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SUMMARY

It has been suggested that the void and wall structure associated with the large-scale
galaxy distribution might be qualitatively, or perhaps even physically, modelled by a
Voronoi tessellation, and that such structure might account for the surprisingly
regular, sharp peaks in the galaxy redshift distributions obtained from ‘pencil beam’
surveys. Taking cell wall crossings by random line segments to correspond to such
redshift peaks, we derive an exact expression for the distribution of spacings of these
intersections in a three-dimensional Voronoi tessellation. This result verifies that the
spacings are non-random and quasi-periodic, qualitatively resembling the observed
pattern, even though the cell wall structure is generated from randomly placed seeds.
Finally, we use moments of the spacing distribution to show that apparently periodic
samples, similar to those recently reported, represent only one to two o fluctuations

in a Voronoi tessellation.

1 INTRODUCTION

The Voronoi tessellation (Voronoi 1908) is a scheme for
dividing an N-dimensional space into cells. Points, called
‘seeds’, are placed at random within the space; the technique
is trivially generalized to any placement of seeds, in fact. The
cell associated with each seed is the locus of points closer to
that seed than to any other seed. The cell boundaries or walls
are, therefore, the locus of points equidistant from two seeds
and which are not closer to any third seed. Each cell is then
an irregular convex polygonal region of the space, and the
tessellation fills the space exactly.

The Voronoi tessellation model is advantageous in that it
is mathematically simple and well defined and that it clearly
exhibits some of the same qualitative features as the large-
scale galaxy distribution (Yoshioka & lkeuchi 1989; Icke &
van de Weygaert 1990). Moreover, it may give a reasonably
accurate quantitative description of some specific physical
models of structure formation, such as explosive scenarios
(Ikeuchi 1981; Ostriker & Cowie 1981; Bertschinger 1985)
and even some aspects of purely gravitational models (Icke
1984; Icke & van de Weygaert 1987; van de Weygaert & Icke
1989). In any case, Coles (1990) has recently used the results
of Moller’s (1989) extensive mathematical analysis of
Voronoi tessellation to argue that such large-scale structure
may well explain the quasi-periodicity observed by Broad-
hurst er al. (1990). Monte Carlo simulations have led van de
Weygaert (1990) to the same conclusion.

* Permanent address: Princeton University Observatory, Peyton
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In order to gain some further insight into the ‘void and
wall’ structure associated with the large-scale galaxy distribu-
tion (de Lapparent, Geller & Huchra 1986; Geller & Huchra
1989), we here develop some analytic results concerning the
statistical properties of a three-dimensional Voronoi tessella-
tion taken to be a qualitative model of the cosmic large-scale
structure. In particular, we concentrate on the statistics of
cell wall crossings by line segments which we identify with
the sharp peaks in the galaxy redshift distribution seen in
‘pencil beam’ (i.e., narrow field of view) redshift surveys
(Broadhurst et al. 1990).

The most interesting result of this analysis is the confirma-
tion that the distribution of cell wall crossings along an arbi-
trary line-of-sight is highly non-random despite the fact that
it is generated (via the Voronoi prescription) from randomly
placed seeds. Moreover, the nature of the non-randomness is
that the cell wall crossings are much more regularly spaced
than would be expected if they were statistically indepen-
dent, at least qualitatively the same sort of non-randomness
as observed by Broadhurst et al. (1990).

The analysis assumes that all distances are measured in
units of a distance a defined by

4
—a’n=1, 1
3 9" (1)

where 7 is the mean seed density. Thus, a sphere of radius R
will contain R? seeds on average. This convention simply
reduces the number of numerical constants in the equations.
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2 PROBABILITY OF NO WALL CROSSINGS

Consider a random point in the three-dimensional Voronoi
tessellated space and a line segment extending a distance x
from the point in a random direction. Now let Py(x) be
defined as the probability that this line segment does not
intersect any cell walls. In general, the initial point will be a
distance r from the nearest seed and the line segment will be
at an angle a to the direction to that nearest seed. The other
end of the line segment will then lie at a distance

d=(r*+x*=2rx cos a)!’? (2)

from that seed. If there are no other seeds closer than d to
the other end of the line segment, then due to the convex
nature of a Voronoi cell, the segment cannot have crossed a
boundary. However, if there is some other seed at a distance
less than d, then the line segment must have crossed one or
more cell walls.

The expected number of points inside a randomly chosen
sphere of radius d is just d°, and the probability that there
are no seeds in this sphere is just exp(— d°), according to
Poisson’s law. However, there is a complication. Some part of
the volume within distance d of the end of the line segment is
also within a distance less than r of the beginning point; it is
therefore already guaranteed that this sub-region is empty of
seeds. Its volume must be subtracted before Poisson’s law
can be applied. A little solid geometry then shows that the
expected number of points in the volume closer than d to the
end of the line segment, but not closer than r to the begin-
ning, is just

1 cos’f 3
14 =d’|=- +=
(x9 v, a) d (2 4 4C05ﬂ)
3
_pllyeesa 3 al, (3)
2 4 4
where
COSﬂ=)c—rcosoc ()

d

Now, in order to obtain P,(x) we must integrate exp(— V)
over the probability distributions of r and a. Since

P(r)dr=3re " dr (5)
and
P(a) da =sina da (6)
we obtain the integral
3 T 2 . - V{x,r,a)-r’
Py(x)== r'sinae” " da dr (7)
2 0 0

which is easily evaluated numerically. The result is shown in
Fig. 1.

3 WALL SEPARATION DISTRIBUTION

A line (or long line segment) passing through a three-dimen-
sional Voronoi tessellation will pass through many cell walls.
If we call the distance between two such crossings s then the
probability distribution of s values is denoted by Py(s) ds.
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Po(x) and P,(s)ds
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Figure 1. The probability P,(x) that a randomly placed line seg-
ment of length x will not cross a cell wall and Py(s) ds the probability
distribution of cell wall separations s along a random line-of-sight.
The solid curves are for the Voronoi tessellation, and the dashed
curves show the same functions for the case of random indepen-
dently placed walls. The two P(x) functions have values of unity at
x =0, and the P(s) ds functions are obtained by twice differentiating
the P,(x) curves (see equation 12). The most significant feature of
these curves is that the Voronoi tessellation produces more regular
wall separations (fewer unusually large or small separations) than
the random case.

Since a random point along such a line is equivalent to a ran-
dom point in the space, it is possible to relate P,(s) ds to Py(x)
derived in the previous section via Bayes’s Theorem. This is
achieved by writing

0

Po(x)=J P(x|s) P(s) ds, (8)

where P(s) ds is simply the probability that the random point
is between two walls separated by a distance s, and P(x|s) is
the probability that a line segment of length x placed at ran-
dom within a linear region of length s will lie entirely within
the region. It is trivial to see that

P(s) ds=sPs) ds, 9)

(where the factor of s accounts for the fact that a random

point is more likely to fall between walls with large separa-
tions) and that

_J(s=x)/s x<s

Plxls) { e (10)
Substituting equations (9) and (10) back into (8) gives
Po(x)=J' sP,(s)ds—xJ P,(s) ds. (11)
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If this expression is then twice differentiated with respect to
x, we have the desired relation

=P(x) (12)

which is fully general (ie., not particularly associated with
Voronoi tessellation).

Using this relation, P(s)ds may be extracted from the
Py(x) curve determined in the previous section. It is also
shown in Fig. 1. As is shown in a succeeding paper (Ikeuchi,
Yoshioka & Turner, in preparation), results of a Monte Carlo
simulation of a Voronoi tessellation agree with these analytic
results very well.

4 DISCUSSION

The most striking feature of the P(s) ds distribution derived
above is that it has a definite characteristic scale. Wall separa-
tions of ~ 1.2 in our units are the most probable and both
smaller and larger ones are less likely. Despite the fact that
the seeds which generate the cell wall structure are randomly
placed, the walls themselves have a more regular than
random spacing. This can be seen clearly in Fig. 1 by com-
paring the previously plotted set of Voronoi tessellation func-
tions to those which would apply if the cell walls were placed
independently along the line-of-sight with the same mean
density. The distribution Py(s) ds of wall separations is much
broader for the independently placed walls; both smaller
than average and larger than average wall separations are
substantially more probable than in the Voronoi case. This is
the same qualitative feature shown by the distribution of gal-
axy redshifts in the Broadhurst er al. (1990) survey, an
unusually regular spacing of the peaks.

This feature of the distribution can be roughly quantified
by considering the ratio of the dispersion in wall separations
o, to the mean separation ¢s). For independently placed cell
walls, this ratio is just o,/(s)=1, but for the three-
dimensional Voronoi tessellation it is significantly smaller
0,/(s)=0.58. In other words, the dispersion in wall separa-
tions at the same mean density is nearly a factor of 2 smaller
than if the cell walls were independently placed. Note also
that because the Voronoi P,(s) ds falls well below the one for
the Poisson case (Fig. 1) near s=0, the cell wall covariance
function will be significantly negative at small separations.
Ikeuchi et al. (in preparation) discuss the cell wall covariance
function in detail.

While qualitatively suggestive, the three-dimensional
Voronoi tessellation considered here is still almost certainly
quantitatively too random to explain the strong regularity
(Kurki-Suonio, Matthews, and Fuller 1990) in the Broad-
hurst et al (1990) results. Nevertheless, as a counter-
example, this result shows that a comparison of the galaxy
data with the simple null hypothesis of randomly placed
walls is far too weak a test to reject the general idea that
large-scale structure derives from underlying random (or
random phase) perturbations. The Voronoi tessellation pre-
scription can be regarded as a very crude approximation to
the interactions which one would expect between adjacent
evolving perturbations as large-scale structure forms. The
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details of such interactions depend, of course, on the specific
model but might include such things as competition for mass
and volume or collision of expanding blast waves.

As shown in Ikeuchi et al. (in preparation), the probability
of finding a void with the volume V=y-a3 is analytically
given by Nozakura (1985, private communication)

1
PJy) dy=—(6y) e dy. (13)
51

Then, the maximum probability is expected for a void
volume V,_=3543/6. If the population of voids with various
volumes is obtained we may compare it with the above
expression.

Furthermore, even within the framework of Voronoi
tessellations, one can easily imagine slightly more realistic
models. For example, since the ratio of cell volume V to wall
area scales as V', one would expect the walls of larger cells
to be more densely populated than those of small ones and
thus to be more likely to be detected (i.e., produce a peak
containing a significant excess of galaxies) in ‘pencil beam’
surveys. To the extent that small wall separations are pro-
duced by small volume cells (they can also be produced by
passing through the ‘corners’ of large cells), this means that
cases of small wall separations will be likely to be missed thus
producing an even narrower P(s) ds distribution. This effect

|IIIlIIIlllTT—lTlllllllllllIIII
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Figure 2. The possible effect of a detection bias on the wall separa-
tion distribution. The dashed curve shows the same wall separation
distribution for the Voronoi tessellation displayed in Fig. 1. The
solid curve is derived by multiplying it by the detection probability
function given by equation (14) and renormalizing. The parameter
D was set to a value of 1.2 for illustrative purposes. Such detection
biases may occur if the walls of large voids are more densely popu-
lated with galaxies than those of small ones, thus producing even
more regular wall separation distributions.
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is illustrated in Fig. 2 which shows a wall separation distribu-
tion produced by multiplying the Voronoi curve by a func-
tion

Pp(s)=1—e~9P (14)

taken to be the probability of detection for a wall separation
s. The value of D might be determined explicitly for a par-
ticular survey and some structure model but has simply been
adjusted to give an interesting result in this case (D=1.2). It
should be clear that this procedure has not been rigorously
justified and that it is simply intended to illustrate the sorts of
effects which such a detection bias might produce; it is, how-
ever, not entirely unrealistic. As Fig. 2 shows, such biases
could produce an impressively narrow Py(s) ds distribution of
separations of detected walls, further accentuating the sort of
regularity already displayed by the Voronoi tessellation itself.
For D=1.2, ¢,/(s) is reduced to 0.42 for example.

Beyond the qualitative implications discussed above, it
may be appropriate to more closely consider a quantitative
comparison of the observations and Voronoi tessellation if
one takes it to give a relatively accurate description of the
large scale structure predicted by some physical models (Icke
& van de Weygaert 1990). In the present context, this corre-
sponds to asking if it could reproduce structure like that
observed by Broadhurst ez al. (1990). The observed value of
o,/(s) cannot be precisely determined from the so far
published data, but it is clearly quite small, certainly <0.1,
compared to either the expected Voronoi value of 0.58 or
even the detection biased value of 0.42 discussed above.
Nevertheless, the observations cover only a fairly small
number of cell wall spacings, and substantial fluctuations
about the expected values are likely. In particular, Coles
(1990) points out that a sample of N cell wall spacings will
show rms fluctuations in o,/(s) of at least

(15)

~ <S4>_<52>2 12
6_[ N(s)? ] '

Taking the appropriate moments of P(s)ds, we find
0=1.44/N'2. Also, for the detection bias modified s distri-

bution shown in Fig. 2 (with D=1.2), we find =1.21/N'/2,
Thus, in either case, quite small values of ¢,/(s) such as those
observed by Broadhurst et al. (1990) represent only one to
two standard deviations fluctuations, not highly improbable
events, since N (the number of observed cell wall separa-
tions) is probably no more than 10-20. Essentially, the same
conclusion was obtained by Coles (1990) based on rather
indirect estimates of the moments of P,(s)ds and by van de
Weygaert (1990) based on numerical simulations.
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