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Abstract

In recent years high throughput methods have led to a massive expansion in the free

text literature on molecular biology. Automated text mining has developed as an

application technology to organize this wealth of published results into structured

database entries. Presently, there are more than 10,000 species and taking the mar-

bled lungfish (Protopterus aethiopicus) as an example, there are 132.8 billion base

pairs in this fish genome. In a typical systems biology abstract, there are 4-5 genes

mentioned on average. Thus, recording and encoding them manually would take

prohibitive amounts of time and human resources. Building intelligent tools to help

authors and database curators integrate published results into databases has therefore

become a major goal of research in biomedical natural language processing. However,

the multiplicity of interpretations of meanings makes the specification of the authorś

intended meaning extremely challenging for automated natural language processing.

In this dissertation, the contribution is presented through a series of three experi-

ments for identifying the focus species in biological papers as an aid to classifying and

summarizing the experimental result. The focus species presents the authorś major

claim in reporting their own results. I report a new method to identify the focus

species with novel features providing optimized performance on full text papers and

abstracts. I also report a new knowledge model based on a typed citation function

and show its application to focus species identification.

In the experiments, 3 model organisms are classified in full papers selected based

on the Biocreative 1b dataset and 4 model organisms are classified in abstracts se-

lected from the DECA corpus. With three experiments, I showed a best F-score of

x



xi

90.7% for classifying the full papers by using internal features. I also showed that

when only using internal features, full papers perform much better than abstracts.

By using external features from related publications, I demonstrated a best F-score of

91.14% for classifying abstracts. Finally I developed a new typed citation scheme and

showed that among the four citation classes of background, method, results and data,

the strongest relation for aiding the focus species classification was the one relating

author results to the target paper.
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Chapter 1

Introduction

1.1 Motivations & Thesis question

1.1.1 Motivations

Over the last two decades databases have become central stores of organized knowl-

edge for life scientists. However, too much knowledge is still locked away in free texts

and is therefore inaccessible by computational techniques that require structured data.

As high throughput experiments drive a massive expansion in the literature, life sci-

entists are finding it more challenging to keep up to date with the wealth of newly

published information, slowing the pace of progress and risking duplication of work.

Building intelligent tools to help authors and curators integrate their published re-

sults into databases has been a major goal of research in biomedical natural language

processing.

Identifying the focus species for an experiment is a specialized subtask of topic

classification that requires precise identification of semantic features such as the

gene/protein which is the topic of discourse. In earlier work on focus species identifi-

cation, word-level features were explored by F. Rinaldi et al.[4] for target organisms

including Homo sapiens, Mus musculus, Saccharomyces cerevisiae and C. elegans.

1
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Rinaldi et al. devised a system that created a ranked list of species for each MED-

LINE abstract and demonstrated its effectiveness for disambiguating gene references.

They showed that the number of possible gene references was reduced to 45012 (p

= 0.0308, r = 0.5763) from 283556 in the initial annotation step (p = 0.0072, r =

0.7469). Wang and Matthews [5] created a system for gene entity recognition and

identification that used a combination of species name and gene name features co-

occurring in the same sentence. They showed significant improvements of 11.6% on

accuracy for the gene mention task. In order to study term level species identifica-

tion, Wang et al. [1] manually created an annotated MEDLINE dataset, providing

a species ID for each gene mention. Kappeler et al. [6] devised a system to detect

the focus organisms in biomedical papers. Their approach used the NCBI taxonomy

to make a protein-organism list and this was used to detect the focus organism in

full-text articles showing a top F-score of 74.0%.

In order to identify the focus species, several features inside the given papers were

used. In addition to these, resources outside the given papers can also be used. An

important clue is the citation network. Previous work on citation analysis in the

biomedical literature includes work on bibliometrics and enhanced ranking of search.

I. Tbahriti et al. 2006 [7] for example, looked for related articles using argumentative

categories in Medline abstracts and measured this with co-citation lists. P. Nakov et

al., 2004 [8], used text surrounding citations for grammatical paraphrase extraction

and S. Teufel et al., 2006 [2] explored automatic classification of citations, i.e. the

reason why a work was cited. The application of citation analysis to text classification

was also attempted within the computer science domain where B. Zhang et al., 2005

[9] reported a 7% improvement using citation information. T. Delbecque and P.
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Zweigenbaum [10] showed the successful use of the cited articles and cited authors in

indexing MEDLINE full papers.

1.1.2 Thesis question

The thesis explores the general question ”What features are most effective for

resolving conflicting evidence about focus organism in biomedical ab-

stract and full text? ” Since the question is potentially open-ended, I break this

down into three specific sub-questions.

1. What level of classification performance is achievable using state-of-the-art

lexical semantic features for focus species in full papers and abstracts?

2. Of the abstracts which are cited or archived in the PubMed database, do

bibliographic features provide enhanced classification accuracy?

3. Of the abstracts which are cited does a typed citation function provide enhanced

classification accuracy? Also what citation types prove the most useful?

1.1.3 Contribution of this dissertation

In the dissertation, I present a new method to identify focus species with novel fea-

tures in full-text papers and abstracts. I present a new knowledge model for species

citations in biomedical papers. With this scheme, I developed a tool to provide

authors and curators with a high-throughput method capable of determining the fo-

cus species in experimental papers. Unlike previous studies my approach does not

consider target documents in isolation but makes use of a network of citation relation-

ships, amplifying information which is implicit in the target document. The various

features explored in the thesis questions are evaluated on gold standard data sets that

have been constructed by external groups for community evaluation exercises.
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1.1.4 Organization of this dissertation

This Ph.D. dissertation presents a method for identifying the focus species of full-text

papers and abstracts and a new citation scheme for biomedical papers.

This dissertation consists of seven chapters. Chapter 1 gives the introduction,

and Chapter 2 presents the related work. Chapter 3 describes the first experiment

on focus species classification for full-text papers. Chapters 4 describes the second

experiment on focus species classification for abstracts. Chapter 5 discusses the new

citation scheme for biomedical papers and its application to focus species classifica-

tion. And chapter 6 discusses the difficult cases for the task and online tools. Chapter

7 concludes this dissertation and discusses future work.

There is one set of experiments for each thesis question. Hypothesis 1 is explored

in a series of experiments in chapter 3. Based on the findings of this experiment

which showed the relative merits of various in document lexical semantic features, I

conducted Hypothesis 2 experiments which are reported in chapter 4. Based on the

findings of experiments in chapter 4 that showed the effectiveness of bibliographic

features, I conducted Hypothesis 3 experiments which are reported in chapter 5.



Chapter 2

Background

High throughput methods have led to a massive increase in the literature on molecu-

lar biology. Formalization of the published results and automated text processing are

required in order to register all this new information in a database. S. Yeh et al. [11]

pointed out two purposes for biological databases: (1) Databases are places for experts

to consolidate data on a single organism or a single class of organisms which often in-

cluding DNA sequence information; (2) Databases have made information searchable

by using a variety of automatical techniques. Biological experts can formalize their

results by registering them in databases, such as MSD (Mouse Genome Database)

[12],FlyBase [13], DictyDB [14] and Wormpep [15]. However, there is still quite a

lot of knowledge locked away in unstructured format which is hard to share,organize

and acquire. Figure 2.1 shows the rapid growth rate of PubMed records, reflecting

the size of the biomedical scientific literature. In order to keep up to date with new

findings and avoid duplication of work,there is a need for formalizing new experi-

ment results into structured data. In the biological domain, biological experiments

are yielding more and more results that can be formalized by registering them in

databases such as MGD (Mouse Genome Database) [12], FlyBase [13], DictyDb [14],

5
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and Wormpep [15]. Curation of literature in databases ensures that the data stored

in them reflects scientific facts. In particular, database curation in life sciences helps

to ensure data quality to enable quick access to the latest experimental results. The

problem is that curation is a time-consuming task requiring high level understanding

of the domain and expert skills. For example, MGD curators have to ensure that the

stored publication data that can be used to validate expressions of genes under certain

conditions.The importance of database curation is growing, and a number of com-

munities have become established to support development of gold-standard shared

tasks. The Knowledge Discovery and Data Mining (KDD) Challenge CUP task in

2002 [11] focused on automating the work of curating Flybase, by identifying what

papers need to be curated for Drosophila gene expression information. The Goal of

the BioCreative [16] challenge was to pose tasks that would result in scalable systems

for use by biology researchers and end users such as annotation database curators.

BioCreative tried to address the database curation task by challenging participants

to identify papers according to the evidence they contained for assigning GO codes

to human proteins.

However, curating results manually will take lots of time and human resources.

Consequently, building intelligent tools to help authors and DB curators integrate

their published results into databases has been a major goal of research in biomedical

natural language processing. Winnenburg et al. (2008) [17] explored the effective use

of text mining techniques in helping the curation task. Figure 2.2 shows a typical

curation process.

(1) gene products was identified in the publication papers. This step can be

treated as Named Entity Recognition (NER), i.e. a task seeks to locate and classify
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Figure 2.1: Growth rate of PubMed records

atomic elements in text into predefined categories such as the names of gene names,

protein products, which can be solved using dictionary based method [18], rule based

method [19]or machine learning method [20].

(2) the gene products were link to the unique database ID according to the on-

tologies. This step can be called gene normalization which also can be solved using

dictionary look up method , machine learning method etc.

(3) With the result of step (2) and some other information such as external re-

sources, the focus organisms were identified. This is called focus species recognition.

This step also can be solved using machine learning methods and also other methods.
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In that case, we can see that the machine learning methods can help in the curation

task and reduced the amount of time and human effort.

In recent years, biomedical text mining community have paid huge efforts to meet

these three goals, such as JNLPBA [21], BioNLP shard task, the Knowledge Discov-

ery and Data Mining (KDD) Cup Chanllege [11], BioCreAtIvE [16] and the TREC

Genomics track [22]. There still remain many challenges in such tasks, such as the

ambiguous vocabularies of genes as well as identifying target relations within complex

sentence and discourse structures. This thesis aims to contribute to our understanding

of the third task, focus species identification, by a thorough investigation of models

and features as well as proposing a novel citation schema for use in leveraging exter-

nal bibliographic features. The remainder of this chapter is organized as followed. I

start by introducing the component tasks that lead up to focus species identification

including Named Entity Recognition and gene normalization.Then I introduce the

task of focus species identification. I end by introducing the feature selection and

citation analysis in the task.

2.1 BioNER and gene normalization

The aim of gene normalization task is to link gene mentions to indexes in standard

biomedical databases such as Entre Gene or NCBI identifier. By doing this, it will

improve the document indexing and support more sophisticated knowledge discovery

tasks. Gene normalization can be treated as the first step of identifying the focus

species of the whole article. Gene normalization task can be treated in two steps:

Named Entity Recognition and database identifiers linkage. I now briefly survey some

of the more important works that have taken place in NER and gene normalization
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Figure 2.2: Integration of text mining and ontology development
Integration of text mining and ontology development to curation process: the curator
reads papers (1) and identifies gene products (2) and terms from ontologies (3), which
have been proposed by text mining methods (A-C). Annotations (4) are formulated
and added to a database (5), which can be queried by the end user (6).
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within the biomedical text mining community.

2.1.1 Biomedical Named Entity Recognition

Named Entity Recognition (NER) originated from the Message Understanding Con-

ferences (MUC) [23] in 1990s. The task in MUC is to identify terms such as person

name, organization name, location name and etc, in the Newswire domain. NER is

the foundation stage of information extraction, Question Answering, Ma chine Trans-

lation as well as many other applications requiring semantic understanding of text.

The evaluation of NER system is targeted in a serial of conferences, such as MUC-

6,MUC-7, COLING2002,COLING2003 and etc. With the rapid growth of biomedical

knowledge, NER was introduced into the biomedical domain and was called BioNER.

The purpose of BioNER system is to identify terms such as gene, protein and etc.

Figure 2.3 shows an example of BioNER. Till now, BioNER task was still involved as

a part of many share tasks in biomedical domain. The main share tasks in BioNER

are:

(1) JNLPBA [21]: JNLPBA is a share task for bio-entity recognition. The aim of

this task is to assign the technical terms in the domain of molecular biology such as

protein, gene and etc. The data set was a subset of the GENIA version 3.02 corpus.

Among the 7 participating systems the best F-score (harmonic mean of recall and

precision) of 72.6% was achieved by combining Support Vector Machines (SVMs)

and Markov Models [24]. In addition to traditional lexical features such as surface

word, morphological patterns and part of speech, semantic triggers, name aliases and

cascading entity features were also considered as well as external resources such as

SwissProt and LocusLink lists. Systems also made use of in domain part of speech
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tagging using the GENIA part of speech corpus for training.

(2) BioCreAtIvE [16]: The BioCreAtIvE (Critical Assessment of Information Ex-

traction systems in Biology) challenge consisted 2 tasks. In task 1a, it mainly focused

on the BioNER task. The dataset was extracted from MEDLINE corpus. The par-

ticipants using techniques such as Hidden Markov Models (HMM) or Support Vector

Machines (SVMs) were showed a F-score over 80%. Task 1b is discussed later on in

this chapter.

(3) CALBC challenge [25]. CALBC (Collaborative Annotation of a Large Biomed-

ical Corpus) was a new challenge hold in 2010.The objective of the CALBC challenge

was to produce a very large scale corpus using semi-automated techniques. The task 1

in CALBC is to identify the biomedical terms (gene/protein ,organism, chemical and

disease). The significant specific of this challenge is that the challenge use a very large

corpus with 50000 abstracts for training and 100000 abstracts for annotation. With

such a large corpus, the evaluation was compared to the harmonized corpus. The

best system showed a F-score of 86% on average compared to the harmonic corpus

using dictionary look up method.

From a methodological perspective, the NER system can be divided into dictionary

based, rule based and machine learning based. These broad categories of techniques

were also used in BioNER systems. For instance, a dictionary-based system was

developed by Y. Tsuruoka (2003) [26] and K.Zhou (2005) [27]; a rule based system

was developed by D. Hanisch et al.(2005) [19]; and machine learning based systems

were developed by GD Zhou (2004) [28], S. Zhao (2004) [29], Tsai et al.(2005) [30],

Dingare et al.(2005) [31], Y.P. Li et al. (2009) [20] and etc.

(1) The dictionary based approach
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<article>
<articleinfo>
<bibliomisc>MEDLINE:95343554</bibliomisc>
</articleinfo> <title>
<sentence>
<cons sem=other name><conssem=DNA domain or region>E1A
gene</cons> expression</cons> inducessuscep-
tibility to killing by <cons sem=cell type>NK
cells</cons> followingimmortalization but not <cons
sem=other name><conssem=virus>adenovirus</cons>
infection</cons> of <cons sem=cell type>humancells</cons>.
</sentence>
</title>
<abstract>
<sentence>
<cons sem=other name><cons sem=virus>Adenovirus</cons>
(Ad)infection</cons> and <cons sem=other name>
<conssem=protein molecule> E1A</cons> transfection</cons>
were used to model changesin susceptibility to <cons
sem=other name>NK cell killing</cons> caused by
transientvs stable <cons sem=other name> <cons
sem=protein molecule>E1A</cons>expression</cons> in <cons
sem=”cell type”>human cells</cons>.
</sentence>
...
</abstract>
</article>

Figure 2.3: An example of BioNER task data taken from the GENIA corpus of
annotated PubMed abstracts. The record shows inline text annotation for named
entity classes DNA, cell line, virus, cell type, protein, protein family group and other.
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By using a dictionary-based method, an entity is classified by searching a dictio-

nary or database and matching it with similar words found there. The advantage

of the dictionary based method is that the dictionary look-up procedure is easy to

implement, thus, many systems attempting more sophisticated tasks use a dictionary

based methods as the first step of their NER system.

The dictionary based methods usually have low recall. Hirschman et al.[32] re-

ported a dictionary based system with a low precision about 2%. The disadvantage

of dictionary based systems is as follows: (1) The dictionary quickly gets out of date.

Take protein name as an example, a new protein is discovered every month, hence, it

is hard to update a dictionary on time. (2) Homonymy and polysemous cases. While

the Newswire domain does not suffer much from homonymy and polysemous names,

problems are widespread in the biomedical domain. For example, some protein names

are the same as common English words, such as ’by’ and ’can’ and many proteins are

named after the genes that encoded it.

Hence, a dictionary based method often combined with other methods, such as

edit distance, machine learning method is often used. The accuracy of an NER

system is especially improved when a dictionary based method is combined with a

machine learning method. For example, Z. Kou et al.[18] created a system combining

a dictionary based method and Hidden Markov models (HMM) together. They report

their system had a higher recall than dictionary lookup algorithm and achieved a slight

improvement in F-score. Tsuruoka and Tsujii [33] showed an 10.8% improvement in

F-score by introducing a naive Bayes classifier filter and another 1.6% improvement

of F-score by expanding the dictionary with a probabilistic variant generator.

(2) Rule-based approach
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The rule based approach is to craft a set of rules by hand using a rule based

language and domain knowledge. The main approach of Rule based is to develop

rules that describe common naming structures for certain entity classes by using

either orthographic or lexical clues, or more complex morphoea syntactic features. In

most of cases, the rules are created manually. For example, there is a rule in Newswire

domain:

〈proper-noun〉+ 〈corporate designator〉 -> 〈corporation〉
In the rule showed above, items between < and > represent a dictionary list. The

left hand side represents the rule to match the surface text and the right hand side

represents the annotation to be inserted into the text around the matching string.

Using a rule like this, an organization name such as APOLLO CO. can be easily

recognized where APOLLO is a proper noun and CO is the corporate designator.

There are several rule languages, such as Simple rule language (SRL) [34].

Several systems use the pattern-based approach, e.g. the system developed by

Fukuda and colleagues [35] were among the earliest to use it for BioNER. The advan-

tage of the rule based approach is that the rules can be adapted, added and extended

as needed. However, the analysis of the text in the target domain and the task of

creating rules manually are time consuming especially in some specific domain which

need expert to create the rules. Moreover, the rule-based approaches are hard to

adapt to other domains since the individual rules are difficult to adapt. Also, it is

impossible for the rule writer to keep track of thousands of rules and hence inconsis-

tencies and gaps will begin to appear without effective tool support.

(3)Machine learning based approach

Within text mining, machine learning (ML) has been commonly used for tasks
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1. Create guidelines

2. Annotate a representative sample of texts

3. Select training model and features

4. Train and test model

5. Analyze the output

6. Select the optimal model and features for unlabeled data

Figure 2.4: Procedure of machine learning method in tagging task

such as clustering, classification, sequence labelling, trend and anomaly detection.

Some clustering (flat and hierarchical) and topic models are: Latent Dirichlet

Allocation(LDA) Pachinko allocation, k-means, agglomerative hierarchical clustering.

Classification (flat and hierarchical) models include: Naive Bayes (NB), kernel

methods, Maximum entropy Models (MEM), Decision Trees (DT)

Some sequence tagging models are : Hidden Markov Models (HMM), Maximum

Entropy Markov Models (MEMM), Conditional Random Fields (CRFs), Markov

Logic Networks (MLN), stochastic CFG, tree-based kernel methods, ensemble meth-

ods, transformation based error driven learning.

Compared with dictionary based and rule based methods, machine learning based

methods are more flexible and adaptable. They are easy to apply it to a specific

domain if one provides a proper model and training data set. However, the training

data set should be manually created,which is time consuming and may require expert

involvement.

A typical process for model selection in supervised machine learning for BioNER

is shown in Figure 2.4
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(a) Create Guidelines: this is always the first step of a supervised machine learning

system. NER guidelines are created by collaboration with expert in the task domain.

In fact, creation of guidelines is not exactly a science, it contains many human factors,

i.e. the idiosyncratic choices of human. A well prepared set of guideline can help

annotators converge their opinions on the task and thereby improve the accuracy

of the NER system. On the other hand, a set of guidelines with poor schema can

significantly reduce the performance of the system by instantiating inconsistencies.

(b) Annotate a representative sample of texts: the annotators label the raw text

according to the guideline in the first step. There are also many human factors in this

step. Although the annotators have guidelines, each one annotates the text according

to his/her own understanding of the guidelines. In addition to the cost of creating

the training data care also needs to be taken that the training and testing corpus are

representative of the task domain and that the annotation guidelines are consistent

and easy to follow. It’s also necessary to make sure that if multiple annotators are used

in annotation,they are well trained and are performing according to the guidelines,

so that the annotate results can be consistent.

(c)Select training model and features. Here, first, the experiment type was de-

cided. The experiment type influences the split of the data. There are mainly two

ways, one is using cross-fold validation and one is to split the annotated data set into

a training data set and test data set. 10 cross-fold validation are widely used. The

database is split into 10 folders and 9 folders are using for training and 1 folder is

used for test, 10 different combinations are tested and result are based on the 10 dif-

ferent combinations. Training model and features are also decided.There are several

machine learning methods, e.g. biomedical text classification ( rule-based classifiers



17

such as decision trees [36], logical rules [37]. Linear classifiers such as logistic regres-

sion [38], Naive Bayes methods [39, 40], boosted linear classifiers [41]. Non-linear

classifiers also successful applied in text classification task, such as Support Vector

Machine (SVM) [42, 43, 44], k-nearest neighbor methods (kNN) [45], Boosting [41],

[46]) , biomedical entity recognition (HMM [28, 29], SVMs [28], CRFs [30]) etc. Also,

feature selection is an important part in this step; lexical features such as word, POS

and morphological features such as brief word shape are widely used.

Feature selection is an important part in machine learning method, either in

Named Entity Recognition and in text classification.

(d) Training model and test: In this step, the machine learning system uses train-

ing data to learn the features useful for entity recognition. The machine learning

system is tested after it has been trained.

(e) Analyze result: Evaluate the test results. Adjust the model parameters ac-

cording to the test results.

F-measure is a commonly used evaluation of the text classification system. Con-

sider a binary label case where one entity has two statuses: positive(+) or negative(-).

As shown in figure2.5, label stands for its gold label and assignment stands for the

label given by the model. Here, TP stands for true positive, TN stands for true neg-

ative, FP stands for false positive and FN stands for false negative. By using these,

precision(P) and recall(R) are defined as:

P = TP
TP+FP

R = TP
TP+FN

Then, F-score is defined as:

F = 2PR
P+R
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Figure 2.5: F score example

(f) After the final model is created, this model can be used to annotate new

unlabeled data which is assumed to come from a broadly similar source to the training

data.

With the improvement of genomics databases, e.g, Entrez Gene or UniProt, these

kinds of databases were used as external resources to extract dictionaries and enhance

the accuracy of BioNER systems. These external recourses have been widely used in

recent years [25].

Although BioNER was well studied these years, BioNER is still a challenging task

because:

(1) Ambiguities exist in the biomedical domain. Since different species have vari-

ous naming rules, one entity may have different meanings. The ambiguities in biomed-

ical domain have various causes. (a) One entity may refer to several different genetic

entities, either from the same species or from other organisms. (b) One entity may

refer to another type of biological entity, such as protein or phenotype. (c) Some

entities are the same as common English words, for example, a drosophila gene called

’can’.

Ex1. The string ’CAT’ represents different genes in cow, chicken, fly, human,

mouse, pig, deer and sheep;
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Ex2. The mouse gene ’hair loss’ is a common phenotype.

Ex3. The mouse gene ’diabetes’ is also used in other domain, clinical domain.

Ex4. Drosophila genes called ’can’, ’lie’ are common English words.

(2) In the biomedical domain, new protein names and gene names are continu-

ally being created. There is no complete dictionary that includes entries on every

biomedical entity. Thus, the simple dictionary-based method cannot work well.

(3) The orthographic combinations in the biomedical domain are complex. Ter-

minology is encoded using specific combinations of capitals, puncuation and digits as

well as Greek letters.

(4) There is widespread use of abbreviations in the biomedical domain. For exam-

ple, ATL stands for adult T-cell leukemia, beta-EP stands for beta-endorphin. Chang

et al.[47] showed that in MEDLINE abstracts, 42.8% of abstracts have at least one

abbreviation and 23.7% of abstracts have two or more. It is also shows that there is

one new abbreviation in every 5-10 abstracts on average and the growth rate of new

abbreviations is increasing.

(5) Many descriptive phrases exist in biomedical entities. I counted the distri-

bution of entity lengths in GENIA corpus, over 25% of the entities include more

than 4 words,for example, ’primary human bone marrow cultures’, ’normal thymic

ephithelial cells’.

(6) Some entities use conjunction and disjunctions. Two or more entity names in

the biomedical domain may share parts by using conjunction and disjunctions. (a)

Sharing using an ellipse. In word sequence ’protein kinas C-alpha, -epsilon, and -zeta’,

three entities shared one part, the full forms are ’protein kinas C-alpha’, ’protein kinas

C-epsilon’ and ’protein kinas C-zeta’. (b) Sharing using the word ’and’. For example,
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’LMP1 and 2’ shares the first part ’LMP’, the full form is ’LMP1’ and ’LMP2’.

2.1.2 Gene normalization task

Gene normalization is a key step in an accurate search in biomedical literature. With

the result of BioNER system, gene normalization task is to link the gene mentions

with the unique database identifiers. The importance of gene normalization task was

recognized these years, this growing trends is shown by wide scale participation in

shared tasks such as BioCreAtIvE I and II [16, 48], CALBC challenge.

(1) In BioCreAtIvE I task [16], the task was to link the gene with Entrez identi-

fers. Figure 2.6 shows an example of gene normalization task in BioCreAtIvE. After

identified the gene ”esteraze 6”, the synonym list extracted from Flybase was checked

and unique identifier ”FBgn0000592” was linked to this gene mention.

Three organisms were chosen in BioCreAtIvE 1b task: fly, mouse and yeast. The

abstracts were collected from MEDLINE articles. Eight groups participated in this

task and a highest F-score of 92% in yeast 82% in fly and 79% in mouse was reported.

The analysis showed that the differences of the accuracy in three organisms were

caused by several factors such as the ambiguity in names, the complex of gene names.

(2)BioCreAtIvE II [48]: The aim of BioCreAtIvE II gene normalization task is to

link the EntrezGene (Locus Link) identifiers to human genes and direct gene products.

The dataset is collected from MEDLINE abstract. Polysemy in gene and protein

names created additional complexity both within and between organisms. The best

F-score achieved 79% in this task. In that case, compared to BioCreAtIvE I task 1b,

the F-score is much lower than the result in mouse, yeast and fly.

(3) CALBC challenge is a new challenge in gene normalization task.
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Figure 2.6: An example of Gene normalization
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Many approaches were reported in the gene normalization task. H. Fang et al.

(2006) [49] reported a rule based system in gene normalization task in BioCreAtIvE

I. They first extracted an dictionary automatically and then built several rules to

prune the uninformative synonyms, a dictionary match step was performed after-

wards. They reported a best 70.1% F-score in such task. D. Hanisch et al.2005 [19]

showed a system called ProMiner in CALBC challenge, they first generate a dictio-

nary and then used rule-based classification method to identify the related ID to gene

mentions. They showed a best F-score of 81.6% for fly, 79% for mouse and 89.9% for

yeast. J. Crim et al. 2005 [50] showed a maximum entropy classification systems in

gene normalization task. They compared classification-based system to patten match

system and found that classification system outperforms the pattern matching system

for fly-related documents. They reported a F-score of 74.2% for fly, 75.8% for mouse

and 91.7% for yeast.

Several difficulties in gene normalization task were mentioned by A. Morgan et al.

(2007) [48].

(1) Gene mentions are elided under various forms of conjunction, which cause more

problem in normalization task. For example, ”protein kinase C-alpha , - epsilon , and

- zeta” which stands for three forms of PKC gene,PKC alpha, PKC epsilon and PKC

zeta. It is difficult to identify the boundaries for the names of the different forms of

PKC in such case. Furthermore, more difficult cases exist. For example, ”AKR1C1-

AKR1C4” includes four gene mentions: ”AKR1C1”, ”AKR1C2”, ”AKR1C3” and

”AKR1C4”.

(2) Large gray area in gene and protein nomenclature between a description and

a name. For example, the text ”Among the various proteins which are induced when
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human cells are treated with interferon, a predominant protein of unknown function,

with molecular mass 56 kDa, has been observed” mentioned the protein which is

known as ”interferon-induced protein 56”, as the text only describes this protein

without listing the name of the protein. The question of what should be tagged was

raised.

(3) Ambiguities in gene and protein names both within and between organisms.

For example, the text showed in Figure 2.6, ”esterase 6” can be a gene in Drosophila

with an id FBgn0000592 and a gene in Mouse with an id MGI95445. However,

considering the whole text, ”esterase 6” was mentioned as a Drosophila gene. Current

years, many researchers add the disambiguation step in their gene normalization

system. F. Rinaldi et al. [4] showed a system called OntoGene solving the gene

normalization task in BioCreAtIvE II. They showed that in the corpus they used,

the main organisms mentioned in abstracts were humans (56.3%), mice (9.3%), yeast

(6.5%) and C. elegans (6%). They devised a system with two steps, first with a high-

recall annotation followed by a disambiguation steps. In disambiguate step, they

created a ranked list of species for each article and showed that such a list was good

for disambiguation; the number of possible gene references was reduced to 45012 (p =

0.0308, r = 0.5763) from the initial annotation step 283556 (p = 0.0072, r = 0.7469).

X. Wang and M. Matthews [5] created a system that used surround words of gene

mentions. They used a combination of species name and gene name in the same

sentence in disambiguation and showed an improvement significantly by up to 11.6%.

(4) As the gene normalization was mainly based on the gene identification result,

the accuracy of BioNER also effect the accuracy of gene normalization task.

In study of the gene normalization task, there are three corpora for this task:
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(1) BioCreAtIvE I task 1b corpus. This corpus contains manual selections from

three model organism databases: Fly [13] (Drosophila melanogaster), Mouse[12] (Mus

musculus), Yeast[51] (Saccharomyces cerevisiae). PubMed IDs were selected from the

databases and MEDLINE abstract was selected out according to these PubMed Ids

to make up the BioCreative I task 1B corpus.

(2) BioCreAtIvE II corpus. The corpus contained 20000 sentences and approx-

imately 44500 GENE and ALTGENE annotations (A boundary alternated GENE

annotation made by human annotators). The token specifications of all previous an-

notations were changed to character specifications. It became possible to annotate

a gene that is hyphenated to another word, the combination of which is not a gene

mention.

(3) DECA corpus [1]. Abstracts for the DECA corpus were selected from the

BioCreAtIvE I & II dataset. In total 644 MEDLINE abstracts have been manually

annotated by assigning NCBI species IDs for each gene mention. Mentions of gene

and gene products are annotated and a species ID has been assigned to every en-

tity mention. The species tags are identifiers from the NCBI Taxonomy of model

organisms (http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy). Table 2.1 il-

lustrates the distribution of species IDs given in DECA corpus. Abstracts focusing on

Drosophila melanogaster, Mus musculus and Saccharomyces cerevisiae were selected

from BioCreAtIvE I task 1b development test corpus and abstracts focusing on Homo

sapiens were selected from the BiocreAtIvE II dataset.
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Table 2.1: Distribution of NCBI IDs in the DECA corpus indicating the degree of
ambiguity

Species name NCBI Species ID Freq Percentage
Homo sapiens ncbitaxon: 9606 3201 50.01%
Mus musculus ncbitaxon:10090 1504 23.50%
Drosophila melanogaster ncbitaxon:7227 636 9.94%
Saccharomyces cerevisiae ncbitaxon:4932 508 7.94%
Other ncbitaxon:-1 366 5.72%
Other2 ncbitaxon:0 66 1.03%
Rattus norvegicus ncbitaxon:10116 70 1.09%
Escherichia coli K-12 ncbitaxon:83333 18 0.28%
Xenopus tropicalis ncbitaxon:8364 19 0.30%
Caenorhabditis elegans ncbitaxon:6239 7 0.11%
Bos taurus ncbitaxon:9913 3 0.05%
Arabidopsis thaliana ncbitaxon:3702 2 0.03%
Martes zibellina ncbitaxon:36722 1 0.02%

Table 2.2: Data sources in the DECA corpus
Main Species Source Abstracts
Fly BC1 Devtest 108
Mouse BC1 Devtest 250
Yeast BC1 Devtest 110
Human BC2 Test 262
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2.2 Focus species recognition

Identifying the main model organism of an article and linking the genes in the article

to their unique identifiers in a database is one part of curation task. This ”link” step

can be considered as a text classification task which was well studied in the general

English domain [52]. If we treat the task of NER as a ’linkage task’ at the word level,

then we can treat the task of focus species recognition as a ’linkage task’ in text level.

The two tasks can be considered similar as the text is constructed by a sequence of

words.

Consider the text classification task in the biomedical domain, the main purpose

of task is to identify the organism of special interest within the given paper. There are

several ways to achieve this purpose. (1) cluster the document into different classes

and the papers in the same class will be about the same organism. (2) Using keyword

to link the paper to special organisms. For example, if ”Drosophila” appeared in the

paper, the paper is much likely to talk about drosophila. (3) Using machine learning

method to combine the several evidences together and decided the focus species of

the paper.

H. Liu and C. Wu (2004) [53] studied the text classification for four organism (fly,

mouse, yeast and worm) of 31414 MEDLINE papers. This dataset was low ambiguity

(1%), ie. lower than 1% of papers had genes from more than one species mentioned in

the abstract. They created a keyword list from NCBI (http://www.ncbi.nlm.nih.gov)

and UMLS knowledge sources (http://umlsks.nlm.nih.gov). They assume that if the

title,abstract or Mesh Headings of the MEDLINE papers contains the words in the

list, the paper was a relevant article. The list they used was shown in table 2.3. The

feature they used were stemmed words from Abstract, stemmed words from title,
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Table 2.3: List of species synonyms
ORGANISM KEYWORDS

MOUSE
Mouse, mice,mus muscaris,

mus musculus, mus sp

YEAST
Saccharomyces, yeast, yeasts,

candida robusta, oviformis, italicus,
capensis, uvarum, erevisiae

FLY drosophila, fly, flies
WORM Elegans, worm, worms

Author of the paper ,Mesh Headings and Journals. The papers in previous years was

used for training of the SVM model. They reported a best F-score around 94.1%.

Kappeler et al., (2009)[6] devised a system to detect the focus organisms in

biomedical papers. Their approach used the NCBI taxonomy to make a protein-

organism list and this was used to detect the focus species in full text articles. They

counted the number of different organism and use a statistic method to create a

ranked list of the focus organisms of the paper. In their experiments, they assumed

that the organisms occurred in abstract is much important than the ones occurred in

full text. They also refer to the frequency of the organism in IntAct. Results showed

a top F-score of 74.0% (Precision: 74.2%, Recall: 73.8%).

From the previous result we can see, in a low ambiguous dataset, text classification

achieved a high F-score even in abstract. However, in a high ambiguous dataset,

disambiguation is an important part in focus species identification. Kappeler et al.

(2009) [6] chooses full text to include more gene information. For full papers, J. Lin

2009 [54] compared full text and abstract in IE task. He showed the value of full text

collections for text retrieval.

Identifying the focus species for an experiment is a specialized subtask of topic

classification that requires precise identification of semantic features such as the
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gene/protein which is the topic of discourse. In earlier work on focus species iden-

tification, word level features were explored by F. Rinaldi et al., 2008 [4] for target

organisms including Homo sapiens, Mus musculus, Saccharomyces cerevisiae and C.

elegans. Rinaldi et al. devised a system that created a ranked list of species for

each MEDLINE abstract and demonstrated its effectiveness for disambiguating gene

references. Results showed that the number of possible gene references was reduced

to 45012 (p = 0.0308, r = 0.5763) from 283556 in the initial annotation step (p =

0.0072, r = 0.7469). Wang and Matthews, 2008 [5] created a system for gene entity

recognition and identification that used a combination of species name and gene name

features co-occurring in the same sentence. They showed significant improvements of

11.6% on accuracy for the gene mention task. In order to study term level species

identification, Wang et al. [1] manually created an annotated MEDLINE dataset,

providing a species id for each gene mention.

Sometimes, the focus species was not easily classified by only considering the

surface clue of the given paper. For example, Figure 2.7 shows part of an abstract

from Bignon et al. (PMID: 8370518). Here the authors discuss homolog experiments

on mouse which has the potential to associate with the human RB protein. One of

the messages of the abstract is that the human RB gene can functionally complement

the mouse homolog. It is clear that the mouse is the experimental model but the

results have important implications for Human gene function. However, without care

the strong mentioning of the human RB protein would bias a naive model towards

classifying the focus species in this article as Homo sapiens.
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Title: Expression of a retinoblastoma transgene results in dwarf mice.
Abstract:
Introduction of the normal retinoblastoma gene (RB) into different tumor cells pos-
sessing inactivated RB genes suppresses their tumorigenicity in nude mice. These
results suggest that RB replacement is a potential strategy for developing future clin-
ical treatments of cancer. In a transgenic mouse model, we found that the quantity
of RB protein in a given cell may play an important role in dictating its effect. Four
founder mice containing 1-7 copies of a human RB cDNA transgene under the tran-
scriptional control of the human RB promoter were generated. Most of the transgenic
mice were smaller than nontransgenic littermates. This effect was found as early as
embryonic day 15. The degree of dwarfism correlated roughly with the copy number
of the transgene and the corresponding level of RB protein. The expression pattern
of the transgene products was similar to that of the endogenous mouse RB gene with
regard to tissue and temporal distribution. Transferring the transgene to RB deficient
mice, which are nonviable, resulted in the development of normal, healthy mice, in-
dicating that the human RB gene can functionally complement the mouse homolog.
These studies demonstrate that the effect of RB on overall mouse development is
closely dependent upon its dosage.

Figure 2.7: Abstract from Bignon et al. (PMID: 8370518)
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Figure 2.8: An example of citation structure

2.3 Citation analysis

Citation plays a central role in the progress of writing a paper. Many researchers

are interested in the purpose of the citations. For example, citations are used to

introduce the starting point where the authors’ research work started [55]. Moravcsik

and Murugesan [56] divided the citations into four purposes:

(1) Conceptual or Operational use. The purpose of the citation is use the theory

of use the technical method in the citation paper.

(2) Evolutionary or juxtapositional use. The purpose of the citation is to show

that the author’s work is based on the cited work or the author’s work is an alternative

to the citation one.

(3) Organic or perfunctory. The author’s work needs the understanding of the

citation article or the citation is a general acknowledgement.

(4) Affirmative vs. negation. To confirm or correct the findings in the citations.

And they showed that 40% of the citations are in case 2.
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Figure 2.8 shows an example of the structure of citations. The citation includes

two ways, cited and citing. Cited is the paper was cited by other papers and citing

is the paper citing other papers. It is well know that biomedical papers had longer

reference lists on the average than papers in mathematics and engineering [57].

According to Moravcsik and Murugesan [56] definition, the citations with the

purpose evolutionary or juxtapositional use can be treated as a related work of the

original paper, in other words, such kinds of citations can be assumed to have the

same focus species as the original paper.

As citations can be freely obtained from website such as Google scholar or Cite-

Seer [58], there are many algorithms for uncovering the strength of hidden relations

inside citation networks. One of the citation relations can be called citation function.

Citation function was defined as the reason of author to cite a given paper. Why

one paper was cited was an interesting question for scientific researchers for many

years. J. Swales [59] showed that the scientific writer cited the papers with a spe-

cial structure. S.B. Shum [60] showed that researchers are often interested with the

relation of the citations. Case and G M. Higgins [61] argued that authors tended to

cite ”concept markers” representing a genre of work. To research the relationship of

the citation, many researchers gave their own citation functions. For example, the

scheme of M. Weinstock [62], the scheme of J. Swales [63] , the scheme of C. Oppen-

heim and S P. Renn [64] and etc. One of the well-known schemes was explored by S.

Teufel et al., 2006 [2]. He explored automatic classification of the citation function,

i.e. the reason why a work was cited. With the development of natural language

processing, researchers began to move the focus to automatically classify the citation

functions. For example, M Garzone and R E. Mercer [65] developed a classifier to
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automatically classify the citation function in scientific papers. In recent years, cita-

tion analysis was extended from scientific literatures to biomedical domain. Previous

work on citation analysis in the biomedical literature includes work on bibliometrics

and enhanced ranking of search. I Tbahriti et al. 2006 [7] for example, looked for

related articles using argumentative categories in MEDLINE abstracts and measured

this with co-citation lists; P. Nakov et al., 2004 [8], used text surrounding citations for

grammatical paraphrase extraction; and S. Teufel et al., 2006 [2] explored automatic

classification of the citation function, i.e. the reason why a work was cited. The

application of citation analysis to text classification was also attempted within the

computer science domain where B. Zhang et al., 2005 [9] reported a 7% improvement

using citation information.

2.4 Discussion

According to the survey in this chapter we have seen that focus topic identification of

biomedical papers has the potential to help authors and curators integrate their pub-

lished results into databases much more easily. To achieve this automatically would

reduce the ambiguity in gene name identification. However using only document in-

ternal information it seems there is still a significant performance gap. Since citation

information is freely accessible I will explore the use of citation analysis through a

dedicated citation scheme which I will propose for biomedical papers. In contrast to

previous studies, my approach will not consider target documents in isolation but will

try to leverage the use of a network of citation relationships, amplifying information

which is implicit in the target document.



Chapter 3

Experiment 1: Focus topic
identification for full papers

As noted by J. Lin (2009) [54], full papers seem to be valuable for various information

extraction tasks compared to abstracts since full papers contain much more informa-

tion than abstract. Before exploring document external information I wanted to see if

using full papers would allow us to identify focus species more easily. In this chapter

I present a series of experiments designed to compare the two text types.

Hypothesis one: What level of classification performance is achievable

using state of the art lexical semantic features for focus specifies in full

papers and abstracts?

3.1 Experiment setup

3.1.1 Data set

The dataset I employ was based on the BioCreAtIvE I task 1B corpus which was man-

ually selected from three model organism databases: Fly [13] (Drosophila melanogaster),

Mouse [12] (Saccharomyces cerevisiae), Yeast [51] (Mus musculus). PubMed IDs were

33
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selected from the databases and MEDLINE abstracts were selected according to these

PubMed identifiers to make up the BioCreAtIvE I task 1B corpus. There are 4 gene

mentions in each abstract on average. I manually collected the corresponding full

papers for the abstracts from PubMed and Google search. The final corpus contained

3761, 3572, 3725 papers for fly, yeast and mouse respectively.

3.1.2 Work flow

The workflow for the experiment is shown in Figure 3.1. (1) Documents were cleaned

and saved in a standard format; (2) Documents were then classified using a rule-based

classification model. The purpose of this step was to choose the easiest cases in the

dataset and classify them first. The heuristic rule was simple: if a title contained only

one organism mention then the text was tagged according to that organism. In this

way 5% of documents were classified, and the remaining documents were resolved in

the following steps; (3) AbGene [66] was used to annotate the gene names in each

document and which part of the document should be used was determined by using

a content selection model. One-hundred articles with similar structures (abstract,

introduction, result, experiment, discussion, and conclusion) were selected manually

and a gene-section distribution for these 100 articles was created which I called as

gold-standard gene distribution. Based on this analysis the abstract, introduction,

result and conclusion sections were selected, and other sections were excluded. If

an article contained sub-title of each section, then the four sections were selected

out automatically. If an article contained no significant sub-title to show these four

sections, the genes were annotated by AbGene and gene number of each section were

calculated. Compared to the gold-standard gene distribution, the four sections were
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Title filter regulation
Focus species decision

BioNERContent selectionClassification modelCut 5%
full scientific texts 

Figure 3.1: Structure of FFS model

decided. (4) Additional features such as title and journal name were then added;

(5) Eight supervised models were used to classify the documents. In this step, the

data remaining undecided from step (2) were used. I then analyzed the model’s

performance using ablation experiments on various combinations of features.

3.1.3 Models

In my experiments, I compared eight supervised classification methods: Naive Bayes,

Conditional Random Fields, support vector machines (SVMs), Decision table, Deci-

sion trees, Logistics Regression as well as Adaboost and Bagging on the best per-

forming models.
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1. Naive Bayes: The Naive Bayes model is a simple probabilistic classifier based

on Bayes’s theorem with strong independence assumptions that is widely used

in text classification. The Naive Bayes implementation I used was included in

the Weka toolkit [67], default parameters were used for training.

2. The conditional random fields algorithm (CRF): Conditional random fields

(CRF) [68] is a discriminative probabilistic framework that is used for labeling

and segmenting sequential data. A CRF is an undirected graphical model that

defines a single log-linear distribution over labeled sequences given a particular

observation sequence. Recently Hirohata et al. [69] showed success in applying

CRF for a document classification task. I applied the same broad methodology

as Hirohata et al. in my implementation. I formulated the document classifica-

tion task as a sequence labeling task by firstly labeling each document section

with its focus species and then labeling the focus species for the whole document

based on the sequence of section labels. The CRF++ toolkit [70] was used. The

hyper-parameter to set the trade-off between over-fitting and under-fitting was

set at 10. Default values were used for the other parameters.

3. Support Vector Machine (SVM): SVMs were introduced by Vapnik [71] in 1995

as a learning system that uses a hypothesis space of linear functions in a high

dimensional feature space, trained with a learning algorithm from optimization

theory that implements a learning bias derived from statistical learning theory.

4. Boosting and Bagging: Boosting [41] and bagging [72] are generic methods

aimed at aggregating classifiers for improved prediction performance using sam-

ple weighting and re-sampling respectively on the original training data. Both



37

techniques can be applied to a variety of base learners and have been shown to

give substantial gains in accuracy for classification tasks. In my experiments

Naive Bayes was chosen as the base learner for its high level of performance in

the stand alone task.

5. Decision tables : Decision tables [73] contain two major components, a list of

attributes and a set of labeled instances on those attributes. Labeling is done

by default on majority class matching and then by arbitrary tie breaking and

attribute elimination. They have a close relation to rule-based knowledge bases.

6. Decision trees : Decision trees [36] are potentially powerful predictors and ex-

plicitly represent the structure of a rule set in tree form with leaf nodes func-

tioning as classification decisions and transitions along branches taking place

according to attribute values.

7. Logistic regression [38]: Logistic regress [38] is a popular discriminative classifier

for modeling binary data.

In my experiment, AdaBoost, Bagging, Decision tables, Decision trees and Logistic

regress were implemented from the Weka toolkit.

3.1.4 External resources

For the named entity recognizer, AbGene was used to annotate the gene names in

the document. AbGene [74] was pre-trained on annotated MEDLINE abstracts with

a reported F-score of 98%. Tanabe [66] showed that it is possible to use AbGene on

full text articles from PubMed Central (PMC) with a reduced level of performance at

72.6% precision and 66.7% recall. Since my abstracts were selected from MEDLINE
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and the full texts were selected from PMC and Google search, we can expect broadly

similar levels of performance with this earlier experiment.

3.1.5 Features

The experiment tested several linguistic features which I describe in detail below:

1. GN:Gene name terms

Following gene name annotation with AbGene, genes were listed according to

their frequency in the document and the top n genes were selected as features

to train the model. Here, n is a fixed number decided before the experiment. I

varied n from 1 to 100 in preliminary experiments, with the results indicating

that the larger n was, the better the results were. As n > 100 was difficult to

handle using my CRF software due to machine memory limitations, n=100 was

used in the experiment.

2. OF:Organism frequency

Organism name mentions were used as a reference for classifying the text into

different model organisms. The organism names included not only mice, fly and

yeast but also synonym words such as mouse, drosophila, and saccharomyces.

This list was compiled by hand according to the NCBI taxonomy.

3. MH:MeSH headings

Mesh heading has been proven effective across many tasks in the bioNLP ap-

plication domain.

Medical Subject Headings (MeSH)[75] is a comprehensive controlled vocabulary.

The purpose of MeSH is to index journal articles and books in the life sciences. It
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was used in MEDLINE/PubMed databases. Most of the MeSH terms are short

descriptions or definitions, linked to related descriptors and synonyms or similar

terms. Every journal articles in MEDLINE was indexed with some 10-15 MeSH

terms. In that that cases, MeSH can be treated as an index clue of the focus

organisms of the article. Bloehdorn and Hotho [41] report that MeSH headings

improved the accuracy of classification by 3% to 5%. I therefore selected the

three frequently mentioned MeSH headings for each based on frequency in the

training data.

4. DT: Document title terms

Some of the document titles contained organism name mentions and gene name

mentions which were then used as features in the rule classification model and

NLP classification model.

5. TS: Term-species

If one sentence contained a gene name and a species name, the weight of the

species name was counted by using the distance between the species name and

gene name. The total weight was tallied for each article, and the weight of the

species name was used as a feature.

6. JN: Journal Name

This was the name of the journal in which the abstract or article was published.

7. NT: Number of gene terms

First, gene list was extracted from the training corpus and sorted by the fre-

quency of the gene. Then the number of genes in the top-100 frequent gene list
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was counted.

8. AGN: Additional gene name terms

When there was a gene-species pair in one sentence, the gene name and species

name was used to find an additional gene name in UniProt. For example, if

there was a gene named ”IL2”, by looking it up in UniProt, the additional gene

name ”Interleukin” could be found.

3.2 Result of experiment one

3.2.1 Experiment 1.1: Comparison on different learner mod-

els

In the first sub-experiment, eight different models were selected: Naive Bayes, Ad-

aBoost, Bagging, Decision table, Decision tree, Logistics Regression, CRF and SVMs.

Table 3.1 compares the 10-fold cross evaluation of the different models. NB had the

highest F-score (84.8% for fly, 73.9% for mouse and 73.8% for yeast), and CRF had

the second highest (80.2% for fly, 73.0% for mouse and 72.3% for yeast). AdaBoost

and Bagging both used Naive Bayes as the base learner, but we did not observe a

significant improvement when using the basic feature set. Logistics Regression per-

formed well on fly (79.6%) but not so well on the other two species. SVMs gave high

precision but low recall in fly and yeast; high recall but low precision in mouse.

The model comparison used only the basic feature set (MeSH headings, journal

name, gene name, and article title). I also did feature analysis on MeSH headings and

journal name in this experiment. The analysis showed that by using MeSH headings
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as a feature, a 2% improvement in F-score was achieved by using Naive Bayes and

CRFs. The journal name feature improved the F-score by 1% by using Naive Bayes

and CRFs.

3.2.2 Experiment 1.2: Comparison of different feature sets

NB and CRF were selected as the two best performing models from Experiment one.

This time I used an extended set of features that included TS (term-species) and OF

(organism frequency) in 10-fold cross evaluation experiments. The best performing

combination achieved an average F-score of 90.7%. As shown in Table 3.2, classifica-

tion for fly achieved the best among the three kinds of organisms (97.1%) followed by

mouse (88.6%) and yeast (85.5%). I considered that the reason for this is that for fly

focussed experimental papers, the gene-species pairing gave a clear signal, whereas

in mouse the organism was often considered as the experiment model for human so

the gene-species pair and organism frequency became highly ambiguous. In yeast the

species name of yeast was rarely mentioned in the paper. The most significant result

was that by using TS, OF and AGN features; an improvement of 10% was achieved.

3.2.3 Experiment 1.3: Comparison on full texts and abstracts

Large-scale collections of abstracts are often used in life science classification ex-

periments, whereas full text articles are rarely used due to difficulties in sourcing

them from publishers and converting them into plain text format. This trend is now

changing due to the availability of open source publications. However, the highly de-

tailed experimental information contained in full text papers reveals new challenges
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for biomedical document classification. For example, Tanabe [66] showed that enti-

ties like restriction enzyme sites, laboratory protocol kits, primers, vectors, molecular

biology supply companies, and chemical reagents are rarely mentioned in abstracts,

but plentiful in the methods section of the full article. Their appearance adds to the

previously mentioned morphological, syntactic and semantic ambiguities. To mitigate

this issue, content selection was applied to filter data in the full articles according

to sections. Secondly, the full text, especially the Method and Introduction sections,

contain larger numbers of associated gene/protein mentions in comparison with the

abstracts. Again, this can be partially mitigated by content selection.

On the other hand, there are also some advantages to using full texts over ab-

stracts. Potential redundancy of information allows models with lower levels of recall

to have several chances to discover reported facts such as the species-gene/protein

features that we observed to be highly valuable when making decisions about focus

species.

To confirm the value of using full texts I compared classification performance of

the full texts from my corpus of abstracts to the original abstracts. The comparison

is shown in Table 3.3. I performed a two tailed paired sample t-test to show that

there is an improvement of 11 points in F-score. In these experiments 10x10 cross

validation was used in conjunction with two-tailed corrected resample t-test (p <

0.001) as presented by Bouckaert and Frank 2004 [76].

3.3 Discussion

In this experiment, I presented a system to identify focus species using combinations

of lexical semantic features and comparing across biomedical full text papers and
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Table 3.3: Classification performance across full text papers and abstract
full text abstract

(F1+TS+RN+NT+AND) (F1+TS+RN+NT+AND)
P R F P R F

NB Fly 0.971 0.972 0.971 0.812 0.892 0.850
Mouse 0.827 0.953 0.886 0.755 0.763 0.759
Yeast 0.931 0.791 0.855 0.791 0.748 0.769

CRF fly 0.966 0.954 0.960 0.820 0.898 0.857
mouse 0.817 0.878 0.846 0.732 0.741 0.736
yeast 0.901 0.788 0.841 0.757 0.750 0.753

abstracts. By comparing different novel models in full papers and compare two best

models with full papers and abstract, I conclude that by using state of the art lexical

semantic features, an F-score of over 90% was achieved for full text papers and the F-

score is less than 80% for abstracts. From this results, we can see that although lexical

semantic features performed well on full text papers, for abstracts, the lexical semantic

features is not enough. As the copyright problem of collecting the full papers, the

size of my database is small and it is hard to extend it, one reasonable consideration

is to introduce external features to improve the performance in abstracts.

3.3.1 Content selection

As discussed above, one difficulty for focus species classification on full text articles is

that of content selection. Deciding which part of the document is the most valuable

and developing a strategy to select it is quite a difficult issue given that documents in

my collection come from different journals which have different section structures. As

a proxy for explicit section headings I decided to use the gene mention distribution

as a clue for partitioning the full text papers. However, this approach proved weak

in cases where the test document contained more sections than the standard one (
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i.e. the four sections mentioned in the methods). During analysis I found that using

such section selections showed no improvement in F-score.

3.3.2 Feature selection

Another challenge was feature selection. Rinaldi et al. [4] used the species name

appearing in a document as a clue to find the correct topic organism. My experiment

built on Rinaldi’s findings in that not only did it use the species word itself as a feature,

it also used species-gene pairs appearing together in one sentence and weighted the

species according to the distance between the gene and species. Doing so improved

the average F-score by 12% compared to that for the basic feature set. Compared

with Rinaldi’s work, my approach showed an average 3% improvement in the F-score.

In the feature set, I used one feature called additional gene name terms. The

additional gene name term is only existed when there is a gene-species pairs and the

additional gene name is searched based on the species information. However, the

additional gene name terms still provide ambiguous in some cases. How to reduce

these ambiguous still remained as a problem.

3.3.3 Discussion: multi-species mentioned in one paper

Although many researchers have focused on text classification in biology, their exper-

iments have mainly been targeted at extracting information about single organisms.

Considering the task in the real world; texts are often not clean data on specific

organisms.

The most difficult cases I encountered were when the text contained multiple

species names. As the abstract below (PMID: 11018518) illustrates, four kinds of
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species were mentioned: fly (Drosophila melanogaster), mouse, zebrafish and silk-

worm (Bombyx mori).

Coatomer is a major component of COPI vesicles and consists of seven sub-

units.The gamma-COP subunit of the coatomer is believed to mediate the binding

to the cytoplasmic dilysine motifs of membrane proteins. We characterized cDNAs

for Copg genes encoding gamma-COP from mouse, zebrafish, Drosophila melanogaster

and Bombyx mori. Two copies of Copg genes are present in vertebrates and in B.

mori. Phylogenetic analysis revealed that two paralogous genes had been derived from

a single ancestral gene by duplication independently in vertebrates and in B. mori.

Mouse Copg1 showed ubiquitous expression with the highest level in testis. Zebrafish

copg2 was biallelically expressed in hybrid larvae in contrast to its mammalian or-

tholog expressed in a parent-of-origin-specific manner. A phylogenetic analysis with

partial plant cDNA sequences suggested that copg gene was also duplicated in the grass

family (Poaceae).

This is a special case, but approximately 5% of articles in my collection reported

multiple species. In the future I will need to consider how to handle these special

cases more efficiently.

Although in these experiments I achieved a high level of accuracy in focus species

identification there are still some disadvantages that can be seen. Firstly, the au-

tomated sourcing of full papers is difficult to achieve given copyright restrictions.

Secondly only document internal features were so far considered, ignoring the poten-

tial for external features to contribute to the classifier.
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3.4 Conclusion

In the beginning of this chapter, we raised a sub thesis question on what level of

classification performance is achievable using state-of-the-art lexical semantic features

for focus species in full papers and abstracts? In this experiment, totally 11058 full

papers were contained in the corpus, 10-fold cross method was used in the evaluation.

Eight types of features were used in training, and three species were identified. In this

experiment, by using state-of-the-art lexical semantic features for identifying the focus

species, an average F-score of 90.4% is achieved for full text papers and compared to

the full text papers, a lower level of F-score (79.3% on average) is achieved.



Chapter 4

Experiment 2: A system to
identify focus topic in abstract

As shown in the previous chapter, I compared the accuracy of species identification in

MEDLINE abstracts and full text papers with a best F-score of 97.1% for Drosophila

melanogaster, 88.6% for Mus musculus and 85.5% for Saccharomyces cerevisiae. My

findings indicate that the classification performance for the focus species in abstracts

was much lower than in full text papers when using only document internal features.

However in practice full text papers are not always available, e.g. due to copyright

reasons, so I considered to study the focus species identification in abstracts. As

shown in the previous chapter, internal features did not performed well in abstract

which F-score less than 80%, new features are needed to identify the focus species in

abstracts. In this new set of experiments, I explore similar document internal features

to my previous study as a baseline. The contribution of this chapter to my thesis

is to expand the investigation to see if the use of features harvested from external

resources such as citing papers and associated papers can contribute to classification

performance. By associated papers I mean those that are the results of the PubMed

search engine. I also expanded the investigation from 3 to 5 focus species including

49
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Homo Sapiens and Rattus norvegicus. Finally I develop a practical species tagger

called FS tagger which is based on the best features discovered so far for automatically

identifying the focus species in an abstract.

Hypothesis two: Of the abstracts which are cited or archived in the

PubMed database, do bibliographic features provide enhanced classifica-

tion accuracy?

4.1 Experimental set up

4.1.1 Data collection

As a gold standard, I leveraged the newly released DECA corpus [1], which contains a

wider range species than my previous study. In first stage experiments I look at recog-

nizing and identifying gene/gene product mentions for their species taxon identifiers

and show significantly improved performance compared to Wang et al.’s maximum

entropy model. 15 different kinds of Taxon identifier was identified. In the second

stage, I identified the 4 different focus species in abstracts using the combination of

internal lexical features and bibliographic features. The study contributes to work on

biological text classification and database curation. A novel characteristic of my ap-

proach is the analysis of various linguistic features in combination with bibliographic

features and PubMed related citations to achieve state of the art performance.

Abstracts for the DECA corpus were selected from the BioCreAtIvE I & II col-

lection. BioCreAtIvE I dataset contained three species, mouse, fly and yeast and

BioCreAtIvE II dataset contained one species, human. In total 644 MEDLINE ab-

stracts were manually annotated by assigning NCBI species IDs for each gene mention
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by Wang [1] . Mentions of gene and gene products are annotated and a species ID

assigned to every entity mention. The species tags are identifiers from the NCBI

Taxonomy of model organisms.

Table 2.1 illustrates the distribution of species IDs for gene and gene products

in the DECA corpus given by Wang et al., 2010 [1]. In my experiment, the species

IDs was used as the gold standard in the first step. Abstracts focusing on Drosophila

melanogaster (96 papers), Mus musculus (204 papers) and Saccharomyces cerevisiae

(92 papers) were selected from the BioCreAtIvE I task 1b development test corpus

[77] and abstracts focusing on Homo sapiens (252 papers) were selected from the

BioCreAtIvE II dataset [78]. I annotated the focus species using the classes in the

BioCreAtIvE sources. For example, the data selected from the BioCreAtIvE II dataset

is considered to focus on Homo sapiens.

The reason I chose DECA corpus was:

• The abstract in DECA corpus was selected from 4 organisms and the gene and

protein mentions in the abstract contains 11 kinds of organisms. That is to say,

the number of organism is fit to use in this task.

• The NCBI species id is widely used in the gene normalization task. Although the

corpus was small, each of the NCBI id was annotated manually. The accuracy

of the annotation was believable, I showed an F-score over 85% for identifying

the Taxon ID for four top sequence species.

• The abstracts in the DECA corpus were selected from MEDLINE abstracts. It

is easy to find related information such as Mesh, Title and etc. from PubMed

database.
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4.1.2 Workflow

An outline of the workflow for the experiment is shown in Figure 4.1 with a more

detailed description following. FS tagger includes three stages: the GT model (Gene

mention Taxon ID annotation model), the EIE model (External resource information

extractor) and the FSD model (Focus species decision model). In the GT model, the

GENIA named entity tagger [79] was used to tag the gene and gene product mentions.

Using the GENIA tagger’s output, a Conditional Random Fields (CRFs) model was

used to annotate the NCBI Taxon ID for each gene mention. I choose CRF model

because the tagging is treated as a sequence labelling task and CRF showed a good

performance in such tasks [30]. Next, in the EIE model, related citation papers were

automatically downloaded from PubMed and citing papers were downloaded from

PubMed and Google search and species information was extracted from the related

citations and citing papers. With the result of the GT model and EIE model, some

basic features such as the gene mention and species mentions in title and journal name

were also added. Another CRF model was then used to identify the focus species of

the abstract. This is described in more detail below.

4.2 GT model

In the GT model, the goal is to assign the Taxon ID to each gene and gene product

mention that has already been identified by GENIA tagger. In the example below,

RB is a gene tagged with Taxon ID 10090.

Ex 1. The expression pattern of the transgene products was similar to that of the

endogenous mouse < TaxonId = 10090 > RB < /TaxonID > gene with regard to
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Figure 4.1: Structure of FS tagger
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Table 4.1: Features used in GT model
Features Descriptions
Word tokens the surface form of word itself
Part of speech (POS) POS was given by GENIA named entity tagger

Suffix//prefix
the suffix of the word, for example, ’ex’, ’im’ and etc
A suffix list was made manually.

Orthography a normal used feature in natural language processing

Brief word shape
String are changed to ’a’ and number are changed to ’o’.
For example, IL2 will changed to a0

GENIA named entity tagger

The result of GENIA named entity tagger. There are 5
types of entity types: Protein, DNA, RNA, Cell line
and Cell type. The entities with the entity type Protein
was used as one feature in the GT model.

tissue and temporal distribution.

No explicit label difference between gene and gene products was made either in

the DECA corpus or the GT model. In the experiment, evaluations were carried out

using 5-fold cross-validation.

The model I used is based on a machine learning method called conditional random

fields (CRF) [68] with a feature set of word tokens, part of speech, suffix/prefix,

orthography, brief word shape and GENIA named entity tagger. The feature set is

shown in Table 4.1.

CRF itself is a discriminative model for labelling structured data. It has been

widely used in NLP tasks and has been proven to offer state-of-the-art performance in

sequence labelling tasks such as part of speech tagging and named entity resolution as

well as a number of real-world bioinformatics tasks such as protein structure prediction

and RNA structure alignment. This is due to its relaxed independence assumptions

over hidden Markov Models and Maximum Entropy Markov Models. The CRF++

toolkit [70] was used with default values for the parameters. In GT model, one
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sentence is treated as a sequence labelling data and each mention in the sentence is

labeled by CRF model. With the result of CRF model, the mentions which were

tagged as Protein by GENIA named entity tagger were picked out for evaluation.

The result of the GT model, which is the taxon ID for each of the gene names, is

used as one of the features in the FSD model described later.

4.2.1 EIE model

The purpose of the EIE model is to identify the closest matching related paper to the

target abstract using bibliographic data or search engine associations.

In the EIE model, two kinds of external resources were used: related citations and

citing papers.

(1) Related citations provided by PubMed [80]. PubMed uses a word-weighted

algorithm to compare words from the title and abstract for each target abstract, as

well as the MeSH Main headings assigned. The best matches by PubMed [80] for each

abstract in the collection were pre-calculated and designated as ”related citations”.

In the EIE model, all related citations were downloaded from PubMed automatically.

As shown in Figure 4.2, related citations provided by PubMed were divided into two

sets according to the time of publication relative to the target article. Abstracts

published earlier than the target article are marked as II and those published later

than the target article are marked as I.

(2) Citing papers. The set of articles citing the target article. Citing papers were

downloaded using PMC’s ”cited papers in PMC”. As shown in Figure 4.2, the citing

papers are designated as IV.

Set III in Figure 4.2 shows the set of papers which are found to be associated with
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Figure 4.2: External resources

the target abstract by PubMed but which have no explicit citation relating them to

the target paper.

I assumed that the species mentioned in related citations and citing paper was

similar to the species mentioned in the target and that this would become clear by

aggregating information across papers. Such features should provide higher accuracy

for species identification by helping to (a) reinforce internal clues about the focus

species in the target abstract and/or (b) making explicit any hidden understanding

on behalf of the reader. In these experiments, I evaluated a distance metric called

Hierarchical Bayesian Clustering (HBC) for clustering external resources.

HBC [81] is a widely used method in document clustering that I evaluated for

selection of citation papers. Given a collection of documents D, a binary tree is
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Input:
D = {d1, d2, ..., dN}: a collection of N data;
Initialize:
C0 = {c1, c2, ..., cN}: a set of clusters;
ci = {di} for 1 ≤ i ≤ N
calculate SC(ci) for 1 ≤ i ≤ N
calculate SC(ci ∪ cj) for 1 ≤ i ≤ j ≤ N
for s = 1 to N − 1 do

Figure 4.3: Hierarchical Bayesian Clustering algorithm (M. Iwayama and T. Toku-
naga, 1995)

constructed. In the first step, each document is treated as one cluster Ci (also called

a tree). Then the Maximum Likelihood P(C—D) is calculated for each pair of trees

and the two clusters (trees) with the largest likelihood are merged into one. The

procedure is repeated until one cluster remains. The algorithm is shown in Figure

4.3.

An example (PMID: 10376878) is shown in Figure 4.4. In my experiments, I

assumed that the two nearest documents belonged to the same species. In this case,

the nearest document to the target abstract (PMID: 10376878) is the brother leaf

(PMID: 9488467) of the tree. Then the tree is cut in the first merge step and the first

round result (PMID: 10376878) of merging step was used.

As a further part of my investigation I compared the performance of selecting

the closest matching paper with HBC against using species features from all citation

papers.
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Figure 4.4: Example showing clustered related citations for abstract PMID 10376878.
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Table 4.2: Internal Features used in FSD model
Features Descriptions

Gene name terms (GN)

The GENIA named entity tagger was used to
annotate genes and gene products in the
target abstract. Using the result of the
GT model, each tagged gene name was assigned
a Taxon ID which was also used as a feature.

Species words (SW)
The list of species words was extracted
manually from the NCBI Taxonomy of model organisms.

Document title terms (DT)
Species words and gene names were extracted
from the abstract title.

Journal Name (JN)
a An index value was assigned indicating the
name of the journal in which the abstract was published.

MeSH Main headings (MH)

S. Bloehdorn and A. Hotho, 2004 [41] report that
MeSH Main headings improves the accuracy of
classification by 3%-5%. I used the top
three most frequent MeSH Main headings for each
paper. Frequency was calculated from the DECA
corpus abstracts.

4.2.2 FSD model

In the FSD model, the objective was to tag the focus species for the target abstract.

In this model, a CRF with both document internal and external features was used.

Internal features are shown in Table 4.2. By using CRF, I treated the abstract as

different sentences and the task is to give the label to different sentences and the label

of the whole abstract is given by combination of the label of different sentences.

External features consisted of species words from the EIE abstracts. I didn’t

using taxon id in EIE abstracts as external features because that I’m afraid that the

performance of identifying the taxon id in EIE abstracts is not good enough. Of

course, if performance of identifying taxon id in EIE performance can be ensured, it

is better to include such value as external features. EIE abstracts were selected as
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Table 4.3: Performance comparison of classification on 5 species against Wang et al.
[1]

Species Name X. Wang et al. X. Wang et al. My system My system
(TaxonID) (ME) (HYBRID) (ME) (CRF)

Homo sapiens 85.6 86.48 92.48 93.53
(9606)

Mus muscu- 79.38 80.41 80.21 89.61
lus(10090)
Drosophila 87.07 87.37 70.11 85.38

melanogaster(7227)
Saccharomyces 82.66 84.64 42.56 86.86

cerevisiae(4932)
Other 0 25 0 22.9

Rattus 48.42 59.41 44.61 22.2
norvegicus(10116)

Average 82.69 83.8 82.1 90.12

explained in previously and I conducted ablation experiment to discover the best set

of features. Experimental results are reported below.

In the corpus, some papers contained mentions of more than one target species.

However, the focus species was decided using the classes in the BioCreAtIvE sources

as described earlier.

4.3 Result of Experiment Two

4.3.1 GT model

In the GT model, the main task is to assign the Taxon ID to each gene and gene

product mention. In the experiment, evaluations were carried out using 5-fold cross-

validations. Each combination of features was compared to Wang’s system [1] using

micro-average F1 score. Table 4.3 shows a comparison of the results.
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In Wang’s ML method, a maximum entropy (ME) model was used. The features

employed were lexical feature which are the same as those used in my GT model, but

also included neighboring species ID and all species IDs occurring in the document.

However, neighboring species ID in my GT model were not employed, because the

species ID was used in a later step and I wanted to avoid the duplicate usage of the

same feature. The results in Table 4.3 show that my system performed better for

higher frequency species. For lower frequency species, performance was not so high

because neighboring species IDs were not used in my feature set. This was because

neighboring species IDs provided some species information to which species was the

gene belongs to. I conclude that overall differences in performance between the two

approaches can largely be an attributed to the learner model, i.e. CRF rather than

ME.

4.3.2 FSD model

The contribution of external features is shown in Figure 4.2. I first selected the

abstracts from each set of external resources I-IV shown in Figure 4.2 and applied

the HBC method and then extracted species information which was described in the

Method section.

Ablation experiments were conducted to compare different sets of features as

shown in Table 4.4. Species is indicated as H (Homo sapiens, NCBI taxon 9606),

M (Mus musculus, NCBI taxon 10090), F (Drosophila melanogaster, NCBI taxon

7227) and Y (Saccaromyces cerevisiae, NCBI taxon 4932).

After introducing external document features, the performance increased greatly,

especially for Saccharomyces cerevisiae. This is caused by that the title of selected
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Table 4.4: Micro-averaged 10-fold cross validation comparison of features for focus
species classification

Spec. GN SW
P R F P R F

Average 9.78 24.99 14.01 49.47 29.27 35.43
H 38.14 99.96 55.65 40.62 98.23 56.85
F 0.00 0.00 0.00 96.08 9.91 17.50
M 0.00 0.00 0.00 31.42 5.50 8.65
Y 0.00 0.00 0.00 29.75 3.43 5.94

GN+JN GN+DT
Average 31.22 27.22 30.09 12.09 25.97 16.24

H 39.56 95.58 55.34 40.34 97.01 56.22
F 58.80 5.93 10.34 8.03 6.87 6.65
M 26.51 7.35 10.85 0.00 0.00 0.00
Y 0.00 0.00 0.00 0.00 0.00 0.00

GN+JN+DT GN+JN+DT+MH
Average 39.79 33.30 37.18 43.14 38.78 42.83

H 45.15 90.66 59.51 50.42 91.04 64.21
F 52.56 28.64 33.13 56.73 43.12 47.03
M 51.55 12.45 19.06 55.50 19.52 28.12
Y 9.90 1.43 2.47 9.90 1.43 2.47

GN+JN+DT+MH+SW
GN+JN+DT+MH+SW

(related citation)
Average 46.34 39.52 43.40 76.96 74.50 77.93

H 52.66 87.55 64.90 77.21 79.63 87.59
F 53.40 50.85 49.95 79.92 98.45 76.85
M 68.98 19.13 28.57 87.84 86.98 86.66
Y 9.90 0.53 0.99 62.89 32.95 41.63
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associated/citing papers for the papers of Saccharomyces cerevisiae is much likely

contain the species word. The best performing combination of features achieved an

overall F-score of 91.14%, which is 47.74% above the best model without features

extracted in the EIE model. It can be argued that the size of the DECA corpus

leads to low frequency feature counts particularly for the rare species such as Rattus

norvegicus and that there is an inbuilt bias towards a method that uses an exter-

nal knowledge source like MEDLINE [54]. However I note that the internal features

included the results of the GT model with over 90% F-score for gene name disam-

biguation. The result indicates that this potentially rich source of information, such

as the related citation provided by PubMed, contained a high degree of ambiguity

that could not easily be resolved using internal clues alone.

I also noticed that although the journal name and title by themselves do not appear

to improve the F-score, combining them with other features improves performance.

This was especially noticeable in Drosophila melanogaster where the F-score increased

by about 9%.

4.3.3 Comparison of performance for external resources in

the EIE model

Different combinations of external resources were tested with the results shown in

Table 4.5. The best performance was achieved using a combination of related citations

(F-score: 91.14%).

Drill down analysis revealed that one of the external resources, associate papers

provided by Pubmed, achieved the best performance. Those designated as IV in

Figure 4.2 performed worst among combinations of external resources. One interesting
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Table 4.5: Micro-averaged 10-fold cross validation comparison for different combina-
tion of external resources

Spec. I+II II

all related citations
related citations
(earlier than target)

P R F P R F
Average 92.10 90.24 91.14 85.64 84.63 85.10

H 92.68 95.24 93.28 85.63 79.96 81.91
M 87.26 92.22 88.86 77.27 87.10 81.00
F 93.32 87.02 88.78 88.46 82.88 84.52
Y 95.15 86.50 89.80 91.21 88.58 88.91

I III

related citations
(later than target)

related citations
(later than target)
excluded citing

Average 77.32 69.41 73.03 80.65 68.99 74.33
H 70.72 91.02 78.75 66.88 87.59 75.07
M 84.04 84.79 83.63 78.67 74.65 75.40
F 89.81 83.79 85.90 88.25 64.94 73.81
Y 64.70 18.06 27.04 88.80 48.77 61.33

IV IV
citing paper(HBC) citing paper(all)

Average 60.37 39.04 46.93 62.66 48.40 54.40
H 47.75 94.91 62.78 54.12 85.94 65.56
M 78.45 33.73 44.24 62.44 52.35 55.46
F 68.86 17.53 27.21 82.45 40.07 52.19
Y 46.41 9.98 15.82 51.61 15.24 22.68

II+IV II+IV
related citations
(earlier than target)
+citing paper(HBC)

related citations
(earlier than target)
+citing paper(all)

(all citation)
Average 87.54 84.88 86.15 85.97 84.69 85.30

H 85.57 85.55 84.82 85.97 79.59 81.76
F 81.71 87.56 83.72 78.22 89.49 82.40
F 91.73 80.72 85.10 92.14 85.04 87.50
Y 91.12 85.68 87.11 87.55 84.63 85.16

II+III+IV II+III+IV
related citations
+citing paper(HBC)

related citations
+citing paper(all)

Average 88.36 86.86 87.56 87.93 86.58 87.19
H 86.25 85.57 85.26 86.95 83.31 84.23
F 81.84 88.69 84.45 80.51 88.88 83.60
M 93.40 87.51 89.15 93.47 87.85 89.32
Y 91.94 85.68 87.50 90.78 86.27 87.28



65

Table 4.6: Micro-averaged 10-fold cross validation comparison for different combina-
tion of external resources(Cont.)

III+IV III+IV
related citations
(later than target)
+citing paper(HBC)

related citations
(later than target)
+citing paper(all)

Average 81.87 68.01 74.24 83.68 74.67 78.80
H 65.11 90.80 75.00 71.03 87.12 77.28
F 82.89 72.72 76.10 80.78 77.24 77.73
M 90.50 64.04 73.53 90.84 77.46 81.47
Y 88.97 44.49 57.15 92.08 56.87 68.10

II+III
related citations
excluded citing paper

Average 87.44 86.23 86.78
H 87.24 82.26 84.06
F 77.95 87.97 82.04
M 93.40 87.51 89.15
Y 91.15 87.17 87.83

result is seen when I compare the F-score using set III and set IV. When excluding the

citing papers, performance improved greatly especially for Saccharomyces cerevisiae.

This is because the associated paper for Saccharomyces cerevisiae more likely to

contain the species words and citing papers contained less information of such species

words.

The average date of the selected papers compared to the target paper for set III is

2.1 years; however, for set IV, it was 6.3 years. This raises the interesting possibility

that selection should be adjusted for recency.
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4.4 Discussion

In this experiment, I am the first people to introduce bibliographic features into focus

species identification task. I conclude that external features, such as bibliographic

features, are effective to focus species identification in biomedical abstract.

There are several causes of low performance for rare species entity classification

such as Rattus norvegicus (F-score: 22.6). Compared to Wang et al.’s work, HYBRID

generally performed better for low frequency species than my system. Secondly, in

the FSD step, as the number of abstracts belonging to Rattus norvegicus is quite

small (less than 1%), tests showed a high degree of confusion between the Rattus

norvegicus/Homo sapiens and Rattus norvegicus/Mus musculus pairs. As the output

of the GT model was used in other models, I decided not to test the low frequency

species in the latter steps of FS tagger.

From the result, I found that using abstracts designated as III in Figure 4.2,

the performance improved about 20%, especially for Saccharomyces cerevisiae, where

the performance improved by 39%, compared to using abstracts designated as IV

in Figure 4.2. The drill down analysis result was shown in the previous section. I

concluded that the selected paper in set III is much closer to the paper select in citing

papers.

I found that bibliographic features improved classification of some low frequency

species. An example is shown in Figure 4.5, where the target abstract focused on

Saccharomyces cerevisiae. The classification is complicated because Homo sapiens

appears as a species word and the abstract also contains a protein with a Homo

sapiens Taxon ID. By only considering internal features, the model cannot obtain the

correct result. Using the closest associated papers strongly suggested the abstract is
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Figure 4.5: An example of using associated citation features for identifying focus
species for an abstract (PMID: 10376878)

focused on Saccharomyces cerevisiae.

It is encouraging to use the external resources, however, there are still remain

challenge to study further for the citation relations. A promising line of work is to

use typed relations between citing articles and it is interested to study whether the

semantics of these relations can contribute to the task of focus species classification.

After introducing the bibliographic features, the performance increased greatly,

especially for Saccharomyces cerevisiae. The best performing combination of features

achieved an overall F-score of 91.14%, which is 47.74% above the best model with-

out EIE features. It can be argued that the size of the DECA corpus leads to a

fragmented probability distribution; particularly for low frequency species and that
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there is an inbuilt bias towards a method that uses an external knowledge source like

MEDLINE. However I note that the internal features included the results of the GT

model with over 90 F-score for gene name disambiguation. The result indicates that

this potentially rich source of information contained a high degree of ambiguity that

could not easily be resolved using internal clues alone.

I also see that although the journal name and title by them-selves do not appear

to improve the F-score, whereas combining them with other features improves perfor-

mance. This was especially noticeable in Drosophila melanogaster where the F-score

increased by about 9%.

4.5 Conclusion

The sub thesis question in this chapter is that of the abstracts which are cited or

archived in the PubMed database, do bibliographic features provide enhanced classi-

fication accuracy? In this experiment, by using of the citing papers and associated

papers provided by PubMed, I extracted the species information to help the iden-

tification task for focus species, such kinds of bibliographic features were showed to

enhance the F-score of the identification task in abstracts.
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Citation Scheme Development

As mentioned in Chapter 2, there has been growing interest in citation analysis within

the biomedical text mining community and several researchers have developed their

own citation schemes. From my results in the previous experiments I have found

that the use of bibliographic information offers some important clues about the focus

species class, helping to focus the classifier on the correct species. I am interested to

see whether selective differentiation of the citations would yield improved performance

on focal species classification. For this purpose, I developed a new citation scheme

based on the citation function in biomedical papers.

One of the most widely considered citation scheme is S. Teufel et al. ’s [2] applied

to computer science papers. As shown in Figure 5.1, we can see that the citation

function is more concentrated on method part which is because the structure of

computer science papers are much more concentrated in method description when

citing other papers. However, the purpose and structure of biomedical papers are

quite different, i.e. the biomedical papers are much more concentrated on result

descriptions when citing other papers.

As Teufel’s scheme is only partly suitable for this task, I searched Y. Mizuta and
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Category Description
Weak Weakness of cited approach
CoCoGM Contrast/Comparison in Goals or Methods (neutral)
CoCo- Authors work is stated to be superior to cited work
CoCoR0 Contrast/Comparison in Results (neutral)
CoCoXY Contrast between 2 cited methods
PBas Author uses cited work as basis or starting point
PUse Author uses tools/algorithms/data/definitions
PModi Author adapts or modifies tools/algorithms/data

PMot
This citation is positive about approach used or problem addressed
(used to motivate work in current paper)

PSim Authors work and cited work are similar

PSup
Authors work and cited work are compatible/provide support for
each other

Neut
Neutral description of cited work, or not enough textual evidence
for above categories, or unlisted citation function

Figure 5.1: S. Teufel et al. schema of Citation functions [2]

N. Collier’s scheme shown in Figure 5.2. Their scheme is based on biomedical papers

which is in same domain. However, their scheme is used for zone analysis, the scheme

is in the view of section analysis. Zone analysis investigates the global rhetorical status

of each sentence in terms of argumentation and intellectual attribution. Citation

analysis investigates the purpose of a citation. Although their purpose is different to

my research, their scheme is well studied in biomedical domain, I took their scheme

as a starting point for my own citation scheme development.

5.1 Scheme development

Citations are important in scientific papers. According to Teufel et al, there are dif-

ferent reasons for each citations, including ”mentioned similar method”, ”mentioned
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• BACKGROUND (BKG): an assumption referring to previous work or a gener-
ally accepted fact.

• PROBLEM SETTING (PBM): a problem to be solved and/or the goal of the
present work/paper.

• OUTLINE (OTL): a characterization or a summary of the content of the paper

• TEXTUAL (TXT): the organization of the paper.

• OWN: the authors own work. Sub classes:

1. METHOD( MTH): methodology and materials;

2. RESULT (RES): the results of the experiment performed;

3. INSIGHT (INS): the insights/findings obtained (e.g. the authors interpre-
tation of the result);

4. IMPLICATION (IMP): the implications of the experimental result, includ-
ing conjectures, assessment, applications, and future work;

5. ELSE (ELS): anything else about the authors work;

• DIFFERENCE (DFF): a contrast or inconsistency between data and/or find-
ings.

• CONNECTION (CNN): a relation or consistency between data and/or findings.

Figure 5.2: Scheme of Y. Mizuta and N. Collier [3]
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the data used”, ”neutral description” and etc. Investigating why papers cite another

paper can help us to find the papers with similar topics. Mizuta [3] widely cited

scheme was developed based on the rhetorical function each clause has in reporting

a scientific result in a biomedical paper. To meet our purpose of identification focus

species in biomedical abstract, I avoid using complex scheme. My redefinition of the

categories aims at reliable annotation; at the same time, the categories should be

informative enough for document selection in citing paper pools.

I modified the scheme by specializing it to the citation function. My categories

are as follows: One of the categories is the BKG function which stands for the back-

ground function. In the background function, the citation function includes neutral

description of gene mentions, introduction of other’s works and such kinds of gen-

eral introduction citations. This function is mainly in background and introduction

section, but it can also be found as neural descriptions in other sections.

The next category is DAT (data) function which mainly appears in data and

method section and describe the data used in the current paper. This function al-

ways mentioned that the citation papers use the same or similar experimental model,

experiment medicine and etc as the original papers.

The third category is EXP (Experiment) function. EXP (Experiment) function

mainly appeared in experiment section which described an experiment did in citation

paper.

The final category is RSL (Result) function which mainly appeared in result of

discussion section which described a result mentioned in citation paper. There are

different kinds of result: (1) the citing paper has similar results of the original paper;

(2) the citing paper’s result support the result of original paper; (3) the citing paper
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has positive results to the original paper. I didn’t category the result function in

detailed because to meet our purpose, different kinds of result doesn’t make any

different.

In my scheme, BKG is same as BKG function in Mizuta’s scheme, the PBM, OTL,

TXT function in Mizuta’s scheme are not contained in our scheme because in such

sections, there are no citation mentioned. I divided Mizuta’s MTH function into two

functions: DAT and EXP, because the materials and methodology in the experiment

are different in citation view. The RSL function is similar to Mizuta’s RES function.

The INS, IMP function in Mizuta’s are not considered in my scheme because these

sections contained less information of citations. I didn’t use DFF and CNN function

in Mizuta’s scheme because that in our purpose, the citation function is same whether

it is different or similar in the data/findings.

Though my scheme is quite simple compared with the citation function of Teufel’s

(2006) [2] and Y. Mizuta’s [3], its aim is to help to find the similar topic for one citation

papers. The simple one can achieve this purpose much easier.

Citation function is hard to annotate because the citation represents the author’s

intention when citing another work. My principle of citation function is to avoid

ambiguities in citation functions.

5.1.1 Set of Citation Functions

In Figure 5.3, there is a target paper T1 which we want to classify for its focal species

and a paper citing this target paper which is called C1. My scheme considers why

C1 cites T1.

The set of citation functions are shown in Table 5.1.
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Figure 5.3: An example of citation structure
T1: the target paper.
C1: the citing paper cited T1.

Table 5.1: Citation function
Citation function Description

BKG (Background)
The citation was caused by general
introduction of the work T1 or a neutral
description.

DAT (Data and data structure)
C1 cites T1 in the data section to describe the
data used in C1

EXP (Experiment)
C1 cites T1 in the experimental section. The
reason of citation was C1 mentioned an
experiment in T1.

RSL (Result)
C1 cites T1 in the result section to describe an
experimental result in T1.
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The basic citation function is a citation sentence with the section information

which the citation sentences appeared in citing paper. To analyze a citation sentence,

I explored two level annotations.

5.1.2 Citation Principle

To annotate a citation sentence, first the section information was considered; And

then rule is applied in annotation. To show an example here:

(1)[Experiment section] Similar results were obtained following parenteral immu-

nization of B cell-deficient mice with Schistosoma mansoni eggs, in that immune

deviation from a Th2 to a Th1 response was observed (< CITATION > 17 <

/CITATION > ).

(2)[Discussion section] Two Rb-related proteins, p107 and p130 (14, 20, 36, <

CITATION > 39 < /CITATION > ), did not interact with hsHec1p.

(3)[Result section] In fact, the subpopulations changed in a manner similar to

normal mice and, as previously reported, <CITATION> 47-49 </CITATION> with

the exception of the CD8 α α and CD8 α β IEL subpopulations.

The section information was first examined and the citation function was first

generally classified in accordance with the section functions: for example, in the first

round annotation, example (1) is an EXP function, example (2) is an RSL function

and example (3) is an RSL function.

The second step is rule based annotation. The sentence in example (1), (2) and

(3) is analyzed by parser. In accordance with the results of the parser, keywords

such as time and verb are identified. With the rule explored, the citation function are

determined. Two rules were developed for the annotation. (a) if there are keywords in
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the set of keywords DAT, EXP, RSL, the citation function remained. (b) if the citation

mark directly followed by gene names, the citation function is BKG. According to

the parser, the (1) included the keywords obtain, (3) included the keyword previously

and report. In (2), the citation was directly followed the gene names and the citation

function was changed to BKG functions.

5.2 Experiment and Result

Hypothesis three: Of the abstracts which are cited does a typed citation

function provide enhanced classification accuracy? Also what citation

types provided the most useful?

To test the citation function I developed, the FS tagger software presented in the

last chapter was used. As mentioned in the last chapter, FS tagger included three

models: the GT model (Gene mention Taxon ID annotation model), the EIE model

(External resource information extractor) and the FSD model (Focus species decision

model). In this experiment, I modified the EIE model, so that only citing papers are

selected. I selected the citing papers according to the citation functions. The citing

papers of same function are all selected out and the species words in abstracts and

titles are extracted to use as the external features in FSD model.

5.2.1 Citation function selection

Citation functions are classified by a Machine learning classifier. First, citation sen-

tences are picked up in citing papers and the section information is also picked up in

this step. Second, citation sentences were parsed by Miyao and Tsujii’s Enju parser
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[82]. Third, a rule-based classifier was developed for classifying citation functions.

There are three rules in classifier. (A) The section location of the citation sentence.

There are six kinds of section location were included: introduction, background, data,

method, result and discussion. (B) Keywords search, the key words with specific verb

and time are considered. There are 56 keywords included. These consisted of two

kinds of keywords. The first group is the verb to describe the relationship between

the two papers, such as describe, report and etc. The second group is the word to

show the time such as previous, recently and etc. (C) Citation location, the location

of the mark of the citation. For example, whether the citation mark directly follows

the gene/ gene products.

For example,

<Result section> In fact, the subpopulations changed in a manner similar to nor-

mal mice and, as previously reported, <CITATION> 47 - 49 </CITATION> with the

exception of the CD8 α α and CD8 α β IEL subpopulations.

In the example, the citation sentence was first picked out with the section infor-

mation and then the sentence was analyzed by the parser. Then the sentence was

examined by rules. By first rule, the sentence was belonged to RSL function. By

second rule, the keywords were previously and report, then the citation function was

remained as RSL function. By third rule, the citation function was remained as RSL

function. Then the citation function of the sentence was RSL function.

As mentioned upon, I have a list of keywords to search. There are two kinds

of keywords existed. One is related to time, such as ”in previous research”, ”to

our knowledge”. I treated such kinds of keywords as a clue to the comparison of

experiment and result. The other kind of keyword is verb, such as ”report”, ”show”,
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Table 5.2: Accuracy of Citation function classification
P R F

BKG 0.94 0.98 0.96
DAT 0.93 0.95 0.94
MTH 0.95 0.93 0.94
RSL 0.96 0.96 0.96

”present”, these are the verbs often used in scientific goal of a paper is defined.

5.2.2 Results

As the number of citation sentences was quite large, to test the accuracy of the rule-

based classifier, 200 citation sentences for each of citation function were randomly

selected out and the citation function were annotated manually. The test result was

shown in Table 5.2. From the result, the F-score of four types of citation functions

were all upon 94%.

In my previous work, I used the HBC method to select citing papers. In this ex-

periment, citing papers were first classified in accordance with their citation functions.

In addition, citing papers with same types of citation functions were selected out and

the species information was extracted from these papers and used to classify the focus

species of the whole document. The results are shown in Table 5.3. The results show

that BKG function was not effective for focus species classification. However, RSL

function was most useful in classification, followed by the MTH function.

5.3 Discussion

In this chapter, I present a citation function for biomedical papers. The performance

of focus species identification changed much by selecting citing papers with different
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citation functions. The citing papers cited the target papers in result sections per-

formed best among four different citation functions. In this experiment, I showed

that different citation functions provides different distance of the citing paper to the

target papers.

In this experiment I analyzed the effectiveness of the newly proposed citation

scheme. There is a assumption that the citations with the purpose evolutionary or

juxtapositional use have the same focus species as the original paper. In fact, this

is not always true, for example, the citation talking the experimental model in the

original paper and the influenced organism in the citation paper. To avoid such kinds

of case, there is a need to specific the citation functions in more detailed way.

5.4 Conclusion

The sub-question in this chapter is that of the abstracts which are cited does a

typed citation function provide enhanced classification accuracy? Also what citation

types prove the most useful? In this experiment, a citation scheme contained 4

different citation functions was developed. By this citation scheme, typed citation

function provide an enhance of 29.05% of F-score for classification of focus species

in abstracts. The citation type called RSL provided the most useful among the four

kinds of citation functions. Although we showed the improvement by using such kinds

of citation scheme, the performance of the focus species classification in abstracts was

still lower than using external features such as PubMed related papers. As the current

citation scheme was simple and relied on the section of the citing papers, whether a

more detailed citation scheme can achieve a relevant performance as using external

features extracted from PubMed related papers remained as a challenge work.



Chapter 6

Discussion

The series of experiments described in this dissertation, showed a F-score of 90.4%

for classifying focus species in full-text papers and 79.3% for classifying focus species

in abstracts by using lexical semantic features. An F-score of 91.14% was achieved

for classifying focus species in abstracts by introducing external resources. I also

demonstrated an improvement of 17.60% by selecting citing papers according to the

citation function.

6.1 FS tagger

FS tagger is an online tool I have provided based on the experiments shown in

this dissertation. FS tagger is available as a demonstration service at http://www-

collier.nii.ac.jp/fstagger/index.php. The software is freely available on request from

the author of this dissertation. A screen shot is shown in Figure 6.1. FS tagger is in

English. The user can input a PubMed ID and then the detailed results will be shown

by FS tagger. The default results include PMID, the title of the requested paper, the

abstract of the paper, and the focus species of the requested paper. A more detailed

result is provided by clicking the drop-down menu in the results page. The journal

81
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information, MeSH Headings, and species words in the given paper and the PMID of

related bibliographic papers are also included.

The model is trained on the entire DECA corpus and the best feature set with

GENE name, species words, document title, journal name, MeSH Main headings and

species words extracted from associated papers shown in Chapter 2.

6.2 Citation selection

As I mentioned in Chapter 3, abstracts contained less information than the full-

text papers regarding the focus species. That being the case, for abstracts, external

resources can provide valuable additional clues. In my drill-down analysis I found

that bibliographic features improved the F-score of some low-frequency species. An

example is shown in Figure 4.5, where the target abstract focused on Saccharomyces

cerevisiae. The classification is complicated because Homo sapiens appears as a

species word and the abstract also contains a protein with a Homo sapiens TaxonID.

By only considering internal features, the model cannot obtain the correct result.

As internal features are extracted from the paper itself, if there are several species

mentioned in the paper, features such as species words would contain several values.

As the machine-learning classifier makes decisions based on features, the learning

model may give the wrong focus species as a result. Using citation features however,

the closest cited and citing papers both strongly suggested that the abstract was

focused on Saccharomyces cerevisiae.

Including associated papers to identify the focus species was successful when ap-

plied to the abstract, however, a deeper analysis is needed. As shown in the previous

chapter, only using citation papers with abstracts does not perform well compared
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(a) Search page of FS tagger

(b) Result of search PMID 1833184

Figure 6.1: Screenshot of FStagger showing the request of PMID 1833184
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to using PubMed related papers. This raised the question of whether the low per-

formance was caused by the selection method or the citation papers themselves. Ex-

periment three explored this question by differentiating citations using a citation

function.

6.3 Simple citation scheme

In the development of the citation scheme, first, I tried to adapt my scheme from

S. Teufel’s [2], a scheme that is based on computer science papers which were much

more focused on method. However, the structure of the biomedical papers seems

quite different. Then I moved to Y. Mizuta’s [3] scheme which is based on biomedical

papers. However, the scheme was designed for zone analyze and my work was more

directed towards the citation function. Based on these differences, I adapted Mizuta’s

scheme and developed a new citation scheme, because my purpose in developing the

citation scheme was to help select the citing papers to use in the task of focus species

identification task. I argue that the advantage of using a simple scheme is that: (1)

A simple scheme can make the selection of the citing papers better focused. (2) A

simple scheme can avoid ambiguities in citation function annotation.

After testing the citation scheme on FS tagger, I found that different citation

functions provided different levels of performance in the focus species identification

task. The RSL function, in which the citing paper cites the original papers because

that the citing paper described the experiment result in the original paper, were most

effective in identifying the focus topic. The reason the RSL function performs best

is because it looks for cases in which the citation is mentioned in a comparison of

the result of two experiments, and such comparisons are quite likely to be between
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the same species, thus, the two papers most likely deal with the same species. The

BKG function performed worst because the citations in the BKG function are general

description of a gene or gene products, there are rare species relations between two

papers.

When applying the citation scheme on FS tagger, selecting the citation paper

based on the citation function was much more effective than selecting it based on

the superficial words. A new question was raised: the citation function I created was

strongly reliant on the section information of the citation papers, is this rely positive

or negative to the selection of the citation papers.

6.4 Papers with multiple focus species

In the experiments reported in this dissertation, I assumed that one paper only deals

with one focus species, but some papers involve several focus species. An example

is shown in Figure 6.2, where the abstract mentions four species: Drosophila, Mus

musculus, Danio rerio and Bombyx mori. Approximately approx 5% of the articles

involved multiple species in my full-text paper corpus and 2% of articles mentoned

multiple species in the DECA corpus I used. Error analysis showed that some errors

across Mus musculus and Homo sapiens were caused by this kind of multiple focus

species. To deal with such errors, I plan in future work to extend the framework and

allow the assignment of multiple focus species, possibly also taking into account the

subsumption relations within a taxonomy of focus species.

In future work, it may be necessary to develop a classifier to output a focus

species list, perhaps as a list of major and minor species or a ranked species list with a

probability assigned to each species. To achieve this, first, I need to adjust my training
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Coatomer is a major component of COPI vesicles and consists of
seven subunits. The gamma-COP subunit of the coatomer is be-
lieved to mediate the binding to the cytoplasmic dilysine motifs of
membrane proteins. We characterized cDNAs for Copg genes encod-
ing gamma-COP from mouse, zebrafish, Drosophila melanogaster
and Bombyx mori. Two copies of Copg genes are present in verte-
brates and in B. mori. Phylogenetic analysis revealed that two paral-
ogous genes had been derived from a single ancestral gene by dupli-
cation independently in vertebrates and in B. mori. Mouse Copg1
showed ubiquitous expression with the highest level in testis. Ze-
brafish copg2 was biallelically expressed in hybrid larvae in contrast
to its mammalian ortholog expressed in a parent-of-origin-specific
manner. A phylogenetic analysis with partial plant cDNA sequences
suggested that copg gene was also duplicated in the grass family
(Poaceae).

Figure 6.2: An example of abstract with multiple focus species

data, in the current experiment,for each paper from DECA corpus,I annotated the

focus species using the classes in the BioCreAtIvE sources, by providing the species

list, I need to provided the species list of each paper. Second, in the testing model, I

need to adjust the models to give the all possibility of the focus species.

6.5 Identification of species mentions

In the current experiments, species words are identified by a species dictionary I

created manually, which include different forms for 4 species. However, to manually

extend the species dictionary to include more organisms would be a difficult task. A

species mention identifier is needed. One recently released species mention tagger is

Organism Tagger, developed by Naderi et al. [83]. Their system achieved an accuracy

of 97.5% on the OT corpus. To extend my system to more organisms, an identifier
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like this should be added.
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Chapter 7

Conclusion

In this dissertation, I have described a series of experiments on focus topic identi-

fication: (1) First I explored a series of experiments, then based on the results of

these I showed the relative merits of various in document lexical semantic features

in full-text papers and abstracts; (2) Then, considering the limitations of full-text

papers, new features were developed for abstracts. External resources were explored

for the abstracts for the focus species identification task. Using the best feature set,

an online tool called FStagger was developed. In this experiment, different feature

sets and different external resources were compared, and I showed the value of us-

ing bibliographic resources. (3) Finally,the question was raised whether the citation

function was effective in the selection of external resources and a citation function

scheme was developed and tested on the same task. Experiment showed that different

citation functions produced performance different in the focus species identification

task.

I demonstrated a system that automatically categorizes full-text papers into 3

organism categories and another system (FStagger) that automatically categorizes ab-

stracts into 4 organism categories: Homo sapiens, Mus musculus, Drosophila melanogaster
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and Saccharomyces cerevisiae. Different combinations of bibliographic features were

tested in the experiment and a best F-score of 91.14% was achieved. My analysis

has shown that (a) species words from PubMed related citations published after the

target abstracts were better predictors of the target species than those from papers

citing the target abstracts; (b) bibliographic features can improve the performance

on low-frequency species. As the bibliographic information was useful. I chose to

explore citation functions as a way of differentiating between them. Further analysis

showed that the citation papers that cited the original paper because they described

the results of the original paper were most effective in the categorization task.

There are still several limitations of my experiment which needs to be improved in

the future. (1) My experiment assumed that each paper only has one focus species.

In the future, I will consider ways to introduce a species list to deal with multiple

species in one paper. (2) The current simple scheme of the citation function was not

experimentally compared to alternative schemes such as the more complex approaches

outlined by Teufel or Mizuta for zoning tasks. (3) Also, in my experiment, I only used

basic learning models such as CRFs. In the future, I will consider how to introduce

more new learning models such as collective classification using networked data. (4)

For the external resources selection, the HBC selection method was used. In the

future, I will consider whether other selection methods can be used and what the best

selection method for this task is. Another limitation is that I only used species words

extracted from bibliographic resources as external features, and if taxon identifiers

were available for all citing papers and associated papers, the performance could likely

be improved by 3%.

In the present experiments, I identify 3 species in full-text papers and 4 species in
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abstracts. To answer the thesis question, I should consider working on more species.

With the features I used in the present experiments, extending the work to more

species requires considering the following points: (1) Gene names and species men-

tions are the features that are useful for the classification task. For the gene names, the

identification tools used in the present experiment are useful. For species mentions,

as in the present experiment, the species mentions are identified using a dictionary-

based method, and to extend the work to more species, automatic tools should be

provided. (2) Document titles contain information on species, however, in my experi-

ment, I showed that by using only document titles gave no performance improvement.

However, using the combination of document titles and journal names gave an im-

proved F-score. I used journal names because I assumed that some of the journal

names might contain the species information. To extend the work to more species,

using the combination of document titles and journal names may not yield much

obvious improvement. (3) MeSH headings show the value in my experiment. As the

MeSH headings are used as an index clue for focus species, they are considered to

be useful when extending the work to more species. (4) Taxon ID shows the species

information for each gene mentions, so if I can extend the use of Taxon ID not only in

target abstracts but also in the external abstracts, the accuracy of the classification

task may be improved. However, the method of identifying the Taxon ID should be

changed, and should not only rely on the DECA corpus because that corpus is quite

small. (5) Bibliographic features were shown to be useful in the classification task.

As such kinds of external resources can easily be obtained through PubMed, I believe

that they will be useful when extending the task to more species. In the present ex-

periment, only citing papers are tested, so considering that there are no citing papers
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for a newly published paper, in the future, the contract part, cited papers should

also be used. In a conclusion, if I can improve the points I mentioned earlier such

as Taxon ID and species word identification, I believe that the current method using

external features and citation scheme can give the similar level of performance if I

extend the work into more species.



Bibliography

[1] Xinglong Wang, Jun’ichi Tsujii, and Sophia Ananiadou. Disambiguating the

species of biomedical named entities using natural language parsers. Bioinfor-

matics, 26(5):661–667, 2010.

[2] Simone Teufel, Advaith Siddharthan, and Dan Tidhar. Automatic classification

of citation function. In Proceedings of the 2006 Conference on Empirical Methods

in Natural Language Processing, EMNLP ’06, pages 103–110, Stroudsburg, PA,

USA, 2006. Association for Computational Linguistics.

[3] Yoko Mizuta and Nigel Collier. An annotation scheme for a rhetorical analysis

of biology articles. In Proceedings of the Forth Intl. Conference on Language

Resources and Evaluation (LREC2004), 2004.

[4] Fabio Rinaldi, Thomas Kappeler, Kaarel Kaljurand, Gerold Schneider, Manfred

Klenner, Simon Clematide, Michael Hess, Jean-Marc von Allmen, Pierre Parisot,

Martin Romacker, and Therese Vachon. Ontogene in biocreative ii. Genome

Biology, 9(Suppl 2):S13, 2008.

[5] Xinglong Wang and Michael Matthews. Distinguishing the species of biomedical

named entities for term identification. BMC Bioinformatics, 9(Suppl 11):S6,

2008.

93



94

[6] T Kappeler, K Kaljurand, and F Rinaldi. Tx task: Automatic detection of focus

organisms in biomedical publications. In Workshop on BioNLP, pages 80–88,

June 2009.

[7] Imad Tbahriti, Christine Chichester2, Frdrique Lisacek, and Patrick Ruch1. Us-

ing argumentation to retrieve articles with similar citations: an inquiry into

improved related articles search in the medline digital library. Int. J. Med. Inf.,

75(6):488–495, 2006.

[8] Preslav I. Nakov, Ariel S. Schwartz, and Marti A. Hearst. Citances: Citation

sentences for semantic analysis of bioscience text. In Proceedings of the SIGIR04

workshop on Search and Discovery in Bioinformatics, 2004.

[9] Baoping Zhang, Marcos Andre Goncalves, Weiguo Fan, Yuxin Chen, Edward A

Fox, Pavel Calado, and Marco Cristo. Intelligent Fusion of Structural and

Citation-Based Evidence for Text Classification, pages 667–668. Number TR-

04-16. ACM Press, 2005.

[10] Thierry Delbecque and Pierre Zweigenbaum. Using co-authoring and cross-

referencing information for medline indexing. AMIA Annu Symp Proc, 2010:147–

151, 2010.

[11] Alexander S. Yeh, Lynette Hirschman, and Alexander A. Morgan. The evaluation

of text data mining for database curation: lessons learned from the kdd challenge

cup. Bioinformatics, 19:331–339, 2003.

[12] Judith A. Blake, Joel E. Richardson, Carol J. Bult, Jim A. Kadin, Janan T.

Eppig, and The Mouse Genome Database Group. Mgd: the mouse genome

database. Nucleic Acids Research, 31(1):193–195, 2003.

[13] Susan Tweedie, Michael Ashburner, Kathleen Falls, Paul Leyland, Peter Mc-

Quilton, Steven Marygold, Gillian Millburn, David Osumi-Sutherland, Andrew



95

Schroeder, Ruth Seal, Haiyan Zhang, and The FlyBase Consortium. Flybase: en-

hancing drosophila gene ontology annotations. Nucleic Acids Research, 37(suppl

1):D555–D559, 2009.

[14] DictyDB (An ACeDB Database for Dictyostelium) BMC Ltd, BM Central - 2004

- en.scientificcommons.org.

[15] Wormpep (C. Elegans Protein Database) BMC Ltd, BM Central - 2003 -

en.scientificcommons.org.

[16] Lynette Hirschman, Alexander Yeh, Christian Blaschke, and Alfonso Valencia.

Overview of biocreative: critical assessment of information extraction for biology.

BMC Bioinformatics, 6(Suppl 1):S1, 2005.

[17] Rainer Winnenburg, Thomas Wchter, Conrad Plake, Andreas Doms, and

Michael Schroeder. Facts from text: can text mining help to scale-up high-quality

manual curation of gene products with ontologies? Briefings in Bioinformatics,

9(6):466–478, 2008.

[18] Zhenzhen Kou, William W. Cohen, and Robert F. Murphy. High-recall protein

entity recognition using a dictionary. Bioinformatics, 21(1):266–273, January

2005.

[19] Daniel Hanisch, Katrin Fundel, Heinz-Theodor Mevissen, Ralf Zimmer, and Ju-

liane Fluck. Prominer: rule-based protein and gene entity recognition. BMC

Bioinformatics, 6(Suppl 1):S14, 2005.

[20] Yanpeng Li, Hongfei Lin, and Zhihao Yang. Incorporating rich background

knowledge for gene named entity classification and recognition. BMC Bioin-

formatics, 10(1):223, 2009.



96

[21] Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka, Yuka Tateisi, and Nigel

Collier. Introduction to the bio-entity recognition task at jnlpba. In Proceed-

ings of the International Joint Workshop on Natural Language Processing in

Biomedicine and its Applications, JNLPBA ’04, pages 70–75, Stroudsburg, PA,

USA, 2004. Association for Computational Linguistics.

[22] W. Hersh, A. Cohen, P. Roberts, and H. Rekapalli. TREC 2006 genomics track

overview. In TREC Notebook, 2006.

[23] Ralph Grishman and Beth Sundheim. Message understanding conference-6: a

brief history. In Proceedings of the 16th conference on Computational linguis-

tics - Volume 1, COLING ’96, pages 466–471, Stroudsburg, PA, USA, 1996.

Association for Computational Linguistics.

[24] Zhou GuoDong and Su Jian. Exploring deep knowledge resources in biomedical

name recognition. In Nigel Collier, Patrick Ruch, and Adeline Nazarenko, edi-

tors, COLING 2004 International Joint workshop on Natural Language Process-

ing in Biomedicine and its Applications (NLPBA/BioNLP) 2004, pages 99–102,

Geneva, Switzerland, August 28th and 29th 2004.

[25] Dietrich Rebholz-Schuhmann, Antonio Yepes, Chen Li, Senay Kafkas, Ian Lewin,

Ning Kang, Peter Corbett, David Milward, Ekaterina Buyko, Elena Beisswanger,

Kerstin Hornbostel, Alexandre Kouznetsov, Rene Witte, Jonas Laurila, Christo-

pher Baker, Cheng-Ju Kuo, Simone Clematide, Fabio Rinaldi, Richard Farkas,

Gyorgy Mora, Kazuo Hara, Laura I Furlong, Michael Rautschka, Mariana Neves,

Alberto Pascual-Montano, Qi Wei, Nigel Collier, Md Chowdhury, Alberto Lavelli,

Rafael Berlanga, Roser Morante, Vincent Van Asch, Walter Daelemans, Jose

Marina, Erik van Mulligen, Jan Kors, and Udo Hahn. Assessment of NER so-

lutions against the first and second CALBC Silver Standard Corpus. Journal of

Biomedical Semantics, 2(Suppl 5):S11, 2011.



97

[26] Yoshimasa Tsuruoka and Jun’ichi Tsujii. Probabilistic term variant generator

for biomedical terms. In Proceedings of the 26th annual international ACM

SIGIR conference on Research and development in informaion retrieval, SIGIR

’03, pages 167–173, New York, NY, USA, 2003. ACM.

[27] GuoDong Zhou, Jie Zhang, Jian Su, Dan Shen, and ChewLim Tan. Recogniz-

ing names in biomedical texts: a machine learning approach. Bioinformatics,

20(7):1178–1190, 2004.

[28] Guodong Zhou. Recognizing Names in Biomedical Texts using Hidden Markov

Model and SVM plus Sigmoid. In Nigel Collier, Patrick Ruch, and Adeline

Nazarenko, editors, COLING 2004 International Joint workshop on Natural Lan-

guage Processing in Biomedicine and its Applications (NLPBA/BioNLP) 2004,

pages 1–7, Geneva, Switzerland, August 2004.

[29] Shaojun Zhao. Named Entity Recognition in Biomedical Texts using an HMM

Model. In Nigel Collier, Patrick Ruch, and Adeline Nazarenko, editors, COL-

ING 2004 International Joint workshop on Natural Language Processing in

Biomedicine and its Applications (NLPBA/BioNLP) 2004, pages 87–90, Geneva,

Switzerland, August 2004.

[30] Tzong han Tsai, Shih hung Wu, and Wen lian Hsu. Exploitation of linguistic

features using a crf-based biomedical named entity recognizer. In ACL Workshop

on Linking Biological Literature, Ontologies and Databases: Mining Biological

Semantics (BioLINK-05), 2005.

[31] Shipra Dingare, Malvina Nissim, Jenny Finkel, Christopher Manning, and Claire

Grover. A system for identifying named entities in biomedical text: how results

from two evaluations reflect on both the system and the evaluations: Conference

papers. Comp. Funct. Genomics, 6(1-2):77–85, February 2005.



98

[32] Lynette Hirschman, Alexander A. Morgan, and Alexander S. Yeh. Rutabaga by

any other name: extracting biological names. Journal of Biomedical Informatics,

35(4):247 – 259, 2002.

[33] Yoshimasa Tsuruoka and Junichi Tsujii. Improving the performance of

dictionary-based approaches in protein name recognition. Journal of Biomed-

ical Informatics, 37(6):461 – 470, 2004.

[34] Ronen Feldman, Yonatan Aumann, Yair Liberzon, Kfir Ankori, Jonathan Schler,

and Benjamin Rosenfeld. A domain independent environment for creating infor-

mation extraction modules. In Proceedings of the tenth international conference

on Information and knowledge management, CIKM ’01, pages 586–588, New

York, NY, USA, 2001. ACM.

[35] K. Fukuda, T. Tsunoda, A. Tamura, and T. Takagi. Toward information ex-

traction: Identifying protein names from biological papers. In Proceedings of the

Pacific Symposium on Biocomputing, pages 707–718, 1998.

[36] Haijian Shi. Best-first decision tree learning. Master’s thesis, University of

Waikato, Hamilton, NZ, 2007.

[37] Wlodzislaw Duch, Rafal Adamczak, Krzysztof Grabczewski, and Grzegorz Zal.

Hybrid neural-global minimization method of logical rule extraction. JACIII,

pages 348–356, 1999.

[38] le S. Cessie and van J. Houwelingen. Ridge estimators in logistic regression.

Applied Statistics, 41(1):191–201, 1992.

[39] Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of bayesian classi-

fiers. In Proceedings of the Tenth National Conference on Artificial Intelligence,

pages 223–228. MIT Press, 1992.



99

[40] Sang-Bum Kim, Kyoung-Soo Han, Hae-Chang Rim, and Sung-Hyon Myaeng.

Some effective techniques for naive bayes text classification. IEEE Trans. Knowl.

Data Eng., pages 1457–1466, 2006.

[41] Stephan Bloehdorn and Andreas Hotho. Boosting for text classification with

semantic features. In Proceedings of the 6th international conference on Knowl-

edge Discovery on the Web: advances in Web Mining and Web Usage Analysis,

WebKDD’04, pages 149–166, Berlin, Heidelberg, 2006. Springer-Verlag.

[42] M.A. Hearst, S.T. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support

vector machines. Intelligent Systems and their Applications, IEEE, 13(4):18 –

28, Jul/Aug 1998.

[43] Hagit Shatkay, Nawei Chen, and Dorothea Blostein. Integrating image data into

biomedical text categorization. Bioinformatics, 22(14):e446–e453, 2006.

[44] Aaron M. Cohen. An effective general purpose approach for automated biomed-

ical document classification. Proceedings of the American Medical Informatics

Association (AMIA) 2006 Annual Symposium, pages 161–165, 2006.

[45] Cui Yu, Beng C. Ooi, Kian-Lee Tan, and H. V. Jagadish. Indexing the Distance:

An Efficient Method to KNN Processing. In VLDB ’01: Proceedings of the

27th International Conference on Very Large Data Bases, pages 421–430, San

Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[46] S Haykin. Neural Networks: A Comprehensive Foundation, volume 13. Prentice

Hall, 1999.

[47] Jeffrey T. Chang, Hinrich Schtze Ph. D, Novation Biosciences, Russ B. Altman,

and Ph. D. Creating an online dictionary of abbreviations from medline. Journal

of the American Medical Informatics Association, 9:612–620, 2002.



100

[48] A. A. Morgan, B. Wellner, J. B. Colombe, R. Arens, M. E. Colosimo, and

L. Hirschman. Evaluating the automatic mapping of human gene and protein

mentions to unique identifiers. In Proceedings of Pacific Symposium on Biocom-

puting, 2007.

[49] Haw-ren Fang, Kevin Murphy, Yang Jin, Jessica S. Kim, and Peter S. White. Hu-

man gene name normalization using text matching with automatically extracted

synonym dictionaries. In Proceedings of the Workshop on Linking Natural Lan-

guage Processing and Biology: Towards Deeper Biological Literature Analysis,

BioNLP ’06, pages 41–48, Stroudsburg, PA, USA, 2006. Association for Compu-

tational Linguistics.

[50] Jeremiah Crim, Ryan McDonald, and Fernando Pereira. Automatically annotat-

ing documents with normalized gene lists. BMC Bioinformatics, 6(Suppl 1):S13,

2005.

[51] J. Michael Cherry, Caroline Adler, Catherine Ball, Stephen A. Chervitz, Selina S.

Dwight, Erich T. Hester, Yankai Jia, Gail Juvik, TaiYun Roe, Mark Schroeder,

Shuai Weng, and David Botstein. Sgd: Saccharomyces genome database. Nucleic

Acids Research, 26(1):73–79, 1998.

[52] Jeffrey T. Chang, Hinrich Schtze Ph. D, Novation Biosciences, Russ B. Altman,

and Ph. D. Creating an online dictionary of abbreviations from medline. Journal

of the American Medical Informatics Association, 9:612–620, 2002.

[53] Hongfang Liu and Cathy Wu. A study of text categorization for model organism

databases. In Lynette Hirschman and James Pustejovsky, editors, HLT-NAACL

2004 Workshop: BioLINK 2004, Linking Biological Literature, Ontologies and

Databases, pages 25–32, Boston, Massachusetts, USA, May 6 2004. Association

for Computational Linguistics.



101

[54] Jimmy Lin. Is searching full text more effective than searching abstracts? BMC

Bioinformatics, 10(1):46, 2009.

[55] Susan Bonzi. Characteristics of a literature as predictors of relatedness between

cited and citing works. Journal of the American Society for Information Science,

33(4):208–216, 1982.

[56] M. J. Moravcsik and P. Murugesan. Some results on the function and quality of

citations. Social Studies of Science, 5:86–92, 1975.

[57] Francis Narin. Evaluative bibliometrics: The use of publication and citation

analysis in the evaluation of scientific activity. Computer Horizons, 1976.

[58] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: an automatic

citation indexing system. In Proceedings of the third ACM conference on Digital

libraries, DL ’98, pages 89–98, New York, NY, USA, 1998. ACM.

[59] John Swales. Citation analysis and discourse analysis. Applied Linguistics,

7(1):39–56, 1986.

[60] Simon Buckingham Shum and Simon Buckingham Shum. Evolving the web for

scientific knowledge: ”first steps towards an hci knowledge web”. In Interfaces,

British HCI Group Magazine, pages 16–21, 1998.

[61] Donald O. Case and Georgeann M. Higgins. How can we investigate citation

behavior? a study of reasons for citing literature in communication. Journal of

the American Society for Information Science, 51(7):635–645, 2000.

[62] Melvin Weinstock. Citation indexes. In Encyclopedia of Library and Information

Science, 5:16–40, 1971.

[63] John Swales. Genre analysis: English in academic and research settings, vol-

ume 11, page 272. Cambridge University Press, 1990.



102

[64] Charles Oppenheim and Susan P. Renn. Highly cited old papers and the reasons

why they continue to be cited. Journal of the American Society for Information

Science, 29(5):225–231, 1978.

[65] Mark Garzone and Robert Mercer. Towards an automated citation classifier.

In Howard Hamilton, editor, Advances in Artificial Intelligence, volume 1822 of

Lecture Notes in Computer Science, pages 337–346. Springer Berlin / Heidelberg,

2000.

[66] Lorraine Tanabe and W. John Wilbur. Tagging gene and protein names in full

text articles. In Proceedings of the ACL-02 workshop on Natural language process-

ing in the biomedical domain - Volume 3, BioMed ’02, pages 9–13, Stroudsburg,

PA, USA, 2002. Association for Computational Linguistics.

[67] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H. Witten. The weka data mining software: an update. SIGKDD

Explor. Newsl., 11(1):10–18, November 2009.

[68] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional

random fields: Probabilistic models for segmenting and labeling sequence data.

In Proceedings of the Eighteenth International Conference on Machine Learning,

ICML ’01, pages 282–289, San Francisco, CA, USA, 2001. Morgan Kaufmann

Publishers Inc.

[69] Kenji Hirohata, Naoaki Okazaki, Sophia Ananiadou, and Mitsuru Ishizuka. Iden-

tifying sections in scientific abstracts using conditional random fields. In Proceed-

ings of the 3rd International Joint Conference on Natural Language Processing

(IJCNLP 2008), pages 381–388, 2008.

[70] Taku Kudo. Crf++: yet another crf toolkit. http://crfpp.sourceforge.net/.



103

[71] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag

New York, Inc., New York, NY, USA, 1995.

[72] Leo Breiman and Leo Breiman. Bagging predictors. In Machine Learning, pages

123–140, 1996.

[73] Ron Kohavi. The power of decision tables. In Proceedings of the European

Conference on Machine Learning, pages 174–189. Springer Verlag, 1995.

[74] Lorraine Tanabe and W. John Wilbur. Tagging gene and protein names in

biomedical text. Bioinformatics, 18(8):1124–1132, 2002.

[75] Stuart J. Nelson., Michael Schopen, Jacque-Lynne Schulman, and Natalie Arluk.

An interlingual database of mesh translations. In 8th International Conference

on Medical Librarianship, London, UK., 2000 Jul 4.

[76] Remco R. Bouckaert and Eibe Frank. Evaluating the replicability of significance

tests for comparing learning algorithms. In PAKDD’04, pages 3–12, 2004.

[77] Marc Colosimo, Alexander Morgan, Alexander Yeh, Jeffrey Colombe, and

Lynette Hirschman. Data preparation and interannotator agreement: Biocre-

ative task 1b. BMC Bioinformatics, 6(Suppl 1):S12, 2005.

[78] Alexander Morgan, Zhiyong Lu, Xinglong Wang, Aaron Cohen, Juliane Fluck,

Patrick Ruch, Anna Divoli, Katrin Fundel, Robert Leaman, Jorg Hakenberg,

Chengjie Sun, Heng-hui Liu, Rafael Torres, Michael Krauthammer, William

Lau, Hongfang Liu, Chun-Nan Hsu, Martijn Schuemie, K Bretonnel Cohen, and

Lynette Hirschman. Overview of biocreative ii gene normalization. Genome

Biology, 9(Suppl 2):S3, 2008.



104

[79] Yoshimasa Tsuruoka, Yuka Tateishi, Jin-Dong Kim, Tomoko Ohta, John Mc-

Naught, Sophia Ananiadou, and Junichi Tsujii. Developing a robust part-of-

speech tagger for biomedical text. In Advances in Informatics - 10th Panhel-

lenic Conference on Informatics, volume 3746 of LNCS, pages 382–392. Springer-

Verlag, Volos, Greece, November 2005.

[80] Jimmy Lin and W John Wilbur. Pubmed related articles: a probabilistic topic-

based model for content similarity. BMC Bioinformatics, 8(1):423, 2007.

[81] Makoto Iwayama. Hierarchical bayesian clustering for automatic text classifica-

tion. In IJCAI, pages 1322–1327. Morgan Kaufmann Publishers, 1995.

[82] Yusuke Miyao and Jun’ichi Tsujii. Deep linguistic analysis for the accurate identi-

fication of predicate-argument relations. In Proceedings of the 20th international

conference on Computational Linguistics, COLING ’04, Stroudsburg, PA, USA,

2004. Association for Computational Linguistics.

[83] Nona Naderi, Thomas Kappler, Christopher J. O. Baker, and Ren Witte. Or-

ganismtagger: detection, normalization and grounding of organism entities in

biomedical documents. Bioinformatics, 27(19):2721–2729, 2011.


