

Study on Combinatorial Auction

Mechanism for Resource Allocation

in Cloud Computing Environment

Ikki Fujiwara
DOCTOR OF PHILOSOPHY

Department of Informatics

School of Multidisciplinary Sciences

The Graduate University for Advanced Studies

2011

1 |

A dissertation submitted to
the Department of Informatics,

School of Multidisciplinary Sciences,
The Graduate University for Advanced Studies (SOKENDAI)

In partial fulfillment of the requirements for the degree of Doctor of Philosophy

Advisory Committee

Prof. Kento Aida National Institute of Informatics, SOKENDAI
Assoc. Prof. Isao Ono Tokyo Institute of Technology
Prof. Kenichi Miura National Institute of Informatics, SOKENDAI
Assoc. Prof. Michihiro Koibuchi National Institute of Informatics, SOKENDAI
Prof. Shigeo Urushidani National Institute of Informatics, SOKENDAI

Published in March 2012

2 |

Acknowledgements

My time as a graduate student at SOKENDAI and NII has been supported by

many kind people. This page attempts to recognize those who have been most

helpful along the way.

First of all, I am deeply indebted to my supervisor, Professor Dr. Kento Aida. His

advice, support and kind encouragement on both professional and private issues

have effectively guided me through this winding way. Furthermore, he always led

my papers to clear, smart and persuasive ones. Without him this thesis would not

have been possible.

At the same time, I am also indebted to my advisor, Professor Dr. Isao Ono. His

experience, technique and insight into both economics and engineering have

immensely supported me in designing the mechanism and developing the simulator.

Thanks to all the members of the Aida Laboratory. Dr. Hao Sun has regularly

shared a broad range of helpful technical information with me. I specifically

appreciate his cooperation in debugging the most difficult problem during

development of the simulator. Dr. Md. Shamim Akhter directed me to the world of

researcher based on his extensive experience over the world. Dr. Kiyoshi Osawa,

Kazushige Saga, Keigo Sakamoto, Yuya Hashimoto, Jared Ravetch, Kosuke Naruse

and other members of the Aida Laboratory shared their precious time with me and

gave me many constructive comments on my work.

3 |

Special thanks go to my Ph.D. examiners, Professor Dr. Kenichi Miura,

Professor Dr. Michihiro Koibuchi, and Professor. Dr. Shigeo Urushidani. Each

devoted significant time and effort to my thesis, and their suggestions and

comments led to substantial improvement in the final product.

Outside the laboratory, I have benefited from time spent with friends at

SOKENDAI. Interdisciplinary discussions with these friends have opened my eyes

greatly than expected before. Finally, I thank my family for all aspects of my life.

4 |

Abstract

This thesis proposes a combinatorial auction-based marketplace mechanism for

cloud computing services, which allows users to reserve arbitrary combination of

services at requested timeslots, prices and quality of service. The proposed

mechanism helps enterprise users build workflow applications in a cloud computing

environment, specifically on the platform-as-a-service, where the users need to

compose multiple types of services at different timeslots.

The proposed marketplace mechanism consists of a forward market for an

advance reservation and a spot market for an immediate allocation of services. Each

market employs mixed integer programming to enforce a Pareto optimum

allocation with maximized social economic welfare, as well as double-sided auction

design to encourage both users and providers to compete for buying and selling the

services.

A marketplace simulator, named W-Mart, is specially developed for this thesis.

It implements the proposed mechanism on Java platform being powered by CPLEX,

the state-of-the-art MIP solver. W-Mart is designed after the multi-agent virtual

market system U-Mart, and is also capable to deal with human agents and machine

agents at the same time.

Three experiments are carried out by means of multi-agent simulations. First,

the accuracy of the combinatorial allocation scheme is validated. The result

5 |

demonstrates that it works properly. Second, the overhead of the proposed market

mechanism including MIP solver is assessed. The result shows that the overhead is

acceptable to deal with an expected number of participants within the proposed

trading schedule. Third, the performances of four types of market mechanisms are

extensively evaluated. The results clarify that (1) the proposed

forward/combinatorial mechanism outperforms other non-combinatorial and/or

non-reservation (spot) mechanisms in both user-centric rationality and global

efficiency, (2) running both a forward market and a spot market improves resource

utilization without disturbing advance reservations, and (3) the users' preference

between the forward market and the spot market affects the performance of whole

marketplace significantly in tight demand/supply conditions.

6 |

Contents

Acknowledgements ... 2

Abstract ... 4

Contents .. 6

List of Figures .. 10

List of Tables .. 12

Chapter 1 Introduction .. 14

1.1 Motivation .. 14

1.2 Research Objectives ... 16

1.3 Scope and Limitations .. 16

1.4 Contributions .. 17

1.5 Outline of the Thesis ... 17

Chapter 2 Background and Related Work .. 20

2.1 Market Mechanisms ... 20

2.1.1 A Taxonomy of Market Mechanisms.. 21

2.2 Auction Theory ... 24

2.2.1 Single-good Single-sided Auctions .. 25

7 |

2.2.2 Single-good Double-sided Auctions .. 27

2.2.3 Combinatorial Auctions .. 29

2.3 Market-based Computing Resource Management 31

2.3.1 In Literature .. 31

2.3.2 In Production .. 39

2.4 Other Disciplines .. 40

2.4.1 Electricity Exchange .. 40

2.4.2 Stock Exchange .. 40

2.5 Summary .. 41

Chapter 3 Cloud Computing Model ... 42

3.1 Cloud Service .. 42

3.2 Enterprise System .. 43

3.3 Requirements ... 45

3.4 Marketplace Model ... 46

Chapter 4 Market Mechanism ... 48

4.1 Overview .. 48

4.2 Hypothesis ... 49

4.3 Trading Schedule .. 51

4.4 Bidding Language... 53

4.5 Allocation Scheme .. 54

4.6 Pricing Scheme ... 57

8 |

Chapter 5 Simulator .. 62

5.1 Overview .. 62

5.2 Participant Agents .. 63

5.2.1 Seller Agent .. 64

5.2.2 Buyer Agent .. 65

5.2.3 Scenario Generator ... 66

5.3 Marketplace Server ... 67

5.4 Auctioneers .. 70

5.5 Protocol .. 71

Chapter 6 Experimental Study ... 74

6.1 Validation of Combinatorial Allocation ... 75

6.1.1 Settings .. 75

6.1.2 Results .. 76

6.1.3 Summary .. 76

6.2 Estimation of Mechanism Overhead ... 80

6.2.1 Settings .. 80

6.2.2 Results .. 83

6.2.3 Summary .. 88

6.3 Evaluation of Market Performance ... 89

6.3.1 Settings .. 90

6.3.2 Performance Metrics ... 95

9 |

6.3.3 Results .. 97

6.3.4 Summary .. 107

Chapter 7 Conclusions ... 108

7.1 Achievements ... 108

7.2 Future Works .. 109

7.3 Outlook .. 110

References ... 112

Publications ... 118

Journal Papers .. 118

International Conferences .. 118

Refereed Domestic Conferences .. 118

Domestic Conferences ... 119

Software .. 119

Appendix ... 120

A.1 Complete Results of Dual-market Basic Experiment 120

10 |

List of Figures

Figure 2.1 A taxonomy of market mechanisms ... 21

Figure 2.2 Example order book of periodical double-sided auction 28

Figure 2.3 Heroku Add-ons ... 39

Figure 3.1 Enterprise system model .. 43

Figure 3.2 Example SaaS usage .. 44

Figure 3.3 Marketplace model ... 46

Figure 4.1 Overview of the proposed marketplace .. 48

Figure 4.2 Service and task ... 49

Figure 4.3 Trading schedule .. 51

Figure 4.4 Bidding language ... 53

Figure 4.5 Illustration of surplus and welfare... 55

Figure 4.6 Pricing scheme ... 58

Figure 5.1 Overview of W-Mart system ... 62

Figure 5.2 Example seller’s timeline and orders .. 64

Figure 5.3 Example buyer’s timeline and orders .. 65

Figure 5.4 Example scenario file ... 66

Figure 5.5 Digest sequence diagram of W-Mart system .. 67

Figure 5.6 Detailed sequense diagram of W-Mart system 69

Figure 6.1 Forward orders ... 78

Figure 6.2 Forward allocation ... 78

Figure 6.3 Spot orders .. 79

11 |

Figure 6.4 Spot allocation ... 79

Figure 6.5 Sell orders .. 82

Figure 6.6 Buy orders.. 82

Figure 6.7 Overall runtime (lower load) ... 83

Figure 6.8 Solver runtime (lower load) .. 84

Figure 6.9 Example demand/supply ratio (lower load) .. 85

Figure 6.10 Overall Runtime (higher load) .. 86

Figure 6.11 Solver runtime (higher load) ... 87

Figure 6.12 Example demand/supply ratio (higher load) 88

Figure 6.13 Overview of the experiments .. 89

Figure 6.14 Shapes of workflow .. 92

Figure 6.15 Buyer order .. 93

Figure 6.16 Order division ... 94

Figure 6.17 Workflow completion rate (single market) .. 97

Figure 6.18 Cost performance (single market) .. 98

Figure 6.19 Global utilization (single market).. 99

Figure 6.20 Market price (single market) .. 100

Figure 6.21 Workflow completion rate (dual market basic) 102

Figure 6.22 Cost performance (dual market basic) .. 102

Figure 6.23 Global utilization (dual market basic) ... 103

Figure 6.24 Average market price (dual market basic) .. 103

Figure 6.25 Workflow completion rate (dual market extensive) 105

Figure 6.26 Cost performance (dual market extensive) 105

Figure 6.27 Global utilization (dual market extensive) ... 106

Figure 6.28 Market price (dual market extensive) ... 106

12 |

List of Tables

Table 2-1 Characteristics of typical market mechanisms 23

Table 2-2 Taxonomy of auction design .. 24

Table 2-3 Summary of market-based computing resource management systems
 .. 38

Table 5-1 Specification of CombiSVMP commands ... 73

Table 6-1 Simulation environment .. 74

Table 6-2 Simulation settings for validation of combinatorial allocation 75

Table 6-3 Simulation settings for estimation of mechanism overhead 81

Table 6-4 Simulation settings for evaluation of market performance 91

13 |

(This page is intentionally left blank)

14 |

Chapter 1 Introduction

1.1 Motivation

Throughout its 60 years of history, computer systems have been evolved in a

spiral way of integration and distribution. They experienced a transition from

centralized, massive, shared mainframes in 1970s to decentralized, handy, private

PCs in 1990s. In 2010s, nevertheless, they are again moving into consolidated,

shared machines invisible to users: so-called cloud computing systems.

The basic idea of cloud computing is to deliver computational resources as

services across the internet. The users don't need to invest in a huge computer

system to do their business; instead, they can purchase the cloud computing

services on demand. The underlying hardware is generally hosted in huge

datacenters armed with sophisticated virtualization techniques to realize high-level

scalability, agility and availability. "This elasticity of resources, without paying a

premium for large scale, is unprecedented in the history of IT", Armbrust said [1].

Consequently, building enterprise systems on cloud computing platform is

becoming increasingly popular in these days. In contrast to a conventional

on-premise computing system, to which the user has to invest in dedicated

hardware and software, the cloud computing system delivers virtualized hardware

and software resources to users on demand via the internet, generally in a

pay-per-use manner. It significantly reduces the cost for deploying and maintenance

15 |

of enterprise systems.

The cloud is described as a three-tier structure, namely Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) from

low-layer to high-layer. Recently PaaS is evolving rapidly as a software

development/deployment environment for enterprise systems. For example,

Microsoft Windows Azure [2] provides .NET development environment and SQL

service, whereas Google App Engine [3] provides Python and Java development

environment with key-value store service. A developer chooses an appropriate

service among available ones to build his customized system.

An enterprise system is generally consists of multiple subsystems to model a

complex real business. The subsystems are often provided by service on the internet,

or PaaS, and the developer of the enterprise system needs to choose appropriate

PaaS providers to develop an efficient system. As the number of PaaS provider will

increase, a challenging issue is how to choose an appropriate combination of

services, or PaaSes, to build a complex enterprise system. Furthermore, the

enterprise system has strict requirements for the quality of service (QoS) as well as a

budget limitation. Unfortunately no practical workaround to this complex problem is

realized so far in the cloud computing environment.

This kind of problem has long been discussed as a resource allocation problem

on a distributed computing system [4]. The problem is typically described as a sort of

optimization problem and tends to have computational complexity to obtain

optimum solutions. A market-based approach is a promising methodology to deal

with the complexity while satisfying budget limitation [5,6]. Specifically a

combinatorial auction-based approach is recently evolved because of its ability to

optimize allocation of a bundle of multiple goods [7,8]. However, the previous work

does not satisfy requirements of resource allocation in the enterprise system

composed of multiple cloud services, as discussed in Section 2.3.

16 |

1.2 Research Objectives

This thesis proposes a marketplace mechanism for resource allocation to

develop an enterprise system in cloud computing environment. The proposed

mechanism performs resource allocation between users and PaaS providers using

combinatorial double-sided auction. In other words, both users and PaaS providers

place buying/selling orders of resources, and the market mechanism decides

resource allocations by means of auctions. The user's enterprise system often

consists of multiple resources, thus, the user is able to order arbitrary combination of

services for future use at desired time, price and QoS requirements. The proposed

mechanism employs mixed integer programming (MIP) to obtain optimal resource

allocation enforcing a Pareto optimum outcome as well as a fair trading.

1.3 Scope and Limitations

Despite the emphasis on “enterprise PaaS” stories told above, the proposed

market mechanism can also be adopted to the other cloud services as IaaS or SaaS,

and even to a broader variation of combinatorial resource allocation/scheduling

problems. The mechanism itself is a versatile, implementation-independent design

of a combinatorial marketplace; therefore its application is not limited to computing

services.

The scope of this thesis is, however, limited to a fundamental design of market

mechanism and its evaluation. Physical considerations such as network delay and

provisioning time are intentionally ignored; they may be treated as separate services

in practice. Security requirements are also assumed to be satisfied, as well as

governance and compliance issues. Currency used in the marketplace should be any

real currency as EUR/USD/JPY/etc. Use of virtual currency involves another research

topic of ecosystem management, and it is out of the scope of this thesis.

17 |

1.4 Contributions

Cloud computing is a promising paradigm of computing in the next decade. As

the number of stakeholders is increasing rapidly, the role of marketplace should

widely be accepted. Providing a fundamental design of cloud-friendly market

mechanism, this thesis contributes a blueprint for pioneers to establish a cloud

service marketplace. The marketplace will bring three benefits to the stakeholders:

(1) it will help users discover and acquire appropriate services at a reasonable cost

amongst many providers; (2) it will help providers meet potential users and make

maximum utilization of their own resources; and additionally (3) it will give the

operator of marketplace supremacy over the computing industry. The author hopes

this research will promote substantial competitions among users, providers and

operators of cloud marketplaces in the future.

1.5 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 provides a

common understanding of market institutions and auction theory, as well as

preceding instances of market-based management techniques for computing

resource management. Additionally, the applications of market mechanism in other

disciplines are also mentioned. Chapter 3 introduces the basic concepts of cloud

computing and its use cases for enterprise systems. Four requirements are clarified

to design an efficient marketplace from both practical and theoretical points of view.

Chapter 4 presents the design and algorithms of the cloud service marketplace. First

it outlines the institution of the marketplace and its participants. Next it formulates

the service allocation scheme as a mixed integer program (MIP), as well as the

pricing scheme which extends the concept of K-pricing. Chapter 5 illustrates the

design and implementation of simulator named W-Mart. It translates the conceptual

18 |

model into a software system as hybrid architecture of a multi-agent simulation

framework and a general-purpose optimization framework. Chapter 6 describes and

analyzes the results of three experiments which are carried out to evaluate the

proposed mechanism. Section 6.1 validates the combinatorial allocation and

confirms that the implemented mechanism properly works as expected. Section 6.2

evaluates the overhead of the proposed mechanism and shows that it is acceptable

in the cloud service market. Section 6.3 evaluates the performance of the proposed

mechanism and concluded that it outperforms other types of market mechanisms.

Chapter 7 concludes with a summary, an overview of open questions and an outlook

on future world with the cloud computing marketplace.

19 |

(This page is intentionally left blank)

20 |

Chapter 2 Background and Related

Work

This research stands on an interdisciplinary area of computer science and

economics. This Chapter first studies thoroughly on market mechanism, mainly

focusing on auction design. Next, it reviews the preceding researches on

market-based management of computer systems. Finally, it surveys other

applications of market mechanism in the real world, discussing the possibility of

applying their market models to the cloud computing systems.

2.1 Market Mechanisms

Markets are institutions through which exchange of resources is facilitated. A

French economist Antoine Augustin Cournot (1801-1877) so defined the market that

“economists understand by the term Market, not any particular market place in

which things are bought and sold, but the whole of any region in which buyers and

sellers are in such free intercourse with one another that the prices of the same

goods tend to equality easily and quickly” [9]. Nowadays the notion of market is not

limited to a geological region but also includes a virtual structure that allows

participants to exchange any type of goods, services and information [10]. The most

essential role of a market, in my opinion, is to aggregate information on supply and

demand; hence it is quite natural to use market mechanism for promotion,

21 |

procurement, allocation and/or scheduling of computing resources.

There exists a broad range of market mechanisms invented so far and also

exists a variety of taxonomy of them. For instance, Figure 2.1 is Freidman’s

taxonomy of market institutions [11]. Well, which particular kind of market

mechanism among them is the best for trading computing resources? To answer it,

next two chapters study a broad outline of the market mechanisms and, in particular,

auction mechanisms.

2.1.1 A Taxonomy of Market Mechanisms

First, let us classify some of the typical market mechanisms following the line of

Buyya’s taxonomy [12].

A. Commodity Market

What we first imagine with the word "market" may be a commodity market,

where the sellers set the price for merchandise and the buyers pay money to get it.

An example is a farmer in a marketplace selling tomatoes at $3 for 1kg; you may

purchase 2kg of them and pay $6 – that is the commodity market. The price is

pre-determined by the seller and does not change (flat-rate) or changes over time

(variant-rate) based on the balance of supply and demand. The payment is usually

proportional to the quantity of the merchandise. The commodity market model is

Figure 2.1 A taxonomy of market mechanisms

22 |

quite straightforward and widespread; thus it can be the baseline of the computing

resource marketplace.

B. Posted Price

Within the commodity market the seller may have a "special offer" like

discounted merchandise or free gifts to attract customers. The posted offer model

allows suppliers to advertise openly such an irregular offerings with specified

conditions. This is an extension of the commodity market model and is also very

common in our daily life.

C. Bargaining

In some countries the price of merchandise is not shown at all; instead the

customer and the shopkeeper negotiate for a mutually agreeable price. Usually the

seller starts from a higher price and the buyer starts from a lower price. The final

payment is fixed when they agree; otherwise the trading fails. The bargaining model

is troublesome but practical when it is difficult for the seller to determine the price

based on the supply and demand.

D. Tendering

Imagine a public procurement by government office, for example, construction

of a road. The government first announces the detail of the required product.

Construction companies then examine it and decide whether to make a bid for it or

to ignore it. The government collects the bids, chooses the most suitable (usually the

cheapest) one, sends a tender to the selected constructor, and pays money when the

product is completed. That is the tendering model and is mainly used to acquire a

customized product or service at an appropriate price.

23 |

E. Proportional Sharing

What can we do if demand exceeds supply? One solution is to raise the price

and the other is to reduce the quantity of allocation. Proportional sharing model

does the latter; it distributes the resource in proportion to the payments given by the

buyers. For instance, the seller has 50kg of rice and the buyer A pays $60 and the

buyer B pays $40; then the seller gives buyer A 30kg and buyer B 20kg of rice. This

can be seen as a modification of commodity market, where seller gives up to control

the price and buyers cooperate to share the resource in a fair manner.

F. Auction

What if there are many buyers for single merchandise which cannot be divided?

The only solution is to adjust the price so that an only one buyer wishes to pay that

price. The auction model is often used in such situations to adjust the price by

competing biddings among the buyers. The tendering model can be seen as another

kind of auctions where the competition occurs among the sellers. There are many

other kinds of auction mechanisms described in the next section. The auction model

is the most sophisticated way to determine the price in terms of fairness and

Table 2-1 Characteristics of typical market mechanisms

 #Seller : #Buyer Price leader

Commodity market 1 : N Seller

Posted price 1 : N Seller

Bargaining 1 : 1 Both

Tendering N : 1 Buyer

Proportional share 1 : N Buyer

Auction Vary Auctioneer

24 |

optimality; thus it is the most promising way to design a computing resources

marketplace.

2.2 Auction Theory

Auction is a type of market mechanism where the price is neither preset nor

arrived at by negotiation, but is discovered through the process of competitive

bidding. More formally speaking, an auction is a “protocol that allows agents to

indicate their interest in one or more resources and that uses these indications of

interest to determine both an allocation of resources and a set of payments by the

agents” [13]. Auction allows multiple buyers to negotiate with a single seller by

submitting bids through an auctioneer, or vice versa. The auctioneer sets the rules of

the auction and acts as an arbitrator. Negotiation continues until a single clearing

price is reached. Thus, auction regulates supply and demand based on the

competition of bidding price among sellers and/or buyers.

Auction is a powerful tool to resolve a competitive situation of resource

acquirement. There is virtually infinite variety of auction mechanisms in the world.

This thesis classifies them from two points of view: the number of goods and the

Table 2-2 Taxonomy of auction design

 #Sellers : #Buyers

 1 : N or M : 1 M : N

#
G

oo
ds

 One
Single-good
single-sided

(Section 2.2.1)

Single-good
double-sided

(Section 2.2.2)

Many
Combinatorial
(Section 2.2.3)

25 |

number of participants (i.e. sellers and buyers). The former means that how many

kinds of good (or merchandise, service, etc.) are traded in an auction at the same

time. The latter implies that on which side of participants the competition occurs.

Table 2-2 summarizes the classification and the sections below review typical types

of auction from above two points of view.

2.2.1 Single-good Single-sided Auctions

A. English auction

Perhaps the reader imagine the English auction simply by the word "auction",

because the English auction is widely used in both traditional auction houses and

today's internet auctions. In English auctions, there is one seller and the competition

occurs among multiple buyers. The procedure is (1) the auctioneer first declares the

initial price of the good, (2) the buyers then monotonically raises the price by making

their bids, and (3) the auctioneer finally stops the biddings when no more biddings

are made or when a fixed time is reached. The final bidder with the highest price

becomes the winner and he must purchase the good at that price.

B. Japanese auction

In Japanese auctions, not the buyer but the auctioneer raises the price. The

procedure is (1) the auctioneer sets the initial price and starts raising it periodically,

(2) in each period a buyer must declare whether he remains in or drops out of the

auction, and (3) the auction finishes when only one buyer remains in. The final

remained buyer becomes the winner and he must purchase the good at the final

price. A dropped buyer cannot come back to the same auction.

C. Dutch auction

In Dutch auctions, the price goes down from high to low. The procedure is (1)

the auctioneer declares a high initial price and starts a wall clock that indicates the

26 |

descending price, (2) a buyer pushes a button at an arbitrary time to stop the wall

clock, and (3) the auction finishes immediately. The first buyer pushing the button

becomes the winner and he must buy purchase the good at that price. The Dutch

auction is used in the Amsterdam flower market as it is particularly suitable to

determine the winner as quick as possible.

D. Sealed-bid auctions

The biddings can be secret from other buyers. In sealed-bid auctions, unlike the

three types of auctions discussed above, the biddings are not open to the public. The

procedure is (1) the buyers submit their “sealed” biddings directly to the auctioneer,

(2) the auctioneer then compares these biddings, and (3) the buyer with the highest

bid becomes the winner and he must purchase the good. The price at which the

winner purchase the good is determined separately in several ways: (a) in first-price

auctions the winner's due is equal to his own bid, (b) in second-price auctions the

winner's due is equal to the second-highest bid (i.e. the highest rejected bid), and (c)

in kth-price auctions the winner's due is equal to the kth-highest bid.

The second-price auctions are also used in combination with the English

auctions. For instance, in the internet auctions like Yahoo! Auctions, (1) the buyer

tells his reservation price to a proxy agent, (2) the proxy agent then keeps bidding

above the previous highest bid until the reservation price is reached, and (3) the

auction finishes at a pre-defined time. The highest bidder becomes the winner and

he pays the price just one unit above the second-highest bid. This type of auction can

be seen as a combination of the English auction and the second-price sealed-bid

auction.

E. Reverse Auctions

The above four sections have considered situations with one seller and multiple

buyers. We can consider the opposite: auctions with multiple sellers and one buyer.

27 |

Such a family of auctions is called reverse auctions. For instance, in a public

procurement, there is one buyer (e.g. a local government office) and multiple sellers

(e.g. construction companies) competing each other to provide the lowest price for a

good (e.g. building). The discussion on the non-reverse auctions can also be applied

to the reverse auctions by negating the prices (a negative payment means an

earning) and swapping the word “seller” for “buyer”, “highest” for “lowest” and so

on, without loss of generality. Therefore the sections below will not discuss reverse

auctions any further.

2.2.2 Single-good Double-sided Auctions

There may be many buyers and many sellers at the same time for a single kind

of merchandise. This setting is called double-sided auctions or exchanges. A typical

example is the stock market, in which many people are participating to buy or sell a

company's stock. Note that the double-sided auction causes two kinds of

competition at the same time: one is on the buyer’s side (a buyer competes against

other buyers) and the other is on the seller’s side (a seller competes against other

sellers). It is different from the internet auctions like Yahoo! Auctions where the

sellers do not directly compete with each other.

There are primarily two approaches to implement the single-good double-sided

auctions: the continuous double auction (CDA) and the periodic double auction (PDA,

also known as the clearinghouse auctions). In both the CDA and the PDA, a

participant places orders at any time and as many times as he want. Each order

includes a price (maximum for buying or minimum for selling) and a quantity

(positive for buying or negative for selling). The auctioneer then registers the

incoming orders on an order book.

The difference between the CDA and the PDA is the time when the trading

occurs. In the CDA, as soon as the order comes, the auctioneer attempts to match it

28 |

against the orders put on the order book. For example, an incoming buy order for 10

units may be matched against an existing sell order for 4 units and another sell order

for 6 units, as long as the buying price exceeds the selling price. In cases of partial

matches, the remaining units (either of the incoming order or of the existing orders)

are put back on the order book. For example, when a sell order for 13 units is coming

and two buy orders – one for 4 units and another for 6 units – are existing on the

order, 10 units of the sell order is matched against the buy orders and the remaining

3 units are put on the order book as a sell order.

In the PDA, in contrast, the auctioneer does not attempt to match the order at

the time it comes; instead he simply put it on the order book. Then, at some

pre-defined clock time, he attempts to match the orders as much as possible. The

Before After

#Sell Price #Buy #Sell Price #Buy

4 $9 6 4 $9

0 $8 0 0 $8

0 $8 0 0 $8

2 $6 0 2 $6

0 $5 4 0 $5

6 $4 6 $4 2

0 $3 3 $3 3

3 $2 5 $2 5

5 $1 2 $1 2

Figure 2.2 Example order book of periodical double-sided auction

29 |

Itayose1 algorithm is often used for matchmaking, by which he ranks the orders

according to their price and determines the point at which supply meets demand.

Figure 2.2 depicts a snapshot of an order book before and after the trading occurs. In

this example 14 units are traded and the remaining ones are left on the order book.

2.2.3 Combinatorial Auctions

Combinatorial auction is the most generic form of auctions, which allows

different kinds of good to be traded at once, unlike the single-good auctions

discussed in the above sections. This is particularly meaningful for the agents (buyers

and/or sellers) whose valuations depend on the set of goods they deal with, rather

than the good itself. For example, to make use of a computer, you need to procure

not only the computer itself but also its operating system and perhaps an internet

connection. Real-world applications of the combinatorial auctions so far include the

auctions for radio spectrum, energy, shipping paths, and corporate procurement

[13].

More formally, consider a set of agents 𝑁 = {1,⋯ ,𝑛} and a set of goods

𝐺 = {1,⋯ ,𝑚} . Let 𝑣 = (𝑣1,⋯ , 𝑣𝑛) denote the valuation functions of the

different agents, where valuation for each 𝑖 ∈ 𝑁, 𝑣𝑖 ∶ 2𝐺 → ℝ . There is an

assumption that there are no externalities. Specifically, it is asserted that an agent’s

valuation depends only on the set of goods he wins; that is, we do not consider such

an agent who also cares about the allocations and payments of the other agents.

The agents in the combinatorial auctions have nonadditive valuation functions.

There are two kinds of nonadditivity: substitutability and complementarity.

The substitutability means that the combined value of multiple goods is less

1 (Japanese) Literally “gather the board”.

30 |

than the sum of their individual values. For example, imagine you want to buy a car

and your option is a Toyota and a Renault. Since you cannot drive both of them at

the same time, your satisfaction of having both is less than twice as much as having

one of them; in other words, these two cars are partial substitutes for each other. If

two goods are strict substitutes, their combined value is equals to the value for

either one – in this case these items can also be seen as multiple units of a single kind

of good.

The complementarity means that the combined value of multiple goods is

greater than the sum of their individual values. For example, imagine you are

commanded to travel from Tokyo to Pyongyang via Beijing; you need the tickets for

both flights – not only one of them – otherwise you cannot accomplish your mission.

A business process is much like this; the value of corporation is created not by each

job alone but by the combined outcome of whole company.

The advantage of the combinatorial auctions is their ability to simplify the

agent's strategy. If there is no combinatorial auction, for example in the

complemental case, an agent needs to arrange a bundle of multiple goods in a

one-by-one manner at the risk of incompletion (so-called “exposure risk”). This is a

risky and complex task for the agent. With combinatorial auctions, in contrast, an

agent needs to simply express his requirement for a bundle to the auctioneer. There

is no risk of incompletion since the allocation is guaranteed to be all-or-nothing.

Essentially the combinatorial auction eliminates the complexity from the agent and

instead transfers it to the auctioneer. "Indeed, these auctions have been the subject

of considerable recent study in both economics and computer science" [13].

31 |

2.3 Market-based Computing Resource Management

2.3.1 In Literature

The idea of using markets and pricing computer resources is quite old. Pricing

policies received considerable attention at the dawn of multi-user time sharing

systems. Papers in the late 1960’s were dedicated to automatic pricing policies for

computer time [14,15]. For modern researches in this area, Buyya et al. provides

some comprehensive surveys [12,16,17] as well as grid/cloud computing toolkits and

simulators [18,19].

Spawn [20] by Waldspurger et al. is the first implementation of an

auction-based management system for distributed computing resources. It aims at

utilizing idle CPU times in a network of workstations. Spawn employs periodical,

single-good, single-sided, sealed-bid, second-price auctions. The buyers are

end-users, the seller is the owner of the workstation, the auctioneer is the Spawn

system running on the seller’s workstation, and the good is its CPU time. The trading

procedure is (1) a buyer finds a seller and bids for the CPU time of the workstation,

(2) the seller determines the winner, and (3) the winning buyer runs his program on

the seller’s workstation. Note that the auctions are distributed; i.e. there are as many

auctions as there are sellers in the network. The buyer needs to find an appropriate

seller using nearest-neighbor connections provided. The Spawn’s scheme does not

fit the enterprise cloud environment because its distributed nature of multiple

auctioneers (1) prevents the system from scaling beyond a local network, and (2)

prevents the buyers from bidding on a combination of multiple resources from

different sellers.

POPCORN [21,22] by Nisan et al. basically extends the scope of Spawn’s

“network of workstations” idea from local network to global network. It aims to be

“an infrastructure for globally distributed computation over the whole Internet” [21].

32 |

POPCORN employs a periodical, single-good, single- or double-sided, sealed-bid,

second-price auction. The buyers are Java programs written using POPCORN

framework, the sellers are people using Java-enabled browsers, the auctioneer is an

independent market service on the Internet, and the good is a right to run a Java

applet (“Computelet”). The trading procedure is (1) a programmer writes a program

using POPCORN framework and runs it on a local computer as a buyer, (2) the buyer

connects to the market and bids for execution of Computelets, (3) a seller visits a

web page where a POPCORN applet is embedded, (4) the applet connects to the

market and asks for execution of a Computelet, (5) the market determines the

winners, and (6) the winning buyer spawns Computelets and sends them to the

winning sellers so that they execute the Computelets on their browsers and return

the results back to the local computer. The POPCORN’s scheme overcomes the

scalability problem of Spawn’s; however, it still does not fit the enterprise cloud

environment because it does not support multiple kinds of resources and, of course,

combination of them.

G-commerce [23,24] by Wolski et al. compares two different market models –

commodities market and auctions – for resource allocation in Grid computing

environment. It on the one hand employs a commodities market with price

adjustment scheme for multiple interrelated goods, and on the other hand employs

periodical, single-good, single-sided, sealed-bid, second-price auctions. The buyers

are the user agents, the sellers are the owner agents, the market is an independent

service, and the goods are CPU slots and disk capacities. The trading procedure is (1)

the buyers bid for CPU and disk they wish to use, (2) the sellers ask for CPU or disk

they can provide, (3) the market determines the winners either by the commodities

market or by the auctions, and (4) the winning buyers execute their jobs on the

winning sellers. Note that, in the auction model, there are separate auctioneers for

each goods and thus the buyers have an exposure risk. For example, if a buyer wins a

33 |

CPU but doesn’t a disk, he needs to wait for the next chance to bid on another disk

while paying for the CPU. Because of this shortcoming the authors conclude that the

commodities market model is more suitable for Grids than the auction model;

however, this comparison is unfair because the auction model they employ is not a

combinatorial auction but a traditional single-good auction. Additionally, the

commodities market is typically unable to deal with arbitrary (not pre-defined) kinds

of goods. Therefore the G-commerce's scheme does not directly fit the enterprise

cloud environment.

Nimrod/G [25] by Buyya et al. is a negotiation-based Grid scheduler extended

from Nimrod [26] built on the top of Globus Toolkit [27]. It aims to help researchers

run a parameter survey program on heterogeneous resources while meeting the

deadline and budget constraint. Nimrod/G employs a commodity market model with

the parameters of time and cost. The buyer is an end-user, the seller is a resource

provider (i.e. a computing node), the market is Nimrod/G components (specifically

the scheduler under the control of the Parametric Engine), and the good is a right to

use the resource. The trading procedure is (1) the buyer requests the scheduler via

the Parametric Engine to arrange a resource that satisfies his deadline and cost, (2)

the scheduler negotiates with the resource providers and selects one that meets the

deadline at a minimum cost, and (3) the scheduler dispatches the user's job to the

selected resource. Nimrod/G is specially designed for massively parallel applications

on the scientific Grid environment, and thus it does not fit the enterprise cloud

environment where several kinds of applications need to run in conjunction with

others.

OCEAN [28] by Padala, et al. provides a market-based framework that

enhances various middlewares for cluster and grid computing. It aims to be an

infrastructure for high-performance computing environment where the resources

are traded as commodities. OCEAN employs a hybrid model of tendering and

34 |

bargaining in a P2P network. The buyers and the sellers are represented by OCEAN

Nodes, the matchmakers are implemented within OCEAN Nodes, and the good is a

right to use resources specified by CPU/memory/disk/network/auxiliary hardware/

software/database/etc. The trading procedure is (1) a buyer propagates his trade

proposal to nearby sellers, (2) a seller also propagates his trade proposal to nearby

buyers, (3) the buyer starts negotiations by offering contracts to the potential sellers,

(4) the seller accepts or rejects the contract and return it back to the buyer, (5) the

buyer examines the returned contracts and signs the preferable ones, (6) the seller

checks the signed contract and counter-sign it, and (7) the buyer starts using the

resources. OCEAN’s scheme does not fit the enterprise cloud environment because

(1) its P2P-based structure does not provide a single marketplace where world-wide

information on resource supply/demand are exchanged all together, and (2) its

negotiation-based procedure does not guarantees neither an economically efficient

allocation of resources nor an fair competition among the participants.

Bellagio by AuYoung et al. [29] is the first combinatorial auction-based

marketplace for distributed computing resources. It aims to be a resource discovery

and allocation system for distributed computing infrastructures such as PlanetLab

[30]. Bellagio employs periodical, combinatorial, single-sided, sealed-bid,

second-price auctions. The buyers are end-users, the seller is a computer site, the

auctioneer is centralized Bellagio server, and the good is a right to use a resource

discovered by SWORD [31]. The trading procedure is (1) the buyer discovers the

sellers who satisfy his requirements, (2) the buyer bids for a bundle of resources like

"20 of A and 30 of B at $5 or less", (3) the auctioneer determines the winners once an

hour, and (4) the winning buyer uses the resources. Bellagio’s scheme is well

designed so that the buyer can express substitutability as well as complementarity

between different kinds of resources. However, it does not fit the enterprise cloud

environment because (1) the sellers are out of competition, and (2) the buyers

35 |

cannot bid for a workflow consists of multiple resources used on different timeslots.

Mirage by Chun et al. [32] is another combinatorial auction-based resource

management system for SensorNet testbeds. It had been deployed in a real-world

testbed and brought practical knowledge about the users' behavior. Mirage employs

periodical, combinatorial, single-sided, sealed-bid, first-price auctions. The buyers

are end-users, the seller is an agent on behalf of the sensors, the auctioneer is

Mirage daemon running on front-end web server, and the good is access to the

sensor. The trading procedure is (1) the buyer bids for sensors specified by abstract

requirements, (2) the auctioneer translates the requirements into concrete set of

sensors using resource discovery service, (3) the auctioneer determines the winners,

and (4) the winning buyers get access to the sensors. Mirage’s scheme is much

similar to Bellagio’s and it does not fit the enterprise cloud environment because of

the same reasons as Bellagio.

Tycoon [33] by Lai et al. is a market-based distributed resource allocation

system based on proportional share, where the resources are allocated in proportion

to the amount of money the user spends. It aims to allow users to differentiate the

value of their jobs in a cluster computing environment. Tycoon employs Auction

Share algorithm to allocate resources instantly and reliably. The buyers are user

agents, the sellers are hosts in the cluster, the auctioneer is a process running on the

host, and the good is a right to use resources like CPU cycles. Note that there are

multiple independent auctioneers on each host. The trading procedure is (1) the

seller registers himself to the service location service, (2) the buyers bid on an

auctioneer for the resource, (3) the auctioneer determines the quota on the resource

for the buyers, and (4) the buyers use the resource. Tycoon’s scheme does not fit the

enterprise cloud environment because its distributed single-good auction model

causes an exposure risk for the buyers who want a bundle of multiple resources.

36 |

CATNETS by Eymann et al. [34–37] compares the decentralized Catallactic

approach with the centralized auction-based approach for resource allocation in Grid

computing environment. Although the authors concluded that the decentralized

approach fits to the Grid environment in terms of scalability, hereafter only the

centralized approach is focused as it is the main concern of this thesis. The

centralized approach employs periodical, combinatorial, double-sided, sealed-bid,

K-pricing auctions. CATNETS divides the trading into two layers: a service market

and a resource market. In the service market, the buyers are Complex Service Agents

on behalf of the end-users, the sellers are Basic Service Agents, and the goods are

services like PDF generation service. In the resource market, the buyers are Basic

Service Agents, the sellers are Resource Service Agents on behalf of the owners, and

the goods are resources like CPU/memory/storage/etc. In both markets, the

auctioneer is an independent entity. The trading procedure is (1) a Resource Service

Agent asks for his resource as seller in the resource market, (2) a Basic Service Agent

asks for his service as seller in the service market, (3) a Complex Service Agent bids

for a bundle of services as a buyer in the service market, (4) the auctioneer of the

service market determines the winners, (5) the winning Basic Service Agent bids for a

bundle of resources as a buyer in the resource market, (6) the auctioneer of the

resource market determines the winners, (7) the winning Basic Service Agent uses

the resources to provide his service to the winning Complex Service Agent, and (8)

the winning Complex Service Agent uses the service. Unlike former literatures,

CATNETS’ scheme is much likely to fit the cloud computing environment as its

Resource/Basic/Complex Services respectively correspond to the IaaS/PaaS/SaaS

layers in the cloud. Nonetheless, the CATNETS’ combinatorial auction model lacks

the ability to deal with a workflow-oriented application which consists of multiple

services running not at the same time.

SCDA by Tan et al. [38,39] proposes an iterative combinatorial exchange for

37 |

resource allocation in Grid computing environments, which essentially emulates a

combinatorial auction by doing single-good auctions repeatedly. It aims to eliminate

unnecessary volatility of the market price observed in conventional continuous

double auctions. SCDA employs continuous, single-good, double-sided, sealed-bid,

K-pricing auctions. The buyers are user agents, the seller is an owner agent, the

auctioneer is an independent agent, and the good is an arbitrary kind of computing

resource. The trading procedure is (1) the buyers bid for a certain amount of resource

they wish to use, (2) the seller asks for his available resource, (3) the auctioneer

determines the winners, and (4) the winning buyer uses the resource of the winning

seller. SCDA’s scheme does not fit the enterprise cloud environment because the

buyers still have an exposure risk.

Table 2-3 summarizes these market-based resource management systems in

literature for distributed computing environment.

38 |

Table 2-3 Summary of market-based computing resource management systems

Name Year
Market
Model

Centra-
lized

Auction Design

Period-
ical

Combi-
natorial

Double-
sided

Pricing

Spawn 1992 Auction No Yes No No Second price

Popcorn 1998 Auction Yes Yes No
No Second price

Yes K-pricing

G-commerce 2000

Commodity
market

Yes – – – –

Auction Yes Yes No No Second price

Nimrod/G 2002
Commodity
market

No – – – –

OCEAN 2003
Tendering /
Bargaining

No – – – –

Bellagio 2004 Auction Yes Yes Yes No Second price

Mirage 2005 Auction Yes Yes Yes No First price

Tycoon 2005
Proportional
sharing

No – – – –

CATNETS 2005 Auction Yes Yes Yes Yes K-pricing

SCDA 2007 Auction Yes No No Yes K-pricing

39 |

2.3.2 In Production

As of early 2011, we can find some sort of cloud marketplace. An example in the

IaaS layer is Amazon EC2 Spot Instances [40], where the provider dynamically sets

the price of his IaaS and the users bid for it. The user's instance is shutdown if his bid

undergo the price. Another example in the PaaS layer is Heroku Add-ons [41], where

the provider sells his PaaSes at a posted price and the users buy them as a

component of their applications. Further example in the SaaS layer is Google Apps

Marketplace [42], where the providers sell their SaaSes at a posted price and the

users compare and buy them to integrate into their business. At the writing point of

this thesis, we noticed no double-sided auction system for cloud computing services

in production.

Figure 2.3 Heroku Add-ons

40 |

2.4 Other Disciplines

Market mechanism is widely used in the real world. This section give a glance to

other use cases of market and auction mechanisms, while discussing the difference

between cloud computing environments.

2.4.1 Electricity Exchange

Electricity markets are in practical operation for several years. For instance,

Japan Electric Power Exchange (JPEX) started operations in 2005. According to ref.

[43], it provides three markets: (1) a spot market for trading the electricity on the

next day, (2) a forward market for trading the electricity to be delivered weeks or

months ahead, and (3) a forward bulletin board market for free transactions. Since

electricity and computing services have similar natures (i.e. they cannot be stored),

the electricity market can be regarded as a preceding model to the cloud services

market. However, the electricity market model cannot be directly applied to cloud

computing because the electricity is almost uniform, whereas computing services

vary in type and quality.

2.4.2 Stock Exchange

The stock market deals with a variety of stocks, which can be stored and resold,

unlike a computing service. The studies on dealing strategies and mechanism design

have used multi-agent simulations. U-Mart [44] is a test bed for multi-agent

simulations of the stock market, and it is especially focused on futures trading. It

allows machine agents and human agents to trade future stocks at the same time.

Our simulator presented in this thesis is developed with an interface with the U-Mart

system, so that we can evaluate performance of various machine/human agents.

41 |

2.5 Summary

This chapter has extensively reviewed the market mechanisms from four points

of view: (1) historical economics, (2) auction theory, (3) computer science, and (4)

other applications in our society. Now we know that the market mechanism has

been widely studied by the economists and by the computer scientists. However,

there exists no market mechanism that just fits today’s cloud computing

environment, because the cloud computing model is a new idea having no

similarities in the past. Particularly, the combinatorial, workflow-oriented nature of

cloud-based enterprise applications makes it impossible for any existing market

mechanisms to deal with such a combination of services as a bundle. This thesis

therefore proposes a brand new design of marketplace that realizes trading of any

combination of services with different timeslot as a bundle, as well as fair

competition and economically efficient outcome.

42 |

Chapter 3 Cloud Computing Model

3.1 Cloud Service

The "cloud" spreads over a wide level of abstraction from hardware to software.

Now it is understood in a three-tier structure from low-level to high-level:

Infrastructure as a service (IaaS), Platform as a service (PaaS) and Software as a

service (SaaS). Many providers compete in each tier for selling their own services,

making it increasingly difficult for users to select an appropriate service among

them.

In this thesis, an enterprise system is assumed to be implemented using PaaS.

PaaS is becoming a major methodology to build an enterprise system on it, because

the developer can build the system without procuring and configuring

hardware/software; thus, the customer can significantly reduce cost and time for

development. The number of PaaS provider is expected to increase as the platform

technology is becoming standardized or open-source software is available [45–54].

The price of PaaS is assumed to be set on a per-process-per-hour basis for each

type of service in this thesis. This assumption is reasonable to simulate the existing

PaaS model. For example, Heroku [54] charges for dynos, workers, databases and

add-ons separately. The dyno is a front-end process responsible to HTTP requests

("more dynos provide more concurrency") and the worker is a back-end process

43 |

responsible for queued jobs ("more workers provide more capacity"), both of which

costs $0.05 per process per hour; while the database costs monthly depending on its

performance.

3.2 Enterprise System

An enterprise system generally consists of multiple subsystems running in

parallel and/or sequentially, each of which requires a guaranteed quality of service

(QoS) at a predictable price. Each enterprise system, or each user's request, is

assumed to be represented by workflow. An example of business workflow is a

payroll system [55]. It consists of a payroll calculation task on Java service along with

an employee database task on SQL service, followed by reporting task on PDF/Email

service as shown in Figure 3.1. Another example of engineering workflow is a CAE

system [56]. It consists of a mesh generation task and a CFD analysis task on a HPC

service, controlled by an optimization task on a general-purpose optimization

service. Every task needs to reserve the specified type of service within an

Figure 3.1 Enterprise system model

44 |

appropriate timeslots to meet a deadline. The overall cost should also be restricted

by the user's total budget. Each task in the workflow is implemented using PaaS;

thus, the user needs combination of PaaS services to organize the user's workflow.

Figure 3.2 illustrates another story of a company depends on SaaSes to run their

business. The sales division uses a supply chain management service at the midnight

to aggregate their daily records. The investment division uses a risk assessment

service for several hours at the weekend to evaluate their assets. The accounting

division uses a human resource management service for three days at the end of

month to calculate the payroll. The design division uses a computer aided

engineering service to meet a deadline of a product. The research division has their

own computers currently not in use; so they can host other applications and earn

from its user. The former three divisions need scheduled allocation of services for

regular tasks, whereas the latter two divisions need immediate allocation of services

Figure 3.2 Example SaaS usage

45 |

for irregular tasks. Consequently, the marketplace should support these scheduled

and immediate allocations to meet the requirements of enterprise usage.

3.3 Requirements

The service allocation decided by the marketplace must be fair and efficient;

otherwise the user will have no incentive to take part in. Hence, the PaaS

marketplace is assumed to have to support the following requirements:

 Combination of services

Each user needs to bundle multiple services with different start/finish times as

mentioned above. The cloud marketplace should allow users to express

complementary requirements for an arbitrary combination of services.

 Predictability and flexibility

Since supply and demand in the cloud computing environment changes

dynamically over time, users may desire predictable allocation in advance and

adjustment at runtime.

 Economic efficiency

Every user and provider desires a fair and efficient allocation of services. The

cloud marketplace should maximize the benefit of the participants and should not

waste any resource. To this end, it is preferable for the marketplace to adopt an

exact optimization approach rather than a heuristic approach.

 Double-sided competition

To encourage a fair exchange between providers and users, the prices should

only depend on supply-demand condition, giving no structural advantage on a

seller's (provider's) side or a buyer's (user's) side. The cloud marketplace should be

designed after the double-sided auction model, meaning that the providers and the

users compete with each other.

46 |

3.4 Marketplace Model

Figure 3.3 illustrates an ideal marketplace model that fits to the enterprise

usage and requirements mentioned above. It should support multiple types of

services, an application composed of multiple services as a workflow or as

co-allocation, price bidding by both providers and users, and a fair outcome

satisfying economic efficiency. The next chapter describes the proposed market

model in detail.

Figure 3.3 Marketplace model

47 |

(This page is intentionally left blank)

48 |

Chapter 4 Market Mechanism

4.1 Overview

Figure 4.1 illustrates an overall perspective of the cloud computing environment

with the proposed marketplace mechanism. The marketplace has two independent

markets: the spot market for a short-term reservation (e.g. in one hour) and the

forward market for a long-term reservation (e.g. in one month). The service

Figure 4.1 Overview of the proposed marketplace

49 |

providers participate in the markets as sellers while the users participate as buyers.

For instance, the provider places sell orders with a market when he has a capacity of

service with specific QoS. The user places a buy order with a market when he builds

an application using specific services. The market accepts sell/buy orders for fixed

duration, and then it determines the allocation of the services between the providers

and the users. Finally, the market informs the participants of the resulting allocation

to allow the user to deploy his application and the provider to preserve his capacity.

We refer to the time of actual usage/provision as “delivery” and the sequence of the

above procedures as a "round". The marketplace repeats the rounds periodically.

4.2 Hypothesis

A service and a task are assumed to satisfy the following conditions as shown in

Figure 4.2:

Figure 4.2 Service and task

50 |

An amount of resources that satisfy QoS is represented as a one-dimensional

value, e.g. the number of processes or the performance of virtual machine. We refer

to the amount of resources as “quantity” and represent it with the metric “units” in

the rest of this thesis. The price of resources is assumed to be proportional to its

quantity.

A provider can host multiple users at the same time unless exceeding its

capacity. For instance, the provider can provide 20 units to a user and 40 units for

another user when it has a capacity of 60 units.

A user can build an application using services offered by multiple providers to

fulfill his demand. For instance, the user uses 10 units on the provider 1 and 30 units

on the provider 2 when he builds an application consuming 40 units.

An application can be migrated at runtime, i.e. an application running on a

provider can be suspended, moved and resumed on another provider.

The physical parameters, such as network bandwidth and migration time, are

omitted in this model for the sake of simplicity. The physical cost can be included in a

price or traded as a separate service in reality.

51 |

4.3 Trading Schedule

Each of the two markets holds clearinghouse auctions periodically. Figure 4.3

shows the schedule of the auctions. The spot and the forward auctions have the

same procedure in different timescale. Here sellers and buyers are treated equally as

participants.

In the spot market, a participant willing to sell/buy services in one-hour timeslot

𝑡 needs to submit a request during the timeslot 𝑡 − 2, which begins two hours prior

and ends one hour prior to the requested timeslot. For instance, let us suppose

trading services at the third timeslot (from 2:00 to 3:00). The market opens for one

hour at the first timeslot (from 0:00 to 1:00) to accept sell/buy orders from the

participants. The market then closes and starts matchmaking, i.e. computes the

optimal allocation of services from providers to users. Within one hour (by 2:00) the

matchmaking finishes and the market notifies the results to the participants. Finally

Figure 4.3 Trading schedule

52 |

the participants utilize the services they win during the third timeslot (from 2:00 to

3:00).

Trading in the forward market is same as the spot market except the timescale

of the procedure. Let 𝐹 denotes the length of the forward delivery days2 indicated

by the blue-colored boxes marked ‘forwards’ in Figure 4.3. A participant willing to

sell/buy services starting on the 𝑓-th day needs to submit a request during the days

between 𝑓 − (𝐹 − 1) and 𝑓 − 2, that begins 𝐹 − 1 days prior and ends two days

prior to the delivery day. For instance, the market opens a forward auction for one

day (from 0:00 to 24:00) on the 1st day. Assuming 𝐹 = 7 the participants can place

orders for services delivered between 0:00 on the 3rd day and 24:00 on the 9th day.

The forward market performs matchmaking and notifies the results advising when

to utilize the services. Note that the forward matchmaking can spend at most 22

hours; this is the design to support time-consuming MIP technique. Since the spot

market opens at 22:00 for the next day’s services, the forward matchmaking must

finish before 22:00.

2 (financial term) The day on which seller/buyer actually provide/use the services

53 |

4.4 Bidding Language

The bidding language determines the information included in an order. Figure

4.4 illustrates the order forms sent from a participant to a market.

A buy order from a user has a valuation (maximum price he wishes to pay) and a

bundle of arbitrary services he needs. For each service the user specifies a service

type, quantity, the earliest timeslot acceptable to start (arrival time of the task), the

latest timeslot acceptable to finish (deadline of the task) and the total number of

timeslots (estimated runtime of the task). The latter three parameters are only used

in the forward market. Note that the valuation is given to a bundle of services, not to

each discrete service, so that the user can express requirements for receiving

multiple services in combination. If the market cannot reserve all the services in a

bundle at once, the user receives nothing at all.

Figure 4.4 Bidding language

54 |

A sell order from a provider has a valuation (minimum price he wishes to earn)

and a service he offers. The provider specifies a service type, quantity, the earliest

timeslot and the latest timeslot available for use. The latter two parameters are only

used in the forward market. Note that a sell order includes only one service. The

provider can make separate orders for different services. If a provider wishes to sell

certain low-level services at the same time, he can do so by bundling them into a

single high-level service.

Formulation: Let 𝑀 = �𝑚1, … ,𝑚|𝑀|� , 𝑚𝑖 = {𝑣𝑖,𝑂𝑖} be sell orders; 𝑁 =

�𝑛1, … ,𝑛|𝑁|� , 𝑛𝑗 = �𝑣𝑗,𝑂𝑗� be buy orders; 𝐺 = �𝑔1, … ,𝑔|𝐺|� be service types;

1 ≤ 𝑡 ≤ 𝑇 be timeslots; and 𝑣𝑖 and 𝑣𝑗 be valuation. A buy order is formulated as

𝑂𝑗 = ��𝑔𝑘 , 𝑞𝑗,𝑘,𝑏𝑗,𝑘 ,𝑑𝑗,𝑘 , 𝑙𝑗,𝑘� � 1 ≤ 𝑘 ≤ |𝐺|�

where 𝑞𝑗,𝑘 is the quantity of service 𝑔𝑘, 𝑏𝑗,𝑘 is the earliest beginning timeslot,

𝑑𝑗,𝑘 is the latest ending timeslot and 𝑙𝑗,𝑘 is the number of timeslots3. Similarly, a

sell order is formulated as

𝑂𝑖 = �𝑔𝑘 , 𝑞𝑖,𝑘 ,𝑏𝑖,𝑘 ,𝑑𝑖,𝑘�, 1 ≤ 𝑘 ≤ |𝐺|.

where 𝑂𝑖 is a vector. Again, note that 𝑏, 𝑑 and 𝑙 are only valid in forward orders.

4.5 Allocation Scheme

The allocation scheme determines the winners of an auction, or allocation of

services from providers to users. Our goal is to get an economically efficient (or

Pareto optimal) allocation of resources, where it is impossible to increase a

participant’s surplus without decreasing another participant’s surplus. Here the

surplus means the difference between the market price and the participant’s internal

3 If 𝑙𝑗,𝑘 < 𝑑𝑗,𝑘 − 𝑏𝑗,𝑘 + 1 then the task 𝑘 may be suspended/resumed during runtime.

55 |

valuation; i.e. (price − cost) for the provider and (utility − price) for the user, as

shown in Figure 4.5. The aggregate surplus, i.e. the difference between the buyers’

valuation and the sellers’ valuation, is also known as the social economic welfare.

Maximizing the social economic welfare 𝑤 is the sufficient condition for

Pareto optimality [57]. Therefore we formulate the winner determination problem

into a linear mixed integer program (MIP) and try to exactly maximize 𝑤. Here, four

decision variables are introduced: 𝑢𝑗 ∈ {0,1} denotes whether the buyer 𝑛𝑗 gets

all services in the bundle; 𝑥𝑗,𝑘 ∈ {0,1} denotes whether the service 𝑔𝑘 is

allocated to the buyer 𝑛𝑗 ; 𝑧𝑗,𝑘,𝑡 ∈ {0,1} denotes whether the service 𝑔𝑘 is

allocated to the buyer 𝑛𝑗 in the timeslot 𝑡 ; 0 ≤ 𝑦𝑖,𝑗,𝑘,𝑡 ≤ 1 denotes the

percentage of the service allocated to the buyer 𝑛𝑗 in the timeslot 𝑡, where the

service 𝑔𝑘 is owned by the seller 𝑚𝑖 . The solver then maximizes the social

economic welfare 𝑤 by solving the MIP:

Figure 4.5 Illustration of surplus and welfare

56 |

Maximize

𝑤 = �𝑣𝑗𝑢𝑗
𝑗∈𝑁

 −����𝑣𝑖𝑦𝑖,𝑗,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺𝑗∈𝑁𝑖∈𝑀

 (1)

s.t.

�𝑥𝑗,𝑘
𝑘∈𝐺

− |𝐺| 𝑢𝑗 = 0, 𝑗 ∈ 𝑁 (2)

�𝑧𝑗,𝑘,𝑡
𝑡∈𝑇

− 𝑙𝑗,𝑘 𝑥𝑗,𝑘 = 0, 𝑗 ∈ 𝑁,𝑘 ∈ 𝐺 (3)

�𝑦𝑖,𝑗,𝑘,𝑡
𝑗∈𝑁

≤ 1, 𝑖 ∈ 𝑀, 𝑘 ∈ 𝐺, 𝑡 ∈ 𝑇 (4)

𝑞𝑗,𝑘𝑧𝑗,𝑘,𝑡 −�𝑞𝑖,𝑘𝑦𝑖,𝑗,𝑘,𝑡
𝑖∈𝑀

= 0, 𝑗 ∈ 𝑁,𝑘 ∈ 𝐺, 𝑡 ∈ 𝑇 (5)

�𝑏𝑗,𝑘 − 𝑡�𝑧𝑗,𝑘,𝑡 ≤ 0, 𝑗 ∈ 𝑁,𝑘 ∈ 𝐺, 𝑡 ∈ 𝑇 (6)

�𝑡 − 𝑑𝑗,𝑘�𝑧𝑗,𝑘,𝑡 ≤ 0, 𝑗 ∈ 𝑁,𝑘 ∈ 𝐺, 𝑡 ∈ 𝑇 (7)

�𝑏𝑖,𝑘 − 𝑡��𝑦𝑖,𝑗,𝑘,𝑡
𝑗∈𝑁

≤ 0, 𝑖 ∈ 𝑀,𝑘 ∈ 𝐺, 𝑡 ∈ 𝑇 (8)

�𝑡 − 𝑑𝑖,𝑘��𝑦𝑖,𝑗,𝑘,𝑡
𝑗∈𝑁

≤ 0, 𝑖 ∈ 𝑀,𝑘 ∈ 𝐺, 𝑡 ∈ 𝑇 (9)

𝑢𝑗 ∈ {0,1}, 𝑗 ∈ 𝑁 (10)

𝑥𝑗,𝑘 ∈ {0,1}, 𝑗 ∈ 𝑁,𝑘 ∈ 𝐺 (11)

𝑧𝑗,𝑘,𝑡 ∈ {0,1}, 𝑗 ∈ 𝑁,𝑘 ∈ 𝐺, 𝑡 ∈ 𝑇 (12)

0 ≤ 𝑦𝑖,𝑗,𝑘,𝑡 ≤ 1, 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐺, 𝑡 ∈ 𝑇 (13)

57 |

4.6 Pricing Scheme

A price earned/paid by a provider/user for an allocation is decided by the pricing

scheme. The pricing scheme should be budget balanced and individually rational in

order to sustain the market and give providers/users incentives to participate in the

market. The former means that total earnings of providers is equal to the total

payment of users, and the latter means a provider/user earns/pays no less/more than

their valuation.

The K-pricing scheme [58] is employed to meet the above requirements. The

basic idea of K-pricing is to distribute the social economic welfare among the users

and the providers. It is straightforward in non-combinatorial auctions. In our

combinational auctions, however, we can neither calculate the discrete price for

each service nor for each timeslot of a user's order. Here, the following algorithm is

introduced to determine the price.

Assume 𝑢𝑗 = 1, since the only orders that succeed need pricing. Let 0 ≤ 𝐾 ≤

1 be an arbitrary fraction. For a buy order 𝑛𝑗, let 𝑤𝑗 be the welfare corresponding

to 𝑛𝑗, 𝑝𝑗 be the price, 𝑝𝑖,𝑗 be the price earned by the provider 𝑖, and 𝑟𝑖,𝑗,𝑘,𝑡 be

the proportion of the provider 𝑖 's valuation to all the providers' valuation of the

service 𝑘 in timeslot 𝑡. They are formulated as

𝑤𝑗 = 𝑣𝑗 −���𝑣𝑖𝑦𝑖,𝑗,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺𝑖∈𝑀

 (14)

𝑝𝑗 = 𝑣𝑗 − (1 − 𝐾)𝑤𝑗 (15)

𝑟𝑖,𝑗,𝑘,𝑡 =
∑ ∑ 𝑣𝑖𝑦𝑖,𝑗,𝑘,𝑡𝑡∈𝑇𝑘∈𝐺

∑ ∑ ∑ 𝑣𝑖𝑦𝑖,𝑗,𝑘,𝑡𝑡∈𝑇𝑘∈𝐺𝑖∈𝑀
 (16)

𝑝𝑖,𝑗 = ��𝑣𝑖𝑦𝑖,𝑗,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺

+ 𝐾��𝑤𝑗𝑟𝑖,𝑗,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺

 (17)

58 |

Consequently, the provider 𝑖’s total earning 𝑝𝑖 is formulated as

𝑝𝑖 = ���𝑣𝑖𝑦𝑖,𝑗,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺𝑗∈𝑁

+ 𝐾���𝑤𝑗𝑟𝑖,𝑗,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺𝑗∈𝑁

 (18)

Let’s see an example shown in Figure 4.6. A user 𝑛1 ordered a combination of

service A and B with a valuation of (at most)

𝑣𝑛1 = $30 .

As a result of matchmaking, providers 𝑚1, 𝑚2 (both provides service A) and 𝑚3

(provides service B) are allocated, and their valuations are (at least)

��𝑣𝑚1𝑦𝑚1,𝑛1,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺

= $3 ,

Figure 4.6 Pricing scheme

59 |

��𝑣𝑚2𝑦𝑚2,𝑛1,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺

= $6 ,

��𝑣𝑚3𝑦𝑚3,𝑛1,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺

= $9 ,

respectively. In this case, the welfare is

𝑤𝑛1 = $30 − ($3 + $6 + $9) = $12 .

Assuming 𝐾 = 0.5, the K-pricing scheme calculates the outcome price as

𝑝𝑛1 = $30− (1 − 𝐾) × $12 = $24 .

This becomes the trading price for the user; he profits $6 by the trading. For the

providers K-pricing scheme calculates the distribution of profit as

��𝑟𝑚1,𝑛1,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺

=
$3

($3 + $6 + $9) =
1
6

,

��𝑟𝑚2,𝑛1,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺

=
$6

($3 + $6 + $9) =
1
3

 ,

��𝑟𝑚3,𝑛1,𝑘,𝑡
𝑡∈𝑇𝑘∈𝐺

=
$9

($3 + $6 + $9) =
1
2

 .

So the trading prices for providers become

𝑝𝑚1,𝑛1 = $3 + 𝐾 × $12 ×
1
6

= $4 ,

𝑝𝑚2,𝑛1 = $6 + 𝐾 × $12 ×
1
3

= $8 ,

𝑝𝑚3,𝑛1 = $9 + 𝐾 × $12 ×
1
2

= $12 ,

respectively; they profit $1, $2 and $3 by the trading.

The incentive compatibility, which means that the participant's dominant

strategy is to reveal his valuation truthfully, is another important aspect of the

pricing scheme. However, these three aspects —the budget balance, the individual

rationality, and the incentive compatibility— cannot be fulfilled at the same time

[59]. This thesis focus on the first two aspects, the budget balance and the individual

60 |

rationality, because non-truthful bidding should also be allowed as the participant’s

strategy.

61 |

(This page is intentionally left blank)

62 |

Chapter 5 Simulator

5.1 Overview

A Java-based simulator, named W-Mart, has been developed to explore market

behavior by means of multi-agent simulations. The overall architecture of W-Mart is

illustrated in Figure 5.1.

Figure 5.1 Overview of W-Mart system

63 |

The W-Mart system consists of a marketplace server, two auctioneers for the

spot and forward markets inside the marketplace, and a number of participant

agents outside the marketplace. The agent is either a machine agent (i.e.

autonomous client software) or a human agent (i.e. an operator with terminal

software). The marketplace is designed to deal with both types of agents

simultaneously. The agents and the marketplace communicate by a dedicated

protocol named CombiSVMP. All the components of W-Mart system are built on Java

SE platform. The following sections describes the detailed design and

implementation.

5.2 Participant Agents

The participant agents simulate the provider and the user of cloud computing

services. An unlimited variation of agents can be developed and used with W-Mart as

far as they talk CombiSVMP. This section introduces our own agents used for the

experiments of this thesis. Although W-Mart allows human agents to participate in

trading, they are not used in the experiments of this thesis. We thus focus on our

machine agents and describe the design and implementation of them.

64 |

5.2.1 Seller Agent

A seller agent stands for a provider of cloud computing services. It is reasonable

to assume that the provided quantity and valuation of services are constant, since

these services are usually hosted on computational resources in huge datacenters.

As such the seller agent implements a timeline to manage his "stock" resources and

attempts to sell the "remainder" resources at a constant order price. We assume that

one seller provides one service for the sake of simplicity.

Figure 5.2 depicts an example snapshot of a seller's timeline and his next order

to be placed. His resource is sold out until slot#53 (hour 4 of day 3); after that the

stock quantity is 80 units between slot#54-60, 40 units between slot#61-74 and 100

units thereafter. He then generates three sell orders according to the quantities and

sends them to the forward auctioneer. He also generates orders to the spot

auctioneer as well, excluding time-related properties.

Figure 5.2 Example seller’s timeline and orders

65 |

5.2.2 Buyer Agent

A buyer agent stands for a user of cloud computing services. As the user's

demand changes dynamically in realistic situations, our buyer agent is designed to

follow pre-generated demands (i.e. a schedule of workflows). As such the buyer

agent implements a timeline to manage his demands and attempts to buy all the

services composing the workflows at the specified (also pre-generated) order price.

Figure 5.3 depicts an example snapshot of a buyer’s timeline and his next order

to be placed. He has two workflows to be executed: one starts with service A at

slot#54 (hour 5 of day 3) followed by service E then finishes at slot#75, and both

co-allocated with service B; another starts with service C at slot#68 and followed by

service D then finishes at slot#81. He then generates two combinatorial buy orders

correspondingly and sends them to the forward auctioneer. He also generates orders

to the spot auctioneer as well, excluding time-related properties.

Figure 5.3 Example buyer’s timeline and orders

66 |

5.2.3 Scenario Generator

The schedule of workflows fed to the buyer agent is generated by scenario

generator and stored in a CSV file. Figure 5.4 shows an example of it including six

workflows. One line represents one workflow. The first column is the scheduled

timeslot to send the order for the workflow, e.g. “3/23” represents “the workflow

should be ordered at hour 23 of day 3”. The second column is the starting timeslot of

the workflow, e.g. “8/11” represents “the workflow starts at hour 11 of day 8”. The

third column is the order price (valuation) of the whole workflow. The fourth column

is the OrderSpec of the workflow. The semicolon-separated chunks of an OrderSpec

represent the services of the workflow. The colon-separated values of a chunk

represent the parameters of the service: i.e. type, quantity, earliest slot#, latest

slot# and total length, respectively. Our buyer agent reads this file on the beginning

of simulation and builds his own timeline accordingly.

Figure 5.4 Example scenario file

67 |

5.3 Marketplace Server

The marketplace server orchestrates the overall system of W-Mart. Its key role

is to manage the agents and the auctioneers. Timing of interactions with these

entities is illustrated in Figure 5.5 (digest version) and Figure 5.6 (detailed version).

Here the first day of the marketplace starts with accepting orders from human

agents and machine agents. After receiving all orders the marketplace kicks off two

auctioneers to execute auctions. Here the first hour ends and the next hour begins.

The marketplace keeps open for human orders while waiting for the spot auctioneer

to finish. After some ten minutes past, the marketplace closes for human orders and

joins the spot auctioneer. Having the result of the spot auction, the marketplace

then calls machine agents to make orders. After all the machine agents place their

Figure 5.5 Digest sequence diagram of W-Mart system

68 |

orders, the marketplace again kicks off the spot auctioneer. This is the one round of

spot trading and the marketplace repeats it until 21 o’clock. Note that the trading

schedule of the former diagram corresponds to that of Figure 4.3, where the forward

auction starts in 0 (zero) o’clock and finishes by 22 o’clock every day. So in the round

of 21 o’clock, the marketplace joins the forward auctioneer in addition to the spot

auctioneer. Here the results of the forward auction include the service allocation on

the next day. The marketplace allows agents to know the tomorrow’s reservation

results and decide the orders on the next spot auction.

Another important role of the marketplace is to manage/keep/translate the

orders and the outcome. As illustrated in Figure 5.1, the marketplace has an

OrderManager to keep the orders and a PriceInfoDB to keep the market information.

Once the marketplace receives an order by the OrderRequest command of

CombiSVMP, it is translated into an Order object and is kept in the OrderManager.

When the auctioneer finishes, the outcome and the market information are again

translated into an Order object and a ContractInformation object and are kept in the

OrderManager and the PriceInfoDB, so that the agents can acquire these

information via the OrderStatus command and the MarketPrice command of

CombiSVMP.

69 |

Figure 5.6 Detailed sequense diagram of W-Mart system

70 |

5.4 Auctioneers

There are two auctioneers within the marketplace server, namely the forward

auctioneer and the spot auctioneer, standing for the forward market and the spot

market, respectively. As the spot auctioneer is a special case of the forward

auctioneer where the time-related parameters are omitted, we focus on the forward

auctioneer and describe its design and implementation in this section.

Figure 5.6 illustrates that the auctioneer has its own thread to run

asynchronously with the marketplace server. After the agents finish placing their

orders, the marketplace server moves all orders (including uncontracted orders of

previous session) from the OrderManager to the Board of the auctioneer as shown in

Figure 5.1, and then he starts the auctioneer’s thread. Once started, the auctioneer

translates the orders from the Board into the MACE [60] framework, and kicks it off

to execute matchmaking and pricing. When the MACE framework completed the

calculation, the auctioneer scans the outcome and writes it back to the Board. On

the other hand, the marketplace server goes asynchronously to the next session, and

waits for the auctioneer’s thread to terminate. Here the marketplace server may be

waiting for the thread to finish. After that the marketplace server moves the

outcome from the Board to the OrderManager, as well as the market information

(such as the market price and volume) from the Board to the PriceInfoDB. Finally the

outcome and the market information can be retrieved by the agents via the

OrderStatus and the MarketPrice commands, described in the following section.

The MACE framework embedded in the auctioneer plays two main roles: (1) a

driver of combinatorial auction and (2) an executer of pricing scheme. The

WinnerDetermination component of MACE is responsible for computing an

allocation, i.e. it implements the mixed integer program. After the computation of

the allocation finishes, the prices are computed by the Pricing component of MACE.

71 |

These components are pluggable and are easy to be exchanged. We developed our

own versions of them for W-Mart, implementing the proposed mechanism described

in Chapter 4.

The bottommost layer of MACE comprises of third party components including

an MIP solver. The current implementation of MACE employs JOpt [61] as a wrapper

to support multiple MIP engines, namely CPLEX [62] and lp_solve [63]. CPLEX is the

state-of-the-art optimization engine for mixed integer programs, whereas lp_solve

is an open source alternative implementing branch-and-bound method for solving

integer problems. For performance reasons, lp_solve is only used for debugging

purpose whereas CPLEX is applied for evaluation of the mechanism.

5.5 Protocol

A dedicated protocol, named CombiSVMP (stands for Combinatorial Simple

Virtual Market Protocol), has been designed to exchange information between the

marketplace server and the participant agents. Its basic design is derived from SVMP,

which is developed for U-Mart v2 system [44]. CombiSVMP extends SVMP to be

capable of (1) simultaneous interaction with multiple auctioneers, (2) combinatorial

trading of multiple goods and (3) forward trading of multiple timeslots.

Table 5-1 lists the commands defined by CombiSVMP. Most of the commands

have AuctioneerName property as a string to specify the auctioneer with whom the

agent communicates. Some non-trivial commands and properties are described

below.

 The OrderRequest command is used to place a sell/buy order. It has

OrderSpec property, which includes arbitrary number of goods4 and their

4 The number of goods is limited to one for sell orders

72 |

properties like quantity, earliest timeslot, latest timeslot and total number

of timeslot to provide/use the goods.

 The OrderStatus command is used to inquire the outcome of past orders. It

returns OutcomeSpec property, which includes two arrays (vectors)

representing the quantities and the prices to be sold at each timeslots.

 The MarketPrice command is used to inquire the historical information of

the market. It returns a specified number of histories of MarketPriceTable’s,

which includes the market price (i.e. the average sold price per unit per

hour) for each good and each timeslot.

Such an exhaustive capability of CombiSVMP allows participant agents to make

full use of combinatorial/forward trading features of the proposed marketplace.

73 |

Table 5-1 Specification of CombiSVMP commands

Command Arguments Returns

OrderRequest
UserID, AuctioneerName,
SellOrBuy, OrderPrice,
OrderSpec

Order ID

OrderStatus UserID, AuctioneerName

OrderID, OrderTime,
AuctioneerName, SellOrBuy,
OrderPrice, OrderSpec,
OutcomePrice, OutcomeSpec

MarketStatus AuctioneerName StatusCode

MarketPrice
AuctioneerName,
HistorySize

Date, Session, Slot,
MarketPriceTables

ServerStatus UserID Date, Session, StatusCode
ServerDate - Date, Session
ServerTime - WallclockTime

Remarks:

OrderSpec = "Good:Quantity:Earliest:Latest:TotalLength;"+

OutcomeSpec = "Good:Quantity:Earliest:Latest:SoldQuantities:SoldPrices;"+

SoldQuantities = "SoldQuantity[Earliest], ..., SoldQuantity[Latest]"

SoldPrices = "SoldPrice[Earliest], ..., SoldPrice[Latest]"

MarketPriceTables = MarketPriceTable+

MarketPriceTable = "Good:Offset:MarketPrice[1], ..., MarketPrice[T];"+

“+” indicates arbitrary repetition.

74 |

Chapter 6 Experimental Study

To confirm the advantage of the proposed mechanisms, three experiments

have been carried out: (1) validation of combinatorial allocations, (2) estimation of

scalability, and (3) evaluation of market performance. This chapter demonstrates

these results and discusses the excellence and weakness of the proposed

mechanism.

All the simulations in this chapter are carried out using our W-Mart simulator

run on the environment shown in Table 6-1.

Table 6-1 Simulation environment

CPU AMD Opteron 8218 HE (2.6 GHz)

RAM 32GB

OS CentOS 5.1 (Linux kernel 2.6.18-92.el5)

JRE Sun Java SE 1.6.0_11

Solver ILOG CPLEX 11.200

75 |

6.1 Validation of Combinatorial Allocation

The proposed mechanism enables combinational allocations for workflows and

co-allocations. This section investigates two simple cases to see how combinational

allocations are achieved in the forward market and in the spot market.

6.1.1 Settings

The forward market is assumed to have four timeslots (i.e. from zero o’clock to

four o’clock). Two kinds of services are offered by three providers: the provider 1

offers service A; the provider 2 and the provider 3 offer service B with different prices.

Two users require these services in different manners: the user 1 needs the services A

Table 6-2 Simulation settings for validation of combinatorial allocation

 Forward Spot

Market Forward delivery hours 𝑇 = 4 slots

Seller Service types {𝑔𝑚1 ,𝑔𝑚2 ,𝑔𝑚3} = {A, B, B}

Quantity of a service �𝑞𝑚1 , 𝑞𝑚2 ,𝑞𝑚3� = {40, 30, 30} units

Order price Shown in Figure 6.1 thru Figure 6.4

Buyer Service types 𝐺 ∈ {A, B}

Number of task in a
workflow

𝐻 = 2

Quantity of service
required by a task

𝑞𝑗 = [10, 30] units

Order price Shown in the figures

Length of a workflow 𝑙𝑗 = [3, 4] slots
𝑙𝑗 = 𝑑𝑗 − 𝑏𝑗 + 1 𝑙𝑗 = 1 slot

Length of a task Shown in Figure 6.1 thru Figure 6.4

76 |

and B simultaneously for co-allocation; the user 2 needs the services A and B

sequentially for a workflow. The quantities, valuations and start/finish times of each

service are shown in Figure 6.1 and Figure 6.3. The required runtime of the task

equals (finish time -start time), which means that no interruption occurs. Table 6-2

shows the formulations of the simulation parameters.

Only one timeslot is available for the spot market. The providers and the

services are the same as those of the forward market. The user 1 and the user 2

require the same combination of the services A and B, but the valuation of the user 1

is higher than that of the user 2.

6.1.2 Results

Figure 6.1 and Figure 6.2 respectively show orders and the allocation results in

the forward market. These results show that orders from all the users are fulfilled. In

particular, the order from the user 2 consists of two tasks in a workflow – a task of

the service A and one of the service B – and the services are properly allocated to the

tasks. These results indicate that the proposed mechanism using the combinational

auction properly allocated the services to workflow tasks. Note that the provider 3

won the competition to sell the service B for the user 1 in timeslot 2 because he

priced it lower than the provider 2 did and therefore generated more total welfare.

Figure 6.3 and Figure 6.4 respectively show orders and the allocation results in

the spot market. The supply of the service B is less than the demand. As a result, the

user 2 lost the competition and bought nothing. Indeed the provider 1 still has

enough capacity for the service A, but it is not allocated to the user 2 since it does

not fulfill the combinational order of the user 2

6.1.3 Summary

It is confirmed through this preliminary experiment that the proposed

77 |

mechanism properly allocates the services amongst multiple providers, multiple

users, multiple kinds of services and combinatorial requirements for them. The

outcome of the mechanism is reliable. But how long time does it take? The next

section will evaluate the overhead to deal with a large number of participants.

78 |

Figure 6.1 Forward orders

Figure 6.2 Forward allocation

79 |

Figure 6.3 Spot orders

Figure 6.4 Spot allocation

80 |

6.2 Estimation of Mechanism Overhead

Mixed integer programming tends to consume a long time when faced with a

large problem. This section evaluates the overhead of the proposed mechanism in

order to confirm its practicality in a cloud computing environment. The evaluation

assesses the impact of the number of users and timeslots on the runtime.

6.2.1 Settings

The simulation is carried out by generating a set of orders and running the

market mechanism. Since the evaluation aims to assess the overhead, the rounds

are assumed to be independent; i.e., the result of matchmaking of orders does not

affect the next orders. The number of timeslots has a range of

{1,24,120,240,480,720}. The case of #slots = 1 represents trading in the spot

market, and other cases represent trading in the forward market. The actual time

span covered by timeslots depends on the length of the timeslot. For example,

#slots = 720 represents one month with a timeslot of one hour, or represents one

year with a timeslot of 12 hours. The Japanese electricity exchange is referred as an

example for the time granularity. This extent of granularity should be applicable to

the cloud computing environment.

The number of providers is set to 10, while the number of users has a range of

{100, 400, 700, 1000}. Figure 6.5 shows the sell orders of the providers. Each

provider offers a unique service and all the services are available anytime. Figure 6.6

shows the buy orders of the users. Each user requires one to five services chosen

randomly out of 10 services to be co-allocated. The task length varies from one to 12

timeslots. The time margin between ordering and starting a task varies from zero to

(#slots-12) timeslots. This setting is intended to reflect the current situation of cloud

computing, where some big companies provide their own services and many small

81 |

consumers use services to execute their tasks.

Other parameters are set constant for the sake of simplicity. The quantity of a

service is 100 units for selling and one unit for buying. The valuation of a service is

$1/(slot ∙ unit) for selling and $3/(slot ∙ unit) for buying. This setting means a

loose supply-demand condition with no price competition, where the buyer's

requirements are likely to be fulfilled. The simulation was conducted 10 times for

each setting with different random seeds, and the average results are presented.

Table 6-3 Simulation settings for estimation of mechanism overhead

 Lower load Higher load

Market Forward delivery hours 𝑇 ∈ {1,24,120,240,480,720} slots
(𝑇 = 1 means a spot trading)

Seller Service types 𝐺 ∈ {A, B, C, D, E, F, G, H, I, J}

Quantity of a service 𝑞𝑖,𝑘 = 100 units

Order price (per unit per hour) 𝑣𝑖
𝑞𝑖,𝑘�𝑑𝑖,𝑘−𝑏𝑖,𝑘+1�

= 1 dollar

Buyer Service types 𝐺 ∈ {A, B, C, D, E, F, G, H, I, J}

Number of task in a workflow 𝐻 ∈ {1, 2, 3, 4, 5}

Quantity of service required
by a task

𝑞𝑗,𝑘 = 1 unit
𝑞𝑗,𝑘 = [1, 100] units,

uniform dist.

Order price (per unit per hour) 𝑣𝑗
𝑞𝑗,𝑘𝑙𝑗,𝑘

= 3 dollars

Length of a workflow 𝑙𝑗,𝑘 = [1, 12] slots, uniform dist.

𝑙𝑗,𝑘 = 𝑑𝑗,𝑘 − 𝑏𝑗,𝑘 + 1

Length of a task 𝑙𝑗,1 = ⋯ = 𝑙𝑗,𝐻 = 𝑙𝑗 hours

Margin [0,𝑇 − 12] slots, uniform dist.

82 |

Table 6-3 shows the formulation of the simulation parameters.

Figure 6.5 Sell orders

Figure 6.6 Buy orders

83 |

6.2.2 Results

A. Lower Load

First a basic evaluation is carried out as described above, which simulates

relatively easy supply-demand conditions.

 Overall Runtime

Figure 6.7 shows the overall runtime consumed by the market mechanism to

perform a round of matchmaking. For the forward market, it takes more than five

minutes with 720 timeslots and 1000 users. However, it is still shorter than the length

of a timeslot, which is assumed to be one hour or 12 hours. The result for the spot

market is shown as #Timeslots = 1. For the spot market, it takes less than one

second. The overall runtime is essentially proportional to |𝑀| × |𝑁| × |𝐺| × 𝑇,

which is the number of iterations to build the model and parse the results.

Figure 6.7 Overall runtime (lower load)

84 |

 Solver Runtime

Figure 6.8 shows the runtime of the solver, i.e. excluding the time to build the

model, etc. It takes less than 3 seconds in the worst case. This means the translated

problems are so easy for MIP solver. The solver runtime is mainly affected by the

difficulty to find the optimal solution, which is more sensitive to the number of

conflicted orders than the number of timeslots. Further investigation is needed

about the intensity of confliction, which is shown in the next chart.

Figure 6.8 Solver runtime (lower load)

85 |

 Demand/supply Ratio

Figure 6.9 depicts the demand/supply ratio (D/S) of an arbitrary simulation run

of the lower-load experiments. The X axis indicates the timeslot (720 in total) and Y

axis indicates the type of service, and the color block indicates the D/S. We can see

the D/S is less than 50% throughout the simulation, that is, almost no competition

occurs during the trading. Therefore, we can consider that the results of lower-load

experiments show mainly the overhead of the wrapping W-Mart mechanism, which

converts the orders into the MIP and vise versa, rather than the performance of

underlying MIP solver.

It is needed to evaluate the capacity of MIP solver when faced to larger problem

derived from higher demand/supply ratio. The next section will investigate it.

Figure 6.9 Example demand/supply ratio (lower load)

86 |

B. Higher Load

The quantity of buying orders is changed from 1 unit to a random value chosen

uniformly within [1. .100] units (on average 50.5 units), whereas the quantity of

selling orders are 100 units. This makes the demand-supply conditions very hard and

competitions among users are expected to occur frequently. Other parameters are

identical to those of the lower-load experiment.

 Overall Runtime

Figure 6.10 shows the overall runtime of the market mechanism to perform a

round of matchmaking. One plot indicates one simulation run. The x axis indicates

the demand/supply ratio. When the D/S is below 200%, all the simulation runs

finishes within 60 seconds. When the D/S is above 200%, in contrast, some of the

simulation eventually begins to consume a very long time.

Figure 6.10 Overall Runtime (higher load)

87 |

 Solver Runtime

Figure 6.11 shows the runtime of the solver with the same scenario. It also

jumps up when the D/S exceeds 200%. Some of them is over 3600 seconds and is

not plotted on the chart5. The largest overhead of W-Mart mechanism (i.e. the

difference between the overall runtime and the solver runtime) is 235 seconds at

𝐷/𝑆 = 2.48, when the solver spends 1870 seconds with 10 providers and 900

users. We can consider that the runtime of the solver itself becomes dominant when

the solver encounters a difficult situation. Note that 1870 seconds is still shorter

than the length of a timeslot in our trading schedule (see Figure 4.3).

5 The solver’s runtime is limited to 3600 seconds in this experiment.

Figure 6.11 Solver runtime (higher load)

88 |

 Demand/Supply Ratio

Figure 6.12 depicts the demand/supply ratio (D/S) of an arbitrary simulation run

of the higher-load experiments. The D/S grows up as the number of users increase,

and the higher D/S leads to the more runtime of the solver. Note that the runtime of

the solver can be exponential to the number of collisions for resources, which is not

necessarily proportional to the D/S ratio.

6.2.3 Summary

The simulation results show that the proposed mechanism will scale up to 720

timeslots, 1000 users, 10 providers and 10 services. With 200% or more excess load

conditions, however, the MIP solver tends to consume a much longer time: typically

1 hour or longer at 250% load with 720 timeslots. Nevertheless, remember that the

proposed marketplace mechanism secures enough time to perform matchmaking: 1

hour for spot and 22 hours for forward trading.

Figure 6.12 Example demand/supply ratio (higher load)

89 |

6.3 Evaluation of Market Performance

Three experiments are contracted to see the performance of the proposed

mechanism. The first experiment runs a single market (the forward market or the

spot market) and evaluates how the combinatorial auction improves the

performance. The second and the third experiments run the forward market and the

spot market simultaneously to see the interaction between them and to evaluate the

performance of the whole marketplace with various users.

Figure 6.13 illustrates the difference between these scenarios. First, in the

Figure 6.13 Overview of the experiments

90 |

single-market experiment, the effectiveness of the combinational auction is studied

by running four scenarios: (1) forward/combinatorial, (2) forward/separate, (3)

spot/combinatorial and (4) spot/separate. Each user places a combination of orders

for services in the scenario (1) and (3). The forward market and the spot market are

used in the marketplace in the scenario (1) and (3), respectively. In the scenarios (2)

and (4), each user places orders for services separately.

Second, in the dual-market basic experiment, the practicality of running two

markets simultaneously is studied, where the forward contracts should have a

priority over the spot contracts. Combinatorial orders are enabled in this scenario.

Third, in the dual-market extensive experiment, the characteristics of the

marketplace running two markets is studied.

6.3.1 Settings

The simulations are carried out with the settings described below. Table 6-4

summarizes all the parameters used in the simulations.

A. Market

One timeslot is one hour and one day is 24 timeslots. The market operates for

30 days (720 hours). The forward market deals with seven days (168 hours) of future

services and clears a round at every midnight. The spot market deals with one hour

of services and clears a round every hour. This setting exactly implements the

trading schedule described in Section 4.

91 |

Table 6-4 Simulation settings for evaluation of market performance

 Single market Dual market

Market Duration of operation 𝑇 = 720 hours

Forward delivery days 𝐹 = 7 days

Seller Service type 𝐺 ∈ {A, B, C, D, E}

Quantity of a service 𝑞𝑖 = 100 units

Order price (per unit per hour) 𝑣𝑖
𝑞𝑖(𝑑𝑖−𝑏𝑖+1) = 1 dollar

Buyer Service type 𝐺 ∈ {A, B, C, D, E}

Number of task in a workflow 𝐻 ∈ {2, 3, 4, 5}

Quantity of service required
by a task

𝑞𝑗 = [1, 100] units, uniform dist.

Order price (per unit per hour) 𝑣𝑗
𝑞𝑗𝑙𝑗

= [2, 10] dollars, uniform dist.

Length of a workflow 𝑙𝑗 = [2, 24] hours, exponential dist.
(𝜆 = 0.25)

𝑙𝑗 = 𝑑𝑗 − 𝑏𝑗 + 1

Length of a
task

Leading tasks 𝑙𝑗,1 = ⋯ = 𝑙𝑗,𝐻−1 = [1, 𝑙𝑗 − 1] hours,
uniform dist.

Following task 𝑙𝑗,𝐻 = 𝑙𝑗 − 𝑙𝑗,1 hours

Margin Forward [2, 7] days, uniform dist.

Spot 2 hours

Arrival rate
(Poisson
Arrival)

Forward
𝜆 ∈ {1, 3, 5, 7, 10,
14, 20, 30, 40, 50}

𝜆 = 10

Spot 𝜆 ∈ {1, 3, 5, 7, 10,
14, 20, 30}

92 |

B. Seller Agents

There are five sellers with different kind of services, namely service A, B, C, D,

and E. A seller has an ability to provide constant units of his service every hour. The

order price is fixed to $1 per unit per hour, for the sake of simplicity. A seller agent

attempts to sell all amount of his service as early as possible. For instance, after he

ordered 100 units and contracted 30 units to sell in one round, he will order to sell

remaining 70 units in the next round.

C. Buyer Agents

Each buyer has their own applications presented by workflows. Each workflow

consists of two phases of tasks, namely the leading task(s) and the following task, as

shown in Figure 6.14. Each task requires service A, B, C, D or E, exclusively. The

overall length of a workflow follows the exponential distribution with 𝜆 = 0.25,

where the minimum length is two hours and the maximum is 24 hours. This means

that 50% of the workflows have four hours or shorter length. The lengths of the

leading tasks are set randomly within the overall length of the workflow and the

following task spends the remainder. The valuation of a task follows the uniform

distribution between 2 and 10 cents per unit per hour for each task. The order price is

the sum of the valuations of all tasks in the workflow.

Figure 6.14 Shapes of workflow

93 |

The user places an order for services before the time the user actually start to

use them. The margin of time between ordering and starting the services follows the

uniform distribution between two and seven days for the forward orders, and is fixed

to two hours for the spot orders. The quantity of each service in an order follows the

uniform distribution between 1 and 100 units. Figure 6.15 shows examples of orders

to the forward market and to the spot market. Arrival of workflows is assumed to

follow the Poisson Arrival with parameters shown in Table 6-4, where 𝜆 denotes the

expected number of arrival in one day and 𝑘 denotes the maximum number of

occurrences in one day. The simulation run is conducted 100 times for each arrival

rate and the average results are shown.

Figure 6.15 Buyer order

94 |

A buyer agent attempts to buy all services in a workflow. In

forward/combinatorial scenario he orders all services at once as a bundle; in other

scenarios he divides the bundle into a set of orders in an appropriate manner. Figure

6.16 illustrates how to divide a workflow depending on the market mechanism. Here,

a user demands a workflow of three services, for example, starting with four hours of

A and B followed by two hours of C. In (1) the forward/combinatorial scenario he puts

one order for all services on the forward market at once. In (2) the forward/separate

scenario he puts three orders for each service on the forward market at the same

time, i.e. each order is processed independently. In (3) the spot/combinatorial

scenario he puts six orders for each timeslot on the spot market for six times. In (4)

the spot/separate scenario he puts 10 orders for each service and timeslot on the

spot market for six times. The workflow is fulfilled if he succeeds to reserve all

services in the workflow; otherwise the workflow is not fulfilled and reserved

services are wasted, i.e. paid but not utilized. In other words, the wasted services

give the buyer no benefit while consuming his budget.

Figure 6.16 Order division

95 |

6.3.2 Performance Metrics

The following metrics are used to evaluate the performance of the market

mechanisms.

 Demand/supply ratio (D/S)

Demand/supply ratio (D/S) indicates a load on the overall system, in other

words, the total quantity (i.e. the product of quantity and total runtime) of services

requested by users compared to those offered by providers. It also aggregates all

kinds of service. The aggregation of different services is acceptable since they have

an identical setting in our experiments. D/S is computed by (19).

𝐷/𝑆 =
∑ ∑ 𝑞𝑗,𝑘𝑙𝑗,𝑘𝑘∈𝐺𝑗∈𝑁

∑ ∑ 𝑞𝑖,𝑘�𝑑𝑖,𝑘 − 𝑏𝑖,𝑘 + 1�𝑘∈𝐺𝑖∈𝑀
 (19)

 Workflow completion rate (WC)

Workflow completion rate (WC) indicates the rate of the number of workflows

fulfill their requirements compared to the total number of workflows. A higher rate

means better performance. Note that WC compares the number of workflows, not

the quantity of services in workflows. WC is computed by (20).

𝑊𝐶 =
∑ 𝑢𝑗𝑗∈𝑁

|𝑁| (20)

96 |

 Cost performance (CP)

Cost performance (CP) indicates the users' total valuation fulfilled (excluding

wasted services) compared to the total payments (including wasted services) by the

users. A higher value means better performance. CP is computed by (21).

𝐶𝑃 =
∑ 𝑣𝑗𝑢𝑗𝑗∈𝑁

∑ 𝑝𝑗𝑗∈𝑁
 (21)

 Global utilization (GU)

Global utilization (GU) indicates the total quantity of services utilized in the

market (i.e. reserved and not wasted) compared to those offered by providers. A

higher utilization means better performance. GU is computed by (22).

𝐺𝑈 =
∑ ∑ 𝑞𝑗,𝑘𝑢𝑗𝑘∈𝐺𝑗∈𝑁

∑ ∑ 𝑞𝑖,𝑘𝑘∈𝐺𝑖∈𝑀
 (22)

 Market price (MP)

It indicates an average price per unit per hour decided in the market. The

users/providers actually pays/earns this amount of money. A lower price means

better for users. MP is computed by (23).

𝑀𝑃 =
∑ 𝑝𝑖𝑖∈𝑀

∑ ∑ ∑ ∑ 𝑦𝑖,𝑗,𝑘,𝑡𝑞𝑖,𝑘𝑡∈𝑇𝑘∈𝐺𝑗∈𝑁𝑖∈𝑀
 (23)

Note that the minimum MP in the experiments is 3.5. The reason is that an

order price is $1 for a selling order and [$2 … $10] in uniform distribution ($6 on

average) for a buying order; thus, the K-pricing scheme calculates (1 + 6)/2 = 3.5.

97 |

6.3.3 Results

A. Single Market

First the results of the single-market experiments are shown to compare

performance of four market mechanisms: forward/combinatorial (fwd/cmb),

forward/separate (fwd/sep), spot/combinatorial (spt/cmb), and spot/separate

(spt/sep).

 Workflow Completion Rate

Figure 6.17 shows the workflow completion rate (WC). First we can see the

advantage of the forward market mechanism. Users have more opportunity to buy

services that satisfy the users’ requests in the forward market. Second, the

combinatorial market mechanism shows more advantage compared to the separate

market mechanism. In the cloud computing model discussed in this thesis, users

Figure 6.17 Workflow completion rate (single market)

98 |

need to reserve services for all tasks in the users’ workflow. The combinatorial

market releases all services for tasks in the workflow if it fails to fulfill the

requirements, while the separate market keeps them. Thus, the separate market

significantly wastes services and degrades the performance. It is clear that fwd/cmb

is the best mechanism to improve WC.

 Cost Performance

Figure 6.18 shows the cost performance (CP). CP indicates the effectiveness of

the market mechanism from the users’ point of view. The result shows that CP keeps

the ideal value in fwd/cmb mechanism, because it guarantees the users to profit

from all the services they pay for. In other mechanisms, in contrast, CP decreases

monotonically because they cannot guarantee the users to complete their

workflows while keeping the payments for the fragmented services.

Figure 6.18 Cost performance (single market)

99 |

 Global Utilization

Figure 6.19 shows the global utilization (GU). GU indicates the effectiveness of

the market mechanism from the providers’ point of view. Ideally speaking, GU can

be equal to D/S where D/S ≤ 1 and can be 1 where D/S > 1. The result shows

that GU increases monotonically in fwd/cmb mechanism since it does not waste any

services. In fwd/sep mechanism the similar trend is observed where D/S ≤ 1. In the

spot market mechanism, in contrast, GU is saturated quickly and begins to decrease

because the excessive collision in the spot market makes most of the workflow

incomplete and wastes significant amount of services.

Figure 6.19 Global utilization (single market)

100 |

 Market Price

Figure 6.20 shows the market price (MP). Again we see the advantage of the

forward market mechanism, in which the users can buy services at significantly low

prices compared to those of the spot market mechanism. Remember that the

market mechanism determines winners among users' requests according to their

valuation. Users undergo such competitions for every timeslots in the spot market

mechanism, buying services at unreasonably high prices and wasting most of them.

In the forward market mechanism, in contrast, users experience fewer competitions

for entire reservations, resulting in reasonable prices and efficient utilization of

services.

Figure 6.20 Market price (single market)

101 |

B. Dual Market – Basic

Next the results of the dual-market basic experiment are shown to verify the

independency between the forward market and the spot market running

simultaneously. In this scenario the forward contracts should have a priority over the

spot contracts; otherwise the forward trading cannot serve as an advance

reservation. It is verified by deploying two users: one takes part in fwd/cmb with a

constant load (D/S = 0.2) and the other takes part in spt/cmb while changing its load.

The providers place the order first at the forward market to sell as much as possible

and next at the spot market to sell the remainder.

Figure 6.21 through Figure 6.24 show the workflow completion rate (WC), the

cost performance (CP), the global utilization (GU), and the average market price

(MP), respectively. Their x axes indicate the aggregate load of two markets. The plots

indicate that the performance of fwd/cmb does not fluctuate and is not affected by

the spot market. Thus the users can rely on the forward market to make an advance

reservation. At the same time, the spot market also works well; it contributes to the

providers utilizing the remainder resources and to the users procuring immediate

resources.

The simulation results with various loads in fwd/cmb are shown in the Appendix.

102 |

Figure 6.21 Workflow completion rate (dual market basic)

Figure 6.22 Cost performance (dual market basic)

103 |

Figure 6.23 Global utilization (dual market basic)

Figure 6.24 Average market price (dual market basic)

104 |

C. Dual Market – Extensive

At last the dual-market extensive experiments are carried out to investigate the

behavior of the whole marketplace when the users arbitrarily choose the forward

market or the spot market to acquire their services. In this scenario a specific

percentage of buying orders are put in the forward market and the rest are put in the

spot market. By changing the share of the forward/spot markets, a wide range of

possible situations are simulated and the characteristics of the whole marketplace

are evaluated.

Figure 6.25 through Figure 6.28 show the workflow completion rate (WC), the

cost performance (CP), the global utilization (GU), and the average market price

(MP), respectively. Their x axes indicate the percentage of the orders put in the

forward market, whereas the rest of the orders go to the spot market (i.e. “20%

forward orders” means “80% spot orders”). When the load is low enough (i.e.

𝐷/𝑆 ≤ 0.3), the spot market and the forward market have no difference in terms of

their performance. Both the users and the providers have no reason to use the

forward market under these conditions. In contrast, when the load get higher (i.e.

𝐷/𝑆 ≥ 0.5), the advantage of the forward market becomes clear; WC and CP

increases monotonically to the share of the forward market. MP drops sharply by

shifting a half or less percentage of orders from the spot market to the forward

market (i.e. 0% → 40% forward orders). GU clearly depicts the disadvantage of the

spot market against high load (i.e. 𝐷/𝑆 > 0.5); it rather decreases to the D/S ratio

when 40% or less orders go to the forward market.

105 |

Figure 6.25 Workflow completion rate (dual market extensive)

Figure 6.26 Cost performance (dual market extensive)

106 |

Figure 6.27 Global utilization (dual market extensive)

Figure 6.28 Market price (dual market extensive)

107 |

6.3.4 Summary

Three experiments have been carried out to evaluate the marketplace designs.

The first experiment compared four types of market design running alone. The

results showed that the forward/combinatorial design brings the best completion

rate and cost performance for the users as well as the highest global utilization and

second lowest market price. The second experiment confirmed that operating the

spot market along with the forward market does not disturb the advance

reservations while increasing the global utilization. The third experiment thoroughly

simulated possible behaviors of the users. The results again clarified the advantage

of the forward market against high demand/supply ratio. Although these results

depend on the simulation settings, we can say that establishing a marketplace with

not only the spot market but also the forward market can significantly improve its

performance for both the users and the providers.

Additionally, the performance of conventional scheduling systems is estimated

to be similar with the separate market mechanism, since no conventional scheduler

is able to reserve a combination of resources for a workflow. The single-market

experiment demonstrated that forward/combinatorial mechanism always

outperforms the separate market mechanisms in WC and GU. Consequently, we can

say that the proposed forward/combinatorial mechanism outperforms any

conventional scheduling systems under the condition discussed in this thesis.

108 |

Chapter 7 Conclusions

7.1 Achievements

An intelligent marketplace for optimal service allocation in the cloud computing

environment is desired to be established. This thesis proposed a combinatorial

auction-based marketplace mechanism to support enterprise workflow-based

applications built on the cloud services. It employs an exact optimization technique

to achieve a Pareto-efficient allocation of services. The proposed marketplace

consists of a forward market for an advance reservation and a spot market for

immediate allocation of services so that the users reliably plan the use of cloud

services within budget limitations.

Three experiments have been carried out in this thesis: (1) validation of

combinatorial allocations, (2) estimation of mechanism overhead, and (3) evaluation

of market performance. The first experiment demonstrated that the proposed

mechanism succeeded to do matchmaking between multiple services and

combinatorial requests according to the allocation scheme, as well as to determine

their price according to the pricing scheme. The second experiment evaluated the

overhead of matchmaking and pricing schemes of the proposed mechanism, and

showed that the overhead is acceptable in an expected cloud computing

environment. The third experiment compared four types of market mechanism, and

showed that the proposed forward/combinatorial mechanism brought a superior

109 |

performance in both individual usability and system-wide efficiency. The third

experiment also simulated a wide range of the users’ preference between

forward/spot markets, and concluded that the more users preferred the forward

market, the more performance could be achieved against tight demand/supply

conditions.

7.2 Future Works

Sophisticated strategies of seller/buyer agents can significantly improve the

performance of the market. For instance, a buyer agent can reduce wasted resources

and can increase workflow completion rate by employing a smarter strategy to

make his orders. Moreover, it is essential for seller/buyer agents to adjust their order

price according to the market price in competition with each other6. The future work

will therefore investigate the market behavior using more sophisticated strategies of

seller/buyer agents.

Interesting research objectives include the autonomous behavior of the market

price, particularly the interaction between the forward market and the spot market,

where the forward price is expected to be a forecast of the spot price. A high price in

the forward market indicates a busy hour of the provider. By watching the forward

price, a buyer can predict the demand-supply conditions and avoid purchasing an

unnecessarily high-priced service. As a result, the demand-supply ratio (and thus the

market price) is expected to be smooth and stable. This can be seen as an

autonomous load-balancing functionality achieved by the dual-market design, which

cannot be realized by the spot market alone. However, it is not clear that these

6 The first fundamental theorem of welfare economics states that a competitive equilibrium

among participants leads to a Pareto efficient allocation of resources [66]. This is also known as the

invisible hand of God.

110 |

selfish participants are able to sustain such a peaceful marketplace; therefore further

study with various agents is needed in the future research.

Real-world movements toward cloud computing marketplace are just ongoing.

In May 2011, SpotCloud [64] opened a bilateral marketplace for both cloud service

providers and consumers. The contribution of this thesis is not only to propose an

efficient mechanism of cloud computing marketplace but also to encourage

pioneers designing such a real-world marketplace. Our simulator, named W-Mart,

can help them predict the behavior of the market by means of extensive multi-agent

simulations. Its source code will be open to the public and contribute to further

researches and developments.

7.3 Outlook

At the end of the thesis, let's imagine a world where the cloud service

marketplace comes true...

The proposed market mechanism is so generic that any kind of service can be

traded equally upon it. In a realistic scenario, however, the marketplace will be used

hierarchically. For instance, a bundle of a low-level "storage service" and a high-level

"corporate management consulting service" is not likely to be ordered, but that of a

"storage service" and another low-level "networking service" are likely to be ordered.

There appears a hierarchical structure within the marketplace.

Broker agents will play an important role in these hierarchical settings. A broker

buys a bundle of some low-level services in the forward market, integrates them into

a higher-level service, and sells it again in the spot market, typically at a higher price.

For example, Dropbox [65] provides a high-level file synchronization/versioning

service on top of Amazon's low-level virtual machine/storage service. As such,

brokering is a major approach to do business in today's cloud computing

111 |

environment, and its importance will not change in future's cloud service

marketplace. The proposed mechanism is excellent in that it supports a variety of

brokering activities in a single marketplace.

The marketization of cloud computing services will raise a wide range of

businesses and activities around the marketplace. It may include an insurance

company who covers a failure of the service providers, a credit rating agency who

evaluates the reliability and reputations of the providers, and an independent

agency like the Securities and Exchange Commission who enforces fair trading on all

the participants in the marketplace. The double-sided auction will certainly be the

best mechanism to support fair trading among a variety of companies and citizens.

The author believes that it will be a keystone for a nation to have control over

the cloud computing marketplace. The computing power is now fundamental to any

business, science, government, military affairs, and social activities – we cannot live

without them – and will be traded beyond the border as a commodity. Therefore, the

meta-information generated by the marketplace (i.e. the worldwide flow/price/

demand/supply/etc. of the computing power) can indicate the movement of the

world, and the quickest knowledge about it will bring an invaluable advantage to the

nation who controls the marketplace.

112 |

References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, Above the Clouds : A
Berkeley View of Cloud Computing, 2009.

[2] “Microsoft Windows Azure” http://www.microsoft.com/windowsazure/.

[3] “Google App Engine” http://code.google.com/appengine/.

[4] I. Foster and C. Kesselman, “The grid: blueprint for a new computing
infrastructure,” Oct. 1998.

[5] S. Clearwater, Market-Based Control: A Paradigm for Distributed Resource
Allocation, World Scientific, 1996.

[6] J. Shneidman, C. Ng, D.C. Parkes, A. AuYoung, A.C. Snoeren, A. Vahdat, and
B. Chun, “Why Markets Could (But Don’t Currently) Solve Resource Allocation
Problems in Systems,” Challenges, 2005, p. 7.

[7] P. Cramton, Y. Shoham, and R. Steinberg, Combinatorial Auctions, The MIT
Press, 2005.

[8] A. Das and D. Grosu, “Combinatorial auction-based protocols for resource
allocation in grids,” Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International, 2005.

[9] A. Marshall, Principles of Economics (Great Minds Series), Prometheus Books,
1997.

[10] “Market,” From Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/Market.

113 |

[11] D. Friedman, “The double auction market institution: A survey,” The Double
Auction Market: Institutions, Theories, And Evidence, J. Rust, ed., Westview
Press, 1993, pp. 3-26.

[12] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic models for
resource management and scheduling in Grid computing,” Concurrency and
Computation: Practice and Experience, vol. 14, 2002, pp. 1507-1542.

[13] Y. Shoham and K. Leyton-Brown, Multiagent systems: Algorithmic,
game-theoretic, and logical foundations, Cambridge Univ Pr, 2009.

[14] D.S. Diamond and L.L. Selwyn, “Considerations for computer utility pricing
policies,” Proceedings of the 1968 23rd ACM national conference, New York,
New York, USA: ACM Press, 1968, pp. 189-200.

[15] I.E. Sutherland, “A futures market in computer time,” Communications of the
ACM, vol. 11, Jun. 1968, pp. 449-451.

[16] R. Buyya, D. Abramson, and S. Venugopal, “The Grid Economy,” Proceedings
of the IEEE, vol. 93, Mar. 2005, pp. 698-714.

[17] C.S. Yeo and R. Buyya, “A taxonomy of market-based resource management
systems for utility-driven cluster computing,” Software: Practice and
Experience, vol. 36, Nov. 2006, pp. 1381-1419.

[18] R. Buyya and M. Murshed, “GridSim: a toolkit for the modeling and
simulation of distributed resource management and scheduling for Grid
computing,” Concurrency and Computation: Practice and Experience, vol. 14,
Nov. 2002, pp. 1175-1220.

[19] R. Buyya, R. Ranjan, and R.N. Calheiros, Modeling and simulation of scalable
Cloud computing environments and the CloudSim toolkit: Challenges and
opportunities, IEEE, 2009.

[20] C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and W.S. Stornetta,
“Spawn: A Distributed Computational Economy,” IEEE Transactions on
Software Engineering, vol. 18, Feb. 1992, pp. 103-117.

[21] N. Nisan, S. London, O. Regev, and N. Camiel, “Globally distributed
computation over the Internet-the POPCORN project,” Proceedings. 18th

114 |

International Conference on Distributed Computing Systems, IEEE Comput. Soc,
1998, pp. 592-601.

[22] O. Regev, “The POPCORN market. Online markets for computational
resources,” Decision Support Systems, vol. 28, Mar. 2000, pp. 177-189.

[23] R. Wolski, J.S. Plank, T. Bryan, and J. Brevik, “G-commerce: market
formulations controlling resource allocation on the computational grid,”
Proceedings 15th International Parallel and Distributed Processing Symposium.
IPDPS 2001, IEEE Comput. Soc, 2001, p. 8.

[24] R. Wolski, J. Brevik, J.S. Plank, and T. Bryan, “Grid Resource Allocation and
Control Using Computational Economies,” GRID COMPUTING: MAKING THE
GLOBAL INFRASTRUCTURE A REALITY, 2003, pp. 747 - 772.

[25] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: an architecture for a
resource management and scheduling system in a global computational grid,”
Computer, vol. 1, 2000, pp. 283-289.

[26] D. Abramson, I. Foster, J. Giddy, A. Lewis, R. Sosic, R. Sutherst, and N. White,
“The Nimrod Computational Workbench: A Case Study in Desktop
Metacomputing,” Australian Computer Science Communications, vol. 19, 1997,
pp. 17-26.

[27] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,”
International Journal of Supercomputer Applications, vol. 11, 1997, pp. 115-128.

[28] P. Padala, C. Harrison, N. Pelfort, E. Jansen, M.P. Frank, and C. Chokkareddy,
“OCEAN: the open computation exchange and arbitration network, a market
approach to meta computing,” Second International Symposium on Parallel
and Distributed Computing, 2003. Proceedings., IEEE, 2003, pp. 185-192.

[29] A. AuYoung, B.N. Chun, A.C. Snoeren, and A. Vahdat, “Resource Allocation in
Federated Distributed Computing Infrastructures,” Proceedings of the 1st
Workshop on Operating System and Architectural Support for the Ondemand IT
Infrastructure, 2004, pp. 1-10.

[30] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for
introducing disruptive technology into the Internet,” ACM SIGCOMM
Computer Communication Review, vol. 33, Jan. 2003, pp. 59-64.

115 |

[31] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, Scalable wide-area
resource discovery, 2004.

[32] B.N. Chun, P. Buonadonna, A. AuYoung, D.C. Parkes, J. Shneidman, A.C.
Snoeren, and A. Vahdat, “Mirage: A Microeconomic Resource Allocation
System for Sensornet Testbeds,” The Second IEEE Workshop on Embedded
Networked Sensors, 2005. EmNetS-II., IEEE, , pp. 19-28.

[33] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B.A. Huberman, “Tycoon: An
implementation of a distributed, market-based resource allocation system,”
Multiagent Grid Syst., vol. 1, 2005, pp. 169-182.

[34] T. Eymann, M. Reinicke, W. Streitberger, O. Rana, L. Joita, D. Neumann, B.
Schnizler, D. Veit, O. Ardaiz, P. Chacin, I. Chao, F. Freitag, L. Navarro, M.
Catalano, M. Gallegati, G. Giulioni, R.C. Schiaffino, and F. Zini,
“Catallaxy-based Grid markets,” Multiagent and Grid Systems, vol. 1, Dec.
2005, pp. 297-307.

[35] B. Schnizler, D. Neumann, D. Veit, M. Reinicke, and W. Streitberger,
Theoretical and Computational Basis for CATNETS - Annual Report Year 1,
2005.

[36] D. Veit, G. Buss, B. Schnizler, and D. Neumann, Theoretical and
Computational Basis for CATNETS - Annual Report Year 2, 2006.

[37] D. Veit, G. Buss, B. Schnizler, and D. Neumann, Theoretical and
Computational Basis for CATNETS - Annual Report Year 3, 2007.

[38] Z. Tan and J.R. Gurd, “Market-based grid resource allocation using a stable
continuous double auction,” Grid Computing, 2007 8th IEEE/ACM International
Conference on, 2007, pp. 283-290.

[39] T. Zhu and J.R. Gurd, “Market-based grid resource allocation using a stable
continuous double auction (Ph.D. thesis),” 2007.

[40] “Amazon EC2 Spot Instances” http://aws.amazon.com/ec2/spot-instances/.

[41] “Heroku | Add-ons” http://addons.heroku.com/.

[42] “Google Apps Marketplace”
http://www.google.com/enterprise/marketplace/.

116 |

[43] K. Hoki, “Outline of Japan Electric Power Exchange (JEPX),” Transactions of
the Institute of Electrical Engineers of Japan. B, vol. 125, 2005, pp. 922-925.

[44] H. Kita, H. Sato, N. Mori, and I. Ono, “U-Mart system, software for open
experiments of artificial market,” Computational Intelligence in Robotics and
Automation 2003 Proceedings 2003 IEEE International Symposium on, Ieee,
2003, pp. 1328 - 1333 vol.3.

[45] T.D. Cordeiro, D.B. Damalio, P.T. Endo, A.V. De Almeida Palhares, G.E.
Gonçalves, D.F.H. Sadok, J. Kelner, B. Melander, V. Souza, and J.-E. Mångs,
“Open Source Cloud Computing Platforms,” 2010 Ninth International
Conference on Grid and Cloud Computing, 2010, pp. 366-371.

[46] P.T. Endo, G.E. Gonçalves, J. Kelner, and D. Sadok, “A Survey on
Open-source Cloud Computing Solutions,” on Computer Networks, 2009, pp.
3-16.

[47] “Cloud Foundry” http://cloudfoundry.com/.

[48] “OpenCloud” http://www.opencloud.com/.

[49] “Open Compute Project” http://opencompute.org/.

[50] “OpenStack” http://openstack.org/.

[51] “OpenShift” http://openshift.redhat.com/app/.

[52] “RightScale” http://www.rightscale.com/.

[53] “Engine Yard” http://www.engineyard.com/.

[54] “Heroku” http://www.heroku.com/.

[55] D. Amrhein, P. Anderson, A. de Andrade, J. Armstrong, E.A. B, R. Bruklis, K.
Cameron, R. Cohen, A. Easton, R. Flores, G. Fourcade, T. Freund, B.
Hosseinzadeh, W.J. Huie, P. Isom, S. Johnston, R. Kulkarni, A. Kunjunny, T.
Lukasik, G. Mazzaferro, C. McClanahan, W. Melo, A. Monroy-Hernandez, D.
Nicol, L. Noon, S. Padhy, G. Pfister, T. Plunkett, L. Qian, B. Ramachandran, J.
Reed, G. Retana, D. Russell, K. Sankar, A.O. Sanz, W. Sinclair, E. Sliman, P.
Stingley, R. Syputa, D. Tidwell, K. Walker, K. Williams, J.M. Willis, Y. Sasaki, E.

117 |

Windisch, and F. Zappert, Cloud Computing Use Cases White Paper Version 2.0,
2009.

[56] S. Weston, D. Green, G. Katsaros, T. Seed, N. Mc Donnell, and F. Scharinger,
GridCAE Grid for Computer Aided Engineering, 2009.

[57] A. Mas-Colell, M.D. Whinston, and J.R. Green, “Microeconomic Theory,” The
Canadian Journal of Economics, vol. 21, 1995, p. 436.

[58] M. Satterthwaite and S. Williams, “The Bayesian theory of the k-double
auction,” The Double Auction Market: Institutions, Theories, And Evidence, J.
Rust, ed., Westview, 1993, pp. 99-123.

[59] R.B. Myerson and M. Satterthwaite, “Efficient mechanisms for bilateral
trading,” Journal of Economic Theory, vol. 29, 1983, pp. 265-281.

[60] B. Schnizler, “MACE: A Multi-attribute Combinatorial Exchange,” Negotiation,
Auctions, and Market Engineering, 2008, pp. 84-100.

[61] “JOpt” www.eecs.harvard.edu/econcs/jopt/.

[62] “IBM ILOG CPLEX Optimizer”
http://www.ibm.com/software/integration/optimization/cplex-optimizer/.

[63] “lp_solve” http://tech.groups.yahoo.com/group/lp_solve/.

[64] “SpotCloud” http://www.spotcloud.com/.

[65] “Dropbox” http://www.dropbox.com/.

[66] A.M. Feldman and R. Serrano, Welfare economics and social choice theory,
Springer, 2006.

118 |

Publications

Journal Papers

[1] Ikki Fujiwara, Kento Aida, Isao Ono, “Combinatorial Auction-based Marketplace

Mechanism for Cloud Service Reservation”, IEICE Transactions on Information

and Systems, E95-D(1), Jan 2012.

International Conferences

[2] Ikki Fujiwara, Kento Aida, Isao Ono, “Applying Double-sided Combinational

Auctions to Resource Allocation in Cloud Computing”, Proceedings of the 10th

Annual International Symposium on Applications and the Internet (SAINT2010),

pp. 7-14, July 2010.

Refereed Domestic Conferences

[3] Ikki Fujiwara, Kento Aida and Isao Ono, “Market-based Resource Allocation for

Distributed Computing”, 情報処理学会 先進的計算基盤システムシンポジウム

SACSIS 2009, pp. 149-150, May 2009.

119 |

Domestic Conferences

[4] 藤原一毅, 合田憲人, 小野功, “市場原理に基づく分散計算サービスの割り当て方

法”, ウィンターワークショップ 2011・イン・修善寺 論文集, 情報処理学会シンポジ

ウムシリーズ 2011(2) , pp. 67-68, January 2011.

[5] Ikki Fujiwara, Kento Aida and Isao Ono, “Market-based Resource Allocation for

Distributed Computing”, 2009年並列／分散／協調処理に関する 『仙台』サマ

ー・ワークショップ (SWoPP仙台 2009), 2009-HPC-121(34), August 2009.

[6] Ikki Fujiwara, Kento Aida and Isao Ono, “Market-based Service Allocation for

Distributed Computing”, 電子情報通信学会 第 13 回サイバーワールド研究会,

pp. 35-38, June 2009.

Software

[7] “W-Mart source code repository” https://github.com/ikfj/wmart

120 |

Appendix

A.1 Complete Results of Dual-market Basic Experiment

The supplemental results of the dual-market basic experiment (Section 6.3.3B)

are shown in this appendix. In the following pages GU stands for the global

utilization, WC stands for the workflow completion ratio, and CP stands for the cost

performance.

121 |

 D/S of fwd/cmb = 0.04

GU

WC

CP

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

gl
ob

al
 u

til
iza

tio
n

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

w
or

kf
lo

w
 co

m
pl

et
io

n
ra

te

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

co
st

 p
er

fo
rm

an
ce

overall D/S ratio

spt/cmb
fwd/cmb
total

122 |

 D/S of fwd/cmb = 0.12

GU

WC

CP

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

gl
ob

al
 u

til
iza

tio
n

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

w
or

kf
lo

w
 co

m
pl

et
io

n
ra

te

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

co
st

 p
er

fo
rm

an
ce

overall D/S ratio

spt/cmb
fwd/cmb
total

123 |

 D/S of fwd/cmb = 0.20

GU

WC

CP

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

gl
ob

al
 u

til
iza

tio
n

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

w
or

kf
lo

w
 co

m
pl

et
io

n
ra

te

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

co
st

 p
er

fo
rm

an
ce

overall D/S ratio

spt/cmb
fwd/cmb
total

124 |

 D/S of fwd/cmb = 0.28

GU

WC

CP

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

gl
ob

al
 u

til
iza

tio
n

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

w
or

kf
lo

w
 co

m
pl

et
io

n
ra

te

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

co
st

 p
er

fo
rm

an
ce

overall D/S ratio

spt/cmb
fwd/cmb
total

125 |

 D/S of fwd/cmb = 0.40

GU

WC

CP

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

gl
ob

al
 u

til
iza

tio
n

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

w
or

kf
lo

w
 co

m
pl

et
io

n
ra

te

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

co
st

 p
er

fo
rm

an
ce

overall D/S ratio

spt/cmb
fwd/cmb
total

126 |

 D/S of fwd/cmb = 0.56

GU

WC

CP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

co
st

 p
er

fo
rm

an
ce

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

w
or

kf
lo

w
 co

m
pl

et
io

n
ra

te

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

gl
ob

al
 u

til
iza

tio
n

overall D/S ratio

spt/cmb
fwd/cmb
total

127 |

 D/S of fwd/cmb = 0.80

GU

WC

CP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

co
st

 p
er

fo
rm

an
ce

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

w
or

kf
lo

w
 co

m
pl

et
io

n
ra

te

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

gl
ob

al
 u

til
iza

tio
n

overall D/S ratio

spt/cmb
fwd/cmb
total

128 |

 D/S of fwd/cmb = 1.18

GU

WC

CP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

co
st

 p
er

fo
rm

an
ce

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

w
or

kf
lo

w
 co

m
pl

et
io

n
ra

te

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

gl
ob

al
 u

til
iza

tio
n

overall D/S ratio

spt/cmb
fwd/cmb
total

129 |

 D/S of fwd/cmb = 1.56

GU

WC

CP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

co
st

 p
er

fo
rm

an
ce

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

w
or

kf
lo

w
 co

m
pl

et
io

n
ra

te

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

gl
ob

al
 u

til
iza

tio
n

overall D/S ratio

spt/cmb
fwd/cmb
total

130 |

 D/S of fwd/cmb = 2.00

GU

WC

CP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

co
st

 p
er

fo
rm

an
ce

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

w
or

kf
lo

w
 co

m
pl

et
io

n
ra

te

overall D/S ratio

spt/cmb
fwd/cmb
total

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

gl
ob

al
 u

til
iza

tio
n

overall D/S ratio

spt/cmb
fwd/cmb
total

131 |

© Ikki Fujiwara, 2012

2012.03.17 Version 3.12

