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I Introduction

Any introduction is limited by the time, space and circnmstances, reflects the
author’s philosophy and can never be comprehensive. Taking this kindly into
consideration, the reader may find it. useful to consult my Glossary at the end of
thesis providing some clne to my understanding of the subject. A specialist in
the ficld, an experimentalist, an official, a friend of mine, everybody is hoped to
understand this introduction.

As follows from the title, we have been concerned with analysis of gnantum
transitions in the field of molecular dynamics. We worked on physical processes
such as dissociative recombination, complete reflection and transmission, or scat-
tering.

Let us commence® with the description of the system. For simplicity of expla-
nation we first restrict ourselves to a two-state system in quantum physics. Any
molecnle can be chosen as an example, if we select Just. two states. However, such
a choice must. be well-defined (for example, the rest. of the states does not know
about the selected pair, or, more realistically, it is known how to incorporate the
interaction for the later purposes). The wave function, that is a projection of the
state on a contimmum, describes the system in full. In the context of the thesis
the continmmm is called an adiabatic parameter, and is mostly represented by the
intermmclear distance in a moleaile. Time development of a state is described
by the evolution operator while the eigenstates of the whole system are given by
the hamiltonian. This operator is further projected on the snbspace of our two
states and its matrix elements in contimnum are called diabatic potentials (for
the diagonal elements) and conpling (for the off-diagonal elements). Eigenvalues
of the potential matrix are the so called adiabatic potentials. Here we see how
the two-state system can be embedded in the field of molecular physics.

First part of the thesis is related to nonadiabatic transitions. a dynamical
process in which the adiabatic state of the system changes. In order to keep the
explanation clear let us restrict ourselves to the two-state system. The number-
‘ing of the states can correspond to the electronic valence states of a molecile.
Choosing the initial conditions so that the system is iu a state A we change the
adiabatic parameter. The system can either stay in its initial state A or can be
switchied to the other state, B. In quantum physics we can not say when this
switching happens. One conld follow Zhu and Nakamura, who chose the value
of adiabatic parameter at which the difference of adiabatic potentials reaches a
mininmm, made it a criterion for the so called avoided crossing, and assigned tls
value to the change of adiabatic states, that is to the nonadiabatic transition.

In this picture the process can be described as follows helow. The systemn
tarts in the initial state A, moves along the adiabatic potential by changing the
adiabatic parameter, arrives to the avoided crossing, and is switched to the state
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B with the so called nonadiabatic transition probability, the so called small p.
Since we stay in quantum physics, small p can not describe the nonadiabatic
transition in full. While moving along each adiabatic potential, some phase is
accumulated. The same rule for the phase applies to the quantum transition,
even if the transition is assigned to a point. Thus the full description of the
nonadiabatic transition must include also two, so called dynamical, phases ¢ and
. Obviously, the system is given by the diabatic potentials and the coupling
between them (input), while the nonadiabatic transition is described by the three
quantities p,¢ and ¢ (output). This relation between the input and output
guantities is the subject of our interest and can be studied using various models.
In this framework we completed the description of nonadiabatic transitions in the
exponential potential model, introduced an exactly solvable diabatically avoided
crossing model and treated semiclassically some potential systems common in
molecnlar physics.

The reason for which we have been concerned with the exponential potential
mode! follows. The linear model, solved for all ranges of coupling strength and
energy by Zhu and Nakamura, and the quantum Rozen-Zener-Demkov model,
solved exactly by Osherov and Voronin, can be covered by the exponential model
within the semiclassical framework. This fact was recognized by Nikitin, although
he restricted himself to the nonadiabatic transition probability. We can prove
this coverage also for the dynamical phases. Moreover, we clarified and greatly
improved the accuracy of the parameters which Nikitin used for his solution.
However, since our improvement is based on potentials in the complex coordinate

‘plane, experimentalists will find the improved parameters of small use at the
moinent.

The reason for which we solved the first diabatically avoided crossing model
follows. In the diabatically avoided crossing model the diabatic potentials do not,
cross and that. is why the linear model of the crossing by Zhn and Nakamura is
not. applicable. Moreover, within the class of guantim models exactly solvable in
terms of Meijer G functions, which properties are known, this was a model which
nobody considered. Osherov might have omitted the model because the diabatic
potentials are sharp at one point which is not esthetical.

The reason for which we derived the conditions for the complete reflection and
for the complete transmission in some two-state systems, common in molecular
physics, follows. Since these systems are common. they are interesting for both
theorists and experimentalists. Reflection and transmission are basic processes
across all physics and their completness is theoretically interesting. The com-
plicated semiclassical conditions for complete reflection and transmission were
easily achieved by the simple technique of sewing up the wave function.

The dissociative recombination in the last part of the thesis is a rearrangment
problem. We considered a collision of a positively charged hydrogen molecile
with an electron. The charge recombines while the molecule disintegrates mto
two nentral hydrogen atoms. Within the framework of Multi-channel Quantum
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Defect Theory, developed by Seaton, we contributed to the methods of solving
integral equations with a singular kernel.

The thesis itself consists of two parts. The first of them is devoted to physics,
(¢f. Papers 1-4), while in the second one we are concerned with economics (cf.
Papers 5-6). The physical problems, main part of the thesis, can be divided to
two groups. The first of them are nonadiabatic. transitions (sections 11-1V), the
second one is the dissociative recombination (section V). See the List of Papers
at the end of thesis.

The theses themselves are divided into the following. In section 1 we complete
the description of nonadiabatic transitions in the exponential potential model.
In section 111 we give the exact quantim mechanical solution for a model of
diabatically avoided crossing and analyze this model semiclassically. In section
IV we derive the semiclassical conditions for the complete reflection and the
complete transmission in some potential systems common in molecular physics.
In section V we develop a numerical technique for -solving integral eguations
involved in the dissociative recombination process and derive the exact solution
of Lippman-Schwinger equation for the case of separable electronic coupling.

Opening and closing remarks to each section are borrowed from our papers in
respective journals. Only small changes were made in order to preserve the gen-
eral structure of the thesis. Amendments contain useful mathematical identities.
In Hllustrations, there are all the fignres referred upon from the text. Tables and
Glossary follow afterwards. Appendix comprises one of our ideas of applying the
formalism wsed in physics to economics.

o



11 Exponential Potential Model

Here we review to a certain extent our achievements in the exponential potential
model. The full acconnt. is given in the Papers 2 and 4.

II.1 Opening remarks

It is well known that nonadiabatic transitions play an important role i various
fields of physics, chemistry and biology [1-3]. The most fundamental models are
classified in to the Landan-Zener-Stueckelberg {LZS) type curve crossing and the
Rozen-Zener-Demkov (RZD) type noncrossing problem.

In the last several years, the LZS problems have heen solved completely [8-
9], and the efficient and accurate theory has been successfully developed even
for nmlti-channel curve crossing problems [10,11]. On the other hand, the ex-
act. analytical solution of the RZD model was obtained recently by Osherov and
Voronin [12]. In addition, some special exponential potential models have also
heen solved quantum mechanically exactly [13,14]. This remarkable progress en-
courages our efforts to formulate a unified theory that covers the above mentioned
cases and gives a general formula for the nonadiabatic transition matrix in ferms
of integrals along the adiabatic potentials.

Here we are concerned with such an exponential model that the diabatic
potentials and coupling are given by the same exponential function (see Eq. (11.2)
below). The easier attractive case was examined in detail previously [15]. and
ths in this section the main attention is paid to the semiclassical treatment of
the repulsive case. Tlhe purpose is to give a derivation of precise formulae of
basic parameters which should be nsed in Nikitin's model [1] and which has not
been known so far. Furthermore it is confirmed that the nonadiabatic transition
matrix in the exponential model covers both the Landan-Zener (LZ) and the
Rozen-Zener (RZ) type matrices as limiting cases. Based on these results the
imification of LZ and RZ can be made and will be reported.

The section 11 is organized as follows, First we define the exponential model
and review the treatment of the attractive case. Then the total wave fimction
for repulsive model is obtained by the WKB (Wentzel-Kramer-Brillonin) type
semiclassical methods using the high energy approximation. Next the scattering
and nonadiabatic transition matrices are given and the validity of the double
passage fornmla is demonstrated. The final formulae are expressed in terms of the
model-independent parameters, and are applicable to general potentials. Their
accuracy is demonstrated by nsing varions munerical examples, We conclude with
remarks for the future research. Amendment 1T contains the most mathematical
parts which are not necessary to be shown in the main text.

10



I1.2 Solving the model

We solve the coupled Schrédinger equations
~orraat f/(:r:)} ¥(z) = E(a) (11.1)

with

and

(11.2)

V(z) = ( Uy — Viexp(—ax) V exp(—ax) ) ‘

V exp(—ax) Uy — Vyexp(—az)

In dimensionless wnits [E) = h%a?/(2M) and [z] = 1/a, the above equations have
the form

~p(z) + (Uy — Vi exp(~z) = E) th(z) + V exp(=2)¢a(z) = 0 (I1.3)

and
—!(x) + (Uy — Vaexp(—z) — E)¥o(z) + Vexp(—z)ih(z) = 0.

Without loss of generality we choose U; > Us. In both attractive (V: > 0) and
repulsive (V; < 0) cases we assume that ViV, > V2 in order to avoid the case of
three asymptotically open channels. In the adiabatic representation the conpling
is localized and the diagonal adiabatic potentials are given by

1/2

a Vii + V. T — Vao\?
ey = Bt | () i (1.4)

where Vj;(z) are the elements of the matrix V{z) in Eq. (I1.2). The adiabatic
wave functions ¢;(z) (i = 1,2) obey the transformation,

(52)-mma(32). s
where
. osf —sinf , 1 2Via(x
R(8) = ( (s‘i:ifﬁ (1(8)15% ) with f(z) = Ea.rctan (\fgg(x)li(i%](m)) . (1L.6)

and @ € [0. 7/2]. A new variable p defined by

0= 2./[V]exp (A%) , (IL7)

4
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and the parameters

w=2E - = 2/ E — Uy, audﬁ,_w| (11.8)

reduce the coupled differential equations (I1.3) into the following form:

, d? d
— + p— 4 V4 Bt Y = P (11.9)
dp- dp

&lld
2 d2 a 2 8 2 74") —_ 21/)
p—p2+p—p+“ -J;-,Qp .2—P .

In order to decouple Eq. (I11.9) we performm the modified Bessel transformation

= [ dpw Ep) Zalpm), (IL10)

where (0 is a certain contour in the complex p-plane. Z, stands for any appro-
priate kind of the Bessel function (H :(éf) here) [16], which satisfies
2
[22:—25 + :Ed;} Zy(z) = — (:2 + Vz) Za(z). (11.11)
We note that it is necessary to choose appropriate combinations of the Bessel
function Z and the corresponding contour C in Eq. (I1.10) in order (1) to sat-
isfy the houndary conditions and (2) to fulfill the conditions imposed on the
asymptotic behavior of Fj(p) by Bessel transformation 115]. It suffices to use an
appropriate kind of Bcssel function for each independent solution.
Having substituted Eq. (11.10) into Eq. (IL9), we can deconple Fy(p) from
Fl (p) as,
Fy(p) = sgn(V) (,’31 — pg) Fi{p). (I1.12)

In the obtained exact differential equation for Fy(p) we first cancel Fi(p) by
substituting

Lp =R —a) (P - az) Fi(p). (11.13)

M = %(ﬁl + B) F \( (ﬁl ﬁ‘z) (11.14)

The meaning of |a,V| in Eq. (I1.14) is nothing but a preexponential constant of
the i-th adiabatic potential in the classically forbidden region (see Eqgs. (11.4) and
(11.8)}. The resulting differential equation is further reduced in the guasiclassical
limit o — 0 (that is 42, 2, p® — ¥ ~a™? > 1) to the following form

where

H—Q + Po(w)] filp) =0, (11.15)

12



where

=g_@ - 1) (p* — )
Fy(p) = ) (7 —aa) (11.16)

and the coefficients ¢, ¢y are defined as

1 v? 2\ 2
c12 =3 (,31 + ,5‘2!-;5) F (ﬁ] - ﬁQF) + e (IL.17)

In the high energy limit

¢ B a,. (11.18)
We simplify the formal WKB solution of Eq. (1115}

i P
' i «‘/Pd>, = 1,2, I1.1
me}*p (?5‘/ oap n : ( 9)

by means of the high energy approximation Ve ¥

N/ +wz“p +0(8%), ¢F~Ji (11.20)

P p? p?—ay

M=

The energy dependent parameters §’s in Eq. (I1.20) are defined in terms of the
mixing angle in the limit of asymptotically forbidden region,

a; — ¢ . o=V
40.,’

b~ (1 & cos (260(—o<))) . (11.21)

6:61+(§2.

In addition to the WKB approximation in Eq. (I1.19). we expand also the Hankel
function in Eq. (11.10) using Eq. (11.83) of the Amendment. Then the contour
integral of Eq. (I1.10) contains the phase integral given by

P o 1/2
=/ %M@%[ 1+§@. (11.22)
The main contribution comes from the saddle points p,;1(p) defined by

=0, (11.23)
p=pjt

J

and given explicitly by

2_ﬂ1+r32 VQ”‘;UQ [ T 2 o
(pst(p)) = ——5— - %Qi T +1 j=1,2. (11.24)

13



Because of this p - p correspondence the above action simply becomes

S(p. 55t = [ E - ul(a) da = S,(0). (11.25)

The procedure in this section defines the semiclassical approximation used to
solve the present exponential model. We cut the complex p-plane along the four
branch ents of (Py)!/? chosen on the imaginary axis

(iiesl et} (=ivlasl —ilal) i=12 (11.26)

11.2.1 Repulsive case

Since we deal with two coupled differential equations of the second order, we
first. represent. the total wave function as a linear combination of four fundamen-
tal solutions given by some, yet uknown, contour integrals. Then we evalnate
these integrals in the limits z — Foo and determine the four constants of this
linear combination. When z lies in the classically inaccesible region, we ob-
tain two restrictions on these constants becanse of the decay of wave function
in each adiabatic channel. Evaluating the contour integrals for x — oc, we get
the asymptotic form of the wave function. In order to obtain the S-matrix we
set. one more condition that the total wave fimetion is of such a form that the
incident. wave propagates only in one channel. Then the last constant is just a
multiplicative factor of the total wave fiunction. Thus we can finally obtain the
S-matrix.

Independent solutions At z — o¢, the independent solutions in the adiabatic
representation should behave like

61(p) ~ P2 ~ €557 and go(p) ~ pHH ~ €T (o 0). (1L.27)

In the classically inacessible region they correspond to exponentially growing
functions, in general,

b1(p) ~ exp (I Varln),  éalp) ~exp(lvazlp)  (p — o). (11.28)

Eq. (11.27) follows from the fact that the diabatic potentials are asymptotically
flat and the coupling vanishes, while Eq. (11.28) can be obtained by solving the
Schrédinger equation with the diagonal adiabatic potential matrix (we note that
the rotation angle in Eq. (11.6) tends to a constant). If only the leading order
term is retained, then we have

di{p) = 0. (11.29)

2 i + a
== i

14




In Eq. (11.28) the exponentially decreasing terms have been omitted, since they
are only subdominant in the region. Taking into account. Egs. (11.27) and (I1.28),
we can represent the wave function in Eq. (11.10) as

2
wilp) = 3 AmaliZh(p). (11.30)
mn=]
where _
190) = [ dppE" (1) 2" (o). (1L.31)

Here F;") are derived from Eq. (11.19), using Egs. (11.12} and (I1.13). The first
index m indicates which couple of symmetric branch ents is winded around by
the contour, while the index n specifies in which complex half-plane the branch
is located:

n=1 Z"=H Y lower branch cut (11.32)

—‘i.l/!

n=2 2Zm=pg®»

wo

upper branch cut.

The case n = 1 (n = 2) corresponds to the contour tips at p = +100 (p = —io0)
as shown in Fig. 1. From this figure and Eqgs. (I1.10), (11.19) and (11.85) it follows
that _ .

19 = (I9h-m) - (11.33)
This condition ensures the unitarity of the S-matrix. The saddle point analysis,
carried out in the high energy limit. [15], proves that the main contribution to the
integrals in Eq. (11.30) comes from regions in the complex p-plane such that

z=pp~0for p—0 (11.34)

and
|z = |pp| ~ oo for p— .

This allows us to expand the Bessel fimetion Hy,,(z) in Eq. (I1.10) {cf. Egs.
(11.81) and (11.82) in the Amendment). Eq. (11.27) follows from the transforma-
tion based on Hii(z) (or alternatively on Hz,(z) ). In the limit p — oo the
saddle points tend to \/a; (cf. Eqs. (11.14) and (I1.24)), which gives Eq. (I1.28).
Thus the conditions in Eqs. (I1.27) and (I1.28) can be satisfied by onr choice of
contours and wave functions.

Wave function at # — —oc  In order to derive the wave function in the forbid-
den region, we perform the standard procedures, i.e. analyzing the singularities,
solving the comparison equation and final asymptotic matching [1,6.7].

The total wave function
d(p) = ( g} ) (11.35)



should not. contain exponentially growing terms at p — oc. In order to satisfy this
physical condition we first evaluate the integrals I (p) of Eq. (11.30) for p — oc.
To do this, we first have to match the local solution of Eq. (11.15} at p ~ \/a; to
the WKB solution Eq. (I1.19). The procedure is explained in the Appendices B
and C, and the final expressions of I{} (p) are given in Egs. (I1.D.3) and (I1.DD.4)
in the Amendment. Then we rotate the diabatic wave functions ¢;{z) given by
Eq. (I1.30) into the adiabatic ones ¢;(z) nsing the matrix in Eq. (IL6) (cf.
Eq. (I1.D.5) in the Amendment). To cancell the contribution of exponentially
diverging terms in adiabatic wave functions in Eq. (11.28), the following condition
should be satisfied (¢f. Eq. (ILD.7) in the Amendment)

12 _ expliay), -2 = expl(iag), (11.36)
i T2

where

a; = —2 (arg (T (i6:)) + &3_;In(ag — a1) + -12:111 {(—a;)+&In (i“—)) . (IL.37)
7

Wave function at + — oc  Evaluating infegrals in Eq. {IL.31) at p — 0, we
get. the total wave function

7 es'(d»u+fr/4)r(1 +ié)(ag — a;) """

N _oTmhe —néa
Ynlp) =72 T(1 = ib)D(1 + 162) (= + e m) + (11.38)
—1 ; 16—1
p __:,‘((pu+_n/4)r(1 - ?é)(ﬂg — G]) _ 1T52 ) J—’iT(‘! !
e T(1 — i6,)0(2 — i62) (=2 + )
and ,
ﬂ’z(ﬂ) — _,‘;E_ei(rbo—é]ﬂ(4u)—ﬂ/4)r‘(_i(ﬂ)9ﬂé/? (1139)

JE

(e'“él sh{mé; )y + 87”62511(71'62)721) +
o8I ) £ T2 [ =L , _mba, ,
+it—e L(i6)e™/? (7™ sh(mé1)ms + ¢ s,h(mﬂz)m) ,
where I is the Gamma function [16] and the phase factor

&
¢ = vin (:?_1;) (11.40)
comes from the expansion of Hankel and Ganuna functions (¢f. Eqgs. (I11.82) and
(11.84) in the Amendment).

The details how to evaluate 1;(oc) are given in Amendment E (¢f. Egs.
(I1.LE.4) and (ILE.6)).
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Scattering Matrix and Nonadiabatic Transition Matrix In this section
we first derive the scattering matrix containing parameters of the present expo-
nential potential model. Then we evaluate the adiabatic scattering phase-shifts in
order to subtract the nonadiabatic transition probability and dynamical phases,
using the idea of donble passage. Finally the total S-matrix can be put in a form
which is free from the particular parameters of onr model.

Scattering matrix Let us first denote the adiabatic momenta,
ki(z) =V E— uga)(m) and k; = lim E(x). (11.41)
Then the scattering matrix in the present case is defined as

channel ¥; | channel ¢,
—1 0 , (11.42)

— —Sii - "'S-ij
wliere the arrows mean
incomiﬁg wave } exp(Fik;z) o exp(Fi f;:; ky(z)dz)
k; \/E

and "E; represents the turning point. While the plane waves in Eq. (11.43) are
connected by the scattering matrix, S{E), the latter adiabatic waves define the
reduced scattering matrix, S7(E).

The matrix S(E) can be deduced from ¥(z)|,_ . as explained below. In Egs.
(11.38) and (I1.39) the four parameters v;; are restricted by the two conditions
from Eqgs. (I1.36). We impose one more restriction on <;; in order to specify
the boundary condition of only outgoing wave in the first channel (to obtain Sy;
elements) or in the second channel (to obtain Sy; elements). Thus all 7;; can be
found up to a multiplicative constant. and the S-matrix elements are evaluated
using Eqgs. (11.36), (11.38) and (I1.39) as follows:

S511(E) = iexp (2i [6In (a2 — ay) + arg (T(36,)) + arg (T(ié,)) — arg ([(i6))])

(11.43)

ontgoing wave

(11.44a)
X exp (2?'- {—qbo - 1/111(2\/17)]) (pe?'ﬂ? +(1- p)eim) :
S1a(E) = —i\/éléz sinh (w6 ) sinh (m6y) I (16,) T’ ('.i.ég)c,ﬁm_&))/2 (IL41b)

T sinh (7é)

X exp (i [r‘} In (4v (aa — a1}) — 2¢0 — (v + 1) ]1)(2\/1[7)}) (6_7'02 _ eml) :

o exXp (7'. [6 In (4v (a2 — a1)) — 2o — (¥ + 1) 111(2\/\7)}) (61 =b2)/2
e

Sa(B) = ~i—== sinh (78) T (=1) T (—i6y)

(11.44c)
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X (6102 - (:1'.01) ;

and

Sas(E) = dexp (2 |~ do + 6 In(4v) + arg (T(i6)) — p m2vV)])  (144d)

« (pem-1 + (] . p)e?’ag) 1

where inh(n6,)
. sinh(7é,

) = exp{—mhy) ——— I1.45

p=exp(=nb) sinh(7é) ( )

The S-matrix given above satisfies symmetry and unitarity (cf. Eqgs. (ILF.1)-

(ILF.7) in the Amendment). The total transition probability |5.|? is given hy

1S12(E)? = 4 exp(76) sinh (78, ) sinh (7dg) 2 (2= a1y
Ik

11.46
{exp(mé) sinh (m82) + sinh (7é 2 ( )

11.2.2 Double passage

With use of the idea of the double passage, the S-matrix can be expressed as
a prodnct of the nonadiabatic transition matrix and the adiabatic propagation
matrix [3,7,10,11). The nonadiabatic transition matrix connects the WKB wave
functions

1 "X
: expli | k(y)d 11.47
— pli [k (u)dy) (11.47)

from left. to the right, both far from the reference point x,. It generally has the

form

I(z.) = M(exl)(—i.qb) —\/;_Jexp(—:i',w) : (11.48)

VP explit) V1 — pexp(ig)

where p is the nonadiabatic transition probability for one passage through the
transition region, and ¢ and ¢ are the dynamical phases. If the turning points
are well separated from the transition region and the WKB approximation does
not. break, then the S-matrix is decomposed to have the following double passage
form

Sy = i expli(2(d — ¢) - @12)) (1= p)e®* + pe™). (11.49)

522 = 2exp(?(2(d2 -+ d)) + (1)12)) ((1 _ p)e—id’l’z +p eid’]?) \
and
Si1 = Sar = —2explildy + do))/p(1 - p)sn(@1a),
where

by =D - Ao+ 10— 0. []]50)
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The quantities d; are the adiabatic elastic scattering phase shifts and A; are
the adiabatic scattering phases from the turning points to the reference point
z, = Rz,, where z, is the complex crossing point (see Eq. (11.54) below). Our
goal now is to subtract the parameters p, ¢ and ¢ from Eqs. (11.44a)-(11.44d)
using this donble passage formmla. It is easy to see that p of Eq. (I1.45) is
the nonadiabatic transition probability in Eq. (11.49), which has the same form
as in the attractive case. Indeed, in the case of asymptotically high energies
the transition probability should not depend on the sign of potential slopes.
Comparing Egs. (I1.44a)-(11.44d) and (11.49) we can also identify @52 of Eq.
(11.50) as

291, = as — ay. (I1.51)

To obtain explicit expressions of ¢ and 1w it is necessary to evaluate the phase
shift integrals on the adiabatic potentials, d; and A,;. The exact results can not be
obtained analytically but we can obtain analytical results within the high energy
expansion. For this purpose we make use of Eq. (11.22).

The adiabatic elastic scattering phase shifts are defined by

( Jim ] VE —ul(z)dz — X\/E - U) (11.52)
The phase shifts between the reference point and the turning points are given as

A= / VE — o9 (2) d. (11.53)

In order to represent. the scattering matrix in the double passage form we choose
the reference point as a real part of the complex crossing point of adiabatic
potentials,

z, = Rz, = Ga)/ r)lw . (11.54)

i+ J] ﬂ?

In addition to this we modify Eq. (11.22) to the follomng form

f f —u 'y dy—]pJT(p f—tp—fppj \ 1/- d.‘.f, (11.55)

and note that .
milo) = /5,

—0 .
patp) =t = v p.

Equations (I1.54) and (11.55) enable us to evaluate the phases in Egs. (11.52) and
(11.53). The results follow (¢f. Egs. (11.G.1)-(I1.G.7) in the Amendment)

% Y
dy=vinyv—v--n H"\—;ln la;| — 6 In

, s
g]“}‘ffsl - 61 In 3 (S]éj‘i‘(gg In —:: (1156)
T é
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&
—614+6,Iny/6,6,— 65 1n -55 (11.57)

dy = ,ulllu-—u.wgln |V\-—%ln las}+ 6 1In %2
and

aa

‘ 5 :
A=Ay = %ln ( )+61n %%+51—51 In—=+8;1n lay|+ (6, —62) Inn
& ] &

ay

by 6 111513 — & lnjas| - R {/ (ky () — k.z(:r))da:} .

R

The general S—matrix ldentifying p of the S-matrix formmla with that of
the I-matrix we can find the dynamical phases. First we substitute Eqs. (11.56),
(11.57) and (I1.58) into the double pasage formula in Eq. (I1.49). The dynamical
phases follow when comparing the result with the S-matrix in Eqs. (I1.44a)-
(11.44d). We remind the notation

(X)) = XIn(X) - X —arg (['(iX)), (11.59)
in terms of which the dynamical phases result in

¢ = y(62) — v(8) (11.60)

and

b, V6— V&
2 VE+VE]
The phases i and ¢, unlike from the previous S-matrix in-Egs. (I11.44a)-(11.44d),
depend only on the parameters é;. Furthermore we show that §; can be considered
as being free from the particular parameters of the exponential model.

We have proven above that the total S-matrix can be put. to a general form

W = 5(61) — 7(6) —2[ 885 + (11.61)

Sii(E) = Jim exp (—1(ki(00) + k;(00))z) (11.62)

[P(I,IS)I(IS; E)P(zs, 2 WP* (2 a2 )] (zs; E)P*(Ib:I)Lj:

where the diagonal matrix P represents the mncoupled adiabatic propagation,

A

Pyy(bya) = by, exp (?; / "k, (y) d.y). (1L63)
a;

Finally, the nonadiabatic transition matrix [ is given by Eq. (I1.48), with the

parameters p, ¢ and ¢ defined in Egs. (11.45}, (11.60) and (I1.61). I'in BEq. (11.62)

is a transpose of I and P’ is a complex conjngate of the matrix in Eq. (11.63).

The energy dependent parameters &,(E) are nothing but the contowr integrals of




adiabatic momenta in the complex coordinate plane. In the attractive case they
have the following form {15],

5, = ;lrf‘s {f ko(2) di — / ki () d:f:} (11.64)

5 )
and

5 = %3 { ] “ ki) — k()] d.g:} , (11.65)

R(x.)

where z! are the turning points (complex in the attractive case) and z, is the
crossing point of adiabatic potentials in the complex plane. For the proof of Eqgs.
(11.64) and (I1.65) confer with Eqs. (IL.LH.1)-(ILH.5) in the Amendment and Figs.
2-4.

In the repulsive case (¢f. Egs.. (ILH.6)-(11.H.13) in the Amendment) that

' 6] =& — 6LZ (1166)
and
1 Te
-3 {f [ka(z) — k()] d.sc} =61z, (1L.67)
s R(z.)
where _ .
5=~ — = fnz. (11.68)
The Rozen-Zener parameter in the above equation can be expressed as follows
: 1 ¢
brz = 5— fw () — by (2)] dz, (11.69)

as it can be seen when introducing a new variable, z = ¢™*. Finally, based on
the symmetries between the attractive and repulsive case (¢f. Eq. (1LH.7) in the
Amendment), the formulae in Eqgs. (I1.66) and (I1.67) are equivalent to

1 o
& = =3 {/ [ko(x + im) — ky{z + om)] dr} . (11.70)
m R(x.)

and

by = l(\\j {fl' kolz + i) dx — ]I- ki(x +dm) dr} . (11.71)

T 2 7}
These formmlae have a very illustrative meaning. In Fig. 4 (attractive case)
we can see that the parameter 6=68; + &, is given by the two contour integrals of
adiabatic momenta between the adjacent complex turning points. In the repulsive
case, however, the pairs of turning points degenerate on the real axis (regardless
of the exponential model) and the only independent contour integral is that one
for &, z. The parameter é52 (also & ) can be obtained by inverting the potential,
’ { ; -
Vi (@), = Vi (00) = (Vi) = Viyloc)) (11.72)

7
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and substituting the corresponding adiabatic momenta k;(2}|yy into Eqs. (11.70)
and (11.71) instead of k;(z +i). It is well known in semiclassical analysis that the
results for the attractive and repulsive cases do not differ i the high energy limit.
The advantage of the above formmlae, however, is that their validity does not
require energy much bhigger than the asymptotic separation of adiabatic potential
energy levels. Such an achievement. is quite substantial as we demonstrate in the
next. section. This is due to the contonr integral definition of the substantial
parameters 6, and & which enables ns to apply the above fornmlae for energies
even guite below the diabatic crossing point.

II.3 Numerical examples

We could expect. that, the high energy approximation is the critical factor which
limits the accuracy of the present semiclassical treatment (see Eq. (11.20)). This
approximation means in terms of energy

E> (A;,j) ., 6 =0, (11.73)
when we neglect. ¢uantities ~ §°. However, we found that the results in Egs.
(I1.44a)-(11.44d) are far more accurate than it could follow from Eq. (11.73). It is
surprising that the theory works even when the energy is below the crossing point
of diabatic potentials. Moreover, nsing the general formmlae in Eqs. (11.64) and
(11.65) we can extend the validity region of our results to a larger range of energy.
Particular examples are given in Figs. 6 and 7. The following three quantities
are shown in these figures:

P(E) = |SB(B)[ (11.74)
R(E
d(E) = %m‘g {%qu—E}} : (I1.75)
and |
V(E) = larg{Sﬁ(E)ng(E)} . {11.76)

i

The exact. numerical solution (full line) is compared with onr analytical solution
(circles) from Eq. (11.62). We note that.

SR(E)fj =(3XI)(“](d7‘+(jj))S(E),‘j. (I]TT)
The phases of the reduced scatiering matrix vary slowly with energy compared

1o those of S(E). As it follows from Eq. (11.49) ¥ is equal to £1 as long as the
donble passage formula is justified. & includes the gnantum phases ¢ and ¢ as

2
o



well as the adiabatic phases Ay and A,. In Figs. 6-7 it can also be seen that the
transition probability for asymptotically high energy has a simple {orn,

L (VE, @
|S12]* ~ sin® (20(—oc)) sin® (g In &) , (11.78)

E4 as

as follows from Eq. (I1.46) in the limit 6 — 0. In Fig. G the Stueckelberg
oscillations can be seen not. only in the overall transition probability, P(E ), but
also in the S-matrix phase, ®(F). In Fig. 7 these oscillations are very slow since
the adiabatic potentials are almost parallel and U — Uy is small.

The above comparison of exact and analytical values can not be done, strictly
speaking, for the nonadiabatic transition matrix. This is becanse the reduced
scattering matrix in the form of double passage has only two independent pa-
rameters, P and &,

SR(E) = iv/1 — P(E)exp(ir®(E)/2) —/P(E)
—\/P(E) i/1 — P(E)exp(—im®(E)/2) )’
(11.79)
which can not provide enough equations for the three parameters of nonadiabatic
transition matrix, p. ¢ and . In other words, for any nonadiabatic transition
matrix / we can find a group of matrices IU(w; E),

o +V1-w Fwexp(—1(A; — Ay))
Ulw; £) = ( +/wexp(i{As — Ay)) : i\/l_—é ) : (11.80)

0 < w < 1, resulting in the same matrix S R(E). There is only one phase factor in
the above matrix, Aq(E) — A;(E), which compensates the difference of adiabatic
phase shifts between the turning points and the reference point. 1f nsed in Eq.
(I1.62) instead of I, U yields the same scattering matrix as /] = 1.

1.4 Closing remarks

We have semiclassically solved the exponential potential model. The final expres-
sions of the nonadiabatic transition matrix are given in terms of two parameters
&, and 6, which are defined by the general contonr integrals of adiabatic momenta
and are free from particular parameters of the exponential model. The expres-
sions for nonadiabatic transition probability as well as the dynamical phases in
terms of & and &, are confirmed to be the same as found by Nikitin. The theory
works well even at low energies far beyond the high energy approximation used
in the heginning of onr analysis. Interesting oscillation of the total transition
probability was found at. energies lower than the diabatic crossing point. ‘This
can be explained by the fact that the adiabatic avoided crossing point is much
Jower than the diabatic one. Onr semiclassical treatment can reproduce even this

23



oscillation. The present theory is expected to be applicable to a broader class of
potential models which have similar structures of the singularities in the complex
plane.

Amendment

This amendment. provides useful mathematical descriptions to such an extent
that is sufficient. for understanding the previous results in section II.

I1I.A. Hankel functions

First let us clarify what kind of Bessel functions we use for the four coutour
integrals. On the contours asymptotically hbound to the npper half of the complex
p plane H (_]fz,(pp) function is used, while on those leading to the lower half plane

Hff)(pp) stands for the transformation kernel. Then the asymptotic form of the
wave functions follows from the following expansions: for p — o0 (z — o0)
(corresponding to the closed channel region)

H(_]?-)V(z) = —2—6_’“‘/2 exp(i(z —7/4))+ O (53/2) (11.81)

e

and

2 r
B (2) = | —e ™ exp (=i (z = 7/4)) +0 () (2= o0),

and for p — 0 (z — 0) (corresponding to the open channel region)

1\ 1 ()
HY(2) = ~sinh(7) (-2-) Ta+w) 1- —l_j—;; [1 + O (22) +0 (exp(—rru))]
(11.82)
and
1 o 1 (5)2
Ha‘(f)(z) = —m (é) m 1- ] i - [1 + O (:2) + O(exp(—mx))} .

In Eq. (I1.82) it is convenient. to take

A2
1- —(;2)— ~ exp (ii) . (11.83)

1+

and also to apply the high energy limit,

arg (T(1 +1iv)) = -3+ viny — v+ (f)(u'l), (11.84)
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Finally we give the semiclassical Hankel functions. Substitnting Z y(z)/vz
in Eq. (11.11) we obtain the WKB formn of y(z}. In the limit 12 >> 1 1he two
independent solutions read

1 z 2
WD) ~ o (iif J1+ %dg) | (11.85)

I1.B. Local solutions of Eq. (I1.15)

Here we give the mathematical preliminaries of evaluating wave functions at.
p — 00, that means the solution in the classically macc essible region. We expand
Eq. (11.15) at each singular point. of its solution (cf. Eq. (11.13)), because all
smoothly varying terms are effectively canceled by the highly oscillating trans-
forming Hankel functions in Eq. (11.10). After finding the local solutions we
match them to the asymptotic WKB form.

Let us start with the Whittaker’s standard form of confluent hyper geomotrlf
equation, i.e. in our case

d?

d?

f(z) + (_% +¢%) f2)=0, SA=0. (IL.B.1)

The independent. solutions of (IL.B.1) are given in terms of confluent hypergeo-
metric functions ¢ and ¥ as

fi(z) = zexp(-z/2)P(1 — i, 2, z) (ILB.2)
and
fao(z) = zexp(—z/2)¥(1 —iA, 2, 2).
Taylor series to the order O(1/]z|) yield
o ia®p- z/2) exp(ime)—® _—ia exp(z/2)
filz) = 2 T(1+1A) T T(1-14) (1.B.3)

and ‘
fao(z) o 2% exp(—2/2), e=sgn(Sz), exp(z)>1,

the last relation indicating that pis still sufficiently close to the point of expansion.
To match directly (I1LB.3) to the WKB solutions of nonexpanded Schrédinger
equation we need to introduce

f.(2) = folz) =2 (11.B.4)

and



where

R= F(:A?A) exp (ime) ™2 (I1.B.5)
Close to the origin it holds
1
O(1—-4A,2,z) = 1+0(z) and ¥(1 —4A.2,2) = m%«%o(ln(:)). (11.B.6)

Thus only the z~! singular term arising from ¥ contributes 2m {and the respective
multiplicative constants) to the integral of the type

C f () H (), 5 o0 (ILB.7)

I1.C. Confluent hypergeometric integral formulae

The confluent hypergeometric function ¥ which appears in Eq. (I1.B.1) is defined
as,

1 ot
e v e ; _ —{ta—1 c—a—1
Yia,c, &) = 5 exp(-ani)['(1 — a) ./ooew e Mt (1 4+ 1) . (I1.C.1)
® is related to ¥ by the Kummer relation
c—1) T(c—1) ,_
.c, ) = ——————®(a.c, — Lt Pla—c+ 1,2 -1¢¢), (IL.C2
Y(a,c §) Fla—ox 1) {a,c. &) + Ta) £ (a—c+1,2-¢¢), (IL.C2)
and we have -
d(a,c,&) =1+ olf). (11.C.3)

I1.D. Bessel-Fourier contour integrals at £ — —©

Eq. (11.15) can not be solved in the WKB form when 2 — —o0, since the saddle
points approach the singularities p = :i:\/m . That is why we expand Eq. (11.15)
to series, solve it locally for p ~ \/6; and match to the asymptotic WKB form.
From now on we assime that the definition of /a; or /¢ is chosen for each
contour in accordance with the respective branch cut (see Fig. 1). Substituting

a= =2 - &) (1.D.)
NG

we get. (with the acenracy up to O(6;), O(z))

d? 1 4
‘d—t{;‘-l' (—Z*}-?':) fi=0. (11.D.2)



The asymptotic form of solutions of local Eq. (1LD.2) (see Eq. (11.B.4)) corre-
sponds to that of the WKB solutions in Eq. (I1.19). Thus they can be matched.
Making nse of Egs. (11.12), (11.81) and (I1.B.1-I1.B.7) we finally get

185,00,
5 ; a.
19 () = L—__ o — Q5 ) G [ | 2 I1.D.3
T (p) \/—- ]S,,é (am aj ) | ‘ U ( )
. exp (|y/@mlo = 70/2) V2
XE("Z u+€m (| | / ) . O = (_1)"*_1’ [ 0.

(vlyamlo)”*

Since only the singularity contributes to the iutegral, from Eq. (I1.12) it follows
that.
112 (p) = (B — am) 1) (p), p— oc. (11.D.4)

Thus the adiabatic wave functions are obtained by rotating the diabatic ones
1 \
d1(p — 00) = (v 11 + mally)(cos by — (B — ar) sin fy) (11.D.5)

+ (v S + ’yggféé))(cos B — (B — a2) sinby),

and
P2{p — oc) = (’hlf]q) + ’)‘12]1(;))(5111 6o + (31 — a1) cos )
1) + 40l )(sin By + (B — az) cos ),
where
By = 11_1’131009(1*)
It can be seen easily that
cosBy — (1 — a;y)sinfy = 0 = sinfy + (B — ag) cos by, (IL.D.6)

while the other terms in Eq. (I1.D.5) are nonvanishing and growing exponentially
with p. Since the adiabatic wave functions should vanish when & — —oc, we get
the two conditions

o I+ oo I8 = 0 and 71 1Y + 41203 = 0. (11.D.7)

I1.E. Bessel-Fourier contour integrals at z — oc

The WKB solution (11.19) of the Schrédinger equation (I1.15) in the approxima-
tion (I1.20) has the form (cf. Egs. (I1.13) and (11.19))

Fl(ﬂ)(p) = : (102 - 0‘1)%61_} (?3‘2 — ay

7

)T =12 (ILE.1)

| ]
<1




Making use of the Bessel function expansions (cf. Egs. (IL82) and (11.84)) we
get
I,(,}%(P —_ (]) = p_:_61Cn(7r/4_¢D)] (p2 _ a]):Fi(’l—l (p2 _ 0.2):Fib2—1p dp. (HEQ)
N ma
This integral can be reduced to the confluent hypergeometric function integral of
Eq. (11.C.1} by means of the substitution

2 _
ty = L 2m (ILE.3)
d3—m — Om

Evaluating the confluent hypergeometric functions at zero argument {(see Eqgs.
(11.C.2) and (11.C.3)) we obtain

ien¥ T(1 + 1) (ag — ay) 8!
0} (p = 0) = — e ez eron @047/ ‘ . (ILEA4
Lonn(p = 0) = —7Cm JB T(1 + 16,611 (1 + 10062) (ILE4)
When evaluating I2) the integrand in Eq. (I1L.E.2) differs only by
By —p* = emlaz — a))(tm + O /6). (II.E.5)

Thus in the case of ¥ the leading order terms coming from Eq. (11.C.2) cancel.
This is the reason why the p? term of Eq. (I1.83) must be retained here. 1t comes
from Eqs. (11.82), (I1.83), (IL.C.1), (11.C.2), and gives the difference between p™
and p*. The final result is

16y '
P pienleo 8nlan)=n/4)one/2D( 10 §)e~ " sh(xé,,).  (ILE.6)

JB

I1.F. Proof of the unitarity of S-matrix

I-r(rfr);(p - 0) = —Cp

Using the following identities

(1 —i8) = —ibl(~ié), (ILF.1)

2 T
IT(i6)|" = Fh(76)’ (ILF.2)

and 5
(ag — ap) = (II.F.3)

Zr
'S
w3

we can find that the S-matrix in Eqgs. (11.44a

812 = Sg], 151112 = |52212 and |S]1|2 + IS}QIQ = 1. (HF4)

—

-(1.44d) satisfies

The last unitarity condition to be proven Is

8118;2 + S]QSEQ = 0, (HF5)
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or in other words
arg (Sy;) + arg (Soa) — 2arg (S12) = 2k + 1), ke Z. (ILF.6)

Taking into accomnt the extracted prefactors in the S-matrix of Egs. (11.44a)-
(11.44d) it is sufficient. to prove that

arg [sh(:rrél)eml + Sh(?rég)e“ﬁe""’?] +arg [sh(fré])e""“ + Sl](m‘ig)e““'e"“‘] = (ILF.7)

= 2arg [€°7 — €7 | + (2k + 1),

which is just an algebra.

I1.G. Adiabatic scattering phase shifts

First. we give an account. of real definite integrals

[T dr T —c¢ =1In |.’II — d1 —In |d|+ (IIGI)
3%(1 —Inlej —Inlz - d|+ Injd| + In|z| +2n2) + O(€?),
* dzx T —€ 1
= ha |d| — —d| - : v .
[ moae—aV =~ emaM el -l - dl = hnjel e = el) £ 010,

(11.G.2)

T vt v x .’172 4
— ) — — — _‘\./2
./w1/1+§2 d§~u+2lny+4 + O™"). (I1.G.3)

Manipulating the second term in Eq. (11.55) yields (note that ¢, < ()

and

g (11.G.4)

(p? —ay)(p@ —a2) p

e

/P J (p? — ) (p? — ) dp

9

1 /"’20-, dz

ci—a; &ty
Evaluating the phase shifts d; and A; we can expand the second square root 1
Eq. (11.G.4) with respect to a; - ¢;, which is proportional to the inverse of energy.
Using identities in Eqs. (I1.G.1) - (ILG.3}, we can evaluate all the phaseshifts.
The resnlts are given in Egs. (I156), (11.57) and {11.58). The last term in Eq.
(11.58) originates from the following

N T R
A -As =R { [_, ky(a)de — /r ko(x)dx + / (ky(2) — ii'j(.’!.’))dfl.'} . (11.G.5)

. '.‘.2
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The first two integrals in Eq. (11.G.5) follow from Egs. (I1.G.1) - (11.G.3), while
the last one can be evaluated by Taylor expansion,

= JE—ui(z) ~ VE - ”‘;i(/% (11.G.6)

since the last integration path is separated from the turning point. Then the

exact result is the same as in the atiractive case [13], i.e.,

Ve - V&

%—Eﬁff{‘/;:(u?(a)—uz( ))da} 6162—}-61111\/_ N

I1.H. Contour integrals to define é;

(ILG.T)

The parameters &; and 8, introduced in Eq. (11.21) are defined as [15]

\/}%dp (TLH.1)

where L;—th contour encircles the branch cut between ,/a; and /¢; in the pos-
itive direction. For details see Fig. 2. Eq. (I1.21) is a result of high energy
approximation of Eq. {I1.H.1), i.e. the high energy expansion of VI in powers
of a; — ¢;. Let us show now that Eq. (IL.H.1) can be put to a form of adiabatic
momentum contour integral. We start with Egs. (I11.22) and (11.25) and the cas-
ier attractive case. Then it suffices to find contours in the p? plane corresponding
to the contours L; in the p plane (using Eq. {I11.24)).

97'1

P’ = Polp) — - (11.B.2)

The transformed contours are shown in Fig. 3. None of these closed contours
encircles p* = 0 or p, the solution of

Pl (po) =0, (1L.H.3)
given by
2 3 - U _ .
Py = At - Y ]6’([;] ] 2) (j = 1,(2) attractive (repulsive) case), (11.H.4)
P14 —

that is why the last integral in Eq. (11.22) on such a contour must vanislh,

5‘4 \Ed

Since the contours L; in the p° plane are symmetric with respect. to the real axis
and the integrand in Eq. (I1.LH.1) is complex conjnugate with respect. to this axis,

|H
=

(11.H.5)
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the real part of the integral nust vanish and the contribution of the mmaginary
part. coming from the upper and lower half-plane doubles. Then Eqgs. (I1.64) and
(I1.65) follow from Fig. 3 and Egs. (11.22) and (I1.H.5). Note that the integration
path in the z plane is just distorted in a way which does not. change the result
(see Figs. 3 and 4).

Though in the repulsive case the contours for & and 63 in the p-plane (see
Fig. 2) are very similar to those in the attractive case, the general expressions in
terms of contowr integrals in the z-plane are quite different. Let nus start. with a
note on the difference between the two cases,

‘/1 — 4‘/; ,6,' — ‘—,87', ; — — g and C; — —(C3_,. (IIHG)
As a result,
61' — (53_1': (IIHT)

both for the approximate expression of &; from Eq. (I1.21) and the exact one from
Egs. (11.16) and (11.H.1). The change of the sign in Eq. (T1.LH.G) is equivalent. to

R = T (IT.H.8)

Jeaving the preexponential constants V;, (i=1,2) unchanged.

The contours for & and & in the p*-plane (repulsive case) are shown in Fig.
5. Both of them encircle zero, thus hefore they can be moved throngh it, the
behaviour of the integrand at this point must be clarified. We have

dp, v —u? Pi_,— : ,
Pylp)——i = (— "7 A Ep? 412 11.H9
U(jj)d({)z) ( 4)') JO \/] ‘]]—?z _ yr"—vg)g ! ’ ( )
202
From the above equations it follows that.
1 9
P} = C+ 0(p%), CeZ (I1.H.10)
d(p?)
and ;
(1ja L
Py(ps)——= = —— + O(1). 11.H.11

As a result of Eq. (ILH.11) the zero has a contribution to o,

Voo dp s b
— FPolpe)———=dp” = —. I1.H.12

9 % vV olp2) = d(p2) I8 5 ( )
While the contour for 8; avoids p2 (the contonr Ly in the p-plane can go around
V1 instead of the twrning point /c7}, the contour for & does not. (the contour
Lo in the p-plane can go around p = 0 which corresponds to p3). That is why
there is one more contribition to & from the integral in the complex pp(p)-plane,

] 2
1 " idf——z. (11L.H.13)

2“ - npn I‘U) ’ 2
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The contributions to 6, arising from the zero p* = 0 and from the second term
in Eq. (11.22) finally give
— v

2

The contour integrals encircling the complex crossing points in the p°-plane both
for & and & have the form of Eq. (11.65), differing just by a sign due to the
opposite fixing of branch cuts (in Fig. 5a) the integrand is k; while in Fig oh)
the integrand is ko).

The alternative way to examine the contours is as follows. We start with Eqs.
(11.22) and (11.25) which can be modified to the following form

f}% \dp = f¢§f____ 2 1+2VE_“5 . (ILH.15)
P 2

- 1»9JE—M

The closed contours are always oriented in the positive direction and encircle zero
in the p? plane. Evalnating the second integral in Eq. (ILH.15) by the residue
theorem and taking into account that [ | = 2im we obtain the same results as
above.

§=08 +6 =" (ILH.14)




II1 Diabatically Avoided Crossing

Here we review our achievements in the diabatically avoided crossing system.
The full account is given in the Paper 3 (sections I, 11, IV therein).

II1.1 Opening remarks

Needless to say, nonadiabatic transitions among mntually conpled potential en-
ergy curves play crucial roles in variety of fields of physics, chemistry, biology
[1-19] and, if properly generalized, even in social sciences [20]. There are two
most. fundamental types of nonadiabatic transitions due to curve crossing, l.e.
the Landan-Zener (LZ) type in which two diabatic potentials cross with the same
sign of slopes, and the nonadiabatic tunneling (NT) type in which two diabatic
potentials cross with opposite signs of slopes {18,19]. The NT type presents a
very interesting and important mechanism, because (1) a potential barrier is cre-
ated by the coupling and it can be a crncial mechanism of phase transition, and
(2) furthermore the complete reflection ocenrs. This phenomenon is utilized to
suggest a new type of molecular switching [21-23]

Recently, there has been a significant. development in the theoretical stud-
ies of controlling atoms and molecules by lasers [24-26] Intense time-dependent
electromagnetic fields are used to enhance or suppress processes such as pho-
todissociation branching, autoionization, spontaneons emission and many others
[24-38]. Many molecutar processes in laser fields can be explained just as a se-
quence of nonadiabatic transitions [19,33.38] in the dressed state or the Floguet
state formalism [39]. In the case when the energy levels cross with each other as
a function of time, the semiclassical theory of time-dependent LZ-type nonadi-
abatic transition can be utilized [40]. On the other hand, if we use the dressed
state picture in the spatial coordinate, i.e. when the potential energy curves cross
as a function of spatial coordinate among the dressed states, then the NT type of
curve crossings also appear. In such cases, the above mentioned phenomenon of
complete reflection shonld play an interesting role and must. be nseful to control
various molecular processes [21-23,35). To this aim we first examine in section
II1 a diabatically avoided crossing model.

I11.2 Exact quantum solution

We start with the following gnantum model

h? :

_27Mw'; + (Vir(2) = B + Via(a)dn = 0, (11L.1)
R :

—Wd_, + (Voo(a) — EYy + Vin{z )y =0, (111.2)



wliere the two diabatic potentials behave as

lim Vi{z) = oc and Va(z) < C. (111.3)

|z|—oc
In the diabatically avoided crossing type it holds
Vo, Vi(a) # Vas(z). (111.4)

One example of the diabatically avoided crossing type is a gronnd state potential
with a barrier shifted up by the photon frequency to such an extent that it can
not, intersect with an excited electronic state which has a well. We introduce
a new analytical model based on expouential potential functions. Unlike from
the other models of exponential potentials,[12-14] which represent a one turning
point case, here we have two turning points on the upper potential curve. The
possible applications inchide inhibition of collision processes by a high frequency
Jaser field. Such a model is important, becanse (1) it is exactly solvable and (2)
enables an interesting comparison with the crossing cases. It shonld be noted that
in the dressed state picture the diabatic states considered here are the ordinary
Born-Oppenheimer adiabatic states without laser fields and the diabatic coupling
is nothing but the interaction with the field.

We remark that in the time-independent, scheme there are only few models
which can be solved exactly in terms of wave functions [19.41-44]. In addition to
these. the present one is the first diabatically avoided crossing model.

The diabatically avoided crossing (DAC) model is defined by the following

potential matrix
. U+ Vealo! C .
V= ( C U — Veolsl ) . (I11.5)

Although the model has an exact, solution for the two different exponential con-
stants, a; for < 0 and ag for £ > 0, here we restrict. ourselves to the case
a; = ag. Let ns make a constant rotation by 7/4, then Eq. (IT1.5) reduces to a
half-cut. Rosen-Zener-Demkov (RZD) model, {12]

U] Ve““"
7 R(— -
R(n[4)V R(~r/4) ( Ve ) | (11L6)
where R(O) represents the rotation by angle © and
Uhy=U+C, U=U-C. (11L.7)

Eigenvalues of the above matrix (which coincide with the RZD adiabatic poten-
tials) are (see Fig. 8a)

ul(x) = U £ \/(Vealal)? 4 C? (11.8)
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Introducing a new variable and the dimensionless parameters,

AM2V2
() = (fh; 2T o = JONM(E — U)/ha. =12, (111.9)

it turns out that the model is one of those that can be solved exactly in terms of

the Meijer G functions, [47]
mn - {CI}
G (M{ : (111.10)

{6}

In Eq. (111.10) a and b are certain energy dependent. parameters. For further de-
tails abont the Meijer G functions, see Amendment A. The four independent. so-
lntions of the DAC wave fumction are given analytically by (see also Egs. (I11.A.5)
and {I11.A.9) in the Amendment) )

L (GO - (1) CR(E )
% ( S et ) (1Y)
r=—1,...2. {b} = {b1.bo. by, by},
byo = +igy /2 bya = 1/2 % igy/2, (111.12)
z is defined in Eq. (111.9) and

v, =

{'} = {b} g1 —ao- (111.13)

Thus we can expand the total wave function as
}
( A D S (111.14)
¥ r=-10.12

Taking into account the asymptotic behavior of Meijer G functions at x — —oc
(2 — ),

Gile '<1) ~ 5,
4()( l) =,
Gl(e*™iz]) ”} (111.15)
4[](L ‘-l )~ -;:
=4z
and the boundary conditions, we have for z < 0
( :j:] ) = Q‘\I}-l —+ }’3\1’() (III]G)
2
and for z > 0
U' _
( Lf’]g ) —"—"‘}’\IJ_] +(S\1’(]+\]’]. (IH}I)
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Here |a|? represents the transmission coefficient and I7|? the reflection coeflicient,
|a|? + |7]* = 1. The constants {a, 3, 7, 6} that are to be determined follow
from the condition that at z = 0 the wave finction and its first derivative must
he contimious. The constant a should not be confused with a in Eq. (IIL5).
Transformation of the kinetic energy operator,

2 = Gl = 49. I1.
= Trds and d;r:c . 2, (111.18)

and the routine manipulations lead to the following system of equations,

GEDby  —GCY() G —GOb) a
G-I (v GV =GO GO{p) ~
G-Y.(0) GV () G GYL(b) 3
GEV () GEVL(Y) =GO () =GO (¥) )
Gm(b)
G
_G . (b) {111.19)
-G ()
with
G(b) = Gig(e*™  zlb), 2z = z(z =0), (1I1.20)
and p .
G, ) = EGgg(e%”sz} = ;(G(’)(b, +65) - b]G”)(b)).
Let us note that there is a useful relation,
(GPW) = G (p) and (G, (1) =G, (). (111.21)

We denote the column vectors in Eq. (111.19) by the nmumbers 7 — V' (from left
to right) and define

M =det(],I1,J111,IV) and p = det (V. 11,111, 1V) (I11.22)
together with
u = (GG + GEDW)GO (b)) = i explid) (111.23)
and
2= (G ()G, () + GG, (b)) = raexplion). (111.24)
Then we obtain

M = —drrpexpli(@; — ¢2)) and p = 4iryraS {exp (i{d2 — ¢1)})} - (I11.25)
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Consequently,
a = —isin{¢y + ¢y) exp(i(¢2 — ¢1)) (111.26)
and

¥=- cos{¢y + d)g) (;‘X])(’f((f)g - (ﬁ])) (HIQT)

If the coupling vanishes, i.e. U3 — U, = 0 and &' = b, we have a simple barrier
penetration problem, which is solved with

¢ =arg GUV (b)), ¢o=arg G (b)) and f=0=4. (111.28)

I11.3 Semiclassical solution

Here we give the semiclassical solution in two ways: (1) starting from the exact
solution, i.e. ex post, and (2) starting from the Wentzel-Krammers-Brilloune
approximation, i.e. ex ante.

[11.3.1 Ex post
First, let us try to analyze the behavior of the above expressions at high energies,
¢G> 1, g¢2>1and g — g > L. (111.29}

We keep only the leading order term in Eqgs. (111.23) and (I11.24), use the expan-
sion formula in Eq. (I1.3), and define the new phase,

1 —
P = %ln |z| — arg T'(iqy) + arg I’ (3 L 5 QI) + (111.30)
1

together with ¢’ = (g1 « ¢2). Then we have

, sin(y) + ¢') + nsin(y — ¥')
1 o arcte .
@1 A cll]( 3 o5 0 08 U7 (IT1.31)
e (v + ) = ysinw — o)
sin({y + ¥') — psin{v — ¥
g ™ arcts - : .32
o dl(fd]]( 55t 7 o 0 ) : (111.32)
where _
i = tanh (TTQI 1 Q'z) . (111.33)

Setting z; = tan ¢;, the result for the transmission and reflection coeflicients reads

(T1 + 22)*
(1+2$)(1 + 23)

af? =

and 7P =1 la]*. (111.34)
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Hence the complete reflection, a = 0, is given by the condition
tan(y + ') = ntan(y — ¢'). (IT1.35)
If we use the simple relations in the high energy approximation,
g1 — g2} ~ B2y — 4 o, (111.36)
we have in the limit, of zero-th order,
b=v, =19 ¢=r/2—¢adlaf=1 (111.37)

Namely, the transmission coefficient tends to wunity at emergics asymptotically
high. The necessary correction to this oversimplified estimate is to re-express the
transmission coefficient near the complete reflection point. Expanding

WE) = % +w+£(E - Eo) (I11.38)
¥/(E) = 5 —w+ &(E — Eo),
and snbstituting Eq. (I11.38) into Eq. (II1.34), we obtain
2

af? = e=E—FEy €= %{n +1).  (II1.39)

NI P [
Here {4 1
£= §E(¢ +¢')|E=g, and w = 5(7/) — ") p=Ey- (111.40)

The resonance profile in Eq. (I111.39) smoothly connects the zero dip in jaf® to
the nnity backgronnd within the acenracy of the high energy expansion. The
resonance position, Ep, follows from Eqgs. (I11.35) and (111.36). and is given by

4

$(Ea) ~ \/Eo (%m 0] + 2 — 111(5))) —(2n-1) (111.41)

o A

This condition coincides with the Bohr-Sommerfeld quantization condition in the

upper well,
! 1
[ E=Vis(a)dz = (n-;)i’r n=1,. .. (111.42)
. :.r'L Z
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111.3.2 Ex ante

In order to make the physical interpretation of the above equations clear we
carry out the semiclassical analysis of the diabatically avoided crossing model.
Suppose that the diabatic and adiabatic potentials at z — 0 almost coincide,
i.e. V <« |Uy — Us|, or in other words the region z ~ 0 1s far ecnough from the
nonadiabatic transition regions which can be represented by the real parts of the
complex crossing points. Then the scartering can be decomposed into adiabatic
wave propagation and two nonadiabatic transitions (left and right). Each of them
is described by a nonadiabatic transition matrix (1,15

L VT = pe expl(—igy)  — /B exp(—ithy) o ‘
”‘“)‘( explivs) . E=repliey | ¢TLor o (1L43)

These matrices connect from left to right the WKB wave functions centered at
thie transition points, p, is the nonadiabatic transition probability and ¢, and
are the dynamical phases. The upper (lower) adiabatic channel is indexed by 1
(2) (see Figs. 8a, 9a, 10a). There are three coordinate regions, (x%, T1), (2L, Tr)
and (zg, =) (see Fig. 9a), where x| (z,) represents the turning point. (transition
point). The transition points z;, and zg are the real parts of the corresponding
complex crossing points. We denote these regions as i, ¢ = [, [, I o; <x <
2 (T =24, ..., 24 = %) and introduce the following phase factors,

ci = exp(id;) = exp (iﬂ? [ o VE - u(l")(a:) d.:a:) , €= CCatsy, (111.44)
and

d = exp(ib) = exp ('DR /“ VE - 'uéﬂ)(:n) d:c) Jeo = exp(ids)/ca. (111.45)
T2

The semiclassical diagram {19] corresponding to this problem is shown in Fig.
8 b). The circle, rectangunlar and arrow indicate turning point, nonadiabatic
transition and adiabatic wave propagation, respectively. In order to simplify the
following expressions, we introdnce the interference terms for a wave propagating
from the adiabatic state 7 (left) to the adiabatic state ¢ (right),

2y = R Ly + Riplosd, (111.46)
where L (R) stands for the left (right) nonadiabatic transition matrix. The

matching of corresponding wave finctions between the three regions follows. Ac-
cording to Fig. 8b), the waves in region 1 are determined by the houndary

conditions, | _
Ay 1 —idcy 1 +B 2. (111.47)

Then we propagate the total wave finction to region 1,

Ly Acier 1+ (L6 (—id) + LB 1
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4 LogeyeadA 2 +cid (Lol (—iA) + Ly B) 2,
and region 111,
X T 4+Y T 42mc1c2A4 2 + [, c(—iA) + 23,658 2 .

The notations ¢;, d and z;; are introduced in Eqgs. (111.44-111.46); arrows denote
the direction of adiabatic wave,

X = mcA,

and

Y =z} ¢’ (i A) + cheyz, B
In Eq. (II1.47), the so far arbitrary constant A (B) denotes the amplitude of
a wave in the upper (lower) channel which satisfies the boundary conditions for

scattering from right to left. The right turning pomt imposes a condition on these
constants (see Eq. (111.47)),

X(A) = —iY (A, B). (I11.48)

The reflection coefficient, |R|?, is easily obtained as

ot T, o 2
IRJ? = 712221 - s, TP =1-|R]" (111.49)
|£J]23f_)16 - (Z]]C + Z”C')Zgﬂ

There are two special cases that solve Eq.r (111.48). Taking B = 0, we obtain the
complete reflection condition,

xle¥y
[), VE —u\(z)dz = n—-7r+A( ). (111.50)

with an additional shift A(E) to the Born-Sommerfeld quantization condition in
the upper well,

(111.51)

A(FE) = arctan ( (sin{dr + ¢r) +sin(Ys — ¥r +9) ) ’

¢ cos(odr, + ¢r) — cos(¥L — r + 6)

(= \F_” 1= pr) (111.52)
PLPR

and & is given in Eq. (I11.45). Now, it is clear that Eq. (I11.42) is just the high
energy limit of Eq. (I111.50). If both p; and pg are small, the quantization in
Eq. (I11.50) ocenrs naturally in the adiabatic well with the imposed shift from
diagonal dynamical phases, ¢; and ¢ (see the above equation). If both p; and
pgr tend to wnity, on the other hand, the gnantization ocenrs in the diabatic well

where
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and the imposed phase shift is due to the off-diagonal dynamical phases, i), and
Yg. Applying the complete transmission condition to Eq. (IT11.48), which turns
ont. to be equivalent to A = 0, we obtain

pr=pr=p and 6+ ¢ +orp+tYL—Yr=". (I11.53)

If p tends to zero or unity, the second condition in Eq. (II1.53) can be omitted.
The above equation has a very simple and interesting physical meaning: the inci-
dent. wave interferes hetween the two transition points in such a way that no part
of it reaches the tnrning points in the upper adiabatic channel. This is because in
region I {left turning point), 4 = 0, and consequently in region 111 {right. turning
point), X(A) = 0 and Y(4, B) = 0 {see Eqs. (IIL47) and (111.48)). The pa-
rameters of nonadiabatic transition matrices in Eq. (I111.43), in the case of above
model, are given in Eq. (111.B.1) in the Amendment. Eqgs. (111.49) and (111.B.1)
give the semiclassical transmission and reflection coefficients. Let us finally note
that Eq. (111.51) is invariant with respect to the following transformation

L~ Rand ¢ «— 7 — 1, {111.54)

as it. should be dne to the symmetry.

I11.4 Numerical examples

In order to avoid unnecessary parameters let us use the units
[E] = (ha)?(2M) "}, [a]=a7h. (111.55)

Then, as it follows from Eq. (111.5), there are only two substantial parameters,
V and €. These parameters affect the general behavior of the transmission
coefficient (see Figs. 11), which is: (1) the exponential decrease at energies far
below the top of the lower potential, then (2} overall monotonous increase up
to the first complete reflection point, and (3) complete reflection dips with an
envelope that converges to unity.

In the limit of small coupling, C (see Fig. 11a), the transmission coefficient
corresponds to that of a single barrier penetration, except that the complete
reflection dips survive with very narrow widths. For large values of C {see Fig.
11D in comparison with Fig. 11a) the first step broadens and the first resonance
moves to higher energics becanse the bottom of the upper adiabatic potential
shifts up with growing C. Also the complete reflection dips become wider.

In the limit. of small pre-exponential constant, V' (see Fig. 11c in comparison
with Fig. 11d), the potential curves become flat, the step is sharper and the
resonances become more dense becanse the semiclassical phase in the npper well
accunmilates easily. The semiclassical theory based on a sequence of two RZ type
transitions works well (see Fig. 12). For large valnes of V' (see Fig. 11d), on the
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other hand., the dips get narrower again and more separated, and the transmission
coefficient. decreases slowly at low energies.

In addition to this, there is a nontrivial envelope of the transmission coefficient
as clearly seen in Fig. 11¢. Snch envelope may even have a deep dip before getting
converged to unity at large energies.

In the ordinary single wnit of NT type of transition,[19,22] the qualitative
behavior of the transmission coefficient. is quite different. Since the nonadiabatic
transition probability tends to unity as energy increases (see Eq. (IV.A.1)}, the
incoming wave is effectively switched to the upper well at the crossing point,
then reflected back at the turning point and returns to the initial channel. Thus
the envelope of the transmission coefficient. monotonically decreases to zero with
increasing energy. In the above DAC model, on the other hand, the evelope
behaves in the non-monotonous way (before getting converged to nnity). This is
basically due to a sequence of two symmetric RZ type nonadiabatic transitions,
and is in accordance with the semiclassical analysis made in section II. Another
difference between DAC and NT cases is the conpling strength dependence of
the transmission coefficient. While in the DAC model the zero conpling limit
corresponds to a single barrier penetration problem with nonzero transmission,
in a single NT case the transmission is not possible, since each diabatic potential
diverges at one side.

II1.5 Closing remarks

The phenomena of complete reflection and complete transmission in two coupled
potential systems have been discussed and analytical conditions for these phe-
nomena to oceur have been formulated. The diabatically avoided crossing case
(Fig. 8) was solved quantum mechanically exactly by using the rotated Rosen-
Zener model and analyzed semiclassically with the use of exponential model [15].
The complete reflection was found to ocenr at some discrete energies like in the
nonadiabatic tunneling (NT) type of curve crossing, which has been discussed m
detail before. Interestingly, the appearance of complete reflection dips i1s guite
different. from the NT case.

Amendment

Here we provide some useful equations related to the main text in section 111

III.A. Meijer G functions

In the two state problem the conpled Schrédinger eqnations can be transformed
to a differential equation of the fourth order, i.e. {from
1

iy (W — (Viala) = E)) (1ILA.1)
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we obtain

—¢3 I ii |+ Vg — 2E + Vi oV 111.A.2
Yy V i/Jz 22— V12 --'1—/.1._%— ( . .._)

o 2V . 23y A Vi iy

+'l,:’.72 2122+(E—‘ ) ‘ +'U{‘2 ‘22--‘22“_]1_‘)'{‘
21/]"22 /llé 72
(Voo — E) vZ V. (Vin— E)(Vo — E)+ V), | = 0.
If we use the variable z = exp(axz), then the kinetic energy operator transforms
as P y

oo = aE (II1.A.3)

Furthermore, suppose that the potential terms multiplying the wave function
and its derivatives in Eq. (IILA.2) transform to only one arbitrary power of z
(or constants otherwise), then Eq. (II1.A.2) reduces to
i d ? d
(=1 ] (z—: —a; + 1) -1I (z; - bj) G(z) =0, (H1.A.4)
: 'z i 2

j=1

which can be solved by the Meijer G functions as

qm (2| {a} ) _ / o)L, T(1—a; + ) S
- {b 971'@ HJ m+1 bJ + I) I—[J:ﬂ+l r(a] - ‘,I’.)
(II1.A.5)
In Eq. (I11.A.5) L is a proper contour defined in reference 47. The above reduction

can be done for the following cases:
(1) Rosen-Zener-Demkov model, [12]

( U Ve“”)! (IILA.6)

Ve ot U,
(2) special case of the exponential potential model, [13]

Up 4+ Viere®  JWipe @™ -
( SVVoea Uy 4 Vae o and {IILLA.T)

(3} special case of the two-exponential-potential model, (14]

U] "*“/]8_201 Ve %
( s 0, ) (11L.A.8)

In the diabatically avoided crossing model (p = 0 and ¢ =4 in Eq. (I11LA4)) we
make nse of the following expansion of the Meijer G functions: [47]

{ } : = by
Gm( (0 ) > ( [T Tb; = bn)z ) (11.A.9)

h= 7=1.4
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XQFQ,[] + bh - b]_, R S 1+ bh - b4,2],

with - .
Fi(dy. da, da, 2] = hd 1I1.A.10
oFlds. oy des3) = 2 Sy T T (HLA.10)

and {d), = d{d + 1)..(d +n —1).

II1.B. Semiclassical analysis of noncrossing case

The parameters of the left nonadiabatic transition matrix Ip, in Eq. (111.43) in
the case of DAC coincide with those of the RZD model [1,12,15] and are given as
follows

pr = (1+exp(26))7!, &y = 7(8) —~(26). and

Wy = &y —26(vV2+In(v2 - 1)) with v(X) = XIn X — X —arg T(:X). (IILB.1)

The parameter & is defined as the imaginary part of adiabatic momentum integral.
The closed integration contour starts on the real axis and winds around the
complex crossing point. Here it yields [15]

§~\E-Up—JE-U. (111.B.2)

The nonadiabatic transition matrix Ig is nothing but a transpose of [y due to
the symmetry reasons (see Fig. 8),

PrR=pL, ¢r=¢r and g =7 — L. (IIL.B.3)

The transition points for the above matrices are the real parts of the complex
crossing points and are given by

C
TLRrR= :Fhl ‘—/, (IIIB4)
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IV  Complete Reflection and Transmission

Here we review our achievements in the analysis of complete reflection in two-
state coupled potential systems. The full account is given in the Paper 3 (sections
111, 1V therein).

IV.1 Opening remarks

Following the opening remarks from section III, in the section IV we give the
semiclassical conditions for complete reflection and complete transmission to oc-
enr in some crossing and noncrossing two-potential-curve systems.

In particnlar, here we discuss the conditions for the complete reflection and
transmission in the potential systems shown in Fig. 9a and Fig. 10a. We derive
the semiclassical conditions for the complete transmission and the complete re-
flection to occur and also compare these NT-models with the DAC model. Instead
of the case in Eq. (111.4) we are concerned with the case

Tr., Vin(xe) = Vas(ze). (111.B.5)

The most fuudamnental model in the crossing type is the linear model. Recently,
ZIm and Nakamura completely solved the model and developed a comprehen-
sive theory applicable to general curve crossing problems {19.41-43]. This theory
has been transformed into the time dependent version [40,43] and used for the
control of moleailar processes by a laser field [33,38]. Varying the intensity and
frequency of the field, {I,w}, and using the idea of dressed state, complete control
of some molecular processes can be achieved. Furthermore, the complete reflec-
tion phenomenon in the nonadiabatic tunneling type curve crossing, which does
not. appear in the time-dependent process, has been utilized to control molecu-
Jar photodissociation [35]. Here, we discuss two types of two crossing potential
curves and nse the Zhn-Nakamura semiclassical theory in order to analyze the
phenomenon.

IV.2 Two-channel case

Let us start with the common case of two diabatic potentials, one harrier and
one well, which intersect at two points and are coupled by a diabatic conpling
(sce Fig. 9a). In the case of dressed states, this coupling is due to the external

field.

1. At energies above the top of the barrier, (E,.oc) Since the seqnence
of turning and transition points is the same in both Fig. 8a) and Fig. 9a), Eq.
(111.50} with the phase shift in Eq. (II11.51} holds. The same applies to Eq.
(111.53). However, the nonadiabatic transition matrices are, of course, different.

15




The expressions for the nonadiabatic transition probability and the dynamical
phases are given by the Zni-Nakamura theory (see Eq. (IV.A.1) in the Amend-
ment). Referring to the results of the previons section we conclude that the
complete reflection,

_T(n)jq
[ VE= @) de = (- %)w +A(E). (I11B.6)

zlary

(A given in Eq. (111.51) with p, ¢ and ¢ replaced by Eqs. (IV.A1)-(IV.A3),
respectively), and the complete transmission,

po=pr=p and 6+ ¢L+dr+YL—YrR=T, (111.B.7)

are possible.

2. At energies between the barrier top and the higher crossing, (E;. Ey)
In this paragraph we consider energy above the bottom of upper adiabatic po-
tential (which is denoted here as E,, sce Fig. 9a), becanse the Zhn-Nakaimra
theory presents different formulas for £ > E, and E < E.. Since the energy
is below the top of higher adiabatic potential (case (b) in Fig. 0a), we use the
tunneling matrix A which connects the in/ont-going WKB waves from left to
right,

—\ _ { V1+ r2exp(—iP) ik exp(i©) —
( — ) N ( _ikexp(—i®) V1 + &2 exp(i®) ) ( — ) ’ (IIL.B.8)

where 1/x = exp(—me) represents the Gamov factor with € equal to the tunneling
action integral when the energy is lower than the barrier top (for further details
see e.g. reference [17]. This situation is schematically shown in the semiclassical
diagram, Fig. 9b. Using similar argmments as before, the complete reflection 1s
possible and the condition in Eq. (I111.50) still holds with some modifications. In
particular, we have

I(EY=%R { [ﬂmn E - u(la)(sc)d.’n} =(n-— %)w + A(E). (I11.B.9}

alall

where A(E) reads one of the following forms
AL(E) = —arg {d- expli(vy, — ¢r)) — (V1 + w2exp(—ilor + oL + D))

—Crexp(—i{O + ¢y, — dr)) i)} (111.10a)

or

AR(E) = —arg {dexp(i(¢s, — v¥r)) — (V1 + w2 expl—ilon + oL+ ®))
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—(rexp(i(@+ ¢ — Q‘JH))(CIC%*)Q} : (I11.10h)

That is to say, the complete reflection occurs when I(E) — A(E)y=(n—-1/2)7
or I(E) - AR(E) = {(n—1/2)r is satisfied. The factor &, (E) (Ar{£)) represents
the effects of botl nonadiabatic coupling and tunneling {and obeys the symmetry
relation in Eq. (I11.54)). If the tunneling is small, A; (E) (Ap(E}) corresponds to
the Bohr-Sommerfeld quantization condition in the left (right} npper adiabatic
potential well.  1f x = 0 = &, namely the matrix in Eq. (I11.B.8) turns to
unit matrix, then the parameters A(E) in Eqs. (111.10a), (I11.10b), and (111.51)
are the same (the complete reflection condition natwrally agrees with that in the
case 1 above). Taking the diabatic limit in Egs. (111.10a) and (111.10b), ie.
pL. pr — 1 and thus £ — 0, yields the Bohr-Sommerfeld quantization condition
in the diabatic potential well.

The complete transmission is also possible but. its mechanism is guite different.
from the above-the-barrier case. It. oceurs when

R L3, Mpa(u + u™) + [fzcg?*c;(R;IL;QAafgg + R, L5d") + R“L;Q‘ch(fclq]

x [ierch (Ror Ly My + RaaLnd) + RuLipMiyciet’| =0 (111.11)

with
U = R]] (L]]A-ﬁrl]chQ - 'n'.L;l.ﬁ’I]gC;C%‘Cg) g + ngLglﬂf(j-.

If the tunneling matrix M is replaced by a unity matrix, we obtain Eq. (111.B.7).
The constants from Eq. (111.47), A (amplitude of the wave reflected from the left
turning point) and B (amplitude of the transmitted wave), must. be both nonzero.
Physically it means that the complete transmission occurs only when the half-
standing waves both left and right. from the central barrier interfere destructively
with the reflected part of the incident wave. Becanse of this, Eq. (111.11) is quite
complicated and difficult. to solve analytically. Thus we restrict onrselves to the
exact numerical demonstrations in section IV, Let ns also note that depending on
the potential parameters, the complete reflection and transmission can ocenr af
energies close to each other, in which case we have the Fano type resonance [45].
A numerical example will be given in section 1V-B.

When the maximum of the upper adiabatic potential is so high that the
tunneling can be neglected (x — oc), the formalism simplifies cousiderably. As
also follows from Eqgs. {111.10a} and {111.10b) in this limit, the complete reflection
occonrs if

cos{d; + di — @) =0 or cos{d; + Al — o) = 0, {111.12)

i.e. its energy is given by the Bohr-Sommerfeld gnantization rule with the addi-
tional phase correction, ¢p or ¢p. This is simply equivalent, to the case discussed
hefore [19,21-23.35]. The complete transmission condition follows

pr(l = pp)cos(dy + df — o) exp(—u(@y + & — ¥+ dy + d3 —d%))
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+p1(1 — pr) cos(ds + df — ¢r)expl(i(dn + L — g +di + d3 — df))
tprprcos(dy + di + dY + dy+ 64+ v — ) =0, (113.13)

(confer with Eq. (I11.54)). The three cosine functions in Eq. (11113} turn to
zero when the scattering energy coincides with a (shifted) bonnd state in the left,
right or the global diabatic well (see Fig. 9). Let us also note that Eq. (111.13)
is a Hmiting case of Eq. (I11.11). When we set © = 0 = ¢ and expand Eq.
(111.11) in powers of x, the leading term #2 vanishes identically, while the term
proportional to ~ yields Eq. (111.13).

3. At energies in between the two crossing regions, (E_, E.) We cannse
the above formalism also when the energy is in between Ey and E_, where E_
is the bottom of the upper adiabatic potential in the lower crossing region (see
Fig. 9a)). In this case, the lower crossing can still be treated by the J-matrix
(sce Eq. (I11.43)) as previously, but the upper crossing should be described by
the nonadiabatic tunneling matrix (transfer matrix) N,[19.41-43] which connects
the waves on both sides of the crossing in the lower adiabatic channel (see also
Eq. (IILB.8)). Furthermore, we have to assume that the barrier on the upper
adiabatic channel (see Fig. 9a) is high enough so that the tunneling through it can
be neglected. Then, the above formalism can still be used with the replacements
of the tunneling matrix M and the /—matrix for the higher crossing by the
N —matrix and unit matrix, respectively. Finally we derive the following results:

The complete reflection oceurs if the Bolir-Sommerfeld condition i the open
adiabatic well is satisfied, i.e. it is also given by Eq. (111.12). The condition for
the complete transmission reads

9 Raop Niodes cos(dl + d3) = Ry (RiaNiadeocs + iR NSod' ces)  (111.14)

(here we suppose for simplicity that the crossing point energy is higher on the
left. than on the right).

4. At energies below the crossing points, (—oc, E_) Using similar as-
sumptions as in the case 3 above, the semiclassical wave propagation for £ < E_
shonld be described by the two nonadiabatic tunneling matrices {transfer ma-
trices), N (left crossing) and N’ (right crossing). These are parametrized with
x, & and O, similarily as in Eq. (IILB.8). Then we find that the semiclassical
complete reflection is not possible. Yet the complete transmission can still ocenr,
provided (1) that energy is above the bottom of the lower adiabatic potential,
E; < E < E_, and (2) the following equation is satisfied,

ko= r'and (dep)? = —exp(®+ @+ 60 - 0). (111.15)

Since it is possible to control & and &' e.g. by changing the intensity of the laser
field, the complete transmission condition above could be nseful for enhancing
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chemical reactions, especially those which are otherwise nnlikely due to the tun-
neling [46]. At energies below the bottom of the lower adiabatic potential, Eq,
the whole scattering can be described by semiclassical analysis only as a single
barrier penetration. The complete reflection and the complete transmission are
not. possible.

1V.3 Three-channel case

Let 1s consider a barrier coupled with a monotonous potential, such as in Figs.
10a and 10b. With the nse of previous notation the propagation of semiclassical
wave fiunction vields: (1) the complete reflection is not possible in any of the
three channels. However, (2) the complete transmission is possible, althongh
only through the barrier in the first channel. In order to have such a sitnation
the following two conditions mmst be satisfied simnltaneousty,

—ﬁ =1 —pand exp(2i{d; + da)) = —exp(i(20 + ¢ — 9)). (111.1G)
Let. us take a limit of a high barrier, # — oc. Then p must tend to zero from
the above equation, and the second egnation defines a bound state. Ou the other
hand, for k — 0 the complete transmission ocenrs only when the incident wave is
switched with nnit probability just before it reaches the turning point on the right.
Generally, if Eq. (111.16) is satisfied, then the transmitted wave is distributed

between the left and right lower channels with the ratio of «/ \/ (14 &2)(1—p).

IV.4 Numerical examples

Atomic units are used thronghout this section. The reduced mass is chosen to be
M = 1000 a.., if not stated otherwise. First we illustrate the theoretical resnlts
for energies below the top of the barrier. The accurasy of the semiclassical theory
(cf. Eq. (111.49) and the Zhn-Nakamura formulas in Amendment B) for energies
above the barrier top is also demonstrated. Finally we briefly discnss the Fano
typ of resonance [45,46] using onr semiclassical analysis.

In Figs. 13, mmerical examples of the transmission probability are depicted
for an asymmetric double NT-type crossing model. These figures demonstrate the
occurence of complete reflection and transmission in the energy regions discussed
in the previons section.

Fig. 13a shows the overall behavior of the transmission coefficient. in the case
of asymmetric potential model defined as

Vi, = 0.2 — 0.0127%, Vo = 0.01(x — 1)? = 0.3 and V4o = 51075 (11L.17)

There appear as expected complete reflection dips for £ > E_ and complete
transmission peaks for £ > E,. The five energy intervals are divided by £, = 0.2,
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E. =5x 1074 E_ = —-0.095, and E; = —0.3. In the energy region below the
harrier top, both the complete reflection and transmission oceur close to each
other (see also Fig. 14 below). At energies above the barrier top, the very Hat
transmission peaks are separated by the complete reflection dips. This follows
from Eq. (I11.53), since pp ~ pr — 1 and the phase condition therein is also
satisfied at large energies. We note, that the dependance of the resonance width
on the diabatic coupling strength is not. monotonous. This is becanse hoth for
the weak coupling, p — 1, and for the strong coupling, p — 0, the two subsequent.
transitions do not allow the wave to reach the turning points and get reflected
back.

Fig. 13b shows a maguification of some portion of Fig. 13a, demonstrating
the accuracy of the Zhn-Nakamura semiclassical theory {solid circles) given in
Amendment B. Figs. 13¢ and 13d show the transmission coeflicient for different
conpling strengths, i.e. Vo = 1x107% (¢) and Vip = 8 x 1072 (d). Since also here
the semiclassical and exact results practically coincide, only one cirve is plotted.
The Zhm-Nakamura semiclassical theory works very well (also in the tinneling
range which is not shown here). Figures 13b-d demonstrate the non-monotonous
character of the dip widths on the coupling strength, too.

Finally, we would like to point. out that the Fano type resonance [45] discussed
by Vardi and Shapiro under the name of laser catalysis [46] can be reprodnced
by the present analysis. We take the following two diabatic potentials: (40]

X B¢ . B¢
Viy=U; - ———=and Vo =U+ —== 111.18
n=U-ggrand Ve=Ut 57 ( )
with
£ = - exp{mr/2), (111.19)
where
B =6.247 x 1072, Uy =315 x 107 and U = 5917 x 107 (111.20)
The coupling is given by the dipole moment and the laser field intensity,
Vio = 6.8 x 107%, and M = 1060.83. (IT1.21)

Although in the above mentioned reference the authors nsed a laser plse and
propagate wave packets, the constant conphing in Eq. (111.21) is adequate, since
the fild changes slowly. Fig. 14 shows the transmission coefficient, as a function
of energy. This figure is very similar to Fig. 8 in the reference 46. This is
because an infinitesimal shift of a Floguet state by dw is roughly equivalent to a
shift in scattering energy, dE = —dw. As a result of a very small conpling, the
wave passes throngh the crossing points almost diabatically {pr, pr ~ 1). Thus
the hackground in Fig. 14 is just a single barrier penctration. Since the phases
dy and dy are very small, Eq. (111.12) can never be satisfied in this particuar
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energy range. Consequently, the complete reflection is not the samne as that in
the single NT case. It can also be seen from Egs. (I11.10a) and (I11.10b) that
the limit of infintely high barrier (Cx 3 1) is not justified. Hence, the tnnneling
through the central potential barrier is responsible for the complete reflection.
Taking ¢ ~ 0, A ~ & + 1, — g (see Eqs. (111.10b) and (I11.104}), the complete
reflection condition (111.1B.9) reduces to a quantization in the global diabatic well,
dy+dy + dit +ds + 6+, — g =w/2 This explains the complete reflection
in Fig. 14 since the energy is close to the first hound state supported by the
diabatic potential Vi, For the complete fransmission, on the other hand, the
tnuneling does not play so important role. This can be checked both analytically
and numerically. When we increase artificially the heigth of the barrier, the
complete reflection disappears while the complete transmission remains stable
(bold line in Fig. 14). Thus we can nse Fq. (I11.13) instead of Eq. (111.11). The
first. two terms in this equation, proportional to 1 — p, are very small and the
last term turns to zero when dy +di + df +ds + 6+ ¥y — p = 7/2. Thus just
a small change in energy suffices to switch between the complete reflection and
complete transmission and the Fano type of resonance can be nicely explained
by the semiclassical picture, and theory.
Fig. 15 shows the transmission probability in the model potential given by

Vi = 0.06[1 + tanh(2{z + 2))}{1 — =) and Va» = 0.12 (111.22)

with a constant. diabatic conpling. The barrier top of V1; is 0.265. There appears
an example of complete transmission below the top of the barrier in the case of
Vs = 4.59 x 1072, The incident wave must first penetrate throngh the barrier
for energies 0.0 ~ 0.270 an. The complete reflection never takes place, as it
was already mentioned in Section 111.B. The transmission coefficient shows the
Stueckelberg oscillations which diminish as energy grows. At high energies the
envelope simply converges to wunity, since the wave just proceeds diabatically
(p — 1) from left. to right. With decreasing diabatic coupling the transmission
coefficient. converges to that of a single barrier penetration (dotted line).

IV.5 Closing remarks

The two channel case (Fig. 9), in which one barrier type and one well type poten-
tials cross with each other at two points, has also been analyzed semiclassically.
Both complete reflection and transmission can appear, as can be analvzed by the
semiclassical Zhu-Nakamura theory, although they are quite different from those
in the single NT type curve crossing. The semiclassical analysis of the three chan-
nel case (Fig. 10) has shown that the complete transmission is possible; while the
complete reflection is not. In all these cases, the semiclassical tlieory presents a
very useful tool to understand physics.

As in the single NT type curve crossing, the complete reflection and transmis-
sion represent. very intrigning phenomena in themselves, and could he utilized in

-
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realistic molecnlar processes. In the Floguet formalism we can realize the poten-
tial schemes discussed here by dressing up and down some molecular enrves. This
means that we may be able to control varions molecular processes with the use
of such phenomena (cf. refs. 33 and 38). For instance, reaction process may he
switched off by complete reflection or enhanced by complete transiission. Vardi
and Shapiro discussed such a possibility in the terminology of laser catalysis by
using the Fano-type resonance [46]. Onr scheme here is different. from theirs and
conld be more versatile. Not only the nonadiabatic transition probability but
also various types of phases can be changed by manipnlating lasers, and the com-
plete reflection and transmission could he utilized in various desirable ways to
control molecular processes. Applications of the formalism to higher dimensional
systems would be interesting and desirable. The existence of complete reflection
indicates that the bound states in the contimmun should also be possible as i
the case of periodic systems of NT type curve crossing nnits [21,22].

Amendment

Here we provide tlie nonadiabatic transition matrices nsed in section 1V,

IV.A. Semiclassical analysis of crossing case

In the curve crossing case at energies above the bottom of the upper adiabatic
well, the nonadiabatic transition matrices [ (see Eq. (111.43)) are given by the
Zim-Nakamura theory [19,41-43] as follows:

T

2 1/2
pzexp[———( - ) ]: (IV.A.1)
4ab\1 4 /1 — b 4(0.72 — 0.620143)

& 6. 6 & ;
G == — ln(;) + argT(i=) + g, (IV.A.2)

T 0w
and 7 |
. REJ_R1 2 1-"")'. [2{)3+,/[}4 _ 1]
- R, — Ry 3a VIEF 1+ =1

W (IV.A.3)
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E](!J_‘;- f)Ez(h:— f)

Z <

T 1\ﬂ5+m,/1—hl4

=8(1,112 1+ ./1 1

W

and

(IV.A4)

At the reference point, Ry, the lower adiabatic potential has a local maximum,
E.. R, and E, correspond to the local mininnun of the npper adiabatic potential
(see Fig. 9a). The Zhu-Nakamura theory is also available at the lower energies
[19.41-43].
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V Dissociative Recombination of HJ

Here we review onr achievements in the analytical treatment of singnlar integral
equations in dissociative recombination. The full aconnt is given in the Paper 4.

V.1 Opening remarks

The dissociative recombination (DR} pracess has been a subject of interest for
long time. - This is an electron-molecnlar jon recombination process, and repre-
sents an important elementary mechanisim in a variety of fields such as plasma
physics, interstellar chemistry and astronomy [48-51]). The process also presents
a thicoretically challenging subject, since this is a kind of rearrangement. collision,
in which the coupling between electronic and muclear degrees of freedom plays a
crucial role.

The Multichannel Quantum Defect. Theory (MQDT) was originally designed
to deal with two types of states, the electronic contimmm and the Rydberg man-
ifold, in a nified way {52-54]. The quantun defect p as a function of the relative
mclear coordinate plays the most important role in describing various physical
processes among these infinite number of states. In the case of DR, there is a third
kind of state, that is a dissociative state which diabatically crosses the Rydberg
quasi-contininm and goes into the ionization contimmm. It is an electronically
doubly excited state or an inner-shell excited state, which is generally called "first
kind of superexcited state” [55]. The conpling of this state to the ionization con-
tintum called 7 electronic coupling” represents the electronic antoionization, ie.
cjection of one electron due to the de-excitation of the other one. The MQDT
formalism defines two electron coordinate regions; the first of them is an inner
region (the reaction zone), where the transition occurs, and the other one is an
asymptotic scattering region. Effects of the dissociative chaunel, arising m the
reaction zone, can be incorporated into the framework of MQDT by nsing the
solution of the K -matrix integral eqnation associated with the electronic conpling
[55-56). The conpling represents the interaction of the dissociative state not only
with the ionization continuum, but also with the Rydberg mauifold, a sort. of
quasi-contimum. This quantity is a function of the mtermclear distance . and
the continuons electron energy e, and couples vibrational states to the dissocia-
tive nnclear state. The intermediate states of the Rydberg manifold give rise o
an infinite number of dense resonances in the DR process.

The MQDT treatment presents a powerful tool to reveal characteristics and
dynamics of superexcited states of molecnles with an effective ntilization of ¢uan-
tim chemical techinique and spectroscopic experiment. [57-58]. The formalisim
deals with the various phenomena by means of two successive frame transforna-
tions [56]. First of them defines the eigen-states of the inner region, diagonalizing
e N-matrix, while the other one connects the inner and outer regions; meorpo-
rating the quantum defect function. Both transformations together prodnce the



final scattering matyix. The main difficulty of this general procedure developed
in refs. [57] and [58] is the treatment of the Lippmann-Schwinger type of integral
equation.

The equation comprises a kernel singular in energy representation, which is
not. easy to treat, especially when many channels are involved. If the singnlarity 1s
not treated efficiently, the dimension of resulting matrix egnations reaches easily
the limits of computing facilities. In the literature several approaches hiave been
used so far: the first order perturbation theory that avoids the singnlarity problem
completely but is not often justified to be applicable, and the grid method which
enconnters the above mentioned difficnlties [48-51]. In addition, the second order
perturbation theory has been used to incorporate indirect. electronic coupling
effects [59]. Other methods rely on the Feshbach projection-operator formalism
[60], the eigen chaunel treatment [61], or the R-matrix theory [62].

It is the purpose of this work to propose a new more efficient, way of solving
the singularity problem that enables us to present very precise and reliable values
of DR cross sections. To treat the singularity we introdnce a method based on
the nse of Clichyshev polynomials which allows an analytical evaluation of all
singular integrals entering the Lippmann-Schwinger equation [63]. This method
proves to be very nseful, compared to the conventional ones. That is crucial, since
in realistic problems the munerical K-matyix solution should be quite efficient.

A very useful approximation to the DR process can he obtained by realizing
that in many cases the electronic coupling is almost separable with respect to
the variables R and €. This fact considerably simplifies the kernel of the K-
matrix equation that becomes guasi-separable, the definition of which will be
given later, and we can find in fact a simple analytical solntion. Owr procedure
thus very much facilitates the MQDT treatment not only of DR but also of other
varions kinds of dynamic processes involving superexcited states of a diatomic
molecule [55].

The section V is organized as follows. First we define the basic quantities
and outline the MQDT formalism. Attention is paid to the Lippmann-Schwinger
equation and to analytical treatment of the singular kernel. We discuss the
separable approximation to the electronic conpling and the resulting analyti-
cal K-matrix solition. A general non-separable case is also investigated. Then
we compare our method with the grid method and the perturbation method to
demonstrate the mmmerical efficiency of the present treatment. The calenlations
are based on the parameters of the HY + e system and their varions modifica-
tions. We omit. the rotational degree of freedom since that is not necessary for
the explanation of onr method. In section V we summarize the present treatment
and its further applicability. Atomic units are used throughout.



V.2 Theory and formalism

First we briefly summarize definitions of the basic quantities and the MQDT
treatment. We nse gt to denote electron coordinates of the molecular ion, q
for those of the nentral molecule, and r, I, k specify the radial coordinate of the
incident electron, its angnlar momentum and the wave number, respectively. H
represents the total hamiltonian except for the nuclear kinetic energy part, 1.e.
the electronic hamiltonian at fixed intermiclear distance.

The vibrational states of the initial cation described by the potential

Vi(R) = (¢+(as - R) |Ha(R)| ¢+ (ay = R))qe (IV.A.5)

are represented in terms of the normalized eigen-functions { £, ®.} of the Schrédinger
equation
1 d°

_@W + ‘/+(R) q)v(R) = E'l:(l)v(R)a H(I)?-H =1 (I\IAS)

¢+(qt ¢ R) in Eq. (IV.A.5) stands for the Born-Oppenheimer electronic wave
function of the molecular ion and g in Eq. (IV.A.6) is the reduced mass of the
molecnle. The wave function of the incident electron is denoted as ¢(k, r; R).
which is normalized to a delta finction with respect to k*/2.

The asymptotic fragment atoms are assnmed to have a total electronic energy
E, after the scattering process is over. The nentral dissociative state of the
molecile nnder such boundary condition is a solution of the Schrédinger equation

1 d2

o, AR + Vais(R) | Vais(R; E) = EW4is(R; E), (IV.A.7)
normalized with respect to energy as
(Wai(R; E)|Wa,s(RE')) p = 6(E = E'), (IV.A.8)
where the dissociative potential Vg, () is given as
Vo (R) = ((q : R) |Ha(R)|¥(q : R)), "= Ey (IV.A9)

and ¥(q : R) stands for the electronic wave fimetion of the dissociative superex-
cited state. The electronic coupling between the dissociative state ¥(q: R) and
the jonization contimmum is defined as

Vi(R. K/2) = (¢(a: R)|Ha(R)| Ap.(a" - R)gu(k. v R)) . (IV.AI0)
where 4 denotes the anti-syninetrization operator. Having defined the electronic
as well as muclear basis states, it is now necessary to describe the processes in
the reaction region that result in the atomic rearrangement. In order to take
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into account. the effects of the coupling, Eq. (IV.A.10), the K-matrix equation is
introduced [56):
(E.n|K(2)|E'\m)={(E.n|V|E m)+ (IV.A.11)

P]x'dE"Z<E,n|V|E",p)
0

Vp

(E".p

1 .
— K(z)|E',m),
where the potential V(E, E') is specified below, n, m, p denote all the channels
and P indicates the Cauchy type of integral. Solving Eq. (IV.A.11), we obtain
N, (= Nyip + Ny, ) additional phase shifts given as

tand,(E) = —7 (E,a |K|E.a)., a=1...N,, (IV.A.12)

where the eigen-channel representation a diagonalizes the symmetric real No x N,
K-matrix

U(z)"K(z) U(z) = Diag (K'“)(2)) . (IV.A.13)

The parameters from Eqs. (IV.A.12) and (IV.A.13) are incorporated into the
MQDT framework as described below. In order to obtain the final scattering
matrix, the following auxiliary matrices, C and S, defined by

Coro = 3 (v |cos [mu(R) + & ) Usa:  Caa = Usa c08 6, (IV.A.14)

7

and

Seta = <1J+ |sin [rp(R) + 6] 1.)) o  Saa = Ugasiné, {IV.A.15)

ki

must be calculated. Here p(R) denotes the quantum defect function. Then
the elements of the total reactance matrix R among the open channels (block
index o) result from elimination of the closed channels (block index ¢). Following
Seaton [52], the reactance matrix is expressed as

R = Roo - Ruc |Rec + Diag (tan(zv))] ™' R, (IV.A.16)
with
R=SC!, and E - E, = —(2%)7". (IV.A.17)
The S-matrix is given as usual by
144iR
S = TR (IV.A.18)

and finally the cross section for the vibrationaly resolved dissociation reads

Tt = 975 Sl (IV.A.19)

e}
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where g is a statistical factor. Before examining the A-matrix equation in more
detail, let us simplify some of the notations. We use the indices

i =u,d where v =0..N —1 denotes the vibrational state, (TV.A.20)

and d stands for the dissociative channel.

The K-matrix elements arc denoted as
Kom(EY={E,n|K(z)| E'\m) (IV.A.21)

(E' is in fact a kind of dummy parameter when solving Eq. (IV.A.11)). The
underlined variables are fixed and omitted, unless it is necessary to indicate them
explicitly as parameters. It is convenient to make use of the following properties
of the potential encrgy function

V(B E') = (U (R:E) V) (R E' — E,)| ®u(R:E))y and  (IV.A22)
Vim(E, E') = 0 for the blocks of (n,m)=(d, d} or (v,v'). (IV.A.23)

The latter one follows from the projection technigne that is nsed to separate
the Hilbert. space into two subspaces: one of them corresponding to the ion
arrangement, and its complement. corresponding to dissociation. The electronic
hamiltonian with the use of such two projectors is divided into a block-diagonal
part Hy and the block-ofl-diagonal rest V. Eq (IV.A.22) means nothing but.
taking V matrix element only within the two complement subspaces, since | E, n)
in Eq. (IV,A.11) are the eigenstates of Hy and here V denotes the conpling. Eq.
(TV.A.23) indicates that the block-diagonal V-matrix elements vanish.

Tn order to solve Eq. (IV.A.11) we have to deal with the Cauchy type singular
integral,

E—FE
This is generally a complicated task and a few more or less satisfactory methods
have been proposed in the literature to deal with that [63-64]. Here we briefly
explain how we treat. this kind of integral analytically. We first. transform the
infinite integration in Eq. (IV.A.24) to a finite range integral by mtroducing the
following transformation, preserving the linear type of the singnlarity:

1:PLWiﬁQ«E. (IV.A.24)

1+ E-C
H&h&%t;“%hyEE+C( (IV.A.25)
Then we get
2 1 f(E'(x)) da ]
7= P . IV.A.26
E+C /1 z-y a-1 ( )
We note that the convergence of the integral in the limit @ — 1.
1 f(E (27)) da’
lim / JIE (&) da =0 (IV.A.27)
r—1_Jr -y o =1
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is ensured by the existence of the integral (IV.A.24) defined in the infinite range.
For instance, if the function f(E) behaves as

f(E—oo)~E™ (n>2) (IV.A.28)

. then
flx =1 )~ (xz-1)" (IV.A.29)

and Eq. (IV.A.27) holds. For any kind of analytical treatient it is crucial to
know how the integrand function behaves near the integration limits. We assume
that the fiunctional behavior of K(E,.) and V(E,.) in the same channels is the
same. This is completely true for the quasi-separable case, discussed in the next
section, and holds well also in the weak coupling case. The vibrational channel
does not introduce any non-analyticity in Vi (E, ) at low energies, even if the
electronic conpling is trincated at a Rydberg energy threshold (en = —1/(2n7),
with » = 2 or 3), where it still has some non-zero value [71]. In such a case it
suffices just to shift the energy integration range. In the dissociation channel the
integrand behaves at the threshold £ — Ey as

1 1
(E. )~ ﬁ’ and thus V. 4(., EYKq (E', )~ ﬁ
{TV.A.30}
This comes from the energy normalization of the dissociative wave function
(IV.A.7) and appears in Eqgs. (TV.A.11) and (IV.A.24) as a modified weight
(ef. Bq. (IV.A.25))
dx

V1 —ux?

instead of dz. As a next step we expand the function f in terrus of certain basis
fumctions, which allows us to evaluate the Cauchy type integrals analytically. We
desire, of course, to keep the mumber of expansion functions as small as possible.
All integrals appearing in our problem can be reduced to the following fonr basic
integrals (the reduction is described in detail in the Amendment):

1 flz)  dw Vo flx)  dx
p_/,] 7 -yl y| < 1, /_1 :r_—_;ﬁ ! (TV.A.32)

{1 —x) (IV.A.31)

and

p/ EICPN lyl < 1, /1 ) gy Iyl > 1, (IV.A.33)
Joyxz—vy Joarz—vy

where the second one in each line is a regular integral without singnlarity which
arises when the channel is energetically closed. All of these can be expressed
analytically in terms of Chebyshev polynomials. A nseful analytical expression
can be found also when f(E) ~ K{E)W(E) ~ E*, where a is a non-half-integer
in Eq. (IV.A.24).



Solution of K-matrix Equation Becanse of the off-diagonal property of the
potential energy finction, Eq. {IV.A.22), the K-matrix equation decouples into
the following two sets of equations:

Vi E £) . _
Kog(E ZP / Va (. E) 10 (E") dE and (IV.A.34)

o (E, E' / '
]{ﬂd(E) —_ Vd(E E + ZP /'_.i_g_};_)_f\d,d (E) dE (IVASS)

o T
and E E'
Kool E ZP / Var (B By (B dE and (IV.A.36)
e E L)

KulE) = Vi (B, E' +ZP f o Ko (E') dE'. (IV.A.37)

Now we discuss the way of Sol\ ing these equations. First we factor out the
asymptotic behavior as well as the normalization factors and integration weights
(dy) as is given in Eqgs. (IV.A.30) and (IV.A.31},

Vi; (E,E') = oy By (E')vi; (E, E) (TV.A.38)

and
K, (E.z) = ai( E)ki(E. 2), (IV.A.39)

where
a;=1ifi=dand o, = (E+C) " ifi=w.

The well behaved fanctions wy; and k;; are expanded in terms of Chebyshev
polynomials as

i (E), B (W) = 3 ¢V Tuly)Tul(y'). (IV.A.40)

m,n

i (E(y), 2) = 3 ¢, T (y)

and

- A = (K)
‘l‘ﬂ,_j(E(y): i) - Z(‘ )mTTH(y)
™
Our experience shows that these expansions are nsually rapidly convergent and
the infinite sum may be truncated at some small number N, of terms, i.e.

C(i,)‘ij 'rmﬁ_—;oc 0. (I\7A41)

Hm

After inserting Egs. (IV.A.38)-(IV.A.40) into the Lippmamm- Schwinger equation
(IV.A.11) the integral part rednces to

Z (‘ ﬂm R)J ’TH [ Tm 1” ) f : - (]\fA42)

FRIRITS -y
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Chebyshev polynomials in the integral (IV.A.42) can be easily reorganized so that
we can use the formmlae given in the Amendment (¢f. Egs. (V.A.5), (V.AG),
(V.A.8) and (V.A.11)). Finally, N, matrix equations for ¢’ of the order Ny - N,
are obtained,

STM(2)E = (IV.A.43)
i Jm.’

This matrix equation can be inverted directly, if the number of polynomials in
the truncated expansion (IV.A.40) is sufficiently small. [teration techniques are
also available to solve Eq. (TV.A.43).

V.3 Separable approximation

The electronic coupling Vi(R, k*/2) defined in Eq. (IV.A.10) is a general function
of intermuclear distance R and the electron energy € = k?/2, and not much is
known about its shape mainly at larger values of R. It appears, however, and
is actually supported by the calculations of a related problem, the dissociative
atiachment process [65-67], that in many cases the coupling element. is separable
or nearly separable in the variables 7 and e,

Vi(R. k*/2) ~ Vr(R)V.(K*/2), (IV.A.44)

where Vi and V, are certain functions. The numerical data for HY + ¢, which
is actually the only case in DR to give explicit dependencies on both R and e,
supports this separability, as explained below. In the case of dissociative at-
tachment, quite a lot of information has been accummlated and supports this
approximation [65-69]. Domcke made use of the separability in order to sim-
plify the time-dependent wave packet propagation procedure when the 7" matrix
formula is explicitly given. In the MQDT formalism, on the other hand, the sep-
arable coupling allows an explicit solution of the Lippmann-Schwinger equation
in energy representation.

The separability may be qualitatively inderstood as follows. Since the valence
orbitals are short ranged, the integration in the coupling (IV.A.10) is limited to a
relatively small range of the radial distance rg. For r > rg the MQDT formalism
assumes that only a spherically symmetric Coulomb attraction for the external
electron is non vanishing. Inside the reaction zone, r <y, on the other hand, the
external electron is supposed to feel a strong attractive potential as an integral
part of the molecule and thms its asyviptotically low collision energy can be
neglected in the first approximation. Near the boundary the inner wave fimction
is already separated with respect to R and r as

(.o R) ~ w(R) ((tos (wp(R)) ¢§”(‘r‘) — sin {mp(f7)) d),f?')('r')) . {IV.A45)

where w(R) is a certain function of R, and only the energy normalization of the
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outer wave function is left to be determined
N7'(k)
vk

Thus the k dependence of the conpling arises mainly through matching of the
k-independent inner wave function 53 () (7 = 1,2) to regular and irregnlar
Coulomb fanctions fi(k,r) and g(k,r) at the boundary r{k} ~ ro. The above
argumentation hiolds for the matrix elements such as the electronic coupling
(IV.A.10). This should not be used directly to the wave functions, thongh.

The most thoroughly studied system is Hy for which the electronic coupling of
H, (1€, (2pm,)?) has been calenlated by Hara and Sato [70] in the static exchange
approximation. Their matrix element is not precisely separable, but the non sep-
arable part is a rather small correction. This clearly follows from Fig. 16, where
the solid line represents a separable approximation whereas the circles show the
original data of Hara and Sato. Hence, in this case, the separable approximation
should work very well and the remainder may be treated, if necessary, as a small
perturbation. The other quantities describing Hi + e system, i.e. the dissociative
and ionic potentials, are given in Fig. 17.

It. is interesting to examine how the separability of electronic conpling in the
sense disenssed above appears as a quasi-separability of the Lippmann-Scliwinger
equation. The conventional separability in Eq. (TV.A.11) means

Ok, r; R) ~ (fi(k,7)cos (mp(R)) — gi(k,r)sin (mp{17))) . (IV.A.46)

V{{n, E} {m EY})= Vamt (EYo (E'), o, € R (TV.A .47)

and the A -matrix then takes the form

(E,n|K(2)| E',m) = £(2)nmtn (E)vm(£"), {IV.A.48)
where
r{z) ={1 - () T (IV.A.49)
and 2
rom(z) = Sop [ lE) ng. | (IV.A.50)
JO Z

Eq. (IV.A.48) gives the operator solution of Eq. (IV.A.11) for all the cnergies
B FEif z is fixed.

In the present case the electronic conpling is separable in the sense of Eq.
(IV.A.44) and tlus the energy kernel of Eq. (IV.A22) (E=E,+ ¥ /2o E =
Eu + E,uc) given by

V ({d, B}, {u, E'}) = V. (K(E); v) /Um Uy R: E)Wr(R)D,(R: Ey)dR
(IV.A.51)

appears in the form

V{{d E}, {n E'}) = Vy{E' = E)Vu(E) (1V.A.52)
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where we denoted

VAE) = [ Wan (R E)Viel R) (s Ev) AR

and
Vi(E'— E) =V, (F — E,).

Although the arguments in Eq. (IV.A.51) are {d, E} and {v, E'}, in Eq. (IV.A.52)
the vibrational state © couples with the dissociative state kinetic energy E (through
the function V,) while the dissociative state d couples with continuous electron
energy E' (through the function Vy). The solution of Eq. (IV.A.11) with the ker-
nel in Eq. (IV.A.52), K,,(E)} = {E.n |K(z)| E',m), is given below analytically
for fixed E' and z only as a function of E. For determination of the phase shift,
Eq. (IV.A.12), we finally set
EFE-FE = (IV.A.53)

Becanse of this we call Ky, (F) the "on-shell gnasi-separable” solution. To write
it. down explicitly we consider for simplicity only one dissociative channel d.

The K matrix elements are found in terms of V functions in Eq. (IV.A.52),
when we make nse of the two separated groups of indices (see Egs. (IV.A.34)
and (IV.A.36))

KalE) =3 Vol E),  Kua(E) = BValE - Ey) (1V.A.54)
and '
Kv-,ng(E) = ’)'1?11'2‘/(1(‘5 - Em): I{dt'{E) = Z&m:"fv’(E)- (1\[A55)

If we introduce the principal value integrals

o VHE — E,) > V{E )V (E")

JE EP/ YAE T 50 e and m(E) =P [ S gy

B =L T E-E and m(B) =P | '
: (TV.A.56)
then the coefficients in Eqgs. (IV.A.54) and (IV.A.55) are given by the relations
fgl! = ‘/1(5) + z 771.'1""71:’,811’: Qy = ﬁz‘”u (I\]A57)

and

’)‘1‘]"‘2 = \/d(E - E‘I'Q)WT'lvg + Z Tr1f1'l"'7r1f"-)"tf"l’22 (I\IA58)

Syt = V;v(E - Ev) 5':1,'_’,,1 + T Yoty

i

Since the parameter o, is dummy in Eg. (IV.A.58) the LU decomposition is
useful: thus to get all the K-matrix elements we only need to solve an N, X N
linear matrix equation, which is repeated Ny, + 1 times (N, 18 the immber of
vibrational channels).
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V.4 Numerical examples

Let us briefly discnss the nmmerical methods nsed to solve the K-natrix equation.
For that purpose the DR process of Hf + ¢ is used as an example. The rotational
degree of freedom is not incinded in the model calenlations. We start with the
comparison of our method to the grid method. The first order perturbation
theory is not applicable in this case. In order to prove it our calculations are
presented for a wide range of the modified clectronic conpling strength (see Fig.
18).

To get an insight into the problem, let us review the grid method. Essen-
tially, this method wses a numerical quadrature to convert. the integral equation
(IV.A.11) to a linear set. of equations defining the A-matrix af grid points. Such
linear system can be solved by standard methods of linear algebra. The dimen-
sions of underlying matrices and the accuracy of the method is to a large extent
determined by the nnmerical quadrature nsed to approximate the integrals ap- |
pearing in Eq. (IV.A.11). A typical integral needed for the evalnation of the
K-matrix takes the following form

o E’ .
=P / il dE’ f(E"Y =8(E +e,) EMexp(-bE"),  (IV.A.59)

where E is a real munber, negative in the case of closed channels and positive if the
corresponding channel i1s open. Here a and @ are certain constant parameters [71].

The Cauchy type integral can be evalnated according to the principal value
definition with use of the grid method,

e (B e NE)
1(E) =l UO Sl [ edE | (TV.A.60)

The mesh points E' = z; are chosen so that we approximately have
I (x5) :
~ >y (IV.A.61)
3 E - T

where w; are the gquadrature weights. Becanse both integrals in Eq. (IV.A.G0)
diverge when ¢ — 0, it is important to nse the mesh-points located syrmmetrically
with respect to E in the vicinity of the singular point z; ~ E. If an equdistant,
grid is nsed, obvionsly many grid points have to be nsed for the case E — 0.
Iu principle, more elaborate methods nsing variable grid steps may be used.
Then, however, additional information on the integrand mmst be added. In that
case more analytical approaches could be also nsed. The sophisticated mimerical
methods may not. allow direct matrix inversion due to the varying nmmber of
mesh points and thus reguire some iterative procediure and inplicit interpolation.
Regardless of the modifications, the essence of the grid method consists - an

G4



expansion (we assume an equidistant mesh size A),

fz) ~ Z fubn(z),  bulx) =6z — 2,)0(an. Sz < )A, fu=Tf (),

(IV.A.62)
in which the principal value integral of the basis functions is
o< b () 1
P [ = A ——. IV.A.63
o E—u ‘ E—a, ( )

Such expansion ignores the singularity completely and converges very slowly as
1/N, N being the mmmber of mesh-points. In fact, the following two conditions
are tacitly asstmed for the grid method to work:

1. The integrated function must change very slowly in the vicinity of the singu-
larity.

2. A large mimber of grid points are needed, if the singularity approaches the
limits of integration.

Instead, after the substitution (IV.A.25}, we use Chebyshev polynomials as
the basis set b, (). If the integrated function is smooth, we can assiume rapidly
decreasing coefficients f, within this basis. Taking the identity from the Amend-
ment as an example (using Egs. (V.A.3) and (V.A.5)), a new energy dependent
quadrature with mesh-points independent from the Jocation of the singularity can
be introduced. First, the integrand is expanded into the Chebyshev polynomials
mumerically by taking the projection on a grid z;, and then the principal value
integral is evalnated analytically. Changing the order of summation, we get the
quadrature weight at. the point z; when singularity is located at y as

N
23" T2V (y) V=5

n=1

1

Ti— Y

(IV.A.64)

The limit in Eq. (JV.A.64) can not be reproduced mmmerically, and the identity
above is to be nnderstood in the generalized sense. In fact, the main advantage
of this method is that small mmber of polynomials N, enables us to reproduce
the Cauchy type singular integral accurately. It is not necessary to recalculate
cither the singularity or the integrated function at a different grid whenever the
energy changes. This is important especially for the scattering calenlations.

To manifest the difference hetween both methods we evaluated the principal
value integral (IV.A.59) in the open and close channel regions with the singnlarity
close to the limit of integration which means the low energy limit. Equidistant
grid points and the trapezoidal quadrature rile are used for the integration.
The grid is centered around the-singularity (Canchy type of integral) and its
limits are chosen in such a way that the numerical error arising from neglecting
the exponentially small integrand tail does not enter the displayed digits. As a
minimum, two mesh-points are always used.
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In the following we compare results of the grid method with the Chebyshev
type calenlation based on Eq. (V.A.8). The number of polynomials is equal to
the number of guadrature points, which are nsed to project the fhction f into
the polynomials. We have chosen the valies a = 1, 0 = 1. C = 2.5 and the
results are given in Table 1 for E = €, + 0.05 (principal valne integral) and in
Table 2 for E = ¢, — 0.05 (regnlar integral).

From these tables we can make the following conclnsions:

1. The Chebyshev method converges quickly for both energies stndied in this
paper and in general. As low mmmber as N = 10 gives resnlts correct to 3-4
significant digits. This is also true for other energies.

2. The grid method yields reasonable, but mnch more slowly converging results,
for middle energies. 1t almost fails in the low energy case, which is essential for
MQDT, when the singnlarity approaches the limit of the integration. Note the
plateau in the Table 1 aronnd the valunes N ~ 200 — 300, where the calenlation
seemingly converged. A wrong answer might be obtamned if the calenlation was
stopped at this point, since the accuracy of the grid method is basically only
~ 1/N.

In the following, we investigate the non-separable coupling case nsing the full
K -matrix nmmerical solution, whilst the results due to the separable approxi-
mation (see Fig. 16) are computed from the on-shell gnasi-separable analytical
solution (OSQS) and the first order perturbation theory (FOPT). Following Tak-
agi [71] we adopt 10 vibrational channels (see Fig. 17) in all the calenlations and
choose n = 3 for the threshold e,. The number of closed channels is important
when solving A-matrix equation, since they enter the sunumation in the second
term on the right-hand side of Eq. (IV.A.11). The statistical factor g in Eq.
(IV.A.19) equals 1/4. Finally, the quantum defect function is taken from [72].

In Fig. 18, the eigen phase shifts §;(E) are plotted as a function of the relative
electronic conpling strength A € (0,1) for a fixed value of the total energy nsing
the separable electronic coupling. The FOPT results (crosses) start to differ from
the exact ones at A ~ 0.05, far bellow the actual electronic conpling strength
A = 1. Fig. 19 shows the energy dependence of the eigen phase shifts. In both
Figs. 18 and 19, the separable approximation can not be practically distinguished
from the exact non-separable results (solid lines).

In Figs. 20 the DR cross sections for v = 0 — d are shown. Fig. 20a presents
the result. of the separable approximation (OSQS), which is confirmed to coincide
with the exact one as in the case of phase shift. This guarantees that the present
separable approximation can very much simplify the analysis of DR processes.
It shonld be noted that the solution of the K-matrix equation can be obtained
almost. analytically under this approximation. Fig. 20b depicts the result of
FOPT which differs noticeably from Fig. 20a. This fact has been pointed ont by
Takagi in ref. [73] by nsing the grid method. The difference in resonance shape is
due 10 indirect electronic mechanism omitted in FOPT and has been discussed
in detail by Guberman and Ginsti-Suzor in ref. [59]. We have also confirmed the
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previous FOPT result based on energy-independent constant electronic conpling
(Figs. 4 and 6a of ref. [72]). We note, that even in the FOPT case the results
differ depending on whether some closed channels are considered or not.

V.5 Closing remarks

In this section we used a new technigne for solving principal valne integral equa-
tions that appear as a substantial part of the MQDT formalism of dissociative
recombination. It enables us to treat the equations very efficiently, removing the
problems of the conventional methods. Particularly, there is no need to change
the grid and thns to recalculate or interpolate the conpling as well as the dissocia-
tive wave functions to re-express the kernel whenever the energy is changed. The
resulting linear system for the A-matrix was shown to be of mnch smaller size
compared to that of the grid method. The ”on-shell quasi-separable” approxima-
tion in the Lippmann-Schwinger eqnation, arising from the separable electronic
coupling, was discussed and a formal analytical K-matrix solution was intro-
duced. Summarizing, the present method can make the MQDT treatment. of var-
ions dynamic processes of super-excited molecular states as well as DR [55] very
efficient. It is important especially for detailed calenlations, when the rotational
degree of freedom has to be taken into acconnt, as well as for the case that more
than one dissociative states are considered. We omitted these additional channels
in this work since their incorporation can be done in a straightforward manner
and they are not necessary for the demonstration of our method. Calenlations
of the H + e dissociative recombination process mcInding also the additional
channels has been carried ont by Takagi [73] by using the grid method.

It was recognized to be important to consider the clectronic coupling as a
function of the internuclear distance as well as the continnous electron energy.
We have to be careful about the constant. coupling approximation. Changes of the
K -matrix amplitudes, resulting from different types of approximations, influence
the DR cross sections substantially. Separability of the conpling is useful because
of the available analytical solution. This was found to be a very reasonable ap-
proximation which considerably facilitates the numerical calenlation. Roughly
speaking, the first order perturbation theory is justified when the electronic cou-
pling is smaller than b x 10~% a.n. Precise estimates for the applicability of FOPT
need to take into account also the partienlar functionality of the electronic cou-
pling. If the magnitnde of all dimensionless quantities defined in Eq. (TV.A.56) is
small, |7 < 1, FOPT method works well. The grid method is less efficient
than the analytical treatment of the principal value integral. as we hiave pointed
ont. It can be improved using the iteration type of solution and the variable grid
size. The most. elaborate way is, however, to use such a nmerical technique that
adopts the integration weight on a stable grid accurately and treats the singnlar-
ity within a special class of integrand functions. The present work is an example
of such a strategy for a particular expansion prescription. Our new method can
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facilitate the DR calculations very much even for general diatomic molecnles hy
incorporating into the general procedre developed in ref. [58].

Amendment

Here we provide the mathematical backgronnd for section V.

V.A. Chebyshev polynomials
First, some basic relations of the Chebyshev polynomials are summarized [16].
(1) Recursion relation for the first kind of polynomials:

T.(z) = 22T, 1(a) — Thoaz), z€{-1,1), neNU{D} (V.A1)

Tolz) =1, T){z} ==z

The same reciursion relation holds for the second kind of Chebyshev polynonnals
with

U_](.I') = 0 UU(T) =1. (VA‘.Z)
(2) Orthogonality for both sets of polynomials on (~1,1) with the weight
dp(z) el
1(z) = ———.
/ V1-—2?

The norm is 7 /2 for all the polynomials except. Te, norm of which is 7.
{(3) Numerical ¢quadrature

(V.A.3)

] flz ——ferw?f(sr (V.A4)

' T
w,:'w=?\;, I = (0%[( ) }

in which orthogonal relations are valid for indices m, m < N. Next, let s
snimmnarize some principal value integrals.
(1) Chebyshev principal value integral for |y| < 1 [63)

where

(x) da '
P/ U, (1) VAS
1z —y \/i——r 1 () ( 5)

(2) Chebyshev imtegral for |y| > 1

=97

14—y /1 — " YTy

1 Tn T it y'n-H
/ z) __da (V.A6)



where

A v y‘ - - y y > 1 Ve ] —
We have developed the two following guadratures:
(3) Principal value integral with non Chebyshev weight

T, (z
P./_]l " _( y)dm = é{Pm(y) — Puoi(y), (V.A.8)

where

Py} =P /W sin (nd}

a8, —-1.1), P_“ =~y A
Jo cosf—y ye(-1.1), (y) Fuly) (V.A9)

_ Tﬂ (y) = 1 n—1 H

1l—y =« Y m 1 oy
=+ {111 1+ y + 9 W} Un~] (,Tj) 2 \/1—:—@7 (Un—‘z (.U) 611,0):| .

This shows clearly the divergence at y = %1, where the operation of principal
value stops to be defined. The following formula may be nuseful for munerical
computations:

P‘n—H:

=

(1—(=1)")+2yP, — Py Jyl <1 (V.A.10)

{4) Integral with non-Chebyshev weight

f_l T (2) 0 = (Liia(y) = Lia(y)) . I-aly) = —Li(y), (V.A1L)

1T—Y

where (cf. Eq. (V.A.7))

with

(5) Following Domcke [74], we have
E(J
m
tan(ma)

-I(a) Fi{—a.1 —a, F)
(V.A.12)

[ w] Elﬂ f J
P‘[o E_F exp (—E')dE —exp(—E)(

a>0 a#n

The singular case a = n can be treated by the formmlae (V.A.8) and (V.A.11)
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V]I Conclusion

We have completed the semiclassical theory of nonadiabatic transitions in the
exponential potential model. In particnular, we solved the repulsive potential case
and re-expressed the nonadiabatic transition matrix in teris of contour integrals
of adiabatic momenta in the complex coordinate plane. Such {formula has the
conceptual advantage of being free from the parameters pertinent to the expo-
nential potential model. On the basis of Meijer G functions we derived the first
quantum mechanical exact analytical solution of a diabatically avoided crossing
model and analyzed this mode] semiclassically. The semiclassical conditions for
the complete transmission and the complete reflection in some two-state quau-
tium systems common i molecular physics were given. We developed a power-
ful technique for solving integral equations with a singular kernel nseful in the
framework of Multi-channel Quantnm Defect Theory and suggested a separable
approximation for the electronic coupling. under which we derived an exact ana-
lytical solution of Lippman-Schwinger Equation. We also proposed applications
of formalism used in physics to economics, in particular the concept of a potential
and the concept of nonadiabatic transition.

At
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Figure 1 Bessel transformation contours in the complex p-plane.

Two contours (Cjp, 7 = 1, 2) wind the branch cuts at the lower complex half-
plane of p and go to +ioc. while the two others (Cip, 7 = 1. 2) wind the branch
cuts at the upper half-plane and go to —iocc. The munbering of contours, Cjj,
corresponds to the Hankel functions, A9, and the WKB wave functions, F ),
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Figure 2 Contours L;.

The two contours L; and L, define the parameters & of Eqs. (11.64) and (11.65)
in the complex p-plane. These are shown both for the repulsive case, L} (branch
cuts on the imaginary axis), and for the attractive case, Ly (branch cuts on the

real axis), (see Eq. (I1LH.G)).



Figure 3 Contours in the complex p*-plane (attractive case).

The two closed contonrs correspond to LT and Ly of Fig. 2 when transformed
to the p? plane. The bold line is the contour {or é; while the contour for &5 {thin
line) winds around the complex crossing points denoted by stars. The adiabatic
momenta. integrated on the respective parts of the contonrs, are denoted as ky and
ko, and t; (i = 1,2) stands for the corresponding turning points —+*/¢,. Branch
ents of adiabatic potentials are plotted as a dashed line. The overall integration
result, & = & 4+ &, is the sum of integrals of k; and ky on two contours that
encircle p? = 0 (z = oc) in opposite directions.



Figure 4 Contours in the complex coordinate plane (attractive case).

The contours for &, in the z-plane. Turning points z} are located out of the real
axis. As a result the integral for 6, (bold line) can be rednced to the integration
on the dotted contours. In the repulsive case Suaf = 0, the complex conjugate
turning points merge together, and the sum of the two contonr integrals equals
ZEero.
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Figure 5 Contours in the complex p?-plane (repnlsive case).

a) Integral for &;. The fll line corresponds to the contour LT (¢f. Eq. (11L.H.2)
with i=1). The dotted line shows how the contour can be distorted without
changing the integration result (see Eq. (ILH.10)). The point p§ corresponds
to pi, = 0 which does not contribute to &1 (see Eq. (I1.LH.4)). Stars denote the
adiabatic crossing points which are connecied by a branch ent (dashed line). ¢,
and t, are the turning points. The contour for é; can be finally reduced to the
double-dot-dashed line.

h) Integral for 6;. Not only the same contour (double-dot-dashed) as in a) except
that i = 2 in Eq. (I1.LH.2) but also the closed dotted contonrs arising from Eqs.
(11.LH.11) and (IL.H.4) contrilnte 1o éa.
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Figure 6 Accuracy of the semiclassical S R matrix.

a) The transition probability P(E) (see Eq. (I1.74))

b) The scattering phase ®(E) (see Eq. (I1.75))

¢) The scattering phase ¥(E) (see Eq. (IL.76))

In the Figs. a)-c) the lower plot is a detail of the upper one.

The potential parameters are Vy = =30, Vo = —40, V = 20, Uy =0and U; = —-19
which represent a system with big asymptotic energy level separation. That
is why the condition in Eq. (11.73) is fulfilled for the energy which is above
the scale in this Figure. The total transition probability (Eq. (11.74)) and the
rescaled Sf—matrix phases (Eqgs. (11.75) and (IL76)) are ploted against the
dimensionless energy. The full line is the exact. gnantum solution and the circles
show the analytical result from Eq. (11.62). Energy of the diabatic crossing point
is 45, while the energy at the reference point. {the average of adiabatic potentials)
is ~ 5.2
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Figure 7 Accuracy of the semiclassical S A matrix.
The same as in Fig. 6 except that we chose 11 = —0.1, V,, = —0.1002, ¥ = 0.005,

Uy = 0 and Uy = —0.1. This is an example of almos
simall asymptotic energy level separation. Energy of tl
is 50, while the energy at the reference point is ~ 0.95.

t. parallel potentials with
1 diabatic crossing point.
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Figure 8 Diabatically avoided crossing model.

(a) The potential cirves: the two diabatic potentials (thin lines, arabic numbers)
do not intersect and have a constant nonadiabatic conpling. Adiabatic potentials
are shown in bold. The sharp potential curves are obtained by cutting and ro-
tating the Rozen-Zener-Demkov model by the angle of 7/4. Arrows and letters
indicate the important adiabatic phases. (b) The semiclassical diagram: arrows
denote the direction of adiabatic wave (arabic mumber) propagation. The rectan-
gles represent the two nonadiabatic transition regions with the transition matrix
I {from left to right) or its transpose, 1' (from right to left).
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Figure 9 Double crossing NT-type model.

(a) The potential curves: the notation is the same as in Fig. 8a. We distingnish
energy above the top of the barrier. a) (for the semiclassical diagram see Fig.
8), and energy below the barrier top, b). The roman numbers denote the three
important coordinate regions; arabic mumbers index the adiabatic potentials. (b}
The semiclassical diagram (energy below the top of the harrier): same as in Fig.
8h. The matrix Af stands for the tunneling throngh the central potential barrier
(sce Fig. 9a).
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Figure 10 Three chamnel tunneling model.

(a) The potential curves: the notation is the same as in Fig. 9a. (b) The
semiclassical diagram: the notation is the same as in Fig. 9b.
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Figure 11 Transmission in DAC model.

10 12 14

Transmission coeficient. as a function of energy. In the dimensionless units of Eq

(111.55) the model parameters are (U = 0):
andV =1()C=2andV =01{(d)C=2andV =

(a) C =02and V =
3. The bottom Ej (top

1(bL)C=6

—E,) of the upper (lower) adiabatic potential is given by v VE4+ 2 le By~
1.02 (a). 6.08 (b}, 2.00 (¢). and 3.61 {d).
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Figure 12 Semiclassical analysis of DAC model.

Semiclassical {circles) and exact (full line) transmission coeflicient as a function
of enegy. The potential constants, C = 2 and V = 10~% in the wits of Fig. 11.
are chosen so that the potential is flat around z = 0 and a seguence of two R7Z
transitions takes a place. Confer with Egs. (111.49) and (111.B.1).
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Figure 13 Transmission in double crossing NT case.

The asymmetric model potential is defined by Eq. (II1L17). (a) Transmission
coefficient as a function of energy (overall feature}. (b) Magnification of Fig.
13a (Vi = 5 x 107%). Solid circles represent the semiclassical results from Egs.
(111.49) and (IV.A.1). {¢) The same as Fig. 13b except for Vi; = 1 x 1074 (d)
The same as Fig. 13h except for Vi, = 8 x 1072,
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Figure 14 Fano type resonance in the Vardi-Shapiro case [46].

The model potentials are given by Eqs.(I111.18)-(IV.A_22). There appear complete
reflection and transmission below the top of the central barrier (maximum of
V11 >~ 4.71 x 107%). The thin line corresponds to the potential given in the text;
while the bold line is the transmission coefficient for an artificially magnified
central barrier to such an extent that the tunneling can be neglected.

Figure 15 Transmission in 3-channel tunneling case.
The transmission coefficient as a function of energy for the model potentials given

by Eq. (II1.22) with (1) Viz = 4.59 x 10~2 (full line) and (2) Vis = 5.0 x 10-3
(dotted line). The vertical dashed line indicates the energy of the barrier top.
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Figure 16 Separable approximation of the electronic coupling of Hy (1, (2poy)?).

The abscissa ¢ is the energy of the continuous electron, the ordinate measures the
electronic coupling Vi(R). The three curves correspond to R = 1.4, 2.0, 2.6 in
the increasing order of magnitude. Circles show the data by Hara and Sato [70]
and the full lines indicate the separable approximation.

Figure 17 Jonic and dissociative potential curves of Hj.
The dissociative and ionic potentials are plotted as a function of internuclear

distance R. HJ vibrational levels and corresponding wave functions are also
drawn for convenience.
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Figure 18 Coupling strength dependence of the eigen-phase shifts.

The coupling has been redefined as A Vi(e, R) and the K-matrix eigen-phase shifts
8(E; A)/m, i = 1 ~ 11 are plotted against A for the fixed total energy £ =
—0.575. The exact numerical results for the general non-separable case appear
in full lines. The OSQS (on-shell quasi-separable analytical solution) results
coincide with the exact ones, and crosses denote the two symmetric FOPT (first

order perturbation theory) phase shifts (other N,; — 1 phase shifts degenerate to
zero in this case). :

Figure 19 Energy dependence of the eigen-phase shifts.

The notation is the same as in Fig. 18 except for the horizontal abscissa, which
now denotes the total energy E (A = 1).

Figure 20 The DR cross section for Hf (v = 0) + ¢ — H + H as a function of
electron energy (in eV).

The incident electron energy is measured in a logarithmic scale, — (log e—1og(0.02)}/
log(0.02), and the cross section (in cm?) is also meased in logarithmic scale,
logyg(0v=02g).

(a) The general non-separable case and the separable approximation (indistin-
guishable). (b) The result of the first order perturbation theory.



Tables

Table 1: Principal Value Integrals by Chebyshev and Grid Methods. E = €,+0.05
is the total energy in Eq. (IV.A.59), N is the highest Chebyshev polynomial index
in the expansion (IV.A.40) as well as the number of mesh-points in Eq. (V.A.4).
Pt Ichebyshen denotes the principal value integral evaluated by the means of Cheby-
shev polynomial expansion and Puggu;-gria Stands for the result obtained from
the grid method.

N PT’IC'hebyshe'u P?JIEqui—_qrid N P“IEqm‘ﬁgrid
1 -0.13721765x 10!  -0.08059284 40 -0.98221158
2 -0.11716273x 10" -0.08059284 50 -0.10336974x 10!
3 -0.10172041x10* -0.16427398 60 -0.10646586x 10"
4 -0.12895849x 10 -0.23024873 70 -0.10833267x 10!
5 -0.12194187x 10! -0.28652549 80  -0.10946005x 10}
6 -0.11288302x10! -0.33635902 90 -0.11014157x10!
7 -0.11689960x 10! -0.38141667 100 -0.11055386x 10
8 -0.11803151x10* -0.42268321 200 -0.11118244x 10!
9 -0.11685195x 10! -0.46080023 300 -0.11118664x 10
10 -0.11701910x10' -0.49621710 400 -0.11395432x 10!
11 -0.11711006x10' -0.52926658 500 -0.11395825x% 10!
12 -0.11709391x10! -0.56020603 600 -0.11495396x 10!
13 -0.11710051x10' -0.58924165 700 -0.11495745x 10!
14 -0.11706390x 10" -0.61654334 800 -0.11546952x 10
15 -0.11709514x 10" -0.64225435 900 -0.11547260x 10
16 -0.11709120x10' -0.66649777 1000 -0.11578406x 10*
17 -0.11707939x 10 -0.68938100 2000 -0.11642504x 10°
18 -0.11708963x 10" -0.71099895 3000 -0.11664228x10"
19 -0.11708665x10! -0.73143638 4000 -0.11675156x 10
20 -0.11708547x 10! -0.75076966 5000 -0.11681735x 10!
21 -0.11708699x10' -0.76906809 6000 -0.11686130x 10"
22 -0.11708638x10' -0.78639496 7000 -0.11689274x 10"
23 -0.11708645x10' -0.80280836 8000 -0.11691634x 10!
24 -0.11708642x 10" -0.81836183 9000 -0.11693471x 10!
25 -0.11708652x 10 -0.83310492 10000 -0.11694942x 10!
26 -0.11708645x 10!  -0.84708363 20000 -0.11701569x 10!
27 -0.11708644x 10! -0.86034076 30000 -0.11703782x 10!
28 -0.11708650x10' -0.87291626 40000 -0.11704883x 10
29 -0.11708645x 10" -0.88484746 50000 -0.11705546x 10*
30 -0.11708646x10' -0.89616934 100000 -0.11706870x 10
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Table 2: Regular Integrals by Chebyshev and Grid Methods. The notation is
the same as in Table 1, except for E = ¢, — 0.05, which corresponds to a regular
integral. The singular point of the integrand is outside of the integration interval.
Ichebyshen denotes the integral evaluated by the means of Chebyshev polynomial
expansion and [gqui—gria Stands for the result obtained from the grid method.

N ICh.eb'yshev IEqui —grid N IEqui—grid

1 -1.42395680  -0.10452720x 102 40 -0.11053738x 10}
2 -1.20288040  -0.10452720x10* 50 -0.10741976x 10!
3 -0.94351396  -0.52589808x 10! 60 -0.10539170x 10!
4 -0.96417443  -0.36025258 x 10! 70 -0.10396865x 10!
5 -0.96732836  -0.28270204x 10! 80 -0.10291588x 10!
6 -0.95413852  -0.23894798x10! 90 -0.10210596x 10}
7 -0.95949466  -0.21123854x 10! 100 -0.10146384x 10!
8 -0.96090360  -0.19225837x 10! 200 -0.98643418

9 -0.95918080  -0.17850365x 10} 300 -0.97731111

10 -0.95943212  -0.16810552x 101 400 -0.97280793

11 -0.95974924  -0.15998326x 10! 500 -0.97012557

12 -0.95956551  -(1.15347130x10! 600 -0.96834567

13 -0.95957362  -0.14813857x10! 700 -0.96707844

14 -0.95961237  -0.14369424x 10! 800 -0.96613029

15 -0.95958881  -0.13993522x 10! 900 -0.96539420

16 -0.95959192  -0.13671560x%10! 1000 -0.96480619

17 -0.95959667  -0.13392791x 10! 2000 -0.96216962

18 -0.95959311  -0.13149133x 10! 3000 -0.96129422

19 -0.95959407  -0.12934391x 10! 4000 -0.96085718

20 -0.95959443  -0.12743740x 10! 5000 -0.96059516

21 -0.95959387  -0.12573367x10} 6000 -0.96042056

22 -0.95959413  -0.12420222x 10} 7000 -0.96029589

23 -0.95959412  -0.12281833x 10! 8000 -0.96020242

24 -0.95959405  -0.12156178x 10! 9000 -0.96012973

25 -0.95959411  -0.12041588x10' 10000 -0.96007158

26 -0.95959409  -0.11936672x10' 20000 -0.95981003

27 -0.95959409  -0.11840261x10! 30000 -0.95972288

28 -0.95959410  -0.11751368x10! 40000 -0.95967931

29 -0.95959409  -0.11669151x10' 50000 -0.95965317

30 -0.95959406  -0.11592890x10! 100000 -0.95960090
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Glossary

PHysics Natural science about the physical world noun
MATHEMATICS Self enclosed science noun

SYSTEM Subject of our interest and investigation noun

MoDEL Way of our description of the system noun

STATE Set of conditions determining the system uniquely noun
MEASUREMENT Set of actions performed on the system noun
(QUANTITY Property of the system which can be mathematically formalized noun
1. QUANTUM Unit of the quantity? noun

2. QUANTUM Having the quantum adjective

1. VARIABLE Changeable adjective

2. VARIABLE Variable guantity noun

SCALAR A quantity fully described by one number noun

TIME AND CLOCK Time is a scalar quantity measured by the clock nouns
ISOLATED Self contained adjective

ENERGY Scalar quantity conserved in the isolated system noun
EIGEN Proper adjective

1. POTENTIAL Possible adjective

2. POTENTIAL Potential energy noun

ADIABATIC Defined with respect to a fixed quantity adjective
ADIABATIC POTENTIAL Adiabatic eigen potential shortcut
ADIABATIC STATE Adiabatic eigen state shortcut

NONADIABATIC Not adiabatic adjective

D1aBATIC Not necessarily adiabatic adjective

TRANSITION Change of the state noun

COORDINATE Way of ordering by numbers noun

PLANE Mathematical entity with two independent coordinates noun
CoMmpPLEX Composed adjective

CROSSING Intersection noun

VELOCITY Time change of coordinate noun

MASS Scalar quanity measuring inertia noun

MOMENTUM Scalar product of mass and velocity noun
Di1sSOCIATION Decomposition noun

Di1ssocCIATIVE Of dissociation adjective

CHARGE Scalar quantity measuring electricity noun

ATOM AND MOLECULE Atoms are units of which molecules are composed nouns
RECOMBINATION Repeated combination noun

The important compound words in the thesis are:

2which eventually can not be further decomposed
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NONADIABATIC TRANSITION Transition in which the adiabatic state is changed
AVOIDED CROSSING Crossing of adiabatic potentials which does not occur
DIABATICALLY AVOIDED CROSSING

Crossing of diabatic potentials which does not occur

DISSOCIATIVE RECOMBINATION Recombination of charge and dissociation of

molecule 3.

3the list of terms is not comprehensive
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Appendix

Application of the Concept and Theory of Nonadiabatic
Transition to Economics

Here we review our achievements in application of physical formalism to eco-
nomics. The full account is given in the Papers 5 and 6.

The time evolution of trade-off like (TOL) problems is investigated. It is
shoum that the efforts of an authority to eliminate an initial fluctuation can cause
a quasi-periodic oscillations (on adiabatic states). We can also treat the case of
more than two groups of TOL problems. In a real system the choice of such
groups 18 ambiguous to a certain extent, because the quantities usually influence
each other (due to nonadiabatic coupling). That is why the initial fluctuation can
be transmitted between different adiabatic states as time evolves (i.e. nonadiabatic
transition). A partial account of a formalism developed for this purpose in the
field of quantum physics is given.

I. INTRODUCTION

Two state dynamical problems which can be described by a set. of linear differ-
ential equations are well known from different fields [7] and such a linear approx-
imation can be viewed as a first order expansion of a more general (unknown)
functional. Here we show that the general formalism developed to treat such
problems in quantum physics widely applies in economics, too. We expect that
the semiclassical Zhu-Nakamura theory for linear curve crossing (5] could be used.

II. FORMALISM

Let us define a pair of dimensionless quantities g;

a=(Qi—Q)/Q: i=1,2, (V.A13)

as a relative variation of a quantity @ from the equilibrium value, Q. As an
example from the monetary policy, be —¢, the money market rate and ¢, the
money supply. If go > 0 then ¢, increases, the proportionality factor a(t) being
in general time dependent. At the same time if g; > 0, the central bank attempts
to respond by a proportional (~ k) decrease of ¢;. In such a regime the reason and
consequence are difficult to distinguish. The corresponding differential equations

read
d d

Zat) =alt)e(l), —elt) = -ka(t)a(). (V.A.14)
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. It is natural to rescale the quantities,
a(t) - a®t)/Vk, aft) = ot)VE, (V.A.15)

and to introduce a complex quantity,
zZ=q + igy, (_V.A.lﬁ)

which better describes the periodic processes. Then Eq. (V.A.14) and the corre-
sponding solution have the form

z'—;gz(t) — a(t)2(t) = 2(t) = Coe ™ ¥ (V.A.17)

and the quantities ¢;(¢) periodically develop with a shifted phase and the common
frequency

wit) = % / Cl)dt'. (V.A.18)

Let’s take one more pair of quantities from the fiscal policy, the economic growth
z; and the net government spending, z,. Using the same analysis,

Snt) = fealt), Lo = —pORE,  (V.AI9)

we again define a complex quantity,
Yy =T, + 1Ty (V.A.20)

and solve the differential equations,
2 y(0) = BOWD) = y(t) = Gy hoP O (V.A21)
The monetary and fiscal policy can not exist free from each other. The real

economy couples them together, say with a proportionality function V(t). Then
Eqgs. (V.A.17)) and (V.A.21) are transformed into

i%z(t) = a(t)2(t) + V{)y(2) (V.A.22)
. d
= (t) = B(t)y(t) + V(t)z(t). (V.A.23)
In order to eliminate the diagonal terms the following representation is made,
2(t) = Z(t)e [ atthdt (V.A.24)
and )
y(t) = Y(t)e S AWK (V.A.25)
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This results in

z'%zm = V(t)e' [ CWI-BNE y (1) (V-A.26)
and d
ZEY( ) (t)eif (ﬁ(t')—a(t’))dt’z(t)’ (V.A.27)

which represents a system of equations well treated in quantum physics.

The qualitative explanation of phenomena described by Eqgs. (V.A.26) and
(V.A.27) is as follows. The initial periodic fluctuation or population is, as time
passes, distributed to the other states due to the coupling with certain proba-
bilities. The transition is well described as a local phenomenon in time, if we
use the adiabatic representation in which the basic states are the instantaneous
eigenstates obtained by diagonalizing the matrix

at) V()
( V() B ) (V-A-28)

at each moment t. The transition is induced by the coupling among them called
nonadiabatic coupling, and occurs most effectively where a(t) and j3(t) cross or
come close together.

The final distribution can be analytically predicted from the shape of the three
quantities, a(t), 3(¢t) and V(¢). This can be done without solving the differential
equations above, just by using the particular characteristics such as an elasticity.

Let us examine Eqs. (V.A.26) and (V.A.27) more in detail. If the coupling
V(t) vanishes, Z(t) = C, and Y(t} = C,. From Eqgs. (V.A.24) and (V.A.25) the
conservation rule follows,

Q (t) d @ (t) + q2(t) = d =0, dtto z;(z). (V.A.29)

7 2(t)

The magnitude of ¢; (z;)} oscillation is limited by |C,| (1Cy|). When the coupling
is nonzero, there is a transition mechanism between the cycles. Due to the prop-
erties of Eqs. (V.A.26) and (V.A.27) the conservation of the total flux can be
written as

.21:2 (q,(t) —q;(t) + x;(t)— x,(t)) (V.A.30)
Suppose that we start v\;ith the initial conditions
Z(t_) = C,exp(i¢), t_ — —o0 (V.A.31)
and
Y{i_)=0. (V.A.32)

If the coupling is localized in time, say around ¢ = 0, then there exists a limit

Zit) =1-pC,, 0< BL (V.A.33)
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and
Yt )l =+vpC. =Cy, ty — 0. (V.A.34)

Here /P is a converged transmission ratio between the two cyclic processes. The
above time limit can be taken for any initial condition unlike from that of Egs.
(V.A.31) and (V.A.32) and also the phases of each separated cycle at ¢, can be
obtained. For our purpose here it suffices to consider only the rate ,/p. This
quantity controls the efficiency of different policies on treating TOL problems as
it formally follows from Eq. (V.A.34). In general it is a functional,

plel 1,80 LV, (V.A.35)

that has to be optimized. Numerous models and analytical techniques [1,75]
have been developed in order to get the functional in Eq. (V.A.35). Here we just
mention the most important linear mode, [76] which is exactly solvable. Taking

Taylor expansions of general functions «, 8 and V to the lowest orders, the model
reads

oty =U — Fut, * (V.A.36)
Bty =U — Fat, (V.A.37)
and
Vit)=V. (V.A.38)
The ratio p was obtained as
V2
P = exp ( Qﬂm) . (V.A.39)

The main advantage of the above approach is that qualitative understanding
of the dynamical processes can be nicely made in terms of the nonadiabatic
transitions that are localized in time and the yield of which is given analytically.
It is also important to note that the linear approximation to economic processes
does not necessarily hold globally, but can give a good interpretation of the local
phenomena.

III. CONCLUDING REMARKS

We have introduced the so called two-state problem (Eqs. (V.A.26) and (V.A.27)).
However, the above theory covers also many-state problems, higher order differ-
ential equations, and can be generalized for different couplings of Y(t) and Z(%).
In general, if there is a time dependent problem, which can be described by the
linear equations such as
ul(t) Vll(t) I/lg(t) .. Uy (t)
zi us(t) Var(t) Vaz(t) uz(t)

al . |7 . . A (V-A-40)
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then we have a formalism that enables analytical analysis and understanding of
the dynamical processes and thus their efficient control. We would like to stress
here that the linearity of equations in quantum physics does not mean linearity
in the phenomena. Similar approaches have been discussed in JCIS 2000 also in
the case of (continuous) neural networks, a system which can not be regarded as
either quantum or linear.

In physics, using the idea of an external field, the multi-channel processes
can be controlled with 100% yield [38]. This can be done by using the above
formalism. The results of such an approach in the context of economics (finance)
are planned to be reported in future. We appreciate any comments, suggestions
and cooperation.
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