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Chapter 1

General Introduction

The design of molecules that bind tightly and specifically to a target protein or host is an

important goal. Since three-dimensional structures of new proteins or protein-ligand complexes

are becoming available at a dramatically increasing rate, computer modeling methods should play

a key role in structure-based drug design. The structures developed from structural genomic

efforts will also provide potential targets for drug design and thus provide an even greater impetus

for computational approach to rational drug design. Recently, several examples have been

documented where structure-based molecular design has led to the development of drug

candidates.1-3 Despite recent advances in both methodologies and computational power,

identification of ligands with high binding affinity, or low binding free energy, using structure

based approaches remains a challenge. Several methods, with differing levels of accuracy and

computational cost, have been developed and applied to biological systems in recent years.4-10

Empirical methods such as DOCK9,10 rank ligands based on shape and chemical complementarity.

The simple scoring scheme used in DOCK enables this approach to rank ligands rapidly.

Therefore it has become a routine tool for rapid 3D-database searches in drug discovery. In a

DOCK search, a large ‘free energy’ cutoff value is normally used in order not to miss any

promising compounds, and consequently a large number of DOCK hits are generated. To funnel

down those hits to a manageable number is still a challenging task in drug discovery, and a more

accurate but rapid method is needed to this end. Semi-empirical methods, such as the Linear

Interaction Approximation (LIA) method,11 give more accurate results but at higher computational

cost. LIA requires the calculation of the difference in average interaction energy between the

ligand in the unbound state and in the bound state. The scaling coefficient used in this method
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varies from system to system. Therefore, a large number of ligands with known binding affinity

have to be used to obtain the coefficients. It is well known that the thermodynamic-cycle methods,

such as free energy perturbation (FEP)12 or thermodynamic integration (TI),4 ideally give an

accurate measure of the binding free energy (assuming the force field used is accurate and the

sampling is complete). However they are too computationally intensive to be routinely used in

drug design. Recently, “free energy based screening methods” as known by the λ-dynamics

method6,13,14 and Chemical Monte Carlo / molecular dynamics (CMC/MD) method15,16 have been

developed for rapid evaluation of the binding free energies of a large number of ligands. These

methods are more efficient than FEP or TI, especially when multiple ligands are investigated. It

has been shown previously that the λ-dynamics method successfully discriminates the good

binders from the bad ones for benzamidine-based inhibitors complexed with trypsin.6 In that

application, modification of the ligands was localized to the para-position and then the

perturbation was relatively small. The results from that study compared well with FEP

calculations. Encouraged by these promising findings, in this thesis, we further attempt to make

free energy based methods more efficient and practical tools for computer-aided drug and protein

design. These enhancements consist of the use of the umbrella sampling techniques for efficient

sampling of the chemical coordinates, a restraining potential for the multiple topology

representation, the incorporation of a continuum solvation model into these methods, λ-dependent

partial charge models for the hybrid topology representation, and an efficient sampling on a free

energy surface.

In this thesis, I will describe our development and application of “free energy based

screening methods.” In Chapter 2, I first briefly explain the background and basic formulation of

the conventional free energy calculation methods and then present an overview of the recently

developed computational methods for ligand screening. The details of “free energy based

screening methods” are given in Section 2.3 together with several enhancements to these methods.
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Next, the applications of “free energy based screening methods” will follow. In Chapter 3, the λ-

dynamics method using a multiple topology model is applied to a set of 10 five-member ring

heterocycle derivatives interacting with cytochrome c peroxidase, highlighting the effectiveness of

a newly introduced restraining potential and its ability to explore binding orientations or

conformations on a free energy basis. In Chapter 4, I describe the λ-dynamics and CMC/MD

methods with the generalized Born (GB) implicit solvation model to calculate the relative binding

free energies for four benzamidine derivatives binding to trypsin. In Chapter 5, a β-cyclodextrin-

benzene derivative system is studied to compare the GB model with the use of an explicit water

model, as well as to evaluate a newly introduced λ-dependent partial charge model for hybrid

topology λ-dynamics simulation. In Chapter 6, both λ-dynamics and CMC/MD methods are

applied to the stability analysis of the DNA-binding domain of the c-Myb transcriptional regulator.

In Chapter 7, the results of the application of a modified version of MC/MD to explore the

binding orientations of toluene in β-cyclodextrin are presented. Finally, a Summary and outlook is

given. In Appendices, problems in the analytical GB implicit solvation model are described and

their temporary solutions are presented.
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Chapter 2

Methodologies

2.1 Conventional free energy methods

2.1.1 Background

All thermodynamic properties can be obtained from knowledge of free energy and its

derivatives. Thus, one should focus on the free energy of the molecular system when aiming to

quantitatively predict or rationalize the interactions between the putative inhibitors and a receptor.

In this thesis, I frame my discussion of computational approaches to calculating free energies in

the canonical ensemble. In this ensemble the Helmholtz free energy, which I denote as G

throughout this thesis, is the appropriate thermodynamic potential and is given by the following

configurational integral of the Boltzmann factor.

dXXVTkG B ))(exp(ln ∫ −−= β ,  (1)

where V(X) is the potential energy, kB is the Boltzmann’s constant, and T is the absolute

temperature. The exponential dependence of the Boltzmann factor on energy makes the

configurational integral notoriously slow to converge. To see the problem more clearly, we re-

write Eqn. 1 as follows:17

)exp(ln VTkG B β= .  (2)

The angular brackets in this expression symbolize the configurational integral of the canonical

ensemble. In principle, Eqn. 2 provides a means of calculating (excess) free energy from a single

conventional simulation. However, conventional simulations predominately sample the lower

energy regions of conformational space, i.e. in accordance with the Boltzmann factor given in



9

Eqn. 1, and never adequately sample the higher energy states that contribute most significantly to

the ensemble average of the free energy (as given by the “inverse-Boltzmann” factor in Eqn. 2).

Therefore, the calculation of the free energy using a conventional simulation leads to poorly

converged, and consequently inaccurate free energy estimates. Fortunately, it is the free energy

difference that is generally of greatest interest, and this can be calculated using a coupling-

parameter approach when the states are similar, i.e. the energy difference is small for all important

configurations.

2.1.2 Basic formulation of conventional free energy methods

 Conventional free energy calculation methods, such as the free energy perturbation (FEP)12

and thermodynamic integration (TI) approaches,4 can be utilized to evaluate the relative binding

free energy between two ligands according to the thermodynamic cycle as shown in Figure 1.

L0RL0+R

L1+R L1R

∆G0

∆G1

∆G(bind)∆G(solv)

Figure 1.  Thermodynamic cycle used for free energy calculations. L0 and L1 represent the

free ligands in aqueous solution and L0R and L1R represent the corresponding ligands

complexed with the protein receptor R.

The relative binding free energy of the two ligands, ∆∆G(bind)=∆G1-∆G0=∆G(bind)-∆G(solv), is

the difference between the relative free energy of the ligands in the complexed state and that of
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the free ligands. The free energy difference in each half of the thermodynamic cycle can be

calculated using the potential energy of a hybrid system, written as a linear function of the two

endpoint states and connected through a “chemical coordinate,” the coupling parameter λ:

).()(           
),()()1(),(

0

10

xVxV
xVxVxV

∆+=
+−=

λ
λλλ

(3)

The free energy difference between a state with the value of λ and the initial state (λ=0) is given

by the FEP connection formula:12

0
)exp(ln)0()( VTkGGG B ∆−−=−=∆ βλ , (4)

where the angular brackets stand for the configurational integral over the initial state. The

conformational sampling indicated by Eqn. 4 is generated according to the Boltzmann probability

associated with the initial state potential. As discussed in Section 2.1.1, convergence of

conformational sampling has been a major issue in free energy calculations, and the relationship

shown in Eqn. 4 doesn’t always lead to converged free energy estimates. To ensure adequate

sampling of the important conformations, FEP calculations are generally limited to free energy

differences of less than 2kcal/mol.4,18 However, the free energy differences for many chemical and

biological systems are larger than this. Therefore a multi-step approach is generally adopted. By

summing over the intermediate states along the λ coordinate, the total free energy change is

determined by

∆G = ∆G(λ i −1 → λ i)
i =1

n

∑ , (5)

where the interval λ=(0,1) has been divided into n small increments ∆λ.

An alternative approach to free energy calculations is the thermodynamic integration (TI)

method,4 which considers the ensemble average of the first derivative of the hybrid potential with

respect to λ at various values of λ:
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(6)

Although these methods have been successfully applied to assess the relative binding free

energy in a number of protein-ligand systems,4,19-24 they are computationally expensive because of

time-consuming sampling of nonphysical intermediate states. This computational expense has

hindered the extensive application of conventional free energy based approaches to the drug

design process.

2.1.3 Formulation of the umbrella sampling techniques

While FEP and TI are, in principle, umbrella sampling methods, the more conventional

format in which we consider umbrella sampling is that used to obtain the free energy along a

“reaction coordinate” ξ, typically a configurational coordinate. Here the “reactant” configuration

and the “product” configuration are represented by ξ = 0 and ξ = 1, respectively. The Helmholtz

free energy difference for a continuous coordinate, or the reversible work required to carry the

system from the reactant configuration to the product configuration, is often referred to as the

“potential of mean force”, W(ξ), and is derived from ρ(ξ), the probability density of the system:25

( ) )(ln ξρξ TkW Bi −= . (7)

This leads to the free energy difference ∆G=W(ξ=1)-W(ξ=0). As discussed earlier, inadequate

sampling may occur if W(ξ), differs by more than a few kcal/mol over the range of ξ. To

overcome this problem, the umbrella sampling technique26,27 has frequently been used to enhance

the sampling of conformational space along a reaction coordinate. In this approach, the original

potential V(x) is replaced by the modified potential V(x)+ U(ξ). The auxiliary potential, or

umbrella potential, U(ξ) is used either to flatten out the energy barriers along the reaction
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coordinate ξ, or to restrict the sampling of the coordinate to a specific region of conformational

space. In the former case, a more uniformly distributed density function ρ∗ (ξ), can be generated

with a fixed amount of sampling because transitions between the reactant and product

configurations are now more facile. In the latter case, the statistical sampling of important regions

in the configurational space of the reaction coordinate can be better controlled. In both cases, the

true probability density is recovered from the following equation:

ρ ξ( )=
ρ* ξ( )exp βU* ξ( ){ }

exp βU* ξ( ){ } * , (8)

where the notation <…>* emphasizes that the ensemble average is being taken over

conformations biased by the modified potential function.

In many applications, a single biasing potential is not sufficient to cover the whole range of

ξ and simultaneously produce good sampling. Thus a set of restraining potentials, Ui
*(ξ), are used

to shift the local minima in the desired direction. In this “windowing” approach, the potential of

mean force, Wi(ξ), in each window takes the form

( ) ( ) ( ) iiiBi CUTkW +−−= ξξρξ **ln , (9)

where the constant Ci is ( ){ } **1 expln ξββ ii UC −= . In order to achieve a uniformly good

estimate of the potential of mean force, the difference constants from successive simulation

windows has to be perfectly matched so as to make Wi(ξ) agree in the overlapping regions.4,28

Optimal data combining methods such as the weighted histogram analysis method (WHAM) can

be used to optimize links between simulations and produce the best possible estimation of free

energies.26,27,29-33 It is clear that umbrella sampling is a powerful technique and should be of use in

sampling “chemical space” as well as configurational space. I discuss an extension of umbrella

sampling to “chemical coordinates” in Section 2.3.
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2.2 Overview of approximate approaches for multiple-

ligand screening

When relative binding free energies of multiple ligands are to be evaluated, FEP and TI

require considerable amounts of computational time. This is because of the multi-step approach

necessary to compute incremental free energy changes and the many pairwise comparisons that

must be done. Alternatively, methods based on favorable interaction energies have been

developed to rapidly approximate the free energy.2,9,10,34-38 Although such approaches are relatively

rapid, they are inherently incomplete since the entropy contribution to the free energy is (at least

partially) ignored. Because of the potential importance of such entropic effects in chemical and

biological systems, the development of new methodology for the free energy calculations is an

area of active research. Recently, statistical mechanical “ab initio” free energy-based

computational methods have been developed to screen out the better binders from a group of

candidate compounds.6,13-16,39-47 These methods will be briefly reviewed in Section 2.3. In the

following I present an overview of the interaction energy-based approaches.

2.2.1 Linear interaction approximation

The linear interaction approximation (LIA) was introduced by Åqvist and co-workers11,48-51

to calculate absolute binding free energies via molecular dynamics (MD) simulations. A version

of the LIA equation takes the following form

SASAEEG JLCoulombbind γαβ +∆+∆=∆ −)( . (10)

In this expression, <∆E> is the energy difference between average contributions from ligand-

solvent and ligand-protein interactions for the bound and unbound states. The scaling parameter

for electrostatic interactions, β, is taken to be 0.5, from theories of ion solvation in which there is
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a linear response of the solvent to the electrostatic field of the ion. The scaling coefficient on the

Lennard-Jones terms, α, varies from system to system. Therefore, a large number of ligands with

known binding affinity have to be used to obtain the proper coefficients. Carlson and Jorgensen52

also added a penalty for cavitation, which is linearly related to the change in solvent-accessible

surface area (SASA) upon binding. This term was added to obtain positive free energies of

hydration for molecules such as hydrocarbons. LIA has been successfully applied to a number of

protein-ligands systems.11,48-50,52-54 However, the values of β and α seem to depend on both the

system and the force field.

2.2.2 Extrapolation from a single reference

An alternative approach, which is rooted in the FEP methodology described above, involves

the extrapolation of free energy differences from a single reference. The method was introduced

by Liu, Mark, and van Gunsteren for the estimation of free energies of related compounds.45,55 In

implementing this approach, the incorporation of a soft-core potential leads to an expansion in the

sampling of configurations for related ligands and consequently the range of correctly estimated

free energy differences.43 Mordasini and McCammon demonstrated the usefulness of the

extrapolation method for similar sized molecules and the difficulties of obtaining reliable results

for different sized molecules.56

Radmer and Kollman have introduced an approach they call PROFEC (Pictorial

Representation of Free Energy Components),46 as a tool for optimizing ligand affinity based on

extrapolations from a single dynamics simulation. The PROFEC contour maps can be used to

visualize how the free energy changes when additional particles are added to a residue of the

protein or to the ligand. The contour map is generated by evaluating the insertion free energy of a

test particle at various grid points near the residue of interest, using coordinates from a molecular
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dynamics simulation:

0
))(exp(ln)( gVTkgG B ∆−−=∆ β , (11)

where g is the coordinate of a grid point, ∆G is the free energy cost to insert the test particle at

that point, ∆V(g) is the interaction energy between the test particle and the system, and the angular

brackets indicate an average with respect to the reference state. PROFEC has been used to modify

a ligand to improve its binding affinity16,46 and selectivity,57 as well as to increase protein

stability.58 Recently, Pearlman developed a variant of this approach, the floating independent

reference frame (FIRF), which may be applicable to flexible ligands.47

2.2.3 Linear interaction approximation with continuum

solvent

The molecular mechanics with Poisson-Boltzmann /surface area approach (MM/PBSA)44 is

a semi-empirical method to calculate free energy differences between protein-ligand complexes41,

protein-protein complexes,42 and different forms of DNA and RNA.44,59 The basic approach used

in MM/PBSA follows the procedures used to analyze peptide and protein conformations as

outlined by Yang and Honig60 and Osapay et al.61 Shen and co-workers demonstrated that the use

of a single conformation together with the PB electrostatic and surface-area-dependent terms in

MM/PBSA can lead to successful estimation of the binding free energies for a number of

ligands.62,63 In the MM/PBSA method, the binding free energies are estimated from

)( )()()()(
receptor
solv

ligand
solvboundbind GGGG ∆+∆−∆=∆ , (12)

and

STGGEG SAPBgas −∆+∆+∆≈∆ . (13)

The solute configurations are sampled as “snap-shots” from a molecular dynamics
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simulation calculated using explicit solvent. For each solute configuration, the gas-phase energy,

Egas, is calculated without any solvent. Free energies of solvation are then re-introduced by using a

PB calculation for the electrostatic term (GPB) and a surface-area-dependent term (GSA) for non-

electrostatic contributions. Solute entropy contributions are estimated from (quasi-) harmonic

analysis. The differences (∆Egas, ∆GPB, and ∆GSA) are calculated between the bound state and

unbound states as shown in Eqn. 12. Variants of the MM/PBSA approach such as “computational

alanine scanning”42 or “computational fluorine scanning”41 were also introduced and shown to be

useful techniques to explore sensitivity of a given receptor site (or amino acid site in a protein) to

changes in composition.

2.3 Free energy based screening methods: λλλλ-dynamics &

Chemical Monte Carlo / molecular dynamics

In two sections (2.3.1 and 2.3.2), the basic ideas of the free energy based screening methods

are introduced. In the following sections, I describe our methodological development of free

energy based screening methods, which is the main methodology of the present thesis.

2.3.1 Basic formulation

“The free energy based screening methods” are an extension of the coupling parameter

approach used in the thermodynamic cycles. They differ, however, in the following aspects: (1) In

the coupling-parameter approach, a single λ is used to transform one ligand into another, whereas

in the free energy based screening methods, multiple λs (each corresponding to a given ligand)

are used. Because of this feature, the binding free energies of multiple ligands are evaluated

simultaneously. (2) In FEP and TI, λ is fixed during the simulation. In the free energy based
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screening methods, the λs evolve according to “equations of motion” via molecular dynamic or

Monte Carlo methods. In this section, I will briefly elaborate on the main ideas and formulas

associated with these approaches.

For a protein and a total of L ligands, a hybrid potential energy function is constructed as

follows

V0 (X,{x},{λ}) = Venv (X) + λi
2

i =1

L

∑ (Vi(X, xi) − Fi) , (14)

where 1
1

2 =∑
=

L

i
iλ .

In Eqn. 14, i indicates the ith ligand, X and xi denote the coordinates of environment atoms and

ligand i respectively, Venv is the potential energy involving the environment atoms only (i.e., those

atoms which are common to all protein-ligand pairs), Vi is the interaction energy involving ligand

i in the protein-ligand complex state and λ i is the coupling parameter associated with ligand i, and

Fi is a pre-calculated biasing potential, which may correspond to the relative free energy of ligand

i in the unbound state (relative solvation free energy). The coupling parameter λ is replaced by λ2

in order to avoid non-physical negative values in the λ-dynamics simulations.14

By properly coupling the system to a heatbath, the configurational partition function of the

hybrid potential is canonical:

( ) }{}{),()(exp}){},{,(
1

2
env0 λλβλ dxdXdFxXVXVxXZ

L

i
iiii∫ ∑ 















 −+−=

=
. (15)

In many cases, Fi may be rapidly evaluated using continuum solvation models such as the PB or

generalized Born (GB) methods.63-69 Note that Fi can also serve as a biasing potential to achieve

better sampling of the phase space of interest, and faster convergence of the calculations as shown

below.

The difference in binding free energy (∆∆Gj→i) between arbitrarily chosen ligands i and j
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can be obtained from })0{,1( 22
0 == ≠imiP λλ ,14,70 which corresponds to the amount of time ligand i

occupies λ i
2=1 during the simulation, is an indicator of the binding free energy of that ligand to

the protein receptor. Because the reference free energy appears in the hybrid potential of the

protein-ligand complexed state, the resulting free energy from Eqn. 16 directly corresponds to the

binding free energy difference. Therefore, these methods tend to provide better sampling for

ligands that have more favorable binding free energies. Furthermore, such calculations often

result in smaller statistical errors for the most favored compounds. There exists an analogy

between this formalism and competitive binding experiments carried out in the laboratory. In fact,

a competitive binding experiment usually consists of different ligands and a single receptor in

solution and the best ligands are determined by the probability that a ligand is bound to the

receptor. We have

( ){ }
( ){ }
( ){ }
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),()(exp
ln             

),(
),()(exp

),()(exp
ln             

,)()(

∫
∫
∫
∫

−+−

−+−
−=

−−
+−

+−
−=

∆−∆=∆∆ →

jjjenv

iiienv
B

ji
jjenv

iienv
B

solvboundij

FxXVXV

FxXVXV
Tk

FF
xXVXV

xXVXV
Tk

GGG

β

β

β

β
(16)

.
})0{,1(
})0{,1(

ln

,
})0{,1(
})0{,1(

ln

22
0

22
0

22
0

22
0

==
==

−=

==
==

−=

≠

≠

≠

≠

jmj

imi
B

jmj

imi
B

P
PTk

Z
Z

Tk

λλ
λλ

λλ
λλ

In the λ-dynamics method,13 both λ variables (coupling parameters) and the atomic

coordinates are propagated using molecular dynamics (MD). The dynamics of the system is

generated from an extended Hamiltonian:71,72
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where Tx and Tλ are the kinetic energies of the atomic coordinates and λ variables, respectively.
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The λs are treated as volumeless particles with mass mλ. Since the λ variables are associated with

the “chemical reaction coordinates”, the λ-dynamics method can utilize the power of specific

biasing potentials in the umbrella sampling method to overcome sampling problems that require

conventional FEP calculations to be performed in multiple steps.

Instead of using MD, the λ variables may also be sampled stochastically. In the CMC/MD

approach, Metropolis Monte Carlo method73 is used to evolve the λ-variables and molecular

dynamics is used to evolve the atomic coordinates. The Metropolis Monte Carlo criteria leads to

the generation of a canonical ensemble of the ligands when the following transition probability

from ligand i to j is used

( ))exp(,1min  jiji VA →→ ∆−= β , (18)

where ∆Vi→j = Vj – Vi. Both the λ-dynamics method and the CMC/MD method give the same

configurational partition functions (Eqn. 15). Therefore, Eqn. 16 can be applied to CMC/MD as

well. The hybrid Monte Carlo / molecular dynamics method was originally presented by Bennett74

and Tidor.70,75 The straightforward extension of this approach to multiple ligands, which is called

CMC/MD, was carried out by Pitera & Kollman.15

2.3.2 Iterative techniques using Weighted Histogram Analysis

Method

An iterative procedure using the weighted histogram analysis method (WHAM)26,27,29-33 was

developed to improve sampling of the chemical space, and therefore to make free energy

calculations converge more rapidly. The use of this method in conjunction with λ-dynamics is

described below.14 Its extension to CMC/MD is also straightforward.

 Since {λ}  is treated as a dynamical variable, just as the atomic coordinates, we use XTot to
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denote the phase space that encompasses X, {λ}, and {x}. Thus the hybrid potential in Eqn. 14 can

be rewritten as

∑
=

−=
L

i
iiTotrefTot FXVXV

1

2
0 )()( λ ,  (19)

where

),()()(
1

2
env ii

L

i
iTotref xXVXVXV ∑

=

+= λ .  (20)

When this potential is utilized in a series of λ-dynamics, or CMC/MD, the WHAM equations for

multiple reaction coordinates and at constant temperature can be readily applied to obtain the best

estimate of free energy using all of the data from n previous simulations
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( ) ( )∑=−
}{

2
}{

2

}{exp
λ

λm
Fm mPf ,  (22)

where Eqn. 21 and 22 are solved self-consistently. After the m-th iteration, the estimated free

energy relative to the reference free energy {F0} is

)0}{,1(ln 22
}{}{ 0 ==−= ≠ iki

m
FBFi PTkG λλ ,  (23)

and a new biasing potential for the next iteration is estimated as

}0{,
1

=
+ = Fi

m
i GF . (24)

The above procedure can be used to extract the free energy, Gi, of each ligand.

Since this approach biases the sampling of different ligands in the receptor by successively

better estimates of their relative binding free energy, the bound conformations of all the ligands

are expected to be sampled equally well after some number of cycles of simulation. Sometimes an

additional term ∆i may also be added to Eqn. 24 to either enhance or reduce sampling of a state



21

dominated by ligand i. As in all iterative procedures, an initial trial value of Fi must be given. If a

poor initial free energy is used, then the states with Fi<Gi will be sampled less frequently than

they would with Fi=Gi. Similarly, states with Fi>Gi will be sampled more frequently. The

approach was also applied with the CMC/MD method by Kollman and co-workers, which they

renamed the adapted CMC/MD method.16

In the iterative approach using a constant bias {F}, the free energy barrier is reduced each

successive iteration and therefore produces complete sampling of important configurations along

the coupling parameter (i.e., reaction coordinates). Furthermore, more complicated umbrella

potentials (e.g., see Eqn. 27) may also be applied with the iterative procedure.

The applications presented in Chapters 4 - 6 demonstrate the robustness of the iterative

procedure using WHAM.

2.3.3 Efficient sampling of the chemical coordinates

In the CMC/MD method, the stochastic sampling by MC steps permits one to restrict the

sampling of chemical space, i.e., the space of {λ}. For example, Kollman and co-workers15,16 limit

their chemical sampling only to transitions between the end points in their CMC/MD simulations

as follows:

λ i
2

i =1

L

∑ = 1  and  λ i
2 = {0,  1}. (25)

This condition allows sampling of the end states of interest exclusively. However, inefficient

sampling of the chemical states, such as trapping in one end state, may occur. This is prevalent

when there is a large free energy gap between the ligands. Trapping may, however, be partially

avoided by the addition of a few chosen intermediate states to bridge the end points. In the λ-

dynamics method, the λ-variables are treated as continuous variables, so smooth transitions

between the end points are expected, and generally observed.
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As shown in Eqn. 5, the conventional free energy calculation methods such as FEP and TI

require the introduction of intermediate states to obtain converged free energy differences between

the end points. In the free energy based screening methods, some ligands can serve as the

intermediate states connecting otherwise dissimilar end points. Nevertheless, there are potential

problems. For example, if the relative free energy of the intermediate states is lower than that of

the end points, most of the computational time will be spent exploring unphysical intermediate

states. Therefore, the relative free energy of the end points will be less well determined.

Conversely, higher energy intermediate states result in rare transitions in the chemical coordinates

and thus slow convergence.

The umbrella sampling technique26,27 can be utilized to overcome these difficulties. An

umbrella potential along the λ coordinates can be expressed as

Vum = V0(X,{x},{λ}) + Bi (λ i)
i=1

L

∑ , (26)

where the λ-dependent potential term, Bi(λ i), will serve as an umbrella (or a biasing) potential to

limit the range of {λ} and to increase the rate of transitions among potential wells separated by

high-energy barriers. A harmonic potential is commonly used to flatten the energy surface and

enhance sampling along the chemical coordinate λ:

( )202)( iiiii BkB −= λλ , (27)

where 0 < Bi
0 < 1. The condition (ki > 0) can be used to increase the transition between the end

points, while ki < 0 tends to increase sampling of the end points. The unbiased probability of the

bound states can be calculated by using the umbrella sampling formalism as follows (see Eqn. 8):
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where the angular brackets denote the ensemble average over the biased distribution and θ (x) is

a step function, which is unity when its argument is greater than zero but is otherwise zero. By

using the probability of the bound states, ∆∆G is obtained from
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where ∆Bi = Bi(λi
2 = 1) − Bi(λ i = 0)  and Pum is the probability function of the hybrid potential

with the umbrella potential. If ∆Bi=∆Bj, the effect of the umbrella potential will be canceled

completely. An iterative procedure is sometimes required to produce complete sampling of

important configurations along the chemical coordinates. In such cases, WHAM, as discussed in

the former section, can be used to process the sampling data in an efficient and general way.
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Another approach for efficient sampling along the chemical coordinates was suggested by

Tidor.70 In his work, simulated annealing was used to sample the chemical variables on the free

energy surface of the system (e.g., high temperature for the chemical variables and low

temperature for Cartesian variables). In a demonstration calculation, the method was applied to

simple molecules to select the one with the most favorable solvation energy. Agreement between

the observed and calculated trends was obtained.

In Chapter 6, I will show the application of a biasing potential (Eqn. 27) that successfully

enhances the sampling of the end states.

2.3.4 Sampling of the unselected ligands in the multiple

topology model

When a single topology representation of the ligand is used, i.e., one in which atoms that

change are all connected to a common framework, the configuration of the unbound ligands is

determined automatically. No ambiguity exists regarding the choice of the configuration of the

unbound ligands with λ equal to zero, making the choice of proper MC steps straightforward. To

see this, consider the detailed balance condition of MC for moves between ligands i and j using

the single topology

,
1

1)exp(
1

1)exp(      
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−−=
→

→ β , (31)

where αi is the probability of selecting the ligand i and Ai→j is the acceptance probability of a

move from ligand i to j. It is straightforward to demonstrate that the basic Metropolis scheme

shown in Eqn. 18 obeys this condition.73 However, the assignment of a single topology model for
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multiple ligands is a complicated problem, especially when the ligands have different shapes.

Furthermore, inadequate assignment of the common features in a single topology leads to small

overlap of the important configurations between the selected ligand and unselected ones. In

general, multiple independent topologies have been used for the multiple-ligand screening to

avoid these problems.15,16,39,40

In the multiple topology model, the unbound ligands tend to move significantly from their

preferred binding orientations and explore high-energy regions of conformation space when they

are only weakly coupled to their environment.39 This results in inefficient sampling of chemical

space. In CMC/MD simulations,16,57 the problem was addressed by the addition of a harmonic

potential between the centers of mass of all ligands, and the imposition of “ghost” forces on the

unbound ligands. The ligand “ghost” forces are those exerted on the unbound ligands by the

environment atoms. However, in the approach of Kollman and co-workers, the unbound ligands

remain invisible to the environment atoms. The effect of the harmonic potential is canceled out in

the calculation of ∆∆G, and thus moves with only this additional potential satisfy the detailed

balance condition. On the other hand, it is difficult to correct for the effect of the “ghost” forces

since they do not have physical origin. To understand the effect of “ghost” forces on CMC/MD

steps and statistical averages arising from such calculations, we consider the special condition in

which all environment atoms are fixed. With this idealization, the “ghost” forces can be

recognized as those coming from a restraining potential, Ri, arising from the fixed environment.

For this situation, the probability, αi(xi), of selecting the ligand i with the coordinates xi becomes

∫ −
−

−
=

ii

i
ii dxxR

xR
L

x
))(exp(
))(exp(

1
1)(

β
βα . (32)

The condition of detailed balance for an MC step between the ligand i with coordinate of xi and

ligand j with coordinate of xj can be written down as follows.
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where )()(   ),()( iijjjiiijjji xVxVVxRxRR −=∆−=∆ →→  and Ai→j is the acceptance probability

of a move from ligand i with xi to ligand j with xj. One acceptance rule that obeys the detailed

balance condition and yields the canonical ensemble in this case is

  Ai→ j = min 1,exp(β∆Ri → j )
exp(−βRj)∫
exp(−βRi )∫

exp −β∆Vi → j( )
 

 
 

 

 
 . (35)

If, in fact, the environment atoms are allowed to move, the rigorous estimation of Ai→j is unclear.

Kollman and co-workers have assumed that the effect of the “ghost” forces cancel for

comparisons of similar ligands, and used an acceptance rule following Eqn. 18 instead of Eqn. 35

in their CMC/MD simulations.16,57 This approximation was demonstrated for some systems to be

at least qualitatively reasonable.15,16

In order to overcome the problems that can occur in sampling configurations of the unbound

ligands when using a multiple topology model, we consider two types of restraining potentials.

For simplicity, both restraining potentials are assumed to disappear at the bound states:

0)1(")1(' 22 ==== iii RR λλ . (36)

The first type of the restraining potential for ligand i, Ri’, is defined as a function of X, xi, and, λ i,

and we have

∑
=

′+=′
L

i
iii xXRxXVxX

1
0 ),,(}){},{,(}){},{,(V λλλ . (37)

With a straightforward application of the umbrella sampling formalism, ∆∆G is obtained from
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Here, the summation is taken at the bound state (λ2=1) of the λ-dynamics trajectory, including the

restraining potential. Unfortunately, with this biasing potential the effect of the restraint (Ri’)

becomes too large to yield reasonable convergence as the number of the unbound ligands

increases.

Another type of restraining potential for ligand i, Ri”, is defined as a function of xi, and λ i. In

this case, the restraining potentials does not depend directly on environment atom coordinates,

and we have

∑
=

″+=′′
L

i
iii xRxXVxX

1
0 ),(}){},{,(}){},{,(V λλλ . (39)

Because R i”=0 when λ i 2 =1 and none of the restraining potentials depend on the environment

atoms, the partition function for the system when λ i 2 =1 can be expressed as follows.
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Using this relationship, ∆∆G can be written as two terms. The first term involves the probability

that a ligand is in the dominant states (λ2=1) during the λ-dynamics simulation and in the

presence of the restraining potential. The second term corresponds to the partition function of the

restraining potentials (the umbrella correction):
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The second term in Eqn. 41 is constant and may be estimated using free energy simulations or

semi-empirical methods. When the same restraining potentials are added to the calculations of the

solvation free energy difference for half of the cycle, the second terms are completely canceled in

a closed thermodynamic cycle. In this case, only the first term yields the ∆∆G of the ligands from

the λ-dynamics trajectory. However, the addition of these restraining potentials for the unbound

states may require the complicated implementation of calculations. Furthermore, additional

restraining potentials have a risk to hinder the complete sampling of the important conformations

at the unbound states.

When the ligands are similar and the entropy terms associated with the restraining potential

are expected to cancel, the second term can be approximated by an internal energy difference:
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This internal energy can be estimated by using the trajectory of the free energy based screening

simulations:
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The restraining potential should be chosen carefully since the important configurations for {Ri”}
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should have large overlap with those for {Vi}. The interaction energy {Vi} for the average

structure of the environment atoms is a reasonable choice for {Ri”}. In fact, it is an optimal choice

to bias the ligands that do not have large λ-values because it restrains these ligands to the vicinity

of the receptor. To represent fluctuations in this mean-receptor potential field, soft-core

representations of the van der Waals or electrostatic interactions can be used, or the overall

potential field can be scaled. In latter case, the restraining potential Ri” may be represented by

),(),( 0XxVxR iiii αλ =″ , (44)

where α is a scaling parameter. In this case, we have to choose the averaged coordinates of the

environment atoms, X0, properly. Since most protein atoms stay near the X-ray crystallographic

structure throughout the MD simulation, the environment atoms may be assumed to be rigid or

slowly varying as compared with ligand atoms. In this case, the restraining potential Ri“(X0,xi)

may be replaced by Ri”(X(t), xi):

)),((),( "
0

"
iiii xtXRxXR ≈ . (45)

The approximation shown in Eqn. 45 saves considerable computational cost because

interactions between X0 and {x} are eliminated. This approximation is only true when all

environment atoms are fixed at their average values during the simulation. But, if the environment

atoms are relatively rigid and any bias from the ligand atoms can be cancelled out, this

approximation (Eqn. 45) will be valid. Finally, with the inclusion of the restraining potential and

using the approximations given above, the binding free energy difference between ligands i and j

may be estimated as 39
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When iterative techniques using WHAM are carried out with the restraining potential, a set

of new biasing offsets {F} for (n+1)-th simulation, where all ligands are expected to compete



30

equally, can be calculated from
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The relative binding free energies may be estimated with the probability n
FP }{ 0 , which is best

estimated from WHAM equations (Eqns. 21, 22)
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I will present the effectiveness of this newly introduced restraining potential in Chapters 3,

5, and 6.

2.3.5 Incorporation of the generalized Born solvent model

The use of continuum solvent models will decrease the number of degrees of freedom in the

system, and consequently accelerate the convergence of thermodynamic properties by eliminating

the ensemble average of the solvent molecules. Moreover, the absence of the collisions between

the unbound ligands and mobile solvent enhances the overlap of the important configurations.

However, conventional numerical solutions to the Poisson-Boltzmann (PB) equations are too slow

for practical applications and one must use approximate analytical representations such as the GB

model originally proposed by Still and co-workers.65,76 Since the electrostatic solvation energy and

its derivative can be calculated analytically in the GB model, it may be applied to configurational

sampling using molecular dynamics.64,77-82 In the GB model, the solvent polarization energy, Gpol,

is approximated by the following equation.
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with 
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r
D

αα4

2

=  where ε denotes the dielectric constant of solvent; qi and qj stand for the

charges of atom i and j, respectively; rij represents the distance between atom i and j; and αi is

“generalized Born” radii of the atoms i in a specific molecular environment. The values of αi can

be estimated using

ipoli G ,/166−=α , (50)

and a linearized form of Still’s original empirical formula to get Gpol,i :83
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The values of λα and P1 - P5 can be determined by fits to PB solvation energies for a database of

compounds.83 The incorporation of the GB model into the free energy calculation methods using

the FEP/TI and λ-dynamics was carried out.84 The GB energy term should satisfy the following

conditions at the intermediate states: (1) the GB solvation energy changes continuously among the

end points, (2) when physically meaningful end points are sampled in Eqn. 14 (i.e., one ligand is

selected (λ i
2 = 1) or a set of identical ligands adopt exactly the same coordinates), the GB energy

of the multiple ligand system should be the same as that of the selected end point. From these

conditions, we present two possible definitions for the GB energy of the intermediate states:
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(53)

where env represents the environment atoms, k denotes the ligand number, and L represents the

total number of the ligands. The effective Born radii for the environment atoms can be calculated

from Eqns. 50 and 54.
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Effective Born radii for the atoms belonging to ligand k are calculated from Eqns. 50 and 55, and

we have
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A physical interpretation of “Type 1” coupling is that the environment atoms recognize the

weighted ligands, but each ligand sees environment atoms and itself with no weighting for the

calculation of the effective Born radius. From Eqn. 54, the effective Born radii of the

environment atoms directly depend on {λ}.

Type 2

A second coupling scheme to be considered is given in Eqn. 56.
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where αi
k represents the effective Born radius of environment atom i interacting with only the k-
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th ligand. Every environment atom has L effective Born radii (αi
m, m=1, L), in contrast, each atom

belonging to the ligand has one effective Born radius. The effective Born radius is given by
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The effective Born radii of the environment atoms are independent of {λ} in the “Type 2”

definition so that we need not re-calculate them for each trial chemical state used in the MC

procedure of CMC/MD simulations. On the other hand, “Type 1” is computationally more

efficient than “Type 2” especially when the number of ligands increases because “Type 2”

requires L separate calculations of the Born radius for all environment atoms. Both of these

generalized Born coupling models have been incorporated into the program CHARMM for use

with FEP, λ-dynamics and CMC/MD.

I will show the results of the free energy based screening methods combined with the GB

implicit solvent in Chapters 4 and 5.

2.3.6 Inclusion of the non-electrostatic terms

In general, the total solvation free energy is given as the sum of electrostatic terms, based on

the GB approach and non-electrostatic terms. Traditionally, non-electrostatic terms, consisting of

the solvent-solvent cavity term (Vcav) and the solute-solvent van der Waals term (VvdW), are linearly

related to solvent-accessible surface area (SASA):65,67

∑
∈

≈+=
ixXi

iivdWcaviiSA SASAVVxXV
,

, ),( σ , (59)

where SASAi is the total solvent-accessible surface area of atom i and σi is an empirical atomic

solvation parameter for atom i. VSA,i represents the non-electrostatic terms only when ligand i and
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environment atoms are considered. Since calculating the SASA and its first derivative at every MD

step is inhibitive, it is more efficient for the non-electrostatic terms (VSA) to be ignored during the

simulations and then their influence evaluated as a post-processing step. The total Hamiltonian

(H’), including non-electrostatic terms, may be written as
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where H0 (see Eqn. 17) is the reference Hamiltonian excluding the non-electrostatic potential, in

which the actual simulations are carried out. If H’ and H0 are regarded as the unbiased state and

biased state respectively, the non-electrostatic terms (-VSA) can be recognized as an umbrella

potential and their effect may be calculated using the umbrella sampling technique26,27 in the λ-

dynamics or CMC/MD trajectories. The probability for the unbiased state P’ can be written as

follows using umbrella sampling formalism,
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where the angular brackets represent the ensemble average over the biased state (H0), V is the

total potential energy that excludes the non-electrostatic terms, and the function θ(λ i
2-1) is a step

function which is one when its argument is zero but otherwise zero. The binding free energy

difference (∆∆G’) between ligand i and j in the unbiased state (H’) can be obtained from
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where the summation of exp(-βVSA,i) is carried out where ligand i takes the dominant state in the

simulations of the biased state (H0). By using Eqn. 62, the effect of non-electrostatic terms can be

estimated from the λ-dynamics or CMC/MD simulations without their direct inclusion. The effect

of non-electrostatic terms can be simply included in the FEP method without the umbrella

sampling technique. We consider non-electrostatic terms only at the end points, whereas the

actually sampled intermediate states did not contain them in our FEP simulations.

In Chapter 4, the effect of the non-electrostatic terms has been evaluated by using Eqn. 62.

2.3.7 The λλλλ-dependent partial charge model

When the ligands to be simulated have invariable atoms, the hybrid topology model, in

which invariable atoms are represented by a single topology, is anticipated to be more efficient

than the multiple topology model. The hybrid topology representation avoids uninteresting

configurational entropy contributions near end points, which requires additional efforts such as

the introduction of “ghost forces”15 or a restraining potential.39 The invariable atoms can be

assigned constant bonded and van der Waals parameters, but they may have λ-dependent partial

charges in order to provide the proper partial charges at end points. For this purpose, we

introduced a λ-dependent partial charge model along with the hybrid topology representation. The

system is divided into three sets of atoms: (1) the variable part of ligands (xi); (2) co-located atoms

(colo atoms), that are invariable parts of the ligands whose partial charge depends on λ (r); (3) the
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rest of atoms, called “environment atoms” (X). The partial charges of the colo atoms depend on

{λ} so that the Coulomb potential in vacuo and the GB energy related to them are altered

according to the movement of {λ}, while any bonded and van der Waals terms are independent of

{λ}. The hybrid potential function shown in Eqn. 14 is re-constructed as follows:
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Here, Venv is the interaction energy involving the environment atoms only or the non-electrostatic

energy excluding any variable part of ligands. Vi(x) is the interaction energy involving ligand i

except for electrostatic terms involving colo atoms. λ i is the coupling parameter associated with

ligand i. When the electrostatic terms are represented by the sum of the Coulomb energy in vacuo

and the GB energy, the electrostatic terms involving the colo atoms (Vcolo) are described as

follows:
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where the first term and second term correspond to the Coulomb energy in vacuo and the GB

energy, respectively, and Ci
k is the partial charge of the i-th colo atom in ligand k when λk

2 = 1.

The first derivative of Vcolo with respect to {λ} is used for the propagation of {λ} in the λ-

dynamics simulation. The λ-dependent partial charge model has been incorporated into the

program CHARMM.

The application of the hybrid topology λ-dynamics approach using the λ-dependent partial

charge model will be presented in Chapter 5.
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2.3.8 The Monte Carlo / Langevin dynamics method for

efficient sampling

A hybrid Monte Carlo and Langevin dynamics method (MC/LD), which is a modified

version of the CMC/MD method, is introduced for efficient sampling of the ligands. In this

method, the molecular system is divided into the environment atoms and the focus atoms. The

atoms of interest, such as a ligand, are chosen as the focus ones that require enhanced sampling.

Thus, the potential energy for the system is

),()(),( xXVXVxXV focusenvreal += . (66)

Here, X and x stand for the coordinates of environment atoms and those of focus atoms,

respectively, Venv is the potential energy involving the environment atoms only, and Vfocus is the

interaction energy involving the focus atoms. The focus atoms are represented as non-interacting

multiple replicas. At any point along the trajectory, one of the replicas (the “selected copy”), and

the environment atoms are sampled with the full force field Langevin dynamics (LD) method to

generate the canonical ensemble of the system, while the rest of the replicas are propagated via

LD with “ghost forces” to explore other local minima. The “ghost forces” due to the interaction

between the environment atoms and unselected replicas are applied only on the latter. After every

period of LD steps for propagating the atomic coordinates, a Monte Carlo sampling is applied to

choose a new “selected copy” from all replicas, which helps to “tunnel” to a different minimum

quickly without crossing the barrier. By properly coupling the system with a constant temperature

heatbath, the configurational partition function of the real system, comprising the environment

atoms and one selected replica, is

{ }[ ]dXdxxXVXVxXZ focusreal ∫ +−= ),()(exp),( envβ . (67)

The unphysical “ghost force” is derived from the potential Ri(X, xi). We assume that the



38

probability function of the unselected replica i is proportional to exp(-βRi(X,xi)), however, the

force derived from Ri(X, xi) on the environment atoms are ignored. Using this approximation, the

probability of choosing the trial move to the replica i with the coordinates xi in an MC step can be

written down as follows.
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where L is the total number of replicas. In Eqn. 68, the first term corresponds to the probability

of choosing replica i among all unselected replicas, while the second term corresponds to the

probability of the replica i taking the coordinate xi. Replication of the focus atoms along with an

MC step provides an efficient method to explore the configurational space of the focus atoms.

Because the forces on the environment atoms derived from {R} are masked, the coordinates of the

unselected replicas may have a time lag with respect to the coordinates of the environment atoms.

As a result, the “ghost force” may deviate from generating the probability distribution of the

unselected replica as shown in Eqn. 68. Since the trajectory of the real system is generated via LD,

small deviations during the MC step will be adjusted after a few LD steps. The detailed balance

condition of one MC step between the selected replica i with coordinate of xi and unselected

replica j with coordinate of xj can be described as follows.
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where P0(X,xi) is the probability of the real system taking the coordinates, (X,xi), and Ai→j is the

acceptance probability of a move from replica i to j. When the same potential R was applied to all

unselected replicas, jjj dxxR∫ − ))(exp( β  is equal to iii dxxR∫ − ))(exp( β . Using this relationship,

the acceptance probability is given by
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where )()(  and )()( iijjjiiijjji xVxVVxRxRR −=∆−=∆ →→ . Therefore, one acceptance

rule 73 that obeys the detailed balance condition and leads to the canonical ensemble is

( ){ }( )jijiji RVA →→→ ∆−∆−= βexp,1min  . (71)

The MC/LD method can be readily extended to be applied in various systems. For

example, to enhance the acceptance ratio, the uniform probability (1/(L-1)) used for choosing the

trial replica in the MC step (Eqn. 68) can be replaced by a weighted probability:
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where W(j) is the Rosenbluth factor, ∑
≠
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that satisfies the detailed balance condition and leads to the canonical ensemble is
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In another example, various types of “ghost forces” such as those derived from

multicanonical ensemble,86-90 or self guided methods91,92 can be applied to explore a wider

configurational space and efficiently detect local minima. In order to achieve both requirements,

different “ghost forces” can be assigned where some replicas explore larger configurational space

with the smoother “ghost forces”, and the others explore a smaller space with more realistic

“ghost forces” to detect the local minima. The type of the “ghost forces” can be exchanged using

the replica-exchange method.93 In this application shown in Chapter 7, we adopted a scaled

version of the actual potential as the potential between the unselected replicas and the

environment atoms (i.e., ),(),( ifocusi xXVxXR α= ).

 In a third example of the expandable character of MC/LD, the focus atoms can be chosen
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manually. In a system including explicit solvent molecules, exhaustive sampling of the solvent

configurations yields little information about the solute of interest. Hence, special techniques must

be utilized94 to limit the enhanced sampling only to those regions of the solute. Locally enhanced

sampling (LES), which has already been applied to a variety of problems,95-102 can also choose the

focus region manually. However, the focus region should be chosen in order not to yield large

errors from the real system since the environment atoms feel the mean force from all replicas in

LES.

The combinations of Monte Carlo methods and molecular dynamics have already been

applied to improve configurational sampling, such as the hybrid Monte Carlo technique103 and

MC(JBW)/SD method.104-106 In the hybrid Monte Carlo method, molecular dynamics provides trial

move configurations that are then evaluated with Metropolis Monte Carlo criteria to generate a

thermodynamic ensemble. The MC(JBW)/SD method uses Monte Carlo steps to jump between

conformational minima that are separated by free energy barriers. MC(JBW)/SD requires

knowledge of the local minima prior to the simulations. On the other hand, in the MC/LD method,

the unselected replicas explore the local minima by themselves. Thus, complicated systems such

as protein-ligand complexes, where it is difficult to know the local minima beforehand, are

appropriate for the MC/LD method.

An application of the MC/LD method will be presented in Chapter 7, where the binding

orientations of toluene in β-cyclodextrin are efficiently explored.
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Chapter 3

Cytochrome c Peroxidase - Heterocycle

Derivatives

Based on

Shinichi Banba and Charles L. Brooks, III,

“Free energy screening of small ligands binding to an artificial protein

cavity,”

J. Chem. Phys., 113(8), 3423-3433 (2000).

Shinichi Banba, Zhuyan Guo, and Charles L. Brooks, III,

“Efficient sampling of ligand orientations and conformations in free

energy calculations using the λ-dynamics method,”

J. Phys. Chem. B, 104(29), 6903-6910 (2000).
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3.1 Introduction

A multiple topology representation is essential when the topologies or binding modes of the

ligands are different. Furthermore, assignment of force field parameters for the common atoms

that are defined by the single-topology is complicated because they may depend on {λ i}.

Therefore, extending the λ-dynamics method to a multiple topology representation is very

important in applying it to the discovery of new therapeutic ligands. Unfortunately, the multiple

topology model is known to yield the slow convergence near the end points of the transformation,

λ =0 or 1 even in FEP simulations.107,108 With a multiple topology model, when λ is close to zero,

the ligands become detached from the system and may adopt unphysical high-energy states. The

λ-dynamics simulation can trap specific ligands in local minima in λ space because the detached

ligands (λ2 ~0) take mainly high-energy states and seldom return to the important structures

(lower-energy states). This phenomenon makes it difficult for the λ-dynamics method employing

a multiple topology model to accurately estimate the binding free energy difference within a

restricted computational time. Therefore, in this calculation a new restraining potential (Eqns. 44-

45) is introduced to the λ-dynamics method to enhance the sampling efficiency in λ-space.

By introducing the restraining potential as shown in Eqn. 44, at unbound states (λ2 ~ 0), the

barriers between various binding modes are reduced due to the scaling of protein-ligand

interactions with the scaling parameter α. This speeds up the exploration of orientational degrees

of freedom. For the same reason, the conformational sampling of ligands is also enhanced. In drug

design applications, the 3-D structure of a protein-ligand complex is often known for only one or

two ligands. The initial structures of chemically related putative ligands are prepared by

superimposing them with the known compound’s complex structure or by using computational

methods such as docking. Although many docking algorithms and programs have been recently

developed,9,10,109-112 these approaches do not always give the true binding orientation or
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conformation.112-114 Furthermore, the fact that the docking scoring function is often not general

results in errors in estimating the binding affinity, making it difficult to identify the correct

binding structure out of putative binding conformations detected by these docking methods.115,116

Theoretically rigorous methods, such as FEP12 or TI,4 not only are computationally too intensive

to become a practical tool in drug design, but they also require that the initial orientation of the

ligand is close to its true bound orientation. Furthermore, these methods cannot be applied

straightforwardly to ligands that have multiple binding modes. Consequently, there is no viable

way to search a preferred binding orientation or conformation on the basis of free energy.

 In this application, we are interested in applying the λ-dynamics method using a multiple

topology model to identify and rank the tight binding ligands from a large number of compounds

within a short simulation time. We also investigate the effectiveness of a newly introduced

restraining potential. The results from the λ-dynamics method are compared with experimental

binding affinity data and FEP calculations for a set of 10 heterocycle derivatives interacting with

cytochrome c peroxidase. Furthermore, we also show that the λ-dynamics method using a

multiple topology representation is capable of addressing the inefficient sampling problems and

provides a means to explore binding orientations or conformations on a free energy basis.

3.2 Computational details

As shown in Table 1, the system we have studied is a set of small cationic molecules that

bind to an artificial cavity created inside cytochrome c peroxidase (CCP).117,118 CCP is an enzyme

containing heme. To perform its function, the enzyme is first oxidized by hydrogen peroxide, then

it oxidizes its substrate, cytochrome c. As an intermediate in this process, the tryptophan near the

active site is oxidized to a free radical. In order to design an enzyme that oxidizes a specific

molecule, mutagenesis was used to create an artificial cavity by replacing the tryptophan by a
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glycine residue. 117,118 X-ray crystallographic structures of the ligands complexed with the protein

indicate that certain molecules bind specifically to the cavity. 117,118 The binding affinity of a series

of structurally characterized protein-ligand complexes has been measured using an optical

spectroscopy technique. The initial coordinates of the complexes were taken from the X-ray

crystallographic structures (provided by Professor D. Goodin at The Scripps Research Institute).

Although the 10 ligands are chemically very related and the protein structure is preserved, the

binding orientations of the ligands observed in X-ray structures are different. Figure 2 shows the

initial structure for the λ-dynamics simulations prepared by superimposing all crystal structures.

Chemically related compounds mostly take similar orientations, however one substitution

sometimes changes the binding orientation (e.g. nmei → dime). Because of such changes,

application of the single topology model is not appropriate even though assigning a single

topology to the common atoms is possible.

Table 1.  The structures of five-member ring ligands.

N
Z

R2
R3

R4
R5

R1

Name Z R1 R2 R3 R4 R5

3met S - H CH3 H H

2am4 S - NH2 H CH3 H

2am5 S - NH2 H H CH3

34di S - H CH3 CH3 H

234t S - CH3 CH3 CH3 H

345t S - H CH3 CH3 CH3

nmei N CH3 H H H H

nvi N CH=CH2 H H H H

2eti N H CH2CH3 H H H

dime N H CH3 CH3 H H
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34di

nmei

2am5

2eti

3met234t

nvi

345t2am4

dime

Figure 2.  The initial orientations of the

ligands in the protein-ligands model

prepared by superimposing the Cαααα’s of the

protein structures obtained by X-ray

crystallography. Key: Nitrogen-black,

Sulfur-gray, Carbon-white. Hydrogen

atoms are not shown for clarity.

Figure 3.  Pairing of ligands for the

relative binding free energy (∆∆∆∆∆∆∆∆G)

calculations using the FEP method. The

arrow shows the direction of chemical

modification in the FEP calculation.

All computations were performed using the CHARMM molecular dynamics package and

force field.119 The missing parameters for the ligands, including bond, angle, dihedral and

improper energies, were obtained based on QUANTA parameters for similar atom types and

scaled up or down to be consistent with CHARMM parameter set. The charges of the ligands were

obtained from quantum chemical calculations (GAUSSIAN 94, calculations was carried out at the

US Army Research Laboratories by Drs. S.W. Bunte and G.M. Jensen). Water molecules were

represented by the TIP3P water model of Jorgensen.120 All bonds containing hydrogen atoms were

constrained to their parameter values using the SHAKE algorithm.121 Nonbonded interactions

were treated using a cutoff of 12.4Å along with van der Waals switching between 8.0Å and 10.0 Å



46

and electrostatic shifting functions. The temperature of the system was maintained near 300K by

coupling the non-hydrogen atoms to a Langevin heatbath. The λ-dynamics and FEP simulations

used a time step of 1fs and 1.5fs, respectively. Molecular dynamics simulation of the solvated

protein-ligand complex, which was initially equilibrated in a 20Å sphere of water and then

partitioned using a 12Å reaction zone and a 3Å buffer region, was carried out using the stochastic

boundary molecular dynamics method.122 The final solvated protein-ligands system contained

1677 protein atoms, one heme group, 21 crystal water molecules, and 88 solvent water molecules.

The λ-dynamics calculations were carried out with the solvated protein-ligands system including

4,6, or 10 ligands for 300ps with the initial 30ps used as an equilibration phase. The λ trajectories

were saved every 15fs and were used for later analysis. The 4-ligand system included four

imidazolium derivatives (i.e. 2eti, dime, nmei, and nvi), while the 6-ligand system included the six

thiazolium derivatives (i.e. 234t, 2am4, 2am5, 345t, 34di, and 3met). In this study, we are

interested in not only identifying the better binders from a number of putative candidates but also

the assessment of the λ-dynamics method with a multiple topology model. Therefore, it is

important to have a large overlap of energy distributions of the ligands in order to obtain sampling

of multiple ligands in the λ-dynamics simulation. From earlier results with the trypsin-

benzamidine derivatives system, it has been observed that molecules with a binding free energy 5

kcal/mol higher than the lowest one would not compete.14 Short λ-dynamics simulations showed

that one ligand, 2am5, was dominant throughout the simulation and the other ligands showed no

sign of competing. Therefore, a 5 kcal/mol bias was added to the Fi of 2am5 in order to render the

other ligands competitive in all λ-dynamics simulations. The effect of the constant bias was

removed by subtracting 5 kcal/mol from ∆∆G of 2am5.

In order to explore the efficiency of sampling by the λ-dynamics method, we also prepared

the initial structures with putative orientations that mimic the actual situation wherein the 3-D
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structures of protein-ligand complex were known only for some ligands. The X-ray

crystallographic structure of 234t was chosen as a reference and the structures of the other ligands

were generated by superimposition of their five membered rings. Thus, the generated binding

orientations of 2am5, nvi, and nmei were very different from their X-ray crystallographic

structures, while those of the other ligands were close to the conformation found in their

crystallographic structures.

To assess the results of the λ-dynamics simulation method, we also performed conventional

FEP calculations with the solvated protein-ligand complex system. To get ∆∆G between all 10

ligands, FEP calculations should be carried out with nine ligand pairs as shown in Figure 3. The

nine pairs were decided by considering chemically related ligands and similarity of their binding

orientations. The pair (34di and dime) between the thiazolium and imidazolium derivatives was

selected due to the large overlap of their van der Waals volumes. The larger volume ligand was

defined as reactant in each pair. We performed simulations with λ=0.03125, 0.125, 0.325, 0.5,

0.675, 0.875, and 0.96875, respectively. The free energy change for each simulation was

calculated using the double-wide sampling technique.4 For each λ, a 30 ps equilibration period

was followed by 120 ps of data collection.

As shown in Eqn. 14, in order to perform the λ-dynamics calculation of the relative binding

affinity of the ligands, the free energy of the ligands in the unbound state (Fi in Eqn. 14) has to be

predetermined. This is also done using the FEP simulation method. In the solvation FEP

simulations, the systems consisted of the selected two ligands and 498-503 water molecules in

24.8 Å cubic box with periodic boundary conditions. The same nine pairs shown in Figure 3 were

also chosen to determine the set of Fi values. Water molecules whose oxygen overlapped within

2.8 Å of any non-hydrogen atoms in the solute molecule were removed. We performed

simulations with λ = 0.125, 0.5, and 0.875, respectively. For each λ, a 30 ps equilibration period
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followed by 60 ps of data collection was performed.

3.3 Results and discussion

3.3.1 Use of a restraining potential to enhance λλλλ-space

sampling

For the 6-ligand system that includes 234t, 2am4, 2am5, 345t, 34di and 3met, λ-dynamics

simulations with and without the restraining potential (Eqn. 44) were carried out. While the

energy of the dominant ligand was low, the potential energy of the other ligands increased rapidly

in the early stages of the λ-dynamics simulations without the restraining potential as shown in

Figure 4. The unbound ligands (λ2~0) finally reached a high-energy state causing instability in the

integration algorithm. As the energy difference (Vi –Fi) governs the movement of λ i, the ligand

selected initially remains dominant throughout the simulation. The distributions of (Vi-Fi) also

indicate that overlap between the potential energy distribution of the dominant ligand and the

others is very poor. Such a poor overlap prevents the λ-dynamics simulation from changing the

dominant ligands. Addition of the restraining potentials resulted in considerable overlap in the

distribution of (Vi-Fi) of the ligands and enhanced the λ-space sampling as shown in Figure 4.

Furthermore, stability of the λ-dynamics increases dramatically and no simulations yielded

instability in the integration algorithm. These results clearly show that restraining potentials are

required to avoid trapping in local minima in the λ space when we adopt the multiple topology

representation.
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Figure 4.  Comparison of sampling in λλλλ-dynamics when different restraints are used. (A-

C) Data from a λ λ λ λ-dynamics run with a 6-ligand system and no restraining potential. Only

results for the three ligands (234t, 2am5, and 34di) are shown for clarity. The trajectories of

the energy differences in kcal/mol (Vi -Fi) (Eqn. 14) and λλλλ i
2
 are shown in (A) and (B),

respectively. (C) shows the distribution of (Vi - Fi). The simulation was terminated after 27ps

due to instability of the numerical integrator. A bias of 5 kcal/mol was subtracted from Fi of

2am5 to make the other ligands competitive. (D-F) The simulation conditions, except the

addition of the restraining potentials, are identical to the run shown in (A-C).

3.3.2 Relative binding free energy estimation by λλλλ-dynamics

In the binding affinity calculations, as shown in Eqn. 46, the relative binding free energy of
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a ligand is related to the amount of time that the ligand has λ2=1 during a λ-dynamics simulation.

Since λ is a continuous variable, we need to select a cutoff value to approximate the λ2=1 state.

Here we chose the cutoff as λ2=0.8. From each λ trajectory, the number of times that a ligand

reaches λ2>0.8 can be computed. The relative binding free energy is calculated according to Eqn.

46. Correction terms as shown in Eqn. 43 also have to be calculated. According to Eqn. 43, the

average of the restraining potential of ligand i when λ i =0 corresponds to its correction term. We

assume that λ=0 if λ2 is smaller than 0.05. In order to verify the effect of the cutoff values, the

relative binding free energy differences estimated with two different cutoffs (0.8 and 0.9) for the

dominant state were compared. They were in very good agreement (correlation coefficient = 0.997,

slope = 1.02 for α=0.3). Moreover, a different cutoff (0.05 and 0.1) for correction terms also gave

good correlation to ∆∆G (correlation coefficient = 1.00, slope = 0.998 for α=0.3). These results

showed that the free energy landscape in the λ-dimensions is smooth at least for the CCP system.

As shown in Figure 5, a short time λ-dynamics simulation with the 10-ligand system

successfully estimated the binding free energy differences as compared with those from FEP

simulations and experiment. The scaling parameter α (Eqn. 44) also should be selected to obtain

optimal sampling in the λ-space. To assess the effect of α, five different values (0,1, 0.2, 0.3, 0.5,

and 0.75) were used as α. As shown in Table 2, all α values except for 0.1 provided reasonable

estimates of the relative binding free energy as compared with FEP results. A small α value only

weakly restrains the unbound ligands in low-energy regions. Therefore, by using a very small α

value (e.g. α=0.1), the λ-dynamics simulation was trapped in local minima in λ-space and failed

to yield converged ∆∆G values (data are show) within a restricted computational time. On the

other hand, a large α value strongly biases the unbound ligands to low-energy regions. The total

probability that any ligand stays within λ2> cutoff decreases rapidly as α increases, since large α

values stabilize the intermediate states. Even though the probability of effective sampling, in
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which any ligand reaches the dominant state (λ2>cutoff), is very small when α=0.75, good

agreement with the FEP result was obtained. The correction term mainly contributes to ∆∆G when

α is large, and the statistical error in the probability term shown in Eqn. 46 can be mostly ignored

when α=0.75.

Table 2.  Summary of relative binding free calculations.a

ligand ∆∆G(bind)

(Exp.)

∆G(free)b,c

(FEP)

∆G(bound)b

(FEP)

∆∆G(bind)

(FEP)

∆∆G(bind), α=0.2

(λ-dynamics)

∆∆G(bind), α=0.3

(λ-dynamics)

∆∆G(bind), α=0.5

(λ-dynamics)

234t 3.22 18.00 28.96 10.96 10.57 11.46 11.90

2am4 2.11 -23.90 -15.65 8.25 9.12 10.55 8.46

2am5 0 0 0 0 0 0 0

345t 2.29 10.63 18.02 7.39 8.42 9.53 9.80

34di 1.21 -4.14 3.71 7.85 6.85 9.96 10.76

3met 2.26 -7.67 2.40 10.06 8.04 9.20 8.50

2eti 2.79 15.55 25.47 9.92 N.D.d N.D.d 11.29

dime 1.04 12.89 17.18 4.28 5.04 6.15 6.43

nmei 1.27 8.66 12.71 4.05 6.03 5.87 6.47

nvi 1.86 23.39 30.99 7.60 6.63 6.18 7.58
a Free energy changes are in kcal/mol and relative to 2am5.
b Statistical uncertainities are ~±0.5 kcal/mol for all FEP calculation results.
c Free energy half-cycle with ligand free in solution.
d Not determined because they does not reach λ2>0.8 during the entire simulation time.
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Figure 5.  Comparison of relative

binding free energy of the ligands between

the λλλλ-dynamics and FEP method (a) or

experimental results (b).

Figure 6.  Trajectory of λλλλ2222
    values for 10

ligands with αααα=0.3.

To demonstrate how the λs evolve during the simulation, the λ-trajectories are shown in

Figure 6 (α =0.3). The tight binding ligands like 2am5 and dime have sampled the dominant

states often enough to give converged ∆∆Gs, while weak binding ligands such as 234t or 345t

have not been sampled enough. 2eti does not reach λ2>0.8 during the entire simulation time

(noncompetitive) when α = 0.3. 2eti is considered to have a higher binding free energy than the

others, according to our λ-dynamics calculations, which is consistent with the FEP results
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3.3.3 Convergence of free energies with the restraining

potential

As shown in Eqn. 46, relative binding free energies are estimated by two terms (i.e.

probability term and the correction term). The cumulative running average of each term is shown

in Figure 7. The ∆∆Gs of poorly binding ligands show large jumps occasionally due to their poor

convergence of the probability terms, but the probability terms for better ligands reach constant

values within 270ps of simulation time. The convergence of the correction terms (Ui’) seems to be

faster than that of probability term.

A 1350 ps λ-dynamics simulation with 10-ligand system was carried out with α =0.3 to

verify the convergence. The result was divided into five segments (0-270ps, 270-540ps, 540-

810ps, 810-1080ps, 1080-1350ps) and ∆∆Gs were estimated independently in each segment. The

five ∆∆Gs estimated in each segment were used to get average ∆∆G and statistical deviation as

shown in Figure 8. In general, strongly binding ligands tend to have small statistical errors, while

∆∆G of weakly binding ligands include large statistical errors as predicted by the running average

of ∆∆G. Nevertheless, a 270ps simulation is enough for the λ-dynamics method to screen out the

tight binding ligands from the putative candidates. If we want to estimate accurate binding free

energy differences efficiently even with poor ligands, constant biasing potentials are required.
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Figure 7.  The cumulative averages of

the probability term, the correction term

(see Eqn. 46) and the total ∆∆∆∆∆∆∆∆G (in kcal/mol)

from a λλλλ-dynamics simulation of a 10-ligand

system. The biasing potential of 2am5, which

is selected as reference, is not removed. A

value of 0.3 was used for αααα. Only the results

of four ligands (234t, 2am4, 2am5 and dime)

are shown for clarity. Key: 234t-dotted line,

2am4-dashed line, 2am5-dotted and dashed

line, dime-solid line.

Figure 8.  The relationship between the

standard deviation and average ∆∆∆∆∆∆∆∆G (both

in kcal/mol). The data were estimated from

five 270ps λλλλ-dynamics trajectories. 2eti was

not included in the analysis. The standard

deviation of j-th ligand was calculated as

1
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N indicates the number of trajectories;

∆∆∆∆∆∆∆∆Gj
i indicates the relative binding free

energy of j-th ligand from the i-th trajectory.
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To further explore the convergence of ∆∆G with the λ-dynamics method, we also carried out

a λ-dynamics simulation using a system that contained ten copies of the ligand 34di. The free

energy differences among these ligands should be zero if the λ-dynamics simulation had fully

converged. As shown in Figure 9, when α=0.5, convergence is slow. The total probability of

effective sampling, where any ligand remains at λ2 > cutoff is very small with α =0.5 because a

large α value keeps all ligands in very low-energy states and intermediate states are relatively

stable. Especially when all ligands are identical, the intermediate states have similar potential

energies. With a small α value like 0.2 or 0.3, ∆∆G between the most favored and least favored

reaches 0.6 kcal/mol after only 270ps sampling. These small statistical errors are comparable with

those in FEP calculations, whereas the simulation time required for the λ-dynamics simulation is

much smaller than for FEP method. The results of ∆∆G estimated by the λ-dynamics method

indicate that the choice of α influences the convergence of ∆∆G, but does not affect the ∆∆G itself.

The proper choice of the α value is important for faster convergence because it influences the

ratio of the effective probability that ligands are in the dominant state and the change of the

dominant ligand. The optimal value of α can be selected by a short time test simulation with the

system that contains the identical ligands.
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Figure 9.  The cumulative running averages of the total ∆∆∆∆∆∆∆∆G (in kcal/mol) from a λλλλ-

dynamics simulation with ten copies of the ligand (34di). One of the ten 34di ligands was

chosen as reference. The results for two ligands, which had the highest and the lowest ∆∆∆∆∆∆∆∆G,

are shown.

3.3.4 Orientational motion of ligands inside the pocket

In the course of the λ-dynamics trajectory, we noted significant motion of the ligands within

the binding pocket. We thus examined the orientational sampling of the ligands in the binding

pocket. The efficient sampling of ligand orientations during a simulation is important for a good

estimate of ligand binding free energy. Figure 10 gives the distribution of the dipole moment of

the ligands projected along a fixed (lab frame) direction. Since the dipole moment is somewhat
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ill-defined and coordinate system dependent when the total charge of each ligand is not zero, in

this analysis, the center of geometry of the selected ligand atom was used as origin for the

coordinate system in which the dipole moment is calculated. It is clear that from Figure 10 that

there are two dominant orientations for the ligand 34di in the bound state (λ2>0.8), the peak to the

left is in alignment with the crystallographic binding orientation, while the one to the right is not.

Judging from the relative bound state population of the two orientations, which could be used to

determine the relative binding free energy of the two modes, the crystallographic binding

orientation is more stable by about 0.4kcal/mol than the alternative binding orientation detected in

the λ-dynamics simulation. However, the alternative binding orientation is also stable enough to

contribute to the binding free energy since 34di reached the λ2 threshold in this alternative

orientation as well. Although the other ligands adopt dominant states (λ2>0.8) only when their

binding orientations are close to X-ray orientations, the λ-dynamics method also explores a larger

ligand orientational space than conventional MD as shown for nvi in Figure 10-b. Figure 11-a,b

illustrate snapshots of X-ray and the alternative binding orientation sampled for 34di, respectively.

The coordinates were extracted from the portions of the λ-dynamics trajectory having λ2>0.8 for

this ligand, which corresponds to the ligand in the bound state. The relative orientations of the

ligand are obtained by superimposing the protein backbone structures. The root mean square

deviation of protein backbone is ~0.6Å. The presence of the alternative orientation in 34di

proposed here awaits experimental verification.
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Figure 10.  Distribution of the dipole orientation projected along a certain direction (X-

axis) of 34di and nvi from a 270ps λλλλ-dynamics trajectory for a 10-ligand system. The dipole

moment of the initial X-ray crystallographic structures with 34di and nvi are 0.1 and 2.2,

respectively. The dashed line shows the results of conventional MD including only a single

ligand. The solid line shows data from the entire λλλλ-dynamics trajectory. The dotted line shows

the distributions that include only the bound states (λ(λ(λ(λ2222
    >>>>0.8) from the λλλλ-dynamics trajectory.

There are two dominant orientations with 34di; the X-ray crystallographic orientation and an

alternative orientation. Sampling of the ligand orientation by conventional MD was restricted

around the initial X-ray crystallographic structure.
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Figure 11.  Snapshots of the binding modes for 34di and nvi inside the binding pocket

taken from a λλλλ-dynamics trajectory with λλλλ2222
    >0.8, which corresponds to the bound states. The

X-ray binding orientation (a) and alternative binding orientation (b) are shown for 34di. (c)

and (d) show the X-ray conformation and alternative conformation for nvi. Only the ligands,

heme, Asp-235, His-175 are shown for clarity. The carbon atoms for heme, protein, and the

ligands are shown in green, orange, and white, respectively. The oxygen, nitrogen, hydrogen

are shown by red, blue, cyan, respectively. Iron atom is shown by the sphere.

3.3.5 Conformational sampling of the ligands inside the

binding pocket

The sampling of ligands inside the protein cavity was also investigated. It should be noted

here that we are not addressing the sampling of protein conformations. Although the protein is

free to move, we are not focusing on the issue of protein conformational changes upon binding.

The protein conformation remains close to its initial conformation during the λ-dynamics
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simulation (total backbone rmsd ~0.6Å). Following the same argument as in the previous section,

the sampling of ligand conformations is enhanced due to the scaling of forces. Therefore, if a

ligand has multiple binding conformations, the method will be more likely to identify them than

regular dynamics simulations. Since the conformation of a molecule is determined by its torsional

angles, we chose the torsional sampling of nvi as an example (see Figure 12 for a definition of the

torsion). This torsion seems to be appropriate for investigating the efficiency of conformational

sampling because it has two local minima and the barrier between them is too high for

conventional MD to sample both states within the restricted computational time. Figure 12 shows

that this torsional angle sometimes changes between two local minima (φ=0o and 180o) within a

300ps simulation time, while in conventional MD it stays in one local minimum (φ=0o) within the

same simulation time. These results indicate that the sampling of torsional degrees of freedom is

enhanced by the λ-dynamics method. Thus, the λ-dynamics calculation predicts an alternative

binding conformation (φ=180o) for nvi because this ligand reached λ2>0.8 (see Figure 12) at both

the X-ray crystallographic conformation and φ=180o. The alternative binding conformation is

shown in Figure 11d. It is difficult to get the free energy difference between these two

conformations due to the restricted samplings. But, according to the force field that we used in

this simulation, the alternative conformation seems to be more stable than the X-ray

crystallographic conformation in our force field. The consideration of alternative conformations

might lower the ∆∆G of nvi estimated by the λ-dynamics method over that estimated by the FEP

method. Enhanced torsional sampling is an interesting feature of the method.
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Figure 12.  Change of torsion angle ((((φφφφ)

for nvi during simulations. The dot and

squares show the results of a conventional

MD simulation and λλλλ-dynamics simulation,

respectively. The torsion angle sometimes

makes transitions between two minima (0o

and 180o) only in λλλλ-dynamics simulation.

The trajectory of λλλλ2222
 for nvi is also shown.

Figure 13.  Change of dipole orientation

projected along the x-direction ((((µµµµx) of 34di,

nmei and nvi from a conventional MD

simulation. Each simulation started from a

putative and incorrect initial orientation.

The dashed line and dotted line show the

dipole orientation of the initial orientation

and X-ray orientation, respectively.

3.3.6 Exploring stable ligand binding orientations with λλλλ-

dynamics

λ-dynamics simulations from putative (and incorrect) initial conformations were carried out

to illustrate its sampling efficiency. To contrast the results from the λ-dynamics method,

conventional MD simulations of single ligand-protein complexes were also carried out with three
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ligands (2am5, nmei, and nvi). The same initial structures were used for both the λ-dynamics

simulations and the conventional MD simulations. As shown in Figure 13, conventional MD from

our initial structures were all trapped in local minima near the initial structures and failed to move

to the X-ray crystallographic binding structures. On the other hand, in the λ-dynamics simulation

with the 6-ligand system, 2am5 was trapped in two local minima but reached the X-ray

crystallographic orientation within 300ps (Figure 14). In a run with a 4-ligand system, which

includes the 4 imidazolium derivatives, both nmei and nvi also reached the X-ray crystallographic

structures within 300ps simulation (Figure 14). The 10-ligand system, including both thiazolium

and imidazolium derivatives, was also tested to confirm sampling efficiency. The three ligands

(2am5, nmei, and nvi) successfully reached their crystallographic orientations within the 300ps of

the λ-dynamics simulation (data not shown). Moreover, these ligands reached the bound states

(λ2>0.8) only after they reached their X-ray crystallographic binding modes with all λ-dynamics

simulations started from the incorrect orientations (Figure 14). These results clearly show that

when a ligand adopts λ2 values near zero rapid exploration of low energy orientations and

conformations occur due to the scaling of the potential. Then, at a later time, fluctuations in the

protein configuration, the ligand conformation, or both occur to induce a “binding mode”

configuration of λ. Furthermore, these results also show that the λ-dynamics method can be

applied to explore the docking of the ligands on a free energy basis.
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Figure 14.  Change of dipole orientation ((((µµµµx) of 34di when (a) 6 ligands are considered and

(b) those of nmei and nvi with a 4-ligand system. The λλλλ-dynamics simulations started with

incorrect initial orientations for the ligands. The trajectory of the λλλλ2222    values for 34di, nmei and

nvi are shown at the same time. The dashed line and dotted line show the dipole orientation of

the initial and X-ray orientation, respectively.

3.4 Conclusions

 We have presented a set of the promising observations for ligand binding ranking and

exploring ligand binding orientations and conformations using the λ-dynamics method. These

include the consistency of the λ-dynamics calculations with FEP calculations and experimental

results, the enhanced sampling of orientational and conformational degrees of freedom, and rapid

search of binding orientations during a λ-dynamics simulation. The restraining potential is very

effective and important for the application of λ-dynamics with a multiple topology representation.

The λ-dynamics results were obtained at far less computational cost than FEP calculations due to

addition of the restraining potentials.

The approximations embodied in Eqn. 45 may be problematic if the ligand bound

conformation of the protein is different for each ligand and large structural changes of the
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environment atoms take pace during binding. Such large motions in protein structure seldom

happen within the limited sampling time of λ-dynamics simulations, while the movement of

ligand atoms is enhanced by scaling the potential.40,123 Therefore, multiple ligand free energy

methods like λ-dynamics or CMC/MD15,16 are basically limited to the groups of ligands in which

the optimal binding conformation of the protein is similar for all ligands. Therefore, the

approximation shown in Eqn. 45 is valid in principle with the λ-dynamics method. To ameliorate

this problem, all candidate ligands can be divided into a few groups which only have structurally

similar ligands by using recently developing molecular similarity methods124,125 and the λ-

dynamics simulation can be carried out on the ligands in each of those groups. By partitioning the

ligands into groups such that they have common members, ∆∆G for structurally dissimilar ligands

belonging to the different groups also can be estimated. This strategy may overcome the limitation

that binding modes should be similar in all ligands. Moreover, the alternative binding orientations

detected by the λ-dynamics method were restricted to those that did not include a large

conformational change in the protein structure because the interaction energy within environment

atoms were not scaled by λ2. To restrict the enhanced sampling region within the ligands is one of

the merits in the λ-dynamics method because the expansion of the enhanced sampling region to

environment atoms may result in the collapse of protein structure owing to slow convergence of

∆∆G. Although large sampling space delay the convergence, enhanced sampling in environment

atoms may be possible by redefining some of the environment atoms as multiple conformations

that are scaled by using second coupling parameters.

For orientational and conformational sampling, this method is much more efficient than the

FEP method. This is because when a ligand is not bound (small λ i
2) to the protein, it rapidly

explores its low energy binding orientations or conformations in order to be able to compete with

the dominant ligand at a later time. These results show that the efficient sampling of ligand
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binding orientations in the λ-dynamics method removes the restriction that the initial orientation

of the ligand inside the binding pocket must be close to its true bound orientation in order to get a

reasonable estimate of binding free energy - a prerequisite for other free energy calculation

methods. This feature is particularly important in drug lead discovery and optimization when the

binding mode is unknown, or the modification of ligands causes the change of binding mode. It is

also important in the case where a single ligand could have multiple binding modes. It may be

true that enlarging sampling space delays the convergence. But many ligands compete at same

time in the λ-dynamics method, and most of the time one of them reaches a low energy state and

competes with the dominant ligand. It may be argued that the enlarged sampling space obtained

by the scaling of the potential energies in the λ-dynamics method may contain the ligands in

unphysical conformations or orientations. This phenomenon was observed in λ-dynamics without

the restraining potential and resulted in the slow convergence.39 By using this potential and the

scaling parameter α (Eqn. 44), one can decide for oneself the extent to which the sampling space

of ligand orientations and conformations is enlarged. These merits make it possible to achieve not

only the calculations of relatively correct binding free energy differences but also the

identification of alternative binding orientations and conformations in some ligands from a single

simulation.
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Chapter 4

Trypsin - Benzamidine Derivatives

Based on

Shinichi Banba, Komath V. Damodaran, and Charles L. Brooks, III,

“Free energy simulations with generalized Born implicit solvation I:

formulation and exploratory application,”

J. Phys. Chem. B, submitted.
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4.1 Introduction

As shown in the previous chapter, free energy based screening methods such as λ-

dynamics6,13-16,39-47,56 are very effective. These methods can be much faster than FEP or TI, and

they give the same relative free energies within statistical errors. For example, the λ-dynamics

method13 was successfully applied to protein-ligands systems.6,14,39,40 Despite its success and

relative speed compared with FEP, the λ-dynamics method with explicit solvent still requires

considerable computational time to obtain the correct ranking of ligands when the solvation

environment for the ligand or the size of the ligands are different. This is because the re-

orientation of solvent molecules is infrequent, and thereby inhibits the transition of the chemical

states between the ligands. Since explicit solvation models require averaging of over a large

conformational space to yield converged thermodynamic properties, slow convergence has been

observed for many biological systems.107,126 Thus, semi-quantitative models employing continuum

solvation have been introduced as an intermediate approach. Finite difference solutions of the PB

equation have been successfully applied for many systems.127-129 For example, a continuum

solvent approach using the PB equation was successfully applied to the ranking of ligands in

trypsin130, arabinose binding protein and sulfate binding protein systems.63 However, the explicit

numerical solution of the PB equation is also too costly to permit useful long time dynamics of

biological molecules. Since the GB model is fully analytical,65,76 derivatives of the energy with

respect to individual atoms are available and allow the effects of solvation to be efficiently

included in molecular dynamics. Furthermore, the GB models can be essentially as accurate as

more elaborate finite difference PB calculations.65,78,83 Therefore, MD simulations using a GB

approach have recently been applied to many systems (e.g. estimation of pKa shift77,79,80, binding

affinities or binding structure of ligands64,81, loop structure82, and so on). These factors motivate us

to apply a combination of λ-dynamics and the GB approach (λ-dynamics/GB) for elucidating
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better binding protein inhibitors while using a restricted amount of computational time. This is, to

our knowledge, the first application of free energy calculation methods, such as FEP and the λ-

dynamics methods ,with a GB model.

When one focuses on inhomogeneous systems, standard periodic boundary conditions are

not always efficient. Many methods have been presented to address this problem.122,131-137 For

example, the stochastic boundary approach was successfully applied for the calculation of relative

binding free energies with explicit water molecules.6 Even though a continuum solvation model

ignores explicit water molecules, inclusion of the whole protein is still computationally too

expensive for semi-quantitative computational screening purposes. Therefore, an efficient

boundary model with the continuum solvent representation is still useful for structure-based drug

design. For this reason, we also assess whether a simple spherically truncated model with the GB

solvent representation gives the correct ranking of the ligands in the trypsin-benzamidine

derivatives system.

4.2 Computational details

4.2.1 System under study

The system studied was benzamidine and three of its para-derivatives, namely, p-amino

benzamidine (p-NH2), p-methyl benzamidine (p-CH3), and p-chloro benzamidine (p-Cl)

complexed with trypsin. The detailed force field for the ligands was described in a previous

paper.6 This system has been examined fully by the FEP method7,46 and the λ-dynamics method6

with explicit water. Thus, it is a good test case for the λ-dynamics/GB approach.
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4.2.2 Dynamics simulations

All simulations used the CHARMM version 22 all hydrogen parameter and topology set.138

Explicit water molecules were represented by the TIP3P model.120 All bonds containing hydrogen

atoms were constrained to standard values using SHAKE.121 The temperature of the system was

maintained near 300K by coupling the non-hydrogen atoms to a Langevin heatbath using a

frictional coefficient 50ps-1. The λ-variables were also coupled to a Langevin heatbath using a

frictional coefficient 5ps-1 to keep the system near 300K in all λ-dynamics simulations.

Nonbonded interactions were truncated using a switching function between 15Å and 8 Å for the

explicit solvent calculations and between 10 Å and 8 Å for the GB model. The time step used in

all simulations was 1.0fs. The masses of the fictitious λ degrees of freedom were chosen to be 5

amu•Å2. The GB parameters fitting to single amino acids and proteins were used for the unbound

ligand state and bound state, respectively.83 We set all hydrogen radii in the CHARMM param22

parameter set to 1.5Å for the calculation of the effective Born radii as discussed in Appendix A.

In all simulations including the GB energy, the Born radii and corresponding forces were updated

at every MD time step, thereby ensuring the correct relationship between the energy function and

its derivatives. All calculations were done using the CHARMM molecular dynamics package.119

The complete trypsin-benzamidine complex was used for assessment of the free energy

simulation methods with the GB energy. After removing all crystal water molecules from the

initial X-ray structure, the variant groups of the ligands and the hydrogen atoms were added

according to the appropriate parameter/topology set. Following, the complex structure was

minimized under successively reduced harmonic restraints for the heavy atoms. We adopted the

final structure as an initial structure for all later simulations of the whole protein GB model. The

final system contains 3250 protein atoms, 29 ligand atoms, and one calcium atom. After a 50ps

equilibrium MD simulation of benzamidine bound to trypsin in the GB model, the ligand had
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shifted about 1.5Å from the X-ray structure, which was also observed in the explicit water

simulation using either a 20 or 25Å spherical stochastic boundary. Therefore, this structural

change is due not from the GB model but from possible inaccuracies in the assignment of the

force field for the ligands or the nonbonded cutoffs. Our primary interest in this study is in

assessing the free energy calculation methods with the GB model. Thus, to maintain closer

structural correspondence with X-ray structure, all heavy backbone atoms were restrained to

remain near this reference structure using harmonic restraints with a force constant of 4

kcal/mol/Å2. The harmonic restraining potential applied to the backbone atoms is similar to those

employed by others in MD or MC simulations in the same trypsin-benzamidine derivative

system.7,46 In the λ-dynamics and CMC/MD simulations, a 30ps equilibration period was followed

by 200ps production runs.

In this study, the solvation free energy of the ligands in explicit water {F} was taken from

previous FEP calculations.14 The solvation free energy of the ligands in GB solvent was calculated

with one minimized structure. This is sufficient due to the inflexibility of the ligands.

In the FEP calculations of the bound state, three transformations - p-Cl to p-H, p-NH2 to p-

Cl, and p-CH3 to p-NH2 - were considered. A 30ps equilibration period was followed by a 60ps

production run for every λ (0.125, 0.5, 0.875) using double-wide sampling to span the entire λ

space.

In this study, a hybrid topology, in which invariable ligand atoms are represented with a

single topology and the variant groups with a multiple topology, 14 was used so that the invariable

ligand atoms are independent with scaling factors {λ2}. The bonded terms (i.e. bond, angle and

improper dihedral terms) related to the variant groups were not scaled by {λ2}. When the variant

groups are small, the hybrid topology and unscaled bonded terms are enough to keep the

unselected ligands in the low energy states. The unscaled bonded terms are expected to cancel in

the full thermodynamic cycle (i.e. the bonded terms were excluded in the solvation half cycle as
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well).In this application, variant groups were small so that any restraining potentials (Eqn. 44)

were not added for the unselected ligands in the λ-dynamics and CMC/MD simulations The ∆∆Gs

are estimated by using Eqn. 16, instead of Eqn. 46.

4.2.3 The conditions for Chemical Monte Carlo / molecular

dynamics

The CMC/MD method used in this study is basically the same as CMC/MD developed

by Kollman group15,16. In the previous studies of Kollman, a “ghost force” and harmonic

restraining potentials between the ligands’ centers of mass were applied for the unselected ligands

to keep them in lower energy states and to avoid low acceptance ratios in MC steps. In this study,

any “ghost force” and harmonic restraining potential are not included to the unselected ligands. As

mentioned above, restraining potentials for the unselected ligands were also not included.

Therefore, the variant groups of unselected ligands are evolved according to only non-scaled

bonded interaction (i.e., bond, angle and improper dihedral terms) in the CMC/MD simulations.

One advantage of CMC/MD is that sampling the space of {λ} can be as restricted as we

like, whereas an umbrella potential is required to control the chemical sampling in the λ-dynamics

method. In this study, sampling along λ coordinates are restricted to only chemically important

end points (see Eqn. 25) or {λ i
2=0.5, λj

2=0.5, λk≠i,j
2=0}. The λ-variables were sampled every 10fs.

One Monte Carlo step for the chemical variables {λ} was attempted at every 10 MD steps of the

atomic variables in the CMC/MD simulations. The CMC/MD method has been incorporated into

the program CHARMM.
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4.3 Results and discussion

4.3.1 Explicit water versus the generalized Born solvent

The relative binding free energy differences were calculated with the GB model using the

whole protein. The relative binding free energy differences calculated by FEP, λ-dynamics and the

CMC/MD method are tabulated in Table 3. The previous results from an explicit solvent

simulation using a 20Å stochastic boundary condition are also listed in Table 3 for comparison.6

Table 3.  Results of relative binding free energy calculations in the whole protein system.a

R FEP

EWb

λ−dynamics

EWb

FEPc

GB type1
λ−dynamics

GB,type1

λ-dynamics

GB,type2

MC/MDd

GB,type2

MC/MDe

GB,type2

H 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NH2 0.4 0.7 0.37 0.40 0.19 0.45 0.32

CH3 2.3 1.9 0.52 0.41 0.25 0.49 0.37

Cl 2.2 2.6 1.55 1.03 1.51 1.36 1.44
a Free energy changes are in kcal/mol and relative to Benzamidine (R=H).
b The results were taken from the previous paper, 6 in which explicit water model with 20Å

spherical stochastic boundary condition was used.
c Statistical uncertainities are ~±0.3 kcal/mol for all FEP calculation results.
d The sampling of the chemical space in MC steps are restricted only at end points.
e The sampling of the chemical space is allowed at both {λλλλ i

2=1 ,λλλλ k ≠≠≠≠ i
2=0}and {λλλλ i

2=0.5, λ λ λ λj
2=0.5,

λλλλ k ≠≠≠≠ i,j
2=0}.

In spite of different simulation conditions, qualitatively good agreement is obtained between

the GB model and the stochastic boundary explicit water model. With the respect to the GB model,

the FEP, λ-dynamics, and CMC/MD methods gave very similar results. Furthermore, the λ-

dynamics simulations with both coupling schemes, “Type 1” and “Type 2” (see Eqns. 53 and 56),

were in good agreement. Although both definitions take different paths between the end points,
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they give exactly the same GB energy at all end points. This result means that the exact

expression of the end points is key to getting the correct free energy differences. “Type

2“ required more CPU time (about 50 - 60%) as compared with “Type 1“ in λ-dynamics

simulations, so that “Type 1“ may be more appropriate. To check the convergence of each

simulation, the cumulative running average of the relative binding free energy differences are

shown in Figure 15. The three stronger binders rapidly yield converged ∆∆G values in all λ-

dynamics and CMC/MD simulations. Since more than 80 percent of the λ-dynamics trajectories

were spent in unphysical intermediate states and the weaker binder (R=Cl) was sampled

infrequently, its binding free energy converged more slowly than in the CMC/MD simulations, in

which only end points are sampled. We found that the CMC/MD simulations with explicit solvent

tended to get trapped in one state when different sized ligands were exposed to solvent and the

intermediate states were not sampled (data not shown). In contrast, in this study, CMC/MD

simulations, which sample only end points, yield converged ∆∆G values without getting trapped

in a local minimum. Therefore, additional intermediate states in the MC procedure do not improve

the final results. We speculate that the faster convergence of the CMC/MD simulations observed

in this study may come from not only the similarity of the ligands but also introduction of the GB

model. Furthermore, the faster convergence partially comes from the merit in the λ-dynamics and

CMC/MD methods that some ligands can work as the intermediate states to connect dissimilar

ligands.
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Figure 15.  The cumulative running

average of ∆∆∆∆∆∆∆∆G relative to p-H. Key: dotted

line: p-NH2, solid line: p-CH3, dashed line:

p-Cl.

Figure 16.  The cumulative running

average of ∆∆∆∆∆∆∆∆G relative to p-H including the

non-electrostatic solvation energy (VSA).

Only the results of R=Cl, which converge

slowest, are shown for clarity. In FEP results,

the X-axis represents the sampling time in

each windows (λλλλ=0.125, 0.5, and 0.875). The

∆∆∆∆∆∆∆∆G without VSA and with VSA are shown by

dashed line and thick solid line, respectively.

4.3.2 The contribution from the non-electrostatic terms

We assume that the non-electrostatic terms can be linearly related to solvent-accessible

surface area as shown in Eqn. 62. As a preliminary value for the empirical atomic solvation

parameter (σi) shown in Eqn. 59, 7 cal/(molÅ2) was chosen for all heavy atoms. We used the

trajectories of the whole protein system with GB solvation to estimate the non-electrostatic terms.

At each snapshot, the non-electrostatic energy (VSA) was calculated using CHARMM package
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with 1.4Å radius probe atom. The effect of the non-electrostatic term is tabulated in Table 4.

Table 4.  Results of relative free energy calculations including the non-electrostatic terms.a

R ∆G(free) ∆G(bound)

(FEP) b

∆∆G(bind)

(FEP)

∆∆G(bind)

(λ−dynamics, Type1)

∆∆G(bind)

(MC/MD, Type2) c

H 0.0 0.0 0.0 0.0 0.0

NH2 -17.97 (0.14) -17.79(-0.05) 0.18(-0.19) 0.31(-0.12) 0.10(-0.22)

CH3 -6.70 (0.21) -6.30(0.09) 0.40(-0.12) 0.18(-0.23) 0.14(-0.23)

Cl -1.95 (0.25) -0.75(-0.10) 1.20(-0.35) 0.68(-0.35) 1.17(-0.27)
a Free energy changes are in kcal/mol and relative to Benzamidine (R=H). The free energy

difference ∆∆∆∆GSA (∆∆∆∆GSA = ∆∆∆∆GGB/SA – ∆∆∆∆GGB) are listed in parentheses. ∆∆∆∆GGB/SA and ∆∆∆∆GGB

represent free energy differences with non-electrostatic terms and without them,

respectively.
b Statistical uncertainities are within 0.3 kcal/mol for all FEP calculation results.
c The sampling of chemical space is allowed at both {λλλλ i

2=1 ,λλλλk ≠≠≠≠ i
2=0}and

 {λλλλ i
2=0.5, λ λ λ λj

2=0.5, λλλλk ≠≠≠≠ i,j
2=0}.

The contributions from the non-electrostatic energy are relatively small in both half cycles

due to the small difference in the size of the ligands in this system. Although the total non-

electrostatic energy was considerably larger (VSA ≈ 64 kcal/mol), the umbrella sampling

successfully estimated the effect of non-electrostatic terms and gave converged ∆∆G values for all

ligands in the λ-dynamics and CMC/MD simulations, as shown in Figure 16. This occurred, in

part, because VSA,i was nearly constant during the simulations. The FEP simulations also yielded

converged results. These findings suggest that the effect of the non-electrostatic terms can be

estimated from λ-dynamics and CMC/MD trajectories by using the umbrella sampling techniques

as long as the protein remains in the native states. However, since the total non-electrostatic

energy is large, it may bias the configurational sampling of the protein-ligand complex structure.

Studies on other systems need to be done to clarify this issue. The application of the recently
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developed efficient method for the estimation of SASA would be another choice.139-142

4.3.3 15Å spherical boundary in the generalized Born solvent

When considering large inhomogeneous systems like the protein-ligand complexes here,

one is sometimes required to limit the physical system to an interesting region around the ligand.

To fully exploit the merits of the implicit solvent model (e.g. faster convergence with a smaller

computational cost), development of efficient boundary methods is very important. For this

purpose, a simple spherically truncated GB model, in which atoms outside a spherical region of

interest were removed, was prepared as follows. The protein-ligands complex structure was

centered at the carbon atom of the ligand connected to the amidine group. Any residue with all

atom distances greater than 15Å from this central point was removed, as shown in Figure 17. The

heavy atoms outside of a 10Å sphere were restrained by harmonic restraints with a force constant

of 4 kcal/mol/Å2, in order to keep them near the X-ray structure. The 15Å spherical protein

system contained 1478 protein atoms, and 29 ligand atoms. To compare with the 15Å spherical

GB model, an explicit water model using a 15Å stochastic boundary potential was also prepared

according to the previous protocols.39 The system was partitioned using a 10Å reaction zone, with

a 5Å buffer region. Non-hydrogen buffer region atoms were restrained by harmonic restraints

with a force constant of 4 kcal/mol/Å2. All simulations (i.e. FEP, λ-dynamics and CMC/MD) used

the same equilibrium and production protocols described above.
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Figure 17.  Four benzamidine derivatives in trypsin. The residues included in 15 Å

spherical boundary model are shown by red. The removed residues in this boundary model

are shown by cyan. The variant groups of the ligands are shown by yellow. Carbon atoms,

Nitrogen atoms, and hydrogen atoms represented by single topology are shown by green, blue,

and white, respectively.

Table 5.  Results of relative binding free energy calculations with 15Å spherically

truncated models.a

R FEPc

GB type1

whole protein

FEPc

GB type1
λ−dynamics

GB type1

MC/MDd

GB type2

FEPc, e

GB type1
λ−dynamicse

GB type1

MC/MDd, e

GB type2

FEPc

EWb

λ−dynamics

EW b

H 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NH2 0.37 0.43 0.40 0.48 0.42 0.22 0.32 1.59 1.55

CH3 0.52 0.44 0.26 0.28 0.39 0.41 0.32 3.46 3.56

Cl 1.55 1.40 1.30 1.13 1.60 1.57 1.26 4.70 - f

a Free energy changes are in kcal/mol and relative to Benzamidine (R=H).
b The explicit water molecules with 15Å spherical stochastic boundary condition are used.
c Statistical uncertainities are ~±0.2 kcal/mol for all FEP calculation results.
d Only end points {λλλλ i

2=1,λλλλ j ≠≠≠≠ i
2=0} are included as the sampling of the λλλλ space in MC steps

e Born radius is estimated roughly including the deleted atoms outside the 15Å sphere.
f R=Cl does not take the dominant states during the production run.
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The values of ∆∆G of the 15Å spherical GB model calculated by FEP, λ-dynamics and

CMC/MD are tabulated in Table 5. The results of the 15Å spherical GB model are in good

agreement with those for the whole protein GB model. The computational time required for the

15Å spherical GB model was about three times smaller than the time for the whole protein GB

model. The most crucial differences between the whole protein and the spherically truncated

model are the elimination of interactions between the ligand and the environment atoms which are

removed and the underestimation of the effective Born radii for atoms near the 15Å sphere

boundary. In this study, shorter cutoff distances minimize direct interactions between the ligand

and the removed atoms. To assess the effect of the underestimation of the effective Born radii near

boundary, we also carried out FEP, λ-dynamics and CMC/MD simulations in which Born radii

were calculated including the contributions from the atoms outside of the 15 Å spherical region.

These contributions from the removed atoms are assumed to be constant and evaluated only once

using the initial structure of whole protein model. These constant offsets are always included in

the estimations of the effective Born radii in later simulations. The results of FEP, λ-dynamics and

CMC/MD simulations that include contributions from the removed atoms do not appreciably

differ from those that neglect these contributions, therefore, the underestimation of the effective

Born radii was little influence on the free energy differences. As shown in Figure 18, the GB

energy is almost cancelled with the Coulomb interaction energy in vacuo and the effect of the

Born radius quickly decreases when the atoms are separated by more than 15 Å. Furthermore,

most of these differences are cancelled among the ligands if they are similar. A larger sphere may

be necessary for highly polarized systems or those in which the electrostatic potential is very

different between the ligands.143 Therefore, when cut-off distance and restraints on the native

structure are introduced, this spherically truncated model may save time without significant loss

of accuracy. Further improvement may be achieved by the addition of grid based inclusion of the

removed atoms for both the estimation of the Born radius and electrostatic potential. A similar
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idea has already been used in docking studies.81 However, an interpolation technique will be

required to yield continuous energy and derivatives used in MD simulations. As a matter of course,

if the low frequency motions expanding to the whole protein are important to express the binding

free energy differences, a spherically truncated model with GB may not yield binding free energy

differences correctly, as would be true with other non-periodic boundary models.16,134
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Figure 18.  The electrostatic solvation
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vacuo) between two atoms who have the
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the distance between them. The effective
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Figure 19.  The trajectories of ∆∆∆∆∆∆∆∆G

calculated by FEP methods using 15Å

spherical model. p-H was chosen as

reference. The results using GB model and

explicit water model are shown by solid line

and dashed line, respectively.

FEP and λ-dynamics simulations were also carried out with the explicit water model using a

15Å spherical stochastic boundary. Qualitative agreement was obtained between the GB model

and the explicit water model as shown in Table 5. The quantitative agreement between the FEP
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and λ-dynamics methods using explicit water again demonstrates the validity of the λ-dynamics

method. The relative binding free energy differences calculated by the FEP method, as a function

of sampling time in each window, are shown in Figure 19. The GB model converges faster than

the explicit water model. The faster convergence with implicit solvent is an important advantage

over the explicit water model. This advantage may come from the fact that the averaged solvent-

solute interaction energy is calculated from a single solute structure in the GB model. In contrast,

the explicit water model requires many configurations of the solvent for one solute configuration.

Furthermore, van der Waals clashes between the unselected ligands and the mobile solvent, which

can lead to the instabilities in integrating the equations of motion or trapping of one ligand in

multiple ligand free energy methods, can be avoided by using the GB model.

4.4 Conclusions

In this chapter, the GB model has been extended to describe the hybrid intermediate states

associated with free energy simulation methods and incorporated into these methods. Promising

observations for the ranking of ligand binding were obtained from the combination of continuum

solvent models using GB with free energy simulation methods (FEP, λ-dynamics and CMC/MD).

The GB model gave good agreement with explicit water models. Furthermore, the CMC/MD

method was assessed and demonstrated to yield good agreement with FEP and λ-dynamics

methods. In our study, the non-electrostatic solvation energy (VSA) varied only small amount so

that the umbrella sampling techniques could be used for the incorporation of VSA, instead of

calculating VSA and its first derivative at every MD step. The simple spherically truncated model

also showed good agreement with the whole protein model. Such a boundary model will help to

accelerate the qualitative computational screening of promising compounds.

The use of a GB model, with advantages such as faster convergence and fewer degrees of
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freedom, save a significant amount of computational time. The λ-dynamics and CMC/MD

methods are also known to screen for better ligands from putative candidates with much smaller

time than the conventional free energy simulation methods. The combination of the GB model

with λ-dynamics or CMC/MD has a significant potential in the application for drug lead

optimization. These combinations may fill the gap between the empirical methods using a single

minimized complex structure and the theoretically rigorous methods like FEP or thermodynamic

integration.
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Chapter 5

ββββ-Cyclodextrin - Benzene Derivatives

Based on

Komath V. Damodaran, Shinichi Banba, and Charles L. Brooks, III,

“Application of multiple topology λ-dynamics to a host-guest system: β-

cyclodextrin with substituted benzenes,”

J. Phys. Chem. B, 105(38), 9316-9322 (2001).

Shinichi Banba, Komath V. Damodaran, and Charles L. Brooks, III,

“Free energy simulations with generalized Born solvent II: applications to

solvent exposed macrocycles,”

J. Phys. Chem. B, submitted.
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5. 1 Introduction

We have been investigating new ways to render free energy based screening methods still

more efficient and as part of this effort we have attempted to carry out the λ-dynamics simulations

in an implicit solvent environment using the GB model.84 In the previous chapter, I demonstrated

that the incorporation of the GB model into the λ-dynamics method could be successfully applied

to rank the four benzene derivatives bound to trypsin.84 For small molecules, the GB model has

been shown to reproduce solvation energies while utilizing less CPU time when compared to the

PB model. However, the current analytical GB models are known to underestimate the effective

Born radii of deeply buried atoms and this has limited its application. In one attempt to address

these issues, Onufriev et al. introduced a single parameter to account for the nonzero size of

solvent molecules buried in the interior region as the system increases in size.65,144 This problem in

the analytic GB approximation indicates that the GB parameters should be chosen carefully when

large molecules are studied. Moreover, the GB energy involves only the electrostatic polarization

even though the non-electrostatic terms (e.g., hydrophobic contribution) can play a vital role.

Thus, before applying the λ-dynamics/GB method, we investigated how the non-electrostatic

terms and the set of the GB parameters influenced binding free energy results using β-

cyclodextrin (β-CD)-toluene complex system.

To increase the overlap at the end points of chemical free energy perturbation calculations,

FEP and λ-dynamics require the use of the intermediate states. The introduction of these

intermediates can be represented using different strategies to mimic the molecular topologies,

such as single or dual topology models. In this work, “multiple topology” means that each guest is

represented by the independent molecular topology or structure and “hybrid topology” means that

the invariable guest atoms (non-varying framework) are represented by a single molecular

fragment and the variant atoms of the guests are represented by the separate topologies connected
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to this single fragment, like a Hydra with multiple chemical “heads” pendant to a  single

molecular framework. The multiple topology representation allows the comparison among

molecules with quite different molecular structures. However, in investigations of relative binding

affinity among a family of similar compounds, the hybrid topology representation seems to be the

more promising one. The use of this framework requires the introduction of λ-dependent partial

charges, as described in what follows.

In this chapter, firstly, we further validate the techniques of λ-dynamics using the multiple

topology representation for the ligands in the presence of the restraining potential by applying the

method to a β-CD-benzene derivatives system with explicit solvent in a periodic environment. We

have also examined the ligand dynamics under restraining potentials of different strengths and

biasing conditions. Secondary, the GB solvent model was investigated in β-CD-toluene complex

system. Finally, we have applied hybrid topology λ-dynamics with the GB solvation model to

investigate the relative binding free energies of seven mono substituted benzene derivatives in β-

CD. To validate the hybrid topology λ-dynamics/GB method using λ-dependent partial charge

model, its results are compared with multiple topology FEP simulations using explicit solvent,

highlighting the merits and weaknesses of both topology representations.

5.2 Computational details

5.2.1 System under study

The system chosen for this investigation is a series of monosubstituted benzenes binding to

a host molecule, namely β-cyclodextrin. Cyclodextrins (CDs) are cyclic oligosaccharides

consisting of glucopyranose units linked using α-1-4 glycosidic bonds. The most widely

investigated variants have six (α), seven (β) and eight (γ) sugar units.145-147 The shape of β-CD is
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described as truncated cone with the primary hydroxyl (CH2OH) groups occupying the narrower

rim148. The secondary hydroxyl (OH) groups at the 2’ and 3’ positions form hydrogen bonds with

adjacent sugar units, adding to the rigidity of CDs.148 Particularly, they show only limited rotation

around the bonds linking the sugar units.149,150 CDs have been of great interest because of their

propensity to form inclusion compounds with small, hydrophobic molecules, a property that has

been widely made use of as a facilitator of chemical reactions151 and as a drug delivery agent.152

They are also simple models for studying host-guest chemistry. The interior of these molecules

are hydrophobic and the host-guest interactions are primarily van der Waals in nature. Early

molecular modeling studies have suggested CDs to be flexible.153 However, these calculations did

not include any solvent environment, which may have contributed to the observed flexibility.

Dynamic Monte Carlo simulations of complexes have shown that even inclusion of solvent

effects using implicit models results in a reduction of conformational space.154 MD simulations

of α- and β- CDs have been carried out in both the crystalline and explicit solvent environments

by Koehler et. al.155-157 These studies not only reproduced the structural properties from neutron

diffraction studies, but the dynamics of the hydrogen bonds between adjacent sugar units

crystalline model agreed excellently with the experimental results as well. Kohler et al. also

showed that the solution structure of deviates from the crystalline structure by ≈1Å and is

somewhat more mobile.155

5.2.2 Dynamics simulations with the explicit water

The benzene derivatives used as guests with the explicit water model have the following

substituents: R=H, -CH3, -CH2Cl, -Br, -NO2, -OCH3, -Cl, and -F. Association constants for these

and other related ligands with β-CD have been determined and analyzed for quantitative

structure-property relationships by using multiple regression methods by Liu et al.,158
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We used the structure of the β-CD-benzyl alcohol complex taken from the ‘DEBGOG’

entry of the Cambridge Crystallographic Database as a template to build the initial structures,

using the 3-D molecular builder facility in the program QUANTA. We adopted the structural

model as suggested in Liu et al., 159 as our starting structure, namely the monosubstituted benzenes

reside in the cavity such that the long axis of the guest is perpendicular to the plane of the β-CD

host and the hydrophobic substituent of the guest resides at the narrow rim of the truncated cone

(Figure 20). The sugar forcefield (par_all22.sugar) developed by Guyan Liang and John Brady

(Cornell University 09/08/1995) was used to model β-CD. Param-22 force field parameters and

partial charges obtained using electrostatic potential (ESP) fitting160 on ab initio optimized

structures at the Hartree-Fock/6-31G* level were used for the guest molecules. All bonds

containing hydrogen atoms were constrained to standard values using SHAKE.121 The temperature

of the system was maintained near 300K by coupling the non-hydrogen atoms to a Langevin

heatbath using frictional coefficient of 50 ps-1. The λ-variables were also coupled to a Langevin

heatbath using frictional coefficient of 5 ps-1 to keep the system near 300K in all λ-dynamics

simulations. The time step used in all simulations was 1.0 fs. The masses of the fictitious λ

degrees of freedom were chosen to 5 amu•Å2. All calculations were done using the CHARMM

molecular dynamics package.119

The host-guest complex was solvated in a pre-equilibrated water box containing 1000

TIP3P water molecules120 and the overlapping water molecules within 2.8Å were removed. The

final configuration consisted of the host, the guest molecules and 923 water molecules. MD

trajectories were generated for the solvated empty β-CD as well as for its complexes with toluene

(R=CH3), nitrobenzene (R=NO2), methoxybenzene (R=OCH3) and fluorobenzene (R=F). The

solvation free energies of the ligands were calculated by solving the PB equations on energy

minimized structures using a grid size of 0.1Å. The relative free energies (∆Gs) of the guests in
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the complexed form were calculated by FEP simulations. Mutations were carried out over 9

windows using toluene (R=CH3) as the reference. Both the reactant and the product were

explicitly represented (dual topology model). In the case of the substituents CH2Cl, Br, NO2 and

OCH3, mutations were carried out from the substituent to CH3, while for H, F, and CHO, the

mutations were carried out from CH3 to the substituent. An equilibration phase of 15ps and

sampling phase of 45ps was used in each window. λ−dynamics simulations were carried out using

8 guest molecules in the β-CD cavity at three different scaling parameters (α) for the restraining

potential – 0.10, 0.30, 0.50. In the unbiased run, all the Fi values were set to the respective

solvation free energies. In the run with α=0.1, some ligands did not sample the dominant state (λ2

> 0.8) under this condition. The relative binding free energies from the unbiased simulations were

used as additional biases to enhance the sampling. Typically, the λ-dynamics simulation time was

450ps of which the initial 50ps part of the trajectory was discarded from the estimation of free

energies.

5.2.3 Dynamics simulations with the generalized Born model

The system studied with the GB model is benzene and six of its mono-substituted

derivatives, namely, toluene (R=CH3), aniline (R=NH2), phenol (R=OH), nitrobenzene (R=NO2),

bromobenzene (R=Br), and fluorobenzene (R=F) with β-CD. The carbon atoms of the phenyl ring

and the five hydrogen atoms directly attached to those carbon atoms are colo atoms and expressed

by the single topology. The angle θ, which represents the binding orientation of the guest in the

host, is defined between the long axis of the guest and the molecular axis of the host as shown in

Figure 20.

In this study, we used the GB parameters specifically optimized for the CHARMM force

field, as described by Dominy and Brooks.83 The van der Waals scaling parameter for single
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amino acids was used for the unbound state,83 while that for bound state was re-fitted to β-

cyclodextrin. The details of the GB parameter fitting for β-CD system is described in Appendix.

We set all hydrogen radii to 1.5Å for the estimation of the effective Born radii.84 In all simulations

including the GB energy, the Born radii and corresponding forces were updated at every MD time

step, thereby ensuring the correct relationship between the energy function and its derivative. The

free energy of the guests in the unbound state was calculated from one minimized structure taking

advantage of the rigid nature of the guests. We use the same simulation protocols in the GB model

as those in the explicit water model, except for no cutoff used in the GB model.

In FEP calculations of the bound state using the GB model, six transformations – Br to H,

NH2 CH3, NO2, OH, and F – were considered. A 50ps equilibration period was followed by a

200ps production run for three λ values (0.125, 0.5, 0.875). Double-wide sampling was used to

span the entire λ space. In the λ-dynamics/GB simulations, a 30ps equilibration period was

followed by 270ps production runs. The λ-variables were sampled at every 10fs. The total CPU

time for 300ps λ-dynamics/GB simulation requires only less than 9 hours using SGI 250 MHz

R10000 processor within an SGI Octane workstation, while the 300ps FEP simulation with the

explicit water model requires more than 120 hours as a CPU time.
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Figure 20.  Schematic of ββββ-cyclodextrin with monosubstituted benzene guests illustrating

the orientation of the guests in the initial structure.

5. 3 Results and discussion

5.3.1 Structure and dynamics of the host

The β-CD host showed some degree of flexibility in all of the MD/FEP/λ-dynamics

simulations. The maximum root-mean-square deviation (RMSD) for the host heavy atoms was

≈1.0Å, as evident from a typical RMSD plot shown in Figure 21. This compares well with the

RMSD deviations observed between the solution and crystal structures of the six-membered

varient (α-CD) by Koehler et al.,155. We also show, in Figure 22, the distribution of distances

between bridging oxygen atoms (O4) separated by 3 sugar units in the β-CD host from 9 different

trajectories which includes MD/FEP/λ-dynamics runs. The distributions from all trajectories

showed 9.8Å as the most probable value. The average of all distributions shows a full-width at

half-maximum of 0.75Å. There was no constant deviation of any one distance from others, which
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would have indicated a distortion of the host.

The truncated cone shape of the host shows fluctuations both in the empty and complexed

form. This is illustrated by the time dependence of the average distance between C5 carbons

separated by 3 sugar units, in comparison with the average distance between similarly situated C3

carbons. The C5 carbons are located on the narrow rim of the macrocycle while C3 carbons are on

the wider rims. Hence a smaller distance between the C5 carbons is indicative of the truncated

cone shape. The empty host appears to undergo oscillatory motions while retaining the truncated

cone shape (Figure 23-a), whereas in the λ-dynamics trajectory with ligands present the truncated

cone has relaxed somewhat Figure 23-b.
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Figure 21.  Time dependence of the root-

mean-square deviation (RMSD) of the ββββ-CD

heavy atoms along a typical dynamics

trajectory.

Figure 22.  Distribution of the distances

between bridging O4 oxygens of the αααα-1-4

glycosidic bonds separated by three sugar

units. The data points are from MD/FEP/λλλλ-

dynamics trajectories. The distribution from

each trajectory has been normalized by the

number of frames used. The solid line

represents the average values.
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Figure 23.  Distances between C5

carbons and C3 carbons separated by three

sugar units from (a) MD trajectory of the

solvated ββββ-CD and (b) a typical λλλλ-dynamics

trajectory. Running averages of the

instantaneous values are shown.

Figure 24.  Distributions of the angle

between the long molecular axis of the

ligands and the molecular axis of the ββββ-CD

host from λλλλ-dynamics trajectories for αααα=0.1

(solid lines), αααα=0.3 (dotted lines) and αααα=0.5

(dashed lines). Because Benzene is

completely symmetric, it shows almost no

orientational preference.

5.3.2 Ligand conformation and dynamics in MD simulations

The guest molecules with larger substituents remained in the same average conformation as

the initial structure with the substituent near the narrow rim of the host. The mean angle of the

long axis of the guest from the molecular axis of the host (see Figure 20) was ≈30o. Only

fluorobenzene (R=F) underwent rotational motion during the simulations.

Overall, the RMS deviations in Figure 21 and the distance data in Figure 22 and Figure 23

suggest that the environment provided by the host does not vary significantly during the course of
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the λ-dynamics simulations. Further, the solvent interacts with the ligands only from the regions

beyond the two rims of the cavity. Thus using the instantaneous coordinates X(t) as an

approximation to time invariant coordinates (see Eqn. 45) is a reasonable one.

5.3.3 Relative binding free energies with the explicit water

The relative binding free energies (∆∆Gs) obtained from FEP simulations have been

tabulated in Table 6 with those calculated from experimental association constants (Ka) using the

relation ∆∆Gij = -(1/β)ln(Ka
i/Ka

j). The experimental values were taken from Liu et al..159 The

calculated values span a range much larger than the observed values. Further, the correlation

between the calculated and observed data is not significantly high. Particularly, we have not been

able to reproduce the relative trend for nitrobenzene (R=NO2). The lack of significant correlation

may be due to several factors including the force field, as in the case of all computer simulations.

For example, we have used the solvation free energies derived from the PB equation, which

includes only the electrostatic contributions. One may also obtain better correlation by refining

the ligand force field parameters. We have not made any attempt in this direction since the

objective of the present work is to investigate the efficiency of the λ-dynamics approach as a

faster alternative for evaluating the relative binding free. We rely on the correlation between

relative binding free energies obtained from FEP and λ-dynamics to demonstrate this.

The detailed values of ∆∆Gs obtained from λ-dynamics simulations are also listed in Table

6. Data from multiple trajectories with identical scaling parameter α, but under different biasing

conditions, were combined using the WHAM equation (Eqn. 48). There is very good correlation

between FEP and λ-dynamics data with correlation coefficients equal or better than 0.9. In the

case of α=0.5, free energies from a 450ps long λ-dynamics run with no additional biases (i.e., Fi

have been set to the solvation free energies of the ligands) shows 95% correlation with the FEP
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data.

Table 6.  Relative binding free energies calculated from FEP and λλλλ-dynamics simulations.a

λ-dynamics

α=0.3 α=0.5 α=0.1c

substituent

   (R)

Exp.b FEPc

no bias biasedb no bias biasedb biasedb

-H 0.14 2.75 3.79 3.07 3.72 3.43 3.21

-CH3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-CH2Cl -0.16 -0.52 0.46 0.10 0.08 0.40 0.75

-Br -0.23 0.43 0.43 0.31 0.54 0.63 1.26

-NO2 -0.16 4.80 3.60 3.78 4.70 4.41 3.60

-OCH3 0.02 0.50 -0.03 0.08 -0.46 -0.03 0.46

-CHO 0.21 3.02 4.14 3.71 3.94 3.80 3.84

-F 0.51 1.80 2.00 1.67 1.50 1.63 2.0
a All values are in kcal/mol and relative to R=CH3.
b The values “Biased” were calculated from No Bias and Biased trajectories using WHAM.
c For αααα=0.1, “No Bias” trajectory was not considered, since some ligands did not sample the

dominant state.

Additional simulations were carried out using the calculated ∆∆Gs from the unbiased run as

additional biases to the Fi. However, combining these data improves the correlation only

marginally. In the case of α=0.3, ∆∆Gs from the unbiased λ-dynamics have a lower correlation

coefficient (0.89) with the FEP data than in α=0.5 case, because the stronger restraining potentials

confines the ligands more to their binding orientations. This is noticeable in the distribution of

angular orientation of the ligands shown in Figure 24. Ligands such as (R=F), (R=CH2Cl) and

(R=NO2) have slightly broader orientational distribution in the α=0.3 trajectory than in α=0.5

trajectory. However, using the ∆∆Gs from the unbiased run as additional biases in the

subsequent λ-dynamics runs improves the correlation coefficient to 0.95. In the case of α=0.1,



94

weaker guests such as (R=NO2) and (R=CHO) did not sample the dominant states during the

entire simulation. So ∆∆G from the unbiased simulation with α=0.3 was used as biasing

potentials, which helped these ligands also dominate. The ∆∆Gs calculated from the biased

simulations still has only 91% correlation, lower that with α=0.3 and α=0.5. We note that the

particular value of α used in the biasing potential serves to influence sampling efficiency and not

(in principle) the final free energy estimates.

5.3.4 Ligand dynamics

An attractive feature of λ-dynamics is its ability to explore alternate binding conformations

for the ligands. This is due to the fact that when λ≈0 for a particular ligand, the only interaction

that it is subjected to is the restraining potential. By controlling the scaling parameter for the

restraining potential we can control the extent of conformational space to be sampled. The

validity of alternative binding conformations can be assessed from the probabilities that such

conformations sample the dominant λ-states. In λ-dynamics simulations, increasing the scaling

parameter α for the restraining potential restricts conformational space sampled by the ligands.

The effect of the scaling parameter α is illustrated in Figure 25 where the variation of the

orientation of the ligand (R=F) and the coupling coefficient (λ2) along the MD and λ-dynamics

trajectories have been shown. In our MD simulations of β-CD/ligand complexes, the ligands

except (R=F) showed a distribution of orientations centered around about 30o from the molecular

axis of the host. This corresponds to the substituents confined at the narrow rim of the host.

However, (R=F) starting from this initial orientation quickly adopted an orientation centered

about 130o (i.e., fluorine near the wider rim), as shown in Figure 25-a. In the λ-dynamics

trajectories, when the restraining potential was weak (α=0.1, 0.3), starting from the same initial

orientation (R=F), explored both orientations in the dominant state (Figure 25-b and Figure 25-c).
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However, in the trajectories with α=0.50, the restraining forces were stronger and ligand remained

in the vicinity of the initial orientation, as shown in Figure 25-d.
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Figure 25.  Variation of the orientation

in the host cavity (dotted lines) and the

coupling parameter λ λ λ λ2 (solid lines) of the

ligand (R=F) along the (a) MD and unbiased

λλλλ-dynamics trajectories with (b) αααα=0.1, (c)

αααα=0.3 and (d) αααα=0.5.

Figure 26.  Distributions of the

orientation in the host cavity of the ligand

(R=CH3) from MD and λλλλ-dynamics

trajectories.

Another interesting case of enhanced sampling is provided by the ligand toluene (R=CH3),

whose orientational distributions are shown in Figure 26. In the unbiased run with α=0.1, this

ligand explored the inverted orientation (with the methyl group near the wider rim), which also

sampled the dominant state. Increasing α to 0.30 restricted this ligand from sampling this

orientation. However, when the calculated ∆∆Gs from the unbiased run were added as bias

potentials, the poor binding ligands became more competitive. As a result, the fraction of the time

the strong binding ligands such as (R=CH3) and (R=OCH3) spend in the dominant state was

reduced. This enabled (R=CH3) to sample the alternative orientation with α=0.3 also. The

alternative orientation was not sampled when α was increased to 0.5. To evaluate the relative free
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energies of the two orientations, a 200ps λ-dynamics trajectory was generated with two toluenes

in the β-CD host, one in the “regular” and the other in the alternate orientation. The initial

conformation was built such that the benzene rings of the two ligands overlapped. Further,

harmonic restraints were applied between the overlapping ring carbon atoms of the two ligands.

This restricted the sampling space of the ligands to the vicinity of their respective initial

orientations. The calculated free energy difference between the two orientations from the λ-

dynamics trajectory was 0.20 kcal/mol, in favor of the orientation with the methyl group near the

narrow rim. A FEP run on the same model using 5 windows (mutation time = 300ps) yielded a

relative free energy of 0.18, but in favor of the inverted orientation (i.e. methyl group near the

wider rim). Judging from the small value of the relative free energies, we conclude that there may

not be any preference for one orientation over the other, although the ligand may not undergo free

rotations inside the cavity due to the energy barrier associated with the “flat” orientation (i.e.,

ligand in the plane of the host).

5.3.5 Validation of the generalized Born solvent model

The total solvation free energy is composed of the GB electrostatic part and a non-

electrostatic part. Traditionally, the latter is assumed to be linearly related to the solvent-

accessible surface area as shown in Eqn. 59. 65,67 In order to assess the relative importance of the

surface area term in the implicit solvent model, 500ps conventional MD simulations of the β-CD-

toluene system (100ps equilibration and 400ps sampling) were carried out using the GB energy

with the surface area term (labeled GB/SA) and without (labeled GB). The van der Waals scaling

parameter λα (see Enq. 51) was modified to fit for the various sized molecules as shown in

Appendix. In β-CD system, λα=0.74 is chosen. Moreover, the same simulations were also carried

out with λα =0.705 which was optimized for a protein database. The system was coupled to a 300
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K heatbath. In this study, 7 cal/(molÅ2) was chosen for the empirical atomic solvation parameter

(σi) of all heavy atoms.76 (see Eqn. 59) The averaged root mean square deviations for the host

heavy atoms were about 0.9 Å in both the GB and GB/SA models, which is slightly larger than

the value of 0.8 Å obtained with explicit water.161 We show, in Figure 27, the distribution of

distances between bridging oxygen atoms separated by three sugar units in the β-CD host to

illustrate the sampling of host configurations. Although the implicit solvent models (GB and

GB/SA) produce broader distributions, both implicit and explicit models yielded 9.8Å as the most

probable value. As the GB and GB/SA models gave similar distributions, we conclude that the

surface area term had little effect on the sampling of host configurations. The GB model with

λα=0.705 yielded a distribution of distances that was centered at larger values. The distributions

of the angle θ, indicating the binding orientation of toluene, are also shown in Figure 28.
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Figure 27.  Distribution of the distances

between bridging oxygen atoms of the αααα-1-4

glycosidic bonds separated by three sugar

units obtained from the conventional MD

trajectories of ββββ-CD-toluene system for

explicit water model (solid line), GB model

(dotted line with circle plots), and GB/SA

model (long dashed line with square plots).

Figure 28.  Distributions of the angle θθθθ

from the conventional MD trajectories of ββββ-

CD-toluene system for explicit water model

(solid line), GB model (dotted line with circle

plots) and GB/SA model (long dashed line

with square plots).
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Both explicit and implicit water models adopted θ=20~30° as the most probable value and

produced similar distributions of distance when λα=0.74. However favored binding orientations

using the GB model are more parallel to the molecular axis of the host when λα=0.705 is used.

The GB and GB/SA models show good agreement in the sampling of guest orientations as well as

host configurations. We conclude that the non-electrostatic contribution is negligible in its

influence on the configurational ensemble, since it is mostly constant throughout the simulation

(i.e. the largest differences of the surface area part and the GB part from 400 ps trajectories are 0.6

and 14.5 kcal/mol, respectively). Therefore, in this application, the non-electrostatic contribution

was ignored in the following simulations with the GB model. The value of λα (0.74), chosen by

considering the number of atoms, reproduced the sampling of both guest orientations and host

configurations, however, the previously optimized value (λα=0.705) for a protein database

generated larger deviations from those of the explicit water model.

5.3.6 Relative free energy differences using the generalized

Born model

The relative binding free energies (∆∆Gs) obtained from the hybrid topology λ-dynamics

simulations using the GB model are displayed in Figure 29 and compared to those from the

hybrid topology FEP simulations using the GB model as well as the multiple topology FEP

simulations using an explicit TIP3P water model. The detailed values of these free energy changes

are also tabulated in Table 7. Since the restraining potentials for the unselected ligands are not

included in the hybrid topology λ-dynamics/GB simulations, ∆∆Gs are calculated from Eqn. 16.
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Figure 29.  Correlation plot of the calculated relative free energies of binding from λλλλ-

dynamics and FEP simulations. The correlation coefficients between ∆∆∆∆∆∆∆∆G (λλλλ-dynamics/GB)

and ∆∆∆∆∆∆∆∆G (FEP/GB) and between ∆∆∆∆∆∆∆∆G (λλλλ-dynamics/GB) and ∆∆∆∆∆∆∆∆G (FEP/Explicit water) are

0.99, 0.89, respectively.

Table 7.  Results of relative binding free energy calculations.a

R ∆∆G (Exp.)b ∆G (EW)
 (FEP) b

∆G(GB)

(FEP) c

∆∆G(GB)

(λ−dynamics)

Br 0.0 0.0 0.0 0.0

H 0.38 2.32 1.60 1.92

CH3 0.23 -0.43 0.45 0.85

NH2 1.10 3.62 4.22 4.29

NO2 0.08 4.37 3.68 3.88

F 0.75 1.37 1.67 1.37

OH 0.72 0.90 2.30 2.64
a Free energy changes are in kcal/mol and relative to Bromobenzene (R=Br).
b Statistical uncertainities are ~±0.2 kcal/mol for all FEP calculation results.

These plots show very good correlation. In spite of different simulation conditions (cutoff
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distance and topology model), good agreement is obtained between the GB model and the explicit

water model. We can observe in Figure 29 that the GB solvent model tends to overestimate the

∆∆G values of the guests that include the hydrogen atoms in the variable parts (i.e. R=OH, NH2,

CH3) when compared with those from the explicit water calculations. This may partially come

from an inconsistent estimation of the effective Born radii between the heavy atoms and the

hydrogen atoms (see Appendix). For example, the Born radii of the hydrogen atoms belonging to

the variable parts remained unchanged as the guests bind to the host (i.e. 1.9 - 2.1Å for R=CH3,

~1.5Å for R=NH2, ~1.6Å for R=OH). While those of the heavy atoms of the variable parts

increase when the guests bind to the host such as 2.4 - 3.2Å for R=CH3, 2.1 - 2.8Å for R=NH2, 1.9

- 2.6Å for R=OH. The smaller Born radii of the positively charged hydrogen atoms in the interior

portion of the host may decrease the favorable electrostatic interaction between the guest and the

ligands. These results indicate that a new methodology to estimate the consistent effective Born

radii for both hydrogen and heavy atoms is very important for both small and large molecules in

order to apply the GB model to ligand screening problems.162 Results from FEP and λ-dynamics

runs using the GB solvent model were in very good agreement, which validated the λ-dependent

partial charge model. The partial charge of the guest carbon atom attached to the variable groups

varies most among all colo atoms, changing from -0.1417 (R=Br) to 0.5523 (R=OH). The

trajectory of its partial charge is shown in Figure 30 together with the λ2 value of bromobenzene.

Its partial charge fluctuates during the λ-dynamics simulation with the λ-dependent partial charge

model. When bromobenzene occupied the dominant states, its partial charge reaches -0.14.
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Figure 30.  The trajectory of the partial

charge of the guest carbon atom connected

to the variable groups in atomic unit. The

trajectory of λλλλ2 value of bromobenzene is

also shown.

Figure 31.  Time dependent angle θθθθ of

the guest (fluorobenzene) from the λλλλ-

dynamics simulations. The dotted line shows

the result taken from the previous multiple

topology λλλλ-dynamics simulation with the

explicit water model. 161 The solid line shows

that from the hybrid topology λλλλ-

dynamics/GB simulation.

5.3.7 Multiple and hybrid topologies

Free energy results from simulations using hybrid topology and multiple topology

representations show good agreement. Here we discuss the differences between them. FEP

simulations using hybrid topology models converge much faster than those using multiple

topology models since in the latter the guests having λ≈0 adopt unimportant high energy states,

adding uninteresting configurational entropy contributions (data not shown). For the same reason,

the hybrid topology λ-dynamics method yields converged results without the restraining potential

that is essential for rapid convergence in the multiple topology λ-dynamics method. However, the

use of a hybrid topology results in more limited sampling of conformational space. For example,

an unselected guest is restricted to an orientation dictated by the dominant guest, since they share
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the colo atoms. In the multiple topology model the non-selected guest is subjected to only the

restraining potential, the strength of which can be selected at will, and adopts a wider range of

orientations within the binding site. This is demonstrated by the time dependence of the angle θ of

the guest (fluorobenzene) from the λ-dynamics simulations (shown in Figure 31). By using a

multiple topology representation, fluorobenzene adopts multiple bound conformations, i.e., near

the initial structure (θ < 90°) and also an alternate orientation (θ > 90°). On the other hand, the

molecule is restricted to regions near the initial orientation throughout the simulation using a

hybrid topology representation. To obtain reliable free energies, one must ensure both satisfactory

convergence and sampling of all the relevant minima. Thus, one must consider the configurational

sampling of all ligands and use the hybrid topology representation with caution. The iterative

procedure with a biasing potential may partially solve any sampling problems in the hybrid

topology model.

5. 4 Conclusions

β-CD provides a simple prototype for ligand-enzyme systems, involving mainly van der

Waals and hydrophobic interactions. We have chosen this system as a test case for the λ-dynamics

methodology due to its simplicity. The excellent correlations we have obtained between the free

energies of binding from λ-dynamics and FEP simulations reaffirms the capability of this

approach as a faster alternative to FEP, particularly when a large number of ligands are involved.

A significant difference in free energy of binding between the “best” and “worst” members results

in the latter not sampling the dominant state. However, when such a situation arises, additional

biases can be applied and the free energies estimated using the enhanced sampling. These

simulations have also demonstrated how λ-dynamics may be used to sample the conformational

space for alternative binding orientations by tuning the strength of the restraining potential and by
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using biased sampling.

In this application of the GB solvent model, a hybrid topology λ-dynamics/GB method was

used to study the binding of seven mono-substituted benzene derivatives to β-CD. The effect of

non-electrostatic solvation terms approximated by solvent accessible surface area was very small

at least in this system. The binding free energy differences obtained from the λ-dynamics/GB

method agreed well with those of FEP simulations in both explicit and implicit solvent models.

Carefully chosen GB parameters, which depend on the size of the system, are very important to

yield results that are comparable with those obtained using explicit water. We demonstrated that a

λ dependent partial charge model introduced for the hybrid topology representation worked well.

The λ-dynamics/GB simulations converged without any restraining potential, although the

configurational space sampled was restricted as compared to sampling using the multiple topology

model. The hybrid topology λ-dynamics method may be a useful tool for screening out the

slightly varying ligands.
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Chapter 6

Protein Stability Analysis:

c-Myb DNA-Binding Domain

Based on

Shinichi Banba and Charles L. Brooks, III,

“Application of multiple topology λ-dynamics to protein stability

analysis: c-Myb DNA-binding domain,”

 in preparation.
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6.1 Introduction

Enzymes are excellent biocatalysts so that they are expected to have applications in industry,

however, they are very sensitive to chemical and physical factors.163 Therefore, it is very important

to enhance the protein thermal stability and the tolerance for chemical compounds in their

applications as catalysts. For example, enhanced thermal stability is a key factor in polymerase

chain reactions (PCR) applications or in the detergent industry.164 To create the artificially

thermostable proteins, mutational analyses have been carried out systematically in many proteins

such as T4 Lysozyme165 and staphylococcal nuclease.166,167 Moreover, the 3D structures of many

thermophilic  proteins and thermostable mutants have been solved and published. Hence, by

increasing our understanding of the molecular-level origins of protein stability, we will be able to

move toward protein design. Such rational design is still relatively elaborate and slow because it is

an iterative process and each design must be characterized biophysically before making the next

change. Therefore, an efficient and accurate methodology, which predicts the thermal stability of

extensive mutants, will play an important role for the protein design process.

For this purpose, many researchers have recently developed computational methods for

predicting the effect of mutations on protein stability.168-171 Until now such calculations have been

performed mostly with expensive free energy simulation methods. The expensive free energy

simulation methods such as free energy perturbation (FEP) have successfully been applied to

rationalize changes in protein stability caused by mutation.172-175 However due to the

computationally intensive nature of these methods, a more efficient computational protocol is

required as a practical tool. In addition to the fact that long simulations are often necessary to

obtain satisfactory convergence, FEP is not the method of choice when a large number of

mutations have to be screened.

In the previous chapters, the λ-dynamics and CMC/MD methods have been demonstrated to
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be effective in the rapid evaluations of binding free energies of a large number of ligands from a

single simulation.13 The λ-dynamics method has already been successfully applied for protein-

ligands or host-guest systems. 6,14,39,40,84,161,176 A variant of the λ-dynamics approach, CMC/MD, has

been applied to protein stability analysis by Pitera and Kollman. The CMC/MD method

successfully identified and ranked the thermal stability of 8 different mutants at a specific site of

T4 lysozyme.177

Our objective of this chapter is to further expand the λ-dynamics and CMC/MD approaches

for protein stability analysis. In the previous applications, multiple ligands are prepared against a

specific protein or host. Then, the λ-dynamics and CMC/MD methods are used to screen out the

ligands that bind to the protein or host most tightly. In this study, multiple amino acids at a given

site of the protein are prepared and then the λ-dynamics and CMC/MD methods screen out the

most stabilizing mutations from putative candidates.

6.2 Computational details

The system we study is the DNA-binding domain of c-Myb (R2 unit) with different amino

acids at position 103 (Val); a-butyric amino acid (Abu), alloisoleucine (Ail), Alanine (Ala),

isoleucine (Ile), Leucine (Leu), and, norvaline (Nva) (see Figure 33). c-Myb is a transcriptional

regulatory factor, playing an vital role in the regulation of the proliferation of hematopoietic cells,

mature T-cells and muscle cells.178 The DNA-binding domain of c-Myb has three imperfect

structural repeat units (R1, R2, and R3). NMR analyses revealed that the thermodynamically less

stable R2 unit has a cavity in the hydrophobic core as shown in Figure 32.179 Free energy

calculations and cavity-filling mutants proved that the decreased thermal stability of R2 domain is

derived from this cavity,174,175,180 however, it plays an important role in DNA binding. In fact, a

cavity-filling mutant, V103L, had a decreased binding affinity for DNA.179 In this system, the free



107

energy changes associated with unfolding were measured using urea denaturation

experiments.174,180 The tertiary structure of the wild type was determined by NMR analysis (PDB

code: 1MBG).179  Saito, et al. have already investigated this system to clarify the stabilization

mechanism by using AMBER force field.174,175 Therefore, this system is an appropriate choice for

investigating the λ-dynamics approach for protein stability analysis.

Figure 32.  c-Myb R2 structure. The cavity surface detected with a mutant V103A is

shown by gray .The alanine mutated here is shown by red. The residues forming the cavity

wall are shown by sticks. The figure is drawn by InsightII.



108

Model of λ λ λ λ-dynamics & MC/MD

Val
Abu

Ail

Ile Ala

Nva

Leu

Wild Type

Figure 33.  Amino acids and the mutation paths calculated in this study. The

conformations shown here roughly represent the initial conformations used in this study.

In this chapter, we calculate the folding free energy of the protein using the thermodynamic

cycle as shown in Figure 34. In computational approaches, the relative folding free energy

difference( ∆∆Gfold) is calculated from ∆Gfold - ∆Gunfold.The values of ∆Gunfold for the half-cycles

with unfolded states were pre-calculated using the FEP method, and then, λ-dynamics or

CMC/MD are used to evaluate the ∆Gfold to obtain the folding free energy differences.

Pwild
unfold

Pmutant
unfold Pmutant

fold

Pwild
fold

mutantG∆

wildG∆

unfoldG∆ foldG∆

Figure 34.  Thermodynamic cycle used for relative folding free energy calculations

All computations were performed using the CHARMM molecular dynamics package.119
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Mutated amino acids used in this study was shown in Figure 33. The backbone atoms and Cβ of

the mutated amino acids are represented by single topology, while variable side chain atoms of the

mutated amino acids are represented by independent multiple topologies. We use the CHARMM

version 22 parameters and topologies except for the partial charges of some variable side chains,

which were slightly modified to confer total partial charge of the mutants zero.138

The initial coordinates of the native state were taken from the NMR structure (PDB code:

1MBG). Each mutated residue was modeled in by hand using QUANTA. Its initial conformation

was chosen following the work of Saito et al.174 The system was first solvated in a 20 Å sphere of

water using the stochastic boundary molecular dynamics method,122 and those water molecules

whose oxygen overlapped within 2.8 Å of any non-hydrogen protein atoms were removed. Water

molecules were represented by the TIP3P water model of Jorgensen.120 The values of λ2 for each

mutant are kept constant (e.g. λ2 = 1/6, for all mutants) while preparing the initial solvated

structures. The water molecules were only allowed to equilibrate for 30ps of MD simulation,

using a 12Å reaction region and a 8Å buffer region. The geometric center of Val103 was used as

the center in partitioning the system. Additional 20Å spheres of water were then overlaid to fill

any ‘holes’ because water may have moved into protein cavities during thermalization. This was

followed by another 30ps of water thermalization and energy minimization without any

constraints. We adopted the final structure as an initial structure for all later simulation. For

example, to get ∆∆Gfold between any two mutants using conventional FEP methods, the other five

mutants were deleted from the final structure and used as initial structure.

To assess the results of the λ-dynamics and CMC/MD methods, we also performed

conventional FEP calculations with the native state. FEP calculations was carried out with six

mutation pairs as shown in Figure 33. Only one methyl group is different in each mutation pair.

The larger volume mutant was defined as a reactant in each pair. Mutations were carried out over

9 windows using a dual topology model. After an initial 100ps MD simulation for equilibration,
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an equilibration phase of 20ps and sampling phase of 50ps was carried out in each window.

To obtain the folding free energy difference, FEP calculations were performed with the

denatured states using the same mutation pairs as those with the native states (Figure 33). At first,

the denatured state was modeled with penta-amino acids taken from the actual sequence. The

denatured states were also represented by mono peptide model (Acetyl-Xaa-Methylamino, where

Xaa denoted the mutated amino acids). Side chain conformations were chosen to be the same as

those in the native states. Since the mutants used here are non-polar aliphatic mutants, the mono-

amino acid model and penta-amino acids model yielded the almost identical results. Thus, the

denatured state was modeled as a mono-amino acid. This peptide model was immersed in a

periodic box of 1000 TIP3P water molecules, and again those water molecules whose oxygen

overlapped within 2.8 Å of any non-hydrogen atoms were removed. For each pair, a 100ps MD

simulation for equilibration was followed by an equilibration phase of 20ps and a sampling phase

of 50ps over 9 windows. This free energy is used as the reference free energy {F}.

All bonds containing hydrogen atoms were constrained to their parameter values using the

SHAKE algorithm.121 Nonbonded interactions were treated using a cutoff of 12.4Å along with

van der Waals switching between 8.0Å and 10.0 Å and an electrostatic shifting function. The

temperature of the system was maintained near 300K by coupling the non-hydrogen atoms to a

Langevin heatbath using frictional coefficients of 50 ps-1 and 5 ps-1 for atoms and λ variables,

respectively. All simulations used a time step of 1.0 fs. The masses of the fictitious λ degrees of

freedom were chosen to be 5 amu•Å2 in all λ-dynamics simulations.

To keep the side chains of the unselected mutants in the lower energy states, the restraining

potentials (see Eqn. 44) are added in the λ-dynamics and CMC/MD simulations in this

application. Therefore, the ∆∆Gfold of the mutants is estimated by using Eqn. 46 for a single

trajectory and Eqn. 48 when combining multi-trajectories with WHAM. MC steps occurred every

10 MD steps in all CMC/MD simulations. The λ trajectories obtained from λ-dynamics and
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CMC/MD simulations were saved every 10 fs and were used for later analysis. By applying

biasing offsets for {F} and an iterative technique, we expect to achieve better sampling of the

phase space of chemical coordinates and therefore faster convergence of the calculations. Thus,

we performed the λ-dynamics and CMC/MD simulations using an iterative procedure with

WHAM up to 8 iteration. In each iteration, a 50 ps equilibration period was followed by 250 ps of

data collection. As described before (Eqn. 47), biasing offsets {F} for n-th iteration are estimated

from previous (n-1) trajectories.

6.3 Results and discussion

6.3.1 Relative folding free energy differences

The relative folding free energy differences calculated by FEP, λ-dynamics and CMC/MD

are tabulated in Table 8. The FEP results using Amber force field are also listed in Table 8 for

comparison.174 From a single 250ps simulation, both the λ-dynamics and CMC/MD methods

successfully identified the best stabilized mutant (Leu). However, a single run was insufficient to

obtain the ∆∆Gfold for noncompetitive mutants such as Abu and Ala. Therefore, the iterative

procedure with biasing offsets {F} was carried out to get the ∆∆Gfolds for all mutants. As a result,

all methods gave good agreement with experiments as shown in Figure 35-a, however, our

simulation results overestimated the relative folding free energy differences. Both the λ-dynamics

and CMC/MD methods were in good agreements with FEP results (Figure 35-b) and

consequently demonstrated their methodological validity. As shown in Figure 35-c, the different

scaling parameters (α=0.1 and 0.3) for the restraining potential gave really good agreement. Thus,

the scaling parameters may influence very little on the final results as long as the convergence is

enough among similar mutants. Our simulations using CHARMM force field were also in good
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agreement with the FEP simulations using AMBER force field (Figure 35-d).

Table 8.  Summary of relative folding free energy calculations a

λ-dynamics MC/MD

α=0.1 α=0.3 α=0.1 α=0.3

amino

acid

Exp.b FEPc FEP

1st 5thd 1st 5thd 1st 5thd 1st 5thd

Leu -3.96 -4.45 -3.32 -2.6 -3.32 -4.1 -3.18 -4.32 -3.58 -3.05 -2.94

Nva -2.4 -2.94 -1.14 -0.65 -1.43 -1.4 -0.96 -1.39 -2.20 -0.91 -0.84

Ail -1.27 -1.77 0.12 -0.51 0.31 -0.15 -0.34 0.4 -0.98 0.61 -1.00

Ile -1.07 -0.13 -0.2 0.02 -2.19 -1.81 -0.78 -2.5 -2.15 -1.78 -1.49

Abu -0.2 0.15 1.34 -e 1.20 - e 1.06 - e 0.10 2.27 1.65

Val 0 0 0 0 0 0 0 0 0 0 0

Ala 1.47 2.79 3.9 - e 4.90 - e 5.19 - e 3.87 - e 5.65
a All values are in kcal/mol, and relative to Valine (wild type).
b ∆∆Gfolds are taken from Saito et al.174

c Calculated values using Amber force174

d The values were calculated with 5 trajectories using WHAM
e Not Determined because they did not reach dominant states (λ2 > 0.9).
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Figure 35.  Correlation plots of the relative stability free energy of the mutants in kcal/mol.

(a) Comparison with observed values; (b) λλλλ-dynamics and CMC/MD versus FEP; (c)

Comparing the different scaling parameters (αααα=0.3 versus αααα=0.1); (d) ∆∆∆∆∆∆∆∆Gfold using

CHARMM force field versus ∆∆∆∆∆∆∆∆Gfold using AMBER force field.

The λ2 trajectories are shown in Figure 36. Since Leu provides the greatest stability by 2

kcal/mol in the FEP simulations, Leu mostly occupied the dominant states in the first λ-dynamics

run without any biasing offsets (i.e., relative free energies in the denatured states {F0} were used).

In contrast, all mutants compete reasonably well in the fifth run with biasing offsets, {F(4}}, which

were estimated from the four λ-dynamics trajectories.
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Figure 36.  Trajectory of λλλλ2222 values obtained using the λλλλ-dynamics method with αααα=0.3. (a)

Data from first λλλλ-dynamics run with {F0} corresponding to the respective free energies at the

denatured states. (b) Data from 5th  λ λ λ λ-dynamics run with {F(4)}, which were estimated by

using four λλλλ-dynamics trajectories based on WHAM.

The convergence profiles of the ∆∆Gfolds along iterative cycles (Figure 37) indicate that two

or three iterations are enough to obtain the converged folding free energies for all mutants in this

system. Although this behavior may depend on the system and quick convergence may partially

come from the simplicity of this system, such a fast convergence demonstrates the effectiveness

of the iterative techniques with WHAM.
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Figure 37.  Estimations of ∆∆∆∆∆∆∆∆Gfold as a function of the number of iterations for (a)

CMC/MD, (b) λλλλ-dynamics. A value of 0.3 was used for αααα. Val was chosen as reference. Key:

Ala-circle, Abu-square, Ail-filled triangle, Nva-diamond, Ile-triangle down, Leu-triangle up.

6.3.2 Biasing potential along the λλλλ coordinates

In the CMC/MD method, the stochastic sampling by MC step permits one to restrict the

sampling of the chemical space {λ} such as described in Eqn. 25. This condition allows us to

sample exclusively the end states of interest. However, the smaller overlap of the end points has a

risk of inefficient sampling along λ coordinates and getting trapped in a chemical state.

On the other hand, in the λ-dynamics method, the λ-variables are treated as continuous

variables and explore both end points and the intermediate states. Using biasing offsets {F} in the

iterative procedure, the ratio of sampling the end states decreased in the λ-dynamics simulations

as shown in Table 9. This is because the number of the intermediate state is much larger than

those of the end states and biasing offsets {F} make the intermediate states competitive as well as

the end states. To increase the ratio of the end states, an additional biasing potential Vbias (see Eqn.

27) along the λ coordinates is added as following.
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This biasing potential stabilized the end states about 2.5 kcal/mol. In this application, the same

Vbias was applied to all mutants. In this case, ∆∆Gfold can be calculated without including the effect

from Vbias since its effect is completely canceled (see Eqn. 29). As shown in Table 9, the

additional biasing potentials successfully increased the ratio of sampling the end states about 30

times as compared to that without them.

Table 9.  Number of sampling the end states in λλλλ-dynamics simulation (αααα=0.3).a

1st 2nd 3rd 4th 5th 5th(biased potential)b

Number of End states(λ2>0.9) 780 626 174 257 264 7595

Number of Transitions 68 44 57 83 74 162

a There are 25,000 samples in each iteration.

b 5th iteration with the additional biased potential shown in Eqn. 74.
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Figure 38.  Trajectory of λλλλ2222 values of R=Ala obtained from the 5th λλλλ-dynamics trajectories

with αααα=0.3. (a) No biasing potential; (b) with the biasing potential shown in Eqn. 74.

To further demonstrate the effect of Vbias, the λ2 trajectory of the Ala mutant from the 5th

run is presented in Figure 38. Without Vbias, the Ala mutant occupied the dominant state for a very

short period and return to the unselected states, while it occupied the dominant states for a long

time with this biasing potential. Furthermore, the transitions between the end points happen more
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frequently without a trap in an end point (see Table 9). Thus, the properly chosen biasing

potentials successfully permit both the smooth transitions and efficient sampling of the end

points.

6.3.3 Conformational sampling of the mutant side chains

An attractive feature of the λ-dynamics method is its ability to explore a larger

conformational space. This is due to the fact that when λ is nearly zero, the only interaction is the

restraining potential. By controlling the scaling parameter α for the restraining potential, we can

control the extent of conformational space to be sampled. The distribution of χ1, and χ2 observed

during the λ-dynamics simulation is illustrated in Figure 39. With the weaker restraining potential

(α=0.1), the mutants explored different local configurational minima. Furthermore, Ail and Leu

occupied the dominant states with a different conformation with respect to χ2. In the CMC/MD

simulations, Pitera and Kollman introduced rotameric states for each mutant in order to

compensate for the inefficient conformational sampling of the side chain. In this application, the

smaller scaling potential (α=0.1) yields the broader sampling of the conformational space and

consequently is substituted for the set of rotamers used in their CMC/MD study.
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Figure 39.  Distributions of the dihedral angle of the side chains from the 5th iterate of λλλλ-

dynamics trajectories for αααα=0.1 (a), αααα=0.3 (b). The dotted lines represent those using the

whole trajectories, while the solid lines show those only occupying the dominant states.
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6.3.4 The effect of mass of the fictitious λλλλ degrees of freedom

To provide a standard protocol for future applications, we examined the effect of mass of

the fictitious λ variables (mλ), which provides additional control over the dynamics of the λ

variables. Since the derivatives of the λ variables are related to the potential energy Vi(X,xi) in

Eqn. 14, the distribution of Vi(X,xi) has an influence on the proper value of mλ. For example,

when a large number of atoms are assigned as the variable atoms (xi in Eqn. 14), the distribution

of the potential energy Vi(X,xi) becomes wide and then large mλ may be preferred. Here, we limit

our discussion to the point mutations cases.

The λ-dynamics simulations were carried out using the conditions of the 5th iteration (α=0.3)

except for the values of mλ. The smaller mass (mλ =1) made the numerical integration of the λ

variables unstable and insufficient coupling of the λ variables with a heatbath resulted in a higher

temperature for the λ variables as shown in Table 10. With even smaller masses (mλ = 0.01), the

unselected mutants yielded the larger fluctuations near zero point and the ratio of sampling the

end states became small. With mλ =0.01, the λ-dynamics method yielded the incorrect ∆∆Αfolds

even with 2 ns simulation. Although smaller time step is inefficient for evolving the atomic

coordinates, smaller time step may be necessary to evolve the λ coordinates when such small

masses are chosen.

On the other hand, the larger mλ (mλ= 500) showed slow evolution in the λ-space, but

∆∆Αfolds calculated with mλ =500 with 2 ns trajectory gave good agreement with those using mλ=5

(data not shown). Too large a mass (mλ= 5000) tended to trap the system in a state where one

mutant occupied the dominant states and then much longer simulation time is required to explore

the whole λ space. In this case, each mutant spent about a few tens of picoseconds to reach the

dominant state from the unbound state. Much longer time step is efficient for evolving λ variables,
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however, such a large time step yields unstable numerical integration of the atomic coordinates.

From this study, we conclude that the proper mass for the λ variables is about 5 ~ 50 amu•Å2.

This is small enough for efficient sampling of the λ space and large enough for stable numerical

integration at a given time step (1 fs) for the atomic coordinates. The properly chosen mλ is

important for efficient λ-space sampling.

Table 10.  The effect of mass for the λλλλ-dynamics simulations.a

mλλλλ (amu•Å2) 0.01 1111 5 10 50 500500500500 5000

Number of end states b 16(12) 259(5) 264(73) 256(73) 350(30) 113(3) 456(2)

Average temperature of {λ} λ} λ} λ} 1023 1010 310 301 301 301 301

a All λ-dynamics simulations were carried out using the conditions for the 5th iteration except

for the values of mλ.
b There are 25,000 samples in each simulation. The number of transitions between the end

states is also shown in the parentheses.

6.3.5 The limitations in the free energy based screening

methods

The mutations investigated here were restricted to similar aliphatic residues. To further

evaluate free energy based screening methods, we added five structurally and/or electrostatically

dissimilar mutants: asparagine (Asp), methionine (Met), phenylalanine (Phe), serine (Ser), and

threonine (Thr). The additional mutation paths for the FEP simulations are shown in Figure 40. In

this case, a total of 12 mutants were examined simultaneously using λ-dynamics and the

CMC/MD methods. All simulations (i.e., FEP, λ-dynamics and CMC/MD) used the same

equilibrium and production protocols described above.
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Figure 40.  Amino acids and the mutation paths calculated in 12-mutants system. Asn, Phe,

Met, Ser and Thr are the additional mutants.

In the CMC/MD method, the stochastic sampling by an MC step restricts sampling

exclusively to the end states of interests (Eqn. 25). However, inefficient sampling of the chemical

states, such as trapping in an end state, may occur. This is prevalent when there is a large free

energy gap between the side chains. Trapping may, however, be partially avoided by the addition

of a few chosen intermediate states to bridge the end points. In the 12-mutant system, the

CMC/MD simulations, which sample only the end states, did not reproduce the FEP results even

after the eighth iterative cycle. This is because the MC steps tended to get trapped in one of the

mutant states (see Table 11). Additional intermediate states seem to be important to avoid trapping

in local minima, however, allowing one intermediate state (λ i
2=0.5 and λ j

2=0.5) was insufficient to

enhance the efficiency of sampling the chemical space. The CMC/MD simulations with nine

intermediate states increased the transitions of the end states and yielded relatively smaller

absolute free energy errors after the eighth iteration.

In the λ-dynamics method, the λ-variables are treated as continuous variables, so smooth

transitions between the end points are expected. After the eighth iterative cycle, the λ-dynamics

method successfully predicted the folding free energy as compared to FEP results, except for the

Phe mutant (see Figure 41). Both the λ-dynamics and the CMC/MD methods predicted the

∆∆Afold of the Phe mutant to be much higher than that from the FEP result. Since the Phe residue
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is large compared to the cavity space, the protein has to change its structure. In Table 11, we did

not observe transitions to the end states in any of the CMC/MD trajectories except for those that

included nine intermediate states when the Phe mutant was in the dominant state. Thus, once the

Phe mutant occupies the dominant state, it is difficult for the other mutants to compete, however,

Phe rarely occupies this state.

Table 11.  Number of sampling the end states a and the average absolute free energy errors

along the iteration procedures.b

Iteration No. 1st 2st 3nd 4th 5th 6th 7th 8th

λ-dynamics

(α=0.1)

4096(168)

-

1375(132)

-

1041(147)

1.39

887(158)

1.18

1314(174)

1.03

909(144)

0.95

757(141)

0.85

626(117)

0.81

λ-dynamics

(α=0.3)

272(78)

-

270(84)

-

205(47)

2.26

513(17)

2.07

139(39)

1.89

221(58)

1.71

118(49)

1.61

114(38)

1.57

MC/MD c

(α=0.1)

25000(2)

-

25000(34)

-

25000(0)

-

25000(29)

2.32

25000(7)

2.82

25000(39)

2.88

25000(0)

2.90

25000(0)

2.90

MC/MD c

(α=0.3)

25000(10)

-

25000(45)

-

25000(59)

3.96

25000(54)

3.87

25000(0)

3.74

25000(0)

3.75

25000(0)

3.85

25000(0)

3.87

MC/MD d

(α=0.1)

23803(13)

-

25000(0)

-

24077(8)

2.0

22388(57)

2.40

21293(94)

2.33

21632(85)

2.37

24881(0)

2.30

25000(0)

2.28

MC/MD e

(α=0.1)

16339(12)

-

18167(13)

-

12186(22)

2.06

24887(0)

2.09

24909(0)

2.21

24146(0)

2.13

4380(47)

1.99

3629(42)

1.88

a The number of the end states are shown at upper line in each cell. The number of the transitions

among the end states is also shown in the parentheses. There are 25,000 samples in each

iteration.
b Average absolute free energy errors (kcal/mol) against the FEP results are shown at lower lines

in each cell. Phe is excluded due to its large errors.
c The sampling of the chemical space in MC steps are restricted only at end points.
d The sampling of the chemical space is allowed at both {λ i

2=1 ,λ k ≠ i
2=0}and

{λ i
2=0.5, λj

2=0.5, λ k ≠ i,j
2=0}

e The chemical space sampling is allowed at {λ i
2=0, 0.1, ..., 0.9, 1} with the conditions ∑

=

=
L

i
i

1

2 1λ .
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Figure 41.  Correlation plot of the calculated relative folding free energies from λλλλ-

dynamics and FEP simulations in the 12 mutants system. There is good correlation, except for

Phe mutant.

To clarify why the λ-dynamics ended in the incorrect estimation of ∆∆Afold for Phe, constant

temperature MD simulations were carried out with the wild type (i.e., Val) and Phe mutant.

Judging from the conventional MD simulations, there are two distinct differences in the protein

configuration between the wild type and Phe mutant (see Figure 42). One is the side chains of

two Trp residues, which move to accommodate Phe. The other is the shifted third helix to provide

the larger cavity space. When the Phe mutant occupies the end-point state during the λ-dynamics

simulations, the two Trp side chains moved in a similar way, but the third helix remained in

conformations near the wild type structure. The Trp side chains relax rapidly to accommodate the

Phe mutation, whereas, the shift of the third helix requires a longer time and is hardly observed in

the λ-dynamics simulations. Thus, we speculate that the λ-dynamics method predicted the

incorrect folding free energy for the Phe mutant because the third helix remained in positions
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where the Phe mutant disfavored. On the other hand, both the Trp side chains and third helix

shifted in the eighth CMC/MD trajectory (no intermediate condition) in which Phe was dominant

nearly 1.2ns and the other mutants hardly occupy the dominant states. Inefficient λ space

sampling in the CMC/MD simulations permit the Phe mutant to remain in the dominant state for a

longer period of time, which makes it possible for the third helix to shift. Once the third helix

moves, the other mutants do not have favorable van der Waals interactions and do not return to the

dominant states without the additional biasing offsets. In this study, the additional biasing offsets

used in the iterative procedure only permit the third helix to transit between the minima for the

Phe mutant and other mutants.

With both λ-dynamics and CMC/MD, the smaller scaling parameter (α=0.1) yielded smaller

absolute free energy errors than α=0.3, as shown in Table 11. We assumed that the entropy in the

correction (second and third terms in Eqn. 46) cancels. In the 12-mutant system, dissimilar

mutants are included and entropic contributions from the correction terms may not cancel among

them. Since the contribution from the correction terms increase as the value of the scaling

parameter increases, the correction terms yielded larger errors with α=0.3. Furthermore, with the

larger scaling parameter (α=0.3), the unbound mutants also occupied the lower energy states and

then the intermediates states are competitive. The ratio of sampling the end states is so small that

the convergence of the probability term (first term in Eqn. 46) is also slower (see Table 11). We

speculate that both the inaccurate estimation of the correction terms and the slower convergence

of the probability terms give the larger absolute free energy errors when α=0.3.
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Figure 42.  Distributions of the distances from the conventional MD simulation of Phe

mutant (black solid line), the conventional MD simulation of the wild type (black dashed line),

the λλλλ-dynamics trajectory in which the Phe mutant occupies the dominant state (red solid

line), and CMC/MD trajectory in which the Phe mutant occupies the dominant state (blue

dotted line). Four distribution plots longer than 9 Å show the distances between Cαααα of 103rd

mutant and Cαααα of 127th Gly, which represent the distance between the mutation site and the

3rd helix. The other four plots shorter than 9 Å are the distance between Cαααα of 103rd mutant

and  4-position carbon atom of indole belonging to 134th Trp.

6.4 Conclusions

Our results indicate that the λ-dynamics and CMC/MD methods will become a practical tool

for suggesting mutations that would stabilize a particular protein with applications in

biotechnology. For screening purpose, both methods rapidly identified the favorable mutants.
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Furthermore, computational time is almost independent of the number of mutants. For detailed

free energy calculations using the iterative technique, both methods produce results in good

agreement with experimental. Comparing λ-dynamics with CMC/MD, both methods yielded

consistent results and only differed in handling the intermediate states. The additional biasing

potentials along the λ coordinates (Eqn. 74) can enhance the ratio of the end states and then

increase the efficiency of sampling without getting trapped in a local minimum.

By using the restraining potential with scaling parameter α, both methods successfully

explore larger conformational space than conventional MD methods. We also found that the

proper choice of mass for the λ variables is important for efficient λ-space sampling.

As a limitation, both methods are better suited for the quantitative screening of similar

mutants. When sterically different mutant pairs such as Phe and Ala are considered, it is difficult

for both methods to converge quickly. In this case, a large number of cycles of iterations using

biasing offsets {F} and/or enhanced sampling of the environment atoms around the mutants may

be required. Moreover, putative mutants are divided into some groups which only have similar

mutants and the λ-dynamics and CMC/MD simulations are carried out on the mutants in each of

those groups. By partitioning the mutants into groups such that they have common members,

∆∆Gfold for structurally dissimilar mutants belonging to different groups also can be estimated.

This strategy may overcome the limitation for both the methods.
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Chapter 7

Binding Orientation of Toluene in ββββ-

Cyclodextrin

Based on

Shinichi Banba and Charles L. Brooks, III,

“Efficient sampling of guest orientations in β-cyclodextrin using hybrid

Monte Carlo / Langevin dynamics method,”

J. Chem. Phys. submitted.
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7.1 Introduction

The conformational space of biological systems such as proteins is so large that its complete

sampling by conventional molecular dynamics (MD) or Monte Carlo (MC) methods is impossible.

These methods tend to get trapped in one of large number of local minimum energy states at low

temperatures. In addition, the presence of high-energy barriers between local minima hinders the

exhaustive sampling of the system. As a result, these methods usually fail to obtain canonical

distributions at low temperatures. The efficient sampling of the configurational space is important

for faster convergence in the calculations of thermodynamic parameters. For example,

conventional thermodynamic integration (TI) simulations gave incorrect binding free energy for

benzylamine with trypsin due to inefficient sampling of benzylamine conformation in the bound

state.181 To overcome the multiple-minima problem, various novel simulation schemes, such as the

umbrella sampling technique,27, multicanonical algorithm,86-90,182 replica-exchange method,93,183,184

and simulated tempering method185 have been proposed and successfully applied to many

systems,88,94,186,187 (For a recent review, see ref. 188) however, each method has limitations. In

multicanonical sampling or simulated tempering, the probability weight factors are not known a

priori and have to be determined by iterations of short trial simulations, which is very tedious and

time-consuming. In umbrella sampling also, multiple-trajectories have to be generated to compute

the free energy difference.

In our previous studies shown above, the λ-dynamics method was demonstrated to be an

efficient method for obtaining a reasonable estimation of the binding affinities of the ligands.39,40

Additionally, these studies also proved to be more efficient for exploring the binding orientations

and conformations of the ligands than using conventional MD. These factors motivated us to

introduce the Monte Carlo / Langevin dynamics method (MC/LD) to overcome the multiple-

minima problem. In the λ-dynamics method6,13,14,39,40 or CMC/MD15,16, the different ligands
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switching between 8.5Å and 10.0 Å and electrostatic shifting functions. The time step used in all

simulations was 1.0fs. In MC/LD simulations, a Monte Carlo step was carried out at every 10 LD

steps. The focus atoms were replicated five times, as consisted of a “selected replica” and four

unselected replicas. A 50ps equilibration period was followed by a 200ps production run for the

MC/LD simulation. The structural parameter θ was sampled at every 100 LD steps. All

calculations were carried out using the CHARMM molecular dynamics package.119

Figure 43.  The definition of the structural parameter θθθθ. The carbon atoms and oxygen

atoms are shown in black and gray, respectively. The vector A and B are directed from the

first bridging oxygen atom (larger gray spheres) to the fourth one and from the second one to

the fifth one, respectively. The vector C is directed from the carbon at 4 position to that at 1

position of toluene shown by smaller black spheres.
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7.3 Results and discussion

7.3.1 The Monte Carlo / Langevin dynamics simulations

Binding of toluene with β-CD can form two isomeric complexes.158,159,189 It is difficult to

experimentally determine the orientation of the guest molecule in the β-CD. In the initial structure

of the complex, we placed the methyl group of toluene face to the narrower rim due to its

hydrophobicity and size. When toluene is bound with the initial orientation (θ<90°, “narrow”

orientation), the methyl group is immersed in the hydrophobic cavity and has favorable van der

Waals interactions with the host, whereas, within the “wide” orientation (θ>90°, “wide”

orientation) the dipole moment of toluene is anti-parallel to that of host and gave a favorable

electrostatic interaction with host. The trajectory of θ values calculated by the MC/LD method is

listed in Figure 44 along with the conventional constant temperature LD trajectory. Although the

conventional method was trapped in the “narrow” orientation near the initial structure, the

MC/LD method successfully explored both orientations. The barrier crossing was achieved only

by the unselected replicas under “ghost force”, so that the frequent transition between two minima

was carried out via MC steps. The distributions of the interaction energy Vfocus (see Eqn. 66) of the

selected replica and the unselected replicas are shown in Figure 45. Although the unselected

replicas sampled higher energy states due to the scaled ghost forces, most of the time, one of

many unselected replicas was in a state of lower energy enough to compete with the selected

replica and resulted in the high acceptance ratio. The average acceptance ratio along the MC/LD

trajectory was 9%. These results indicate that larger sampling space with the scaled “ghost force”

was compensated by using the multiple replicas.
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Figure 44.  The dynamics trajectory of θθθθ

values for (a) the conventional LD

simulation, and (b) MC/LD simulation of the

selected replica. 50ps equilibration phases

are not shown.

Figure 45.  The distribution of

interaction energy Vfocus taken from the

MC/LD trajectory. The solid line and dashed

line represent the average of the selected

replica and the unselected replicas,

respectively.

7.3.2 Umbrella sampling simulations

A series of seventeen simulations was used for the construction of the potential of mean

force (PMF) along the structural parameter θ, which was restrained around 10, 20, …, 160, and

170° using the harmonic restraining potential with a force constant of 30 kcal/mol/Å2. Each

simulation consisted of 100ps equilibration of the system followed by a 200ps production phase.

The structural parameter θ was sampled at every 100 LD steps. The θ-histograms from these

trajectories were combined using WHAM to compute the PMF profile along the orientational

coordinate. The PMF profile thus obtained is shown in Figure 46 along with the profile obtained
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from a 200ps MC/LD trajectory.
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Figure 46.  The comparison of free energy surfaces W(θθθθ) from the 17 trajectories (dashed

line) using umbrella potential combined by WHAM and from a MC/LD trajectory (solid line).

18 grids with 10° interval were used in both methods. The lowest free energy grid centered at

155° was chosen as reference.

Both profiles are in very good agreement. These results validate the approximation that

“ghost force” generated the distribution shown in Eqn. 68. The MC/LD method yields the PMF

profile correctly with about 20 times smaller computational resource than a series of LD

trajectories using umbrella sampling technique. This is because the unselected multiple replicas

can explore larger space quickly under the scaled potential and MC steps can jump to other local

minima without crossing the barrier. Although we got the reasonable PMF profile with the higher

free energy states due to their relatively small values (about 2 kcal/mol), it should be emphasized

that much higher free energy states are sampled with relatively low resolution even in the MC/LD

method since MC/LD trajectory generates the canonical ensemble. To accurately estimate such a

higher free energy state, non-Boltzmann sampling methods such as multicanonical ensemble will

be required.
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The quantitative studies of toluene inclusion complexation of β-CD based on the non-linear

regression predicted that the “narrow” orientation is about 0.3kcal/mol more stable than the

“wide” orientation,158,159 however, in our atom-based calculation, the “wide” orientation is about

0.1kcal/mol more stable. Although the relative stability order is different, the small difference

(0.5kcal/mol) can be attributed to the inaccuracy of the force field parameters or the regression

equation. In their regression, the contribution of hydrophobic interactions of the methyl group

favor to occupy the “narrow” orientation, whereas its electron-donating contribution favors the

“wide” orientation to make the guest dipole antiparallel to the host dipole. The van der Waals

force of the methyl group contributes equally to both orientations. To further compare our result

with their regression model, average interaction energy (van der Waals interaction: vdWV ,

electrostatic interaction: electV ) were calculated at each orientation using a 200ps MC/LD

trajectory. The average interaction energy differences, narrow
vdW

wide
vdW VV −  and narrow

ele
wide

ele VV − ,

between the selected guest and the environment atoms are -0.05 and -0.72kcal/mol, respectively.

The van der Waals interactions contribute mostly equal to each orientation, which is consistent

with the previous regression model. Electrostatic interactions between guest and environment

atoms stabilize the “wide” orientation, which also agrees with the regression model. The average

interaction energy differences within the selected guest are 0.0kcal/mol for both van der Waals

and electrostatic interactions. Calculating the average interaction energy within the environment

atoms results in stabilizing the ”narrow” orientation with 0.4 kcal/mol. This 0.4kcal/mol stability

at “narrow” orientation comes from the interaction energy within water molecules. Thus, the

contribution of hydrophobic interactions of the methyl group at their regression model can be

explained partially by the stability of water molecules at the “narrow” orientation. From our

investigation using the average interaction energyies the MC/LD trajectory successfully explains

the regression model..
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7.4 Conclusions

In this chapter, the MC/LD method was demonstrated to yield the canonical ensemble,

without being entrapped in local minima as happens with the conventional LD simulation. One

MC/LD simulation succeeded in not only detecting the binding orientations of toluene bound to

β-CD, but also yielding the correct PMF profile. These results clearly show that MC/LD

efficiently explores the free energy surface and not a deformed potential energy surface.

As mentioned above, the MC/LD method can restrict the enhanced sampling region

manually such as the guest molecule in this study. But absence of such enhancement over whole

system might hinder adequate sampling of the full potential energy surface when the overlap of

the interaction energy distributions is small between the selected replica and the unselected

replica placed in other local minima at a given coordinates of environment atoms. In such a case,

additional intermediate states may be required to get a high acceptance ratio in a MC step.

The MC/LD method will be applied for many purposes such as investigating the binding

orientations of toluene in this study. For example, when the ligand has multiple binding modes,

the MC/LD method can be predicted the physical properties more accurately. The chemical

potential could be calculated more efficiently than by the conventional insertion methods.190

Furthermore, the converged MC/LD trajectory could also be applied for the reference trajectory

used for the free energy estimation methods such as FEP12 or MM/PBSA. 41,42,44,59 Furthermore,

the incorporation of the continuum solvent model65,67,76,83 will have a great potential in its

applications for the protein structure analysis such as the folding studies, the loop search or the

conformational search of the side chain.
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Chapter 8

Summary and Outlook

In this thesis, we have described the newly developed “free energy based screening

methods”. These methods may be used either to rapidly identify ligands with the most favorable

binding free energy or to estimate specific changes in free energy within a congeneric series.

Since λ-dynamics and the related family of methods work based on the binding free energy of the

ligands instead of the interaction energy, they provide a more accurate assessment of binding

affinity. Species whose binding free energies differ by more than a few kcal/mol from the most

favorable binder can be rapidly screened out within a few tens of picosenconds of simulation

because they do not compete for interactions with the receptor. The total computation time is not

expected to increase with the total number of ligands because only the few favorable binders are

able to compete for the λ2=1 state. This situation is in contrast to that of conventional free energy

calculation methods, where a typical calculation of relative binding free energy between two

ligands takes hundreds of picoseconds of simulation time and increases in proportion to the

number of ligands. Although the intrinsic problems of the FEP method such as requiring proper

overlap of the important configurations, still exists in λ-dynamics-based methods, they can be

minimized by using umbrella sampling and/or the iterative procedure with WHAM. Moreover,

iterative procedures with WHAM may also be applied to yield quantitative free energy differences

for all ligands.

The λ-dynamics-based methods also provide a means to explore the binding orientations

and conformations of the ligands much better than does conventional MD. This attractive feature

in these methods removes the restriction that the initial orientation of the ligand inside the binding

pocket must be close to its true bound orientation in order to get a reasonable estimate of binding
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free energy - a prerequisite for other free energy calculation methods. Furthermore, the MC/LD

method, which is a variant of CMC/MD and specific to overcoming the multiple-minima problem,

yields the canonical ensemble without being entrapped in local minima. Thus, MC/LD can be

expected to be a useful tool for many purposes such as docking study and loop search.

Free energy based screening methods should fill the gap between empirical methods and

theoretically rigorous but computationally intensive methods such as FEP and TI. For example,

they can be applied to design a combinatorial library or funnel down the large number of hits

detected by the empirical methods. The incorporation of continuum solvent representations such

as the generalized Born model into free energy based screening methods accelerates the

computational screening process and has a promising future for drug lead optimization and

protein design. Given this renewal of effort in “computational alchemy” and the encouraging

findings from early studies, we can anticipate that rational free energy based computational

approaches to drug and protein design will re-emerge from the tool chest and move to the desktop

of the computational medicinal chemist.
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Appendix A  Consistent change of the Born

radius from the surface to the interior

The analytic GB approximation has been known to underestimate the interaction between

the interior region atoms as the system increases in size.65,144 Some modifications of the methods

have already been suggested to address this problem.80,83,191 In a previous study, different

parameters were used for molecules of the different size and composition.83 When we used the

parameterized GB model specifically for proteins, MD simulations with the GB energy using the

CHARMM 22 all atom force field138 resulted in continuous expansion of the system for the large

molecules like trypsin. This occurred even when we set the hydrogen radii in the param22

parameters to 0.8Å, as suggested in other studies.83,192 Our analysis of the MD trajectory revealed

that the relatively small change in the effective Born radii of the hydrogen atoms on the surface

and interior as compared with the heavy atoms gave the expanded states lower overall energies.

Figure 47 shows the effective Born radius as a function of neighbor solute atoms. When the

atoms are buried in the interior, the effective Born radius for the heavy atom, whose van der

Waals radius is 2.0Å, increases rapidly, whereas for the hydrogen atom the effective Born radii

remain small. This inconsistent estimation for the buried atoms’ Born radius gives an

underestimate of electrostatic interactions related to the buried hydrogen atoms, which always

have non-negative partial charges. As a consequence, a repulsive force coming from the

interaction among buried negatively charged atoms makes the protein expand continuously.

Increasing the van der Waals radii of the hydrogen atoms used for calculation of the effective

Born radius alleviated this problem. Even with the larger radii, the correlation of the GB energy

with PB energy, calculated by finite difference PB calculations, remained good as shown in

Figure 48. Since increasing the radii of hydrogen atoms mainly affects the effective Born radii of



139

the deeply buried hydrogen atoms and electrostatic interactions including these hydrogen atoms,

the small size molecules that do not have the buried hydrogen, or the atoms on the surface of the

large molecules, are influenced little by this modification. Constant temperature (300K) MD

simulations with the modified GB energy gave a radius of gyration almost the same as that of the

initial X-ray structure in trypsin-benzamidine complex. Using the default setting of the radius

resulted in continuous expansion of the protein (see Figure 49). Stable trajectories are also

obtained in cytochrome c peroxidase and HIV protease by increasing the radii of hydrogen atoms

(data not shown). These results also imply that the methodology used to estimate of the effective

Born radius may have room for improvement in the case of large molecules.162
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Figure 47.  The change of the effective Born radius with the different van der Waals

radious (RvdW). The X-axis represents the total of the last three terms (ΣΣΣΣPV/r4) in Eqn. 51.

ΣΣΣΣPV/r4 increases as the atom is buried inside the solute.
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Figure 48.  The effect of the van der Waals radii (RH) of the hydrogen atoms used for the

estimation of the effective Born radii, with respect to molecular solvation energies for 22

proteins. PB energies calculated by a finite difference PB method with RH=0.8Å are taken

from Dominy and Brooks.83 The correlation coefficient between PB and GB energy for
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Figure 49.  The mass weighted radius of gyration of the trypsin-benzamidine complex.

Constant temperature (300 Kelvin) molecular dynamics simulations were carried out with the

GB energy from the minimized X-ray crystal structure. All conditions except for the van der

Waals radius (RH) of hydrogen atoms are same in two simulations. The results of RH = 0.8Å

and 1.5Å are shown by the solid line and dashed line, respectively.
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Appendix B  Refitting the generalized Born

parameters

The analytical GB model is known to underestimate the effective Born radii of deeply

buried atoms. Onufriev et al. introduced a single parameter to give accurate solvation energies

both for small compounds and large macromolecules, however, deeply buried atoms still have

some errors in the estimation of pKa shifts. 80 Brian and Brooks used the different values of van

der Waals scaling parameter, λα, (see Eqn. 51) for mono amino acids, dipeptides, and proteins to

compensate for the systematic errors in the GB model.83 For example, refitting λα for protein

database resulted in λα=0.705, which is significantly different from λα=0.797 for mono amino

acid database. In this study, λα is modified to include the influence of molecular size by using

switch function:

81
7

6 PN
PP

+
+=αλ , (75)

where N represents the number of solute atoms. The switching function is used to maintain a

function value of one for isolated atom, and a smooth decay as molecular size is increased. Since

the linearized form as shown in Eqn. 51 was used, λα should not reach one when an isolated atom

is calculated. The parameters, P6 ~ P8, were optimized using a systematic search on a grid to

minimize the unsigned error between Gpol obtained from the GB equation and that obtained from

the finite difference PB corrected reaction field against the previously produced composite

databases. These databases consisted of 22 globular proteins, 22 nucleic acid strands, 20 amino

acids, 210 dipeptides and 15 dinucleotides.83 The rest of parameters (P1 ~ P5) were fixed to the

values decided previously.83 The results using optimized parameter sets (P6 ~ P8) are shown in

Table 12 with those used the previous determined constant van der Waals scaling parameter.83
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Although number of the parameter is increased, the non-constant λα yields smaller unsigned errors

over all size of molecules.

Table 12.  Average unsigned errors for computed solvation energies of component

databases.a

database %error

λα=0.793

%error

25.01
144.008.1 −+

−=
Nαλ

single amino acids 5.5 5.5

dipeptides 10.5 4.9

proteins 25.8 7.9

single nucleotides 13.4 6.5

dinucleotides 0.6 6.6

nucleic acid strands 20.1 3.0

total 9.7 5.2

a ∑
=

−
=

n

i i

ii

PB
PBGB

n
error

1

1 .
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