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Abstract

QTL (quantitative trait loci) mapping is commonly used to identify genetic regions responsible to important phenotype
variation. A common strategy of QTL mapping is to use recombinant inbred lines (RILs), which are usually established by
several generations of inbreeding of an F1 population (usually up to F6 or F7 populations). As this inbreeding process
involves a large amount of labor, we are particularly interested in the effect of the number of inbreeding generations on the
power of QTL mapping; a part of the labor could be saved if a smaller number of inbreeding provides sufficient power. By
using simulations, we investigated the performance of QTL mapping with recombinant inbred lines (RILs). As expected, we
found that the power of F4 population could be almost comparable to that of F6 and F7 populations. A potential problem
in using F4 population is that a large proportion of RILs are heterozygotes. We here introduced a new method to partly relax
this problem. The performance of this method was verified by simulations with a wide range of parameters including the
size of the segregation population, recombination rate, genome size and the density of markers. We found our method
works better than the commonly used standard method especially when there are a number of heterozygous markers. Our
results imply that in most cases, QTL mapping does not necessarily require RILs at F6 or F7 generations; rather, F4 (or even
F3) populations would be almost as useful as F6 or F7 populations. Because the cost to establish a number of RILs for many
generations is enormous, this finding will cause a reduction in the cost of QTL mapping, thereby accelerating gene mapping
in many species.
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Introduction

Mapping quantitative trait loci (QTL) plays crucial roles in a

number of research fields in biology. QTL mapping basically relies

on detecting correlations between genetic markers and phenotypic

traits in a segregating population [1–4]. The development of the

interval mapping method [5,6] made it possible to infer the

positions of QTL with a limited number of markers. Since then,

QTL mapping has been applied to various crop and vegetable

species, including an early application to genome-wide QTL

analysis of tomato species [7]. With the advent of molecular

biology techniques such as sequencing, DNA microarray and

primer extension assay [8–10], it became feasible to distribute a

large number of markers across the genome and genotype those

markers for a large sample of individuals. This revolutionary

change in molecular biology further facilitated QTL mapping in

many species.

Efficient fine-scale QTL mapping requires a large segregating

population (bi-parental mapping population) such as an F2

population or Recombinant Inbred Lines (or RILs). An F1

population is first generated by a pair of homozygous parents

(usually denoted by P1 and P2), and then selfing or sibling mating

of the F1 individual generates an F2 population. It is common that

each of the RILs is further selfed or sib-mated for several more

generations, and F6,F7 populations are frequently used for QTL

analyses.

The advantages of using RILs for a QTL analysis are obvious.

First, multiple selfing processes can increase the number of

recombination events [11], which results in a finer mapping of

QTLs. More importantly, once RILs are established, in which the

genotypes of all lines are fixed as homozygotes, these lines can be

repeatedly used for investigating QTLs of various phenotypes

under different environments. Thus, the establishment of a

comprehensive set of RILs will be a substantial contribution to

QTL mapping of the species.

In the meantime, QTL mapping is frequently applied to species

that do not have substantial resources at the single-lab level. In this

case, it is not reasonable to establish comprehensive RILs; rather,

it makes more sense to conventionally map a rough location of a

QTL with a limited amount of effort. There is an obvious tradeoff

between the performance of QTL mapping and the cost required,

including the sample size and the number of generations of selfing

or sibling mating. The heaviest labor would be to maintain a

number of RILs for multiple generations, so that a simple idea is to

use a younger generation with a limited number of RILs. As a

consequence, as a most aggressive setting, there are a number of

QTL mapping studies that conventionally used an F2 population.

In such a small-scale QTL mapping, it is very useful if we have

some ideas about the relationship between the performance

(statistical power) and the cost (the number of selfing or sibling

mating generations, sample size, and marker density), which will

greatly help to optimize the design of the QTL mapping
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experiment. This problem has been extensively investigated in

simple theoretical models [12–14]. Here, we provide the results of

extensive simulations in more realistic situations. We assume that a

large number of markers are distributed across the genome, and

that they are partially linked. With these results, we discuss how

the cost can be reduced by minimizing the reduction of the

performance.

Methods

Model and simulation
For simulating QTL mapping process with RILs, we consider a

diploid species. It is assumed that the genome consists of L
chromosomes with equal lengths and that the genome size is

G Mb, which corresponds to R centimorgan (cM). It is also

assumed that M markers are evenly distributed across the genome.

We set a single QTL in the simulated genome, and ask whether we

can find significant phenotype-genotype correlations for markers

nearby the QTL. To assess the performance of QTL mapping, we

simulate the process of creating a large number of RILs from a

single pair of parental lines, P1 and P2, both of which are assumed

to be completely homozygote. Their hybrid progeny, F1, is

created, and then N|F2 progenies are produced by selfing F1. It

is assumed that each of the F2 progenies is successfully inbred by

the singe-seed-descent method for six generations (i.e., up to F7).

Throughout this process, recombination occurs randomly at rate

R, following the four-strand model [15]. It is also assumed that at

least one chiasma form in each chromosome in one meiosis event,

called obligate chiasma [16–18], but for simplicity, we also assume

no crossing-over interference. At each generation from F2 to F7, a

simple QTL mapping method (see below) is applied.

In the QTL mapping process, it is assumed that all markers are

genotyped for all individuals, and the phenotype of each individual

is determined by a simple model, in which there is a particular

locus that partially contribute to the quantitative trait of interest

[1–5]. Let Q1 and Q2 be the two alternative alleles at this QTL

inherited from the two parental lines (P1 and P2). Then, it is

assumed that the phenotype of each diploid individual in the

segregating population is determined by the genotype at this locus.

There are three possible states, Q1Q1, Q1Q2, Q2Q2, which are

denoted by genotypes 1, 2, and 3, respectively. The numbers of

individuals with the three genotypes are denoted by n1, n2, and n3,

and N is the total number of individuals (N~n1zn2zn3).

Let yij be the quantitative value representing the focal

phenotype of the jth individual in the ith genotype (i~1,2,3 and

j~1,2,:::ni), then in a simple model with no interaction between

genotypes and environment, yij can be written as

y1j~mzaze1j , ð1Þ

y2j~mzdze2j , ð2Þ

y3j~m{aze3j , ð3Þ

where m is the mid-parental value, a is the additive genetic effect

and d is the dominance effect. Other factors are represented by eij ,

including the environmental variance and the residual genotypic

variance due to other unlinked QTLs. eij is assumed to follow a

normal distribution with mean 0 and variance s2. We assume that

this factor eij is added at each generation independently. In other

words, only m, a and d are the parameters that determine the

genetic factors that can be inherited through generations, and eij is

not affected by the phenotype or genotype at the previous

generation. Simulations of RILs under this simple model are used

for investigating the performance of QTL mapping. Assuming a

large number of markers are available across the genome, we

simply perform a statistical test of the null hypothesis of no

association between the phenotype and each of all markers. We do

not need to use the interval mapping method because of the

availability of a large number of markers (this condition will be

relaxed later). We use two likelihood ratio tests to examine if there

is a significant phenotype-genotype correlation.

In the first method (Method I), if B and b represent the two

alleles from P1 and P2, respectively, the null model assumes equal

average phenotypes of the three genotypes, �yyBB~�yyBb~�yybb.

Alternatively, if the marker and the QTL is completely linked,

we expect E(�yyBB)~mza, E(�yyBb)~mzd and E(�yybb)~m{a.

Method I requires the likelihoods of the observation (�yyBB, �yyBb,

�yybb) under these two extreme cases (null and alternative). It should

be noted that this very commonly used method requires estimation

of the dominance effect (e.g., [6,19,20]). Alternatively, the second

method, which we propose here, is a simplified version (Method

II), in which only homozygote individuals with marker genotypes,

BB and bb are considered (heterozygotes, Bb, are excluded), and

tests the null hypothesis of �yyBB~�yybb. We propose this conventional

method because it does have to involve the dominance parameter

by excluding heterozygotes from the analysis. Estimation of the

dominance parameter has to rely on a relatively small number of

heterozygotes, which will likely cause a great deal of uncertainty in

the estimate. We suspected that miss-inference of the dominance

parameter due to such uncertainty might result in a reduction of

the power. Obviously, the situation would be identical when

selfing generations increase and all RILs become homozygote in

the entire genome. The two methods are described below in detail.

Method I. This method involves computation of the maxi-

mum likelihoods of the observation, (�yyBB,�yyBb,�yybb), under the null

and alternative models. The latter involves maximum likelihood

estimation of the four unknown parameters, m, a, d, and s2
I,Alt,

which are given by

m̂m~
�yy1z�yy3

2
, ð4Þ

âa~
�yy1{�yy3

2
, ð5Þ

d̂d~�yy2{m̂m, ð6Þ

and

ŝs2
I,Alt~

1
N

Pn1

j

(y1j{m̂m{âa)2z
Pn2

j

(y2j{m̂m{d̂d)2

"

z
Pn3

j

(y3j{m̂mzâa)2

# : ð7Þ

Then, it can be considered that the maximum likelihood of the

observation under the alternative scenario is given these estimates.

That is, the log-maximum likelihood is computed by

Power of QTL Mapping
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LLI,Alt(m̂m,âa,d̂d,s2̂2
I,Alt)~{

1

2
N ln(2ps2̂2

I,Alt)

{
Pn1

j

(y1j{m̂m{âa)2

2s2̂2
I,Alt

{
Pn2

j

(y2j{m̂m{d̂d)2

2s2̂2
I,Alt

{
Pn3

j

(y3j{m̂mzâa)2

2s2̂2
I,Alt

~{
1

2
N ln(2ps2̂2

I,Alt){
1

2
N

: ð8Þ

In the null model, in which only two parameters (m and s2
I,Null)

are involved, the maximum log-likelihood of the data is given by

LLI,Null(m̂m,s2̂2
I,Null)~{

1

2
N ln(2ps2̂2

I,Null){
1

2
N , ð9Þ

where s2̂2
I,Null is simply given by

s2̂2
I,Null~

1

N

XN

j

(yj{m̂m)2 : ð10Þ

yj represents the phenotypic value of the jth individual (with no

specification of genotype, so that j~1,2,:::N).

Thus, the maximum log-likelihoods under the null and

alternative models are computed by equations (9) and (8),

respectively, from which the LOD score can be obtained by

(LLI,Alt{LLI,Null)=ln(10). For each replication of the simulations,

we set a cut-off value of the LOD score by 1,000 replications of a

permutation test [21], so that the false positive rate is set at

a~0:05 after correcting for multiple testing by multiplying the P-

value by the number of markers (i.e., Bonferroni correction). Note

that because a permutation test is performed for each data set, the

false positive rate is always 5% for any parameter set in all

generations. This allows a fair comparison of the performances of

different models with different parameters.

Method II. This method is a simplified version of Method I,

in which marker-heterozygous individuals are excluded so that it

does not involve the process of estimating the dominance

parameter. In the alternative model of Method II, m and a can

be estimated from the average phenotypes, �yy1 and �yy3:

m̂m~
�yy1z�yy3

2
, ð11Þ

âa~
�yy1{�yy3

2
, ð12Þ

and s2
II,Alt is given by

s2̂2
II,Alt~

1

n1zn3
½
Xn1

j

(y1j{m̂m{âa)2z
Xn3

j

(y3j{m̂mzâa)2�: ð13Þ

This process is basically identical to that for Method I. Then, the

maximum likelihood of the observation under the alternative

scenario is given with these given these estimates:

LLII,Alt(m̂m,âa,s2̂2
II,Alt)~{

1

2
(n1zn3) ln(2ps2̂2

II,Alt)

{
Pn1

j

(y1j{m̂m{âa)2

2ŝs2
II,Alt

{
Pn3

j

(y3j{m̂mzâa)2

2ŝs2
II,Alt

~{
1

2
(n1zn3) ln(2ps2̂2

II,Alt){
1

2
(n1zn3)

: ð14Þ

In the null model, where only two parameters (m and sII,Null) are

involved as well as Method I, the maximum log-likelihood of the

data is given by

LLII,Null(m̂m,s2̂2
II,Null)~

{
1

2
(n1zn3) ln(2ps2̂2

II,Null){
1

2
(n1zn3)

, ð15Þ

where s2
II,Null is simply given by

s2̂2
II,Null~

1

n1zn3
½
Xn1

j

(y1j{m̂m)2z
Xn3

j

(y3j{m̂m)2�: ð16Þ

Then, from equations (14) and (15), the LOD score can be

computed as (LLII,Alt{LLII,Null)=ln(10).

Results

Simulation results
We designed simulations to quantitatively evaluated the effect of

the number of generations on the performance of QTL mapping.

Throughout this article, we fix m~0 and a~1. We assume a

simple model, in which the simulated genome consists of L~12
chromosomes with equal length G~30 Mb, so that the genome

size (360 Mb) is similar to that of rice, a species to which QTL

mapping is frequently applied. In total M~1,200 codominant

DNA markers are evenly distributed on the genome, such that the

interval length is 300 kb (100 markers per chromosome). The

recombination rate is assumed to be 4 cM/Mb, which is roughly

consistent with estimates of rice [22]. Some of these simulation

conditions will be relaxed later.

We are interested in the power of QTL mapping to detect a

particular QTL that has a significant genetic contribution. It is

assumed that this QTL locates at the center of one chromosome.

This location is also the middle of two adjacent markers; therefore,

the distance to the closest marker is 150 kb. Although the model

does not set other specific QTLs, their effect is incorporated in the

environmental factor, e in equations (1–3). For each of these

parameter settings, we performed 10,000 independent replications

of simulations from F1 to F7, and at each generation (except for F1)

the LOD scores were computed for all markers.

A typical pattern of the results is shown in Figure 1, in which

N~200, s2~2, and no dominance (d~0) were assumed. The

expected heritability in the F2 population is given by

QPDF2
~

VAzVH

VAzVHzVE

: ð17Þ

Therefore, with this parameter set, we expect that the expected

heritability is 20% (note that the heritability changes in the

following F3, F4,… generations). It was found that on the

chromosome with the QTL (left panel in Figure 1A), both

Power of QTL Mapping
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Methods I and II provide the highest LOD score around the QTL,

creating a sharp peak, whereas the LOD scores on all other

chromosomes are low (plot for one representative chromosome is

shown in the right panel in Figure 1a). We confirmed that similar

patterns hold for all simulated parameter sets unless s2 is very

large.

We found that there are at least two notable observations in

Figure 1. (i) The distributions of LOD scores do not change much

through generations, suggesting that significant power of detecting

QTL may be expected even in early generations. If so, QTL

mapping does not necessarily require many generations of

inbreeding, so that a huge amount of time and cost could be

saved. (ii) The performance of Method II exceeds that of Method I

in many cases, especially at early generations. Method II is a

simplified method that does not use heterozygous markers,

whereas Method I uses all samples. It is suggested that the simpler

method without considering the dominance effect (Method II) may

be more efficient even with an obvious drawback of reducing

sample size. These two observations have significant implications

that F3,F4 populations could have reasonable power for QTL

mapping and that Method II would perform better at such early

generations.

In order to quantitatively evaluate these hypotheses, we

investigated the power of QTL mapping. The right panel of

Figure 1 summarizes the results of 10,000 replications of the

simulations with the same parameters as those used for the left

panel. The power was computed for each SNPs, which is defined

as the proportion of the replications, in which the LOD score is

significant at the 5% level (av0:05, after correcting for multiple

testing). The spatial distributions of the power support our two

hypotheses; the performance of Method II (blue line) overall

exceeds that of Method I (red line) and the power at F4 is almost

comparable to that at F7.

Further simulations with wide ranges of parameters were

carried out to confirm if this holds. The results are summarized

in Figure 2. In this figure, we mainly focus on how the

environmental variance (s2) affects the power in two sample sizes,

N = 200 and 1,000. We also considered two cases: no dominance

(d = 0) and complete dominance (d = 1). We used a wide range of

s2~f2,4:5,9:5,19:5,49:5,99:5g (the corresponding heritability at

the F2 generation are QPDF2
~f20%,10%,5%,2:5%,1%,0:5%g),

and partial results are shown in Figure 2 such that the power at F7

distributes roughly from 0.1 to 1. The power is here defined as the

proportion of simulation replications in which the LOD scores of

both of the two closest makers to the QTL are significant at the

5% level (after correcting for multiple testing). As the power is

overall much higher when N = 1,000, we found that the QTL can

be detected with probability *1 when s2 is smaller than 9.5 (that

is, larger heritability; Figure 2B), while the QTL with s2 = 9.5

Figure 1. Evaluating the power of QTL mapping by simulations. a The distributions of the LOD values at markers along chromosomes (left:
the chromosome with the QTL, right: a chromosome representing the other chromosomes without the QTL). The QTL is located at the middle of the
chromosome (left panel). The red and blue lines show the LOD scores of Method I and Method II, respectively. The result is from a single replication of
the simulation with N = 200, d = 0, and s2 = 2. The 5% cutoff values for the two methods are shown by broken lines. b The distributions of the power
of the two methods, which were obtained by 10,000 replications.
doi:10.1371/journal.pone.0046545.g001
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would be detected with probability roughly 0.5 when N = 200

(Figure 2A).

These simulations supported that our two hypotheses hold with

these wide ranges of parameters. For all the parameter sets, the

performance of Method II exceeds that of Method I especially at

early generations and the power of Method II at F4 is almost

comparable to that of F7. These seem to be true regardless of the

degree of dominance. It should be noted that as mentioned earlier,

the power is measured by a permutation applied to each data set,

so that the false positive rate is alway controlled to be 5% for all

parameter sets. Therefore, the comparison of power is statistically

fair.

In Figure 3, we investigated the effects of other parameters

including the recombination rate, genome size, and marker

density. It is found that overall the effects of these parameters

are small. In Figure 3A, the power is shown for the recombination

rate is changes from R~1 to R~8, while all other parameters

remained the same as those used for Figures 1 and 2A. The panel

in the broken square is identical to Figure 2A. In Figure 3B, the

effect of genome size is investigated. Because our initial setting

may be applied to species with small genomes such as Arabidopsis

and rice, the genome size is increased up to 4 Gb, which is almost

as large as maize and wheat. In Figure 3C, the marker density is

reduced to up to 10 times. We found that the overall patterns are

similar to one another, although the power becomes relatively

weak when marker density is low (the leftmost panel in Figure 3C,

and also see the leftmost panel of Figure 3B). There also seems to

be a weak negative correlation between the power and the

recombination rate (Figure 2A). Thus, our conclusion could be

robust to these parameters.

These results are for the cases of relatively normal settings with

additive phenotype effect at the focal QTL. However, there are

cases where this does not obviously hold. One example is over-

dominance. Suppose the phenotypic value of heterozygote

individuals at the focal QTL are expected to be larger than those

of homozygotes. Such a situation can be realized by setting dw1,

so that the expected phenotype value for Q1Q2 heterozygotes

exceeds that of Q1Q1 homozygotes (Q2Q2 homozygotes always

have smallest values. See equations (1–3)). To investigate the

power of the two methods under this setting, we repeated the same

power simulations by assuming d~1:5 and 2. (we don’t need to

mention m~0, a~1 and s2~2*99:5 if they are identical to those

above.) With these settings, because the phenotype of heterozy-

gotes are very informative to identify the QTL, the overall

performance of Method I is quite good (Fig. 4A). This is

remarkable especially in earlier generations, but the situation

becomes similar to those with the QTL with the additive

phenotype effect as the number of generation increases because

almost all individuals become homozygotes. This pattern is

remarkable in the extreme case, symmetric overdominance, where

a~0 is given so that the expected phenotype values of Q1Q1 and

Q2Q2 homozygotes are identical and the phenotype of heterozy-

gotes exceeds homozygotes by d (Fig. 4B). In earlier generations,

Method I works fairly well, but the power is almost zero in F6 and

F7 because almost all individuals are homozygotes, either Q1Q1

and Q2Q2, between which there is no difference in phenotype.

Linked QTLs
We also consider a more complicated model, in which there are

QTLs that are linked to the focal QTL. It should be noted that our

basic model described above takes into account the effect of

multiple QTLs, whose effects are included in the third term of the

right-hand side of equations (1–3). The assumption was that those

QTLs are not linked to the focal QTL. We here investigate the

effect of linked QTLs to the focal QTL.

We use a simple two-locus model. The alleles from P1 at the two

loci are denoted by QI ,1 and QII ,1 and those from P2 are denoted

by QI ,2 and QII ,2. m, a and s2 were set such that their QPDF2
are

20% and 10%, respectively, in the codominance case. Other

parameters follow those used in the earlier simulations for

Figure 2A. These two QTL are linked, and four different distances

between them were considered (f30,21,12,3g Mb). No epistasis

between QTLs was assumed.

We first consider the cases of coupling phenotype effect, that is,

both of the two alleles from P1 (i.e., QI ,1 and QII ,1) have positive

effects on the phenotype. The results are summarized in Figure 5A,

which shows the power to detect each QTL in the codominance

and dominance cases. The overall patterns are quit similar to each

other. When the distance is short (12 and 3 Mb), we observe very

high power because the two QTLs behave almost as a single QTL

with relative contribution *30%. As the distance increases, the

power decreases because of recombination. If the distance is

significantly long (i.e., &30 Mb), the two QTLs behave almost

independently, so that the power to detect them should become

comparable to those shown in Figure 2A. The performance of

Method II is better than Method I in all cases.

Figure 5B shows the power when the phenotype effects of the

two QTLs are decoupling or repulsion, that is, QI ,1 and QII ,2 have

Figure 2. The power of QTL mapping as a function of the number of inbreeding generations. a N~200 and b N~1000 are assumed.
The red and blue lines are for the results of Method I and Method II, respectively. See text for details.
doi:10.1371/journal.pone.0046545.g002
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positive effects on the phenotype. We first consider the

codominance case. Because alleles with positive and negative

effects are initially coupled, the power is much more lower than in

the case of coupling (Figure 5A). Recombination between the two

QTLs creates coupling haplotypes, QI ,1QII ,1 and QI ,2QII ,2,

thereby increasing the power. Indeed, the power increases with

increasing the number of generations and the distance between the

QTLs. The performance of Method II is overall better than

Method I.

The pattern is more complicated in the dominance case. With

few recombinations (i.e., in younger generations with short

distance), heterozyge individuals have the largest phenotypic

values, so that they are very informative. This is why we observe

higher performance of Method I. When the distance is 3 Mb, the

power of Method I in F2 is almost one because of the striking

difference between homozygotes and heterozygotes. As more

recombination events occur, the advantage of Method I is getting

smaller, and the pattern becomes similar to the codominance case.

Thus, when there are multiple QTLs especially with dominance

effect and/or epistatic interaction, the relationship between the

phenotype parameters (s2) and the power is complicated. In such a

case, it is quite common that we observe a single peak of high

LOD scores encompassing the two QTLs. In a practical case, the

problem would be that it is very difficult to know whether a single

peak of the LOD score involves only one QTL or multiple QTLs.

To distinguish these cases, further breeding should be required.

For example, see refs. [23,24].

Discussion

QTL mapping plays significant roles to identify genetic regions

responsible to important phenotype variation. One of the common

strategies of QTL mapping uses a large number of RILs, which

are established for at least several generations of inbreeding

(typically up to F6 or F7). We here used simulations to

quantitatively evaluate the performance of QTL mapping using

RILs. Under the simple model with one focal QTL, it was found

that the performance of QTL mapping with F4 population could

be almost comparable to that with F6 or F7 populations (Figures 2

and 3). It was also found that Method II has more power than

Method I especially at earlier generations. Method II is a

simplified version of Method I, and it does not involve the process

to estimate the dominance parameter, d. An obvious drawback of

Method II is a reduction of sample size because it discards marker-

heterozygote samples. For example, roughly 25% and 12.5% of

RILs are excluded at F3 and F4, respectively. Nevertheless, the

performance of Method II exceeds that of Method I, suggesting

that the uncertainty of d might reduce the power of Method I.

Thus, our results imply that QTL mapping does not necessarily

requires RILs at F6 or F7 generations; rather, F4 (or even F3)

populations would be almost as useful as F6 or F7 populations.

Although we quit the simulations at F7, it is expected that the

results for further generations can be intuitively understood;

Because the power is almost saturated at F6,F7 for many

parameter sets, the power for Fw7 cannot be much larger than that

of F7. Only when the power is still increasing at F7, more power is

expected for Fw7, but it would eventually saturate in a few

generations. Soller and Beckmann [12] suggested relatively little

gain of the power by increasing the number of inbreeding

generations when heritability is large, based on their theoretical

analysis under a two-locus model (i.e., QTL vs. marker). Our

simulations support their implication in more practical situations

with a number of markers for a wide range of s2. While we only

simulated RILs with selfing, these conclusions should hold for

RILs with sibling mating, which was confirmed by a limited

amount of additional simulations. We found that the only effect of

sibling mating is that the decrease of heterozygous loci is slightly

retarded (data not shown).

Further simulations under various conditions were performed

(Figure 3) to investigate the effects of the parameters that were

fixed in the basic simulation for Figures 2 and 3. The investigated

parameters are the recombination rate, genome size, and marker

density, while the sample size was fixed to be 200. It was found

that these factors have relatively minor effects on the results,

Figure 3. The effects of recombination rate (a), genome size (b) and marker density (c) on the power of QTL mapping. The panels in
broken squares are identical to Fig. 2a.
doi:10.1371/journal.pone.0046545.g003

Figure 4. The power of QTL mapping with over-dominance. (a) Asymmetric over-dominance. (b) Symmetric over-dominance. See text for
details.
doi:10.1371/journal.pone.0046545.g004
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indicating that our conclusions should hold under wide ranges of

the parameters. It was surprising that the power did not decrease

much when we have only 10 markers on a 30 Mb (120 cM) of

chromosome. An implication is that in order to reduce the cost, a

reasonable level of power could be expected when there are

roughly every 10 cM.

In contrast, it seems that the effect of the sample size is much

larger than those of the factors explored in Figure 3. As shown in

Figure 2, QTLs with much larger s2 can be detected when

N~1000 in comparison with the case of N~200. Increasing

sample size is costly, may be as much as extending inbreeding

generations, but our results imply that the former may be more

efficient than the latter. We would suggest that increasing the

sample size is one of the best strategies to improve the performance

rather than continuing inbreeding for many generations. Because

the cost to establish a number of RILs for many generations is

Figure 5. The power to detect two linked QTLs under the two-locus model. (a) Results when the two QTLs have a coupling effect. (b)
Results when the two QTLs have a decoupling effect. The power is shown for each QTL. See text for details.
doi:10.1371/journal.pone.0046545.g005
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enormous, it is important to understand the relationship between

the cost and output. Our results provide several ideas to obtain

better performance with a limited cost, there by accelerating gene

mapping in many species.

In summary, we demonstrated that our idea of ignoring

heterozygotes (incorporated in Method II) works quite well in a

relatively simple situations. The major difference between the two

methods is that Method I has an additional parameter (d ) that has

to be estimated from data. Our demonstration might indicate that

simple methods with no estimation process work well. In this sense,

one might think that a linear regression analysis might also work

well [13,14]. However, although this analysis does not involve

estimation of the dominance parameter, it assumes a certain level

of dominance (most commonly no dominance). Therefore, when

the true dominance parameter is different from the assumption,

the power might be reduced. In other words, it still involves

uncertainty of the dominance parameter. As expected, we

confirmed that the performance of the linear regression analysis

did not exceed that of Method II for all parameter range (data not

shown). Our Method II provides a general framework in

evaluating likelihood ignoring heterozygote. This can be readily

incorporated in the interval mapping method [1–6], or recently

developed more computationally sophisticated QTL mapping

algorithms, such as, Baysian shrinking method e.g., [25,26] and

penalized maximum likelihood e.g., [27].

We mainly obtained these conclusions under a simple model

with one focal QTL, but they can be applied to broad cases

because the model does not necessarily assumes that there is only

one QTL in the genome. We simply focused on a single QTL with

its phenotype effect specified by parameter s2 (the effects of other

QTLs are included in the environmental factors, e, in equations 1–

3). Therefore, as long as the focal QTL is not linked to other

QTLs, our conclusions should hold. We confirmed this by

additional simulations in a model allowing multiple QLTs with

various quantitative effects, although too obvious theoretically.

It should be noted that there are some cases where the

performance of Method I exceeds that of Method II, as

demonstrated in Figures 4 and 5. The consensus of these cases is

that the phenotype of heterozygotes is informative. One is the case

of overdomenace, where the performance of Method I is much

better in earlier generations because there are a number of

heterozygotes. The situation is similar when there are two linked

QTLs that have decoupling phenotype effects with complete

dominance. Also in this case, the phenotype value of double

heterozygotes is the highest, Method I performs well particularly in

earlier generations. We should keep in our mind that our major

conclusions may not hold in these cases (may not be very common

though).

Conclusions

QTL mapping plays significant roles to identify genetic regions

responsible to important phenotype variation. One of the common

strategies of QTL mapping uses a large number of RILs, which

are established for at least several generations of inbreeding

(typically up to F6 or F7). We here used simulations to

quantitatively evaluate the performance of QTL mapping using

RILs. It was found that the performance of QTL mapping with F4

population could be almost comparable to that with F6 or F7

populations (Figs. 2 and 3). It was also found that Method II has

more power than Method I especially at earlier generations.

Method II is a simplified version of Method I, and it does not

involve the process to estimate the dominance parameter, d. An

obvious drawback of Method II is a reduction of sample size

because it discards marker-heterozygote samples. For example,

roughly 25% and 12.5% of RILs are excluded at F3 and F4,

respectively. Nevertheless, the performance of Method II exceeds

that of Method I, suggesting that the uncertainty of d̂d might reduce

the power of Method I. Thus, our results imply that in most cases,

QTL mapping may not necessarily require RILs at F6 or F7

generations; rather, F4 (or even F3) populations would be almost as

useful as F6 or F7 populations. Because the cost to establish a

number of RILs for many generations is enormous, this finding

will cause a reduction in the cost of QTL mapping, thereby

accelerating gene mapping in many species.

Acknowledgments

The authors thank S. Shiokai and the anonymous reviewers for various

comments.

Author Contributions

Conceived and designed the experiments: HI RT. Performed the

experiments: ST. Analyzed the data: ST. Contributed reagents/materi-

als/analysis tools: ST. Wrote the paper: ST HI.

References

1. Weir BS, Eisen EJ, Goodman MM, Namkoong G (1987) Proceedings of the

Second International Conference on Quantitative Genetics. Sunderland, MA:

Sinauer Associates.

2. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27: 205–233.

3. Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics, Ed 4.

Harlow, Essex, UK: Longmans Green.

4. Lynch M, Walsh JB (1998) Genetics and Analysis of Quantitative Traits.

Sunderland, MA: Sinauer Associates.

5. Lander ES, Botstein D (1986) Mapping complex genetic traits in human: New

methods using a complete RFLP linkage map. Cold Spring Harbor Symp on

Quant Biol 51: 49–62.

6. Lander ES, Botstein D (1989) Mapping mendelian factors underlying

quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

7. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, et al. (1988)

Resolution of quantitative traits into Mendelian factors by using a complete

linkage map of restriction fragment length polymorphisms. Nature 335: 721–

726.

8. Singer T, Fan Y, Chang HS, Zhu T, Hazen SP, et al. (2006) A high-resolution

map of Arabidopsis recombinant inbred lines by whole-genome exon array

hybridization. PLoS Genet 2: e144.

9. Paterson AH (2006) Leafing through the genomes of our major crop plants:

strategies for capturing unique information. Nat Rev Genet 7: 174–184.

10. Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA

markers for cropimprovement. Heredity 101: 5–18.

11. Jansen RC (2003) Quantitative trait loci in inbred lines. In: Balding DJ, Bishop

M, Cannings C, editors. Handbook of Statistical Genetics. Chichester, UK: John

Wiley & Sons. 589–618.

12. Soller M, Beckmann JS (1990) Marker-based mapping of quantitative trait loci

using replicated progenies. Theor Appl Genet 80: 205–208.

13. Hu Z, Xu S (2008) A simple method for calculating the statistical power for

detecting a QTL located in a marker interval. Heredity 101: 48–52.

14. Kao CH, Zeng MH (2010) An investigation of the power for separating closely

linked QTL in experimental populations. Genet Res (Camb) 92: 283–294.

15. Emerson S (1969) Linkage and recombination at the chromosome level. In:

Caspari EW, Ravin AW, editors. Genetic Organization. New York & London:

Academic Press. 267–360.

16. Haldane J (1931) The cytological basis of genetical interference. Cytologia 3: 54–

65.

17. Mather K (1937) The determination of position in crossing-over. II. The

chromosome lengthchiasma frequency relation. Cytologia Fujii Jubilee Vol:

514–526.

18. Henderson SA (1963) Chiasma distribution at diplotene in a locust. Heredity 18:

173–190.

19. Haley CS, Knott SA (1992) A simple regression method for mapping

quantitative trait loci in line crosses using flanking markers. Heredity 69: 315–

324.

20. Hayashi T, Ukai Y (1994) Detection of additive and dominance effects of QTLs

in interval mapping of F2 RFLP data. Theor Appl Genet 87: 1021–1027.

Power of QTL Mapping

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e46545



21. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative

trait mapping. Genetics 138: 963–971.
22. International Rice Genome Sequencing Project (2005) The map-based sequence

of the rice genome. Nature 436: 793–800.

23. Zhang L, Li H, Li Z, Wang J (2008) Interactions between markers can be caused
by the dominance effect of quantitative trait loci. Genetics 180: 1177–1190.

24. Li H, Hearne S, Bänziger M, Li Z, Wang J (2010) Statistical properties of qtl
linkage mapping in biparental genetic populations. Heredity 105: 257–267.

25. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value

using genome-wide dense marker maps. Genetics 157: 1819–1829.

26. Xu S (2003) Estimating polygenic effects using markers of the entire genome.

Genetics 163: 789–801.

27. Zhang YM, Xu S (2005) A penalized maximum likelihood method for

estimating epistatic effects of QTL. Heredity 95: 96–104.

Power of QTL Mapping

PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e46545


