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PREFACE

M-theory is an eleven dimentional theory and provides a useful framework to understand the

nonperturbative physics of superstring theory. M-theory can be regarded as a strong coupling

limit of Type IIA superstring theory and is related to other superstring theories through the S,

T and U-dualities. M2-branes and M5-branes exist as BPS objects and these branes reduces to

D-branes, NS5-branes, Kaluza-Klein monopoles and fundamental strings in superstring theory.

Until recently, the low energy effective theory of multiple M-theory branes has not been known.

However, triggered by the pioneer papers [1, 2, 3], fruitful developments about the multiple

M2-branes have been achieved in the recent past.

One of the novelties in the developments is the appearance of Lie 3-algebra [T a, T b, T c] =

fabc
dT

d for the gauge symmetry, and the theory based on this algebra has appropriate symme-

tries as the effective theory of multiple M2-branes. This is called Bagger-Lambert-Gustavsson

(BLG) theory. For the concrete expressions of Lie 3-algebra, it is known that the following

theories with maximal supersymmetry can be derived from the original BLG theory: A4 BLG

theory for two M2-branes [2], Lorentzian BLG theory for multiple D2-branes [4, 5, 6], extended

Lorentzian BLG theory for multiple Dp-branes (p > 2) [7, 8], and Nambu-Poisson worldvolume

theory for a single M5-brane [9, 10] or finite number of multiple M2-branes [11]. Another ap-

proach to construct the action of multiple M2-branes is given by [12], and this Aharony-Bergman-

Jafferis-Maldacena (ABJM) theory describes an arbitrary number N of multiple M2-branes on

an orbifold C4/Zk. This theory has U(N) × U(N) gauge symmetry and only in special cases it

can have a maximal supersymmetry. In fact, ABJM theory in a certain scaling limit reproduces

Lorentzian BLG theory [13], and the latter theory can be reduced to the 3-dim super Yang-Mills

theory through the new kind of Higgs mechanism [14]. Therefore, the relation between M2-

branes and D2-branes can be understood only in the viewpoint of Lagrangians [13, 15, 16] (see

also [17, 18]). In addition, when we start from the extended Lorentzian BLG theory [7, 8] or the

orbifolded ABJM theory [19, 20], we obtain Dp-branes whose worldvolume is a flat torus T p−2

bundle over the membrane worldvolume. In these cases, the moduli of torus compactification

of M-theory is properly realized, and the U-duality transformation can be expressed in terms of

Lie 3-algebra or the quiver of Lie groups.

On the other hand, there has been a long time mystery about M5-brane. It is known

that the low energy dynamics of M5-brane is described by 6-dim (2, 0) SCFT, and that the

field contents are five scalars, a spinor and a self-dual 2-form field. However, the covariant

description of the self-dual field is not easy, and thus only the covariant action of single M5-

brane is known [21, 22, 23]. For the multiple M5-brane dynamics, it has not been known even

in the level of the equations of motion. Recently, however, Lambert and Papageorgakis [24]

proposed a set of equations of motion of the nonabelian (2, 0) theory by using the Lie 3-algebra,

which may shed light on the underlying cause of the mystery. Starting from the supersymmetry

transformations of the multiple D4-branes theory, they conjectured those of the nonabelian
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(2, 0) theory. Note that they introduce an auxiliary field which doesn’t appear in the abelian

case. Although this theory seems simply reduced to 5-dim super Yang-Mills theory and might

be nothing more than the reformulation of D4-brane theory, this is the first step toward the

covariant description of multiple M5-branes.

This thesis is organized as follows. In part I, we give a brief review about M-theory and

its brane solution. According to the AdS/CFT correspondence, we can extract the expected

properties about dual field theories. In part II, we take a quick look at the recent developments

about multiple M2-branes. There are two types of Lie 3-algebras classified by the metric of

generators, namely Euclidean and Lorentzian. We first explain the general reduction of the

Lorentzian-BLG theory to D2-brane theory and confirm that the Lorentzian-BLG theory can be

regarded as a reformulation of D2-brane theory. However, such a formulation of Lorentzian-BLG

theory in terms of ordinary gauge theory enables us to connect this theory to the ABJM theory.

Then, in part III, we confirm that the 3-dim N = 8 BLG theory based on the Lorentzian

type 3-algebra can be derived by taking a certain scaling limit of 3d N = 6 U(N)k × U(N)−k

ABJM theory whose moduli space is SymN (C4/Zk). The scaling limit which can be interpreted

as the Inönü-Wigner contraction is to scale the trace part of the bifundamental fields and an

axial combination of the two gauge fields. Simultaneously we scale the Chern-Simons level.

In this scaling limit, M2-branes are located far from the origin of C4/Zk compared to their

fluctuations and Zk identification becomes a circle identification. Furthermore, we show that

the BLG theory with two pairs of negative norm generators is derived from the scaling limit

of an orbifolded ABJM theory. The BLG theory with many Lorentzian pairs is known to be

reduced to the Dp-brane theory via the Higgs mechanism. Therefore our scaling procedure can

be used to derive Dp-branes from M2-branes. We also investigate the scaling limits of various

quiver Chern-Simons theories obtained from different orbifoldings. Remarkably, in the case of

N = 2 quiver CS theories, the resulting D3-brane action covers a larger region in the parameter

space of the complex structure moduli than the N = 4 quiver CS theories. How the SL(2, Z)

duality transformation is realized in the resultant D3-brane theory is also discussed.

Moreover, we explain the recent progress on the application of Lie 3-algebra to M5-branes.

For M5-branes, its nonabelian action has not been discovered due to the lack of understanding

about consistent coupling between arbitrary number of tensor multiplets and Yang-Mills mul-

tiplets. Recently, however, it was suggested that the equations of motion of M5-branes can be

constructed by using Lie 3-algebra. We describe its consistency with the known string dualities

and confirm that the proposed system has to be modified to realize the dynamics of multiple

M5-branes [25]. We also comment about type IIA/IIB NS5-brane and Kaluza-Klein monopoles

by taking various compactification cycles. Because both longitudinal and transverse directions

to the worldvolume can be compactified in the proposed model, we can realize these systems.

This situation is entirely different from the case of BLG theory. Realization of the moduli

parameters in the U-duality group is also discussed.
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Foundations of M-theory
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Chapter 1

M-theory

1.1 11-dim supergravity

M-theory is an eleven-dimensional quantum theory whose low energy effective action is given by

11-dim N = 1 supergravity

S =
1

2κ2
11

∫
d11x

√
−g

(
R − 1

48
FmnklF

mnkl

)
− 1

2κ2
11

∫
1
3!

C3 ∧ F4 ∧ F4. (1.1)

Here F4 = dC3 and κ11 is a 11-dim gravitational coupling constant which is related to 11-dim

Newton’s constant and Planck length as

2κ2
11 = 16πG11 =

1
2π

(2πlp)9. (1.2)

The field content of 11-dim supergravity is quite simple. It consists of the vierbein Ea
m, a

Majorana spin 3/2 field (gravitino) ψm and a completely antisymmetric tensor Cmnl where

m,n, l = 1, · · · , 11 are spacetime indices and a is a tangent space index. The action (1.1) is

invariant under the following supersymetry transformations

δEa
m = ε̄Γaψm,

δψm = ∂mε +
1
4
ωmabΓabε +

1
288

Fnklp

(
ΓmΓnklp + 12Γnklδp

m

)
ε,

δCmnl = −3ε̄Γ[mnψl]. (1.3)

Note that the introduction of cosmological constant is not allowed by supersymmetry.

Now we consider the Kaluza-Klein reduction and reduce the 11-dim supergravity to 10-dim.

We take the eleven-dimensional metric to be

ds2 = e−2Φ/3gµνdxµdxν + e4Φ/3(dx11 + Aµdxµ)2 (1.4)

to describe ten-dimentional metric along with a 1-form A1, dilaton φ. The 3-form C3 reduces to

the R-R 3-form and the NS-NS 2-form through a proper rescaling. Finally we obtain the 10-dim

Type IIA supergravity and its string coupling constant gs is given by eΦ. From (1.4), we find
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that lp = g
1/3
s ls. Through the KK-reduction on a circle of radius R11, the Newton’s constant in

11-dim and 10-dim are related as

G11 = 2πR11G10, (1.5)

while the 10-dim Newton’s constant is given by 16πG10 = (2π)7l8sg
2
s . Combining these with

(1.2), we obtain the famous relation

R11 = gsls. (1.6)

This means that the strong coupling limit of Type IIA string theory is eleven dimensional. This

is the M-theory.

1.2 M2-branes and M5-branes in 11-dim supergravity

Here we describe the brane solutions of 11-dim supergravity (1.1) obtained by solving the Killing

spinor equation

δψm = ∂mε +
1
4
ωmabΓabε +

1
288

Fnklp

(
ΓmΓnklp + 12Γnklδp

m

)
ε = 0 (1.7)

We don’t have to consider other SUSY variations because we take a bosonic background.

The flat coincident N M2-branes in 11-dim have SO(1, 2)×SO(8) symmetry and the metric

and 4-from field strength are given by

ds2 = H(r)−2/3ηµνdxµdxν + H(r)1/3(dr2 + r2dΩ2
7), (1.8)

F4 = dx0 ∧ dx1 ∧ dx2 ∧ dH−1 (1.9)

where µ, ν = 0, 1, 2 and H(r) is the harmonic function on R8

H(r) = 1 +
R6

r6
. (1.10)

Here R = (32π2N)1/6lp. Note that F4 has nonzero time components and thus M2-branes are

electrically coupled to the 4-form flux. In the near horizon limit this solution becomes AdS4×S7

ds2 =
( r

R

)4
ηµνdxµdxν +

(
R

r

)2

dr2 + R2dΩ2
7

= R2

[
1
4
ds2

AdS + dΩ2
7

]
, (1.11)

F4 =
3
8
R3εAdS4 (1.12)

where we have rescaled the worldvolume coordinate of M2-branes and εAdS4 is a volume form of

AdS4 spacetime. According to the AdS/CFT correspondence, the dual field theory is expected

to be a 3-dim N = 8 SCFT with SO(8) R-symmetry.
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The flat coincident Ñ M5-branes in 11-dim have SO(1, 5)×SO(5) symmetry and the metric

and 4-from field strength are given by

ds2 = H(r)−1/3ηµνdxµdxν + H(r)2/3(dr2 + r2dΩ2
4), (1.13)

F4 = ∗(dx0 ∧ dx1 ∧ dx2 ∧ · · · ∧ dx5 ∧ dH−1) (1.14)

where µ, ν = 0, 1, · · · , 5 and H(r) is the harmonic function on R5

H(r) = 1 +
R̃3

r3
. (1.15)

Here R̃ = (πÑ)1/3lp. We can easily show that the near horizon geometry of this solution is

AdS7 × S4 and we expect that dual CFT is 6-dim N = (2, 0) SCFT with SO(5) R-symmetry.

1.3 Exact vacua of M-theory

The on-shell 11-dimensional supergravity in superspace was formulated in [26]. There is a single

superfield Wrstu(x, θ) whose local Lorentz indices are totally antisymmetric. All components of

the supertorsion and supercurvatures can be expressed in terms of Wrstu and its first and second

covariant derivatives. The first few components of this superfield are

Wrstu(x, θ)|θ=0 = F̂rstu(x), (1.16)

(DαWrstu(x, θ))|θ=0 = 6(γ[rsD̂tψu])(x), (1.17)

(Dα(D̂rψs])β)|θ=0 =
(1

8
R̂rsmnγmn +

1
2
[T tuvw

r , T xyzp
s ]F̂tuvw(x)F̂xrzp(x)

+ T tuvw
[s D̂r]F̂tuvw(x)

)
αβ

(1.18)

where F̂rstu = Frstu−3ψ̄rγstψu is a (shifted) 4-form flux and T rstuv = (1/122)(γrstuv−8γ[stuηv]r).

The equation of motion is

(γrstD)αWrstu(x, θ) = 0. (1.19)

In a generic background we can write down corrections to the RHS of equation of motion

involving superfields and derivatives of superfields. However, it was shown in [27] that there are

no corrections to the AdS4 × S7 and AdS7 × S4 solutions in M-theory and thus they are exact.

The lowest component of the superfield W is given by 4-form flux. In the case of AdS4 or

AdS7, 4-form flux is given by the volume form of AdS4 or S4 and these are covariantly constant.

The next component of the superfield (1.17) is derivative of gravitino and this vanishes due

to considering the bosonic background. From explicit computation or differentiating Killing

spinor equation, we can verify the component (1.18) vanishes as well. The remaining higher

components are given by some derivatives of the previous ones and thus all vanish. Therefore

we see that Wrstu is supercovariantly constant.
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Now we reconsider the correction to the equation of motion. Because Wrstu is supercovari-

antly constant, the possible corrections can depend only on Wrstu and other constant tensors

like γ-matrices etc. The equation of motion is written in a form which have one free spinorial

index and so do the corrections. Although it is impossible to construct the one spinorial index

without using spinorial derivatives, however derivative terms are all nonzero. Therefore there

is no possible correction we can write down. This means that the AdS4 × S7 and AdS7 × S4

spacetimes are exact vacua of M-theory.

1.3.1 M2-brane entropy from the gravity dual

For n + 1 spacetime dimensions, the (Euclidean) gravitational action has two contributions

Ibulk + Isurf = − 1
16πGN

∫
M

dn+1x
√

g

(
R +

2n(n − 1)
L2

)
− 1

8πGN

∫
∂M

dnx
√

hK (1.20)

where GN is n-dimensional Newton’s constant. The first term is the Einstein-Hilbert action

with cosmological constant Λ = −n(n−1)
L2 . The second term is the Gibbons-Hawking term. Here

K is the extrinsic curvature, h is the induced metric on the boundary. On the AdS background,

both of these terms are divergent because of the noncompactness of the space. The modern

approach to circumventing this problem is to perform a “counterterm subtraction” [28], namely

a gravitational analogue of Minimal Subtraction scheme and the counterterm action is given by

Ict =
1

8πGN

∫
∂M

dnx
√

h

[
n − 1

L
+

L

2(n − 2)
R +

L3

2(n − 4)(n − 2)2

(
RabRab − n

4(n − 1)
R2

)
+ · · ·

]
(1.21)

where R and Rab are Ricciscalar and Ricci tensor for the induced metric h, respectively. These

three terms are sufficient to cancel divergence for n ≤ 6.

Now we explicitly compute on Euclidean AdS background which has a boundary Sn. Ac-

cording to the AdS/CFT dictionary, it correspondes to the free energy of CFT on Sn. As a

metric of Euclidean AdS space, we choose

ds2 =
dr2

1 + r2

L2

+ r2dΩ2
n. (1.22)

Then the bulk action is

Ibulk =
nvol(Sn)
8πGNL

∫ r

0
ds

sn

√
L2 + s2

(1.23)

where we computed with a cutoff at the boundary located at r. Finally we will take r → ∞
limit. By using the useful relation

√
hK = Ln

√
h (1.24)

and the expression of unit normal vector to the boundary as n =
√

1 + r2/L2∂/∂r, we obtain

Isurf = − 1
8πGN

∫
∂M

dnx Ln

√
h = −nrn−1

8πGN

√
1 +

r2

L2
vol(Sn). (1.25)
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Combining these terms with the first two counter terms, we obtain

IAdSn+1 = Ibulk + Isurf + Ict (1.26)

=
vol(Sn)
8πGNL

[∫ r/L

0
dt

tn√
1 + t2

− nrn−1
√

r2 + L2 + rn(n − 1)
(

1 +
n

2(n − 2)
L2

r2

)]
.

(1.27)

Taking a limit r → ∞, we find

IAdS4 =
vol(S3)
8πGNL

(
2L3 + O(1/r)

)
≈ πL2

2GN
. (1.28)

Let us rewrite this expression in terms of charge or number of M2-branes. As we will see later

in part II of this thesis, the gravity dual of ABJM theory is known to be AdS4 × S7/Zk. The

eleven dimensional metric and 4-from flux are given by

ds2
11 = R2

(
1
4
ds2

AdS4
+ ds2

S7/Zk

)
, (1.29)

F4 =
3
8
R3εAdS4 . (1.30)

The radius R is determined by the flux quantization condition

(2πlp)6Q =
∫

∂M8

∗F4 = 6R6vol(S7/Zk). (1.31)

As expained in [29], the charge Q is related to the number of M2-branes as

Q = N − 1
24

(
k − 1

k

)
. (1.32)

The four dimensional Newton’s constant is written as

1
GN

=
2
√

6π2Q3/2

9
√

vol(S7/Zk)
1

R2
. (1.33)

Thus we finally obtain

IAdS4 =
πR2

2GN
= Q3/2

√
2π6

27vol(S7/Zk)
. (1.34)

In the large N limit, Q ≈ N and we find that the planar free energy

−F
(0)
ABJM (S3) =

√
2π6

27vol(S7/Zk)
N3/2 =

√
2π

3
k2λ3/2. (1.35)

This is the famous strong coupling behaviour of the free energy of M2-branes.
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1.4 Supergravity on AdS4× Hopf fibrations

Here we consider the way to obtain the gravity duals of SCFTs with less than 16 supercharges.

It is known that odd sphere can be considered to be a U(1) fibration over CPn. Then the metric

is given by

dΩ2n+1 = dΣ2
2n + (dz + A)2 (1.36)

where the dΣ2
2n is the Fubini-Study metric of CPn and 1-form potential A has a field strength

given by F = 2J where J is the Kähler form of CPn. The coordinate z has a period 4π.

By taking S7 to be a Hopf fibration over CP3, we obtain

ds2
10 = ds2(AdS4) + dΣ2

6 + (dz + A)2. (1.37)

Then we can Hopf reduce the AdS4 × S7 over the U(1) fiber and this gives the AdS4 × CP 3

ds2
10 = ds2(AdS4) + dΣ2

6 (1.38)

which is a solution of 10-dim Type IIA supergravity. SO(8) isometry of S7 reduces to that of

CP3 × U(1) which is SU(4) × U(1).

In the gauged supergravity on AdS4 with SO(8) gauge group, we have gravitino in 8s

representation and gauge fields in 28 representation. Decomposing these representations into

SU(4) × U(1), we obtain

8s → 12 + 1−2 + 60,

28 → 10 + 62 + 6−2 + 150. (1.39)

The U(1) neutral subsets survive under the Hopf reduction and only the 60 representation

remains for the gravitino. Therefore we conslude that bulk SUSY reduces from 4-dim N = 8 to

4-dim N = 6 and the dual field theory is 3-dim N = 6 SCFT with SU(4) × U(1) R-symmetry.

Another way to obtain the nonmaximal supersymmetric gravity dual is to consider the

supergravity on AdS4 × S7/Zk. In this case we identify the coordinate of U(1) fiber over CP3

with a period 1/k times than that of S7. Then only a subset of the original states which have

a U(1) charge q = kn/2 remain in the massless spectrum on AdS4 × S7/Zk.

For k = 2, charge projection condition becomes q = n and all the gravitino are left. Thus

the bulk theory is maximally supersymmetric and we expect the dual theory is 3-dim N = 8

SCFT with SU(4)×SO(4)2×U(1) R-symmetry. As we will see later in part II, this corresponds

to U(N)2 × U(N)−2 ABJM theory.

For k = 3, charge condition becomes q = 3n/2 and only the six gravitino 60 remain and bulk

theory has N = 6 SUSY. The corresponding field theory dual is thought to be 3-dim N = 6

SCFT with SU(4)× U(1) R-symmetry. Generically bulk theory has N = 6 SUSY in k ≥ 3 and

the dual CFT becomes U(N)k × U(N)−k ABJM theory.
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Chapter 2

Low energy effective theory of
M2-branes

2.1 Bagger-Lambert-Gustavsson theory

We first briefly review the Bagger-Lambert-Gustavsson (BLG) theory and its symmetry proper-

ties. It is a (2+1)-dimensional nonabelian gauge theory with N = 8 supersymmetries. It contains

8 real scalar fields XI =
∑

a XI
aT a, I = 3, ..., 10, gauge fields Aµ =

∑
ab Aµ

abT
a ⊗ T b, µ = 0, 1, 2

with two internal indices and 11-dimensional Majorana spinor fields Ψ =
∑

a ΨaT
a with a chi-

rality condition Γ012Ψ = Ψ. The action of BLG theory is given by

L = −1
2
Tr(DµXI , DµXI) +

i

2
Tr(Ψ̄, ΓµDµΨ) +

i

4
Tr(Ψ̄, ΓIJ [XI , XJ , Ψ]) − V (X) + LCS . (2.1)

where Dµ is the covariant derivative defined by:

(DµXI)a = ∂µXI
a − f cdb

aAµcd(x)XI
b . (2.2)

V (X) is a sextic potential term

V (X) =
1
12

Tr([XI , XJ , XK ], [XI , XJ , XK ]), (2.3)

and the Chern-Simons term for the gauge potential is given by

LCS =
1
2
εµνλ(fabcdAµab∂νAλcd +

2
3
f cda

gf
efgbAµabAµcdAλef ). (2.4)

This action is invariant under the SUSY transformation

δXI
a = iε̄ΓIΨa,

δΨa = DµXI
aΓµΓIε − 1

6
XI

b XJ
c XK

d f bcd
aΓIJKε,

δÃ b
µ a = iε̄ΓµΓIX

I
c Ψdf

cdb
a, Ã b

µ a ≡ Aµcdf
cdb

a, (2.5)

and the gauge transformation

δXI = Λab[T a, T b, XI ],

δΨ = Λab[T a, T b, Ψ],

δÃ b
µ a = DµΛ̃b

a, Λ̃ b
a ≡ Λcdf

cdb
a, (2.6)
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provided that the triple product [X,Y, Z] has the fundamental identity and Tr satisfies the

property discussed in the next subsection. The most peculiar property of the model is that the

gauge transformation and the associated gauge fields have two internal indices. This must come

from the volume preserving diffeomorphism of the membrane action [30, 31] but the concrete

realization of the gauge symmetry from the supermembrane action is not yet clear.

2.2 A specific realization of Lie 3-algebra

BLG theory is based on the Lie 3-algebra

[T a, T b, T c] = fabc
dT

d. (2.7)

where T a is generator and fabcd is structure constant of this algebra. In order to obtain the

consistent gauge transformations, this algebra must satisfy the generalized Jacobi identity, so

called fundamental identity

[T a, T b, [T c, T d, T e]] = [[T a, T b, T c], T d, T e] + [T c, [T a, T b, T d], T e] + [T c, T d, [T a, T b, T e]]. (2.8)

If this identity holds, we can show that the gauge transformations generated by T a⊗T b form Lie

algebra1. Namely, if we write T̃ abX = [T a, T b, X], a commutator closes among the generators

T̃ ab;

[T̃ ab, T̃ cd]X = [T a, T b, [T c, T d, X]] − [T c, T d, [T a, T b, X]]

= [[T a, T b, T c], T d, X] + [T c, [T a, T b, T d], X]

= (fabc
eT̃

ed + fabd
eT̃

ce)X. (2.9)

A specific choice of the 3-algebra satisfying the fundamental identity is given by [4, 5, 6]. It

contains an ordinary set of Lie algebra generators as well as two extra generators T−1 and T 0.

The algebra is given by

[T−1, T a, T b] = 0,

[T 0, T i, T j ] = f ij
kT

k,

[T i, T j , T k] = f ijkT−1, (2.10)

where a, b = {−1, 0, i}. T i is a generator of the Lie algebra and f ij
k is its structure constants.

Here T−1 is the central generator meaning that its triple product with any other generators

vanishes. T 0 is also special since it is not generated by the 3-algebra and does not appear in the

right hand side of the triple product. One can easily check that this triple product satisfies the
1Strictly speaking, T̃ ab satisfies ordinary Lie algebras only when they act on X. If we write the commutation

relations of T̃ ab without acting on X, they are not necessarily associative and contain associativity-violating
3-cocycles.
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fundamental identity. In order to construct a gauge invariant field theory Lagrangian, we need

the trace operation with the identity

Tr([T a, T b, T c], T d) + Tr(T c, [T a, T b, T d]) = 0. (2.11)

After a suitable redefinition of generators, such a trace can be given by

Tr(T−1, T−1) = Tr(T−1, T i) = 0, Tr(T−1, T 0) = −1,

Tr(T 0, T i) = 0, Tr(T 0, T 0) = 0, Tr(T i, T j) = hij . (2.12)

If we define fabcd as fabcd = fabc
eh

ed, fabcd is totally antisymmetry.

The above construction of the 3-algebra contains the ordinary Lie algebra as a sub-algebra.

The generators of the gauge transformation can be classified into 3 classes.

• I={T−1 ⊗ T a, a = 0, i}

• A={T 0 ⊗ T i}

• B={T i ⊗ T j}

Then it is easy to show that

[I, I] = [I,A] = [I,B] = 0, [A,A] = A, [A,B] = B, [B,B] = I (2.13)

and hence the generators of A form a sub-algebra, which can be identified as the Lie algebra of

N D2-branes.

2.3 BLG theory to D2 branes

Now we decompose the modes of the fields as

XI = XI
0T 0 + XI

−1T
−1 + XI

i T i,

Ψ = Ψ0T
0 + Ψ−1T

−1 + ΨiT
i,

Aµ = T−1 ⊗ Aµ(−1) − Aµ(−1) ⊗ T−1

+Aµ0jT
0 ⊗ T j − Aµj0T

j ⊗ T 0 + AµijT
i ⊗ T j . (2.14)

It will be convenient to define the following fields as in [6]

X̂I = XI
i T i, Ψ̂ = ΨiT

i

Âµ = 2Aµ0iT
i, Bµ = f ij

kAµijT
k. (2.15)

The gauge field Aµ(−1) is decoupled from the action and we drop it in the following discussions.

The gauge field Âµ is associated with the gauge transformation of the sub-algebra A. Another
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gauge field Bµ will play a role of the B-field of the BF theory and can be integrated out. With

these expression the BLG action can be written as

L = Tr
(
−1

2
(D̂µX̂I − BµXI

0 )2 +
i

2
¯̂ΨΓµD̂µΨ̂ + iΨ̄0ΓµBµΨ̂ +

1
4
(XK

0 )2([X̂I , X̂J ])2

−1
2
(XI

0 [X̂I , X̂J ])2 − 1
2
Ψ̄0X̂

I [X̂J ,ΓIJΨ̂] +
1
2

¯̂ΨXI
0 [X̂J , ΓIJΨ̂] +

1
2
εµνλF̂µνBλ

−∂µXI
0 BµX̂I

)
+ Lgh, (2.16)

where the ghost term is

Lgh = (∂µXI
0 )(∂µXI

−1) − iΨ̄−1Γµ∂µΨ0. (2.17)

The covariant derivative and the field strength

D̂µ ≡ ∂µX̂I + i[Âµ, X̂I ], D̂µΨ ≡ ∂µΨ̂ + i[Âµ, Ψ̂], F̂µν = ∂µÂν − ∂νÂµ + i[Âµ, Âν ] (2.18)

are the ordinary covariant derivative and field strength for the sub-algebra A. As emphasized

in [4, 5, 6], a coupling constant can be always absorbed by the field redefinition and there is no

tunable parameters in this model.

The supersymmetry transformations for each mode are given by

δXI
0 = iε̄ΓIΨ0,

δXI
−1 = iε̄ΓIΨ−1,

δX̂I = iε̄ΓIΨ̂,

δΨ0 = ∂µXI
0ΓµΓIε,

δΨ−1 = {∂µXI
−1 − Tr(Bµ, X̂I)}ΓµΓIε +

i

6
Tr(X̂I , [X̂J , X̂K ])ΓIJKε,

δΨ̂ = D̂µX̂IΓµΓIε − BµXI
0ΓµΓIε +

i

2
XI

0 [X̂J , X̂K ]ΓIJKε,

δÂµ = iε̄ΓµΓI(XI
0 Ψ̂ − X̂IΨ0),

δBµ = ε̄ΓµΓI [X̂I , Ψ̂]. (2.19)

Here note that XI
−1 and Ψ−1 appear only linearly in the Lagrangian and thus they are

Lagrange multipliers. By integrating out these fields, we have the following constraints for the

other problematic fields associated with T 0;

∂2XI
0 = 0, Γµ∂µΨ0 = 0. (2.20)

This should be understood as a physical state condition ∂2XI
0 |phys〉 = 0. In the path integral

formulation, these constraints appear as a delta function δ(∂2XI
0 ) and those fields are constrained

to satisfy the massless wave equations. In order to fully quantize the theory, we need to sum

all the solutions satisfying the constraints, but we here take a special solution to the constraint

equations and see what kind of field theory can be obtained.
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The simplest solution is given by

XI
0 = v δI

10, Ψ0 = 0, (2.21)

where v is some constant. This solution was considered in [4, 5, 6] and preserves all the 16

supersymmetries, the gauge symmetry generated by the subalgebra A, and SO(7) R-symmetry

rotating XA, A = 3, ..., 9. Another interesting solution is given by

XI
0 = v(x0 + x1)δI

10 , Ψ0 = 0 (2.22)

where v(x0 + x1) is an arbitrary function on the light cone coordinate. As we see the supersym-

metry transformation for Ψ0,

δΨ0 = ∂µXI
0ΓµΓIε, (2.23)

the solution XI
0 = v(x0 + x1)δI

10 preserves half of the supersymmetries.

In both cases, if we fix the fields XI
0 and Ψ0 as above, we can integrate over the gauge field

Bµ and obtain the effective action for N D2 branes2

L = Tr
[
−1

2
(D̂µX̂A)2 +

1
4
v2[X̂A, X̂B]2 +

i

2
¯̂ΨΓµD̂µΨ̂ − 1

4v2
F̂ 2

µν +
1
2
v
¯̂Ψ[X̂A, Γ10,AΨ̂]

]
, (2.24)

where A,B = 3, · · · , 9. The coupling v is given by the vev of X10
0 and it is either a constant or an

arbitrary function on the light-cone v(x0 + x1). This may be identified as the compactification

radius of 11-th direction in M-theory, v = 2πgsls. The supersymmetric YM theories with a

space-time dependent coupling are known as Janus field theories and originally considered to be

a dual of supergravity solutions with space-time dependent dilaton fields [32](see also [33, 34]).

A salient feature is that the 10-th spacial fields X10 completely disappear from the Lagrangian

by integrating out the redundant gauge field Bµ. It is interesting that Janus field theories are

naturally obtained from BLG theory and we will discuss this point in the Appendix.

The v → 0 limit cannot be taken after integrating the redundant gauge field Bµ. In the case

of vanishing v, the Lagrangian is simply given by

L = Tr
[
−1

2
(D̂µX̂I)2 +

i

2
¯̂ΨΓµD̂µΨ̂

]
(2.25)

with a constraint F̂µν = 0. The action is of course invariant under the full SO(8) R-symmetry.

2.4 Aharony-Bergman-Jafferis-Maldacena theory

The action of the ABJM theory is given by (we use the convention used in [35])

S =
∫

d3x tr [−(DµZA)†DµZA − (DµWA)†DµWA + iζ†AΓµDµζA + iω†AΓµDµωA]

+ SCS − SVf
− SVb

, (2.1)

2The fermion here is a 32 component spinor satisfying Γ012Ψ = Ψ. In order to recover the ordinary notation
for D2 branes, we rearrange it as Ψ̃ = (1 + Γ10)Ψ. Then it satisfies Γ10Ψ̃ = Ψ̃ and the action is written in the
usual form (no Γ10 in the last term).
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with A = 1, 2. This is an N = 6 superconformal U(N) × U(N) Chern-Simons theory. Z is a

bifundamental field under the gauge group and its covariant derivative is defined by

DµX = ∂µX + iA(L)
µ X − iXA(R)

µ . (2.2)

The gauge transformations U(N) × U(N) act from the left and the right on this field as Z →
UZV †.

The level of the Chern-Simons gauge theories is (k,−k) and the coefficients of the Chern-

Simons terms for the two U(N) gauge groups, A
(L)
µ and A

(R)
µ , are opposite. Hence the action

SCS is given by

SCS =
∫

d3x 2Kεµνλ tr [A(L)
µ ∂νA

(L)
λ +

2i

3
A(L)

µ A(L)
ν A

(L)
λ − A(R)

µ ∂νA
(R)
λ − 2i

3
A(R)

µ A(R)
ν A

(R)
λ ].

(2.3)

The potential term for bosons is given by

SVb
= − 1

48K2

∫
d3x tr [Y AY †

AY BY †
BY CY †

C + Y †
AY AY †

BY BY †
CY C

+ 4Y AY †
BY CY †

AY BY †
C − 6Y AY †

BY BY †
AY CY †

C ], (2.4)

and for fermions by

SVf
=

i

4K

∫
d3x tr [Y †

AY AψB†ψB − Y AY †
AψBψB† + 2Y AY †

BψAψB† − 2Y †
AY BψA†ψB

+ εABCDY †
AψBY †

CψD − εABCDY AψB†Y CψD†]. (2.5)

Y A and ψA (A = 1 · · · 4) are defined by

Y C = {ZA,W †A}, ψC = {εABζBeiπ/4, εABω†Be−iπ/4}, (2.6)

where the index C runs from 1 to 4. The SU(4) R-symmetry of the potential terms is manifest

in terms of Y A and ψA.
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Chapter 3

Derivation of Lorentzian BLG theory
from ABJM theory

3.1 Gauge structures and Inönü-Wigner contraction

We first look at the gauge structures of the Lorentzian BLG theory [4, 5, 6]. As we have seen,

BLG theory [2, 3] has a gauge symmetry generated by T̃ abX = [T a, T b, X] and the Lorentzian

Lie 3-algebra is defined by

[T−1, T a, T b] = 0, (3.1)

[T 0, T i, T j ] = f ij
kT

k, (3.2)

[T i, T j , T k] = f ijkT−1, (3.3)

where a, b = {−1, 0, i} and T i are generators of the ordinary Lie algebra with the structure

constant f ijk as [T i, T j ] = if ij
kT

k. Moreover, the gauge generators of the Lorentzian BLG

theory can be classified into 3 classes

• I={T−1 ⊗ T a, a = 0, i}

• A={T 0 ⊗ T i}

• B={T i ⊗ T j}.

The generators in the class I vanish when they act on X, hence we set these generators to zero

in the following. Since the generators in the class B always appear as a combination with the

structure constant, we define generators Si ≡ f i
jkT̃

jk. Then they satisfy the algebra

[T̃ 0i, T̃ 0j ] = if ij
k T̃ 0k, [T̃ 0i, Sj ] = if ij

k Sk, [Si, Sj ] = 0. (3.4)

The last commutator was originally proportional to the generators in the class I. If we had kept

these generators, the algebra would have become nonassociative. The algebra (3.4) is a semi

direct sum of SU(N) (or U(N)) and translations. In the case of SU(2), it becomes the ISO(3)

gauge group, which is the gauge group of the 3-dimensional gravity. Lorentzian BLG theory
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has the above gauge symmetries and corresponding gauge fields Âµ and Bµ as we will see in the

next section.

On the other hand, the theory proposed by Aharony et.al. [12] is a Chern-Simons (CS)

gauge theory with the gauge group U(N) × U(N). They act on the bifundamental fields (e.g.

XI) from the left and the right as X → UXV †. If we write the generators as T i
L and T i

R, the

combination T i = T i
L + T i

R and Si = T i
L − T i

R satisfy the algebra

[T i, T j ] = if ij
k T k, [T i, Sj ] = if ij

k Sk, [Si, Sj ] = if ij
k T k. (3.5)

By taking the Inönü-Wigner contraction, i.e. scaling the generators as Si → λ−1Si and taking

λ → 0 limit, the algebra (3.5) becomes the algebra (3.4) of the Lorentzian BL theory. Therefore

it is tempting to think that the Lorentzian BL theory can be obtained by taking an appropriate

scaling limit of the ABJM theory. We will see later that it is indeed the case. Interestingly,

even the constraint equations in the BL theory (obtained by integrating the Lagrange multiplier

fields) can be derived from this scaling procedure.

3.2 Lorentzian BLG theory and ABJM theory

We have shown that the Lorentzian BLG Lagrangian can be written as L = L0 + Lgh where

L0 = tr
[
−1

2
(D̂µX̂I − BµXI

0 )2 +
1
4
(XK

0 )2([X̂I , X̂J ])2 − 1
2
(XI

0 [X̂I , X̂J ])2

+
i

2
¯̂ΨΓµD̂µΨ̂ + iΨ̄0ΓµBµΨ̂ − 1

2
Ψ̄0X̂

I [X̂J , ΓIJΨ̂] +
1
2

¯̂ΨXI
0 [X̂J , ΓIJΨ̂]

+
1
2
εµνλF̂µνBλ − ∂µXI

0 BµX̂I

]
, (3.6)

and

Lgh = (∂µXI
0 )(∂µXI

−1) − iΨ̄−1Γµ∂µΨ0. (3.7)

The ghosts XI
−1 and Ψ−1 appear only linearly and can be integrating out. Then we obtain

the following constraints

∂2XI
0 = 0, Γµ∂µΨ0 = 0. (3.8)

The constraint equations (3.8) and the Lagrangian L0 are what we want to obtain from the

ABJM theory by taking a scaling limit.

ABJM theory is similar to the Lorentzian BLG theory, but different in the following points.

First, the gauge group of ABJM theory is U(N) × U(N) while it is a semi direct product of

U(N) and translations in the Lorentzian BLG theory. Accordingly the matter fields are in the

bifundamental representation in the ABJM theory. Furthermore the Lorentzian BLG theory

contains an extra field X0 and Ψ0 associated with the generator T0, and they are required to

obey the constraint equations (3.8).
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The bosonic potential terms in both theories are sextic, but the potential in the Lorentzian

BLG theory contains two XI
0 fields and four adjoint matter fields X̂I while the potential terms

in the ABJM theory are written in the product of six bifundamental matter fields Y A. Hence

it is natural to think that the trace part of Y A will play a role of X0 in the Lorentzian BLG

theory. We will see that, if we separate the matter field Y A into a trace and a traceless part,

the potential terms coincide in a certain scaling limit.

3.3 Scaling limit of ABJM theory

In order to take a scaling limit, we first recombine the gauge fields as

Âµ =
A

(L)
µ + A

(R)
µ

2
, Bµ =

A
(L)
µ − A

(R)
µ

2
, (3.9)

then the gauge transformations corresponding to Âµ and Bµ are Z → eiσaT a
Ze−iσbT

b
and

Z → eiσaT a
ZeiσbT

b
respectively. They are vectorial and axial gauge transformations. Matter

fields are in the adjoint representation for the Âµ gauge fields. Hence the U(1) part of Âµ

decouples from the matter sector.

The covariant derivative can be written in terms of Âµ and Bµ as

DµZ = ∂µZ + i[Âµ, Z] + i{Bµ, Z}

= D̂µZ + i{Bµ, Z}, (3.10)

where D̂µ is the covariant derivative with respect to the gauge field Âµ. SCS can be written in

terms of Âµ and Bµ as

SCS =
∫

d3x 4Kεµνρ tr [BµF̂µν +
2
3
BµBνBρ], (3.11)

where F̂µν is field strength of Âµ.

The gauge fields Âµ, Bµ are associated with the gauge transformations generated by T i and Si

in (3.5). Hence in order to take the Inönü-Wigner contraction to obtain the gauge structure of

the Lorentzian BL theory (3.4), we need to rescale the gauge field Bµ as Bµ → λBµ and take the

λ → 0 limit. Simultaneously we need to scale the coefficient K by λ−1K. Since the coefficient

K is proportional to the level of the Chern-Simons theory k as K = k/8π, the scaling limit

corresponds to taking the large k limit. In this scaling limit, the cubic term of the Bµ fields

vanishes and the Chern-Simons action coincides with the BF-type action in the Lorentzian BLG

theory:

SCS →
∫

d3x 4Kεµνρ trBµF̂µν . (3.12)

In order to match the covariant derivatives in the Lorentzian BLG action (3.6) and in the

ABJM theory (3.10), we separate the bifundamental fields into the trace and the traceless part,

and scale them differently. We write the matter fields Y A as

Y A
ij = Y A

0 δij + Ỹ A
a T a

ij , (3.13)
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where T a is the generator of SU(N).

Now we perform the following rescaling:

Bµ → λBµ,

Y A
0 → λ−1Y A

0 ,

ψA0 → λ−1ψA0,

K → λ−1K, (3.14)

where Y A
0 and ψA0 is the trace part of Y A and ψA. All the other fields are kept fixed. Then

take the λ → 0 limit. If we take the scaling limit, we can show that the covariant derivatives in

both theories exactly match.

In the following we consider the ABJM theory with the SU(N) × SU(N) gauge group. In

the presence of the U(1) × U(1) group, a little more care should be taken for the scaling of the

U(1) part of the Bµ gauge field.

In taking the above scaling limit, many terms vanish. The kinetic term of the ABJM action

becomes

tr
[
− 1

λ2
∂µY †

0A∂µY A
0 +

1
λ2

ψ†
0AΓµ∂µψA

0 + 2(i∂µY †
0ABµY A + h.c.)

−(D̂µỸA + 2iB̃µY0A)†(D̂µỸ A + 2iB̃µY A
0 ) + iψ̃†

AΓµD̂µψ̃A − 2ψ̃†
AΓµB̃µψA

0 − 2ψ†
0AΓµB̃µψ̃A

]
.

(3.15)

The first and the second terms are divergent for small λ. In order to make the action finite,

we need to impose that the trace part of the bifundamental fields must satisfy the constraint

equations

∂2Y I
0 = 0, Γµ∂µψA0 = 0

in the λ → 0 limit. They are precisely the same constraint equations (3.8) in the Lorentzian BLG

theory. In that case, the constraints are obtained by integrating out the Lagrange multiplier

fields X−1 and Ψ−1. Here they arise from a condition that the action should be finite in the

scaling limit.

The other terms in (3.15) are finite in the scaling limit and it can be easily shown that they

are precisely the same kinetic terms as that of the Lorentzian BLG theory (after a redefinition

of the gauge field 2Bµ → Bµ and setting K = 1/2). The trace part of the bifundamental fields

is identified with the fields X0 associated with one of the extra generators T 0 in the Lorentzian

Bagger-Lambert theory. This is the reason why we have used the same convention with subscript

0 for both of the trace part of the bifundamental fields and the field associated with the generator

T 0.

Now let us check the potential terms. The potential terms of the ABJM theory are invariant

under the SU(4) symmetries but not under full SO(8). By decomposing the matter fields Y A
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into the trace part Y A
0 and the traceless part Ỹ A, the bosonic sextic potential becomes a sum of

VB =
∑6

n=0 V
(n)
B , where V

(n)
B contains n Y0 fields and (6 − n) Ỹ fields. Since the coefficient of

the bosonic potential is proportional to K−2, V
(n)
B term scales as λ2−n. It can be easily checked

that the coefficients of V
(n)
B vanishes for n > 3. On the other hand, the potential terms V

(n)
B for

n < 2 vanish in the scaling limit of λ → 0. Hence the only remaining term in the scaling limit

is V
(2)
B . This part of the potential has the full SO(8) symmetry and becomes identical with the

potential in the Lorentzian BL theory. In order to see that the BL potential is obtained, we

assume that only the field Z1 has the trace part for simplicity. Let us write the 4 complex scalar

field Y A by 8 real scalar fields as

Z1 = X1
0 + iX5

0 + iX̃1
aT a − X̃5

aT a,

Z2 = iX̃2
aT a − X̃6

aT a,

W †
1 = iX̃3

aT a − X̃7
aT a

W †
2 = iX̃4

aT a − X̃8
aT a. (3.16)

Substituting them into SVb
and taking the scaling limit, we can obtain the following bosonic

potential:

SVb
= − 1

8K2

∫
d3x tr

(
(X1

0 )2 + (X5
0 )2)[PI , PJ ][P I , P J ]

)
. (3.17)

P I is defined by

P I ≡ (P 1, X̃2, X̃3, X̃4, X̃6, X̃7, X̃8),

=
(

1
2
(Ỹ A + Ỹ †

A),
1
2i

(Ỹ B − Ỹ †
B)

)
, (3.18)

Ỹ A ≡ (P 1, Z2,W †
1 ,W †

2 ),

P 1 ≡ X1
0X̃5 − X5

0 X̃1√
(X1

0 )2 + (X5
0 )2

.

We can rewrite it as,

SVb
= − 1

8K2

∫
d3x tr

[
1
4
(XK

0 )2
(
[X̃I , X̃J ]

)2
− 1

2

(
XI

0 [X̃I , X̃J ]
)2

]
, (3.19)

where we have used XI
0 = (X1

0 , 0, 0, 0, X5
0 , 0, 0, 0). This is the potentials for bosons in the

Lorentzian BL theory (3.6). It is straightforward to see that the complete potential of the BL

theory can be obtained by considering general XI
0 and the full SO(8) invariance is restored.

It should be noted that the above potential term is written in terms of the commutators.

This shows that, if we replace more than two bosons by their trace components, the potential

vanishes. This assures that the would-be divergent terms V
(n)
B for n > 3 vanish and the only

remaining term in the scaling limit is given by the above potential.

Finally consider the fermion potential. We expand the potential as Vf =
∑4

n=0 V
(n)
f where

V
(n)
f contains n trace parts and (4 − n) traceless parts. Since the coefficient of the fermion
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potential is proportional to 1/K, V
(n)
f scales as λ1−n. V

(n)
f for n > 1 diverges in the scaling

limit and their coefficients must vanish. V
(0)
f vanishes in the scaling limit λ → 0. Hence the

only remaining finite terms are V
(1)
f . In the following we look at the potential term with one of

the bosons replaced by the trace part XI
0 . Such a term can be written as

SVf
=

i

2K
X1

0 tr
[
−ψ†

1[X̃
5, ψ1] + ψ†

2[X̃
5, ψ2] + ψ†

3[X̃
5, ψ3] + ψ†

4[X̃
5, ψ4]

+ ψ†
1[Y2, ψ2] + ψ†

2[Y
†
2 , ψ1] + ψ†

3[Y2, ψ
†
4] + ψ4[Y2

†, ψ3]

+ ψ†
1[Y3, ψ3] + ψ†

3[Y
†
3 , ψ1] + ψ†

4[Y3, ψ
†
2] + ψ2[Y

†
3 , ψ4]

+ψ†
1[Y4, ψ4] + ψ†

4[Y
†
4 , ψ1] + ψ†

2[Y4, ψ
†
3] + ψ3[Y

†
4 , ψ2]

]
+

i

2K
X5

0 tr
[
+ψ†

1[X̃
1, ψ1] − ψ†

2[X̃
1, ψ2] − ψ†

3[X̃
1, ψ3] − ψ†

4[X̃
1, ψ4]

− ψ†
1[iY2, ψ2] + ψ†

2[iY
†
2 , ψ1] + ψ†

3[iY2, ψ
†
4] − ψ4[iY

†
2 , ψ3]

− ψ†
1[iY3, ψ3] + ψ†

3[iY
†
3 , ψ1] + ψ†

4[iY3, ψ
†
2] − ψ2[iY

†
3 , ψ4]

−ψ†
1[iY4, ψ4] + ψ†

4[iY
†
4 , ψ1] + ψ†

2[iY4, ψ
†
3] − ψ3[iY

†
4 , ψ2]

]
. (3.20)

Here for simplicity we have assumed that the trace part of the boson XI
0 is nonvanishing for

I = 1, 5 . This can be done by using the original SU(4) symmetry. Note again that these

potential terms are written as a form of commutators.

To get the 3-dimensional Majorana fermion as the BL theory, we rewrite the SU(4) complex

fermion in terms of the real variables 1.

ψ1 = iχ1 − χ5, ψ2 = iχ2 − χ6,

ψ3 = iχ3 − χ7, ψ4 = iχ4 − χ8, (3.21)

where χI are real 2-component spinors. We also expand the complex bosons as the real

ones (3.16). Then the fermion potential (3.20) becomes by using the 8 × 8 Γ matrice as

SVf
= − 1

2K
tr Ψ̄XI

0 [X̃J , ΓIJΨ],

Ψ ≡ (χ1, χ2, χ3, χ4, χ5, χ6, χ7, χ8) , (3.22)

where the indices I, J run from 1 to 8 and XI
0 = (X1

0 , 0, 0, 0, X5
0 , 0, 0, 0). The explicit forms

of the Γ matrices are given in the Appendix G. This fermion potential has the same SO(8)

invariant form as that of the Lorentzian BLG action (3.6). In the same fashion as the bosonic

potential, the full SO(8) invariance can be seen easily by considering the general XI
0 .

1 When we give a VEV to the X4
0 part only, we will get 7 Γ matrices as in [36]. In our case we need 8 Γ

matrices and their antisymmetrized-products because we give a VEV to a more general direction.
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Chapter 4

Generalizing the scaling procedure

4.1 Generalization of the Lorentzian BLG theory

In [8] (see also [7, 37]), the BLG theory based on the Lorentzian Lie 3-algebra was generalized

by adding d pairs of negative norm generators. Then, they showed that the worldvolume theory

of Dp-branes (p = d + 2) is produced. The proposed 3-algebra is

[u0, ua, ub] = 0,

[u0, ua, T
i
~m] = −imaT

i
~m,

[u0, T
i
~m, T j

~n] = imav
aδ~m+~nδij + f ij

kT
k
~m+~n,

[T i
~l
, T j

~m, T k
~n ] = f ijkδ~l+~m+~n

v0, (4.1)

where a, b = 1, · · · , d and ~l, ~m,~n ∈ Zd. a and b correspond to the label of the compactified

direction and ~m to the Kaluza-Klein momentum1 along the T d. f ijk (i, j, k = 1, · · · , dim g) is a

structure constant of an arbitrary Lie algebra g. This 3-algebra actually satisfies the fundamental

identity. The nonvanishing part of the metric is

tr(uA, vB) = −δB
A , tr(T i

~m, T j
~n) = δijδ~m+~n. (A = 0, 1, · · · , d) (4.2)

Following [8], we will rewrite the BLG action and derive the action of Dp-branes (p = d+2).

The steps are summarized as follows. First, we derive 3d N = 8 SYM through the Higgs

mechanism [14]. The difference from the original L-BLG theory is that the resulting D2-brane

action has a Kaluza-Klein tower. Then, we obtain the Dp-brane action with a rearrangement

of fields corresponding to T-duality. The worldvolume of Dp-brane is given as a flat T d bundle

over the membrane worldvolume M.

In the remainder of this subsection, we look at the above procedure more explicitly. For the

1Instead, we can consider ~m as the index describing open string modes that interpolate the mirror images of
a point in S1 = R/Z in the spirit of Taylor’s T-duality [38].
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3-algebra (4.1), we expand the fields as

XI = XI
(i~m)T

i
~m + XIAuA + XI

AvA,

ψ = ψ(i~m)T
i
~m + ψAuA + ψ

A
vA,

Aµ = Aµ(i~m)(j~n)T
i
~m ∧ T j

~n +
1
2
Aµ(i~m)u0 ∧ T i

~m +
1
2
Aa

µ(i~m)ua ∧ T i
~m

+
1
2
Aa

µu0 ∧ ua + Aab
µ ua ∧ ub + (terms including vA). (4.3)

Each bosonic component has the following role:

• XI
(i~m) : These fields become scalar fields corresponding to the transverse coordinates of

Dp-branes and gauge fields along the fiber direction.

• XIA : Higgs fields whose VEVs determine the moduli of T d and the circle radius in the

M-direction.

• XI
A : Ghost fields that can be removed by Higgs mechanism.

• Aµ(i~m) : Gauge fields along M.

The other bosonic terms do not show up in the following discussion.

Because the ghost fields X and ψ appear linearly in the action, these fields become Lagrange

multipliers and can be integrated out. This gives constraint equations for XIA and ψA:

∂µ∂µXIA = 0, Γµ∂µψA = 0. (4.4)

As a solution, we choose a constant vector ~XA = ~λA and it determines the (d+1)-dimensional

subspace Rd+1 ⊂ R8. Rd+1 is compactified on T d+1 and VEVs ~λIA give the moduli of the T d

compactification and the M-theory circle. We can represent the metric of torus T d as

GAB = ~λA · ~λB. (4.5)

The covariant derivative becomes

(DµXI)(i~m) = (D̂µXI)(i~m) − A′
µ(i~m)λ

I0 − imaAµ(i~m)λ
Ia, (4.6)

where

(D̂µXI)(i~m) = ∂µXI
(i~m) − f jk

iAµ(k~n)X
I
(j,~m−~n),

A′
µ(i~m) = −imaA

a
µ(i~m) + f jk

iAµ(j,~m−~n)(k~n). (4.7)

The Chern-Simons term is written as

LCS =
1
2
A′

(i~m) ∧ F(i,−~m) + (total derivative), (4.8)
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where Fµν(i,~m) = ∂µAν(i~m) − ∂νAµ(i~m) − f jk
iAµ(j~n)Aν(k,~m−~n). Integrating A′

(i~m), Chern-Simons

gauge fields obtain a degree of freedom and the usual F 2 term emerges.

The bosonic potential term is given by the square of a triple product

[XI , XJ , XK ](i~m) = −imaλ
[I0λJaX

K]
(i~m) + f jk

iλ
[I0XJ

(j~n)X
K]
(k,~m−~n). (4.9)

The square of this term gives

6gabmambX
I
~mP IJ

~m XJ
−~m − iλ[I0λJ

~mX
K]
(i~m)f

jk
iλ

[I0XJ
(j~n)X

K]
(k,−~m−~n)

− 3
[
G00〈[XJ , XK ]2〉 − 2〈[(~λ0 · ~X), XI ]2〉

]
, (4.10)

where

P IJ
~m ≡ δIJ −

|~λ0|2λI
~mλJ

~m + |λ~m|2λI0λJ0 − (~λ0 · ~λ~m)(λI0λJ
~m + λJ0λI

~m)

|~λ0|2|~λ~m|2 − (~λ0 · ~λ~m)2
,

~λ~m ≡ ma
~λa. (4.11)

By collecting all the results, we obtain the D2-brane action with Kaluza-Klein tower. Then,

we decompose XI as

XI = P IJXJ +
1

G00
λI0(~λ0 · ~X) +

(
−G0a

G00
λI0 + λIa

)
, (4.12)

and regard the Kaluza-Klein masses ma with the derivatives of fiber direction −i∂a, we obtain

the kinetic term of the fiber direction and the interaction term in the language of the Dp-brane

worldvolume.

As a result, we obtain the following standard Dp-brane action2

LDp = LA + LFF̃ + LX + Lpot,

LA = − 1
4G00

∫
ddy

(2π)d

√
g (F̃ 2

µν + 2gabF̃µaF̃µb + gacgbdF̃abF̃cd),

LFF̃ =
G0a

8G00

∫
ddy

(2π)d

√
g (4εµνλF̃µaF̃νλ),

LX = −1
2

∫
ddy

(2π)d

√
g (D̂µX̃IP IJD̂µX̃J + gabD̂aX̃

IP IJD̂bX̃
J),

Lpot =
G00

4

∫
ddy

(2π)d

√
g[P IKX̃K , P JLX̃L]2, (4.13)

whose worldvolume is M× T d with the metric

ds2 = ηµνdxµdxν + gabdyadyb, (4.14)

where gab = (G00Gab − Ga0Gb0)−1 is the metric of dual torus.
2The tilde indicates that the fields are (3+d)-dimensional: Φ̃(x, y) =

P

~m Φ~m(x)ei~m·~y. P IJ ≡ δIJ − λIAπJ
A is

a projector into the subspace orthogonal to all ~λA, where ~πA is a dual basis satisfying ~λA · ~πB = δA
B .
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4.2 Orbifolding the ABJM theory

The ABJM theory is a 3d N = 6 U(N) × U(N) Chern-Simons matter theory. This theory is

conjectured to describe the low energy physics of N M2-branes probing C4/Zk. The bosonic

action of the ABJM theory is given by

S =
∫

d3x
[
− tr{(DµZA)†DµZA + (DµWA)†DµWA} − V (Z,W )

+
k

4π
εµνλtr

(
A(1)

µ ∂νA
(1)
λ +

2i

3
A(1)

µ A(1)
ν A

(1)
λ

− A(2)
µ ∂νA

(2)
λ − 2i

3
A(2)

µ A(2)
ν A

(2)
λ

)]
, (4.15)

where A = 1, 2. ZA and W †A are bifundamental matter fields and their covariant derivatives

are defined by

DµZA = ∂µZA + iA(1)
µ ZA − iZAA(2)

µ ,

DµWA = ∂µWA + iA(2)
µ WA − iWAA(1)

µ . (4.16)

In [13], we explicitly show that the original L-BLG theory can be derived from the ABJM

theory. Motivated by the agreement of the gauge structure of these two theories through the

Inönü-Wigner contraction, we performed the following rescaling:

ZA
0 → λ−1ZA

0 ,

WA
0 → λ−1WA,

Bµ ≡ (A(1)
µ − A(2)

µ )/2 → λBµ,

k → λ−1k, (4.17)

to the ABJM theory and took the λ → 0 limit, where ZA
0 and WA

0 are the VEV of ZA and

WA. Then, we obtained the action of the L-BLG theory. This scaling limit corresponds to

locate the M2-branes very far from the origin of the Zk orbifold so as not to feel the singularity

and simultaneously take k → ∞. Thus, this procedure is effectively the same as the ordinary

S1 compactification and that is why we obtain the L-BLG theory, which is almost D2-branes

theory.

As explained in [8], the Extended Lorentzian 3-algebra (4.1) can be regarded as the original

Lorentzian 3-algebra with a loop algebra. Thus, it is natural to presume that even the Extended

L-BLG theory might be derived from an M2-brane theory in a certain scaling limit. So which

M2-brane theory is appropriate? In [19], it was shown that the D3-brane action can be derived

by orbifolding the ABJM theory and taking a limit. Because the Extended L-BLG theory with

d = 1 also reduces to the D3-brane theory via the Higgs mechanism, these two theories might

be connected directly. The main purpose of this paper is to clarify the relationship between the

orbifolded ABJM theory and the Extended L-BLG theory.

28



In the remainder of this section, we review the orbifolded ABJM action. By applying the

standard orbifolding technique [39] to the ABJM theory or alternatively using the brane con-

struction, we can derive various quiver Chern-Simons matter theories. Here, we see a particular

3d N = 4 theory whose bosonic action is3

S =
∫

d3x
[
− tr

2n∑
s=1

{(DµZ(s))†DµZ(s) + (DµW (s))†DµW (s)} − Vbos

+
k

4π
εµνλ

n∑
l=1

tr{A(2l−1)
µ ∂νA

(2l−1)
λ +

2i

3
A(2l−1)

µ A(2l−1)
ν A

(2l−1)
λ

− A(2l)
µ ∂νA

(2l)
λ − 2i

3
A(2l)

µ A(2l)
ν A

(2l)
λ }

]
. (4.18)

The explicit forms of the covariant derivatives and bosonic potential are given by

DµZ(2l−1) = ∂µZ(2l−1) + iA(2l−1)
µ Z(2l−1) − iZ(2l−1)A(2l)

µ ,

DµZ(2l) = ∂µZ(2l) + iA(2l+1)
µ Z(2l) − iZ(2l)A(2l)

µ ,

DµW (2l−1) = ∂µW (2l−1) + iA(2l)
µ W (2l−1) − iW (2l−1)A(2l−1)

µ ,

DµW (2l) = ∂µW (2l) + iA(2l)
µ W (2l) − iW (2l)A(2l+1)

µ , (4.19)

Vbos = − 4π2

3k2

n∑
l=1

[
trY A

2l Y
†
A,2lY

B
2l Y †

B,2lY
C
2l Y †

C,2l + 3trY A
2l Y

†
A,2lY

B
2l Y †

B,2lY
C
2l+1Y

†
C,2l+1

+ 3trY A
2l Y

†
A,2lY

B
2l+1Y

†
B,2l+1Y

C
2l+1Y

†
C,2l+1 + trY A

2l+1Y
†
A,2l+1Y

B
2l+1Y

†
B,2l+1Y

C
2l+1Y

†
C,2l+1

+ trY †
A,2l−1Y

A
2l−1Y

†
B,2l−1Y

B
2l−1Y

†
C,2l−1Y

C
2l−1 + 3trY †

A,2l−1Y
A
2l−1Y

†
B,2l−1Y

B
2l−1Y

†
C,2lY

C
2l

+ 3trY †
A,2l−1Y

A
2l−1Y

†
B,2lY

B
2l Y †

C,2lY
C
2l + trY †

A,2lY
A
2l Y

†
B,2lY

B
2l Y †

C,2lY
C
2l

+ 4trY A
2l−1Y

†
B,2l−1Y

C
2l−1Y

†
A,2l−1Y

B
2l−1Y

†
C,2l−1 + 12trY A

2l Y
†
B,2lY

C
2l+1Y

†
A,2l+2Y

B
2l+2Y

†
C,2l+1

+ 12trY A
2l+1Y

†
B,2l+1Y

C
2l Y †

A,2l−1Y
B
2l−1Y

†
C,2l + 4trY A

2l Y
†
B,2lY

C
2l Y †

A,2lY
B
2l Y †

C,2l

− 6trY A
2l−1Y

†
B,2l−1Y

B
2l−1Y

†
A,2l−1Y

C
2l−1Y

†
C,2l−1 − 6trY A

2l Y
†
B,2lY

B
2l Y †

A,2lY
C
2l Y †

C,2l

− 6trY A
2l+1Y

†
B,2l+1Y

B
2l+1Y

†
A,2l+1Y

C
2l Y †

C,2l − 6trY A
2l Y

†
B,2lY

B
2l Y †

A,2lY
C
2l+1Y

†
C,2l+1

− 6trY A
2l−1Y

†
B,2lY

B
2l Y †

A,2l−1Y
C
2l−1Y

†
C,2l−1 − 6trY A

2l Y
†
B,2l−1Y

B
2l−1Y

†
A,2lY

C
2l Y †

C,2l

− 6trY A
2l+1Y

†
B,2l+2Y

B
2l+2Y

†
A,2l+1Y

C
2l Y †

C,2l − 6trY A
2l Y

†
B,2l−1Y

B
2l−1Y

†
A,2lY

C
2l+1Y

†
C,2l+1

]
, (4.20)

where we used SU(2) doublets

Y A
l = {Z(l),W (l)†}, Y †

A,l = {Z(l)†,W (l)}, (A = 1, 2) (4.21)

3This is the “non-chiral orbifold gauge theory” described in [35] and we use their notation. This theory can
also be regarded as case II in [40] and the nA = nB case in [41] with alternate NS5- and (k,1)5-branes. The
“generalized ABJM model” described in [19] is obtained by interchanging our Z(2l) and W (2l) in (4.18).
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for each link l. The quiver diagram of this theory is given in Figure 4.1.

�N �NN N �NZ(1) Z(2) Z(3)Z(2n)W (2n) W (1) W (2) W (3)A(2n) A(1) A(2) A(3) A(4)
Figure 4.1: Quiver diagram for N = 4 quiver CS theory (4.18). This theory has global SU(2)o×
SU(2)e symmetry and the SU(2)o part rotates the fields on the odd links and the SU(2)e part
corresponds to the even links.

This theory has product gauge group U(N)2n and its moduli space is SymN (C4/(Zkn×Zn)).

Znk corresponds to the original ABJM orbifold action,

y1 → e2πi/nky1, y2 → e2πi/nky2, y3 → e2πi/nky3, y4 → e2πi/nky4. (4.22)

Note that in order to have a correct moduli space, as explained in [40], the levels of the Chern-

Simons terms in (4.18) must be ±k, not ±nk. Another Zn action is given by

y1 → e2πi/ny1, y2 → y2, y3 → e2πi/ny3, y1 → y4. (4.23)

This kind of further orbifolding is essential for deriving the Extended L-BLG theory from the

ABJM theory. In [13], we obtained a circle by taking a limit of the original ABJM orbifold

action and rescaling the fields. Therefore, in a similar fashion, the emergence of an additional

circle is expected in a suitable limit of Zn action. Naively, it seems that the more we orbifold the

ABJM theory, the more we have additional circles. However, in this paper, we only consider the

case for one additional circle, namely, T 2 compactification of M-theory. We show that a proper

scaling limit leads to the Extended L-BLG theory with d = 1.

4.3 Scaling limit of N = 4 quiver Chern-Simons theory

Here we explicitly show how the Extended L-BLG theory with d = 1 is derived from a N = 4

quiver Chern-Simons theory (4.18). First, we take linear combinations for the gauge fields as

A(±)(2l−1)
µ =

1
2
(A(2l−1)

µ ± A(2l+2s)
µ ), (s ∈ Z) (4.24)

and decompose the bifundamental fields into trace and traceless parts as Y = Y01N×N + Ŷ .

VEV Y0 is interpreted as a classical position of the center of mass of the multiple M2-branes,

and Ŷ = ŶaT
a is a fluctuation around it. T a is the generator of SU(N). Next, we rescale the
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fields as

Y 1
0 (2l−1) →

√
n

2
Y

(1)
0 , Y 1

0 (2l) →
√

n

2
Y

(2)
0 , Y 2

0 (2l−1) →
√

n

2
Y

(3)
0 , Y 2

0 (2l) →
√

n

2
Y

(4)
0 ,

Ŷ 1
(2l−1) →

qlm

√
n

Y
(1)
(m)√
2

, Ŷ 1
(2l) →

qlm

√
n

Y
(2)
(m)√
2

, Ŷ 2
(2l−1) →

qlm

√
n

Y
(3)
(m)√
2

, Ŷ 2
(2l) →

qlm

√
n

Y
(4)
(m)√
2

,

A(+)(2l−1)
µ → qlmAµ(m), A(−)(2l−1)

µ → π

n
qlmA′

µ(m) (4.25)

and finally take n → ∞. Here, q ≡ e
2πi
n and multiplying qlm corresponds to the Fourier

transformation. The normalization is determined by
∑

l q
lm = nδm,0. Recalling that this N = 4

quiver CS theory describes multiple M2-branes at the singularity of an orbifold C4/(Znk × Zn),

this scaling limit corresponds to locating the M2-branes far from the origin of the orbifold and

simultaneously making each Znk, Zn identifications into the independent circle identifications.

This is effctively the same as the ordinary T 2 compactification. Therefore, we can expect that

the Extended L-BLG theory with d = 1 emerges from this limit.

First, let us check the kinetic term. The covariant derivatives (4.19) are scaled as

DµZ(2l−1) →
qlm

√
n
· 1√

2

[
∂µY

(1)
(m) + i[Aµ(n), Y

(1)
(m−n)] − 2πsmAµ(m)Y

(1)
0 + 2πiA′

µ(m)Y
(1)
0 + O(n−1)

]
,

DµZ(2l) →
qlm

√
n
· 1√

2

[
∂µY

(2)
(m) + i[Aµ(n), Y

(2)
(m−n)] − 2π(s + 1)mAµ(m)Y

(2)
0 + 2πiA′

µ(m)Y
(2)
0

+ O(n−1)
]
,

DµW(2l−1) →
1√
2

[q−lm

√
n

∂µY
(3)†
(m) + i

qlm

√
n

[Aµ(n), Y
(3)†
(n−m)] +

2πsm√
n

qlmAµ(m)Y
(3)†
0

− i
2π√

n
qlmA′

µ(m)Y
(3)†
0 + O(n−1)

]
,

DµW(2l) →
1√
2

[q−lm

√
n

∂µY
(4)†
(m) + i

qlm

√
n

[Aµ(n), Y
(4)†
(n−m)] +

2π(s + 1)m√
n

qlmAµ(m)Y
(4)†
0

− i
2π√

n
qlmA′

µ(m)Y
(4)†
0 + O(n−1)

]
. (4.26)

The O(n−1) terms do not contribute to the action in the limit n → ∞.

In our notation, complex scalar fields are decomposed to real fields as

Y
(A)
0 = XA

0 + iXA+4
0 ,

Y
(A)
(m) = iX̂A

(m) − X̂A+4
(m) . (4.27)

We note that hermitian conjugation changes the sign of the label m such as

Y
(A)†
(m) = −iX̂A

(−m) − X̂A+4
(−m) , A†

µ(m) = Aµ(−m). (4.28)

31



Combining (4.26),(4.27) and (4.28), we can write out a rescaled kinetic term using real fields.

Let us compare this kinetic term with that of the Extended L-BLG theory given by

−1
2
(DµXI

(−m))(D
µXI

(m)) = −1
2
∂µXI

(−m)∂
µXI

(m) − i∂µXI
(−m)[A

µ
(n), X

I
(m−n)]

− 1
2
[XI

(−m+n), Aµ(−n)][A
µ
(k), X

I
(m−k)] + A′µ

(m)λ
I0∂µXI

(−m) + imAµ
(m)λ

I1∂µXI
(−m)

− iA′µ
(m)λ

I0[X1
(−m+n), Aµ(−n)] + mAµ

(m)λ
I1[XI

(−m+n), Aµ(−n)]

− 1
2
A′

µ(−m)A
′µ
(m)(λ

I0)2 − 1
2
m2Aµ(−m)A

µ
(m)(λ

I1)2 + imAµ(−m)A
′µ
(m)λ

I0λI1.

(4.29)

Then, we see that if we identify

λI0 = −2π(X1
0 , X2

0 , X3
0 , X4

0 , X5
0 , X6

0 , X7
0 , X8

0 ),

λI1 = −2π
(
sX1

0 , (s + 1)X2
0 , sX3

0 , (s + 1)X4
0 , sX5

0 , (s + 1)X6
0 , sX7

0 , (s + 1)X8
0

)
, (4.30)

both kinetic terms completely agree.

For the Chern-Simons term, we can show the agreement easily:

k

4π
εµνλ

[
A(2l−1)

µ ∂νA
(2l−1)
λ +

2i

3
A(2l−1)

µ A(2l−1)
ν A

(2l−1)
λ − A(2l)

µ ∂νA
(2l)
λ − 2i

3
A(2l)

µ A(2l)
ν A

(2l)
λ

]
=

k

2π
εµνλA(−)(2l−1)

µ F
(2l−1)
νλ +

4i

3
εµνλA(−)(2l−1)

µ A(−)(2l−1)
ν A

(−)(2l−1)
λ

=
k

2
εµνλ ql(m+n)

n
A′

µ(m)Fνλ(n) +
ik

3π
εµνλ qlm

n3
A′

µ(n)A
′
ν(k)A

′
λ(m−n−k)

→ k

2
εµνλA′

µ(m)Fνλ(−m), (4.31)

where F
(2l−1)
νλ = ∂νA

(+)(2l−1)
λ − ∂λA

(+)(2l−1)
ν + i[A(+)(2l−1)

ν , A
(+)(2l−1)
λ ]. Note that we have chosen

k = 1 in the BLG side.

In the Extended L-BLG theory, VEVs λIA are related to the metric of two-torus as (4.5).

By constructing the metric GAB from (4.30), we see that the metric components are connected

as

G11 = −s(s + 1)G00 + (2s + 1)G01. (4.32)

Thus, in the scaling limit of the N = 4 quiver CS theory, only a specific class of the T 2

compactification is realizable. This is because we have chosen a particular Zn orbifold. Owing

to the constraint (4.32), the complexified coupling constant τ of the resultant D3-brane theory

is limited to the one that depends on only one real variable. We will return to this point in

Section 5.

Now, let us check the potential term. By decomposing the matter fields Y A
l into the trace

part Y A
0 and the traceless part Ŷ A

l , the bosonic sextic potential term becomes Vbos =
∑6

s=0 V
(s)
bos ,

where V
(s)
bos contains s Y0 fields and (6− s) Ŷ fields. It can be easily checked that V

(6)
bos and V

(5)
bos
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are indentically zero. Since V
(s)
bos scales as n

s
2
− 6−s

2
+1 = ns−2 in our limit (4.25), V

(0)
bos and V

(1)
bos

vanish. Note that there is an additional factor n that comes from the relation
∑

l q
lm = nδm,0.

Therefore, the remaining terms are V
(2)
bos , V

(3)
bos , and V

(4)
bos .

First, we consider the scaling limit of V
(2)
bos . In this case, we can utilize the result in [13] and

obtain the scaling limit easily. The key point is the fact that the relative difference of label l

becomes O(n− 3
2 ) under the expansion qlm = 1 + 2πilm

n + O(n−2):

(Ŷ2l − Ŷ2(l+k)) →
qlm

√
n

(Ym − qkmYm) = O(n− 3
2 ). (4.33)

This means that in the scaling limit of V
(2)
bos , the relative difference between the labels of

Ŷ2l (or Ŷ2l−1 in the odd case) does not contribute to the result. To show this explicitly, let

us consider the scaling limit of the following substraction:

Y0,2lY
†
0 2lŶ2lŶ

†
2l(Ŷ2(l+k) − Ŷ2l)Ŷ

†
2l → O(n−1) = 0. (4.34)

Note that if the numbers of Y0,l and Ŷl are different, the situation entirely changes. Indeed, for

the scaling limit of V
(3)
bos and V

(4)
bos , the relative difference between the labels of Ŷl is essential. The

relation like (4.34) holds in all the terms of (4.20). Therefore, even if we replace all the Y A
2(l+k)−1

with Y A
2l−1 (and Y A

2(l+k) with Y A
2l ) in (4.20), the resultant potential gives the same scaling limit

as long as we focus on the Y0,l-squared term. We denote this new potential as V ′

V ′ = − 4π2

3k2

[
trY A

2l Y
†
A,2lY

B
2l Y †

B,2lY
C
2l Y †

C,2l + 3trY A
2l Y

†
A,2lY

B
2l Y †

B,2lY
C
2l−1Y

†
C,2l−1

+ 3trY A
2l Y

†
A,2lY

B
2l−1Y

†
B,2l−1Y

C
2l−1Y

†
C,2l−1 + trY A

2l−1Y
†
A,2l−1Y

B
2l−1Y

†
B,2l−1Y

C
2l−1Y

†
C,2l−1

+ trY †
A,2l−1Y

A
2l−1Y

†
B,2l−1Y

B
2l−1Y

†
C,2l−1Y

C
2l−1 + 3trY †

A,2l−1Y
A
2l−1Y

†
B,2l−1Y

B
2l−1Y

†
C,2lY

C
2l

+ 3trY †
A,2l−1Y

A
2l−1Y

†
B,2lY

B
2l Y †

C,2lY
C
2l + trY †

A,2lY
A
2l Y

†
B,2lY

B
2l Y †

C,2lY
C
2l

+ 4trY A
2l−1Y

†
B,2l−1Y

C
2l−1Y

†
A,2l−1Y

B
2l−1Y

†
C,2l−1 + 12trY A

2l Y
†
B,2lY

C
2l−1Y

†
A,2lY

B
2l Y †

C,2l−1

+ 12trY A
2l−1Y

†
B,2l−1Y

C
2l Y †

A,2l−1Y
B
2l−1Y

†
C,2l + 4trY A

2l Y
†
B,2lY

C
2l Y †

A,2lY
B
2l Y †

C,2l

− 6trY A
2l−1Y

†
B,2l−1Y

B
2l−1Y

†
A,2l−1Y

C
2l−1Y

†
C,2l−1 − 6trY A

2l Y
†
B,2lY

B
2l Y †

A,2lY
C
2l Y †

C,2l

− 6trY A
2l−1Y

†
B,2l−1Y

B
2l−1Y

†
A,2l−1Y

C
2l Y †

C,2l − 6trY A
2l Y

†
B,2lY

B
2l Y †

A,2lY
C
2l−1Y

†
C,2l−1

− 6trY A
2l−1Y

†
B,2lY

B
2l Y †

A,2l−1Y
C
2l−1Y

†
C,2l−1 − 6trY A

2l Y
†
B,2l−1Y

B
2l−1Y

†
A,2lY

C
2l Y †

C,2l

− 6trY A
2l−1Y

†
B,2lY

B
2l Y †

A,2l−1Y
C
2l Y †

C,2l − 6trY A
2l Y

†
B,2l−1Y

B
2l−1Y

†
A,2lY

C
2l−1Y

†
C,2l−1

]
. (4.35)

V ′ is convenient because it can be simplified. If we rewrite each field as

Y 1
2l−1 → Y 1

l , Y 1
2l → Y 2

l , Y 2
2l−1 → Y 3

l , Y 2
2l → Y 4

l , (4.36)

33



V ′ becomes

−4π2

3k2

[
Y A′

l Y †
A′,lY

B′
l Y †

B′,lY
C′
l Y †

C′,l + Y †
A′,lY

A′
l Y †

B′,lY
B′
l Y †

C′,lY
C′
l

+4Y A′
l Y †

B′,lY
C′
l Y †

A′,lY
B′
l Y †

C′,l − 6Y A′
l Y †

B′,lY
B′
l Y †

A′,lY
C′
l Y †

C′,l

]
, (4.37)

where A′, B′, C ′ = 1, · · · , 4. This is just the original ABJM potential with an extra label l. The

scaling limit of the original ABJM bosonic potential is already obtained in [13] and the result is

tr(XI
0 )2([P IKXK , P JLXL])2. (4.38)

Using this result, we can obtain the scaling limit of V
(2)
bos :

V
(2)
bos → −π2

k2
(XI

0 )2[P IKXK
(m), P

JLXL
(−m)]. (4.39)

This agrees with the last term of (4.10).

Next we consider the scaling limit of V
(4)
bos and V

(3)
bos . As before, we can decompose V ′ as

V ′ =
∑6

s=0 V ′(s). Using the same argument, we see that only V ′(2), V ′(3), and V ′(4) remain in

the scaling limit.

In (4.38), more insertion of XK
0 to XK gives zero. Therefore, V ′(3) and V ′(4) are zero. This

means that the scaling limit of Vbos − V ′ is the same as the scaling limit of V
(3)
bos + V

(4)
bos . It is

convenient to consider Vbos − V0 because it is much simpler than Vbos itself. The explicit form

of Vbos − V ′ is given by

Vbos − V ′ = V1 + V2, (4.40)

where

V1 = −4π2

3k2
tr

[
3Y A

2l−1Y
†
A,2l−1Y

B
2l−1Y

†
B,2l−1(Y

C
2l−2Y

†
C,2l−2 − Y C

2l Y †
C,2l)

+ 12Y C
2l Y †

A,2l−1Y
B
2l−1Y

†
C,2l(Y

A
2l+1Y

†
B,2l+1 − Y A

2l−1Y
†
B,2l−1)

− 6Y A
2l−1Y

†
B,2l−1Y

B
2l−1Y

†
A,2l−1(Y

C
2l−2Y

†
C,2l−2 − Y C

2l Y †
C,2l)

− 6Y C
2l Y †

A,2l−1Y
A
2l−1Y

†
C,2l(Y

B
2l+1Y

†
B,2l+1 − Y B

2l−1Y
†
B,2l−1)

]
, (4.41)

and

V2 = −4π2

3k2
tr

[
3Y A

2l Y
†
A,2lY

B
2l Y †

B,2l(Y
C
2l+1Y

†
C,2l+1 − Y C

2l−1Y
†
C,2l−1)

+ 12Y C
2l−1Y

†
A,2lY

B
2l Y †

C,2l−1(Y
A
2l−2Y

†
B,2l−2 − Y A

2l Y
†
B,2l)

− 6Y A
2l Y

†
B,2lY

B
2l Y †

A,2l(Y
C
2l+1Y

†
C,2l+1 − Y C

2l−1Y
†
C,2l−1)

− 6Y C
2l−1Y

†
A,2lY

A
2l Y

†
C,2l−1(Y

B
2l−2Y

†
B,2l−2 − Y B

2l Y †
B,2l)

]
. (4.42)

Note that V1 and V2 can be translated into each other by exchanging Y A
2l for Y A

2l−1 and Y A
2l−2 for

Y A
2l+1. Since the rescaling rule (4.25) is written as

Y A
2l → qlm

√
n

Y 2A
m√
2

, Y A
2l−1 → qlm

√
n

Y 2A−1
m√

2
, Y A

2l−2 → q−m qlm

√
n

Y 2A
m√
2

, Y A
2l+1 → qm qlm

√
n

Y 2A−1
m√

2
, (4.43)
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the above translation corresponds to a translation between Y 2A
m and Y 2A+1

m .

Therefore, to obtain the scaling limit of V1 and V2, we only need to calculate one of them.

The other one is obtained from the translation.

With the above simplifications, the scaling limit of V
(4)
bos can be calculated more easily. The

result is

m2(16π4)
2

(X2C
0 X2C

0 X2A−1
0 X2A−1

0 X̂2B−1
(i,m) X̂2B−1

(i,−m) − X2C
0 X2C

0 X2A−1
0 X2B−1

0 X̂2A−1
(i,m) X̂2B−1

(i,−m)

+X2C−1
0 X2C−1

0 X2A
0 X2A

0 X̂2B
(i,m)X̂

2B
(i,−m) − X2C−1

0 X2C−1
0 X2A

0 X2B
0 X̂2A

(i,m)X̂
2B
(i,−m)). (4.44)

This is just the first term of (4.10) with the assignment (4.30). To see how the above terms

come from the Extended L-BLG potential, it is convenient to use an expression

m2λ[I0λJ1X
K]
i,mλ[I0λJ1X

K]
i,−m (4.45)

and substitute (4.30) into this term. Then, we obtain (4.44). Note that the result does not

depend on s, because the s-dependent part of λI1 is proportional to λI0 and the indices I, J,

and K are antisymmetrized so that s dependent terms are cancelled.

Similarly, the scaling limit of V
(3)
bos is given by

(2π)3tr
{
(2m + n)X2C

0 X2A−1
0 X2B−1

0 X̂2A−1
m [X̂2C

n , X̂2B−1
−m−n]

+mX2C
0 X2C

0 X2B−1
0 X̂2A−1

m [X̂2B−1
n , X̂2A−1

−m−n] − mX2C
0 X2B−1

0 X2B−1
0 X̂2A−1

m [X̂2C
n , X̂2A−1

−m−n]

−(2m + n)X2C−1
0 X2A

0 X2B
0 X̂2A

m [X̂2C−1
n , X̂2B

−m−n]

−mX2C−1
0 X2C−1

0 X2B
0 X̂2A

m [X̂2B
n , X̂2A

−m−n] + mX2C−1
0 X2B

0 X2B
0 X̂2A

m [X̂2C−1
n , X̂2A

−m−n]
}
.

(4.46)

Note that the overall signs of V
(3)
1 and V

(3)
2 are opposite owing to the factors q±m in (4.43).

(4.46) agrees with the second term of (4.10).

Fermionic sector We have seen the agreement of the bosonic sector. Here, we consider the

fermionic sector of the N = 4 quiver CS theory and confirm the emergence of the Extended

L-BLG theory. The nontrivial part is the fermionic potential.

In the Extended L-BLG theory, the fermionic interaction term is given by

Lint =
ma

4
ψ̄(i ~−m)(ΓIJλI0λJa)ψ(i,~m) +

1
4
ψ̄(i~m)λ

I0[XJ , ΓIJψ](i,−~m). (4.47)

Substituting (4.12) into (4.47), we can indeed obtain the fermionic sector of the Dp-brane action.
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On the other hand, the fermionic potential of the N = 4 quiver CS theory is given by

Vferm = − iL

4
tr

[
Y †

A,2l−1Y
A
2l−1Ψ

B†
2l−1ΨB,2l−1 + Y †

A,2l−1Y
A
2l−1Ψ

B†
2l ΨB,2l

+ Y †
A,2lY

A
2l Ψ

B†
2l−1ΨB,2l−1 + Y †

A,2lY
A
2l Ψ

B†
2l ΨB,2l

− Y A
2l−1Y

†
A,2l−1ΨB,2l−1Ψ

B†
2l−1 − Y A

2l+1Y
†
A,2l+1ΨB,2lΨ

B†
2l

− Y A
2l Y

†
A,2lΨB,2l+1Ψ

B†
2l+1 − Y A

2l Y
†
A,2lΨB,2lΨ

B†
2l

+ 2Y A
2l−1Y

†
B,2lΨA,2lΨ

B†
2l−1 + 2Y A

2l Y
†
B,2l−1ΨA,2l−1Ψ

B†
2l

+ 2Y A
2l Y

†
B,2lΨA,2l+1Ψ

B†
2l+1 + 2Y A

2l+1Y
†
B,2l+1ΨA,2lΨ

B†
2l

− 2Y †
A,2l−1Y

B
2l−1Ψ

A†
2l ΨB,2l − 2Y †

A,2lY
B
2l ΨA†

2l−1ΨB,2l−1

− 2Y †
A,2lY

B
2l+1Ψ

A†
2l+1ΨB,2l − 2Y †

A,2l+1Y
B
2l ΨA†

2l ΨB,2l+1

− εABεCDY †
A,2l−1ΨC,2l−1Y

†
B,2l−1ΨD,2l−1 − εABεCDY †

A,2lΨC,2lY
†
B,2lΨD,2l

+ 2εABεCDY †
A,2l−1ΨC,2l−1Y

†
D,2lΨB,2l + 2εABεCDY †

A,2l+1ΨB,2lY
†
C,2lΨD,2l+1

+ εABεCDY A
2l−1Ψ

C†
2l−1Y

B
2l−1Ψ

D†
2l−1 + εABεCDY A

2l Ψ
C†
2l Y B

2l ΨD†
2l

− 2εABεCDY A
2l−1Ψ

B†
2l Y C

2l ΨD†
2l−1 − 2εABεCDY A

2l+1Ψ
C†
2l+1Y

D
2l ΨB†

2l

]
, (4.48)

where ε12 = −ε12 = 1 and we used doublets

Y A
l = {Z(l), W (l)†} , ΨA,l = {(−1)l−1e−iπ/4ζ(l), (−1)leiπ/4ω(l)†}. (A = 1, 2) (4.49)

The label l of ζ(l) and ω(l) was determined from the following orbifold projection of the nN×nN

ABJM fermions:

ζ1 =


0 ζ(1)

0 ζ(3)

0
. . .
0 ζ(2n−3)

ζ(2n−1) 0

 , ω1 =


0 ω(2n−1)

ω(1) 0
ω(3) 0

. . . 0
ω(2n−3) 0

 ,

ζ2 = diag(ζ(2n), ζ(2), · · · , ζ(2n−2)) , ω2 = diag(ω(2n), ω(2), · · · , ω(2n−2)). (4.50)

Each ζ(l) and ω(l) (l = 1, 2, · · · , 2n) are N × N matrices.

Now, we investigate the scaling limit of (4.48). The appropriate rescalings of the fermions

are given by

Ψ1
(2l−1) →

qlm

√
n

Ψ(2)
(m)

2
, Ψ1

(2l) →
qlm

√
n

Ψ(1)
(m)

2
, Ψ2

(2l−1) →
q(l−2)m

√
n

Ψ(4)
(m)

2
, Ψ2

(2l) →
qlm

√
n

Ψ(3)
(m)

2
. (4.51)
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In analogy with the bosonic potential, after the decomposition Y A
(l) = Y A

0 1N×N + Ŷ A
(l), the

fermionic potential becomes Vferm =
∑2

s=0 V
(s)
ferm, where V

(s)
ferm contains s Y0 fields and (2 − s)

Ŷ fields. Obviously, V
(0)
ferm vanishes in the limit n → ∞. Thus, the remaining terms are V

(1)
ferm

and V
(2)
ferm.

First, let us consider the V
(2)
ferm term. For simplicity, we consider the case where only the

Y
(1)
0 and Y

(2)
0 are nonzero. Then the surviving terms in the limit n → ∞ are summarized as

4π2m

k
tr

[
2Y

(2)†
0 Y

(1)
0 Ψ(2)†

(m)Ψ
(1)
(m) − 2Y

(1)†
0 Y

(2)
0 Ψ(1)†

(m)Ψ
(2)
(m)

− 2Y
(1)†
0 Y

(2)†
0 Ψ(3)

(−m)Ψ
(4)
(m) + 2Y

(1)
0 Y

(2)
0 Ψ(4)†

(m)Ψ
(3)†
(−m)

]
. (4.52)

After the decomposition of the fermions into the 2-component Majorana spinors as

ΨA(m) = iχA(m) − χA+4(m), (4.53)

we obtain various bilinear terms of χ1(m), · · · , χ8(m). Using the appropriate Gamma matrices,

the assignment (4.30), and the identification ψT
(m) = (χT

1(m), · · · , χT
8(m)), we can show that these

bilinear terms agree with the first term of (4.47). The explicit forms of the Gamma matrices are

written in the Appendix.

As for the V
(1)
ferm term, the situation is the same as the V

(2)
bos term. In the scaling limit, we

just need to consider whether the index l of Y A
l and ΨA

l is odd or even, namely, we can replace

all the Y A
l′ (l′ ∈ Z) with Y A

2l−1 or Y A
2l . This denotes that the fermion potential of the original

ABJM theory with the additional labels l

− 2πi

k
tr [Y †

A,lY
A
l ΨB†

l ΨB,l − Y A
l Y †

A,lΨB,lΨ
B†
l + 2Y A

l Y †
B,lΨA,lψ

B†
l − 2Y †

A,lY
B
l ΨA†

l ΨB,l

+ εABCDY †
A,lΨB,lY

†
C,lΨD,l − εABCDY A

l ΨB†
l Y C

l ΨD†
l ], (4.54)

and the V
(1)
ferm term become coincident in the scaling limit. Therefore, using the result in [13]

that the ABJM fermionic potential scales as

ψ̄XI
0 [XJ , ΓIJψ], (4.55)

we can say that the scaling limit of the V
(1)
ferm term is given by

− π

2k
ψ̄(m)X

I
0 [XJ , ΓIJψ](−m), (4.56)

where ψT
(m) = (χT

1(m), · · · , χT
8(m)). This agrees with the second term of (4.47).

Therefore, we completely verify the emergence of the Extended L-BLG theory with two

Lorentzian pairs from the scaling limit of the N = 4 quiver CS theory. This means that we

obtain a concrete prescription for gaining D3-brane theory from the ABJM theory, because the

Extended L-BLG theory with d = 1 can be reduced to the D3-brane theory.
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4.4 Applications to the other quiver Chern-Simons theories

Thus far, we have only discussed a particular N = 4 quiver CS theory (4.18). However, by

orbifolding the ABJM theory, we can obtain infinitely many quiver CS theories. Thus, here, we

apply our scaling limit to various quiver CS theories.

(I) C2 × C2/Zn

The Zn action (4.23) was of the C2 × C2/Zn type. As another example of this type, let us

consider the following Zn orbifolding action4:

y1 → e2πi/ny1, y2 → e−2πi/ny2, y3 → y3, y4 → y4. (4.57)

This preserves N = 2 supersymmetry and SU(2) global symmetry. The covariant derivatives

are

DµZ(2l−1) = ∂µZ(2l−1) + iA(2l−1)
µ Z(2l−1) − iZ(2l−1)A(2l)

µ ,

DµZ(2l) = ∂µZ(2l) + iA(2l+1)
µ Z(2l) − iZ(2l)A(2l−2)

µ ,

DµW (2l−1) = ∂µW (2l−1) + iA(2l−2)
µ W (2l−1) − iW (2l−1)A(2l−1)

µ ,

DµW (2l) = ∂µW (2l) + iA(2l)
µ W (2l) − iW (2l)A(2l+1)

µ , (4.58)

where l = 1, · · · , n. The Z(2l),W (2l−1) parts are changed from the N = 4 case (4.19). Figure

4.2 is the corresponding quiver diagram.�N �NN N �NZ(1) W (2) Z(3)W (2n)W (1) Z(2) W (3) Z(4)A(2n) A(1) A(2) A(3) A(4) NA(5)W (4)W (5)
Figure 4.2: Quiver diagram for case (I).

In this theory, the Chern-Simons term is unchanged from the N = 4 case. Thus, its scaling

limit is completely the same as that of (4.31). As for the kinetic term, the covariant derivatives

are scaled as

DµZ(2l) →
qlm

√
2n

∂µY
(2)
(m) + i

qlm

√
2n

[Aµ(n), Y
(2)
(m−n)] −

2π(s + 2)mqlm

√
2n

Aµ(m)Y
(2)
0 + i

2πqlm

√
2n

A′
µ(m)Y

(2)
0 ,

DµW(2l−1) →
q−lm

√
2n

∂µY
(3)†
(m) + i

qlm

√
2n

[Aµ(n), Y
(3)†
(n−m)] +

2π(s + 1)mqlm

√
2n

Aµ(m)Y
(3)†
0

− i
2πqlm

√
2n

A′
µ(m)Y

(3)†
0 . (4.59)

4This is the “chiral orbifold gauge theory” described in [35].
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N N�N �N NW (2) Z(3) W (4)Z(1)Z(2) W (1) Z(4) W (3)A(1) A(2) A(3) A(4) A(5) �NA(6)Z(5)Z(6)W (4n)A(4n)�N
Figure 4.3: Quiver diagram for case (II)-(i).

Again, through the assignments

λI0 = −2π(X1
0 , X2

0 , X3
0 , X4

0 , X5
0 , X6

0 , X7
0 , X8

0 ),

λI1 = −2π
(
sX1

0 , (s + 2)X2
0 , (s + 1)X3

0 , (s + 1)X4
0 , sX5

0 , (s + 2)X6
0 , (s + 1)X7

0 , (s + 1)X8
0

)
,

(4.60)

we see that the kinetic term completely agrees with (4.29). The constraint for the metric of

two-torus is calculated as

G11 = −s(s + 1)G00 + (2s + 1)G01 + 8π2[(X2
0 )2 + (X6

0 )2]. (4.61)

The difference from the previous case is an appearance of a term (X2
0 )2 + (X6

0 )2. This indicates

that we can cover a larger parameter space of the coupling constant τ than the N = 4 quiver

CS theories, as we will see in Section 4.

(II) C × C3/Zn

(i) Now, we consider the Z2n action given by

y1 → e2πi/2ny1, y2 → e2πi/2ny2, y3 → e2πi/ny3, y4 → y4. (4.62)

The quiver CS theory based on this orbifolding also has N = 2 SUSY and SU(2) global sym-

metry. The quiver diagram of this theory is given in Figure 4.3. The covariant derivatives are

given by

DµZ(2l−1) = ∂µZ(2l−1) + iA(2l−1)
µ Z(2l−1) − iZ(2l−1)A(2l)

µ ,

DµZ(2l) = ∂µZ(2l) + iA(2l−1)
µ Z(2l) − iZ(2l)A(2l)

µ ,

DµW (2l−1) = ∂µW (2l−1) + iA(2l+2)
µ W (2l−1) − iW (2l−1)A(2l−1)

µ ,

DµW (2l) = ∂µW (2l) + iA(2l)
µ W (2l) − iW (2l)A(2l+1)

µ , (4.63)

where l = 1, · · · , 2n. The Z(2l),W (2l−1) parts are changed from (4.19). The Chern-Simons term

is unchanged from the one in (4.18) except that l runs 1 to 2n.

In this case, we have to change the scaling limit (4.25) slightly. Because we took a Z2n

orbifolding, we must change n to 2n in (4.25) and redefine q as q ≡ e
2πi
2n . Under this limit, the

39



CS term of the Extended L-BLG theory is properly derived. The covariant derivatives are scaled

as

DµZ(2l) →
qlm

√
4n

∂µY
(2)
(m) + i

qlm

√
4n

[Aµ(n), Y
(2)
(m−n)] −

2πsmqlm

√
4n

Aµ(m)Y
(2)
0 + i

2πqlm

√
4n

A′
µ(m)Y

(2)
0 ,

DµW(2l−1) →
q−lm

√
4n

∂µY
(3)†
(m) + i

qlm

√
4n

[Aµ(n), Y
(3)†
(n−m)] +

2π(s − 1)mqlm

√
4n

Aµ(m)Y
(3)†
0

− i
2πqlm

√
4n

A′
µ(m)Y

(3)†
0 . (4.64)

Under the identifications

λI0 = −2π(X1
0 , X2

0 , X3
0 , X4

0 , X5
0 , X6

0 , X7
0 , X8

0 ),

λI1 = −2π
(
sX1

0 , sX2
0 , (s − 1)X3

0 , (s + 1)X4
0 , sX5

0 , sX6
0 , (s − 1)X7

0 , (s + 1)X8
0

)
, (4.65)

we can show the agreement of kinetic terms. The constraint to the T 2 metric is

G11 = −s(s + 1)G00 + (2s + 1)G01 + 8π2[(X3
0 )2 + (X7

0 )2]. (4.66)

Note that we have a degree of freedom that corresponds to tuning [(X3
0 )2 + (X7

0 )2] as with the

case (I).

(ii) Next, as another example of the C×C3/Zn type, we consider the Z6n action given by

y1 → e2πi/6ny1, y2 → e2πi/3ny2, y3 → e2πi/2ny3, y4 → y4. (4.67)

This orbifold projection also preserves N = 2 SUSY, but the remaining global symmetry is less

than before. The quiver CS theory obtained from this orbifold action has the following covariant

derivatives,

DµZ(2l−1) = ∂µZ(2l−1) + iA(2l−1)
µ Z(2l−1) − iZ(2l−1)A(2l)

µ ,

DµZ(2l) = ∂µZ(2l) + iA(2l−1)
µ Z(2l) − iZ(2l)A(2l+2)

µ ,

DµW (2l−1) = ∂µW (2l−1) + iA(2l+4)
µ W (2l−1) − iW (2l−1)A(2l−1)

µ ,

DµW (2l) = ∂µW (2l) + iA(2l)
µ W (2l) − iW (2l)A(2l+1)

µ , (4.68)

where l = 1, · · · , 6n. Again, the Z(2l),W (2l−1) parts are changed from (4.19). The corresponding

quiver diagram is given in Figure 4.4.

For the Chern-Simons term, under the scaling limit (4.25) with n being replaced by 6n, the

agreement between both theories is easily shown as before. For the kinetic term, the covariant

derivatives are scaled as

DµZ(2l) →
qlm

√
12n

∂µY
(2)
(m) + i

qlm

√
12n

[Aµ(n), Y
(2)
(m−n)] −

2π(s − 1)mqlm

√
12n

Aµ(m)Y
(2)
0 + i

2πqlm

√
12n

A′
µ(m)Y

(2)
0 ,

DµW(2l−1) →
q−lm

√
12n

∂µY
(3)†
(m) + i

qlm

√
12n

[Aµ(n), Y
(3)†
(n−m)] +

2π(s − 2)mqlm

√
12n

Aµ(m)Y
(3)†
0

− i
2πqlm

√
12n

A′
µ(m)Y

(3)†
0 . (4.69)
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�N�NN N �NZ(1) Z(3)Z(2) Z(4)A(1) A(2) A(3) A(4) NA(5) A(6)W (2) W (4) Z(5)
W (1)

Figure 4.4: Quiver diagram for case (II)-(ii).

The agreement of kinetic terms is achieved using the assignment

λI0 = −2π(X1
0 , X2

0 , X3
0 , X4

0 , X5
0 , X6

0 , X7
0 , X8

0 ),

λI1 = −2π
(
sX1

0 , (s − 1)X2
0 , (s − 2)X3

0 , (s + 1)X4
0 , sX5

0 , (s − 1)X6
0 , (s − 2)X7

0 , (s + 1)X8
0

)
.

(4.70)

In this case, the metric of T 2 is constrained to satisfy

G11 = −s(s + 1)G00 + (2s + 1)G01 + 8π2{(X2
0 )2 + (X6

0 )2} + 24π2{(X3
0 )2 + (X7

0 )2}. (4.71)

Once again, we have a degree of freedom that corresponds to the sum of VEV squared.

(III) C4/Zn

Finally, we consider the C4/Zn type. When we consider the Zn action given by

y1 → e2πi/ny1, y2 → e2πi/ny2, y3 → e−2πi/ny3, y4 → e−2πi/ny4, (4.72)

N = 4 SUSY and SU(2)×SU(2) global symmetry are preserved. The covariant derivatives are

given by

DµZ(2l−1) = ∂µZ(2l−1) + iA(2l−1)
µ Z(2l−1) − iZ(2l−1)A(2l)

µ ,

DµZ(2l) = ∂µZ(2l) + iA(2l−1)
µ Z(2l) − iZ(2l)A(2l)

µ ,

DµW (2l−1) = ∂µW (2l−1) + iA(2l−2)
µ W (2l−1) − iW (2l−1)A(2l+1)

µ ,

DµW (2l) = ∂µW (2l) + iA(2l−2)
µ W (2l) − iW (2l)A(2l+1)

µ , (4.73)

where l = 1, · · · , n. In this case, only the Z(2l−1) part is unchanged from (4.19). The quiver

diagram of this theory is given in Figure 4.5.

The CS term and its scaling behaviour are exactly the same as (4.18) and (4.31), respectively.
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�N �NN N �NZ(1) Z(3)Z(2) Z(4)A(2n) A(1) A(2) A(3) A(4) NW (1) ; W (2) W (3) ; W (4) A(5)
Figure 4.5: Quiver diagram for case (III).

On the other hand, the covariant derivatives are scaled as

DµZ(2l) →
qlm

√
n

∂µY
(2)
(m) + i

qlm

√
n

[Aµ(n), Y
(2)
(m−n)] −

2πsmqlm

√
n

Aµ(m)Y
(2)
0 + i

2πqlm

√
n

A′
µ(m)Y

(2)
0 ,

DµW(2l−1) →
q−lm

√
n

∂µY
(3)†
(m) + i

qlm

√
n

[Aµ(n), Y
(3)†
(n−m)] +

2π(s + 2)m√
n

qlmAµ(m)Y
(3)†
0 − i

2πqlm

√
n

A′
µ(m)Y

(3)†
0 ,

DµW(2l) →
q−lm

√
n

∂µY
(4)†
(m) + i

qlm

√
n

[Aµ(n), Y
(4)†
(n−m)] +

2π(s + 2)mqlm

√
n

Aµ(m)Y
(4)†
0 − i

2πqlm

√
n

A′
µ(m)Y

(4)†
0 .

(4.74)

Using the identifications

λI0 = −2π(X1
0 , X2

0 , X3
0 , X4

0 , X5
0 , X6

0 , X7
0 , X8

0 ),

λI1 = −2π
(
sX1

0 , sX2
0 , (s + 2)X3

0 , (s + 2)X4
0 , sX5

0 , sX6
0 , (s + 2)X7

0 , (s + 2)X8
0

)
, (4.75)

we can show that the kinetic term of the Extended L-BLG theory emerges precisely. Therefore,

the T 2 metric is limited to satisfy

G11 = −s(s + 2)G00 + (2s + 2)G01. (4.76)

In this section, we checked the emergence of the Extended L-BLG theory from the various

quiver CS theories for the kinetic and CS terms. Naively, whenever an additional circle exists,

independently of how to realize it, the Extended L-BLG theory and D3-brane theory are expected

to emerge. Therefore, it is just conceivable that independently of how the further Zn orbifolding

acts on C4/Zk, namely, regardless of the remaining SUSY and global symmetry, the orbifolded

ABJM theories lead us to the Extended L-BLG theory from our scaling procedure. All the

examples we have studied display positive signs for this expectation. Further research in this

direction may be interesting.

4.5 T 2 compactification and SL(2, Z) transformations

We have seen the emergence of the Extended Lorentzian BLG theory from the scaling limit of

quiver Chern-Simons theories. Our procedure realizes ordinary T 2 compactification. However,

starting from the orbifolded ABJM theory, the resultant metric of two-torus GAB (A,B = 0, 1)

is constrained. This means that after the reduction to the D3-brane theory, the realizable
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parameter region of the complexified coupling constant τ is also limited. In this section, we

focus on this constraint and a realization of SL(2, Z) transformations.

In section 2, we have seen that the Extended L-BLG theory with d = 1 is reduced to the

D3-brane worldvolume theory through the Higgs mechanism. The gauge sector of the resultant

D3-brane action is given by

LA + LFF̃ = − 1
4G00

∫
dy

2π

√
g11F 2 +

G01

8G00

∫
dy

2π
FF̃

≡ − 1
8π

∫
dy

[
Im(τ)F 2 +

1
2
Re(τ)FF̃

]
, (4.77)

where

F 2 = F̃ 2
µν + 2g11F̃µ1F̃µ1,

F F̃ = (4
√

g11εµνλ)F̃µ1F̃νλ. (4.78)

Thus, the complexified coupling constant τ is represented as

τ = −G01

G00
+ i

√
G11

G00
−

(
G01

G00

)2

. (4.79)

Note that we have chosen k = 1.

In the previous section, we have seen that the T 2 metric GAB is constrained to satisfy a

certain relation. Now, we substitute these constraints into (4.79) and investigate the parameter

space of τ and the SL(2, Z) transformations.

(I) N = 4

First, we consider the N = 4 case. Substituting (4.30) into (4.79), we obtain

τ = −G01

G00
+ i

√
−

(
G01

G00
− s

)[
G01

G00
− (s + 1)

]
, (4.80)

where

G01

G00
= s +

(X2
0 )2 + (X4

0 )2 + (X6
0 )2 + (X8

0 )2

(XI
0 )2

. (4.81)

This denotes that in a fixed s, namely, in certain linear combinations of the gauge fields (4.24),

the realizable parameter space of τ is limited to the one that depends on only one real parameter,

the ratio of the VEVs G01/G00. Remarkably, s appears in τ only through the real part. When

we shift s as s → s+a (a ∈ Z), τ changes as τ → τ +a. Therefore, the linear combinations of the

gauge fields and the T-transformations have one-to-one correspondence. This is an extension

of the work in [19]. This correspondence also works in all the other examples (I), (II), (III) in

Section 4.

43



If we define τ ≡ x + iy, the realizable region of the coupling τ is represented as(
x +

2s + 1
2

)2

+ y2 =
1
4
. (4.82)

This is an upper part of a circle of radius 1/2 whose center depends on the combinations of

gauge fields.

Similarly, if we consider the constraint (4.76), the realizable parameter space of τ is repre-

sented as

(x + s + 1)2 + y2 = 1. (4.83)

Again, τ becomes a one parameter curve.

In both cases, even if we move all the values of VEVs XI
0 and indices s (s ∈ Z), we cannot

cover the full parameter space of the complex structure moduli τ .

(II) N = 2

In the N = 2 case, the situation slightly changes. Now, τ is represented as

τ = −G01

G00
+ i

√
−

(
G01

G00
− s

)[
G01

G00
− (s + 1)

]
+ A , (4.84)

where

A ≡


8π2[(X2

0 )2 + (X6
0 )2]/G00 for (5.66),

8π2[(X3
0 )2 + (X7

0 )2]/G00 for (4.66),
[8π2{(X2

0 )2 + (X6
0 )2} + 24π2{(X3

0 )2 + (X7
0 )2}]/G00 for (4.71).

(4.85)

Now, owing to the existence of the term A, we can move a larger region of the complex structure

τ than in the N = 4 case. The realizable region of τ is represented as(
x +

2s + 1
2

)2

+ y2 =
1
4

+ A. (4.86)

Compared with case (I), we can change a radius of a circle by tuning A. Therefore, moving all

the values of allowed x (= −G01/G00), s (s ∈ Z), and A, we can realize the parameter space of

τ more widely. Hence, it seems that the one parameter dependence of τ in the previous case is

the reflection of the fact that 3d N = 4 SUSY is very restricted.

Finally, we comment on the A term. Because A is bounded above, again the whole region

of the complex structure moduli cannot be reproduced. Naively, even if we consider the Zn

action that preserves no supersymmetry, the situation seems to be unchanged. This is slightly

mysterious and more work is required.
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Chapter 5

Lie 3-algebra in six dimension

5.1 6-dim (2,0) theory with Lie 3-algebra

In this section we consider the 6-dim (2, 0) theory with Lie 3-algebra proposed in [24]. This

model was proposed for the purpose of constructing multiple M5-branes. Here we check the

consistency with various string dualities [25, 42]. The proposed set of equations of motion

(EOM) is given by

D2
µXI

a − i

2
[Cµ, Ψ̄, ΓµΓIΨ]a − [Cµ, XJ , [Cµ, XJ , XI ]]a = 0

ΓµDµΨa + ΓµΓI [Cµ, XI , Ψ]a = 0

D[µHνρσ]a +
1
4
εµνρσλτ [Cλ, XI , DτXI ]a +

i

8
εµνρσλτ [Cλ, Ψ̄, ΓτΨ]a = 0

F̃µν
b
a − Cρ

c Hµνρ,df
cdb

a = 0

DµCν
a = 0 , (5.1)

and constraints

Cµ
c DµXI

df cdb
a = Cµ

c DµΨdf
cdb

a = Cµ
c DµHνρσ,df

cdb
a = Cµ

c Cν
d f cdb

a = 0 . (5.2)

This theory has 6-dim N = (2, 0) supersymmetry and nontrivial gauge symmetry, so this for-

mulation is expected to be a new approach to understand the multiple M5-brane dynamics.

Here the indices I = 6, · · · , 10 specify the transverse directions of M5-branes and µ, ν = 0, · · · , 5

indicate the longitudinal directions. a, b, · · · denote the gauge indices.

The field contents are as follows: XI
a are scalar fields, Ψa is a spinor field, Aµ,ab is a gauge

field, and Cµ
a is a new auxiliary field. It is well known that the 6-dim N = (2, 0) tensor

multiplet contains the 2-form field Bµν,a besides XI
a and Ψa. In this theory, only its field

strength Hµνρ,a = 3∂[µBνρ]a appears and it satisfies the self-dual condition

Hµνρ,a =
1
3!

εµνρσλτH
σλτ

a . (5.3)

The covariant derivative of the fields Φ = XI , Ψ, Hµνρ, Cµ is defined by

(DµΦ)a := ∂µΦa − if cdb
aAµ,cdΦb , (5.4)
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where the notation is slightly different from the original one [24], so that the gauge field Aµ,ab

becomes Hermitian.

Lie 3-algebra In general, Lie 3-algebra is defined with the totally antisymmetric 3-bracket

and the inner product

[T a, T b, T c] = fabc
dT

d , 〈T a, T b〉 = hab , (5.5)

where fabc
d is a structure constant and hab is a metric. For the closure of gauge transformation,

the structure constant must satisfy the fundamental identity

fabc
ffdef

g + fabd
ffecf

g + fabe
ff cdf

g = f cde
ffabf

g . (5.6)

Also, we impose the invariance of the inner product

fabc
eh

ed = −fabd
eh

ec , (5.7)

which is required when one will write down the Lagrangian in the future. Unfortunately, La-

grangian of this nonabelian (2, 0) theory cannot be written down at this stage, since the self-dual

2-form field Bµν,a cannot be properly defined. Although this is not the matter with our present

discussion, this must be a very important subject of future research.

Symmetry transformation The nonabelian (2, 0) theory is invariant under the gauge sym-

metry transformation defined by

δΛXI
a = Λ̃b

aX
I
b , δΛΨa = Λ̃b

aΨb , δΛHµνρ,a = Λ̃b
aHµνρ,b ,

δΛCµ
a = Λ̃b

aC
µ
b , δΛÃµ

b
a = DµΛ̃b

a , (5.8)

where Ãµ
b
a := Aµcdf

cdb
a and Λ̃b

a := Λcdf
cdb

a. And it is also invariant under the 6-dim N =

(2, 0) supersymmetry transformation

δεX
I
a = iε̄ΓIΨa

δεΨa = ΓµΓIDµXI
aε +

1
12

ΓµνρH
µνρ
a ε − 1

2
ΓµΓIJ [Cµ, XI , XJ ]aε

δεHµνρ,a = 3iε̄Γ[µνDρ]Ψa + iε̄ΓIΓµνρσ[Cσ, XI ,Ψ]a

δεÃµ
b
a = iε̄ΓµνC

ν
c Ψdf

cdb
a

δεC
µ
a = 0 , (5.9)

where ε and Ψ are 32-component Majorana spinors under the chirality condition

Γ012345ε = +ε , Γ012345Ψ = −Ψ . (5.10)

Thus the nonabelian (2, 0) theory is equipped with the expected symmetries of multiple M5-

branes. The main purpose of our work is to explore its properties through the reduction to

branes in superstring theory and to clarify the availability of this formulation. In the next

section, starting from this theory, we will show that this theory actually reproduce the multiple

Dp-branes.
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5.2 Dp-brane theory from nonabelian (2,0) theory

First we briefly review how the nonabelian (2, 0) theory reproduces D4-brane action [24]. In this

case, we use the Lorentzian Lie 3-algebra {T a, u0, v
0} defined by

[u0, T
a, T b] = ifab

cT
c , [T a, T b, T c] = −ifabcv0 ,

〈T a, T b〉 = hab , 〈u0, v
0〉 = 1 , otherwise = 0 , (5.11)

where T a are generators of the ordinary Lie algebra, so this algebra is a central extension of

Lie algebra. Since u0 − αv0 (α > 0) is a negative norm generator, the u0- and v0-component

fields become ghosts. Then we have to remove them in order to obtain a physical theory. It

is well known that this can be performed by the new kind of Higgs mechanism [6, 14]. In this

mechanism, we assign a VEV (vacuum expectation value) to the u0-component field without

breaking gauge and supersymmetry. When we set a VEV for the longitudinal field Cµ
u0 , D4-brane

worldvolume theory can be reproduced from the nonabelian (2, 0) theory. In BLG theory, on the

other hand, we can obtain D2-brane worldvolume theory, when we set a VEV for the transverse

scalar field XI
u0

. In both cases, the direction specified by the VEV becomes compactified and

then M-branes are reduced to D-branes in type IIA superstring theory. In fact, the VEV can

be interpreted as the compactification radius of the M-theory direction.

In this section, we show that the nonabelian (2, 0) theory can also reproduce Dp-brane system

(p > 4) on a torus T p−4. We realize this by using the central extension of Lorentzian Lie 3-

algebra, which is called the generalized loop algebra. The number of its centers corresponds to

the dimension of compactified torus. It is already known that BLG theory with this algebra

reproduces Dp-brane system (p > 2) on a torus T p−2 [7, 8]. Therefore, the following discussion

is similar to BLG theory case.

Setup

Now we start with the generalized loop algebra {T i
~m, uA, vA} [7, 8] defined by

[u0, ua, ub] = 0

[u0, ua, T
i
~m] = maT

i
~m

[u0, T
i
~m, T j

~n] = mav
aδ~m+~nδij + if ij

kT
k
~m+~n

[T i
~m, T j

~n, T k
~l

] = −if ijkv0δ
~m+~n+~l

〈T i
~m, T j

~n〉 = hijδ~m+~n , 〈uA, vB〉 = δB
A , otherwise = 0 , (5.12)

where ~m,~n,~l ∈ Zd, A = 0, 1, · · · , d and a = 1, · · · , d. f ij
k (i, j, k = 1, · · · ,dim g) is a structure

constant of an arbitrary Lie algebra g defined as

[T i, T j ] = if ij
kT

k. (5.13)
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It can be easily shown that this Lie 3-algebra satisfies the fundamental identity (5.6) and the

invariant metric condition (5.7). This algebra is characteristic in that the generators uA are

not produced by any 3-brackets, i.e. [ ?, ?, ? ]uA = 0, and the generators vA are the center of

the algebra, i.e. [vA, ?, ? ] = 0. According to systematic discussion in [7], these conditions are

necessary if we want to remove ghost fields by the Higgs mechanism.

Actually, this algebra can be regarded as the original Lorentzian Lie 3-algebra (5.11) with

an infinite dimensional Lie algebra {T i
~m, ua, v

a} given by

[ua, ub] = 0 , [ua, T
i
~m] = maT

i
~m , [T i

~m, T j
~n] = mav

aδ~m+~nδij + if ij
kT

k
~m+~n ,

〈T i
~m, T j

~n〉 = hijδ~m+~n , 〈ua, v
b〉 = δb

a , otherwise = 0 . (5.14)

This is a higher loop generalization of the Kac-Moody algebra, and can be regarded as a Lie

algebra on a torus T d. As we mentioned, the nonabelian (2, 0) theory with Lorentzian Lie

3-algebra reproduces D4-brane theory. In our case, in the following discussion, we define the

higher dimensional fields by collecting the infinite T i
~m-component fields and using Fourier trans-

formation. In other words, we interpret the index ~m ∈ Zd as the Kaluza-Klein momentum along

the torus T d to recover the higher dimension. As a result, we will obtain the higher dimen-

sional Dp-brane theory whose worldvolume is given by the flat torus T d bundle over the original

D4-brane worldvolume M5 (i.e. p = 4 + d).

Component Expansion

Then, we expand all the fields into their components of Lie 3-algebra as

Φ = Φ(i~m)T
i
~m + ΦAuA + ΦAvA

Aµ = Aµ(i~m)(j~n)T
i
~m ∧ T j

~n +
1
2
AA

µ(i~m)uA ∧ T i
~m + AAB

µ uA ∧ uB + · · · , (5.15)

where Φ = XI , Ψ, Hµνρ, Cµ. For simplicity, we set AAB
µ = 0 in the following. The omitted

terms in the expansion of Aµ are the terms including vA which never appear in EOM’s.

Each component of the covariant derivatives is written as

(DµΦ)(i~m) = (D̂µΦ)(i~m) + A′
µ(i~m)Φ

0 + imaA
0
µ(i~m)Φ

a

(DµΦ)uA = ∂µΦA

(DµΦ)v0 = ∂µΦ0 + ima(Aa
µ(i~m)Φ(i,−~m) + Aµ(i~m)(i,−~m)Φ

a)

−f ijkAµ(i~m)(j~n)Φ(k,−~m−~n)

(DµΦ)va = ∂µΦa − ima(A0
µ(i~m)Φ(i,−~m) + Aµ(i~m)(i,−~m)Φ

0) , (5.16)

where

(D̂µΦ)(i~m) = ∂µΦ(i~m) + f jk
iA

0
µ(j,~m−~n)Φ(k~n)

A′
µ(i~m) = −imaA

a
µ(i~m) + f jk

iAµ(j,~m−~n)(k~n) . (5.17)
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Solving the ghost sector

The generalized loop algebra (5.12) has d + 1 negative norm generators uA − αvA (α > 0), so

the uA and vA-component fields become ghosts. Then one may wonder whether this theory is

unitary. However, as we will see, it doesn’t matter because these ghosts can be removed by the

Higgs mechanism. The detailed procedure is as follows.

First, we consider uA-component fields. Their EOM’s are

∂2
µXIA = 0 , Γµ∂µΨA = 0 , ∂[µHA

νρσ] = 0 , ∂µCνA = 0 . (5.18)

The gauge transformation is given by

δΛXIA = 0 , δΛΨA = 0 , δΛHA
µνρ = 0 , δΛCµA = 0 , (5.19)

and the supersymmetry transformation is

δεX
IA = iε̄ΓIΨA , δεΨA = ΓµΓI∂µXIAε , δεH

A
µνρ = 3iε̄Γ[µν∂ρ]Ψ

A ,

δεC
µA = 0 . (5.20)

This means that we can insert the VEV’s as

XIA = const. , ΨA = 0 , HA
µνρ = arbitrary , CµA = arbitrary (5.21)

without breaking gauge symmetry and supersymmetry. Then, in the following, we consider

Cµ0 = λ0δµ
5 , XIa = λIa , otherwise = 0 , (5.22)

where ~λa are constant vectors in R5 (the transverse directions of M5-branes), namely,

~λa ∈ Rd ⊂ R5. (5.23)

In the following, we use {~λa} as the basis of Rd. Therefore, it is useful for later discussion to

define the dual basis ~πa and the projection operator P IJ as

~λa · ~πb = δa
b , P IJ = δIJ −

∑
a

λIaπJ
a . (5.24)

The operator P projects a vector onto subspace of R5 which is orthogonal to all ~λa, and it

satisfies the projector condition P 2 = P . In the next subsection, we will compactify this Rd

space on a torus T d, and identify it with the torus T d defined by loop algebra (5.14).

Next, we look at vA-component fields. For simplicity, we set Cµ
(i~m) = 0 only here. After
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setting VEV’s (5.22), their EOM’s become

0 = D2
µXI

0

= D2
µXI

a +
1
2
maλ

0Ψ̄(i~m)Γ̂
IΨ(i,−~m)

−m2
a(λ

0)2λ[IaX
J ]
(i~m)X

J
(i,−~m) − ma(λ0)2f ijkXJ

(i~m)X
J
(j~n)X

I
(k,−~m−~n)

0 = ΓµDµΨ0 = ΓµDµΨa − imaλ
0XI

(i~m)Γ̂
IΨ(i,−~m)

0 = D[µHνρσ],0 = D[µHνρσ],a + εµνρσ5τmaλ
0

(
1
4
XI

(i~m)D
τXI

(i,−~m) +
i

8
Ψ̄(i~m)Γ

τΨ(i,−~m)

)
0 = F̃µν

a
0 = F̃µν

(i~m)
0 = F̃µν

0
a = F̃µν

(i~m)
a − maλ

0Hµν5(i~m)

0 = DµCν
A , (5.25)

where Γ̂I := iΓ5ΓI and these satisfies 1
2{Γ̂

I , Γ̂J} = δIJ .1 Note that all the equations of v0-

component fields are free, while the equations of va-component fields are necessarily not. This

doesn’t matter as long as we consider the VEV’s of uA-component fields to be constants.

Derivation of Dp-brane action

Now we concentrate on the EOM’s for T i
~m-component fields. In order to obtain the Dp-brane

action, we compactify the Rd space spanned by ~λa on a torus T d and regard the index ~m ∈ Zd

as the Kaluza-Klein momentum along the torus. Then we identify the infinite T i
~m-component

fields with the (6 + d)-dim fields through the Fourier transformation on it:

Φ̂i(x, y) :=
∑
~m

Φ(i~m)(x)e−i~m·~y , Âµi(x, y) :=
∑
~m

A0
µ(i~m)(x)e−i~m·~y , (5.26)

where xµ are coordinates of M5-brane worldvolume, and ya ∈ [0, 2π] are coordinates of the d-dim

torus T d [7, 8]. We will also use the notation of field strength

F̂µν,i(x, y) :=
∑
~m

F 0
µν(i~m)(x)e−i~m·~y , (5.27)

where F 0
µν(i~m) := ∂µA0

ν(i~m)−∂νA
0
µ(i~m)+f jk

iA
0
µ(j,~m−~n)A

0
ν(k~n) . In fact, this procedure corresponds

to taking the field theoretical T-duality [38] for the directions of T d, since it means that we make

the brane worldvolume extended to these directions.

Cµ-field and constraints After inserting the VEV’s (5.22), the EOM (5.1) for Cµ-field and

the constraints (5.2) become

D5X
I
(i~m) = D5Ψ(i~m) = D5Hµρσ(i~m) = DµCν

(i~m) = Cα
(i~m) = 0 , (5.28)

where α = 0, · · · , 4. Also, from eq. (5.8) and (5.9), we find that one can set a VEV as

C5
(i~m) = const. (5.29)

1 In our notation, 1
2
{Γµ, Γν} = gµν = diag. (− + · · ·+) and 1

2
{ΓI , ΓJ} = δIJ .
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without breaking gauge symmetry and supersymmetry. However, as we will see, this field and

its VEV has no influence on the EOM’s in the final form.

Spinor field After inserting the VEV’s (5.22), we obtain

[Cµ, XI , Ψ](i~m) = λ0δµ
5

(
maλ

IaΨ(i~m) + if jk
iX

I
(j~n)Ψ(k,~m−~n)

)
. (5.30)

Then, using the projector (5.24), we define the field Aa(i~m) as

XI
(i~m) = P IJXJ

(i~m) + λIa(~πa · ~X)(i~m) =: P IJXJ
(i~m) + λIaAa(i~m) . (5.31)

This field can be regarded as the gauge field along the fiber torus T d. Therefore, by using these

equations and eq. (5.28), the EOM (5.1) for spinor field becomes

0 = ΓαD̂αΨ(i~m) + λ0λIaΓ5ΓI(maΨ(i~m) + if jk
iAa(j~n)Ψ(k,~m−~n))

+λ0Γ5ΓI [P IJXJ , Ψ](i~m) . (5.32)

After the field redefinition (5.26), this can be represented as

0 = ΓαD̂αΨ̂ + ΓaD̂aΨ̂ + λ0Γ̂I [P IJX̂J , Ψ̂] , (5.33)

where the covariant derivative is defined as D̂aΦ̂i := ∂aΦ̂i − i[Âa, Φ̂]. The Γ-matrices Γa :=

iλ0λIaΓ5ΓI satisfy 1
2{Γ

a, Γb} = gab which is the metric on the torus T d given by

gab := |~λ0|2~λa · ~λb . (5.34)

Scalar fields Similarly, after inserting the VEV’s, we obtain

[Cµ, XI , XJ ](i~m) = λ0δµ
5

(
maλ

[IaX
J ]
(i~m) + if jk

iX
[I
(j~n)X

J ]
(k,~m−~n)

)
. (5.35)

Then, by using eq. (5.28) and (5.31), we obtain

(D2
αXI)(i~m) = P IJ(D̂2

αXJ)(i~m) + λIa(D̂αFαa)(i~m) , (5.36)

where (Fαa)(i~m) := D̂αAa(i~m) + imaA
0
α(i~m) .

After the field redefinition, the EOM’s (5.1) for scalar fields become

0 = P IJD̂2
αX̂J + P IJD̂2

aX̂
J

+i(λ0)2λIa[P JLX̂L, P JKD̂aX̂
K ] − (λ0)2[P JM X̂M , [P JLX̂L, P IKX̂K ]]

+λIb(D̂αF̂αb) + λIb(D̂aF̂ab) +
iλ0

2
[ ˆ̄Ψ, Γ̂IΨ̂] , (5.37)

where D̂a = gabD̂b and F̂ab := ∂aÂb − ∂bÂa − i[Âa, Âb] .
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Gauge field The EOM for gauge field becomes

0 = F̃µν
(j~n)

(i~m) − iλ0fkj
iHµν5(k,~m−~n)

= F̃µν
0
(i~m) − if jk

iC
5
(j~n)Hµν5(k,~m−~n)

= F̃µν
a
(i~m) + maλ

0Hµν5(i~m) . (5.38)

In fact, we don’t use the second equation in the following, since we now regard only A0
µ(i~m) as

the gauge field, as we can see in eq. (5.17) or (5.26). This is a direct reason why C5
(im)-field gives

no effects on the EOM’s in the final form.

2-form field Similarly, the EOM for self-dual 2-form field becomes

0 = D̂[µHνρσ](i~m) +
λ0

4
εµνρσ5τ [P IJXJ , P IKD̂τXK ](i~m) +

λ0λIa

4
εµνρσ5τP

IJD̂τ D̂aX
J
(i~m)

+
1
λ0

εµνρσ5τ D̂
aFaτ(i~m) +

iλ0

8
εµνρσ5τ [Ψ̄, ΓτΨ](i~m) . (5.39)

Then, by using eq. (5.38), the self-duality of Hµνρ (5.3), and the field redefinition (5.27), this

can be rewritten as

0 =
1

(λ0)2
(
D̂αF̂αβ + D̂aF̂aβ

)
+ i[P IJX̂J , P IKDβX̂K ] − 1

2
[ ˆ̄Ψ, ΓβΨ̂] . (5.40)

Summary First, we note that the Higgs mechanism removes the ghost sector completely

without breaking gauge symmetry and supersymmetry. In fact, the ghost fields never appear in

the EOM’s for T i
~m-component fields.

Then we can finally show that all the EOM’s derived above, i.e. eq. (5.28), (5.33), (5.37),

(5.38) and (5.40), are successfully reproduced from the (5 + d)-dim super Yang-Mills action

S = λ0

∫
d5x

ddy

(2π)d

√
gL ,

L = −1
2
(D̂µX̂I)P IJ(D̂µX̂J) +

i

2
ˆ̄ΨΓµD̂µΨ̂ − 1

4(λ0)2
F̂ 2

µν

−(λ0)2

4
[P IKX̂K , P JLX̂L]2 +

iλ0

2
ˆ̄ΨΓ̂I [P IJX̂J , Ψ̂] . (5.41)

where the spacetime indices are summarized as µ = (α, a), and g := det gab. This is nothing

but the low energy effective action of multiple Dp-branes (p = 4 + d) on M5 × T d. Therefore,

we conclude that one can reproduce Dp-brane system from nonabelian (2, 0) theory.

5.3 NS5-brane theory from nonabelian (2,0) theory

In the previous section, we successfully derive Dp-brane system on a torus T p−4 from the non-

abelian (2, 0) theory by using the Higgs mechanism (5.22) and the field redefinition (5.26). Let

us see here the physical meaning of each step. From the discussion in Lorentzian BLG theory,
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it is well known that putting a VEV of uA-component field corresponds to the compactification.

Therefore, in eq. (5.22), we put a VEV Cµ0 to compactify one of the xµ-directions which becomes

M-theory direction, and then we also put VEV’s XIa to compactify some of the xI -directions.

After the field redefinition (5.26) which is equivalent to the field theoretical T-duality for the

latter compactified directions, we finally obtain Dp-brane system on a torus T p−4.

In this section, we change the way of setting VEV’s from the previous case. This should

correspond to changing the directions of M-compactification and that of taking T-duality. Espe-

cially, we now consider the reduction to type IIA/IIB NS5-brane system, and investigate whether

these branes can be reproduced from the nonabelian (2,0) theory.

Type IIA NS5-brane theory

In order to obtain type IIA NS5-branes from M5-branes, we change the M-direction, compared

with D4-brane case. Therefore, here we use the original Lorentzian Lie 3-algebra {T a, u0, v
0}

defined by

[u0, T
a, T b] = ifab

cT
c , [T a, T b, T c] = −ifabcv0 ,

〈T a, T b〉 = hab , 〈u0, v
0〉 = 1 , otherwise = 0 . (5.42)

In D4-brane case, we put a non-zero VEV into the longitudinal field Cµ0 in order to compactify

one of xµ-direction. Then in this case, we put a VEV into u0-components as

XI0 = λδI
10 , otherwise = 0 , (5.43)

in order to compactify one of the transverse xI -direction as M-theory direction.

On gauge field In this setup, the EOM for gauge field Ãµ
b
a is

F̃µν
b
a = 0 , (5.44)

and its supersymmetry transformation is

δεÃµ
b
a = 0 . (5.45)

This means that the gauge field Ãµ
b
a have no physical degrees of freedom, and can be set to

zero up to gauge transformation. Therefore, the covariant derivative D̂µ in eq. (5.17) is reduced

to the partial derivative ∂µ.
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Equations of motion The remaining EOM’s are

∂2
µX i

a − λ2[Cµ, [Cµ, X i]]a = 0

∂2
µX10

a = 0

Γµ∂µΨa − λΓµΓ10[Cµ, Ψ]a = 0

∂[µHνρσ]a −
λ

4
εµνρσλτ [Cλ, (∂τX10 + λÃτ0)]a = 0

F̃µν
0
a − [Cρ,Hµνρ]a = 0

∂µCν
a = 0 (5.46)

where i = 6, · · · , 9, and we set ∂µÃµ
0
a = 0 using the gauge transformation.

For the multiple Dp-branes, the interaction terms like [X, [X,X]] or [X, Ψ] come from strings

ending on different branes. In this case, however, Cµ-field has no dynamical degrees of freedom

because they have no kinetic terms. Therefore, we naively guess that the terms including this

field doesn’t describe the interaction between different NS5-branes, and so the resultant EOM’s

(5.46) seem practically the simple copies of free theory of N = (2, 0) multiplet. In order to

obtain the interaction terms, we need to go beyond the present construction of the nonabelian

(2,0) theory.

Type IIB NS5-brane theory

In order to obtain type IIB NS5-branes from M5-branes, we interchange the direction of M-

compactification and that of taking T-duality, compared with D5-brane case. Therefore, in this

case, we use a generalized loop algebra {T i
m, u0,1, v

0,1} defined by

[u0, u1, T
i
m] = mT i

m , [u0, T
i
m, T j

n] = mv1δm+nδij + if ij
kT

k
m+n ,

[T i
m, T j

n, T k
l ] = −if ijkv0δm+n+l ,

〈T i
m, T j

n〉 = hijδm+n , 〈u0, v
0〉 = 〈u1, v

1〉 = 1 , otherwise = 0 . (5.47)

In D5-brane case, we put non-zero VEV’s into Cµ0 and XI1 as eq. (5.22). Then, we now put

VEV’s into u0,1-components as

XI0 = λ0δI
10 , Cµ1 = λ1δµ

5 , otherwise = 0 . (5.48)

We also redefine the fields in a similar but slightly different way from eq. (5.26) as

Φ̂i(x, y) =
∑
m

Φ(im)(x)e−imy , Âµ,i(x, y) =
∑
m

A1
µ(im)(x)e−imy , · · · . (5.49)

Note that we now regard A1
µ(im) field as the gauge field, while we use A0

µ(im) field in D5-brane

case (5.26).
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C-field and constraints The EOM for C-field and the constraints become

D5X
I
(im) = D5Ψ(im) = D5Hνρσ(im) = DµCν

(im) = Cα
(im) = 0 . (5.50)

where µ = 0, · · · , 5 and α = 0, · · · , 4.

Gauge field The EOM for gauge field becomes

F̃µν
0
(im) − mλ1Hµν5(im) − if jk

iC
5
(j,m−n)Hµν5(kn) = 0

F̃µν
1
(im) = F̃µν

(jn)
(im) = 0 , (5.51)

and the supersymmetry transformation becomes

δεÃµ
0
(im) = iε̄Γµ5

(
mλ1Ψ(im) + if jk

iC
5
(j,m−n)Ψ(kn)

)
δεÃµ

1
(im) = δεÃµ

(jn)
(im) = 0 . (5.52)

Therefore, we can see that Ãµ
1
(im) and Ãµ

(jn)
(im) have no physical degrees of freedom, and can

be set to zero up to gauge transformation. This means that the covariant derivative D̂αΦ(im) =

∂αΦ(im)−iÃµ
(jn)

(im)Φ(jn) is reduced to the partial derivative. Moreover, F̃µν
0
(im) is also reduced

to

F̃µν
0
(im) = ∂µÃν

0
(im) − ∂νÃµ

0
(im)

= m
(
∂µA1

ν(im) − ∂νA
1
µ(im)

)
+ if jk

i

(
∂µAν(j,m−n)(kn) − ∂νAµ(j,m−n)(kn)

)
. (5.53)

Then from eq. (5.51), we obtain

F 1
µν(im) := ∂µA1

ν(im) − ∂νA
1
µ(im) = λ1Hµν5(im)

Fµν(im)(jn) := ∂µAν(im)(jn) − ∂νAµ(im)(jn) = C5
(im)Hµν5(jn) . (5.54)

Here we define the field strength Fµν , but unfortunately, the interaction term like

f jk
iA

1
µ(j,m−n)A

1
ν(kn) cannot appear in this setup.

Scalar and spinor fields Then, the EOM’s for scalar fields and spinor fields are

D̂2
αX̂i + D̂2

yX̂
i = 0

ΓαD̂αΨ̂ + ΓyD̂yΨ̂ = 0 (5.55)

where i = 6, · · · , 9, and we define

D̂yΦ̂ := ∂yΦ̂ − i[Ĉy, Φ̂] , Ĉy := − 1
λ1

Ĉ5 , Γy := iλ0λ1Γ5Γ10 , (5.56)

satisfying 1
2{Γ

y, Γy} = gyy = (λ0λ1)2. Note that Ĉy-field has no kinetic terms, so it is not a

gauge field, although the theory in this setup is invariant under the transformation

δΛΦ(im) = if jk
iΛ(j,m−n)Φ(kn) , δΛCy(im) = D̂yΛ(im) . (5.57)
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This means that the covariant derivative D̂y can be also reduced to the partial derivative if we

gauge away the Ĉy-field. Anyway, it is interesting that Cµ-field appears in EOM’s, which is

different from D5-brane case.

The remaining EOM for the scalar field is

D̂α
(
D̂αX10

(im) + λ0A′
α(im)

)
= 0 , (5.58)

where A′
α(im) is defined in eq. (5.17). Here, by using eq. (5.49) and (5.54), we can see that

D̂yÂα,i =
∑
m

A′
α(im)e

−imy (5.59)

is satisfied. Therefore, if we redefine the field as

Ây := − 1
λ0

X̂10 , (5.60)

we can define the field strength F̂αy and show that

D̂αF̂αy := D̂α
(
D̂αÂy − D̂yÂα − i[Âα, Ây]

)
= −i[D̂αÂα, Ây] = 0 , (5.61)

where we use eq. (5.58) at the second equality, and the last equality is satisfied up to gauge

transformation.

2-form field Using the above results, the EOM for 2-form field

D̂[µĤνρσ] −
iλ0λ1

4
εµνρσ5τ D̂y(D̂τ X̂

10 + λ0Â′
τ ) = 0 (5.62)

can be rewritten, by using eq. (5.54) for the first term and eq. (5.58)–(5.60) for the second term,

as

D̂βF̂αβ + D̂yF̂αy = 0 , (5.63)

where we use D̂y[Âα, Ây] = 0 up to gauge transformation, similarly to eq. (5.61).

Summary We have obtained all the EOM’s (5.50), (5.54), (5.55), (5.61) and (5.63). Note that

they are practically free part of the EOM’s of 6-dim N = (1, 1) super Yang-Mills theory which

is known as the low energy effective theory of type IIB NS5-branes. Therefore, we conclude that

one can partially reproduce the type IIB NS5-brane theory on M5 × S1 from the nonabelian

(2, 0) theory. Further justification from the viewpoint of S-duality will be done in § 5.5.

Finally, let us look at the kinetic part of the theory. The EOM’s of original nonabelian (2, 0)

theory can be reproduced from the Lagrangian

L = −1
2
(DµXI)2 +

i

2
Ψ̄ΓµDµΨ − 1

12
H2

µνρ + · · · . (5.64)
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Then, by using the field redefinition (5.49) and (5.54), this Lagrangian becomes

L = −1
2
(D̂µX̂ i)2 +

i

2
ˆ̄ΨΓµD̂µΨ̂ − 1

4(λ1)2
F̂ 2

µν + · · · , (5.65)

where µ = (α, y). This is nothing but the kinetic part of 6-dim N = (1, 1) super Yang-Mills

Lagrangian. However, we should remind that D̂µ is not the covariant derivative, that is, it does

not include the gauge field Âµ: In fact, both D̂α and D̂y are simply the partial derivatives up to

gauge transformation. In order to make D̂µ the covariant derivative and also to obtain all the

interaction terms in super Yang-Mills Lagrangian, we must generalize the original nonabelian

(2, 0) theory. This must be a very interesting subject, but we put off detailed discussion as a

future work.

5.4 More comments on nonabelian (2, 0) theory

Generalization of setting VEV’s and total derivative terms

In the previous sections, we chose the VEV’s as eq. (5.22) for Dp-branes or as eq. (5.48) for

type IIB NS5-branes. This means that we have seen only the case where the direction of M-

compactification and that of taking T-duality are perpendicular to each other.

If we want to discuss more general cases where the directions are not perpendicular, we may

turn on an additional VEV Cµa or XI1 as

Cµ0 = λ0δµ
5 , Cµa = λ̃aδµ

5 , XIa = λIa for Dp-branes

XI0 = λ0δI
10 , XI1 = λ̃1δI

10 , Cµ1 = λ1δµ
5 for type IIB NS5-branes (5.66)

since putting these VEV’s can be regarded as the M-compactification for the direction of

~λ0 = (~0, λ0; 0, 0, 0, 0, 0, 0) for Dp-branes

~λ0 = (~0, 0 ; 0, 0, 0, 0, 0, λ0l3p) for type IIB NS5-branes (5.67)

and taking T-duality for the direction of

~λa = (~0, λ̃a; λIal3p) for Dp-branes

~λ1 = (~0, λ1; 0, 0, 0, 0, 0, λ̃1l3p) for type IIB NS5-branes (5.68)

where ~0 is the (4+1)-dim zero vector, and lp is 11-dim Planck length. Note that we now recover

the factors l3p which were previously set to 1. They have to appear here, since the canonical

mass dimension of Cµ (and ~λ0,a) is −1, while that of XI is 2.

After a straightforward calculation, we can show that this generalization of setting VEV’s

(5.66) does not change any terms of the EOM’s in all the cases. This means that this generaliza-

tion affects at most only the terms which doesn’t appear in EOM’s, for example, total derivative

terms in Lagrangian. In fact, it is well known that such a shift of T-duality directions corre-

sponds to T-transformation which affects the Chern-Simons term in Dp-brane Lagrangian. To
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see this, therefore, we now try to discuss total derivative terms in Lagrangian of the nonabelian

(2, 0) theory.

Since the nonabelian (2,0) theory must not have dimensionful parameters, we only consider

the total derivative terms with mass dimension 6. Then one natural candidate is

L ⊃ εµνρσλτ F̃µν
a
bF̃ρσ

b
cF̃λτ

c
a . (5.69)

Let us now consider the Dp-brane (p > 4) case with VEV’s (5.66). In this case, both ~λ0 and ~λa

have nonzero elements for x5-direction, so the projector (5.24) must be redefined as

PMN = δMN −
∑
A

λMAπN
A , ~λA · ~πB = δA

B , (5.70)

where M,N = 5, 6, · · · , 10 and A = 0, 1, · · · , d (= p − 4). By using this, the gauge field Aa(i~m)

can be defined like as eq. (5.31)

XM
(i~m) = PMNXN

(i~m) + λMA(~πA · ~X)(i~m)

=: PMNXN
(i~m) + λM0(~π0 · ~X)(i~m) + λMaAa(i~m) , (5.71)

where we naturally define as

X5
(i~m) :=

1
λ0

A0
µ=5,(i~m) , X5

uA
:= C5A . (5.72)

Note that we set lp = 1 again for readability. Therefore, the nontrivial factor in eq. (5.69) can

be written as

F 0
µ5,(i~m) = λ0DµX5

(i~m) − ∂5A
0
µ(i~m)

= λ0

[
P 5MD̂µXM

(i~m) + λ0Fµ0(i~m) +
∑

a

λ̃aFµa(i~m)

]
− ∂5A

0
µ(i~m) , (5.73)

where Fµ0(i~m) := D̂µ(~π0 · ~X)(i~m) + A′
µ(i~m) and Fµa(i~m) := D̂µAa(i~m) + imaA

0
µ(i~m). The notation

of other fields is defined around eq. (5.17) and (5.27). Then we obtain the total derivative terms

in Dp-brane action which can be derived from the term (5.69) as

S ⊃
∫

d5x
ddy

(2π)d

√
g

[
(λ0)2λ̃aεµνρσλ5F̂µν,iF̂ρσ,jF̂λa,kf

il
mf jm

nfkn
l + · · ·

]
, (5.74)

where ‘· · · ’ are the total derivative terms which don’t vanish in the λ̃a → 0 limit. We neglect

them here, since it is known that the total derivative terms don’t play any role, when M-

compactification direction is perpendicular to T-duality direction, i.e. ~λ0 · ~λa = 0 or λ̃a = 0.

Note that the metric gab in this case is different from eq. (5.34) as

gab := |~λ0|2(~λa · ~λb) − (~λ0 · ~λa)(~λ0 · ~λb) . (5.75)

From the discussion above, we can conclude that the nonabelian (2, 0) theory can have an

additional total derivative term of the form (5.69) in its Lagrangian, and that the F ∧ F ∧ F

58



term in Dp-brane Lagrangian can be derived from this term. Here we should remember again

that Lagrangian of the nonabelian (2, 0) theory is not defined properly at this stage, but this

discussion is still meaningful, since the problematic self-dual 2-form field Bµν doesn’t appear

here at all. Further justification of this result from the viewpoint of T-transformation will be

done in § 5.5.

Kaluza-Klein monopoles

For completeness of our discussion, we now comment on type IIA/IIB Kaluza-Klein monopoles

reproduced from the nonabelian (2, 0) theory.

Type IIA KK monopoles

It is known that type IIA KK monopoles can be obtained from type IIB NS5-branes by taking

T-duality for a transverse direction [43]. Therefore, in this case, we use a generalized loop

algebra {T i
~m, u0,1,2, v

0,1,2} defined by eq. (5.12). Then we put VEV’s into u0,1,2-component fields

as

XI0 = λ0δI
10 , Cµ1 = λ1δµ

5 , XI2 = λ2δI
9 , otherwise = 0 . (5.76)

This setup can be generalized into the case where these VEV’s are not perpendicular to each

other, but all the following results remain the same. Finally, we redefine the fields in a similar

way to eq. (5.49) as

Φ̂i(x, y1, y2) =
∑
~m

Φ(i~m)(x)e−i~m·~y , Âµ,i(x, y1, y2) =
∑
~m

A1
µ(i~m)(x)e−i~m·~y , · · · . (5.77)

As a result, we obtain the EOM’s of the same form as type IIB NS5-brane case in § 5.3, except

that of the scalar field X̂9

D̂2
αX̂9 + D̂2

y1
X̂9 − (λ0)2λ1λ2D̂y1∂y2Ĉ

5 = 0 , (5.78)

which has an additional term with a y2 derivative, compared with eq. (5.55). We should remem-

ber that a factor like ∂y2Ĉ
µ never appear in the previous discussions. From the viewpoint of

Lorentz invariance for the condition ∂µCν
(i~m) = 0, it is natural here to impose ∂y2Ĉ

5 = 0, or

equivalently, C5
(i~m)

∣∣
m2 6=0

= 0. This, of course, does not break gauge symmetry nor supersymme-

try. After imposing this, the final result does not contain any y2 derivatives, so this y2 direction

becomes isometry. In fact, it must correspond to Taub-NUT isometry direction. Therefore, we

can integrate out the y2 dependence from all the redefined fields (5.77), and then we obtain the

6-dim worldvolume fields in type IIA KK monopole theory which depend on only x0,··· ,4 and y1

coordinates.

The field contents of this theory are three embedding scalars X̂6,7,8, a 1-form field Âµ, a

0-form field X̂9 and a fermion Ψ̂. Therefore, they are exactly reproduced from the nonabelian

(2, 0) theory only by specializing the scalar field X̂9.
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Type IIB KK monopoles

On the other hand, type IIB KK monopoles can be obtained from type IIA NS5-branes by taking

T-duality for a transverse direction [43]. Therefore, in this case, we use a generalized loop algebra

{T i
m, u0,1, v

0,1} defined by eq. (5.12) or (5.47). Then we put VEV’s into u0,1-component fields as

XI0 = λ0δI
10 , XI1 = λ1δI

9 , otherwise = 0 . (5.79)

Similarly, even if we make these VEV’s not perpendicular, the following results are unchanged.

Finally, we redefine the field in a similar way to eq. (5.49) as

Φ̂i(x, y) =
∑
m

Φ(im)(x)e−imy , · · · . (5.80)

As a result, at this time, we obtain the EOM’s of the same form as type IIA NS5-brane case

(5.46), except that of the scalar field X̂9

∂2
µX̂9 − (λ0)2[Ĉµ, [Ĉµ, X̂9] + i(λ0)2λ1[Ĉµ, ∂yĈ

µ] = 0 , (5.81)

which has an additional term with a y derivative. By similar discussion to type IIA KK monopole

case, it is natural to impose ∂yĈ
µ = 0 to eliminate the y derivative, and to regard the y direction

as Taub-NUT isometry direction. Therefore, we can integrate out the y dependence from all the

redefined fields (5.80), and then we obtain 6-dim worldvolume fields in type IIB KK monopole

theory which depend on only x0,··· ,5 coordinates. The field contents of this theory are three

embedding scalars X̂6,7,8, a self-dual 2-form field B̂µν , two 0-form fields X̂9,10 and a fermion Ψ̂.

Therefore, they are exactly reproduced from the nonabelian (2, 0) theory only by specializing

the scalar fields X̂9,10.

It is also known that type IIB KK monopole theory must be invariant under S-duality

transformation. In our setup, this transformation corresponds to the interchange of VEV’s XI0

and XI1, as we will see in § 5.5. Since Cµ-field has no dynamical degrees of freedom, we can

regard the resultant theory as practically the simple copies of free theory, just as we discussed in

§ 5.3. Therefore, all the interaction terms are negligible, and then we can see that S-self-duality

of type IIB KK monopole is trivially satisfied. If one wants to reproduce S-self-duality including

the interaction terms, some generalization of the nonabelian (2, 0) theory must be needed.

Role of Cµ-field

Let us make short comments on Cµ-field here. This field is a nondynamical auxiliary field,

since it never has the kinetic term. Moreover, it seems conveniently introduced instead of a

dimensionful parameter in order to make interaction terms appear in the theory, since any

dimensionful parameters cannot exist in M5-brane system in flat background.

However, let us now try to find some physical meanings of this field.
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In fact, it seems related to the gauge fixing condition for the general coordinate transforma-

tion symmetry on the M5-brane worldvolume as

Xµ(σ) = σµ1 + Cµ
a (σ) T a , (5.82)

under the condition DµCν
a = 0. Here σµ are worldvolume coordinates and 1 is a trivial element,

satisfying [1, T a, T b] = 0 and 〈1,1〉 = 1. It corresponds to the center-of-mass mode in brane

system which is decoupled from the theory. In the case of generalized loop algebra (5.12), for

example, 1 is equivalent to T 0
~0
.

This discussion suggests that we can regard [Cµ, ?, ? ] as [Xµ, ?, ? ]. This identification must

be natural: As we saw in § 5.2 and § 5.3, putting a VEV for u-component of Cµ-field means

the compactification for one of xµ-directions, while putting a VEV for u-component of XI -field

means the compactification for one of xI -directions. Therefore, it seems very natural to expect

that Cµ-field is related to Xµ.

Moreover, we consider in § 5.4 that gauge field Aµ,ab and Cµ
a -field play the complementary

roles of Xµ. In fact, in eq. (5.72), we have treated the gauge field A0
µ(i~m) as Xµ

(i~m), while the

field CµA as Xµ
uA . The former is natural from the viewpoint of dimensional reduction where a

higher dimensional gauge field is decomposed into a lower dimensional gauge field and transverse

scalars. However, the latter seems unusual and very interesting. This makes us again suppose

that Cµ-field is related to Xµ.

If the identification (5.82) is correct, the condition DµCν
a = 0 can be regarded as a gauge

fixing for a part of general coordinate transformation symmetry, which assures that the factor

DµXν
a doesn’t appear in Lagrangian. Therefore, in order to check our assumption, we need to

write down DBI-like action for generalization of the nonabelian (2, 0) theory, since such factors

should appear in it. We hope to discuss it in the future.

5.5 Discussion on U-duality

In § 5.2 and § 5.3, we show that the Dp-brane and NS5-brane theories can be obtained from the

nonabelian (2, 0) theory. Strictly speaking, however, they are only (part of) super Yang-Mills

theories, which are low energy effective theories of the brane systems. Then in this section, as a

further justification of our discussion, we study whether our results reproduce the expected U-

duality relation among M5-branes, Dp-branes and NS5-branes. This must be a highly nontrivial

check for the nonabelian (2, 0) theory as a formulation of M5-brane system.

D5-branes on S1

We start with the simplest case. This corresponds to the d = 1 case in § 5.2. The notation for

VEV’s ~λA is defined in eq. (5.67) and (5.68).
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T-duality For simplicity, only in this and next paragraphs, let us assume ~λ0 ⊥ ~λ1. As we

mentioned, putting the VEV ~λ0 means the compactification of M-theory direction with the

radius

R0 = |~λ0| . (5.83)

Similarly, putting a VEV ~λ1 must imply the compactification of another direction with the

radius R1 = |~λ1| before taking T-duality. Then we have D4-brane worldvolume theory with

string coupling [24]

gs = g2
Y M l−1

s = |~λ0|l−1
s (5.84)

where ls is the string length, satisfying l3p = gsl
3
s . In §5.2, D5-brane theory is obtained, since we

take T-duality for the ~λ1 direction (by field redefinition). After taking T-duality, the compacti-

fication radius is

R̃1 =
l2s
R1

=
l3p

|~λ0||~λ1|
, (5.85)

which is consistent with the metric component g11 on the torus S1 (5.34). From the kinetic term

for gauge field in Lagrangian (5.41), the string coupling in this theory can be read as

g′s = g′ 2Y M l−2
s =

|~λ0|2

|~λ0||~λ1|
l3p

R0 l2s
=

|~λ0|
|~λ1|

, (5.86)

which is compatible with the expected result from string duality, namely g′s = gsls/R̃1 = R0/R1.

Therefore, we can conclude that T-duality relation is exactly reproduced.

S-duality We continuously assume ~λ0 ⊥ ~λ1 in this paragraph. In §5.3, we discuss the world-

volume theory on type IIB NS5-branes. From the kinetic term for gauge field in Lagrangian

(5.65), we can read off the string coupling in this theory as

g′′s = g′′ 2Y M l−2
s =

|~λ1|2

|~λ0||~λ1|
l3p

R0 l2s
=

|~λ1|
|~λ0|

. (5.87)

This is exactly the inverse of string coupling in D5-brane theory (5.86), so we can conclude that

S-duality relation is successfully reproduced. Moreover, we can find that S-duality is realized as

a part of SL(2, Z) transformation of VEV’s

~λ0 → −~λ1 , ~λ1 → ~λ0 . (5.88)

T-transformation We consider this transformation in § 5.4. By comparing the setting of

VEV’s after transformation (5.66) with the original one (5.22), we can find that this transfor-

mation is identified with another part of SL(2, Z) transformation of VEV’s

~λ0 → ~λ0 , ~λ1 → ~λ1 + n~λ0 . (5.89)
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Interestingly enough, it is related to automorphism of Lie 3-algebra [8]

u0 → u0 − nu1 , u1 → u1 ,

v0 → v0 , v1 → v1 + nv0 , (5.90)

that is, this transformation changes neither structure constant nor metric of Lie 3-algebra. The

relation between them can be understood as the redefinition of ghost fields

XM = XM0u0 + XM1u1 + · · · = XM0(u0 − nu1) + (XM1 + nXM0) u1 + · · · , (5.91)

where M = (µ, I) and XµA := CµA as in eq. (5.72). Of course, there is no reason that the

parameter n must be quantized at the classical level, but it is still interesting that part of the

duality transformation comes from the automorphism of Lie 3-algebra.

It is well known that this transformation (5.89) causes the change of axion field C(0), which

appears in D5-brane Lagrangian as a Chern-Simons term C(0) ∧ F(2) ∧ F(2) ∧ F(2). Therefore,

the value of C(0) field can be read from eq. (5.74) as

C(0) =
|~λ0|(~λ0 · ~λ1)

3! 2πl3p
=

τ1

3! 2π

|e|3

l3p
, (5.92)

and the inverse of string coupling can be read from eq. (5.41) as

g−1
s =

|~λ0|
√

g11

2πl3p
=

τ2

2π

|e|3

l3p
, (5.93)

where we define the new basis {~e 0, ~e 1} as

~λ0 = ~e 0 , ~λ1 = τ1~e
0 + τ2~e

1 ; ~e 0 · ~e 1 = 0 , |~e 0| = |~e 1| =: |e| . (5.94)

In this basis, T-transformation is written as τ1 → τ1 + n, τ2 → τ2. Therefore, this result shows

that T-transformation is also perfectly reproduced in our discussion.

Taylor’s T-duality This transformation [38] interchanges D5- and D4-branes, and corre-

sponds to the different identification of T i
m-component fields in our discussion. To obtain D5-

brane system, we constructed 6-dim field X̂I(x, y) from the component fields XI
(im)(x) by Fourier

transformation (5.26). On the other hand, one can interpret XI
(im)(x) as the 5-dim fields and

the index m ∈ Z as open string modes which interpolate mirror images of a point in T 1 = R/Z.

In this way, Taylor’s T-duality transformation Z2 is reproduced.

Summary As we already mentioned, S-duality and T-transformation can be written as the

SL(2, Z) transformation of VEV’s(
~λ1

~λ0

)
→

(
a b
c d

) (
~λ1

~λ0

)
, (5.95)
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which is equivalent to the transformation of the moduli parameter τ := τ1 + iτ2

τ → aτ + b

cτ + d
. (5.96)

In fact, S-duality τ → −1/τ is given as (a, b, c, d) = (0, 1,−1, 0), while T-transformation τ → τ +

n is given as (a, b, c, d) = (1, n, 0, 1). It is well known that any element of SL(2, Z) transformation

can be composed as combination of these two kinds of transformation.

As a result, together with Taylor’s T-duality, it is finally shown that the whole of U-duality

transformation in the case of D5-branes on S1 (or M-theory on T 2)

SL(2, Z) ./ Z2 (5.97)

is completely reproduced in our discussion, where the first factor is described by the rotation

of VEV’s and the second factor is described by the different representation of the field theory.

Here, the symbol ./ denotes the product group defined by the two noncommuting subgroups.

Dp-branes on T p−4 (p ≥ 5)

Finally, we discuss the U-duality in general d ≥ 1 cases in § 5.2. In these cases, we consider

M-theory compactified on T d+1 (where d = p − 4). This theory has U-duality group

Ed+1(Z) = SL(d + 1, Z) ./ SO(d, d; Z) (5.98)

and its moduli parameters take values in Ed+1/Hd+1, where Hd+1 is the maximal compact

subgroup of Ed+1. (See e.g. [44] for a review.)

Now let us read off the values of these moduli in Dp-brane case from our results. For

readability, we set lp = 1 again in the following. First, the metric on the torus T d (5.75) is

gab = |~λ0|2(~λa · ~λb) − (~λ0 · ~λa)(~λ0 · ~λb) , (5.99)

where a, b = 1, · · · , d. Secondly, the Yang-Mills coupling (5.41) is

g2
Y M =

(2π)d|~λ0|
√

g
, (5.100)

where g := det gab. Finally, we read off the value of R-R (d−1)-form field C(d−1). This field may

appear in Dp-brane Lagrangian as a Chern-Simons term C(d−1) ∧ F(2) ∧ F(2) ∧ F(2). Therefore,

this can be read from eq. (5.74) as

C(d−1) =
|λ0|(~λ0 · ~λa)

6(2π)d(d − 1)!

√
g

√
gaa

, (5.101)

where no sum is taken on the index a. This represents the components of C(d−1) with the indices

1 2 · · · â · · · d, i.e. except a.
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Therefore, the number of moduli written by VEV’s (5.99)–(5.101) is
1
2
d(d + 1) + 1 + d =

1
2
(d + 1)(d + 2) . (5.102)

This coincides with the number of parameters in GAB := ~λA · ~λB, which is transformed under

SL(2, Z) transformation

~λA → ~λ′A := ΛA
B
~λB ; ΛA

B ∈ SL(d + 1, Z) . (5.103)

This means that our discussion correctly reproduces the SL(d + 1, Z) symmetry as the first

factor of U-duality (5.98), and that GAB = GAB(gab, g2
Y M , C(d−1)) gives the moduli parameter

which is transformed covariantly under the SL(d + 1, Z) transformation.

The second factor SO(d, d; Z) of U-duality (5.98) can be also reproduced. It consists of

the permutation of T-duality directions, Taylor’s T-duality transformation, and the shift of the

value of NS-NS 2-form field. The first one can be seen trivially in our setup, and the second one

is reproduced in a similar way to the d = 1 case. The third one is rather nontrivial. The NS-NS

2-form field Bab can be introduced as the deformation of Lie 3-algebra [7]

[u0, ua, ub] = BabT
0
~0

(5.104)

instead of ordinary generalized loop algebra (5.12), since it provides the noncommutativity on

the torus T d. It is interesting that some part of moduli (5.99)–(5.101) are described in terms of

VEV’s, while another part comes from the structure constant of Lie 3-algebra.

However, this is not the end of the story. The U-duality group is a product of these non-

commuting subgroups, and so unfortunately, the whole moduli space of U-duality cannot be

described by only the moduli parameters obtained above. In the following, we check the dimen-

sion of moduli space, and discuss what kinds of parameters are lacked in our setup. In fact, in

the d ≥ 3 cases, some missing parameters exist.

D5-branes (d = 1) M-theory compactified on T 2 is considered. The moduli space in this case

is
(
SL(2)/U(1)

)
× R which gives 3 parameters. They correspond to g11, φ and C(0).

D6-branes (d = 2) M-theory compactified on T 3 is considered. The moduli space in this case

is
(
SL(3)/SO(3)

)
×

(
SL(2)/U(1)

)
which gives 7 parameters. They correspond to gab, Bab, φ

and C(1) which transform in the 3 + 1 + 1 + 2 representations of SL(2).

D7-branes (d = 3) M-theory compactified on T 4 is considered. The moduli space in this case

is SL(5)/SO(5) which gives 14 parameters. They correspond to gab, Bab, φ, C(2) and C(0) which

transform in the 6 + 3 + 1 + 3 + 1 representations of SL(3).

R-R 0-form field C(0) is lacked in our discussion. This field causes the Chern-Simons interac-

tion C(0) ∧ F(2) ∧ F(2) ∧ F(2) ∧ F(2) which cannot be derived in a similar way to § 5.4. Therefore,

in order to include this parameter, we might need to consider the nontrivial backgrounds. For

the missing parameters below, similar discussions would be made.
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D8-branes (d = 4) M-theory compactified on T 5 is considered. The moduli space in this case

is SO(5, 5)/
(
SO(5) × SO(5)

)
which gives 25 parameters. They correspond to gab, Bab, φ, C(3)

and C(1) which transform in the 10 + 6 + 1 + 4 + 4 representation of SL(4). R-R 1-form field

C(1) is lacked in our discussion.

D9-branes (d = 5) M-theory compactified on T 6 is considered. The moduli space in this case

is E6/USp(8) which gives 42 parameters. They correspond to gab, Bab, φ, C(4), C(2) and C(0)

which transform in the 15 + 10 + 1 + 5 + 10 + 1 representations of SL(5). R-R 2-form and

0-form field C(2), C(0) are lacked in our discussion.
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Conclusions and discussions

In order to understand the nonperturbative aspects of superstring theory, it is essential to

investigate the dynamics of M-theory. Although some aspects of M-theory has been clarified

due to the develpoment such as Matrix model and AdS/CFT correspondence, further studies

are needed to uncover the characteristics of M-theory and its branes.

Finally we would like to comment that there are still many important open problems related

to M-theory branes. Some of them are listed below in random order.

M5-branes and anomaly Quite recently, 6-dim (1,0) SCFT with nonabelian gauge coupling

between multiple tensor multiplets were proposed in [45]. This construction is based on a method

originally considered in the context of gauged supergravity. This success may shed light to

understand M5-branes. The proposed model consists of tensor multiplets and vector multiplets.

To complete the field content to that of (2,0) theory, we have to include the hypermultiplets.

However, in general, the anomaly-free condition heavily restricts the number of these multiplets

and only a few gauge group is allowed. Therefore, it is indispensable to study the anomaly

structure in order to construct the maximally supersymmetric M5-brane action in the future.

Lie 3-algebra in M5-branes Applicating Lie 3-algebra to M5-branes is a challenging prob-

lem. Although there was some recent progress in constructing M5-brane theory in terms of Lie

3-algebra, completely sufficient results has not been obtained. The gauging procedure used in

[45] has been also applied to construct the multiple M2-branes and the relationship between

structure constant of Lie 3-algebra and certain invariant tensor crucial for the gauging are clari-

fied. It may be possible to utilize this results for rewriting (1,0) SCFT of [45] in terms of the Lie

3-algebra. Searching a connection to the construction of (2,0) theory in [24] is also interesting.

M2-brane entropy The crucial difference between M-branes and D-branes is a scaling prop-

erty of the entropy. From AdS/CFT correspondence, it is known that the degrees of freedom

on the worldvolume of N M2-branes is proportional to N3/2, not N2 like N D-branes. Al-

though it has not been fully understood how and why such a phenomenon occurs, a remarkable

progress about this issue was achieved in [46]. They observed exact results about free energy

of M2-branes from ABJM matrix model obtained by the use of localization technique. In the
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strong coupling limit of t’Hooft parameter, they realized the expected anomalous scaling for the

M2-brane theory.

In [47], it was shown that the partition function of ABJM theory reduced to a matrix

model can be reformulated as an ideal Fermi gas with one-particle Hamiltonian. It is very

important to explore the physical meaning of anomalous scaling of M2-brane entropy along

this approach. Worldsheet and membrane instantons are responsible for the nonperturbative

correction to the partition function of M2-branes and understanding thier effects leads to reveal

unknown dynamics of M-theory.

M5-brane and 5-dim SYM It is well known that one dimensional reduction of M5-brane

theory leads to 5-dim SYM. However, it has been not enough understood how M-theoretic

information appears in 5-dim SYM in UV. The reason is that the ordinary Kaluza-Klein com-

pactification is not allowed in this case. This is because the dimensional analysis of 5-dim SYM

gauge coupling is inconsistent with the conformal symmetry of M5-brane theory. This is a pe-

culiar problem of M5-brane and further research is required to extract M-theoretic properties

behind it. There is a recent attempt to identify self-dual string soliton obtained from M2-M5

system as instantons of 5-dim SYM [48]. This means that the information of M-theory is already

included as soliton solutions and this remarkable identification needs to be further investigated.

Moreover, there is a possibility that the difference of the entropy of M5-branes and that of D-

branes are due to the appearance of certain bound states and this is also an interesting topic.

Meanwhile, caluculation technique of gauge and gravity amplitudes has seen dramatic growth

within the recent past and its application to M-theory branes draws increasing attention.

5-dim supersymmetric Yang-Mills theory in the UV scale Revisiting the UV-completion

of 5-dim SYM may be important in the viewpoint of M-theory. If KK-states coming from M5-

brane on S1 and instantons of 5-dim SYM are equivalent as considered in [48], this means that

5-dim SYM doesn’t acquire extra degrees of freedom at all in the cut-off scale and, therefore, it

may be UV-finite. Then we need to reconsider UV-completion mechanism beyond the standard

Wilsonian approach.

On the other hand, a novel approach to UV-completion of a class of non-renormalizable

theories was suggested in [49]. This idea is inspired by a black hole formation and they conjecture

that a formation of classical objects in high energy scattering procceses induces inaccessibility

of short distance. Although Nambu-Goldstone type scalar is given as an example, examination

of its validity and further generalization is required.

Massive Gravity and Higher Spin Gauge Theories Non-linear theories of massive gravity

generally suffer from ghost instability. However, recently proposed theories of massive gravity

have been shown to be ghost-free. Inspired by these developments, a ghost-free bimetric theory
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of spin-2 fields were proposed in [50]. This is the first construction of a consistent theory of

interacting multiple spin-2 fields.

This remarkable progress might be applied to several issues about M-theory. It is known that

there are some no-go theorems prohibiting nonabelian deformation of self-dual antysymmetric

gauge field on M5-brane. Searching potential loop-holes for nontrivial interacting theories of M5-

branes using techniques of massive gravity is intriguing. The bimetric gravity is also attractive

in the AdS/CFT point of view. Investigating its relationship to Fradkin-Vasiliev cubic vertices

and Vasiliev’s full higher spin equation of motion is need to be clarified.

As we have seen, investigating M-theory physics from the explicit models of its branes starts

only recently. We expect further fruitful developments in this fascinating subjects.
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Appendix A

Mass deformation and Janus
solutions

A.1 Janus field theory with dynamical coupling

In the previous section, we discussed BLG theory with Lorentzian Lie 3-algebra. There we have

fixed the solution of the constraint equations (2.20). But in the quantization of the Bagger-

Lambert-Gustavsson theory, the solutions should be summed in the path integral. So we will

consider more general solutions in this subsection. After integrating the modes associated with

the T−1 generator, the partition function becomes

Z =
∫

DXI
0DΨoDBµDX̂IDΨ̂DAµ δ(∂2XI

0 ) δ(Γµ∂µΨ0) eiS(XI
o ,Ψ0,Bµ,X̂I ,Ψ̂,Aµ). (A.1)

The integrations over XI
0 and Ψ0 are constrained to obey the massless wave equations and can

be expanded as

XI
0 =

∑
n

cI
nfn(x), Ψ0 =

∑
n

bnun(x) (A.2)

where fn(x), un(x) are complete sets of functions satisfying the massless wave equations. Then

the integration over XI
0 and Ψ0 can be reduced to integrations over cI

n and bn.

Let us now choose a general solution (XI
0 = vI(x), Ψ0) to the constraints and expand the

action around it. In this case all the supersymmetries are generally broken if we fix vI and Ψ0.

Inserting this general solution into the action, terms including the Bµ gauge field are given by

− 1
2
(D̂µX̂I − BµXI

0 )2 + iΨ̄0ΓµBµΨ̂ +
1
2
εµνλF̂µνBλ − ∂µXI

0BµX̂I . (A.3)

The integration over the Bµ gauge field can be similarly performed. It is convenient to introduce

the locally defined projection operator

PIJ(x) = δIJ − vIvJ

v2
, (A.4)

This operator satisfies P 2 = P and PIJvJ = 0. In the simplest case considered in the previous

subsection, vI = v(t + x)δI
10, this projects out the 10-th direction if it acts on X̂I . Generally,

the direction removed is dependent on the space-time position.
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After integrating over the Bµ field, the Lagrangian becomes LJanus = L0 + L′ where

L0 = Tr
[
−1

2
(D̂µY I)2 +

1
4
v2[Y I , Y J ]2 +

i

2
¯̂ΨΓµD̂µΨ̂ +

1
2

¯̂Ψ[Y I , (vJΓJ)ΓIΨ̂]

+
1

2(vI)2
(1
2
εµνλF̂νλ + iΨ̄0ΓµΨ̂ − 2YI∂

µvI
)2 − 1

2
Ψ̄0ΓIJΨ̂[Y I , Y J ]

]
, (A.5)

L′ =
1
v2

Tr
[(

Ψ̄0ΓI(vJΓJ)[Y I , Ψ̂] − iΨ̄0ΓµD̂µΨ̂
)

(vKX̂K)
]
. (A.6)

Here I, J = 3, · · · , 10 and we have defined a new scalar field Y I = PIJX̂J with 7 degrees of

freedom. In spite of it, the action has SO(8) invariance if vI and Ψ0 also transform under it.

Also note that Y I is invariant under the gauge transformations associated with Bµ gauge fields.

Is is also interesting to notice that the action will have a generalized conformal symmetry [51]

even with the dimensionful coupling because it is a dynamical variable here. This may have its

origin in the conformal symmetry of M2 branes. In this sense, the reduced action is not exactly

the same as the ordinary D2 brane effective action with a fixed gauge coupling. This issue is

now under investigations.

This is a Janus field theory whose coupling varies with space-time. The Lagrangian LY M

contains only the projected scalar field Y I . On the other hand, in the presence of Ψ0, the scalar

field (vIX̂I) does not decouple from the Lagrangian L′. If we can set Ψ0 = 0, L′ vanishes and the

resultant Lagrangian is given by a similar form to the ordinary Super Yang-Mills Lagrangian, but

the kinetic term of the gauge field F̂µν is modified to F̂µν +2εµνρYI∂
ρvI . All the supersymmetries

are generally broken if we fix one solution to the constraint equations of (XI
0 (x), Ψ0) as above.

By using the above calculation, the partition function can be simply rewritten as

Z =
∫ ∏

n

dcI
n dbn W (vI)

∫
DX̂IDΨ̂DAµ eiSJanus(X̂

I ,Ψ̂,Aµ;vI(x),Ψ0). (A.7)

Here W (vI) ∼ ((vI)2)−3/2 came from the integration over the Bµ field. It is a sum of Janus

field theories. The coupling constant vI is dynamical and varies with space-time coordinates.

It is constrained to satisfy the massless equations. If we fix the “slow” variable v and perform

the path integration over the other “fast” variables first, then we can get an effective action

for the dynamical coupling vI . This will determine the most stable configuration of vI(x), and

accordingly one of the Janus gauge theory with the most stable coupling is determined. If the

variable vI fluctuates rapidly and cannot be considered as a slow variable, the theory becomes

very different from the ordinary gauge theory with a fixed (either constant or varying) gauge

coupling. This may be related to the dynamical determination of the compactification radius of

11-th direction in M-theory.

Finally we would like to comment on the unitarity of the Bagger-Lambert-Gustavsson theory.

If we fix one solution to the constraints, each theory behaves regularly if the coupling constant

does not vary drastically. The quantization of the coupling is very difficult, but since it is not a

propagating mode, it will not violate the unitarity of the theory. However the unitarity should

be more carefully analyzed.
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A.2 Mass deformation of BLG theory

The BLG theory in the previous section gives a familiar effective action of N D2 branes with

either a constant or a varying coupling. (For general solutions, the kinetic term of the gauge

field contains a non-familiar term of YI∂
µvI .)

In this section we start from a mass deformed BLG action given by [52, 53] and show that

supersymmetric Janus field theories with a Myers-term are obtained.

One parameter deformation of the Bagger-Lambert action preserving the full supersymme-

tries is given by adding the following mass and flux terms to the original Lagrangian. The mass

term is given by

Lmass = −1
2
µ2Tr(XI , XI) +

i

2
µTr(Ψ̄Γ3456, Ψ), (A.8)

and a flux term is

Lflux = −1
6
µεEFGHTr([XE , XF , XG], XH) − 1

6
µεE

′
F

′
G

′
H

′Tr([XE
′
, XF

′
, XG

′
], XH

′
). (A.9)

Here E,F,G,H = 3, 4, 5, 6 and E
′
, F

′
, G

′
,H

′
= 7, 8, 9, 10. This action is invariant under the

original gauge transformation and the deformed SUSY transformation 1

δXI = iε̄ΓIΨ,

δΨ = (DµXI)ΓµΓIε −
1
6
[XI , XJ , XK ]ΓIJKε − µΓ3456ΓIXIε,

δÃ b
µ a = iε̄ΓµΓIX

I
c Ψdf

cdb
a. (A.10)

This deformed theory breaks the original SO(8) R-symmetry down to SO(4)×SO(4). By setting

µ → 0 both the action and SUSY transformation reduce to the original BLG action. In addition

there is another supersymmetry transformation

δXI
a = 0, δÃ b

µ a = 0,

δΨ = exp
(
−µ

3
Γ3456Γµxµ

)
T−1η, (A.11)

where xµ is the coordinates of the world volume. In the massless limit of µ → 0, this becomes

a constant shift of the fermion δΨ = T−1η. These inhomogeneous supersymmetries correspond

to the spontaneously broken supersymmetries in d = 11 by the presence of M2 branes. As

in the case of D-brane effective theories, they will play an important role in the full d = 11

superalgebras with 32 supercharges.

1To give a rigorous proof of the closure of the supersymmetry, we should check the Jacobi identity of [Q, {Q, Q}]
(appendix E of [54]) because there are non-central terms, i.e. SO(4)×SO(4) rotation term, in the algebra {Q, Q}.
We thank Dr. Hai Lin for informing us of the paper [54]
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A.3 Mass deformed BLG to Janus

This model can be similarly investigated by expanding the fields into modes with internal indices

a = (−1, 0, i). The mode expansions of the mass and the flux terms become

Lmass = µ2XI
−1X

I
0 − µ2

2
Tr(X̂I , X̂I) − iµΨ̄−1Γ3456Ψ0 +

i

2
µTr( ¯̂ΨΓ3456, Ψ̂), (A.12)

and

Lflux =
2i

3
µεEFGHXE

0 Tr(X̂F , [X̂G, X̂H ]) +
2i

3
µεE′F ′G′H′XE

′

0 Tr(X̂F
′
, [X̂G

′
, X̂H

′
]). (A.13)

Now XI
−1 and Ψ−1 again appear linearly in the action, and they are Lagrange multipliers.

Because of the mass terms, the constraint equations are modified to

(∂2 − µ2)XI
0 = 0, (Γµ∂µ + µΓ3456)Ψ0 = 0. (A.14)

Namely the fields with the T 0 component are constrained to obey the massive wave equations.

Since XI are real fields, instead of the plane waves exp(ikµxµ) with a time-like vector kµ, we

take the following solution to the constraint equation;

XI
0 = fepµxµ

δI
10 = v(x)δI

10, Ψ0 = 0, (A.15)

where f is an arbitrary constant and pµ is a spacelike vector satisfying p2 = µ2. Without loss

of generality, we can take pµ = (0, µ, 0). This configuration preserves half of the 16 supersym-

metries, since Ψ0 transforms as:

δΨ0 = v(x)µ(Γ1 − Γ3456)Γ10ε. (A.16)

Hence around the above configuration, we will get Janus gauge field theories with 8 supersym-

metries. (For general solutions, more supersymmetries are broken.)

Inserting this configuration to the action, one can again integrate the redundant gauge field

Bµ. Terms involving Bµ are given by:

Tr
[
−1

2
(D̂µX̂10 − vBµ)2 +

1
2
εµνλF̂µνBλ − pµvBµX̂10

]
. (A.17)

Integrating Bµ gives

Tr
[

1
2v

εµνλF̂µνpλX̂10 +
1

8v2
(εµνλF̂µν − 2vX̂10pλ)2

]
= − 1

4v2
TrF̂ 2

µν +
µ2

2
Tr(X̂10, X̂10). (A.18)

Interestingly the second term is canceled by the mass term of X̂10 and all the terms involving

X̂10 have disappeared. To summarize, the resultant effective Lagrangian is given by:

L = −1
2
Tr(D̂µX̂A)2 − µ2

2
Tr(X̂A, X̂A) +

1
4
v2[X̂A, X̂B]2

+
i

2
Tr

( ¯̂ΨΓµD̂µΨ̂
)

+
i

2
µTr( ¯̂ΨΓ3456, Ψ̂) +

1
2
vTr

( ¯̂Ψ[X̂A, Γ10,AΨ̂]
)
− 1

4v2
TrF̂ 2

µν

−2i

3
vµεA

′
B

′
C

′
10Tr(X̂A

′
, [X̂B

′
, X̂C

′
]). (A.19)
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This is a Janus field theory whose coupling constant is given by v = f exp(µx1). The Lagrangian

is invariant under the following 8 supersymmetries

δX̂A = iε̄ΓAΨ̂,

δΨ̂ = D̂µX̂AΓµΓAε − 1
2v

εµνλF̂ νλΓµΓ10ε +
i

2
v[X̂A, X̂B]ΓABΓ10ε − µΓ3456ΓAX̂Aε,

δÂµ = ivε̄ΓµΓ10Ψ̂, (A.20)

Finally if v vanishes, i.e. for XI
0 = 0 and Ψ0 = 0, the Lagrangian becomes

L = −1
2
Tr(D̂µX̂I)2 +

i

2
Tr

( ¯̂ΨΓµD̂µΨ̂
)
− µ2

2
Tr(X̂I , X̂I) +

i

2
µTr( ¯̂ΨΓ3456, Ψ̂), (A.21)

with a constraint F̂µν = 0. The supersymmetry transformation is given by

δX̂I = iε̄ΓIΨ̂,

δΨ̂ = D̂µX̂IΓµΓIε − µΓ3456ΓIX̂Iε,

δÂµ = 0 (A.22)

and the Lagrangian has the SO(4) × SO(4) R-symmetry.
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Appendix B

Conformal Symmetry of ABJM and
L-BLG

B.1 Conformal invariance of ABJM

As shown in [55], the ABJM theory is invariant under the superconformal transformations. Here

we study the invariance of the ABJM theory under the conformal transformations, in particular

the special conformal transformations.

ABJM theory is a U(N) × U(N) or SU(N) × SU(N) gauge theory. The other choices of

gauge groups are possible but here we consider these two types. The actions of the gauge fields

are given by the Chern-Simons action with coefficients k and −k. Matter fields Y A and ψA are

in the bifundamental representation and the covariant derivative is defined by

DµY = ∂µY + iA(L)
µ Y − iY A(R)

µ . (B.1)

The action is invariant under N = 6 superconformal transformations. In the following we check

the explicit invariance under the conformal transformations.

First it is obvious that the action is invariant under the dilatation. Dilatation is defined

by x → eεx and simultaneously we transform each field by multiplying e−nε where n is the

conformal weight. The scalars Y A, fermions ψA and the gauge fields Aµ have weights 1/2, 1, 1

respectively.

A little more nontrivial transformation is a special conformal transformation. It is given by

δxµ = 2ε · xxµ − εµx2. (B.2)

If we write the infinitesimal transformation for each field Y (x) as δY (x) = Y ′(x′) − Y (x), they

are given by

δY A(x) = −ε · xY A(x),

δA(L,R)
µ (x) = −2ε · xA(L,R)

µ (x) − 2(x · A(L,R)εµ − ε · A(L,R)xµ),

δψA(x) = −2ε · xψA(x) − εµνλενxλΓµψA(x). (B.3)
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These transformations can be understood as follows. They look like the general coordinate

transformations, but are different since the theory is restricted to live in the flat space-time with

a fixed metric and the change of the metric under the general coordinate transformations must

be compensated by the transformations of the fields. The first terms in each transformation

reflect the conformal weight of each field. The second term in the transformation of the fermion

is the local Lorentz transformation which pulls back the flat local Lorentz frame (where we use

Γ012ψ = ψ). The transformation for the gauge field Aµ is nothing but the general coordinate

transformation with the transformation parameter (B.2).

The action is invariant under the above special conformal transformations. In order to see

it, the following transformation rules are useful:

d3x → e6ε·xd3x,

∂µ → e−2ε·x[∂µ − 2(εµxν∂ν − xµεν∂ν)],

DµY → e−3ε·x
[
DµY − {Y + 2xν∂νY + 2i(x · A(L)Y − Y x · A(R))}εµ

+{2εν∂νY + 2i(ε · A(L)Y − Y ε · A(R))}xµ

]
,

Fµν →e−4ε·x [Fµν − 2(ενx
ρFµρ − εµxρFνρ) + 2(xνε

ρFµρ − xµερFνρ)] . (B.4)

Though ε is an infinitesimal parameter, we write the overall factors as e−2nε·x for convenience.

They are cancelled in the action because n is the conformal weight of each field and coordinates.

Here let us check the invariance of the Chern-Simons term as an example. First the derivative

part transforms as

εµνλtrFµνAσ

→ εµνλe−6ε·xtr[FµνAλ + 4(εµxρ − xµερ)AλFνρ − 2Fµν(x · Aελ − ε · Axλ)]. (B.5)

The pre-factor e−6ε·x is cancelled with the transformation of d3x in (B.4). The rest vanishes

because

εµνλtr[2(εµxρ − xµερ)AλFνρ − Fµν(x · Aελ − ε · Axλ)]

= εµνλtr[2ε ρα
µ fαFνρAλ − ε ρα

λ fαFµνAρ] = 0. (B.6)

In the second line we have defined fα = εµναxµεν . Similarly the invariance of the term εµνλAµAνAλ

can be shown by noting that the gauge field transforms as

Aµ → e−2ε·x(Aµ + 2εµαβfαAβ). (B.7)

Hence the Chern-Simons terms are invariant under the special conformal transformation. Though

we have checked it explicitly, the invariance can be naturally understood because the Chern-

Simons term is independent of the metric if it is defined in a curved background space-time.

The other terms in the action are also straightforwardly shown to be invariant under the

special conformal transformations.
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B.2 ABJM to L-BLG

As shown in [13], the L-BLG theory is obtained by taking a scaling limit of the ABJM theory

with a gauge group SU(N)×SU(N). In the gauge theory with U(N)×U(N) there is a subtlety

in the scaling of the U(1) part. We will discuss the issue in the Appendix D and here restrict

the discussions to the SU(N) × SU(N) case.

The scaling is given as follows:

Bµ → λBµ,

XI
0 → λ−1XI

0 ,

ψA0 → λ−1ψA0,

k → λ−1k (B.8)

where

Y A = X2A−1
0 + iX2A

0 − X̂2A + iX̂2A−1, Bµ =
1
2
(A(L)

µ − A(R)
µ ) (B.9)

and XI
0 and ψ0A are trace components of the bifundamental matter fields, and I = 1, · · · , 8.

When we take λ → 0 limit and keep the other fields fixed, the action of the ABJM theory is

reduced to the action of the L-BLG theory. Since the k → ∞ limit is taken before taking the

large N , our scaling corresponds to a vanishing ’t Hooft coupling N/k → 0. Besides the action,

the same constraint equations as those in the L-BLG theory can be obtained from the ABJM

theory:

∂2XI
0 = 0, Γµ∂µΨ0 = 0, (B.10)

by requiring finiteness of the action in the λ → 0 limit.

In the above scaling limit we arrive at the L-BLG theory:

L0 = Tr
[
−1

2
(D̂µX̂I − BµXI

0 )2 +
1
4
(XK

0 )2([X̂I , X̂J ])2 − 1
2
(XI

0 [X̂I , X̂J ])2

+
i

2
¯̂ΨΓµD̂µΨ̂ + iΨ̄0ΓµBµΨ̂ − 1

2
Ψ̄0X̂

I [X̂J ,ΓIJΨ̂] +
1
2

¯̂ΨXI
0 [X̂J , ΓIJΨ̂]

+
1
2
εµνλF̂µνBλ − ∂µXI

0 BµX̂I

]
. (B.11)

In the original formulation of the L-BLG theory, the constraint equations (B.10) are derived by

integrating the auxiliary fields XI
−1 and Ψ−1:

Lgh = (∂µXI
0 )(∂µXI

−1) − iΨ̄−1Γµ∂µΨ0. (B.12)

Since the above scaling is compatible with the conformal transformations discussed in the pre-

vious section, the action (B.11) is invariant under the conformal transformations (see also [56]).

The action for the auxiliary fields (B.12) is also invariant if we define the transformations for

them as

δXI
−1(x) = −ε · xXI

−1(x),

δΨ−1(x) = −2ε · xΨ−1(x) − εµνλενxλΓµΨ−1(x). (B.13)
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B.3 Generalized conformal symmetry in D2 branes

Now integrate the Bµ gauge field. It has been discussed that if we pick up a specific solution to

the constraint equation (B.10), especially a constant solution

XI
0 = v δI,8, Ψ0 = 0, (B.14)

the L-BLG theory is reduced to the action of the ordinary D2 branes whose Yang-Mills coupling

constant is given by gY M = v:

L = Tr
[
− 1

4v2
F̂ 2

µν − 1
2
(D̂µX̂A)2 +

1
4
v2[X̂A, X̂B]2 +

i

2
¯̂ΨΓµD̂µΨ̂ +

1
2
v
¯̂Ψ[X̂A, Γ8,AΨ̂]

]
(B.15)

where A,B = 1, · · · , 7. Then SO(8) is spontaneously broken to SO(7) because we have spe-

cialized the 8-th direction. The conformal invariance is also broken. Though the action is the

same as that of the D2 branes, we see later that the interpretation of the L-BLG theory as an

effective theory of the ordinary D2 branes is not appropriate since the radius of curvature is

much smaller than the string scale in the gravity dual.

The constraint equations (B.10) have more general solutions than (B.14) which depend on the

spacetime coordinates. Then the resulting action becomes a Yang-Mills theory with a spacetime

dependent coupling [15]. As we have shown [13], the action with the spacetime dependent

coupling is invariant under the conformal transformations if we consider a set of spacetime

dependent solutions. The conformal invariance is discussed in more details in the next section.

We here consider the simplest spacetime dependent solutions:

XI
0 = v(x) δI,8, Ψ0 = 0, ∂2v(x) = 0. (B.16)

Then the L-BLG theory is reduced to the same action as that of the D2 branes but with a

spacetime varying coupling:

L = Tr
[
− 1

4v(x)2
F̂ 2

µν − 1
2
(D̂µX̂A)2 +

1
4
v(x)2[X̂A, X̂B]2

+
i

2
¯̂ΨΓµD̂µΨ̂ +

1
2
v(x) ¯̂Ψ[X̂A, Γ8,AΨ̂]

]
. (B.17)

SO(8) symmetry is spontaneously broken to SO(7) as well, but the action with a varying v(x)

has a generalized conformal symmetry if the coupling transforms as

δv(x) = −(ε · x) v(x). (B.18)

This transformation is originated in the special conformal transformation of the scalar field (B.3).

The generalized conformal transformation for Dp branes were first proposed by Jevicki, Kazama

and Yoneya [51]. In the present case, the transformation (B.18) is naturally derived since the

coupling constant of the Yang-Mills action is determined by the center of mass coordinates

XI
0 (x) of the M2 branes.

It is worth noting that the generalized conformal transformation (B.18) is compatible with

the constraint equations (B.10) only when p = 2. We will discuss it in the next section.
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B.4 Conformal symmetry and SO(8) invariance of L-BLG

The space-time dependent coupling v(x) can be promoted to an SO(8) vector XI
0 (x) by consid-

ering general solutions to the constraint equations (B.10) as shown in [15]. Then the resultant

action after integrating the Bµ gauge field becomes D2 branes effective action with space-time

dependent couplings in a vector representation of the SO(8) . In [13] we showed that if we

consider space-time dependent solutions the theory has the generalized conformal symmetry as

well as the manifest SO(8) invariance.

In this section we study more details of the generalized conformal symmetry of the L-BLG

theory. Especially we show that the conformal transformations are closed under the constraint

equations (B.10).

By integrating the Bµ gauge field, we get the action S =
∫

d3x(L0 + L′):

L0 = Tr
[
−1

2
(D̂µP I)2 +

1
4
X2

0 [P I , P J ]2 +
i

2
¯̂ΨΓµD̂µΨ̂ +

1
2

¯̂Ψ[P I , (XJ
0 ΓJ)ΓIΨ̂]

+
1

2(XI
0 )2

(1
2
εµνλF̂νλ + iΨ̄0ΓµΨ̂ − 2PI∂

µXI
0

)2 − 1
2
Ψ̄0ΓIJΨ̂[P I , P J ]

]
,

L′ =
1

X2
0

Tr
[(

−Ψ̄0ΓI(XJ
0 ΓJ)[P I , Ψ̂] − iΨ̄0ΓµD̂µΨ̂

)
(XK

0 X̂K)
]
. (B.19)

where we have defined a new scalar field PI with 7 degrees of freedom by using the projection

operator

PI(x) =
(

δIJ − X0IX0J

X2
0

)
XJ . (B.20)

The XI
0 (x) field is constrained to satisfy ∂2XI

0 = 0. This is a generalization of (B.17). We called

this theory a Janus field theory of (M)2-branes since the coupling constant is varying with the

space-time coordinates.

The action of the gauge field is no longer the Chern-Simons action but we can again show

that it is invariant under the conformal transformations. Under the dilatation xµ → eεxµ, each

field is multiplied by e−nε where n is the conformal weight. The weights of P,X0, Aµ, Ψ, Ψ0 are

1/2, 1/2, 1, 1, 1 respectively. The action is evidently invariant.

Special conformal transformation is similarly given by

δxµ = 2ε · xxµ − εµx2 (B.21)

and the fields transform as

δP I(x) = −ε · xP I(x),

δXI
0 (x) = −ε · xXI

0 (x),

δAµ(x) = −2ε · xAµ(x) − 2(x · A εµ − ε · A xµ),

δΨ̂(x) = −2ε · xΨ̂(x) − εµνλενxλΓµΨ̂(x),

δΨ0(x) = −2ε · xΨ0(x) − εµνλενxλΓµΨ0(x). (B.22)
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It is now straightforward to show the invariance of the action. The Lagrangian is not invariant

but changes by total derivatives.

Finally we need to check that the transformation is closed within the constraint equations

(B.10). Namely if the field XI
0 (x) satisfies ∂2

xXI
0 (x) = 0, the transformed field X

′I
0 (x′) must also

satisfy ∂2
x′X

′I
0 (x′) = 0. For an infinitesimal special conformal transformation, this is equivalent

to show ∂2δ̃XI
0 (x) = 0 where δ̃XI

0 (x) is the transformation at the numerically same point defined

by

δ̃XI
0 (x) = X ′I

0 (x) − XI
0 (x) = δXI

0 (x) − δxµ∂µXI
0 (x),

δ̃Ψ0(x) = Ψ′
0(x) − Ψ0(x) = δΨ0(x) − δxµ∂µΨ0(x). (B.23)

In the following, in order to see the specialty for M2 (or D2)-branes, we generalize the special

conformal transformation to Dp-branes [51]:

δ̃XI
0 (x) = −(3 − p)ε · xXI

0 − (2ε · xxµ − εx2)∂µXI
0 (B.24)

It is easy to show

∂2(δ̃XI
0 (x)) = 2(p − 2)εµ∂µXI

0 (B.25)

where we have used the constraint equation ∂2XI
0 = 0. This vanishes at p = 2 only. Similarly,

δ̃Ψ0 is given by

δ̃Ψ0(x) = −2(3 − p)ε · xΨ0 − εµνλενxλΓµΨ0 − (2ε · xxµ − εx2)∂µΨ0 (B.26)

and satisfies

Γα∂α(δ̃Ψ0(x)) = 2(p − 2)ΓαεαΨ0 (B.27)

where we used the constraint equation Γα∂αΨ0 = 0. Again Γα∂α(δ̃Ψ0(x)) = 0 vanishes at p = 2

only. Both of the constraints are compatible with the generalized conformal transformations at

p = 2. It shows a specialty of M2 (or D2) branes.

We have shown that the constraint equations are compatible with the generalized conformal

transformations. If the solutions are restricted to constant ones as in (B.14), we no longer

have the generalized conformal symmetry. It can be maintained only when we consider a set of

space-time dependent solutions to the constraint equations.

Recently H. Verlinde [57] also considered space-time dependent solutions to the constraint

equations and discussed the conformal symmetry of the L-BLG theory. In his study the con-

straint equation is imposed everywhere except at zi where a local operator Oi(zi) is inserted,

XI
0 (x) =

∑ qI
i

|x − zi|
. (B.28)
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This is an inhomogeneous solution to the equation

∂2XI
0 = −4π

∑
qI
i δ

3(x − zi). (B.29)

We can add the homogeneous solutions to the above. If qI and z (omitting the index i) transform

as

δqI = ε · zqI

δzµ = 2(ε · z)zµ − εµz2, (B.30)

the transformation of XI
0

δXI
0 (x) = −(ε · x)XI

0 (x) (B.31)

is reproduced and the L-BLG action is invariant under the conformal transformations. Note

that qI cannot be a constant. If qI is kept fixed, the set of solutions is not closed under the

conformal transformations. In order to recover the conformal invariance, qI should be a position

z-dependent charge.

We have shown that the L-BLG theory has both of the SO(8) invariance and the conformal

symmetry. In the next section we discuss the symmetry properties of the gravity dual of the

ABJM theory.
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Appendix C

SO(8) and Conformal Symmetry in
Dual Geometry

C.1 Large k limit of ABJM geometry

In the paper [12], it was pointed out that the U(N)×U(N) ABJM theory is dual to the M-theory

on AdS4 × S7/Zk, which is a d = 11 supergravity solution of M2 branes probing the orbifold

C4/Zk. We first review the solution of supersymmetric M2 branes in d = 11 supergravity.

The d = 11 metric of the multiple M2-branes is given by

ds2 = H− 2
3

 2∑
µ,ν=0

ηµνdxµdxν

 + H
1
3
(
dr2 + r2dΩ2

7

)
,

H(r) ≡ 1 +
R6

r6
, (C.1)

where R6 = 32π2N ′l6p and dΩ2
7 is the metric of a unit 7-sphere. N ′ is the number of the M2

branes and identified with N ′ = kN . The three form field is also given as

C(3) = H−1dx0 ∧ dx1 ∧ dx2 (C.2)

and the 4-form flux normalized by the world volume is proportional to N ′.

By focusing on the near horizon region of the M2-brane, the geometry becomes AdS4 × S7

geometry. In the near horizon limit R À r, H(r) is replaced by H(r) = (R/r)6 and the metric

becomes

ds2 =
( r

R

)4

 2∑
µ,ν=0

ηµνdxµdxν

 +
(

R

r

)2

dr2 + R2dΩ2
7

= R2

[
1
4
ds2

AdS + dΩ2
7

]
(C.3)

where we have rescaled the M2 brane world volume coordinates by a factor 2/R3. Hence the

near horizon geometry of the supersymmetric M2 branes is given by AdS4 × S7 with a radius
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R. In the large N ′ = kN limit, the radius becomes much larger than the d = 11 Planck length

and the d = 11 supergravity approximation is valid.

The ABJM theory describes M2 branes on C4/Zk orbifold. The dual geometry can be

obtained by first specifying the polarization (choice of the complex coordinates) in R8 and then

dividing C4 by Zk.

Since S7, parameterized by zA (A = 1, · · · , 4) with |zA|2 = 1, is a U(1)-fibration on CP3,

the metric of S7 is written as

dΩ2
7 =

(
dϕ′ + ω

)2 + ds2
CP3 (C.4)

where ϕ′ is the overall phase of zA. The details of the definition of coordinates are written in

Appendix E.

We now perform the Zk quotient by dividing the overall phase of each zA, namely the ϕ′

direction. By rewriting ϕ′ = ϕ/k with ϕ ∼ ϕ + 2π, the metric of S7/Zk becomes

ds2
S7/Zk

=
1
k2

(dϕ + kω)2 + ds2
CP3 . (C.5)

Before performing the Zk quotient, the metric has the conformal symmetry associated with the

AdS4 geometry and SO(8) symmetry of S7. The orbifolding breaks the SO(8) symmetry to

SU(4) × U(1) but the conformal invariance still exists. This is the bosonic symmetry of the

ABJM theory.

The L-BLG action can be derived by taking the scaling limit (B.8) of the ABJM theory. In

the gravity side, this scaling corresponds to locating the probe M2 branes far from the orbifold

singularity and taking the large k limit. As we show in the next section, the former process

recovers the SO(8) if the positions of the M2 branes are considered to be dynamical variables.

The latter makes the radius of the ϕ′ circle small and d = 11 geometry is reduced to d = 10.

Now we consider the k → ∞ limit of the dual geometry of the ABJM theory. Following the

prescription of ABJM, we shall interprete the coordinate ϕ as the compact direction in reducing

from M-theory to type IIA superstring. Using the reduction formula [58]

ds2
11 = e−

2
3
φds2

10 + e
4
3
φ(lp)2 (dϕ + A)2 (C.6)

we get the d = 10 metric and the dilaton field in type IIA supergravity as

ds2
10 =

r

klp
H− 1

2

 2∑
µ,ν=0

ηµνdxµdxν

 +
r

klp
H

1
2
(
dr2 + r2ds2

CP3

)
, (C.7)

e2φ =
(

r

klp

)3

H
1
2 =

(
R

klp

)3

. (C.8)

Hence in the k → ∞ limit, the metric becomes AdS4 × CP3:

ds2
10 =

R3

k

[
1
4
ds2

AdS4
+ ds2

CP3

]
(C.9)
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where the radius of curvature in string units is

R2
str =

(
R

ls

)2

=
R3

kl3p
= 25/2π

√
N

k
. (C.10)

The dilaton is a constant and this is the reason why the d = 10 metric still has a conformal

symmetry associated with the AdS4 geometry. This is different from the ordinary reduction of

the M2 branes to D2 branes by compactifying the 11th direction of the Cartesian coordinate

(see Appendix F). Note that in the type IIA picture, in addition to the four-form RR flux F4,

there is a 2-form RR flux:

F4 =
3
8

R3

l3p
ε̂4,

F2 = dA = kdω (C.11)

where ε̂4 is the volume form in a unit radius AdS4 space. Hence the geometry is described by

the AdS4 × CP3 compactification with N units of the four form flux on AdS4 and k units of

the two-form flux on the CP1 in CP3 space.

In the k → ∞ limit with N/k fixed, the compactification radius along the ϕ-direction R11

becomes very small compared to the d = 11 Planck length:

R11

lp
=

R

klp
∼ (Nk)1/6

k
→ 0. (C.12)

Thus the theory is reduced to a ten-dimensional type IIA superstring on AdS4 ×CP3. However

the scaling limit from ABJM to L-BLG is taking large k limit before taking the large N and the

’t Hooft coupling N/k becomes 0 in this limit. Since R11 = g
2/3
s lp, the string coupling constant

gs = eφ also becomes 0:

gs = eφ ∼ k− 5
4 N

1
4 → 0. (C.13)

Since d = 11 Planck length lp and d = 10 Planck length l
(10)
p are related to the string length as

lp = g
1/3
s ls and l

(10)
p = g

1/4
s ls, the ratios of the radius of the IIA geometry (C.9) with ls and l

(10)
p

are given by

(
R

ls

)2

∼
√

N

k
→ 0,

(
R

l
(10)
p

)2

∼ k1/8N3/8 → ∞. (C.14)

Therefore the Type IIA supergravity approximation itself is good but the α′ expansion is not

good and the theory cannot be considered as the low energy approximation of type IIA super-

string. On the other hand, the radius R is much larger than the d = 11 Planck length and it

may be more appropriately interpreted as a dimensional reduction of M2 branes in the d = 11

supergravity.
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We summarize the various length scales in the scaling limit of the ABJM theory to the

L-BLG theory:

R11 ¿ l(11)
p ¿ l(10)

p ¿ RAdS ¿ ls. (C.15)

The compactification radius R11 is much smaller than any other scales and the theory is reduced

to d = 10. But the radius of the AdS4 × CP3 is smaller than the string length and larger than

the d = 10 and d = 11 Planck scales.

In the ordinary case of the duality between type IIB superstrings on AdS5 × S5 and N = 4

SYM in d = 4, the radius of curvature R is given by

(
R

ls

)4

∼ gsN,

(
R

l
(10)
p

)4

∼ N. (C.16)

Thus it is usually assumed that both of gsN and N are large so that the type IIB supergravity

approximation and the α′-expansion are valid. Unless gsN is large, α′ corrections cannot be

neglected and the supergravity description itself is not valid. In the weak coupling limit, the

dual field theory is usually considered to be more appropriate. In our case, we can consider the

d = 10 supergravity as a dimensional reduction of d = 11 supergravity. However membranes

wrapping the ϕ direction become very light strings in the unit of the radius of curvature R, and

this may invalidate the supergravity approximation of the M-theory.

C.2 Recovery of SO(8) in dual geometry of L-BLG

In taking the scaling limit k(À N) → ∞ of the ABJM theory to the L-BLG theory, the eleven-

dimensional geometry is reduced to the ten-dimensional AdS4 × CP3:

ds2 = H− 2
3

(∑
ηµνdxµdxν

)
+ H

1
3 (dr2 + r2ds2

CP3)

H(r) =
R6

r6
. (C.17)

In this section we discuss how the SO(8) can be recovered in the scaling limit of the ABJM

geometry to the L-BLG geometry. The L-BLG geometry is obtained by taking k → ∞ limit

of AdS4 × S7/Zk and simultaneously locating the probe M2 brane far from the origin of the

orbifold. In the large k limit, the geometry becomes d = 10 AdS4 × CP3, and there are only

7 transverse directions to the M2 brane world volume, However the radial distance in (C.17) is

given by the distance in d = 8:

r2 =
8∑

I=1

(XI)2. (C.18)

It is invariant under the original SO(8) rotation and the Zk quotient leaves r invariant.
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Now we consider a probe M2 brane in the above geometry. In the static gauge, the M2 brane

world volume is identified with the coordinates xµ (µ = 0, 1, 2) and the position of the M2 brane

is given by XI(x) where I = 1, · · · , 8. There are only 7 independent propagating modes among

8, and the direction that is removed is the ϕ-direction. Remember that the ϕ is the overall

phase of the complex coordinate zi of the transverse R8. Assuming that the probe M2 brane

is located far from the source branes, we can separate the probe M2 brane coordinates into the

classical background fields XI
0 (x) and the quantum fluctuations X̂I(x). Since the M2 brane is

on C4/U(1), all the points on the gauge orbit generated by the ϕ-rotation are identified. Here

the position of the M2 brane is represented by the coordinates of R8; a point on the gauge orbit

is singled out by fixing the gauge (see Appendix E).

If the probe M2 brane is located at

XI
0 = vδI,8 (C.19)

where v is much larger than the scale of the fluctuations, the rotation along the ϕ-direction is

approximated by

δX7 = −δϕ v,

δXI = 0 , I 6= 7. (C.20)

This shows that in the large v limit the ϕ direction can be identified with the 7th direction

X7 1. Since the Zk orbifolding with large k corresponds to gauging away the ϕ-direction, the

fluctuation along the 7th direction is killed and the field X̂I can fluctuate only in the other 7

directions. This means that the SO(7) rotation acts among the other 7 directions around the

classical background of (C.19). If the classical background XI
0 (x) takes different directions at

different world volume points, the killed direction also changes locally on the world volume.

In order to get a manifest SO(8) covariant formulation of this mechanism, it is convenient

to separate the classical background field of the M2 brane and the fluctuations in the complex

coordinates as

ZA(x) = ZA
0 (x) + ẐA(x). (C.21)

If the fluctuations are much smaller than the classical background field, the ϕ rotation can be

approximated as

δZA = iδϕZA
0 . (C.22)

If we write

ZA
0 = X2A−1

0 + iX2A
0

ẐA = iX̂2A−1 − X̂2A, (C.23)

1 (C.19) has fixed a gauge of the ϕ rotation and (C.20) is nothing but the direction parallel to the gauge orbit.
If we change a gauge,e.g. to XI

0 = vδI,7, (C.20) is also changed accordingly.
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where A = 1 · · · 4, the propagating degrees of freedom along the direction (C.22) are killed and

the fluctuations are restricted to obey

XI
0 X̂I = 0. (C.24)

Note that the decomposition of the complex fields into the real and the imaginary parts are

different between the classical background ZA
0 and the fluctuations ẐA in (C.23). With this

definition, if XI
0 = vδI,8, the killed direction becomes the 8th direction of X̂I . We can write the

fluctuations perpendicular to X̂I in (C.24) as

P I =
(

δIJ − XI
0XJ

0

(X0)2

)
X̂J . (C.25)

This P I automatically satisfies the condition (C.24) and 7 degrees of freedom are projected

among the 8 degrees of freedom. Now everything is written in a manifestly SO(8) covariant

way. The SO(8) covariance is recovered because we have assumed that the fluctuation is much

smaller than the classical background fields of the probe M2 brane. This assumption is consistent

with the scaling limit of the ABJM theory to the L-BLG theory.

Note here that the SO(8) rotation changes the gauge choice of the ϕ rotation and SO(8) is

mixed with the U(1) gauge transformation. Also note that because of the different assignments

of XI to ZA for Z0 and Ẑ, the SO(8) is different from the original SO(8) before taking the

orbifolding.

The analysis here and in the previous section shows why the L-BLG theory has both of

the conformal symmetry and the invariance under SO(8). The compactification direction along

the ϕ direction is different from the ordinary reduction to d = 10 by compactifying the 11th

transverse direction. The dilaton becomes constant and the AdS4 geometry is preserved. This

is the reason why there is a conformal symmetry in the effective field theory of L-BLG.

The SO(8) invariance is more subtle. In the scaling limit of ABJM to L-BLG, we take

k → ∞ limit and simultaneously locate the probe M2 brane far from the origin of the orbifold.

Then the killed direction of the fluctuations by Zk (k → ∞) orbifolding is given by the SO(8)

vector of the classical background fields XI
0 after specifying the gauge choice, and defining the

projection operator by using XI
0 the manifest SO(8) covariance is obtained.

C.3 Actions of probe branes in AdS4 × CP3

In this section we study possible forms of the effective field theory of probe M2 branes in the

background geometry (C.17). The analysis in the section follows the prescription of [59] and

[60] that a classical scalar field in the radial direction is interpreted as the Yang-Mills coupling.

We will study probe M2 branes in a curved background while flat 11-dimensional background is

used there.
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By using the metric of (C.17), the generally covariant kinetic term can be written as

S0 = − 1
2

∫
d3x

√
−det ggµνgIJtr[DµXIDνX

J ], (C.26)

where µ, ν = 0, 1, 2 are the world volume indices and I, J = 1, · · · , 8 are the target space indices,

and Dµ = ∂µ − iAµ is the covariant derivative to assure that XI lies on C4/U(1) (see Appendix

E).

Both of the world volume metric gµν and the target space metric gIJ are functions of the

position of the M2 branes XI(x). A static gauge is taken and the world volume metric gµν is

given by the induced metric in the curved space-time (C.17).

This kinetic term can be simplified as follows. The metric gµν and gIJ are functions of the

the M2 brane position through r. As we did in the previous section, we separate the 8 scalar

fields XI(x) of the probe M2 branes into a classical background and quantum fluctuations. If

the probe M2 branes are located far from the origin of the orbifold singularity, the position

of the M2 branes is approximated by the value of the classical background fields XI
0 (x) and

r ∼
√

(XI
0 (x))2. Inserting the explicit form of the metric, the kinetic term can be simplified

(see Appendix E) as

S0 = −1
2

∫
dx3ηµνηIJtr[∂µP I∂νP

J ] (C.27)

where P I(x) is the projected fluctuating fields (C.25). In deriving this action, we have used that

the classical background fields XI
0 are slowly varying. Note that all the dependence of H(r)

vanishes and the kinetic term of the fluctuating fields does not have the explicit dependence on

the position of M2 branes.

The position of the M2 branes XI
0 must satisfy the classical equation of motion on the

geometry (C.17). Because of the cancellation of H(r), it looks like a free field equation of

motion. But the fields XI
0 are restricted to be on the geometry where the ϕ-direction is killed,

and they are slightly different from the constraint equation (B.10) in the L-BLG theory, or that

in the scaling limit of the SU(N) × SU(N) ABJM theory. This is related to the effect of the

U(1) gauge field of the ABJM theory. We discuss it in Appendix D.

In the rest of this section, we dare to generalize the discussion of the kinetic term of the

scalar field to the other possible terms in the the effective action of the probe M2 branes in the

geometry (C.17). First assume that a gauge field is induced on the effective action of the probe

M2 branes and its action is given by the ordinary Yang-Mills type. Then the general coordinate

invariant YM action in the curved metric (C.17) is given by

−1
4

∫
d3x

√
−det ggµρgνσtr [FµνFρσ] = −1

4

∫
d3x

(
R

r

)2

ηµρηνσtr [FµνFρσ] . (C.28)

(Since we are considering the d = 11 theory, there is no freedom to multiply a dilaton dependence

in the action.) In this case, H(r) dependence remains and the effective Yang-Mills coupling is
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given by the following field dependent value:

g2
Y M (x) =

r2

R2
=

(XI
0 (x))2

R2
. (C.29)

Similarly if we assume that the scalar field acquires a quartic potential, the general coordinate

and SO(8) invariance require its form to be

1
4

∫
d3x

√
−det ggIKgJLtr[P I , P J ][PK , PL]

=
∫

d3x
1
4

(XI
0 )2

R2
ηIKηJLtr[P I , P J ][PK , PL]. (C.30)

Here P I are projected scalar fields (C.25).

Summing up these three terms, we have the following forms of the effective action:

S = −1
2

∫
dx3

(
tr[∂µP I∂µP I ] − 1

4
R2

(XI
0 )2

tr [FµνF
µν ] +

1
4

(XI
0 )2

R2
tr[P I , P J ]2

)
. (C.31)

Of course there is little justification of the above analysis but it is amusing to see that this is

nothing but the bosonic part of (B.19). The analysis might support an interpretation that the

action of L-BLG is the effective action of the probe M2 branes in the geometry of (C.17). The

XI
0 dependence of the coefficients will be related to the conformal invariance of the M2 branes.

It will be interesting to constrain possible forms of the effective action including fermions, higher

derivative terms, or generic potential terms by the generalized conformal invariance.
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Appendix D

U(1) part in ABJM theory

In scaling the ABJM theory to the L-BLG theory, we have mainly concerned with the SU(N)×
SU(N) gauge theory. In this appendix we consider the scaling limit of the U(N)×U(N) ABJM

theory, especially the effect of the U(1) part. For simplicity we consider the bosonic terms only.

In the presence of the U(1) gauge field, the covariant derivative is modified to

DµY = D̂µŶ + 2iB0µŶ + i{B̂µ, Ŷ } + ∂µY0 + 2iB̂µY0 + 2iB0µY0, (D.1)

where B0µ is the axial combination of the U(1) × U(1) gauge field

B0µ =
1
2
(A(L)

µ − A(R)
µ ). (D.2)

The gauge field B0µ is associated with the gauge transformation of the complex field Y A →
eiϕY A. Hence if the dual geometry is described by C4/U(1), we need the gauge symmetry even

after the scaling to L-BLG. Therefore, we do not scale the B0µ field unlike Bµ. The scaling is

given by

B̂µ → λB̂µ, Y0 → λ−1Y0, B0µ → B0µ (D.3)

and take the limit λ → 0. The kinetic term of the scalar fields becomes

−1
2
tr|DµYA|2 = tr

[
−1

2
(D̂µŶA + 2iB̂µY0A + 2iB0µŶA)†(D̂µŶ A + 2iB̂µY A

0 + 2iBµ
0 Ŷ A)

− (∂µY0A + 2iB0µY0A)†(∂µY A
0 + 2iBµ

0 Y A
0 )

2λ2

−i(∂µY0A + 2iB0µY0A)†B̂µŶ A + i(∂µY A
0 + 2iB0µY A

0 )B̂µŶ †
A

]
. (D.4)

The difference from the SU(N)×SU(N) case is that all the derivative is replaced by the covariant

derivative with respect to B0µ. Requiring finiteness of the action, one can obtain the modified

constraint

D2
U(1)Y

A
0 ≡ (∂µ + 2iB0µ)(∂µ + 2iBµ

0 )Y A
0 = 0. (D.5)
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The gauge field B0µ does not have a kinetic term and it is nothing but the auxiliary gauge field

Aµ introduced in the C4/U(1) gauged model discussed in Appendix E.

In the presence of the vector-like U(1) gauge field

A0µ =
1
2
(A(L)

µ + A(R)
µ ), (D.6)

there is a coupling of B0µ to A0µ through the Chern-Simons term. If we do not scale the A0µ

either, it is given by

4λ−1KεµνρtrB0µF0νρ, (D.7)

where F0µν = ∂µA0ν − ∂νA0µ. Then because of the λ−1 coefficient this must vanish too.

If we instead scale the A0µ gauge field with λ, the coefficient becomes of the order λ0, and

an integration over B0µ solves it as

2B
(0)
0µ = − i

2|Y A
0 |2

(Y A
0 ∂µ

¯̂
Y A − Ȳ0

A
∂µŶ A) − 2KεµνρF

νρ
0 . (D.8)
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Appendix E

SO(8) recovery in C4/U(1) model

In Section C.2 we showed the recovery of SO(8) invariance in the scaling limit of AdS4 ×CP3.

In this appendix, we study a C4/U(1) sigma model and see the recovery of SO(8). This is a

generalization of the equivalence of a gauged model on CP1 and an O(3) nonlinear σ model to

a higher dimensional target space.

C4 is parameterized by the following angular variables:

z1 = ρei(φ1+ϕ′) cos θ,

z2 = ρei(φ2+ϕ′) sin θ cos ψ,

z3 = ρei(φ3+ϕ′) sin θ sinψ cos χ,

z4 = ρeiϕ′
sin θ sin ψ sinχ,

0 ≤ ϕ′ ≤ 2π, 0 ≤ θ, ψ, χ, φ1, φ2, φ3 ≤ π. (E.1)

We then consider a scalar field on C4/U(1) by identifying

zi ∼ eiϕ′
zi. (E.2)

The Lagrangian of the scalar field Zi(x) on C4/U(1) must be invariant under the local gauge

transformation

Zi(x) → eiϕ′
Zi(x) (E.3)

and the action can be written by introducing an auxiliary gauge field Aµ as

S =
∫

d3x|(∂µ − iAµ)ZA|2. (E.4)

In the ABJM theory, the gauge field comes from the U(1) part of the axial combination of the

two U(N) gauge fields B0µ (see Appendix D). The gauge field does not have a kinetic term and

and it can be eliminated by solving the equation of motion as

Aµ =
i

2|ZA|2
(ZA∂µZ̄A − Z̄A∂µZA). (E.5)
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By substituting the solution to the action, we obtain a nonlinear action which depends on the

ZA fields only. The action (E.4) becomes

S =
∫

d3x(|∂ZA|2 − A2
µ|ZA|2). (E.6)

In the case of CP1 model, it is well known that the model is nothing but the nonlinear σ-model

on S2. In our case, it is a nonlinear model on C4/U(1).

Now we expand the field around a classical background and expand the field as

ZA(x) = ZA
0 + ẐA. (E.7)

The classical background satisfies the equation of motion. Assume that the classical background

is very slowly varying and much larger than the fluctuation ẐA:

|ZA
0 | À |ẐA| , |dZA

0 |. (E.8)

Under the assumption (E.8), the quadratic terms of the fluctuations in the action (E.6) become

S ∼
∫

d3x(|∂ẐA|2 − A(0)2
µ |ZA

0 |2) (E.9)

where

A(0)
µ =

i

2|ZA
0 |2

(ZA
0 ∂µ

¯̂
ZA − Z̄0

A
∂µẐA). (E.10)

If we decompose the complex fields into real components as

ZA
0 = X2A−1

0 + iX2A
0

ẐA = iX̂2A−1 − X̂2A, (E.11)

the gauge field can be written as

A(0)
µ =

1
(XI

0 )2
XI

0∂µX̂I . (E.12)

Thus the action can be written as a manifestly SO(8) covariant expression:

S =
∫

d3x{(∂X̂I)2 − 1
X2

0

(XI
0∂X̂I)2}. (E.13)

In terms of the projected scalar field

P I = X̂I − XI
0XJ

0 X̂J

(XI
0 )2

, (E.14)

the action is written (under the assumption (E.8))

S =
∫

d3x(∂µP I)2. (E.15)

It is manifestly invariant under the SO(8) transformations. But note that the SO(8) trans-

formation is different from the SO(8) acting on the original R8 because of the different decom-

positions of the complex fields into the real components in (E.11).
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Appendix F

Ordinary reduction of M2 to D2

In this appendix, we remind the reader of the ordinary reduction of M2 branes in d = 11

supergravity to D2 branes in d = 10 type IIA supergravity to clarify the difference from the

reduction adopted in the ABJM theory. By compactifying x11 direction and identifying x11 ∼
x11+2πR11 the M2 brane solution is given by replacing the metric (C.1) with a smeared harmonic

function [61]

H(r) =
∞∑

n=−∞

R6

(r2 + (x11 + 2πnR11)2)3
. (F.1)

where r is the radial distance in the 7 non-compact transverse directions. The string coupling

constant is given by R11 = gsls. Then we can get the solution of the multiple D2-branes in the

string frame by using the reduction rule and the Poisson resummation at distance much larger

than R11:

dsD2 = H− 1
2

 2∑
µ,ν=0

ηµνdxµdxν

 + H
1
2
(
dr2 + dΩ2

6

)
,

eφ = H
1
4 ,

H(r) =
6π2gsNl5s

r5
. (F.2)

It is quite different from (C.9). Especially the dilaton is not a constant and the conformal

symmetry of the M2 brane geometry is broken; it is no longer AdS4. The transverse direction

is given by the radial direction and S6, and therefore it has the SO(7) invariance.
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Appendix G

Gamma Matrices

The explicit forms of the antisymmetrized products of the 8×8 Γ matrices we have used in (3.22)

are given as ΓIJ = I2×2 ⊗ γIJ where

γ12 =


iσ2

−iσ2

iσ2

iσ2

 , γ13 =


I

−I
σ3

−σ3

 ,

γ14 =


iσ2

iσ2

σ1

−σ1

 , γ15 =


−σ3

I
σ3

−I

 ,

γ16 =


−σ1

−iσ2

σ1

−iσ2

 , γ17 =


−σ3

−I
I

σ3

 ,

γ18 =


−σ1

iσ2

iσ2

σ1

 , γ52 =


σ1

−iσ2

−σ1

−iσ2

 ,

γ53 =


I

σ3

−σ3

−I

 , γ54 =


iσ2

σ1

−σ1

iσ2

 ,

γ56 =


iσ2

iσ2

iσ2

−iσ2

 , γ57 =


σ3

−σ3

I
−I

 ,

γ58 =


σ1

−σ1

iσ2

iσ2

 (G.1)
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and I2×2 is a 2 × 2 identity matrix. We have also defined

Γ0 = iσ2 ⊗ I8×8. (G.2)

The iσ2 was used to contract the indices of the 2-component spinor χ and it is the 3 dimensional

γ0 matrix (see the Appendix of [35]). I8×8 is an 8×8 identity matrix. They satisfy the following

consistency relations as Γ12Γ13 + Γ13Γ12 = −(Γ2Γ3 + Γ3Γ2) = 0. At this stage, there is an

ambiguity to determine the Γ matrices, but the explicit forms of ΓI are not necessary here. To

fix the ambiguity, we need to consider more general VEVs of XI
0 .

On the other hand, the explicit forms of the antisymmetrized Γ matrices that we used in

Section 9 are

Γ12 =


−iσ2

iσ2

−iσ2

−iσ2

 , Γ13 =


−I

I
−σ3

σ3

 ,

Γ14 =


−iσ2

−iσ2

−σ1

σ1

 , Γ15 =


σ3

−I
−σ3

I

 ,

Γ16 =


σ1

iσ2

−σ1

iσ2

 , Γ17 =


σ3

I
−I

−σ3

 ,

Γ18 =


σ1

−iσ2

−iσ2

−σ1

 , Γ52 =


−σ1

iσ2

σ1

iσ2

 ,

Γ53 =


−I

−σ3

σ3

I

 , Γ54 =


−iσ2

−σ1

σ1

−iσ2

 ,

Γ56 =


−iσ2

−iσ2

−iσ2

iσ2

 , Γ57 =


−σ3

σ3

−I
I

 ,

Γ58 =


−σ1

σ1

−iσ2

−iσ2

 . (G.3)

They indeed satisfy the consistency conditions as Γ12Γ13 + Γ13Γ12 = −(Γ2Γ3 + Γ3Γ2) = 0.
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