual basis 7, and the projection operator P!/ as

Xy =6, P =gt =y A e (5.24)
a

The operator P projects a vector onto subspace of R® which is orthogonal to all Xa, and it
satisfies the projector condition P2 = P. In the next subsection, we will compactify this R¢

space on a torus 79, and identify it with the torus 7 defined by loop algebra (5.14)).

Next, we look at v-component fields. For simplicity, we set C(ﬂiﬁ

) = 0 only here. After
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setting VEV’s (5.22), their EOM’s become
0 = DX|
1 .
_ 2y 1 0 I
= DuXa + 5ma AW m IV i )
072y [fa 3] J - 0\2 ijk
ma(\)ATOXGL Xy = ma (W) X ) X X

0 = T¥D,Wy=T"D,W, — img\° X i 10 )

k,—m—m)

1 i -
0 = DyHype0= Dyt ype)a + €uvposrma)’ (XémDTX(Ii,m) + gq’(im)FTW(i,—m))

4
0 - Eﬂyao - E‘uy(zﬁwo - Eﬂyoa - E‘uy(zM)a - ma)\OHuV5(ZT?L)

where I'! := i['sT'! and these satisfies %{f’l,f"]} = ¢!/ Note that all the equations of v°-
component fields are free, while the equations of v®-component fields are necessarily not. This

doesn’t matter as long as we consider the VEV’s of u4-component fields to be constants.

Derivation of Dp-brane action

Now we concentrate on the EOM’s for T#L—component fields. In order to obtain the Dp-brane
action, we compactify the R? space spanned by X on a torus T¢ and regard the index m € Z¢
as the Kaluza-Klein momentum along the torus. Then we identify the infinite Tfﬁ—component
fields with the (6 + d)-dim fields through the Fourier transformation on it:

= 3" Dy (@)e T, Aalay) = 30 A (w)e (5.26)

where x# are coordinates of M5-brane worldvolume, and y® € [0, 27| are coordinates of the d-dim
torus T¢ [7,[§]. We will also use the notation of field strength

/WZ 33 y Z V(zm iﬁ%g" (527)

0 _ 0 jk
where Fuy(zm) = 8uAu(z' ) -0, A +f A

to taking the field theoretical T- duahty [38] for the directions of 7%, since it means that we make

u(i, m_ﬁ)Ag( ki) - 10 fact, this procedure corresponds

the brane worldvolume extended to these directions.

C*-field and constraints After inserting the VEV’s (5.22), the EOM (5] for C*-field and
the constraints (5.2]) become

I v o _
D5X(”ﬁ) = D5\I/(”ﬁ) = D5H,up0(iﬁi) = DHC(”ﬁ) =C%., = O’ (528)

(i)

where a = 0,--- ,4. Also, from eq. (5.8)) and (5.9), we find that one can set a VEV as

C’am) = const. (5.29)
! In our notation, 3{I'y,I'v} = g, = diag. (— +---+) and ${I', T/} ="/
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without breaking gauge symmetry and supersymmetry. However, as we will see, this field and
its VEV has no influence on the EOM’s in the final form.

Spinor field After inserting the VEV’s (5.22]), we obtain
[C#, X T W] ) = AOB (maw% ti fjkiX{mfo(k,m_ﬁ)) . (5.30)
Then, using the projector (0.24)), we define the field Ay as
Xy = PV X + M7y - X) iy = P Xy + A Agay - (5.31)

This field can be regarded as the gauge field along the fiber torus T¢. Therefore, by using these
equations and eq. (5.28), the EOM (B&.1]) for spinor field becomes

0 = Faba\y(lfn) + )\OAIGF5FI(ma\I}(im) + Zf‘yklAa(]ﬁ)\I’(hfn,ﬁ))
AT [P X7 W) i - (5.32)

After the field redefinition (5.26]), this can be represented as
0 = TDyV¥ + 1D, + \T/[PI7X7 ], (5.33)

where the covariant derivative is defined as D,®; := 9,®; — z‘[fla,cf']. The I'matrices I'* :=

INN DT satisty %{Fa, '’} = g% which is the metric on the torus 7% given by

g = [ NOPX . NP (5.34)

Scalar fields Similarly, after inserting the VEV’s, we obtain

J

(C#, X1, X iy = A0 (ma)\[]aX(i]ﬁi) + ifjkiX([ﬁﬁ)Xéc],m—ﬁ)) : (5.35)
Then, by using eq. (5.:28)) and (5.31]), we obtain
(DX imy = P (DEX ) iy + N (D Faa) (im) (5.36)
where (Foa)(im) = ﬁaAa(im) + imaAg(im) .
After the field redefinition, the EOM’s (5.1)) for scalar fields become
0 = PUPZXI 4 PRI
FiOO2Na[pIL XL pIK P K] (\02[pIM XM [pILYL pIK XK
FA (D ELy) + AP(DFy) + Zgo[@ 0y, (5.37)

where ba == gabDb and Fab = 8,1121(, - (‘)b/la - i[Aa, Ab] .
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Gauge field The EOM for gauge field becomes

0 = F,u (]ﬁ)( Z>\0fk] 1/5 k,m—1i)
= F;L (im) — Zf]k ;U/S(k Mm—1)
= Ful/a(irﬁ) + ma}‘ Hp,l/E)(iT?L) : (538)
In fact, we don’t use the second equation in the following, since we now regard only Ag(im) as

the gauge field, as we can see in eq. (5.17) or (5.26). This is a direct reason why C?
no effects on the EOM’s in the final form.

-field gives

(im)

2-form field Similarly, the EOM for self-dual 2-form field becomes

N )\0 R )\O)\Ia
0 = DyH,po)iim) + Zewmgﬂ[ﬂ TXT, PIEDTXR) iy + T L —€uposr PV DTD X[ )
1 i\ -
—i—Few,pJ&rD FaT(zm) 3 = €uvpodT [\I/, r \If](zm) . (539)

Then, by using eq. (5.38), the self-duality of H,,, (53)), and the field redefinition (5.27), this

can be rewritten as

1 .
0 = (DaFag—i—D Faﬂ) [P X, PR DX — L1 rd). (5.40)

(A2 2

Summary First, we note that the Higgs mechanism removes the ghost sector completely
without breaking gauge symmetry and supersymmetry. In fact, the ghost fields never appear in
the EOM’s for T%—Component fields.

Then we can finally show that all the EOM’s derived above, i.e. eq. (5.28), (5.33), (537),
(BE38) and (540), are successfully reproduced from the (5 + d)-dim super Yang-Mills action

s = [eag

1

L o I pli pugd = A J 2
L = ——(DMX )P (DEX) + 5\1!1“ \Il ()\0)2F“”
(/\0) IK K pJL 5112 iX° ITpllvJ §
[PPRX™ P X 1“+ \IIF [P X7, 0] (5.41)
4 2

where the spacetime indices are summarized as p = (o, a), and g := det ¢®. This is nothing
but the low energy effective action of multiple Dp-branes (p = 4 + d) on M5 x T%. Therefore,

we conclude that one can reproduce Dp-brane system from nonabelian (2,0) theory.

5.3 NSb5-brane theory from nonabelian (2,0) theory

In the previous section, we successfully derive Dp-brane system on a torus 7P~* from the non-
abelian (2,0) theory by using the Higgs mechanism (5.22)) and the field redefinition (5.26]). Let

us see here the physical meaning of each step. From the discussion in Lorentzian BLG theory,

52



it is well known that putting a VEV of u4-component field corresponds to the compactification.
Therefore, in eq. (5:22)), we put a VEV C*0 to compactify one of the z#-directions which becomes
M-theory direction, and then we also put VEV’s X% to compactify some of the z!-directions.
After the field redefinition (5:26]) which is equivalent to the field theoretical T-duality for the

latter compactified directions, we finally obtain Dp-brane system on a torus TP~

In this section, we change the way of setting VEV’s from the previous case. This should
correspond to changing the directions of M-compactification and that of taking T-duality. Espe-
cially, we now consider the reduction to type ITA /IIB NS5-brane system, and investigate whether

these branes can be reproduced from the nonabelian (2,0) theory.

Type ITA NS5-brane theory

In order to obtain type IIA NS5-branes from Mb5-branes, we change the M-direction, compared
with D4-brane case. Therefore, here we use the original Lorentzian Lie 3-algebra {T%,ug, 1"}
defined by

[Ul)a Ta, Tb] — ifabcTc ’ [Ta’ Tb, TC] — _ifabcv(] ,
(T, T% = h® | (ug,v°) =1, otherwise =0. (5.42)

In D4-brane case, we put a non-zero VEV into the longitudinal field C*? in order to compactify

one of x#-direction. Then in this case, we put a VEV into ug-components as
X0 =\o1,, otherwise =0, (5.43)

in order to compactify one of the transverse x-direction as M-theory direction.

On gauge field In this setup, the EOM for gauge field fluba is
F.b. =0, (5.44)
and its supersymmetry transformation is

6 AL, =0. (5.45)
This means that the gauge field fluba have no physical degrees of freedom, and can be set to

zero up to gauge transformation. Therefore, the covariant derivative f)u in eq. (517) is reduced

to the partial derivative 9.
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Equations of motion The remaining EOM’s are

X, — N[CH[Cuy X']la = 0
22X =0
I*9,%, — AT, T[CH U], = 0
0 Hypola — %ewm [CA (X0 £ AA™)], = 0
Fwoa—[cp»Hqu}a =0
9,07 = 0 (5.46)

where 1 = 6,---,9, and we set Oﬂfluoa = 0 using the gauge transformation.

For the multiple Dp-branes, the interaction terms like [X, [X, X]] or [X, ¥] come from strings
ending on different branes. In this case, however, C'*-field has no dynamical degrees of freedom
because they have no kinetic terms. Therefore, we naively guess that the terms including this
field doesn’t describe the interaction between different NS5-branes, and so the resultant EOM’s
(546) seem practically the simple copies of free theory of N' = (2,0) multiplet. In order to
obtain the interaction terms, we need to go beyond the present construction of the nonabelian
(2,0) theory.

Type IIB NS5-brane theory

In order to obtain type IIB NS5-branes from Mb5-branes, we interchange the direction of M-
compactification and that of taking T-duality, compared with D5-brane case. Therefore, in this

case, we use a generalized loop algebra {T},, U 1, v®1} defined by

[U[), ui, T’rgL] = mT& 5 [UO, T;’r“ T1‘,7L] = mv15m+n5ij + Zfl‘]kTrlﬁL_;'_n 5
[Tﬁm Tgw j—}k] = _ifijkv06m+n+l 3
(T, T = W98 4n, (ug,v”) = (ug,v') =1, otherwise =0. (5.47)

In D5-brane case, we put non-zero VEV’s into C#0 and X! as eq. (522). Then, we now put

VEV’s into ug,1-components as
X0 =\06{;, M =\6L,  otherwise =0. (5.48)
We also redefine the fields in a similar but slightly different way from eq. (5.26) as

(i)i(xa y) = Z q)(zm) (x)e—imy ) Au,i(x7 y) = Z A;ll(zm) (:U)e—imy y o T (549)

Note that we now regard Ai( m) field as the gauge field, while we use Ag( m) field in D5-brane

i i
case (£.20).
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C-field and constraints The EOM for C-field and the constraints become
DSX(IZm) = D5\If(lm) = D5Hl/p(f(im) = DNCEIZm) = C(C;m) =0. (550)

where p =0,--- ,5and a«a =0,--- ,4.

Gauge field The EOM for gauge field becomes

0 1 ik A5
Ey(im) = MA Hys(im) = 17" iC ey Hypws (kn) = 0
Fu omy = Fur " iy = 0, (5.51)

and the supersymmetry transformation becomes

0 . - ik Y5
(SEA# (im) = 1€l 5 (m)\l\lj(zm) +ift ic(j,m—n)ql(k‘n))
56Au1(im) = 56Au(jn) (im) — 0. (552)

Therefore, we can see that flul(im) and fl“(jn) (im) have no physical degrees of freedom, and can
be set to zero up to gauge transformation. This means that the covariant derivative f)a{)(im) =
0o ® (im) —z’flu(j ”)(im)(b(jn) is reduced to the partial derivative. Moreover, Fuyo(im) is also reduced
to

Fimy = 0uAs® ) — 00 AW i)
= 1(0uAyim) = OvAimy) + 171 (O Ay Gam—nyton) = v ApGim—n) () - (5-53)
Then from eq. (B.51]), we obtain

1 N 1 1 _ 1
FH = 8HA - 0,A )y = A H,uz/5(im)

v(im) v(im) wu(im
o _ 5
Fuv(im)n) = OuAu@am)n) = OvAuim)in) = Clim) Hyuws(jn) - (5.54)
Here we define the field strength F),,, but unfortunately, the interaction term like

fjkiAlli(%min)A,l/(kn) cannot appear in this setup.

Scalar and spinor fields Then, the EOM’s for scalar fields and spinor fields are

P24 DR = 0

D0 +1YD,¥ = 0 (5.55)
where i = 6,---,9, and we define
Dy :=0,® —i[Cy, @], Cy:=—35C5, I¥:= iINOATI10 (5.56)

satisfying %{Fy,Fy} = g = (A\°A1)2. Note that C'y—ﬁeld has no kinetic terms, so it is not a

gauge field, although the theory in this setup is invariant under the transformation
AP (i) = L7 iA Gonn)@kny s OACy(im) = DyAim) - (5.57)
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This means that the covariant derivative ﬁy can be also reduced to the partial derivative if we
gauge away the C'y—ﬁeld. Anyway, it is interesting that C*-field appears in EOM’s, which is
different from D5-brane case.

The remaining EOM for the scalar field is

(im

where A/ (im) 1s defined in eq. (5I7). Here, by using eq. (5.49) and (5.54]), we can see that
Donc,i = Z A;(im)e_imy (5.59)
m

is satisfied. Therefore, if we redefine the field as

A, = —FX“), (5.60)
we can define the field strength Fay and show that
DFy = D*(Day - Dyd—ilAn, Ay)) = (D% An, 4,] = 0, (5.61)

where we use eq. (B.58) at the second equality, and the last equality is satisfied up to gauge

transformation.

2-form field Using the above results, the EOM for 2-form field

o 10y 1
D[H A

plvpo] = Te,uupoﬁTDy(DTXlo + )\0121;-) =0 (562)

can be rewritten, by using eq. (5.54)) for the first term and eq. (B.58)—(5.60) for the second term,

as
DPFn5+ DYF,, = 0, (5.63)

where we use DY[A,, fly] = 0 up to gauge transformation, similarly to eq. (5.61]).

Summary We have obtained all the EOM’s (5.50), (5.54), (5.55)), (5.61)) and (5.63]). Note that
they are practically free part of the EOM’s of 6-dim N = (1,1) super Yang-Mills theory which

is known as the low energy effective theory of type IIB NS5-branes. Therefore, we conclude that
one can partially reproduce the type IIB NS5-brane theory on Ms x S! from the nonabelian
(2,0) theory. Further justification from the viewpoint of S-duality will be done in §[E.5

Finally, let us look at the kinetic part of the theory. The EOM’s of original nonabelian (2,0)
theory can be reproduced from the Lagrangian

1  _ 1
L= (D" + %\I/F“DH\IJ — g (5.64)
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Then, by using the field redefinition (5.49]) and (£.54)), this Lagrangian becomes

1 -
L= -5

12
R (5.65)

where pi = (a,y). This is nothing but the kinetic part of 6-dim N = (1,1) super Yang-Mills

X2+ %@Fﬁf)ﬁ\if _

Lagrangian. However, we should remind that f)u is not the covariant derivative, that is, it does
not include the gauge field flu: In fact, both lA)aiand ﬁy are simply the partial derivatives up to
gauge transformation. In or&er to make Du the covariant derivative and also to obtain all the
interaction terms in super Yang-Mills Lagr;ngian, we must generalize the original nonabelian
(2,0) theory. This must be a very interesting subject, but we put off detailed discussion as a

future work.

5.4 More comments on nonabelian (2,0) theory
Generalization of setting VEV’s and total derivative terms

In the previous sections, we chose the VEV’s as eq. (5:22)) for Dp-branes or as eq. (5.48)) for
type IIB NS5-branes. This means that we have seen only the case where the direction of M-
compactification and that of taking T-duality are perpendicular to each other.

If we want to discuss more general cases where the directions are not perpendicular, we may

turn on an additional VEV CH® or X711 as

CHO = N0t cme =gl XTe = \a for Dp-branes
X0 =206 XM =Xl or =\t for type IIB NS5-branes (5.66)

since putting these VEV’s can be regarded as the M-compactification for the direction of

X0 = (0,1%0,0,0,0,0,0) for Dp-branes
N0 = (67 0;0,0,0,0,0, )\Olg) for type IIB NS5-branes (5.67)

and taking T-duality for the direction of

P (6, A% )\Ialz) for Dp-branes
Y1 _ (7 A1 3173
X' = (0,21;0,0,0,0,0,A')  for type ITB NS5-branes (5.68)

where 0 is the (4 + 1)-dim zero vector, and lp is 11-dim Planck length. Note that we now recover
the factors lg which were previously set to 1. They have to appear here, since the canonical
mass dimension of C* (and XO’“) is —1, while that of X' is 2.

After a straightforward calculation, we can show that this generalization of setting VEV’s
(566]) does not change any terms of the EOM’s in all the cases. This means that this generaliza-
tion affects at most only the terms which doesn’t appear in EOM’s, for example, total derivative
terms in Lagrangian. In fact, it is well known that such a shift of T-duality directions corre-

sponds to T-transformation which affects the Chern-Simons term in Dp-brane Lagrangian. To
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see this, therefore, we now try to discuss total derivative terms in Lagrangian of the nonabelian
(2,0) theory.
Since the nonabelian (2,0) theory must not have dimensionful parameters, we only consider

the total derivative terms with mass dimension 6. Then one natural candidate is
L D PR Y E G Sy (5.69)

Let us now consider the Dp-brane (p > 4) case with VEV’s (5.66)). In this case, both X° and X®

have nonzero elements for z°-direction, so the projector (5.24) must be redefined as

PMN = gMN N AMAZN XA 7B =53 (5.70)
A
where M, N = 5,6,---,10 and A =0,1,--- ,d(= p —4). By using this, the gauge field A,m)
can be defined like as eq. (5.31))

Xy = PMYXE 4+ AMAR - X) m)

= PMNXEL + MM - X) iy + A Aggimy » (5.71)
where we naturally define as
1
Xy = FASL:&W . XD =00 (5.72)

Note that we set [, = 1 again for readability. Therefore, the nontrivial factor in eq. (5.69) can

be written as

0 _ 1O 5 0
FuS,(iﬁz) = A DNX(i’rﬁ) - 85Au(i7ﬁ)

— )0

SM P v M 0 1a 0
P DMX(in‘i) + A F#O(im) + Z A F/m(im)] — 85A#(im) , (5.73)
where F#O(im) = Du(ﬁo . X)(zﬁr,) + A;L(zﬁz) and Fua(iﬁ'z) = D/LAa(iﬁv,) + imaAg(im
of other fields is defined around eq. (5.17) and (5:27). Then we obtain the total derivative terms
in Dp-brane action which can be derived from the term (5.69]) as

) The notation

dd . N oa el e
S D /d5.%' (27’r§d \/§ [(/\0)2)\G€MVPUA5FuV,inU,jF/\a,kfdmf]mnfknl +oe (574)

9

where ‘-7 are the total derivative terms which don’t vanish in the A% — 0 limit. We neglect
them here, since it is known that the total derivative terms don’t play any role, when M-
compactification direction is perpendicular to T-duality direction, i.e. X0 Xa =0 or A\ = 0.

Note that the metric ¢® in this case is different from eq. (5.34) as
g = X0 (X® - NP — (N0 X9 (X0 X (5.75)

From the discussion above, we can conclude that the nonabelian (2,0) theory can have an
additional total derivative term of the form (5.69)) in its Lagrangian, and that the FF A F' A F
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term in Dp-brane Lagrangian can be derived from this term. Here we should remember again
that Lagrangian of the nonabelian (2,0) theory is not defined properly at this stage, but this
discussion is still meaningful, since the problematic self-dual 2-form field B,, doesn’t appear
here at all. Further justification of this result from the viewpoint of T-transformation will be
done in §G.5

Kaluza-Klein monopoles

For completeness of our discussion, we now comment on type ITA/IIB Kaluza-Klein monopoles

reproduced from the nonabelian (2,0) theory.

Type ITA KK monopoles

It is known that type IIA KK monopoles can be obtained from type IIB NS5-branes by taking
T-duality for a transverse direction [43]. Therefore, in this case, we use a generalized loop
algebra {T% g1 2,v%?} defined by eq. (5.12]). Then we put VEV’s into ug,1 2-component fields

as
=206y, Cr =26, X =)%5}, otherwise=0. (5.76)

This setup can be generalized into the case where these VEV’s are not perpendicular to each

other, but all the following results remain the same. Finally, we redefine the fields in a similar

way to eq. (5.49)) as

&z, 1, y2) Z@ oy (@)™ Ay (1, ) ZAl (i) e~V . (5.77)

As a result, we obtain the EOM’s of the same form as type IIB NS5-brane case in §5.3] except
that of the scalar field X

D2X°+ D2 X7 — (\°)2A\'\’D,,0,,C° = 0, (5.78)

which has an additional term with a yo derivative, compared with eq. (5.55). We should remem-
ber that a factor like GyQC’“ never appear in the previous discussions. From the viewpoint of
Lorentz invariance for the condition O#C(”im) = 0, it is natural here to impose 3y26'5 =0, or
equivalently, C’E’im) ’mQ 40
try. After imposing this, the final result does not contain any y» derivatives, so this ys direction

= 0. This, of course, does not break gauge symmetry nor supersymme-

becomes isometry. In fact, it must correspond to Taub-NUT isometry direction. Therefore, we
can integrate out the yo dependence from all the redefined fields (B.77)), and then we obtain the
6-dim worldvolume fields in type IIA KK monopole theory which depend on only 2% and y;
coordinates.

The field contents of this theory are three embedding scalars X 6,78 a 1-form field fl“, a
0-form field X° and a fermion ¥. Therefore, they are exactly reproduced from the nonabeIian

(2,0) theory only by specializing the scalar field X9,

59



Type I1IB KK monopoles

On the other hand, type IIB KK monopoles can be obtained from type ITA NS5-branes by taking
T-duality for a transverse direction [43]. Therefore, in this case, we use a generalized loop algebra
{T! up1,v"'} defined by eq. (512) or (5.47). Then we put VEV’s into ug j-component fields as

X0 =201, X =\, otherwise=0. (5.79)

Similarly, even if we make these VEV’s not perpendicular, the following results are unchanged.

Finally, we redefine the field in a similar way to eq. (5.49]) as
m

As a result, at this time, we obtain the EOM’s of the same form as type ITA NS5-brane case
(5.46)), except that of the scalar field X?

XY — (W)2[CH, [Cp, X°) + (AN C, 0,CH] = 0, (5.81)

which has an additional term with a y derivative. By similar discussion to type IIA KK monopole
case, it is natural to impose Byé'” = 0 to eliminate the y derivative, and to regard the y direction
as Taub-NUT isometry direction. Therefore, we can integrate out the y dependence from all the
redefined fields (5.80), and then we obtain 6-dim worldvolume fields in type IIB KK monopole

% coordinates. The field contents of this theory are three

theory which depend on only z%
embedding scalars X 6,7.8  a self-dual 2-form field BW, two O-form fields X210 and a fermion W.
Therefore, they are exactly reproduced from the nonabelian (2,0) theory only by specializing
the scalar fields X910,

It is also known that type IIB KK monopole theory must be invariant under S-duality
transformation. In our setup, this transformation corresponds to the interchange of VEV’s X0
and X!, as we will see in §B.5l Since C*-field has no dynamical degrees of freedom, we can
regard the resultant theory as practically the simple copies of free theory, just as we discussed in
863l Therefore, all the interaction terms are negligible, and then we can see that S-self-duality
of type IIB KK monopole is trivially satisfied. If one wants to reproduce S-self-duality including

the interaction terms, some generalization of the nonabelian (2,0) theory must be needed.

Role of C*-field

Let us make short comments on C*-field here. This field is a nondynamical auxiliary field,
since it never has the kinetic term. Moreover, it seems conveniently introduced instead of a
dimensionful parameter in order to make interaction terms appear in the theory, since any
dimensionful parameters cannot exist in M5-brane system in flat background.

However, let us now try to find some physical meanings of this field.
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In fact, it seems related to the gauge fixing condition for the general coordinate transforma-

tion symmetry on the M5-brane worldvolume as
XH*(o) =01+ CH(o)T?, (5.82)

under the condition D, Cj = 0. Here o# are worldvolume coordinates and 1 is a trivial element,
satisfying [1,7°%,7% = 0 and (1,1) = 1. It corresponds to the center-of-mass mode in brane
system which is decoupled from the theory. In the case of generalized loop algebra (5.12]), for
example, 1 is equivalent to Tg.

This discussion suggests that we can regard [C*,x, x| as [X*, %, x]. This identification must
be natural: As we saw in §5.2] and §B.3] putting a VEV for u-component of CH-field means
the compactification for one of x#-directions, while putting a VEV for u-component of X’-field
means the compactification for one of z!-directions. Therefore, it seems very natural to expect
that C*-field is related to X*.

Moreover, we consider in §[5.4] that gauge field A, o, and Cf-field play the complementary
roles of X#. In fact, in eq. (5.72)), we have treated the gauge field Ag(im) as X gm)’ while the
field C*4 as X}/,. The former is natural from the viewpoint of dimensional reduction where a
higher dimensional gauge field is decomposed into a lower dimensional gauge field and transverse
scalars. However, the latter seems unusual and very interesting. This makes us again suppose
that C*#-field is related to X*.

If the identification (5.82) is correct, the condition D,C} = 0 can be regarded as a gauge
fixing for a part of general coordinate transformation symmetry, which assures that the factor
D, X doesn’t appear in Lagrangian. Therefore, in order to check our assumption, we need to
write down DBI-like action for generalization of the nonabelian (2,0) theory, since such factors

should appear in it. We hope to discuss it in the future.

5.5 Discussion on U-duality

In §[5.2 and §B.3] we show that the Dp-brane and NS5-brane theories can be obtained from the
nonabelian (2,0) theory. Strictly speaking, however, they are only (part of) super Yang-Mills
theories, which are low energy effective theories of the brane systems. Then in this section, as a
further justification of our discussion, we study whether our results reproduce the expected U-
duality relation among M5-branes, Dp-branes and NS5-branes. This must be a highly nontrivial

check for the nonabelian (2,0) theory as a formulation of M5-brane system.

D5-branes on S!

We start with the simplest case. This corresponds to the d = 1 case in §[E.2l The notation for
VEV’s X is defined in eq. (5.67) and (5.63).
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T-duality For simplicity, only in this and next paragraphs, let us assume X0 1 XL As we
mentioned, putting the VEV X0 means the compactification of M-theory direction with the

radius
Ry = |X]. (5.83)

Similarly, putting a VEV X must imply the compactification of another direction with the
radius Ry = |X1| before taking T-duality. Then we have D4-brane worldvolume theory with
string coupling [24]

gs = goplyt = N0t (5.84)

where [ is the string length, satisfying lg = gsI3. In §5.21 D5-brane theory is obtained, since we
take T-duality for the X! direction (by field redefinition). After taking T-duality, the compacti-
fication radius is
s _ B b
SRRy

: (5.85)

which is consistent with the metric component g!! on the torus S* (5.34)). From the kinetic term
for gauge field in Lagrangian (5.41]), the string coupling in this theory can be read as
<012 3 -
P N L T O

gs =9 s = == = =, 5.86
v IO Rol2 XL (550)

which is compatible with the expected result from string duality, namely g, = gsls/ Ri1 =Ry /R;.

Therefore, we can conclude that T-duality relation is exactly reproduced.

S-duality We continuously assume X0 1 X in this paragraph. In §5.3] we discuss the world-
volume theory on type IIB NS5-branes. From the kinetic term for gauge field in Lagrangian
(565)), we can read off the string coupling in this theory as

- 3 -
no__ N2 =2 _ ‘)‘1|2 lp _|)‘1|

_ — AT =21 5.87
9s 9y Mmts ‘)\OHA”ROZE ’AOI ( )

This is exactly the inverse of string coupling in D5-brane theory (£.80), so we can conclude that
S-duality relation is successfully reproduced. Moreover, we can find that S-duality is realized as
a part of SL(2,7Z) transformation of VEV’s

X0 XL XS X0, (5.88)

T-transformation We consider this transformation in §54 By comparing the setting of
VEV’s after transformation (5.66]) with the original one (5.22]), we can find that this transfor-
mation is identified with another part of SL(2,7Z) transformation of VEV’s

—,

X0 X0 XS Xl (5.89)
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Interestingly enough, it is related to automorphism of Lie 3-algebra [§]

ug — ug —nNuUr, Ul — U1,

R e o (5.90)

that is, this transformation changes neither structure constant nor metric of Lie 3-algebra. The

relation between them can be understood as the redefinition of ghost fields
XM = xMOyq 4 XMy .o = XMOug — nug) + (XM 4 n XMOY gy + -0 (5.91)

where M = (u,I) and X#4 := CF4 as in eq. (5.72). Of course, there is no reason that the
parameter n must be quantized at the classical level, but it is still interesting that part of the
duality transformation comes from the automorphism of Lie 3-algebra.

It is well known that this transformation (5.89) causes the change of axion field C(y), which
appears in D5-brane Lagrangian as a Chern-Simons term C(g) A F(gy A Fig) A Fg). Therefore,
the value of Uy field can be read from eq. (2.74)) as
RN e

= — 5.92
3! 27ng 3lorw lg ’ ( )

Clo)

and the inverse of string coupling can be read from eq. (5.41]) as

Xo /11 3

s 3 T 3
2rly 2 1y
where we define the new basis {1} as
N=e" XN=ne+nret; e¥-el=0, [&°=e"=]|. (5.94)

In this basis, T-transformation is written as 71 — 71 + n, 75 — 72. Therefore, this result shows

that T-transformation is also perfectly reproduced in our discussion.

Taylor’s T-duality This transformation [38] interchanges D5- and D4-branes, and corre-

sponds to the different identification of 77 -component fields in our discussion. To obtain D5-
I
(im)

transformation (5.26]). On the other hand, one can interpret X (I )(33) as the 5-dim fields and

im

brane system, we constructed 6-dim field X/ (z, y) from the component fields X’ () by Fourier

the index m € Z as open string modes which interpolate mirror images of a point in 7 = R/Z.

In this way, Taylor’s T-duality transformation Zs is reproduced.

Summary As we already mentioned, S-duality and T-transformation can be written as the
SL(2,7Z) transformation of VEV’s

(3)-(20)(3): 29



which is equivalent to the transformation of the moduli parameter 7 := 7 + i1

at +b
cr+d’

T —

(5.96)

In fact, S-duality 7 — —1/7 is given as (a, b, ¢,d) = (0,1, —1,0), while T-transformation 7 — 7+
n is given as (a, b, c,d) = (1,n,0,1). It is well known that any element of SL(2,Z) transformation
can be composed as combination of these two kinds of transformation.

As a result, together with Taylor’s T-duality, it is finally shown that the whole of U-duality

transformation in the case of D5-branes on S' (or M-theory on 72)
SL(2,Z) =1 Zs (5.97)

is completely reproduced in our discussion, where the first factor is described by the rotation
of VEV’s and the second factor is described by the different representation of the field theory.

Here, the symbol >t denotes the product group defined by the two noncommuting subgroups.

Dp-branes on T7~* (p > 5)

Finally, we discuss the U-duality in general d > 1 cases in §B.2l In these cases, we consider
M-theory compactified on 7%+ (where d = p — 4). This theory has U-duality group

By (Z) = SL(d + 1, Z) = SO(d, d; Z,) (5.98)

and its moduli parameters take values in Egi1/Hgy1, where Hgyq is the maximal compact
subgroup of Egy1. (See e.g. [44] for a review.)
Now let us read off the values of these moduli in Dp-brane case from our results. For

readability, we set [, = 1 again in the following. First, the metric on the torus 7% (E.75) is
g™ = NP X0 — (N0 A (A0 X, (5.99)
where a,b=1,--- ,d. Secondly, the Yang-Mills coupling (5.41]) is

(5.100)

where g := det g?°. Finally, we read off the value of R-R (d — 1)-form field C(d-1)- This field may
appear in Dp-brane Lagrangian as a Chern-Simons term C(q_1) A F(o) A F() A F{2y. Therefore,
this can be read from eq. (5.74) as

N[22 Vg
6(2m)4(d — 1)! g™’

where no sum is taken on the index a. This represents the components of C;_y) with the indices

Cla-1) = (5.101)

12---a---d, i.e. except a.
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Therefore, the number of moduli written by VEV’s (5.99)—(G5.107]) is
1 1
dd+ 1)+ 14d=S(d+1)d+2). (5.102)

This coincides with the number of parameters in GAB := P XB, which is transformed under
SL(2,Z) transformation

M NA = MNP, AMpeSLd+1,2). (5.103)

This means that our discussion correctly reproduces the SL(d + 1,Z) symmetry as the first
factor of U-duality (5.98)), and that GAB = GAB (g, Fars C(a-1)) gives the moduli parameter
which is transformed covariantly under the SL(d + 1,Z) transformation.

The second factor SO(d,d;Z) of U-duality (5.98)) can be also reproduced. It consists of
the permutation of T-duality directions, Taylor’s T-duality transformation, and the shift of the
value of NS-NS 2-form field. The first one can be seen trivially in our setup, and the second one
is reproduced in a similar way to the d = 1 case. The third one is rather nontrivial. The NS-NS

2-form field By can be introduced as the deformation of Lie 3-algebra [7]
[0, Ua, up] = Bap T3 (5.104)

instead of ordinary generalized loop algebra (5.12)), since it provides the noncommutativity on
the torus T%. Tt is interesting that some part of moduli (5.99)—(5-I0I) are described in terms of
VEV’s, while another part comes from the structure constant of Lie 3-algebra.

However, this is not the end of the story. The U-duality group is a product of these non-
commuting subgroups, and so unfortunately, the whole moduli space of U-duality cannot be
described by only the moduli parameters obtained above. In the following, we check the dimen-
sion of moduli space, and discuss what kinds of parameters are lacked in our setup. In fact, in

the d > 3 cases, some missing parameters exist.

D5-branes (d =1) M-theory compactified on 7?2 is considered. The moduli space in this case
s (SL(2)/U(1)) x R which gives 3 parameters. They correspond to g'!, ¢ and Co)-

D6-branes (d = 2) M-theory compactified on T is considered. The moduli space in this case
is (SL(3)/SO(3)) x (SL(2)/U(1)) which gives 7 parameters. They correspond to g°, By, ¢
and C(;y which transform in the 3 + 1 + 1 + 2 representations of SL(2).

D7-branes (d =3) M-theory compactified on 7% is considered. The moduli space in this case
is SL(5)/SO(5) which gives 14 parameters. They correspond to g°°, Bay, ¢, C(2) and C(gy which
transform in the 6 + 3 + 1 + 3 4 1 representations of SL(3).

R-R 0-form field Cg) is lacked in our discussion. This field causes the Chern-Simons interac-
tion Cgy A Fiay A F(a) A F(g) A Fi9y which cannot be derived in a similar way to §[5.4l Therefore,
in order to include this parameter, we might need to consider the nontrivial backgrounds. For

the missing parameters below, similar discussions would be made.
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D8-branes (d = 4) M-theory compactified on T® is considered. The moduli space in this case
is SO(5,5)/(SO(5) x SO(5)) which gives 25 parameters. They correspond to g*°, Bgy, ¢, C(3)
and C(;) which transform in the 10 + 6 + 1 + 4 + 4 representation of SL(4). R-R 1-form field

C(y) is lacked in our discussion.

D9-branes (d =5) M-theory compactified on T is considered. The moduli space in this case
is Fg/USp(8) which gives 42 parameters. They correspond to ¢?°, B, ¢, Cuy, C(z) and C(g
which transform in the 15+ 10 + 1 + 5 + 10 + 1 representations of SL(5). R-R 2-form and

0-form field C'y), C() are lacked in our discussion.
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Conclusions and discussions

In order to understand the nonperturbative aspects of superstring theory, it is essential to
investigate the dynamics of M-theory. Although some aspects of M-theory has been clarified
due to the develpoment such as Matrix model and AdS/CFT correspondence, further studies
are needed to uncover the characteristics of M-theory and its branes.

Finally we would like to comment that there are still many important open problems related

to M-theory branes. Some of them are listed below in random order.

M5-branes and anomaly Quite recently, 6-dim (1,0) SCFT with nonabelian gauge coupling
between multiple tensor multiplets were proposed in [45]. This construction is based on a method
originally considered in the context of gauged supergravity. This success may shed light to
understand M5-branes. The proposed model consists of tensor multiplets and vector multiplets.
To complete the field content to that of (2,0) theory, we have to include the hypermultiplets.
However, in general, the anomaly-free condition heavily restricts the number of these multiplets
and only a few gauge group is allowed. Therefore, it is indispensable to study the anomaly

structure in order to construct the maximally supersymmetric M5-brane action in the future.

Lie 3-algebra in M5-branes Applicating Lie 3-algebra to M5-branes is a challenging prob-
lem. Although there was some recent progress in constructing Mb5-brane theory in terms of Lie
3-algebra, completely sufficient results has not been obtained. The gauging procedure used in
[45] has been also applied to construct the multiple M2-branes and the relationship between
structure constant of Lie 3-algebra and certain invariant tensor crucial for the gauging are clari-
fied. It may be possible to utilize this results for rewriting (1,0) SCFT of [45] in terms of the Lie

3-algebra. Searching a connection to the construction of (2,0) theory in [24] is also interesting.

M2-brane entropy The crucial difference between M-branes and D-branes is a scaling prop-
erty of the entropy. From AdS/CFT correspondence, it is known that the degrees of freedom
on the worldvolume of N M2-branes is proportional to N3/2, not N? like N D-branes. Al-
though it has not been fully understood how and why such a phenomenon occurs, a remarkable
progress about this issue was achieved in [46]. They observed exact results about free energy

of M2-branes from ABJM matrix model obtained by the use of localization technique. In the
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strong coupling limit of t’Hooft parameter, they realized the expected anomalous scaling for the
M2-brane theory.

In [47], it was shown that the partition function of ABJM theory reduced to a matrix
model can be reformulated as an ideal Fermi gas with one-particle Hamiltonian. It is very
important to explore the physical meaning of anomalous scaling of M2-brane entropy along
this approach. Worldsheet and membrane instantons are responsible for the nonperturbative
correction to the partition function of M2-branes and understanding thier effects leads to reveal

unknown dynamics of M-theory.

M5-brane and 5-dim SYM It is well known that one dimensional reduction of M5-brane
theory leads to 5-dim SYM. However, it has been not enough understood how M-theoretic
information appears in 5-dim SYM in UV. The reason is that the ordinary Kaluza-Klein com-
pactification is not allowed in this case. This is because the dimensional analysis of 5-dim SYM
gauge coupling is inconsistent with the conformal symmetry of M5-brane theory. This is a pe-
culiar problem of Mb5-brane and further research is required to extract M-theoretic properties
behind it. There is a recent attempt to identify self-dual string soliton obtained from M2-M5
system as instantons of 5-dim SYM [48]. This means that the information of M-theory is already
included as soliton solutions and this remarkable identification needs to be further investigated.
Moreover, there is a possibility that the difference of the entropy of M5-branes and that of D-
branes are due to the appearance of certain bound states and this is also an interesting topic.
Meanwhile, caluculation technique of gauge and gravity amplitudes has seen dramatic growth

within the recent past and its application to M-theory branes draws increasing attention.

5-dim supersymmetric Yang-Mills theory in the UV scale Revisiting the UV-completion
of 5-dim SYM may be important in the viewpoint of M-theory. If KK-states coming from M5-
brane on S! and instantons of 5-dim SYM are equivalent as considered in [48], this means that
5-dim SYM doesn’t acquire extra degrees of freedom at all in the cut-off scale and, therefore, it
may be UV-finite. Then we need to reconsider UV-completion mechanism beyond the standard
Wilsonian approach.

On the other hand, a novel approach to UV-completion of a class of non-renormalizable
theories was suggested in [49]. This idea is inspired by a black hole formation and they conjecture
that a formation of classical objects in high energy scattering procceses induces inaccessibility
of short distance. Although Nambu-Goldstone type scalar is given as an example, examination

of its validity and further generalization is required.

Massive Gravity and Higher Spin Gauge Theories Non-linear theories of massive gravity
generally suffer from ghost instability. However, recently proposed theories of massive gravity

have been shown to be ghost-free. Inspired by these developments, a ghost-free bimetric theory
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of spin-2 fields were proposed in [50]. This is the first construction of a consistent theory of
interacting multiple spin-2 fields.

This remarkable progress might be applied to several issues about M-theory. It is known that
there are some no-go theorems prohibiting nonabelian deformation of self-dual antysymmetric
gauge field on M5-brane. Searching potential loop-holes for nontrivial interacting theories of M5-
branes using techniques of massive gravity is intriguing. The bimetric gravity is also attractive
in the AdS/CFT point of view. Investigating its relationship to Fradkin-Vasiliev cubic vertices

and Vasiliev’s full higher spin equation of motion is need to be clarified.

As we have seen, investigating M-theory physics from the explicit models of its branes starts

only recently. We expect further fruitful developments in this fascinating subjects.
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Appendix A

Mass deformation and Janus
solutions

A.1 Janus field theory with dynamical coupling

In the previous section, we discussed BLG theory with Lorentzian Lie 3-algebra. There we have
fixed the solution of the constraint equations (Z20). But in the quantization of the Bagger-
Lambert-Gustavsson theory, the solutions should be summed in the path integral. So we will
consider more general solutions in this subsection. After integrating the modes associated with

the T—! generator, the partition function becomes
7 = / DXIDU,DB, DX DUDA, 5(6°X]) 5(I*0, W) e'SXE Yo Bu X 0.4) (A.1)

The integrations over XJ and ¥y are constrained to obey the massless wave equations and can

be expanded as

where f,(x),u,(x) are complete sets of functions satisfying the massless wave equations. Then
the integration over X({ and ¥y can be reduced to integrations over (:,I1 and b,.

Let us now choose a general solution (X{ = v!(x), ¥g) to the constraints and expand the
action around it. In this case all the supersymmetries are generally broken if we fix v! and ¥.
Inserting this general solution into the action, terms including the B, gauge field are given by

Lo~ or N2 | - TR e Inp I
— §(DMX — B, X))+ iV I" B,V + 56’“’ FuBy — 0, XyB,X". (A.3)
The integration over the B, gauge field can be similarly performed. It is convenient to introduce
the locally defined projection operator

vIvg

Prj(z) =015 — (A.4)

2 9
v
This operator satisfies P? = P and Prjv’ = 0. In the simplest case considered in the previous
subsection, v! = v(t + z)d4, this projects out the 10-th direction if it acts on X!, Generally,

the direction removed is dependent on the space-time position.
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After integrating over the B, field, the Lagrangian becomes L jonus = Lo + L where

1 - 1 = A A 1= ~
Lo = Tr [—2(1)“1/1)2 + 1”2[YI’YJ]2 + %\IJF“DM\IJ + 5\11[1/1, (0T ;)T 0]

11 - o e 2 1s ;
_ L (L T — 2700 ) — — o, 0y, Y7 A.
+2(U1)2(2e vA 1% 10"0)" = gl WIYS Y (45)
1 _ Sl e ;
L = UiQTr [(\IIOFI(UJFJ)[YI7\II] - ’L\POF#D#\P) (UKXK)} ’ (A'6)

Here I,J = 3,---,10 and we have defined a new scalar field Y/ = P;; X7 with 7 degrees of
freedom. In spite of it, the action has SO(8) invariance if v/ and ¥y also transform under it.
Also note that Y/ is invariant under the gauge transformations associated with B,, gauge fields.
Is is also interesting to notice that the action will have a generalized conformal symmetry [51]
even with the dimensionful coupling because it is a dynamical variable here. This may have its
origin in the conformal symmetry of M2 branes. In this sense, the reduced action is not exactly
the same as the ordinary D2 brane effective action with a fixed gauge coupling. This issue is
now under investigations.

This is a Janus field theory whose coupling varies with space-time. The Lagrangian Ly s
contains only the projected scalar field Y/. On the other hand, in the presence of Wy, the scalar
field (v! X! ) does not decouple from the Lagrangian £'. If we can set ¥y = 0, £ vanishes and the
resultant Lagrangian is given by a similar form to the ordinary Super Yang-Mills Lagrangian, but
the kinetic term of the gauge field FW is modified to F v +26WpY18PvI . All the supersymmetries
are generally broken if we fix one solution to the constraint equations of (X{(z), ¥¢) as above.

By using the above calculation, the partition function can be simply rewritten as

Z = / [T dck, db, W' / DXIDIDA,, eiSramus (X0 A’ () Wo), (A7)

Here W (v!) ~ ((v1)2)73/2 came from the integration over the B, field. It is a sum of Janus
field theories. The coupling constant v! is dynamical and varies with space-time coordinates.
It is constrained to satisfy the massless equations. If we fix the “slow” variable v and perform
the path integration over the other “fast” variables first, then we can get an effective action
for the dynamical coupling v!. This will determine the most stable configuration of v!(z), and
accordingly one of the Janus gauge theory with the most stable coupling is determined. If the
variable v! fluctuates rapidly and cannot be considered as a slow variable, the theory becomes
very different from the ordinary gauge theory with a fixed (either constant or varying) gauge
coupling. This may be related to the dynamical determination of the compactification radius of
11-th direction in M-theory.

Finally we would like to comment on the unitarity of the Bagger-Lambert-Gustavsson theory.
If we fix one solution to the constraints, each theory behaves regularly if the coupling constant
does not vary drastically. The quantization of the coupling is very difficult, but since it is not a
propagating mode, it will not violate the unitarity of the theory. However the unitarity should

be more carefully analyzed.
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A.2 Mass deformation of BLG theory

The BLG theory in the previous section gives a familiar effective action of N D2 branes with
either a constant or a varying coupling. (For general solutions, the kinetic term of the gauge

field contains a non-familiar term of Y;0%v?.)

In this section we start from a mass deformed BLG action given by [52] 53] and show that

supersymmetric Janus field theories with a Myers-term are obtained.

One parameter deformation of the Bagger-Lambert action preserving the full supersymme-
tries is given by adding the following mass and flux terms to the original Lagrangian. The mass

term is given by
L ~ b xt x4 L (T, 0 A
mass — 2;“* I‘( ) )+ 2/// I‘( 3456 )7 ( 8)
and a flux term is

]_ ]_ / / / /
Lz = —6,,L6EFGHTr([XE,XF,XG],XH) — 6u6E/F/G/H/Tr([XE CXE OXC X (A9)

Here E,F,G,H = 3,4,5,6 and E',F',G',H = 7,8,9,10. This action is invariant under the

original gauge transformation and the deformed SUSY transformation o

oxt = qerlw,
1
o = (DMXI)FMFIG—E[XI,XJ,XK]F]]KE—MF3456F1X16,
SAL, = el I X e, (A.10)

This deformed theory breaks the original SO(8) R-symmetry down to SO(4) x SO(4). By setting
1 — 0 both the action and SUSY transformation reduce to the original BLG action. In addition

there is another supersymmetry transformation

§XI=0, ALY, =0,
OV = exp (—gF3456P“(L‘M> Tﬁln, (All)

where x* is the coordinates of the world volume. In the massless limit of © — 0, this becomes
a constant shift of the fermion ¥ = T~17. These inhomogeneous supersymmetries correspond
to the spontaneously broken supersymmetries in d = 11 by the presence of M2 branes. As
in the case of D-brane effective theories, they will play an important role in the full d = 11

superalgebras with 32 supercharges.

'To give a rigorous proof of the closure of the supersymmetry, we should check the Jacobi identity of [Q, {Q, Q}]
(appendix E of [54]) because there are non-central terms, i.e. SO(4) x SO(4) rotation term, in the algebra {Q, Q}.
We thank Dr. Hai Lin for informing us of the paper [54]
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A.3 Mass deformed BLG to Janus

This model can be similarly investigated by expanding the fields into modes with internal indices

a = (—1,0,7). The mode expansions of the mass and the flux terms become

2 , _
N A - 7 = o
Lonass = 2 X1 Xt - %TF(XI’XI) —ipuV_1I'3456 Vo + §MTT(‘I’F34567 v), (A.12)
and
2 SF 19G % 2i "(XF %G XH
L fruz = gMEEFGHX(])ETr(XFa [XC, XH) + §N€E’F’G’H’X(€ Tr(XF (X9, X)), (A13)

Now X?, and ¥_; again appear linearly in the action, and they are Lagrange multipliers.

Because of the mass terms, the constraint equations are modified to
(0% — 1> XE =0, (T, + ul's456) o = 0. (A.14)

Namely the fields with the 79 component are constrained to obey the massive wave equations.
Since X! are real fields, instead of the plane waves exp(ikyx*) with a time-like vector k,, we

take the following solution to the constraint equation;
XF = ferr® 5l = v(z)ot,, Vo =0, (A.15)

where f is an arbitrary constant and p, is a spacelike vector satisfying p? = p?. Without loss
of generality, we can take p, = (0, 4,0). This configuration preserves half of the 16 supersym-

metries, since ¥y transforms as:
5\1/0 = U(.Z‘)/,L(Fl — F3456>F106. (A16)

Hence around the above configuration, we will get Janus gauge field theories with 8 supersym-
metries. (For general solutions, more supersymmetries are broken.)
Inserting this configuration to the action, one can again integrate the redundant gauge field
B,,. Terms involving B,, are given by:
1, 5 1 . .
Tr [—Q(DMXH) —vB,)%+ 56“”’\FWB,\ - p“vBMXIO} : (A.17)
Integrating B, gives

1 N o 1 . A
Tr |:21)6’W/\Fw,p)\X10 + 8?(GWFW - 21)X10p>‘)2]

1
492

Interestingly the second term is canceled by the mass term of X10 and all the terms involving

2
TeE2, + %Tr(XlO,Xlo). (A.18)

X10 have disappeared. To summarize, the resultant effective Lagrangian is given by:

1.~ 2 .. o4 1 o s o
L= — T(DXY - LI X + (XA XPP
7 B A oA 7 = ~ 1 RN R 1 ~ o
+5Tr (www) + SHTE(Pa6, ¥) + SoTr (fo[X T, A\IJ]) - 5T,
27 I Y P Y
—ngGA BCy (x4 (X5 X)) (A.19)
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This is a Janus field theory whose coupling constant is given by v = f exp(uz'). The Lagrangian

is invariant under the following 8 supersymmetries
XA = ey,
50 = D, XATrTAe - %ewﬁﬂr“rme + %’U[XA, XBIPABT0¢ — iDays6TA X Ae,
6A, = ivel , "0V, (A.20)
Finally if v vanishes, i.e. for X({ =0 and ¥y = 0, the Lagrangian becomes

1 A~ ) = A A 2 N ~ ] =
L= —3T(DX")+ %Tr (\IIF“DM\I!) - %Tr(XI,XI) + %,uTr(\I/FMg,G,\II), (A.21)
with a constraint F, uv = 0. The supersymmetry transformation is given by

oX! = 'y,
(5@ = ﬁMXIF“PI€ — /LF3456FIXI€,

~

§A, = 0 (A.22)

and the Lagrangian has the SO(4) x SO(4) R-symmetry.
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Appendix B

Conformal Symmetry of ABJM and
L-BLG

B.1 Conformal invariance of ABJM

As shown in [55], the ABJM theory is invariant under the superconformal transformations. Here
we study the invariance of the ABJM theory under the conformal transformations, in particular
the special conformal transformations.

ABJM theory is a U(N) x U(N) or SU(N) x SU(N) gauge theory. The other choices of
gauge groups are possible but here we consider these two types. The actions of the gauge fields
are given by the Chern-Simons action with coefficients k and —k. Matter fields Y4 and ¢4 are

in the bifundamental representation and the covariant derivative is defined by
DY =08,V +iAly — iy A(P). (B.1)

The action is invariant under A' = 6 superconformal transformations. In the following we check
the explicit invariance under the conformal transformations.
First it is obvious that the action is invariant under the dilatation. Dilatation is defined

ne

by  — ez and simultaneously we transform each field by multiplying e™"¢ where n is the

conformal weight. The scalars Y4, fermions 1* and the gauge fields A, have weights 1/2,1,1
respectively.

A little more nontrivial transformation is a special conformal transformation. It is given by
Szt = 2¢ - xat — eta®. (B.2)

If we write the infinitesimal transformation for each field Y (x) as §Y (z) = Y'(2') — Y (z), they
are given by
YA (x) = —e- Y (x),
5ALL’R) (x) = —2€¢- xALL’R) (z) = 2(x - ALRe, — . AR )
5 (x) = —2¢ - 2pM(x) — epune’ T THYA (). (B.3)
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These transformations can be understood as follows. They look like the general coordinate
transformations, but are different since the theory is restricted to live in the flat space-time with
a fixed metric and the change of the metric under the general coordinate transformations must
be compensated by the transformations of the fields. The first terms in each transformation
reflect the conformal weight of each field. The second term in the transformation of the fermion
is the local Lorentz transformation which pulls back the flat local Lorentz frame (where we use
0124y = ). The transformation for the gauge field A, is nothing but the general coordinate
transformation with the transformation parameter (B.2)).

The action is invariant under the above special conformal transformations. In order to see

it, the following transformation rules are useful:

d3$ N eﬁe-xd?)x’
Oy — €279, — 2(eux” 0y — 1,€"0,)),
DY — e 3ew DY —{Y +22"0,Y + 2i(x - ADY _vg. A(R))}eu
v - L R
+{26"8,Y + 2i(e - ADY — Ve A}z, |
F —e % [F,, — 2(e,2°F,, — €,2"F,,) + 2(2,¢" F,, — ¢’ F,,)] . (B.4)

Though € is an infinitesimal parameter, we write the overall factors as e~ 2"¢? for convenience.
They are cancelled in the action because n is the conformal weight of each field and coordinates.
Here let us check the invariance of the Chern-Simons term as an example. First the derivative

part transforms as

e“VAtrFWAJ

— AT B, Ay 4 Aeal — 2,€?) ANF,, — 2F,, (2 - Aey — € - Axy)]. (B.5)

€T

The pre-factor e=%¢% is cancelled with the transformation of d®z in (B.4)). The rest vanishes

because
e AMr[2(e P — 2P ) ArEyy — Fu(x - Aey — € - Axy)]
= e Mr[2€,/ foaFypAx — € foaFAy) = 0. (B.6)

In the second line we have defined f® = €%z ¢, Similarly the invariance of the term e*** A, 4, A

can be shown by noting that the gauge field transforms as
Ay — e (A + 26,05 AP). (B.7)

Hence the Chern-Simons terms are invariant under the special conformal transformation. Though

we have checked it explicitly, the invariance can be naturally understood because the Chern-

Simons term is independent of the metric if it is defined in a curved background space-time.
The other terms in the action are also straightforwardly shown to be invariant under the

special conformal transformations.
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B.2 ABJM to L-BLG

As shown in [13], the L-BLG theory is obtained by taking a scaling limit of the ABJM theory
with a gauge group SU(N) x SU(N). In the gauge theory with U(N) x U(N) there is a subtlety
in the scaling of the U(1) part. We will discuss the issue in the Appendix [Dl and here restrict
the discussions to the SU(N) x SU(N) case.

The scaling is given as follows:

B, — \B,,
Xt — atxt,
a0 — A Wap,
k— A1k (B.8)
where .
vA = X247 pax@ - XA XA B, = 5(AEP — AlP) (B.9)
and Xg and g4 are trace components of the bifundamental matter fields, and I = 1,--- ,8.

When we take A\ — 0 limit and keep the other fields fixed, the action of the ABJM theory is
reduced to the action of the L-BLG theory. Since the k — oo limit is taken before taking the
large N, our scaling corresponds to a vanishing 't Hooft coupling N/k — 0. Besides the action,
the same constraint equations as those in the L-BLG theory can be obtained from the ABJM
theory:

O*X§ =0, T, Ty =0, (B.10)
by requiring finiteness of the action in the A — 0 limit.

In the above scaling limit we arrive at the L-BLG theory:

1

1 ~ -
Lo="Tr —5(1),;(1—19“)(5)%4

A A 1 A~ A
(X (X1, X7])? — 5(X5[XI,XJ])2
i*uAA.*uAlfAIAJ a Lx origa “
—|—§\III’ D,V +i¥I'"B,V — §\IIOX (X7, Tryv] + §\IIX0 (X7, T,V
1 . .
—|—§€W/)‘F#VB,\ —9,X§ B,X"|. (B.11)
In the original formulation of the L-BLG theory, the constraint equations (B.10) are derived by
integrating the auxiliary fields X7, and ¥_;:
Lo = (0, X)) (0" XL)) —i®_1T49, . (B.12)

Since the above scaling is compatible with the conformal transformations discussed in the pre-
vious section, the action (B.IT) is invariant under the conformal transformations (see also [56]).
The action for the auxiliary fields (B.I12]) is also invariant if we define the transformations for
them as

0X! (x) = —e- X', (2),

SU_q(2) = —2€- 2V _1(x) — €’z THT_4 (). (B.13)
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B.3 Generalized conformal symmetry in D2 branes

Now integrate the B), gauge field. It has been discussed that if we pick up a specific solution to

the constraint equation (B.I0), especially a constant solution
X =wv 68, Wy=0, (B.14)
the L-BLG theory is reduced to the action of the ordinary D2 branes whose Yang-Mills coupling

constant is given by gy = v:

1., 1
EZTT —mFMV—i

where A, B = 1,---,7. Then SO(8) is spontaneously broken to SO(7) because we have spe-

cialized the 8-th direction. The conformal invariance is also broken. Though the action is the

A o~ 1 N N ) = A A 1 = 4 ~
(D, X2 + Z”Q[XA’ X512+ %\IIF“DM\II + 5@[}(’“, Tsa¥]| (B.15)

same as that of the D2 branes, we see later that the interpretation of the L-BLG theory as an
effective theory of the ordinary D2 branes is not appropriate since the radius of curvature is
much smaller than the string scale in the gravity dual.

The constraint equations (B.10) have more general solutions than (B:I4]) which depend on the
spacetime coordinates. Then the resulting action becomes a Yang-Mills theory with a spacetime
dependent coupling [I5]. As we have shown [I3], the action with the spacetime dependent
coupling is invariant under the conformal transformations if we consider a set of spacetime
dependent solutions. The conformal invariance is discussed in more details in the next section.

We here consider the simplest spacetime dependent solutions:
XL =v(x)d!®, ¥o=0, 9*(z)=0. (B.16)

Then the L-BLG theory is reduced to the same action as that of the D2 branes but with a

spacetime varying coupling:

1 ., 1. 1 L
4U($)2 nv 2( 123 ) + 4U($) [ ) }
) = A A 1 N ~
+%\IJF“DM\IJ + 5v(@)P[X T 4] (B.17)

SO(8) symmetry is spontaneously broken to SO(7) as well, but the action with a varying v(z)

has a generalized conformal symmetry if the coupling transforms as
dv(xz) = —(e-x) v(x). (B.18)

This transformation is originated in the special conformal transformation of the scalar field (B.3)).
The generalized conformal transformation for Dp branes were first proposed by Jevicki, Kazama
and Yoneya [51]. In the present case, the transformation (B.If)) is naturally derived since the
coupling constant of the Yang-Mills action is determined by the center of mass coordinates
X{(z) of the M2 branes.

It is worth noting that the generalized conformal transformation (BIS]) is compatible with

the constraint equations (B.I0) only when p = 2. We will discuss it in the next section.
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B.4 Conformal symmetry and SO(8) invariance of L-BLG

The space-time dependent coupling v(x) can be promoted to an SO(8) vector X{ (x) by consid-
ering general solutions to the constraint equations (B.I0) as shown in [I5]. Then the resultant
action after integrating the B, gauge field becomes D2 branes effective action with space-time
dependent couplings in a vector representation of the SO(8) . In [13] we showed that if we
consider space-time dependent solutions the theory has the generalized conformal symmetry as
well as the manifest SO(8) invariance.

In this section we study more details of the generalized conformal symmetry of the L-BLG
theory. Especially we show that the conformal transformations are closed under the constraint
equations (B.I0).

By integrating the B, gauge field, we get the action S = [ d3z(Lo + L'):

1 A 1 ) = A A 1= ~
Lo=Tr [—2(DuPI)2 + 1Xg[Pf, P+ %xprﬂpﬂxp +3 [PT(XJT,)T;7]
P (EEWIAF A+ 10D — 2P0 X])? - 1‘i/oFU\iz[Pl’ P7]
2(X5)2 2 g 02 ’ ’
1 _ . 5
C = T [(—\IJOFI(X()]FJ)[PI,\II] - z\IIOFHDM\I/) (X{XK)} . (B.19)

where we have defined a new scalar field P; with 7 degrees of freedom by using the projection

operator

Xor X
Pi(z) = (5U_ 0;(;”) X7, (B.20)
0

The X{(z) field is constrained to satisfy 9>X{ = 0. This is a generalization of (B.I7). We called
this theory a Janus field theory of (M)2-branes since the coupling constant is varying with the
space-time coordinates.

The action of the gauge field is no longer the Chern-Simons action but we can again show
that it is invariant under the conformal transformations. Under the dilatation x* — ex*, each
field is multiplied by e™"¢ where n is the conformal weight. The weights of P, Xy, A,, ¥, ¥, are
1/2,1/2,1,1,1 respectively. The action is evidently invariant.

Special conformal transformation is similarly given by
Sxt = 2¢ - xat — o (B.21)

and the fields transform as

= —2¢-2Vg(2) — € pre’z TH T (). (B.22)
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It is now straightforward to show the invariance of the action. The Lagrangian is not invariant
but changes by total derivatives.

Finally we need to check that the transformation is closed within the constraint equations
(BI0). Namely if the field X{(z) satisfies 92X () = 0, the transformed field X,/ (z') must also
satisfy 8§,X61 (') = 0. For an infinitesimal special conformal transformation, this is equivalent
to show 920 X (z) = 0 where 6 X/ (z) is the transformation at the numerically same point defined
by

0X4(x) = X¢ () — Xg () = 6] (x) — 62%0, X4 (x),
0o (z) = Wy (2) — Wo(z) = 6Wo(x) — 620, Wo(x). (B.23)

In the following, in order to see the specialty for M2 (or D2)-branes, we generalize the special

conformal transformation to Dp-branes [51]:
0Xt(x) = —(3—p)e-zX] — (2¢ - xa* — er?)0, X¢ (B.24)
It is easy to show
(5} () = 2(p — 20, X{ (B.25)

where we have used the constraint equation 82Xé = 0. This vanishes at p = 2 only. Similarly,

6 is given by
5\110(3:) =—-2(3—ple-xV¥y — eul,,\e"x)‘f‘“\llg — (2¢- zat — exz)(?“\Ilo (B.26)
and satisfies
%0, (0%o(x)) = 2(p — 2)T %, Tg (B.27)

where we used the constraint equation T*9, W = 0. Again ['*0, (0¥ (z)) = 0 vanishes at p = 2
only. Both of the constraints are compatible with the generalized conformal transformations at
p = 2. It shows a specialty of M2 (or D2) branes.

We have shown that the constraint equations are compatible with the generalized conformal
transformations. If the solutions are restricted to constant ones as in (BI4), we no longer
have the generalized conformal symmetry. It can be maintained only when we consider a set of
space-time dependent solutions to the constraint equations.

Recently H. Verlinde [57] also considered space-time dependent solutions to the constraint
equations and discussed the conformal symmetry of the L-BLG theory. In his study the con-

straint equation is imposed everywhere except at z; where a local operator O;(z;) is inserted,

TN qu
Xg(x)=> (B.28)

|z — 2]
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This is an inhomogeneous solution to the equation
0°X§ = —4m Y ¢/ 0¥ (x — z). (B.29)

We can add the homogeneous solutions to the above. If ¢/ and z (omitting the index 4) transform

as

5q1 =€ zq[

6z, = 2(e- 2)2, — €27, (B.30)
the transformation of X{

X8 (x) = —(e-2) X () (B.31)

is reproduced and the L-BLG action is invariant under the conformal transformations. Note
that ¢! cannot be a constant. If ¢/ is kept fixed, the set of solutions is not closed under the
conformal transformations. In order to recover the conformal invariance, ¢/ should be a position
z-dependent charge.

We have shown that the L-BLG theory has both of the SO(8) invariance and the conformal
symmetry. In the next section we discuss the symmetry properties of the gravity dual of the
ABJM theory.
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Appendix C

SO(8) and Conformal Symmetry in
Dual Geometry

C.1 Large k limit of ABJM geometry

In the paper [12], it was pointed out that the U(N)x U (IN) ABJM theory is dual to the M-theory
on AdSy x S7/Zy, which is a d = 11 supergravity solution of M2 branes probing the orbifold
C*/Z;. We first review the solution of supersymmetric M2 branes in d = 11 supergravity.

The d = 11 metric of the multiple M2-branes is given by

2
ds?> = H™5 | 3 nudatda” | + Hs (dr? +12d02),
p,v=0

H(r) El—i-]jj, (C.1)

where R% = 3272N'I§ and d€)3 is the metric of a unit 7-sphere. N’ is the number of the M2
branes and identified with N’ = kNN. The three form field is also given as

C® = H Yz A dat A da? (C.2)

and the 4-form flux normalized by the world volume is proportional to N'.
By focusing on the near horizon region of the M2-brane, the geometry becomes AdSy x S”
geometry. In the near horizon limit R > r, H(r) is replaced by H(r) = (R/r)% and the metric

becomes

[ & 2
ds? = (%) 3 nudetde | + (f) dr? + R2d02

w,v=0

1
= R? [4ds?4ds + dQ%} (C.3)

where we have rescaled the M2 brane world volume coordinates by a factor 2/R3. Hence the

near horizon geometry of the supersymmetric M2 branes is given by AdSy x S” with a radius
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R. In the large N’ = kN limit, the radius becomes much larger than the d = 11 Planck length
and the d = 11 supergravity approximation is valid.

The ABJM theory describes M2 branes on C*/Z; orbifold. The dual geometry can be
obtained by first specifying the polarization (choice of the complex coordinates) in R® and then
dividing C* by Zy.

Since S7, parameterized by z4 (A = 1,---,4) with |z4|?> = 1, is a U(1)-fibration on CP3,
the metric of S7 is written as

A2 = (d¢' +w)° + ds?ps (C.4)

where ¢ is the overall phase of 2. The details of the definition of coordinates are written in
Appendix [E]

We now perform the Zj quotient by dividing the overall phase of each z4, namely the ¢’
direction. By rewriting ¢’ = ¢/k with ¢ ~ ¢ + 27, the metric of S7/Z; becomes

ds§7/zk = % (de + kw)® + dsQCP3. (C.5)
Before performing the Z; quotient, the metric has the conformal symmetry associated with the
AdS, geometry and SO(8) symmetry of S7. The orbifolding breaks the SO(8) symmetry to
SU(4) x U(1) but the conformal invariance still exists. This is the bosonic symmetry of the
ABJM theory.

The L-BLG action can be derived by taking the scaling limit (B.8]) of the ABJM theory. In
the gravity side, this scaling corresponds to locating the probe M2 branes far from the orbifold
singularity and taking the large k limit. As we show in the next section, the former process
recovers the SO(8) if the positions of the M2 branes are considered to be dynamical variables.
The latter makes the radius of the ¢’ circle small and d = 11 geometry is reduced to d = 10.

Now we consider the k — oo limit of the dual geometry of the ABJM theory. Following the
prescription of ABJM, we shall interprete the coordinate ¢ as the compact direction in reducing

from M-theory to type ITA superstring. Using the reduction formula [58]
ds?, = e 3%ds%) + e3%(1,)2 (dp + A)? (C.6)
we get the d = 10 metric and the dilaton field in type ITA supergravity as

2
r _1 v r 1

dsTy = 7klpH 2 E nudzrdz” | + k—lpH2 (dr® + r*dsgps) , (C.7)

H,v=0

2 r\° 1 R\?
= _— H7 = —_— . .
“= () = () ©s)

Hence in the k — oo limit, the metric becomes AdSy x CP3:
R3[1
ds?y = - [4ds?4ds4 + dsgps (C.9)
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where the radius of curvature in string units is

R\’ R® N

The dilaton is a constant and this is the reason why the d = 10 metric still has a conformal
symmetry associated with the AdS; geometry. This is different from the ordinary reduction of
the M2 branes to D2 branes by compactifying the 11th direction of the Cartesian coordinate
(see Appendix [E]). Note that in the type ITA picture, in addition to the four-form RR flux Fy,
there is a 2-form RR flux:

3R3
F4 - 77€47
N
Fy = dA — kdw (C.11)

where €4 is the volume form in a unit radius AdSy space. Hence the geometry is described by
the AdS,; x CP? compactification with N units of the four form flux on AdSs and k units of
the two-form flux on the CP! in CP? space.

In the k¥ — oo limit with N/k fixed, the compactification radius along the ¢-direction Ri;

becomes very small compared to the d = 11 Planck length:

Riu R (Nk)YS

Y , 12
L, Kl P (€12)

Thus the theory is reduced to a ten-dimensional type IIA superstring on AdS; x CP3. However
the scaling limit from ABJM to L-BLG is taking large k limit before taking the large N and the
't Hooft coupling N/k becomes 0 in this limit. Since Rj; = gg/ 3lp, the string coupling constant

gs = e? also becomes 0:

gs = e® ~ETINT 0. (C.13)

Since d = 11 Planck length [, and d = 10 Planck length ll()m) are related to the string length as

l, = g;/?’lS and l,gm) = g;/4ls, the ratios of the radius of the ITA geometry (C.9]) with /5 and l,(}“)

are given by

9 2
BN\® N -0, LAY EY/8N3/8 5 oo, (C.14)
Iy k 110

Therefore the Type IIA supergravity approximation itself is good but the o’ expansion is not
good and the theory cannot be considered as the low energy approximation of type ITA super-
string. On the other hand, the radius R is much larger than the d = 11 Planck length and it
may be more appropriately interpreted as a dimensional reduction of M2 branes in the d = 11

supergravity.
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We summarize the various length scales in the scaling limit of the ABJM theory to the
L-BLG theory:

Ry < I <1019 « Rygs < L. (C.15)

The compactification radius Rj; is much smaller than any other scales and the theory is reduced
to d = 10. But the radius of the AdS; x CP? is smaller than the string length and larger than
the d = 10 and d = 11 Planck scales.

In the ordinary case of the duality between type IIB superstrings on AdSs x S° and N = 4
SYM in d = 4, the radius of curvature R is given by

4
R\?* R
D

Thus it is usually assumed that both of gsN and N are large so that the type IIB supergravity
approximation and the o/-expansion are valid. Unless gsN is large, o/ corrections cannot be
neglected and the supergravity description itself is not valid. In the weak coupling limit, the
dual field theory is usually considered to be more appropriate. In our case, we can consider the
d = 10 supergravity as a dimensional reduction of d = 11 supergravity. However membranes
wrapping the ¢ direction become very light strings in the unit of the radius of curvature R, and

this may invalidate the supergravity approximation of the M-theory.

C.2 Recovery of SO(8) in dual geometry of L-BLG

In taking the scaling limit k(> N) — oo of the ABJM theory to the L-BLG theory, the eleven-

dimensional geometry is reduced to the ten-dimensional AdS; x CP3:

ds? = H™3 (Z nw,dx“dx”) + H3 (dr® + r’dsps)

RG

H(r) = 5. (C.17)

In this section we discuss how the SO(8) can be recovered in the scaling limit of the ABJM
geometry to the L-BLG geometry. The L-BLG geometry is obtained by taking k& — oo limit
of AdSy x S7/Z;, and simultaneously locating the probe M2 brane far from the origin of the
orbifold. In the large k limit, the geometry becomes d = 10 AdS; x CP?, and there are only
7 transverse directions to the M2 brane world volume, However the radial distance in (CI7) is

given by the distance in d = 8:

8
r? =Y (x1)2 (C.18)

I=1

It is invariant under the original SO(8) rotation and the Zj quotient leaves r invariant.
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Now we consider a probe M2 brane in the above geometry. In the static gauge, the M2 brane
world volume is identified with the coordinates z# (1 = 0, 1,2) and the position of the M2 brane
is given by X! (x) where I = 1,---,8. There are only 7 independent propagating modes among
8, and the direction that is removed is the (-direction. Remember that the ¢ is the overall
phase of the complex coordinate 2z’ of the transverse R®. Assuming that the probe M2 brane
is located far from the source branes, we can separate the probe M2 brane coordinates into the
classical background fields X! (z) and the quantum fluctuations X/ (z). Since the M2 brane is
on C*/U(1), all the points on the gauge orbit generated by the p-rotation are identified. Here
the position of the M2 brane is represented by the coordinates of R8; a point on the gauge orbit
is singled out by fixing the gauge (see Appendix [E]).

If the probe M2 brane is located at

Xt = vol#® (C.19)

where v is much larger than the scale of the fluctuations, the rotation along the y-direction is

approximated by

X7 = —bp v,
oxl=0, 1#7. (C.20)

This shows that in the large v limit the ¢ direction can be identified with the 7th direction
X7 Since the Zj, orbifolding with large k corresponds to gauging away the ¢-direction, the
fluctuation along the 7th direction is killed and the field X! can fluctuate only in the other 7
directions. This means that the SO(7) rotation acts among the other 7 directions around the
classical background of (C:I9). If the classical background X{(z) takes different directions at
different world volume points, the killed direction also changes locally on the world volume.

In order to get a manifest SO(8) covariant formulation of this mechanism, it is convenient
to separate the classical background field of the M2 brane and the fluctuations in the complex

coordinates as
ZMx) = Z{ (x) + Z4 (). (C.21)

If the fluctuations are much smaller than the classical background field, the ¢ rotation can be

approximated as
524 = idpZ4. (C.22)
If we write

7§ = XA 4 ixgA
74 =X XA (C.23)

! ([CI9) has fixed a gauge of the ¢ rotation and (C.20)) is nothing but the direction parallel to the gauge orbit.
If we change a gauge,e.g. to X{ = v6"", (C.20) is also changed accordingly.
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where A = 1---4, the propagating degrees of freedom along the direction (C.22]) are killed and

the fluctuations are restricted to obey
XXt =o. (C.24)

Note that the decomposition of the complex fields into the real and the imaginary parts are
different between the classical background Zg' and the fluctuations Z4 in (C23). With this
definition, if Xé = 0978, the killed direction becomes the 8th direction of X!. We can write the
fluctuations perpendicular to X! in ([C24) as

IyJ
Pl = (5” - )(()0(53 > X (C.25)
This P! automatically satisfies the condition (C.24) and 7 degrees of freedom are projected
among the 8 degrees of freedom. Now everything is written in a manifestly SO(8) covariant
way. The SO(8) covariance is recovered because we have assumed that the fluctuation is much
smaller than the classical background fields of the probe M2 brane. This assumption is consistent
with the scaling limit of the ABJM theory to the L-BLG theory.

Note here that the SO(8) rotation changes the gauge choice of the ¢ rotation and SO(8) is
mixed with the U(1) gauge transformation. Also note that because of the different assignments
of X! to Z4 for Zy and Z, the SO(8) is different from the original SO(8) before taking the
orbifolding.

The analysis here and in the previous section shows why the L-BLG theory has both of
the conformal symmetry and the invariance under SO(8). The compactification direction along
the ¢ direction is different from the ordinary reduction to d = 10 by compactifying the 11th
transverse direction. The dilaton becomes constant and the AdS, geometry is preserved. This
is the reason why there is a conformal symmetry in the effective field theory of L-BLG.

The SO(8) invariance is more subtle. In the scaling limit of ABJM to L-BLG, we take
k — oo limit and simultaneously locate the probe M2 brane far from the origin of the orbifold.
Then the killed direction of the fluctuations by Zj, (k — oo) orbifolding is given by the SO(8)
vector of the classical background fields X({ after specifying the gauge choice, and defining the

projection operator by using X! the manifest SO(8) covariance is obtained.

C.3 Actions of probe branes in AdS, x CP?

In this section we study possible forms of the effective field theory of probe M2 branes in the
background geometry (C.IT). The analysis in the section follows the prescription of [59] and
[60] that a classical scalar field in the radial direction is interpreted as the Yang-Mills coupling.
We will study probe M2 branes in a curved background while flat 11-dimensional background is

used there.
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By using the metric of (C.I7), the generally covariant kinetic term can be written as

1
So = — 3 a3z \/— det gg" grstr[D, X D, X ], (C.26)
where u, v = 0,1, 2 are the world volume indices and I, J =1, --- , 8 are the target space indices,

and D, = 9, —iA,, is the covariant derivative to assure that X’ lies on C*/U(1) (see Appendix
[E).

Both of the world volume metric ¢g"” and the target space metric g7y are functions of the
position of the M2 branes X(z). A static gauge is taken and the world volume metric Juv 18
given by the induced metric in the curved space-time (CI7).

This kinetic term can be simplified as follows. The metric g,,, and ¢!’ are functions of the
the M2 brane position through r. As we did in the previous section, we separate the 8 scalar
fields X (z) of the probe M2 branes into a classical background and quantum fluctuations. If
the probe M2 branes are located far from the origin of the orbifold singularity, the position
of the M2 branes is approximated by the value of the classical background fields X({ (z) and
r ~ 1/(X{(x))2. Inserting the explicit form of the metric, the kinetic term can be simplified

(see Appendix [E]) as
1
So = —2/ dxn"ny str[0, P10, P (C.27)

where P!(z) is the projected fluctuating fields ((C.25)). In deriving this action, we have used that
the classical background fields Xé are slowly varying. Note that all the dependence of H(r)
vanishes and the kinetic term of the fluctuating fields does not have the explicit dependence on
the position of M2 branes.

The position of the M2 branes Xé must satisfy the classical equation of motion on the
geometry (CI7). Because of the cancellation of H(r), it looks like a free field equation of
motion. But the fields X({ are restricted to be on the geometry where the (-direction is killed,
and they are slightly different from the constraint equation (B.10) in the L-BLG theory, or that
in the scaling limit of the SU(N) x SU(N) ABJM theory. This is related to the effect of the
U(1) gauge field of the ABJM theory. We discuss it in Appendix

In the rest of this section, we dare to generalize the discussion of the kinetic term of the
scalar field to the other possible terms in the the effective action of the probe M2 branes in the
geometry (CI7). First assume that a gauge field is induced on the effective action of the probe
M2 branes and its action is given by the ordinary Yang-Mills type. Then the general coordinate
invariant YM action in the curved metric (CI7) is given by

1 1 R\?
~1 Az \/— det gg"P " tr [Fl, Fpo) = —4/d3:v (7‘) NP0 otr [Fu Fpo) - (C.28)

(Since we are considering the d = 11 theory, there is no freedom to multiply a dilaton dependence

in the action.) In this case, H(r) dependence remains and the effective Yang-Mills coupling is
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given by the following field dependent value:

2 I(2))2
gyu (@) = 7 (Xo]éz)). (C.29)

Similarly if we assume that the scalar field acquires a quartic potential, the general coordinate

and SO(8) invariance require its form to be

1
1 [ &V detggugnnlP!, PPF, P

1\2
:/d%i(XO) nixnsote[PL, P7[PX | PE. (C.30)

Rz

Here P! are projected scalar fields (C.25).

Summing up these three terms, we have the following forms of the effective action:

1 R? 1(xt)?
= Fu F™) + =220
a o T T

S = —% / da® (tr[&uPlauPl] — tr[PI,PJ]2> : (C.31)
Of course there is little justification of the above analysis but it is amusing to see that this is
nothing but the bosonic part of (B.I9). The analysis might support an interpretation that the
action of L-BLG is the effective action of the probe M2 branes in the geometry of (C.I7). The
X/ dependence of the coefficients will be related to the conformal invariance of the M2 branes.
It will be interesting to constrain possible forms of the effective action including fermions, higher

derivative terms, or generic potential terms by the generalized conformal invariance.
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Appendix D

U(1) part in ABJM theory

In scaling the ABJM theory to the L-BLG theory, we have mainly concerned with the SU(N) x
SU(N) gauge theory. In this appendix we consider the scaling limit of the U(N) x U(/N) ABJM
theory, especially the effect of the U(1) part. For simplicity we consider the bosonic terms only.

In the presence of the U(1) gauge field, the covariant derivative is modified to
D,Y = D,Y +2iBo,Y +i{B,,Y} +8,Yo + 2iB,Yy + 2i B, Yo, (D.1)
where By, is the axial combination of the U(1) x U(1) gauge field
By = %(A(L) AR, (D.2)

The gauge field By, is associated with the gauge transformation of the complex field Y4 —
e?Y 4. Hence if the dual geometry is described by C*/U(1), we need the gauge symmetry even
after the scaling to L-BLG. Therefore, we do not scale the By, field unlike B,,. The scaling is
given by

B, — AB,, Yo— A,  Bg,— By, (D.3)
and take the limit A — 0. The kinetic term of the scalar fields becomes
LD, YA = tr |~ (D Va4 2B, You + 2iBo,Va) (DM A + 2iBRY{: + 2iBEVA)
9 utAl = o\ Hh A 1Dy YA Doy X A ? 0 1D

(0,Yoa + 2iBo,Yoa) (O*Y§! + 2i BE YY)
222
—i(8,Yoa + 2iBouYoa) BPY A +i(0, Y + 2iBo, Y B*Y] | . (D.4)

The difference from the SU(NN)x SU(N) case is that all the derivative is replaced by the covariant
derivative with respect to Bg,. Requiring finiteness of the action, one can obtain the modified

constraint

Dy Yg" = (9 + 2iBo,) (9 + 2iBf) Yy = 0. (D.5)
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The gauge field By, does not have a kinetic term and it is nothing but the auxiliary gauge field
A, introduced in the C*/U(1) gauged model discussed in Appendix [El
In the presence of the vector-like U(1) gauge field

1
Aoy = (AP + ALY, (D.6)
there is a coupling of By, to Ag, through the Chern-Simons term. If we do not scale the Ag,
either, it is given by

AN K " Ptr By, Foup, (D.7)

where Fy,, = 0,A0, — 0, Ag,- Then because of the A~ coefficient this must vanish too.
If we instead scale the Ap, gauge field with ), the coefficient becomes of the order A", and

an integration over By, solves it as

(0) _ ¢ Ag DA _ Ay pA
By, __2\Y0A|2(Y0 OuY " = Yo" 0,Y ") — 2K €up ). (D-8)
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Appendix E

SO(8) recovery in C*/U(1) model

In Section we showed the recovery of SO(8) invariance in the scaling limit of AdSy x CP3.
In this appendix, we study a C*/U(1) sigma model and see the recovery of SO(8). This is a
generalization of the equivalence of a gauged model on CP! and an O(3) nonlinear ¢ model to
a higher dimensional target space.

C* is parameterized by the following angular variables:

2l = pei(‘z’lﬂ’l) cos ),
22 = pe'®2+9) sin 0 cos 1,

23 = pei(¢3+‘p/) sin @ sin v cos x,

24 = pe'?’ sin fsin 1 sin y,
0< 90/ <2m, 0< 971/]7X7 ¢17¢27¢3 <. (E].)
We then consider a scalar field on C*/U(1) by identifying

zi ~ €% 2. (E.2)

The Lagrangian of the scalar field Z;(z) on C*/U(1) must be invariant under the local gauge

transformation
Zi(x) — ¥ Z;(z) (E.3)

and the action can be written by introducing an auxiliary gauge field A, as
S— /d%](@u AN ZaP (E.4)

In the ABJM theory, the gauge field comes from the U(1) part of the axial combination of the
two U(N) gauge fields By, (see Appendix [D]). The gauge field does not have a kinetic term and
and it can be eliminated by solving the equation of motion as

i

A, = m(zf‘aﬂf‘ — Z49,724). (E.5)
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By substituting the solution to the action, we obtain a nonlinear action which depends on the
Z4 fields only. The action (E.4) becomes

S= /d%(yazA\? A2 2. (E.6)

In the case of CP! model, it is well known that the model is nothing but the nonlinear o-model
on S2. In our case, it is a nonlinear model on C*/U(1).

Now we expand the field around a classical background and expand the field as
ZMx) = Z3 + 74 (E.7)

The classical background satisfies the equation of motion. Assume that the classical background

is very slowly varying and much larger than the fluctuation 74
1251 > |24, |dzZg|. (E.8)

Under the assumption (E.S), the quadratic terms of the fluctuations in the action (E.6) become

S ~ /d3x(]82A]2 — AD21Z8412) (E.9)
where
1 = A N
AD = 37 W(Zg;‘auzf‘ — 20"0,2%). (E.10)

If we decompose the complex fields into real components as

Zgt = XA +ixgt

ZA4 = ix?A- - x2A (E.11)
the gauge field can be written as
1 A
A0 = xto, X1 (E.12)
SEENC e
Thus the action can be written as a manifestly SO(8) covariant expression:
. 1 .
5= / Pr{(OX1) — 5 (Kf0X")?) (E.13)
In terms of the projected scalar field
o1 X{XJX7
pr=XxI—-=0_0" (E.14)
(Xo)?
the action is written (under the assumption (E.g]))
S = /d%(aﬂPf)?. (E.15)

It is manifestly invariant under the SO(8) transformations. But note that the SO(8) trans-
formation is different from the SO(8) acting on the original R® because of the different decom-

positions of the complex fields into the real components in (E.II]).
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Appendix F

Ordinary reduction of M2 to D2

In this appendix, we remind the reader of the ordinary reduction of M2 branes in d = 11
supergravity to D2 branes in d = 10 type ITA supergravity to clarify the difference from the
reduction adopted in the ABJM theory. By compactifying x1; direction and identifying x1; ~
x11+27R11 the M2 brane solution is given by replacing the metric (C.I]) with a smeared harmonic
function [61]

e}

RS
H(r)= Z (r2 + (x11 + 27nR11)?)3

n=—0oo

(F.1)

where r is the radial distance in the 7 non-compact transverse directions. The string coupling
constant is given by R11 = gsls. Then we can get the solution of the multiple D2-branes in the
string frame by using the reduction rule and the Poisson resummation at distance much larger
than Rqq:

2
dspp = H™2 | > nydatda” | + H? (di® +dF)
H,v=0

=

e® =H ,
B 67rzgle§;’

H(r) = %

(F.2)

It is quite different from (CJ9)). Especially the dilaton is not a constant and the conformal
symmetry of the M2 brane geometry is broken; it is no longer AdS;. The transverse direction

is given by the radial direction and S%, and therefore it has the SO(7) invariance.
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Appendix G

Gamma Matrices

The explicit forms of the antisymmetrized products of the 8 x 8 I' matrices we have used in (3.22))

are given as I'ry = laxa ® v7; where

T2 =

T4 =

Y16 =

718 =

V53 =

Y56 =

V58 =

1o
—io?
io?
io?
io?
io?
0_1 )
ol
ot
—io?
ol
—io?
!
io?
io?
ol
I
0.3
—g3 ’
—I
io?
io?
io? )
—io?
ol
gl
io?
io?
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Y13 =

Y5 =

"7 =

V52 =

Y54

V57 =

(G.1)



and oo is a 2 X 2 identity matrix. We have also defined

M = io? ® Igxs.

(G.2)

The i0? was used to contract the indices of the 2-component spinor x and it is the 3 dimensional

7 matrix (see the Appendix of [35]). Igxs is an 8 x 8 identity matrix. They satisfy the following

consistency relations as I'1oI'13 + '3 = —(T'el's + I'sI'y) = 0. At this stage, there is an

ambiguity to determine the I' matrices, but the explicit forms of I'; are not necessary here. To

fix the ambiguity, we need to consider more general VEVs of Xé .
On the other hand, the explicit forms of the antisymmetrized I' matrices

Section 9 are

that we used in

—io? —I
)
10 I
T = . '3 =
—io? ’ 3 —a3 |
—io? o3
—io? o3
2
—10 —I
I'a = I =
_0_1 9 5 _0_3 9
ol I
ol o3
)
10 I
I = I'y; =
16 _0_1 9 17 _]I 9
io? —o3
ol —ol
r —io? r io?
18 = . 2 =
8 —20'2 ) 5 0_1 )
—ol io2
—1 —io?
r —o* r o
53 = 54 =
0'3 ’ 0-1 9
I —io?
—io? —o3
r —io? r o3
56 —iUZ ) 57 _]I 9
io? I
1
o
I'ss = . G.3
58 —20'2 ( )
—io?

They indeed satisfy the consistency conditions as I'1o'13 + T30 = —(T'2's + I'se) = 0.
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