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Abstract 

 

Only from visual information, we can easily recognize whether an object is made 

of plastic or metal, or whether surface condition is slippery or not. How can we recognize 

material and surface condition of objects? Objects have specific surface reflectance 

properties that depend on the materials and fine structures of the surface. Surface gloss 

provides important information on the material composition of an object and the fine 

structure of its surface. Although gloss perception is very important for object 

recognition, little is known about the neural mechanisms related to gloss perception.  

To study how gloss is represented in the visual cortical areas related to object 

recognition, I conducted single unit recording experiment to study neural selectivity and 

representation of gloss in the inferior temporal cortex of awake macaque monkeys 

performing a visual fixation task. In the first part of the experiment, I examined the 

relationship between neural responses and physical parameters related to gloss, and in 

the second part, I examined the relationship between neural responses and perceptual 

parameters related to gloss. In the first part of the experiment, I examined the 

responses of neurons to a set of object images having various combinations of specular 

reflection, diffuse reflection and roughness that are important physical parameters of 

surface gloss (gloss stimulus set). I found that there exist neurons in the lower bank of 



 

the superior temporal sulcus in IT cortex that selectively responded to specific 

combination of surface reflectance parameters. I recorded the activities of 215 neurons 

that responded to the gloss stimulus set, and of these, 193 neurons exhibited selectivity 

to the gloss parameters.  

However, I have to exclude the possibility that the selectivity is due to image 

features not particularly related to gloss. Images in the gloss stimulus set varied with 

respect to their local luminance pattern; that is, glossy stimuli have sharp light spots 

corresponding to highlights. It was therefore possible that these selective responses 

were due to the presence of a specific pattern of highlights in some stimuli. To test this 

possibility, I recorded the responses of the same neurons to the gloss stimulus set 

rendered on a different 3D shape and assessed whether the change in shape affected 

stimulus selectivity. In this manipulation, the local luminance pattern changed but 

perceived glossiness was maintained. Therefore, if the selectivity to gloss stimulus set is 

due to local image features, selectivity will change when 3D shape is changed. On the 

other hand, if the selectivity reflected the differences in the glossiness, selectivity will 

be maintained. Images in the gloss stimulus set also varied with respect to the mean 

chromaticity and luminance. It was therefore possible that the selectivity to gloss 

stimulus set was due to differences in the color and luminance of the stimuli. To test 



 

this possibility, I tested the responses to stimuli in which the pixels were randomly 

rearranged within the object contour (shuffled stimuli). In this manipulation, average 

color and luminance were not changed but perceived glossiness was dramatically 

changed. Therefore, if the selectivity is due to the differences in the average color and 

luminance, selectivity will not change when the pixels are randomly rearranged. On the 

other hand, if the selectivity related to the glossiness, it should significantly change. I 

conducted these two sets of control experiments using stimuli with different shape as 

well as shuffled stimuli in 139 out of 193 neurons that exhibited selectivity to the gloss 

parameters. I defined neurons as gloss-selective (gloss-selective neurons) based on the 

following two criterions. The first criterion is that there was significant correlation 

between the response to the original shape and those to a different shape. The second 

criterion is that either the neuron did not show significant response to the shuffled 

stimuli (<10 spikes/s and/or p > 0.05, t-test) or the correlation between the patterns of 

stimulus selectivity obtained by stimuli with the original shape and the shuffled stimuli 

were not significant. Of the 139 neurons tested in these two control tests, 57 neurons 

satisfied both of these two criteria, and were regarded as gloss-selective neurons. 

Illumination is another important factor involved in the image formation, and I 

have examined the effect of the change in illumination for 48 gloss-selective neurons. 



 

When I compared the responses to the gloss stimulus set rendered under default 

natural illumination and those to the stimuli rendered under another natural 

illumination, 40 out of 48 gloss-selective neurons exhibited significant correlation 

between the two sets of responses. This result is consistent with the expectation that 

the selectivity of these neurons will be maintained because it has been shown that 

changing the illumination environment does not affect the apparent glossiness very 

much, as long as natural illumination is used, and confirms that gloss selectivity of 

gloss selective neurons is largely independent of a change in illumination. 

The stimulus preference of gloss-selective neurons differed from cell to cell and, 

as a population, responses of gloss-selective neurons covered the entire region of the 

gloss space though there was a tendency for glossier stimuli to elicit stronger responses. 

In order to understand how different glosses are represented by the activities of 

population of gloss-selective neurons, I conducted multidimensional scaling (MDS) 

analysis using the neural distance between each stimulus pair. The results of MDS 

analysis showed that the population responses of gloss-selective neurons systematically 

represent a variety of gloss. 

In the second part of the experiment, in order to understand how the responses of 

gloss selective neurons are related to perceived gloss, responses of gloss selective 



 

neurons were mapped in perceptual gloss space in which glossiness changes uniformly. I 

found that responses of most gloss selective neurons could be explained by linear 

combinations of two parameters that are shown to be important for gloss perception. 

This result indicates that the responses of gloss-selective neurons and gloss perception 

are characterized by common parameters, and this suggests that the responses of gloss 

selective neurons are closely related to gloss perception. I conclude that in the visual 

cortex there exist some mechanisms to integrate local image features and extract 

information about surface gloss, and that this information is systematically represented 

in the IT cortex that plays an important role in object recognition. 
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Introduction 

 

Objects have specific surface reflectance properties that depend on their material 

composition and the fine structures of their surfaces. Our visual system is able to 

extract information about these surface reflectance properties from the retinal image, 

and the resultant perception of surface quality plays an important role in the 

identification of materials and the recognition of objects (Hunter and Harold, 1987; 

Adelson, 2001; Maloney and Brainard, 2010). Attempts to understand the neural 

processing underlying the perception of surface qualities have emerged in recent years 

(Cant and Goodale, 2007; Arcizet et al., 2008; Koteles et al., 2008; Cavina-Pratesi et al., 

2010; Hiramatsu et al., 2011), and functional imaging studies in human subjects have 

shown that the ventral higher visual areas are activated when subjects attend to or 

discriminate materials (Cant and Goodale, 2007; Cant et al., 2009; Cavina-Pratesi et al., 

2010; Cant and Goodale, 2011).  

In the present study, we used a set of stimuli with different reflection properties to 

examine how surface reflectance property is represented in the brain. An important 

component of surface reflectance is gloss, which strongly influences surface appearance 

and changes depending on the material composition and smoothness of a surface. 
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Therefore we concentrated on examining neural selectivity and representation of gloss. 

We first examined the relationship between neural responses and physical parameters 

related to gloss, and then we examined the relationship between neural responses and 

perceptual parameters related to gloss. 

 

Physical parameters related to gloss 

When incident light is reflected from surface, direction and strength of reflection 

are not always uniform. The reflectance properties such as direction and strength of 

reflection depend on the material composition and smoothness of the surface, and these 

differences in the directional distribution of the reflected light generate a variety of 

gloss. Spatial distribution of surface reflectance can be quantitatively expressed by the 

Bi-directional Reflectance Distribution Function (BRDF) that is a dataset describing 

the intensity of reflected light to a given direction resulting from a given direction of 

incident light. Because BRDF is a huge amount of dataset due to a combination of all 

direction of incident light and reflected light, many parametric models have been 

proposed to approximate real BRDF mainly for rendering computer graphics images. A 

key concept underling these parametric BRDF models is that surface reflection consists 

of two major components. One is specular reflection that is reflected in a direction with 
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the same angle but with an opposite direction from the incident light relative to the 

surface normal. The other component is diffuse reflection that is reflected uniformly 

across all the direction. In addition to these two major components, most parametric 

BRDF models also assume third component that represent microscopic unevenness of 

surface that spread the direction of the specular reflection. In this study, we used 

Ward-Duer model that is one of the parametric BRDF model in which BRDF is 

approximated by three refrectance parameters (specular reflectance indicating the 

strength of specular reflection, diffuse reflectance indicating the strength of diffuse 

reflection and roughness indicating the degree of microscopic unevenness of surface) 

that have been shown to be particularly important for characterizing surface gloss 

(Cook and Torrance, 1982; Ward, 1992; Ngan et al., 2005). With these three parameters, 

one can generate realistic computer graphics images of objects exhibiting a variety of 

surface glosses (Fig. 1A). In the present study, we manipulated these parameters to 

generate a set of visual stimuli and recorded the activities of single-units in the monkey 

visual cortex to explore neurons selective for surface gloss and to examine the response 

properties of these cells. 

 

Perceptual parameters related to gloss 
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Although little study has been conducted to examine neural representation of 

gloss, a number of psychophygical studies have been done to characterize gloss 

perception and to understand visual features related to gloss (Beck and Prazdny, 1981; 

Hunter and Harold, 1987; Nishida and Shinya, 1998; Obein et al., 2004; Motoyoshi et al., 

2007; Doerschner et al., 2010; Emrith et al., 2010). An earlier study of gloss perception 

was reported by Hunter (Hunter and Harold, 1987). He defined six visual phenomena 

related to perceived gloss: specular gloss, distinctiveness-of-image-gloss, haze, sheen, 

the absence-of-texture gloss, and contrast gloss. Beck and Prazdny showed importance 

of highlight to gloss perception, by manipulating highlight of object images (Beck and 

Prazdny, 1981). They reported that perceived gloss decay with increasing distance from 

highlight, and they concluded that gloss perception is a direct perceptual response to 

local visual cue, not due to inference of surface as reflecting light specularly. Importance 

of highlight in gloss perception has been supported by other studies (Hunter and Harold, 

1987; Blake and Bulthoff, 1990; Berzhanskaya et al., 2005). Recently, importance of 

image-based information such as luminance statistics has been reported. Nishida and 

Shinya manipulated shape and gloss, and found that gloss perception is affected by 

changes in shape, and suggested that image-based information such as luminance 

statistics is important for gloss perception (Nishida and Shinya, 1998). More recently, 



 

  5
 

Motoyoshi et al reported importance of skewness of luminance histogram for gloss 

perception (Motoyoshi et al., 2007).  

Ferwerda et al linked perceptual gloss to physical parameters of gloss (Ferwerda 

et al., 2001). To find important parameters for gloss perception, they asked subjects to 

judge the difference in gloss between pairs of objects and conducted MDS analysis using 

apparent gloss differences. They found that important dimensions for gloss judgment 

are 'Contrast gloss' and 'Distinctness of image gloss', and based on this result, they 

proposed perceptual gloss space (cd-space) consisting of c axis (Contrast gloss) and d 

axis (Distinctness of image gloss). In the cd-space, perceived gloss changes uniformly. c 

and d axes are useful parameters related to perceptual gloss, because one can 

manipulate perceived gloss uniformly by changing physical parameters. In the second 

part of the present study, in order to examine the relationship between perceived gloss 

and responses of gloss selective neurons, we conducted mapping of neuronal responses 

on the cd-space.

 

Previous physiological studies of material perception 

Attempts to understand the neural processing underlying the perception of surface 

qualities have emerged in recent years (Cant and Goodale, 2007; Arcizet et al., 2008; 
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Koteles et al., 2008; Cavina-Pratesi et al., 2010; Hiramatsu et al., 2011). Cant and 

Goodale conducted functional imaging in human subjects using visual stimuli in which 

shapes and materials were combined (Cant and Goodale, 2007). They have shown that 

when subjects attend to materials, the ventral higher visual areas are activated. 

Hiramatsu et al. recorded neural responses using fMRI while the subject viewed various 

types of material images (Hiramatsu et al., 2011). They showed that responses in higher 

ventral visual area are more closely related to perceptual judgment, whereas responses 

in lower visual areas are more closely related to simple image features. These studies 

suggest that integration of simple image features takes place along the ventral visual 

pathway that finally generates neuronal representation of materials that correlate with 

our perception. In monkey visual cortex, there are only a few studies that examined 

responses of neurons related to material perception (Koteles et al., 2008; Arcizet et al., 

2008). Both these studies examined coding of materials using images of real materials 

and visual stimuli had three-dimensional (3D) meso-structures specific to materials 

that generate complex fine pattern of shadings that depend on the materials. No 

previous study in monkey has examined about neural mechanisms of gloss perception. 

 

Inferior temporal (IT) cortex: candidate area for coding gloss 



 

  7
 

It is well known that the inferior temporal (IT) cortex plays a key role in the visual 

recognition of objects. Neurons selectively responsive to complex patterns such as face, 

and those selective to texture and color have been shown to reside there (Bruce et al., 

1981; Perrett et al., 1982; Desimone et al., 1984; Tanaka et al., 1991; Komatsu et al., 

1992; Kobatake and Tanaka, 1994; Eifuku et al., 2004; Tsao et al., 2006; Conway et al., 

2007; Yasuda et al., 2010). In addition, activities related to encoding the 

three-dimensional (3D) geometry of objects (Janssen et al., 2001; Yamane et al., 2008; 

Nelissen et al., 2009) as well as activities affected by illumination direction have also 

been recorded in the region within the superior temporal sulcus (STS) in the IT cortex 

(Vogels and Biederman, 2002; Komatsu et al., 2007; Koteles et al., 2008). Furthermore, 

a recent functional magnetic resonance imaging (fMRI) experiment using monkeys 

observed activities distinguishing glossy from matte surfaces in the STS (Okazawa et 

al., 2011). These results suggest that a variety of information closely related to encoding 

surface gloss converge in the STS, and that this is an ideal area in which to explore the 

activities of neurons conveying information about the surface gloss of objects. We found 

that neurons selectively responding to specific glosses are present in the STS, and that 

as a population these neurons systematically represent a wide range of glosses. 
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Materials & Methods 

 

Surgery and recordings of neuron activities 

We recorded neuron activities from three hemispheres of two monkeys (Macaca 

fuscata weighing 5.8 - 6.2 kg). Before starting the physiological experiment, a head 

holder and a recording chamber (rectangular in shape with an opening 10 mm or 15 mm 

 10 mm at the edge) were surgically attached to the skull under aseptic conditions and 

general anesthesia (Fig. 2A). Neuron activities were recorded from the posterior bank of 

the STS in the central part of the IT cortex. The center of each recording chamber was 

located at 22 mm lateral and 8-10 mm anterior, based on the stereotaxic coordinates. 

Neurons were recorded extracellularly using tungsten microelectrodes (Frederick Hare) 

that were inserted vertically from the vertex. During the physiological recordings, we 

first mapped a wide region of the posterior bank of the STS, and assessed the visual 

responses to stimuli with a variety of glosses. The mapping region of each hemisphere is 

shown in Figure 2C. After mapping, guide tubes made of MRI compatible metal 

(titanium or gold) were inserted into the brain, targeting the regions where 

gloss-selective neurons were observed (Fig. 2B). We then sampled the neurons in these 

regions extensively. The tips of the guide tubes were positioned about 1 cm above the 
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targeted cortical regions. While the guide tubes remained inserted in the brain, we took 

MRI images to confirm the recording positions. All procedures for animal care and 

experimentation were in accordance with the U.S. National Institutes of Health Guide 

for the Care and Use of Laboratory Animals (1996) and were approved by our 

institutional animal experimentation committee.  

 

Experimental apparatus and the task 

During the experiments, the monkeys were seated in a primate chair and faced 

the screen of a CRT monitor (frame rate: 100 Hz, Totoku Electric) situated at a distance 

of 85 cm from the monkey. Eye position was monitored using an eye coil or an infrared 

eye camera system (ISCAN). Visual stimuli were generated using a graphics board 

(VSG, Cambridge Research Systems), then presented on the CRT monitor. Image 

resolution was 800  600 pixels (30 pixels/degree). Monkeys were required to fixate on a 

small white spot (visual angle: <0.1) at the center of the display. A trial started with the 

presentation of the fixation spot, after which stimuli were presented five times within a 

trial. Each stimulus presentation lasted 300 ms. The first stimulus was presented 800 

ms after the monkey started fixating, and was followed by four stimuli with 300-ms 

interstimulus intervals. Monkeys were rewarded with a drop of juice 300 ms after 
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turning off the last stimulus. Monkeys had to maintain eye position within a 2.6  2.6 

window centered at the fixation point. If the eye deviated from the eye window, the trial 

was canceled, and an intertrial interval (ITI) started. The duration of the ITI was 1000 

ms. When the stimulus was presented on the fovea, the fixation spot was turned off 

after the first 500 ms of presentation to avoid interference between the fixation spot and 

the visual stimulus. 

 

Visual stimuli 

In this study, we used physical parameters and perceptual parameters to define 

visual stimuli to examine neural selectivities. In the first part of the experiment, we 

examined the relationship between neural responses and physical parameters of gloss. 

To assess the selectivity for surface reflectance properties of neurons in the STS, we 

generated visual stimuli having 33 types of surface reflectance selected from MERL 

BRDF dataset (http://www.merl.com/brdf/)(Fig 1B). This dataset contains data for about 

100 materials (Matusik et al., 2003), and we selected 33 surfaces with the aim of 

producing stimuli that were as dissimilar in appearance as possible. The surface 

reflection of many materials can be represented by a combination of two components 

(diffuse reflection and specular reflection), and the reflection properties can be 
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characterized by three parameters: diffuse reflectance (d), indicating the strength of 

the diffuse reflection; specular reflectance (s), indicating the strength of specular 

reflection; and roughness (), indicating the fine scale unevenness of the surface that 

causes the spread of specular reflection (Fig 1A). Examples of the appearance changes 

caused by a change in each parameter are shown in Fig. 1A. An object with low d and 

s is a black matte object (left). As d increases, the object becomes lighter (upper 

middle). As s increases, the object becomes shiny with sharp highlights if  is small, or 

with blurred highlights if  is large. To render the stimuli, d and s were set for R, G 

and B separately because the color of the diffuse and specular reflections varied across 

surfaces. Roughness  did not depend on color. We thus controlled 7 parameters (d_r, 

d_g, d_b,s_r,s_g, s_b, ), and the values for the Ward-Duer model, one of the 

BRDF models given in Ngan et al. (Ngan et al., 2005), were employed. Figure 1E shows 

the distribution of the reflection parameters in 3D space, which will be referred to as 

gloss stimulus space. In this plot, d indicates the mean of d_r, d_g and d_b, while s 

indicates the mean of s_r, s_g and s_b. Glossy stimuli with strong highlights (large 

s and small ) are located to the back and left, shiny stimuli with blurred highlights 

(large s and large ) are located to the back and right, and matte stimuli (small s) are 

located to the front and right. Although this plot ignores the variation of d and s 
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across RGB channels, it can still capture essential features of gloss selective neural 

responses. This gloss stimulus space will be used often in this paper because it is useful 

for visualizing stimuli and the gloss-selective responses of neurons.   

In the later part of the experiment, we examined the relationship between neural 

responses and perceptual parameters of gloss. For this experiment, we prepared visual 

stimuli in which c and d values were uniformly distributed on the cd-space (cd-space 

stimulus). d value corresponds to 1 - and c value is a non-linear combination of d and 

s, and is defined as follows:

33 2/2/ ddsc   

The stimulus set consisted of 4 levels of c values (0.0625, 0.125, 0.1875, 0.25), and 

d values (d = 0.8002, 0.8668, 0.9334, 1) with 3 levels of d (d = 0, 0.1, 0.4). I prepared 7 

colors by changing the ratio among r, g, b values ofd (Gray, Red, Green, Blue, Magenta, 

Cyan, Yellow), and used the optimal color and shape for each neuron. Example of 

stimulus set is shown in Fig. 3 (d: 0.1, color: gray, shape: shape3). 

We used LightWave software (NewTek) to generate ten different 3D shapes (Fig. 

1C). For the illumination environment, we used one of the high dynamic range images 

from the Devebec dataset (http://ict.debevec.org/~debevec/)(Eucalyptus Grove; 

illumination #1) as the default. We rendered object images using Radiance software 
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(http://radsite.lbl.gov/radiance/), employing image parameters (surface reflectance, 

shape, illumination environment) as described above. Stimuli with shape 3 are shown in 

Fig. 1B, and examples of stimuli with other shapes are shown in Fig. 4. In a control 

experiment to examine the effect of illumination, we used another illumination 

environment image from the Devebec dataset (Campus at Sunset; illumination #2). The 

luminance values of the rendered images were linearly mapped to a low dynamic range 

using a mean value mapping method in which the mean value, including the 

background, was mapped to 0.5 and the pixels that exceeded 1 were clipped. The object 

images were then cut out at the object contour. The mean luminance of the objects 

ranged from 3.15 cd/m2 to 78.2 cd/m2, and the objects were presented on a gray 

background (10 cd/m2). The objects subtended about 5 degrees of visual angle and were 

usually presented on the fovea. When the responses at the fovea was weak and stronger 

responses were evoked by the presentation of stimulus at a certain position out of fovea, 

stimulus selectivity was examined at that position (27 out of 215 neurons recorded, 6 

out of 57 gloss-selective neurons, see Results section). 

 

Test of gloss selectivity 

The activities of single neurons were isolated through online monitoring during 
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the recording, as well as through offline spike sorting using a template matching 

algorithm. Offline analysis confirmed that all of the data reported in this paper were 

single neuron activities.  When we isolated a single neuron, we conducted a 

preliminary test to assess its responsiveness to visual stimuli. For this test we employed 

a stimulus set consisting of 15 surface reflectance properties, including three sets of 

gloss parameters (large s and small , large s and large , zero s) combined with five 

colors/lightnesses (red, green, blue, white, black). We tested the neural responses using 

this preliminary gloss stimulus set with 10 object shapes, and when a neuron responded 

to at least one of the test stimuli, we determined the optimal shape for that neuron. In 

the subsequent main experiment, we examined gloss selectivity in detail using object 

images with the optimal shape and the 33 types of surface reflectance. In the early part 

of the experiment, we used only two (shapes 3 and 9) or 4 (shapes 2, 3, 9 and 10）shapes 

(16 of 57 gloss selective neurons described in Results). Neural responses were analyzed 

only for correct trials, and the minimum number of repetitions of each stimulus 

accepted for analysis was five. Mean firing rates were computed for a 300-ms period 

beginning 50 ms after stimulus onset. Baseline activities were computed for the 300 ms 

immediately prior to the onset of the first stimulus within a trial. Only neurons that 

showed a mean firing rate of more than 10 spikes/s and a significant increase in activity 



 

  15
 

in response to at least one stimulus (p < 0.05, t-test) were included in the sample of 

visually responsive neurons. The presence or lack of selectivity for the 33 types of gloss 

stimuli was examined using ANOVA, and the strength of the selectivity was quantified 

as a selectivity index that was defined as 1 - (minimum response)/(maximum response). 

With this selectivity index, as selectivity increases, the index value increases and will 

exceed unity if the minimum response is less than the baseline activity. The sharpness 

of the selectivity was quantified using two indices: the number of stimuli that elicited 

responses with amplitudes more than half that of the maximum response and a 

sparseness index defined as follows: 

 

         sparseness index = [1 - ( ri / n)2 / (ri2 / n)] / (1 – 1 / n) 

 

where ri is the firing rate to the ith stimulus in a set of n stimuli (Rolls and Tovee, 1995), 

(Vinje and Gallant, 2000). If ri was a negative value, it was replaced to zero. The 

sparseness index indicates the degree to which responses are unevenly distributed 

across the set of stimuli.  We used a modified version of the sparseness index (Vinje 

and Gallant, 2000) because we felt the result would be more intuitive if sharper 

selectivity yielded a larger index value. The sparseness index is at a minimum, with a 
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value of 0, when responses to all stimuli have the same magnitude. As the stimulus 

selectivity becomes sharper, the index becomes larger. If only one stimulus among the 

set evokes a response, the index is at a maximum and is equal to 1.  

 

Examination of the effects of shape and illumination 

To examine the effect of shape, we compared the responses to the gloss stimulus 

set across different object shapes. Responses were compared between the shape that 

yielded the strongest responses in the preliminary test (optimal shape) and that 

yielding the second-strongest responses (non-optimal shape) by computing correlation 

coefficient between two sets of responses. In addition, we conducted 2-way ANOVA with 

gloss and shape as factors to examine the main effect and their interaction.  

To examine the effect of illumination, we compared the responses to the gloss 

stimulus set rendered with the optimal shape across different illuminations. Responses 

were compared between the default illumination (Eucalyptus Grove) and another 

illumination (Campus at Sunset) by computing correlation coefficient between two sets 

of responses. In addition, we conducted 2-way ANOVA with gloss and illumination as 

factors to examine the main effect and their interaction.  

To examine the effect of shape and illumination, we also used a separability index 
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(Mazer et al., 2002) (Grunewald and Skoumbourdis, 2004); (Yamane et al., 2008); 

(Mysore et al., 2010) to quantify how well a neuron retained its selectivity for gloss 

across changes in shape or illumination. To compute the separability index for shape 

changes, we first tabulated the gross responses of each selective neuron in an m × n 

response matrix (M), where m and n corresponded to the different glosses and shapes, 

respectively. We then computed the singular value decomposition (M = USV′) of the 

response matrix. If selectivity for gloss is independent of the shape, the responses are 

fully explained by the first principal components (i.e., the product of the first columns of 

U and V); otherwise, the responses are explained by the second principal component to 

some extent. The separability index is defined as the squared correlation (r2) between 

the actual responses and the predicted responses reconstructed from only the first 

principal components. We used a permutation test to determine whether a separability 

index was significantly larger than chance. We randomly permuted the mean neuronal 

responses for different glosses within each tested shape, and computed a separability 

index for the reshuffled responses. Permuting the responses within but not across 

shapes ensured that the mean permuted response averaged across glosses for a given 

shape would be the same as the mean observed response. Permutations were performed 

1000 times. If the separability index value obtained experimentally exceeded the 95th 
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percentile of the distribution of the separability indices for the reshuffled responses, the 

neuron was deemed to have a separability index significantly larger than the chance 

level. We also assessed the extent to which the responses are explained by the second 

principal component obtained from the singular value decomposition. If the r2 between 

the actual responses and the predicted responses computed from only the second 

columns exceeded the 95th percentile of the distribution of the r2 for the reshuffled 

responses, the second principal component would be deemed to have made a significant 

contribution. The separability index for changes in illumination was computed in a 

similar manner.  

 

Examination of the representation of gloss by the population of neurons 

To better understand how gloss-selective neurons represent gloss, we conducted 

MDS analysis. First, Pearson's correlation coefficients (r) between the responses of the 

population of gloss-selective neurons to all possible stimulus pairs were computed, then 

nonclassical MDS (non-metric) was applied using 1-r as a distance, and the result was 

plotted on a 2-dimentional space. We also tested other distance metrics such as 

Euclidean distance or Spearman's correlation coefficient, but the results of the MDS 

analyses were similar, regardless of the distance metric used.  
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Results 

 

Selective responses to a gloss stimulus set 

In the first part of the experiment, I will describe the results obtained using 

stimuli based on the physical parameters of gloss. We examined neural responses to the 

gloss stimulus set consisting of 33 types of surface reflectance rendered with the optimal 

shape for each neuron. We found that there are neurons in the lower bank of STS that 

selectively respond to gloss. We recorded the activities of 215 neurons that responded to 

the gloss stimulus set. Of these, 193 neurons exhibited selectivity (ANOVA, p < 0.05).  

Figure 5 shows responses of three representative neurons (Cells 1, 2 and 3) that 

exhibited selectivity for the gloss stimulus set. Cell 1 (Fig. 5A-C) strongly responded to 

stimuli with sharp highlights (e.g., stimuli #8 and #13) and did not respond to stimuli 

with weak glossiness (e.g. stimuli #1 and #33). This neuron showed strong and sharp 

gloss selectivity (gloss selectivity index = 1.08, sparseness index = 0.51, see 

Experimental Procedures). Only six stimuli evoked more than a half-maximal response. 

Stimuli that induced strong responses in Cell 1 were clearly localized in gloss parameter 

space (Fig. 5C): strong responses were evoked by stimuli with large specular reflectance 

(s) and small roughness ().  
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 Cell 2 (Fig. 5D, E) selectively responded to shiny objects with blurred highlights; 

that is, objects with large specular reflectance and large roughness (e.g., stimuli #21 

and #24) (gloss selectivity index = 0.95, sparseness index = 0.46). Only three stimuli 

evoked more than a half-maximal response in this neuron.  

Cell 3 (Fig. 5F, G) exhibited modestly sharp selectivity to gloss stimulus set 

broader than cells 1 and 2 (gloss selectivity index = 1.05, sparseness index = 0.32), with 

nine stimuli evoking more than a half-maximal response. This neuron strongly 

responded to matte stimuli without clear highlights and those with small specular 

reflectance and large roughness. 

 

Effect of object shape and pixel shuffling within the stimulus 

The results described above suggest there are neurons that selectively respond to 

images of objects with a specific gloss. However, images in the gloss stimulus set also 

varied with respect to their local luminance pattern; that is, glossy stimuli have sharp 

light spots corresponding to highlights whose patterns are roughly constant as long as 

the object shape and illumination environment are unchanged. It was therefore possible 

that the selective response of Cell 1 was due to the presence of a specific pattern of 

highlights in some stimuli. To test this possibility, we recorded the responses of the 
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same neurons to the gloss stimulus set rendered on a different 3D shape and assessed 

whether the change in shape affected stimulus selectivity. In Fig. 6A, the red line 

indicates the rank order of the responses of Cell 1 to the gloss stimulus set when the 

optimal shape (shape 3) was used. The blue line indicates the responses of the same 

neuron when a non-optimal shape (shape 2) was used and the responses were aligned 

according to the same stimulus order as the red line. This neuron exhibited significant 

main effects of both surface reflectance and object shape (2-way ANOVA, p < 0.05), as 

well as a significant interaction between the two. This means that there was some 

difference in the pattern of gloss selectivity between the two shapes. More importantly, 

however, the overall pattern of responses to shape 2 was similar to the pattern of 

responses to the optimal shape, and there was a clear tendency for the responses to 

gradually decline along the horizontal axis. Responses to the gloss stimulus set showed 

a strong correlation between the optimal and non-optimal shapes (r = 0.86), which 

significantly differed from zero (p < 0.05). These results indicate that even when the 

local luminance pattern was changed by changing the object shape, the gloss selectivity 

of this neuron was maintained; thus, stimulus selectivity does not appear to be due to 

the local luminance pattern.  

Images in the gloss stimulus set also varied with respect to mean chromaticity and 
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luminance. To exclude the possibility that the response selectivity was due to 

differences in the color and luminance of the stimuli, we tested the responses to stimuli 

in which the pixels were randomly rearranged within the object contour (shuffled 

stimulus, Fig. 1D, Fig. 4B). In the shuffled stimuli, the luminance and color histograms 

of the pixels did not change, nor did the mean luminance and mean chromaticity, but 

the glossiness dramatically changed, particularly for the glossy stimuli. In Fig. 6A, the 

black line indicates the responses of Cell 1 to the shuffled stimuli aligned according to 

the same order as the red and blue lines. That Cell 1 did not show clear responses 

(maximum = 1.71 spikes/s) to the shuffled stimuli reveals that the selective responses to 

the original stimulus set was not due to the mean color or luminance of these stimuli. In 

Fig. 6B, responses of Cell 2 to images rendered on a non-optimal shape (shape 9) and to 

the shuffled stimuli are compared with the responses to the optimal shape. As with Cell 

1, the pattern of selectivity for the gloss stimulus set was highly correlated between the 

optimal and non-optimal shapes (red and blue lines, r = 0.82, p < 0.01), and the 

responses to the shuffled stimuli were very weak (black line, maximum = 6.84 spikes/s). 

The results were markedly different with Cell 3, however (Fig. 6C). With this 

neuron the responses to the gloss stimulus set were highly correlated between the 

optimal (shape 8) and non-optimal (shape 4) shapes (red and blue lines, r = 0.87, p < 
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0.01) but, unlike Cells 1 and 2, this neuron also strongly responded to the shuffled 

stimuli (black line, maximum = 25.6 spikes/s), and those responses also correlated with 

the responses to the optimal shape (r = 0.71, p < 0.01). This suggests that the activity of 

Cell 3 was strongly influenced by low-level image features such as the mean luminance 

and chromaticity.  

From the neurons that exhibited sufficiently strong (>10 spikes/s) and selective 

responses to the gloss stimulus set (ANOVA, p < 0.05), we isolated neurons that were 

likely selective for glossiness by employing two criteria. First, a given cell should be 

responsive to a non-optimal shape, and the patterns of stimulus selectivity obtained 

with the optimal and non-optimal shapes should be significantly correlated (p < 0.05). 

Second, either the neuron does not show a significant response to the shuffled stimuli 

(<10 spikes/s and/or p > 0.05, t-test) or the correlation between the patterns of stimulus 

selectivity obtained with the optimal shape and shuffled stimuli are not significant. 

Neurons satisfying these two criteria were defined as “gloss-selective.” Of the 194 

neurons that exhibited selectivity for the gloss stimulus set in the optimal shape, we 

assessed the responses to more than one shape in 145, to the shuffled stimuli in 169 and 

to both in 139 neurons. The distribution of correlation coefficients obtained under each 

of these conditions is shown in Fig. 7. The abscissa represents the correlation coefficient 
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between the responses to the optimal shape and the shuffled stimuli, while the ordinate 

represents the correlation coefficient between the responses to the optimal and 

non-optimal shapes. The scatter plot includes neurons recorded in both tests (shape 

change and shuffling), whereas the histograms include neurons that were tested in only 

one of these tests (open bars). Many neurons (118/145, 81 %) exhibited significant 

correlation between the responses to the optimal and non-optimal shapes. With regard 

to the responses to the shuffled stimuli, 54 neurons (54/169, 32 %) did not show 

significant responses (left-most bar in the histogram). Of the remaining 115 neurons 

that showed clear responses, the correlation between the responses to the optimal shape 

and shuffled stimuli was not significant in 51 (51/115, 44%). Of 139 neurons tested 

under both control conditions, 57 satisfied the two criteria for gloss-selective neurons 

listed above (red circles in Fig. 7). Recording site of each of these 57 gloss-selective 

neurons is shown in Figure 2C. Gloss-selective neurons appeared localized within the 

range of IT cortex we have mapped. Cells 1 and 2 are examples of this group of neurons. 

On the other hand, 43 neurons showed significant correlation between the responses to 

the optimal and non-optimal shapes as well as between the responses to the optimal 

shape and shuffled stimuli (blue circles in Fig. 7). Cell 3 is an example of those neurons, 

which, presumably, selectively respond to the specific luminance or color of the stimuli. 



 

  25
 

We also examined the stability of the selectivity of 57 gloss-selective neurons employing 

the separability measure (Fig. 8). All neurons had a significant separability index, and 

most neurons showed separability index values greater than 0.7 (mean ± SD: 0.86 ± 

0.08). In addition, only one neuron showed a significant r2 computed using the second 

principal component. Taken together, these results confirm that gloss selectivity is 

largely independent of the change in stimulus shape. Most of the gloss-selective neurons 

showed strong selectivity for the gloss stimulus set, with a selectivity index larger than 

0.6 (median = 1.02), and many also showed sharp selectivity, with a sparseness index 

larger than 0.3 (median = 0.43)(Fig. 9). 

 We next examined how the responses of gloss-selective neurons were affected by 

a change in object shape or by image shuffling at the population level by computing the 

rank order of the population responses in a way similar to what was done in Fig. 6. That 

is, we sorted the responses of each neuron to the non-optimal shape and shuffled stimuli 

according to the rank order of the responses to the optimal shape and then averaged the 

responses across the population (Fig. 10A). We found that responses to the non-optimal 

shape monotonically declined along the horizontal axis, which was similar to the 

pattern of responses to the optimal shape. By contrast, the responses to the shuffled 

stimuli were flat, indicating that little or no selectivity was retained after shuffling of 
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the image pixels. However, for neurons that showed clear responses to the shuffled 

stimuli (blue circles in Fig. 7), responses to both the non-optimal shape and shuffled 

stimuli showed similar monotonically decreasing patterns along the rank order of the 

optimal shape (Fig. 10B), indicating that the selectivity was maintained under both 

conditions. In the following, we will describe in more detail the response properties of 

the 57 neurons that satisfied both of the aforementioned criteria for gloss-selectivity. 

 

Stimulus preference of gloss-selective neurons 

The preferred stimulus of gloss-selective neurons differed from cell to cell. Figure 

11 shows two other examples of gloss-selective neurons: one (Fig. 11A) responded 

selectively to stimuli with large specular reflectance (s), small roughness () and sharp 

highlights, while the other (Fig. 11B) responded selectively to stimuli with large 

roughness, regardless of the specular reflectance. 

To examine how gloss-selective neurons responded as a population to the gloss 

stimulus set, we computed the population response to each stimulus. Figure 11E shows 

the normalized population average response to each stimulus. The population of 

gloss-selective neurons responded more or less to all of the stimuli, though there was 

significant variation in the response magnitudes across the stimulus set (ANOVA, p < 
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0.05). The ratio between the maximum and minimum of the normalized responses (to 

stimulus #13, 0.47 and to #33, 0.21, respectively) was 2.18, and there was a tendency for 

glossier stimuli to elicit stronger responses. This tendency was more clearly seen when 

the distribution of the preferred stimulus for each gloss-selective neuron was examined. 

Figure 11F depicts the number of neurons that showed a peak response to each 

stimulus in the gloss stimulus set. Peak responses frequently occurred with stimuli 

having large specular reflectance and little roughness, but occurred less frequently with 

stimuli having small specular reflectance. By contrast, neurons that maintained 

stimulus selectivity despite shape changes and image shuffling (neurons represented by 

the blue circles in Fig. 7) more often preferred stimuli with small specular reflectance or 

those with large roughness (Fig. 12). 

 

Effects of the illumination environment 

In all of the results described so far, object images were rendered under the same 

illumination environment (illumination #1, Eucalyptus Glove). Changing the 

illumination environment does not affect the apparent glossiness very much, as long as 

natural illumination is used (Fleming et al., 2003). Therefore, if the responses of 

gloss-selective neurons are related to encoding glossiness, we would expect that 
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selectivity for the gloss stimulus set would be retained, even after the illumination 

environment was changed. To test that idea, we assessed gloss selectivity of 48 of the 57 

gloss-selective neurons using stimuli in which an object with the optimal shape was 

rendered under different illumination (illumination #2, Campus at Sunset, Fig. 1D, Fig. 

4C). In Fig. 13A, the red line indicates the responses of Cell 1 to the optimal shape 

illuminated under illumination #1 (same as the red line in Fig. 6A), and blue line 

indicates the responses of the same neuron to the same stimulus set under illumination 

#2. The results are aligned according to the same order as the red line. We found that 

there was a clear tendency for the responses to gradually decline along the horizontal 

axis, and that the responses to the stimulus set under the two illumination conditions 

were highly correlated (r = 0.81, p < 0.05)(Fig. 13A, inset). Figure 13B summarizes the 

effect of the illumination condition (abscissa) and object shape (ordinate) on the activity 

of gloss-selective neurons tested under the two illumination conditions. Given our 

definition of gloss-selective neurons, all of these neurons showed significant correlation 

between their responses to the optimal and non-optimal shapes. Likewise, most of the 

neurons showed significant correlation between illuminations (40/48, 83.3%, red circles). 

This indicates that the gloss selectivity of these neurons was retained across different 

illuminations, which is consistent with the notion that apparent glossiness is rather 
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stable under different natural illumination conditions. Analysis based on the 

separability measure also showed that the selectivity of gloss-selective neurons is 

mostly stable under different illumination conditions (Fig. 14AB). All neurons but one 

showed significant separability index, and most neurons showed separability index 

values greater than 0.7 (mean ± SD: 0.84± 0.1). In addition, only two neurons showed a 

significant r2 computed using the second principal component. These results confirm 

that gloss selectivity of these neurons is largely independent of a change in 

illumination.  

To further examine how the population of gloss-selective neurons was affected by 

the illumination condition, the rank order of the responses obtained under illumination 

#2 was compared with that obtained under illumination #1 (Fig. 14C, red and blue lines, 

respectively). The average responses obtained under illumination #2 gradually 

decreased along the rank order of the responses obtained under illumination #1 

(abscissa), indicating that selectivity was largely maintained at the population level. 

 

Population encoding of gloss 

How are different glosses encoded by the activities of gloss-selective neurons? 

Knowing which pairs of stimuli were differentiated and which pairs were not well 
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differentiated should provide a clue as to how different glosses are encoded by the 

population of gloss-selective neurons. To examine this problem, we computed a 

correlation coefficient (r) for the responses of the 57 gloss-selective neurons to all 

possible pairs of the 33 stimuli in the gloss stimulus set. Then (1 - r) was regarded as 

the neural distance between two stimuli and multidimensional scaling (MDS) analysis 

was applied to the resultant distance matrix, which contained the neural distances for 

all possible pairs of stimuli. Figure 15A and B depict the relationships between the 

responses of the 57 gloss-selective neurons for two example pairs of stimuli. Stimuli #3 

and #8 (Fig. 15A) are quite different in color and luminance, but both have sharp 

highlights and similar glossiness. The population of gloss-selective neurons exhibited 

highly correlated responses to these two stimuli (r = 0.92), indicating that the neural 

distance between them was small. Stimuli #3 and #31 (Fig. 15B) are very different in 

appearance: stimulus #3 is highly glossy, whereas stimulus #31 is matte. The response 

patterns to these two stimuli were quite different, and the correlation between them 

was very weak (r = 0.22), indicating the neural distance was large. We computed the 

neural distances for all pairs of stimuli using the same procedure, after which the 

stimuli were arranged on a two-dimensional plane such that their relative positions on 

the plane maintained the neural distances as much as possible.  
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Figure 15C indicates the resulting diagram of this MDS analysis. The scree plot in 

Fig. 15C (inset) shows that two dimensions are sufficient to capture most of the 

variance of the neural distance (stress = 0.12) and to understand the basic aspects of the 

neural encoding of the stimulus set. In this diagram, stimulus pairs that yielded similar 

response patterns in the neural population are plotted near one another and those that 

yielded different response patterns are plotted farther away. At the left side of this 

figure, highly specular stimuli are accumulated. On the other hand, at the lower right 

glossy stimuli with blurred highlights are accumulated, and toward the upper right 

glossiness is reduced and matte stimuli are clustered at the top right. The results of the 

MDS analysis show that the population responses of gloss-selective neurons 

systematically represent a variety of glosses, and suggest that these neurons carry 

information that is closely associated with characterizing the surface gloss of objects. 

 

Distribution of responses of gloss selective cells on the cd-space. 

In the results described so far, we have used stimuli based on the physical parameters 

of gloss. In the following part, I will describe the results obtained using stimuli based on 

the perceptual gloss space. We examined the distribution of neural responses to the 

stimuli that uniformly distributed on the cd-space and with optimal shape and optimal 
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color for each neuron. We recorded neural responses of 48 of the 57 gloss-selective 

neurons to cd-stimulus set. Of these, 44 neurons exhibited significant response (>10 

spikes/s and p < 0.05, t-test) and significant selectivity (ANOVA, p < 0.05) to cd-space 

stimulus set. 

Fig. 16A shows responses of cell1 to cd-space stimulus set that strongly responded to 

stimuli with sharp highlights and did not respond to stimuli with weak glossiness 

(Fig.5A ~ C). Fig. 16B shows bubble plot of the responses of this neuron in the cd-space. 

Cell1 selectively responded to stimuli with large d values regardless of c values, and 

responses gradually changed along d axis. This result suggests that d (distinctness of 

image gloss) is an important parameter determining the responses of cell1. Middle and 

right panels in Fig. 16B show two other examples of gloss selective cells. Responses of 

cell2 gradually changed along c axis, and responses of cell3 gradually changed along 

intermediate direction between c and d axis. Although the direction in cd-space to which 

each neuron was most sensitive differed from cell to cell, responses of each example 

neurons appears to change linearly in the cd-space.  

 

Multi-regression analysis of the responses in the cd-space. 
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To examine whether responses of gloss selective neurons can be adequately 

explained by linear combinations of c and d value, we computed predicted response by 

multi regression analysis using c and d. Fig. 17A shows the relationship between the 

actual responses and predicted responses of cell1 depicted in Fig 16A. Black circles 

indicate actual firing rates of cell 1, and magenta circles on the linear plane indicate 

predicted responses. Correlation coefficient between actual responses and predicted 

responses of this neuron were very high (r=0.81, p < 0.05). Most neurons tested showed 

similar results. Fig. 17B shows the distribution of correlation coefficient between actual 

responses and predicted responses of 44 gloss selective neurons. All but one neuron 

(43/44, 97%) showed significant correlation that differed from zero (p < 0.05). These data 

suggest that responses of most gloss selective neurons can be reasonably explained by a 

linear combination of c and d. These data indicate that stimulus parameters (c, d) that 

are important for perceived gloss are also very important parameters determining the 

responses of gloss selective neurons, suggesting that these neurons are closely 

associated with gloss perception. 

 

Tuning direction  

We examined tuning direction to which each gloss selective neuron was most sensitive 
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in cd-space. For each neuron, tuning direction was determined as the direction of the 

maximum slope of cd-regression plane. For example, if responses increase with 

increasing d or c, tuning direction is defined as either 0 degree and 90 degree, 

respectively. On the other hand, if responses increase with decreasing d or c, tuning 

direction is defined as either 180 degree and 270 degree, respectively (Fig. 18A). We 

computed tuning directions for 43 neurons that showed significant correlation between 

actual responses and predicted responses and the distribution of the tuning directions is 

shown in Fig. 18B. Tuning direction differed from cell to cell, and interestingly, tuning 

direction was not uniformly distributed. There appears cluster of cells tuned around 0 

degree, and we did not find cells that were tuned between 270 degree to 330 degree.  
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DISCUSSION 

 

Surface reflectance properties in object recognition 

Information about the physical properties of an object, such as its 

hardness/softness, coldness/warmness and smoothness/roughness are very important 

for object recognition. In addition, information on the surface reflectance properties are 

tightly connected to the function of evaluating the biological significance of objects. For 

example, surface reflectance of foods significantly changes depending on whether the 

food is fresh or old, and that of animal body skin changes depending on the health 

conditions. We are very sensitive to such surface properties of both natural and 

man-made objects, and often our behavioral decisions are dependent upon them. This 

information is closely related to the optical and surface reflectance properties of an 

object, and understanding how these properties are represented in the brain is essential 

for understanding the neural mechanisms involved in object recognition. 

Although many studies have been conducted with the aim of understanding the 

neural representation of object shape, color and texture (Bruce et al., 1981; Desimone et 

al., 1984; Tanaka et al., 1991; Komatsu et al., 1992; Kobatake and Tanaka, 1994; Op de 

Beeck et al., 2001; Freedman et al., 2003; Conway et al., 2007; Kiani et al., 2007; 
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Yamane et al., 2008), few attempts (Arcizet et al., 2008; Koteles et al., 2008) have been 

made to study the neural representation of surface reflectance properties, which are no 

less important than other visual attributes.  In the present study, we found that there 

exist neurons in the lower bank of the STS that selectively respond to specific gloss. 

Gloss selectivity differed from cell to cell and MDS analysis revealed that as a 

population these neurons systematically represent a variety of gloss. These results 

provide strong evidence that IT cortex that plays an important role in object recognition 

is involved in processing information of gloss.  

 

Comparison with previous studies 

Two previous studies (Arcizet et al., 2008; Koteles et al., 2008) have examined 

selectivity of neurons to various materials having different surface reflectance 

properties. These studies have reported neurons selective for materials in either area 

V4 (Arcizet et al., 2008) and in the IT cortex (Koteles et al., 2008) and that these 

neurons exhibited invariance of material selectivity to the change in illumination 

direction to some extent. Both these studies have used visual stimuli consisting of 

various materials taken from CUReT BRDF dataset 

(http://www.cs.columbia.edu/CAVE/software/curet/). 
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Bidirectional-reflectance-distribution-function (BRDF) is one of the most general 

methods to quantitatively characterize surface reflectance properties, and CUReT 

BRDF dataset contains measured BRDF data of various materials (Dana et al., 1999). 

However, materials in this dataset generally have 3D meso-structure characteristic to 

each material that yields complex texture pattern of shading. Therefore, it is likely that 

neural activity selective for specific material is due to complex texture pattern of 

shadings that is specific to each material. On the other hand, objects sampled in MERL 

BRDF dataset employed in the present study do not have such 3D meso-structures, and 

we were able to study the neural selectivity to surface reflectance properties in isolation 

eliminating the influence of the shading texture patterns. Another merit of this dataset 

is that reflectance parameters (s, d, p0) of each material are provided (Ngan et al., 

2005). We were able to systematically characterize neural selectivities to surface 

reflectance properties taking advantage of such merits of this dataset. 

In the present study, we did not attempt to control the luminance and color of the 

stimuli within the stimulus set in the first part of the experiment. Rather, we 

intentionally picked up the stimuli to cover the entire range of MERL BRDF dataset 

such that as wide variety of surface reflectance properties of real objects can be tested to 

explore neurons sensitive to a variety of gloss. A drawback of such procedure is that we 
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cannot control the low level image statistics such as luminance and color. Therefore, we 

used shuffled stimuli to exclude selective responses due to such simple image features. 

In addition, in the second part of the experiment, we used stimulus set in which both 

color and luminance are controlled.  

 

Classification of gloss-selective neurons 

In the first part of the experiment, we employed two criteria to define 

gloss-selective neurons and identified 57 neurons that satisfied those criteria. This does 

not imply, however, that these neurons form a distinct group that can be clearly 

separated from other nearby neurons. As can be seen in Figure 7, red circles that 

represent gloss-selective neurons form a continuous distribution with other neurons, 

and there is the likelihood that some of those cells may also be involved in encoding 

gloss. In particular, the neurons represented by blue circles retained selectivity for the 

gloss stimulus set, even when the object shape was changed. Although these neurons 

may be responding to low-level image statistics, such as mean luminance or mean 

chromaticity, they may also be involved in encoding glossiness. Pixel shuffling causes 

large changes in the apparent gloss of specular stimuli, whereas the changes are small 

for matte stimuli. We think it is possible that the neurons represented by blue circles 
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selectively encode stimuli with low specularity, and the neuron depicted in Fig. 6C may 

be a good example. Nonetheless, in attempting to explore neurons selective for gloss, we 

opted to apply rather conservative criteria. 

 

Invariance of gloss selectivity 

The invariance of stimulus selectivity to changes in parameters such as position, 

size and contrast is a salient feature of IT neurons (DiCarlo and Cox, 2007), and the 

present study also showed that the gloss-selective responses of IT neurons exhibited a 

considerable degree of invariance to changes in stimulus shape and illumination. At the 

same time, however, the invariance was not complete. Incomplete invariance to the 

change in illumination is consistent with a previous study examining the selectivity to 

various materials (Koteles et al., 2008). What is the cause of such partial invariance and 

the shape- and illumination-dependence of the gloss selectivity? When we view an object, 

three factors, namely shape, surface reflectance and illumination environment, interact 

to form its retinal image and are thus intermingled within the image. Isolating each 

factor from the retinal image is a fundamental task of the visual system during the 

process of object recognition. One view posits that the visual system solves this inverse 

problem and isolates each factor (Xiao and Brainard, 2008; Anderson and Kim, 2009; 
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Kim and Anderson, 2010; Wijntjes and Pont, 2010), whereas another view posits that 

the visual system does not solve inverse problem and only imperfectly isolates each 

factor (Nishida and Shinya, 1998; Pont and te Pas, 2006; Motoyoshi et al., 2007; Sharan 

et al., 2008; Wendt et al., 2010). The partial invariance observed in the present study 

may indicate that these IT neurons are situated at an intermediate stage during the 

separation of factors or, alternatively, it may indicate that the visual system can only 

imperfectly separate each factor. Detailed comparison of the dependence of gloss 

perception on object shape with the dependence of the gloss selectivity of IT neurons on 

object shape may provide insight into the neural processes underlying perception 

during the separation of factors such as 3D shape and reflectance of objects.  

 

Relationship with gloss perception 

 In the first part of the experiment, we examined gloss selectivity of neurons 

using stimuli defined by a combination of physical parameters of gloss (s, d, ). An 

important question is how the activities of these neurons are related to the gloss 

perception. Ferwerda et al has examined the relationship between these physical 

parameters of gloss and perceived gloss and derived a perceptually uniform gloss space 

(Ferwerda et al., 2001). Our present results of MDS analysis have shown that a variety 
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of gloss are systematically represented on a two-dimensional space, and it is observed 

that 'c' and 'd' systematically vary along orthogonal directions on this two dimensional 

plane obtained by MDS analysis (data not shown). Then we directly examined the 

relationship between neuronal responses and cd-space in the second part of the 

experiment. We found that responses of gloss selective neurons can be explained by 

linear combination of 'c' and 'd'. This suggests that the activities of the gloss selective 

neurons recorded from IT cortex may be closely associated with gloss perception. In this 

experiment, we observed that tuning directions in cd-space are not uniformly 

distributed (Fig. 18B). This may be related to some property of our gloss perception. For 

example, direction of 330 degree in cd-space is the direction in which highlight becomes 

sharper but at the same time becomes weaker. There is the possibility that such event is 

rare and ethologically this direction is not important for gloss perception. But this is an 

open question remained for future study. 

 

Neural processes related to generating gloss selectivity 

How is gloss selectivity in IT neurons generated from the neural processing in 

early visual areas?  Detection of complex shapes is thought to be achieved through 

integration of local features such as local contrast, orientation, spatial frequency and 
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contour curvature (Riesenhuber and Poggio, 1999; Kourtzi and Connor, 2011). The 

visual features related to gloss perception are not yet well understood though the 

importance of highlights has been recognized for a long time (Beck and Prazdny, 1981; 

Hunter and Harold, 1987; Blake and Bulthoff, 1990; Berzhanskaya et al., 2005) and the 

importance of image statistics has been suggested more recently (Nishida and Shinya, 

1998; Motoyoshi et al., 2007; Sharan et al., 2008). That the responses of the 

gloss-selective neurons in the present study were significantly diminished by shuffling 

of the image pixels indicates their selectivity is not due simply to low-level image 

statistics: a difference in the parameters of the luminance and chromaticity histograms 

of different stimuli, for example. How the responses of gloss-selective neurons are 

determined by the combination of image features will be an important question for 

future research and should enhance our understanding of the visual features involved 

in gloss perception. 
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FIGURE LEGENDS 

 

Figure 1. Gloss parameters and stimuli for assessing gloss selectivity 

(A) Schematic illustration of three reflection parameters, diffuse reflectance (d), 

specular reflectance (s) and roughness (). When d increases, the lightness of the 

object increases. When s increases, the highlights become stronger. When  increases, 

the highlights become blurred. (B) Example of a gloss stimulus set. The stimuli exhibit 

33 types of surface reflectance selected from the MERL BRDF dataset and rendered on 

one of the shapes (shape 3) under default illumination (Eucalyptus Grove). Stimuli were 

ordered according to the magnitude of . (C) Ten object shapes used for the experiment 

rendered with surface #8 in B. See Fig. 4A for examples with other surface reflectance 

properties. (D) top: Example of a shuffled stimulus generated by randomizing the pixels 

within the contour. bottom: Example of a stimulus rendered under different 

illumination (Campus at Sunset). See Fig. 4B and 4C for examples with other surfaces. 

(E) Distribution of reflection parameters in a 3D space (gloss stimulus space). Numbers 

correspond to those in B. 

 

Figure 2. Recording site 



 

  53
 

(A) Schematic image of one hemisphere and recording site. Red region indicates 

recording site. Recording site is in the lower bank of STS. (B) Image of structural MRI of 

monkey 1 with guide tube. Vertical black line indicates guide tube inserted at 22 mm 

lateral and 9 mm anterior in the stereotaxic coordinates. (C) Recording site of 

gloss-selective neurons are plotted on the flatted map of the lower bank of STS. 

Contours indicate regions where neuronal responses were examined in each hemisphere 

and different color represent different hemisphere. Map of 3 hemispheres are 

superimposed based on the stereotaxic coordinates. Each circle indicates the position 

where a gloss selective neuron was recorded. Blue, red and green correspond to left 

hemisphere of monkey1, right hemisphere of monkey1 and left hemisphere of monkey2, 

respectively. 

 

Figure 3. Examples of cd-space stimulus. 

 Examples of stimulus set to examine the relationship between neural responses and 

perceptual gloss space. The stimulus set includes exhibit 16 types of surface 

reflectances that distribute in cd-space uniformly. The images are rendered on one of 

the shapes (shape 3) under default illumination (Eucalyptus Grove).  

 

Figure 4. Examples of stimuli based on physical parameters. 
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(A) Examples of stimuli with ten different shapes and five different surface reflectances 

rendered under default illumination (Eucalyptus Glove). (B) Examples of shuffled 

stimuli (shape 3) with five different surface reflectances. (C) Examples of stimuli (shape 

3) with five different surface reflectances rendered under illumination #2 (Campus at 

Sunset). 

 

Figure 5. Responses to gloss stimulus set  

(A) Responses of an example neuron (Cell 1) to the gloss stimulus set. The responses are 

depicted as raster plots and post-stimulus time histograms (PSTHs). Horizontal bars 

under the PSTHs indicate the stimulus presentation period. (B) Response magnitude of 

Cell 1 to each stimulus in the gloss stimulus set represented by the size of the object 

image. This neuron strongly responded to stimuli with sharp highlights and did not 

respond to stimuli with weak glossiness. (C) Response magnitude of Cell 1 to each 

stimulus in the gloss stimulus set represented as the diameter of a circle and plotted at 

the corresponding position in the gloss stimulus space. (D, E) Responses of another 

neuron (Cell 2) plotted using the same format as in B and C, respectively. This neuron 

selectively responded to shiny objects with blurred highlights due to large specular 

reflectance and roughness. (F, G) Responses of a third neuron (Cell 3) plotted using the 
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same format as in B and C, respectively. This neuron strongly responded to matte 

stimuli without clear highlights and to those with small specular reflectance and large 

roughness.  

 

Figure 6. Effects of a change in object shape and pixel shuffling on the activity of the 

neurons depicted in Fig. 5. 

(A) Responses of Cell 1 (the same neuron depicted in Fig. 5A-C) sorted according to the 

rank order of its response magnitude when the optimal shape was used. The horizontal 

axis indicates rank order for the optimal shape (shape 3); the vertical axis indicates 

response magnitude (with s.e.m). The red line depicts the responses to the optimal 

shape, the blue line those to the non-optimal shape (shape 2), and the black line those to 

the shuffled stimuli. Object images with the optimal shape are shown at the top in rank 

order. The inset shows the relationship between the responses to each stimulus in the 

gloss stimulus set for the optimal (horizontal axis) and non-optimal (vertical axis) 

shapes. (B, C) Responses of Cells 2 and 3, respectively. The optimal and non-optimal 

shapes were shapes 3 and 9 for Cell 2 and shapes 8 and 4 for Cell 3. The conventions are 

as in A.  
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Figure 7. Effects of shape change and pixel shuffling: population analysis 

Horizontal axis indicates correlation coefficient between the responses to the optimal 

and non-optimal shapes, and vertical axis that between the responses to the optimal 

shape and shuffled stimuli. If a neuron did not exhibit significant response to the 

non-optimal shape or shuffled stimuli, they are plotted on the horizontal or vertical axis, 

respectively. We defined “gloss-selective” neurons using two criteria: 1) They should be 

responsive to a non-optimal shape, and there should be significant correlation between 

the patterns of stimulus selectivity between the optimal and non-optimal shapes (p < 

0.05). And 2) they should not show significant response to shuffled stimuli (< 10 spikes/s 

and/or p > 0.05, t-test), or the correlation for the stimulus selectivity between the 

optimal shape and shuffled stimuli should not be significant. Red circles represent 

gloss-selective neurons that satisfied these two criteria. Blue circles represent cells that 

exhibited significant correlation between the responses to the optimal and non-optimal 

shapes, as well as between the responses to the optimal shape and shuffled stimuli. The 

histogram at the top depicts the distribution of the correlation coefficients between the 

responses to the optimal shape and shuffled stimuli. The histogram at the right depicts 

the distribution of correlation coefficients between the responses to the optimal and 

non-optimal shapes. In the histograms, the solid bars represent cells in which both 
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correlation coefficients were obtained, and the open bars represent cells in which only 

one of the correlation coefficients was obtained.   

 

Figure8. Separability index for a change in shape. 

(A) Distribution of the separability index for a change in object shape. The horizontal 

axis indicates the separability index, the vertical axis the number of cells. Filled and 

open bars respectively indicate significant and non-significant cells, based on the 

permutation test. (B) Distribution of r2 between the actual and predicted responses 

computed from only the second principal component. Other conventions are the same as 

in (A).  

 

Figure 9. Distribution of the selectivity and sparseness indices among gloss-selective 

neurons. 

(A) Distribution of the selectivity indices of 57 gloss-selective neurons. The horizontal 

axis indicates the selectivity index, and the height of each bar indicates the number of 

cells (left vertical axis). Black lines indicate the cumulative percentage of indices (right 

vertical axis). The rightmost bar indicates cells with a selectivity index over 1.2. (B) 

Distribution of the sparseness indices of the 57 gloss-selective neurons. The horizontal 



 

  58
 

axis indicates the sparseness index. Other conventions are the same as in (A). 

 

Figure 10. Rank order of the responses to the gloss stimulus set: population average 

(A) Average of the responses of 57 gloss-selective neurons (red circles in Fig. 7) to 

stimuli with the optimal shape (red line), a non-optimal shape (blue line) and shuffled 

stimuli (black line), sorted according to the rank order of the responses to the optimal 

shape for each neuron. (B) Average of the responses of 43 neurons that showed 

significant correlation between the responses to the optimal shape and shuffled stimuli 

(blue circles in Fig. 7). Other conventions are the same as in A.  

 

Figure 11. Stimulus preference of gloss-selective neurons 

(A, C) Responses of a gloss-selective neuron that was selectively responsive to shiny 

objects with clear highlights (Cell 4). (B, D) Responses of another gloss-selective neuron 

that was selectively responsive to matte objects (Cell 5). Conventions are the same as in 

Fig. 5B, C. (E) Population average of the normalized responses of 57 gloss-selective 

neurons to each stimulus in the gloss stimulus set. (F) Numbers of gloss-selective 

neurons that showed a peak response to each stimulus in the gloss stimulus set.  

 



 

  59
 

Figure 12. Summary of the responses of neurons that showed a significant correlation in 

their responses between the optimal shape and shuffled stimuli. (A) Population average 

of the normalized responses of 43 neurons that showed a significant correlation between 

the responses to the optimal shape and shuffled stimuli (blue circles in Fig. 7) for each 

stimulus in the gloss stimulus set. (B) Number of neurons that showed a peak response 

to each stimulus in the gloss stimulus set. 

 

Figure 13. Effects of illumination change 

(A) Responses of Cell 1 (the neuron depicted in Fig. 5A-C) sorted according to the rank 

order of the response magnitudes under the default illumination (illumination #1, 

Eucalyptus Grove). The horizontal axis indicates the rank order of the responses, and 

the vertical axis indicates the response magnitude (with s.e.m.). The red line depicts the 

responses under illumination #1; the blue line depicts those under different 

illumination (illumination #2, Campus at Sunset). Object images rendered with 

illumination #1 are shown at the top. The inset shows the relationship between the 

responses to each stimulus in the gloss stimulus set under illuminations #1 (horizontal 

axis) and #2 (vertical axis). (B) Summary of the effects of the illumination and shape in 

48 gloss-selective neurons tested under both illuminations. The horizontal axis 
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indicates the correlation coefficient between the responses under the two different 

illumination conditions, and the vertical axis indicates the correlation coefficient 

between the responses to the optimal and non-optimal shapes. Given our definition of 

gloss-selective neurons, all of these neurons showed significant correlation between 

their responses to the optimal and non-optimal shapes. Red circles represent neurons 

that showed significant correlation between the responses elicited under the two 

illumination conditions. The histogram at the top depicts the distribution of the 

correlation coefficients between the responses under the two illumination conditions. 

Solid bars represent neurons that exhibited significant correlation. The histogram at 

the right depicts the distribution of correlation coefficients between the responses to the 

optimal and non-optimal shapes.  

 

Figure 14. Effect of illumination on responses among gloss-selective neurons. 

(A) Distribution of separability indices for the change in illumination. Filled and open 

bars respectively indicate significant and non-significant cells, based on the 

permutation test. (B) Distribution of r2 between the actual and predicted responses 

computed from only the second principal component. (C) Average of the responses of 57 

gloss-selective neurons to stimuli with the optimal shape rendered under default 
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illumination (illumination #1, Eucalyptus Grove, red line) and another illumination 

(illumination #2, Campus at Sunset, blue line) sorted according to the rank order of the 

responses under illumination #1.  

 

Figure 15. Neural representation of gloss in the activities of gloss-selective neurons 

(A) Relationship between the responses of 57 gloss-selective neurons to a pair of stimuli 

(surface #3 and #8) that are similarly glossy in appearance. The horizontal axis 

indicates responses to one stimulus (#3), the vertical axis the responses to the other (#8). 

(B) Relationship between the responses of 57 gloss-selective neurons to a pair of stimuli 

(surface #3 and #31) that differ with respect to their glossiness. Conventions are as in A. 

(C) Two-dimensional plot of the results of non-classical MDS analysis. Distances were 

based on 1-r between the responses of the 57 gloss-selective neurons for each stimulus 

pair from the gloss stimulus set. The inset is a scree plot showing the relationship 

between the number of dimensions and the stress in the MDS analysis.  

 

Figure 16. Responses to cd-space stimulus set  

(A) Responses of an example neuron (Cell 1) to the cd-space stimulus set. The responses 

are depicted as raster plots and post-stimulus time histograms (PSTHs). Horizontal 
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bars under the PSTHs indicate the stimulus presentation period. (B) Response 

magnitude of Cell 1 (left), Cell 2 (middle) and Cell 3 (right) to each stimulus in the 

cd-space stimulus set represented as the diameter of a circle and plotted at the 

corresponding position in the cd-space.  

 

Figure 17. Multi regression analysis 

(A) Both actual response of Cell1 and predicted responses by multi regression analysis 

are plotted at the corresponding position in the three dimensional space consisting of c 

axis, d axis and firing rate (FR). Black circles indicate actual firing rates of cell 1, and 

magenta circles on the linear plane indicate predicted responses. There is significant 

correlation between actual responses of cell1 and predicted responses (r=0.81).  

(B) Distribution of the correlation coefficient of the 44 gloss-selective neurons between 

the actual responses and predicted responses. The horizontal axis indicates the 

correlation coefficient. The height of each bar indicates the number of cells (left vertical 

axis). Filled and open bars respectively indicate cells exhibiting significant and 

non-significant correlation. 

 

Figure 18. Tuning direction 
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(A) Definition of tuning direction is illustrated. If responses changed along d axis, 

tuning direction is defined as either 0degree or 180 degree. If responses changed along c 

axis, tuning direction is defined as either 90 degree or 270 degree. 

(B) Distribution of the tuning directions of 43 gloss-selective neurons. One cell that 

showed non-significant correlation between actual responses and predicted responses 

by multi regression is excluded in this figure. Each blue arrow indicates one cell.  
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