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Chapter 1

General Introduction
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Proteins carry out various biological functions in vivo. In order for proteins to display

unique functions, it is important that the proteins have unique three-dimensional struc-

tures (tertiary structures). The native three-dimensional structures seem to be affected

by the environment in the cell, which is a very complex system. Anfinsen and co-workers,

however, showed experimentally that the native structures of proteins are decided by their

amino-acid sequence information (Anfinsen’s dogma) [1]. Specifically, they substantiated

such a dogma as follows. They denatured completely bovine pancreatic ribonuclease in

vitro by using denaturants. The proteins lost their enzymatic activity completely and had

random-coil conformations. From such unfolded states, the bovine pancreatic ribonucle-

ase refolded back into the native structure and recovered the enzymatic activity when the

denaturants were removed. Anfinsen’s dogma implies that we just have to deal with the

amino-acid sequence information and surrounding solvent, not other molecules which ex-

ist in the cell, when we study the protein folding problem. In other words, we can reduce

the problem of a protein in the cell to that of a single protein in solution. With such a

simplification, it is still very difficult to study the protein folding problem with computer

simulations due to Levinthal’s paradox [2],[3]: it is essentially impossible to find the native

structure among an astronomically large number of metastable conformations. However,

this is an apparent paradox because we neglect the fact that protein structures take on

various potential energy values. In other words, the thermodynamic consideration is miss-

ing in that there exist much less number of important conformations to consider at room

temperature. Thus, the protein folding problem can be understood in the thermodynamic

framework. Namely, the native structure corresponds to the free-energy global-minimum

state and random-coil states rapidly make transitions to the native state. By utilizing

computer simulations based on statistical mechanics [4]-[15], we are able to study the

protein folding problem theoretically.

In order to understand the protein folding, it is essential that the detailed free-energy

landscape of the protein system is obtained. By analyzing the free-energy landscape, we

can find the folding pathways and the stability of any structures of the protein. Fur-

thermore, the transition state between two specific stable states can also be discovered.

Exploring the transition state, we can gain information about state transitions. From a
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point of view of molecular modeling or drug design, moreover, it is also very important

that the transition state is found. Accordingly, many efforts are devoted to obtain the

detailed free-energy landscape by computer simulations.

A canonical-ensemble simulation [4]-[9] is widely used as a conventional method for

computer simulations. In the canonical ensemble at a fixed temperature, the probability

distribution of the potential energy is given by the product of the density of states and the

Boltzmann weight factor, and we have a bell-shaped probability distribution of the po-

tential energy. However, this simulation method is not suitable to be applied to complex

systems such as proteins. Because such complex systems have many local-minimum free-

energy states, canonical-ensemble simulations tend to get trapped at the local-minimum

states. At low temperatures, in particular, the usual canonical-ensemble simulations can-

not realize efficient sampling in the configurational space. This is because in canonical

simulations energy fluctuations are small at a low temperature and energy barriers cannot

be overcome. Therefore, if we employ the usual canonical-ensemble method in complex

systems, we may estimate inaccurately the free-energy landscape in the complex systems.

To overcome the difficulties, the generalized-ensemble algorithms have been proposed (for

a review, see Ref. [10]).

The multicanonical algorithm [11]-[14] is perhaps one of the most well-known methods

among the generalized-ensemble algorithms. In the multicanonical ensemble, the proba-

bility distribution of the potential energy is expressed by the product of the density of

states and a non-Boltzmann weight factor, which we refer to as the multicanonical weight

factor, and we have a flat probability distribution of the potential energy. Therefore,

multicanonical-ensemble simulations realize a free random walk in the potential-energy

space and overcome energy barriers. By such efficient sampling in the configurational

space, the multicanonical-ensemble simulations are able to give the broad free-energy

landscape in comparison with conventional canonical simulations. Furthermore, because

the multicanonical simulations do not get trapped in local-minimum states, we need much

less simulation time to get an accurate free-energy landscape than conventional canonical

simulations. Therefore, the application of the multicanonical algorithm to the protein

folding was proposed [16]. Since then there have been many works based no this method
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and its variants in protein and related systems (for reviews, see Refs.[17],[18]). This

method aims at achieving a wide range sampling in the configurational space. However,

because of the very nature of the algorithm, it is difficult to focus on specific configura-

tions. Consequently, the free-energy landscape around or among specific configurations

of interest may be incorrectly estimated in multicanonical-ensemble simulations.

To understand protein folding, as discussed previously, we must investigate the stabil-

ity of specific configurations and the transition state between two specific configurations.

Accordingly, the detailed free-energy landscape in the neighborhood of specific configu-

rations is necessary. Recently, a new algorithm, which is a generalization of the multi-

canonical algorithm and is referred to as the multi-overlap algorithm [15], was proposed to

focus on specific configurations and overcome potential energy barriers, where an overlap

of a configuration is a measure of structural similarity to a reference configuration. In

the multi-overlap ensemble, the probability distribution is expressed by the product of

the density of states and a non-Boltzmann weight factor, which we refer to as the multi-

overlap weight factor, and we have a flat probability distribution in the overlap space.

Consequently, the multi-overlap ensemble realizes a random walk in the overlap space and

efficiently samples the conformational space, and we can obtain the detailed free-energy

landscape in the neighborhood of specific configurations.

A Monte Carlo (MC) version of this algorithm was proposed in Ref. [15]. In general,

for linear molecules such as proteins, MC simulations mostly use the dihedral angles, not

Cartesian coordinates, in order to maintain the covalent geometry of such linear molecules.

A small update of a single dihedral angle can then result in a large motion of the linear

molecule, and the trial MC step will be almost always rejected. Therefore, in many

particle systems such as proteins in solution, MC algorithm would sample inefficiently the

conformational space, and it is difficult to estimate correctly the free-energy landscape.

To avoid such problems in the MC simulations, the molecular dynamics (MD) algo-

rithm is often employed. For instance, the MD version of multicanonical algorithm was

developed in Refs. [13],[14]. In this thesis we propose an MD version of the multi-overlap

method. This multi-overlap MD method realizes a random walk in the dihedral-angle

distance space and does not get trapped in local-minimum states. Furthermore, this
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method is able to sample efficiently the conformational space so as to focus on specific

configurations. Accordingly, we obtain the detailed free-energy landscape among the

specific configurations. We apply this multi-overlap MD method to Met-enkephalin in

vaccum and check the effectiveness of the method by comparing the results with those of

the conventional canonical MD method and the multicanonical MD method. Moreover,

from the detailed free-energy landscape obtained from the results of the multi-overlap

MD simulation, we predict a transition pathway between two specific configurations of

Met-enkephalin.

In Chapter 2 we present the conventional canonical and multicanonical MD algorithms

and propose the multi-overlap MD algorithms. We also introduce a jackknife method

which can give accurate expectation values and readily estimate error bars. Furthermore,

we explain the potential energy functions for biomolecules in this Chapter. In Chapter 3

we compare the results of the three simulations, namely, the conventional canonical,

multicanonical, and multi-overlap MD simulations, and demonstrate the effectiveness of

the multi-overlap MD algorithms. Chapter 4 is devoted to conclusions.
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2.1 Introduction

In order to understand the protein folding or function, we must obtain the free-energy

landscape of the protein system. We need simulation methods to sample efficiently the

conformational space. Generalized-ensemble algorithms [1] are very powerful tools to have

efficient sampling in the conformational space and very useful tools to understand the pro-

tein folding problem. In the following we discuss about several simulation methods. In

Sec. 2.2 we explain the canonical-ensemble MD method [2]-[6] and we clarify problems of

this method. Generalized-ensemble algorithms have been proposed to solve these prob-

lems. In Sec. 2.3 we present the multicanonical-ensemble MD method [8],[9], which is

one of the generalized-ensemble algorithms. In Sec. 2.4 we propose a new generalized-

ensemble algorithm, which we refer to as the multi-overlap MD algorithm. This method

makes it possible to find transition states among any specific reference configurations. We

also introduce the jackknife methods [26],[27] to estimate simulation errors in Sec. 2.5. In

Sec. 2.6 we give details of the potential energy functions for biomolecules [29], which we

employ in this thesis.

2.2 Canonical-Ensemble Algorithms

In this section we explain the conventional canonical-ensemble algorithm [2]-[6],[10]. The

canonical ensemble is based on a system that keeps the temperature, volume, and number

of particles fixed. In Sec. 2.2.1 we present on the canonical MD methods with the Gaus-

sian thermostat [2],[3]. This method realizes a constant temperature by restricting the

momentum vectors so that the total kinetic energy is a constant. In Sec. 2.2.2 we outline

the simulated annealing method [7], which is a simple generalization of canonical-ensemble

algorithms.

2.2.1 Canonical-ensemble MD algorithms

In the canonical ensemble at a constant temperature T0, the probability distribution Pc

of the potential energy E is represented by the product of the density of states n(E) and
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the Boltzmann weight factor Wc:

Pc(E;T0) = n(E)Wc(E;T0)

= n(E)e−β0E , (2.1)

where β0 is given by β0 = 1/kBT0 (kB is the Boltzmann constant). In Fig. 2.1, we show

a probability distribution in Eq. (2.1). Canonical-ensemble algorithms [2]-[6],[10] at a

constant temperature reproduce the probability distribution in Eq. (2.1) in computer

simulations. Among various canonical-ensemble algorithms, we employed in this thesis

canonical-ensemble MD method with the Gaussian thermostat [2],[3], which we refer to

as the Gaussian constraint method. The equations of motion in this method are given by

q̇i =
dqi

dt
=

pi

mi

,

ṗi = F i − ζcpi ,

(2.2)

where mi, qi, and pi are the mass, coordinate vector, and momentum vector of atom i.

The force F i acting on atom i is given by

F i = −
∂E

∂qi

. (2.3)

The coefficient ζc is chosen so as to guarantee that the total kinetic energy is constant:

ζc =

∑

i

F i · q̇i

2
∑

i

p2
i

2mi

. (2.4)

In Fig. 2.2, we show shapes of the probability distribution in the canonical ensemble

at a high temperature and a low temperature. As shown in Fig. 2.2(b), the probabil-

ity distributions in the canonical ensemble at low temperatures are very sharp, whereas

those at high temperatures in Fig. 2.2(a) have wide shapes. In other words, fluctuations

of the potential energy at low temperatures are small, and the simulation cannot over-

come energy barriers for making transition from one state to another. Therefore, it is

difficult for the conventional canonical-ensemble methods to sample the configurational

space at low temperatures. In complex systems such as proteins, especially, these meth-

ods sample inefficiently the conformational space at low temperatures. This is because

the complex systems such as proteins have many local-minimum states, and the usual
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E

n(E)

E

E

Wc(E;T0)

Pc(E;T0)

Figure 2.1: Probability distribution Pc(E;T0) of the potential energy E is represented by
the product of the density of states n(E) and the Boltzmann weight factor Wc(E;T0).

canonical-ensemble simulations tend to get trapped in the local-minimum states. Accord-

ingly, we cannot obtain accurately the free-energy landscape of the complex systems.

2.2.2 Simulated annealing

Simulated annealing [7] is based on the process of annealing in which liquids freeze or

metals recrystallize. In the annealing process, the system, which is initially at high tem-

perature and disordered, is slowly cooled so that it is always approximately in thermal

equilibrium. As cooling proceeds, the system becomes more ordered and approaches the

global-minimum-energy state. However, if the initial temperature of the system is too low
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E E

Pc(E) Pc(E)

(a) (b)

Figure 2.2: Probability distribution Pc of the potential energy E at (a) a high temperature
and (b) a low temperature in the canonical ensemble.

or the process of annealing is not sufficiently slow, then the system may get trapped in a

local-minimum-energy state.

In this thesis, we performed simulated annealing as follows. The initial temperature

Ti of a protein system is set sufficiently high so that the protein is in a random-coil

state. First, we carry out a canonical MD simulation at this temperature until the system

achieves thermal equilibrium. Secondly, we slightly lower the temperature of the system

and also perform the canonical MD simulation at that temperature until the system

achieves equilibrium. This process is repeated until the temperature of the system reaches

the final temperature Tf at which the protein folds into the native structure.

2.3 Multicanonical-Ensemble Algorithms

In this section we explain the multicanonical-ensemble algorithms [11],[12]. Multicanonical-

ensemble simulations realize a free random walk in the potential energy space and effi-

ciently sample the conformational space, as will be described in Sec. 2.3.1. In Sec. 2.3.2 we

show the equations of motion for the multicanonical ensemble. In Sec. 2.3.3 we describe
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the reweighting techniques [13],[14]. We can calculate any physical quantities as functions

of temperature by these techniques.

2.3.1 Free random walk in energy space

In the canonical-ensemble simulation methods at low temperatures, it is difficult to over-

come energy barriers. To surmount this difficulty and sample the conformational space

efficiently, generalized-ensemble algorithms have been proposed (for a review, see Ref. [1]).

The multicanonical-ensemble MD method [8],[9] is one of commonly used generalized-

ensemble algorithms. In the multicanonical ensemble [11],[12], each state is weighted by

a non-Boltzmann weight factor Wmuca, which we refer to as the multicanonical weight

factor, instead of the Boltzmann weight factor Wc. The probability distribution Pmuca of

the potential energy E is defined to be uniform:

Pmuca(E) = n(E)Wmuca(E)

= constant . (2.5)

The multicanonical weight factor Wmuca is given by

Wmuca(E) = e−β0Emuca(E;T0) , (2.6)

where Emuca is the ‘multicanonical potential energy’ and is defined so that the probability

distribution in Eq. (2.5) becomes flat, and we have chosen an arbitrary reference temper-

ature T0 = 1/kBβ0. Note that by definition in Eq. (2.5) the multicanonical algorithm is

independent of temperature. Here, we just introduce T0 in order to write Wmuca(E) in a

Boltzmann-weight-like factor. Eq. (2.5) implies that a free random walk in the potential

energy space is realized. As a results, multicanonical simulations can overcome any energy

barriers and sample efficiently the conformational space. In Fig. 2.3 we show a probability

distribution in the multicanonical ensemble. That in the conventional canonical ensemble

is also shown for comparison.
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E

n(E)

E

E

W(E;T0)

P(E;T0)

Figure 2.3: Probability distribution Pmuca(E) of the potential energy E is represented by
the product of the density of states n(E) and the multicanonical weight factor Wmuca(E).
The solid line shows a case of the multicanonical ensemble. The dashed line shows a case
of the canonical ensemble.

2.3.2 Equations of motion

The equations of motion for the multicanonical MD methods with the Gaussian thermo-

stat are given by

q̇i =
pi

mi

,

ṗi = F muca
i − ζmucapi .

(2.7)

The ‘force’ F muca
i acting on atom i is defined by

F
muca
i = −

∂Emuca(E;T0)

∂qi

18



=
∂Emuca(E;T0)

∂E
F i . (2.8)

The coefficient ζmuca is calculated from

ζmuca =

∑

i

F muca
i · q̇i

2
∑

i

p2
i

2mi

=

∂Emuca(E;T0)

∂E

∑

i

F i · q̇i

2
∑

i

p2
i

2mi

. (2.9)

The multicanonical potential energy Emuca(E;T0) is not a priori known and we must

obtain its good estimate to flatten the probability distribution of the potential energy.

From Eq. (2.5), incidentally, the multicanonical weight factor Wmuca(E;T0) can be written

as follows:

Wmuca(E) =
1

n(E)
. (2.10)

From Eq. (2.6), therefore, the multicanonical potential energy Emuca(E;T0) is given by

Emuca(E;T0) = kBT0 lnn(E)

= T0S(E) , (2.11)

where S(E) is the entropy in the microcanonical ensemble. One way to obtain the estimate

of the multicanonical potential energy is to use the following relation:

∂Emuca(E;T0)

∂E
=

T0

T (E)
, (2.12)

where the following thermodynamic relation gives the definition of the temperature T (E):

∂S(E)

∂E

∣

∣

∣

∣

∣

E=Eave(T )

=
1

T (E)
, (2.13)

with

Eave(T ) = 〈E〉T . (2.14)

Namely, T (Eave) is the inverse function of Eq. (2.14). Accordingly, the multicanonical

potential energy Emuca(E;T0) can be obtained by integrating Eq. (2.12) [15]-[17]:

Emuca(E;T0) = T0

∫ E

Elow

dE′

T (E ′)
, (2.15)
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where Elow is an arbitrary value close to the lower limit of the potential energy range of

interest. Moreover, the equations of motion in Eq. (2.7) can be rewritten as follows:

q̇i =
pi

mi

,

ṗi = T0

T (E)
F i − ζmucapi ,

(2.16)

and

ζmuca =

T0

T (E)

∑

i

F i · q̇i

2
∑

i

p2
i

2mi

. (2.17)

Multicanonical-ensemble MD simulations are performed by solving numerically these

equations of motion. These simulations realize free random walks and sample efficiently

the conformational space. By such efficient sampling in the configurational space, the

multicanonical-ensemble MD simulations are able to give an accurate free-energy land-

scape in comparison with conventional canonical simulations.

2.3.3 Reweighting techniques

By using the obtained histogram Nmuca(E) of the potential energy from the results of

a multicanonical MD simulation, the expectation value of a physical quantity A at any

temperature T is calculated from

〈A〉T =

∑

E

A(E)n(E)e−βE

∑

E

n(E)e−βE
, (2.18)

where the best estimate of the density of states is given by the single-histogram reweighting

techniques [13],[14]:

n(E) =
Nmuca(E)

Wmuca(E)

= Nmuca(E)eβ0Emuca(E;T0) . (2.19)

Because the multicanonical-ensemble MD simulations can sample the potential energy

space widely, we are able to estimate correctly the density of states over a wide range in

the potential energy space.
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2.4 Multi-Overlap Algorithm

In this section we explain the formulation of the multi-overlap MD algorithm. The

dihedral-angle distance [18] is defined as a reaction coordinate in Sec. 2.4.1. In Sec. 2.4.2

we introduce a non-Boltzmann weight factor, which we refer to as the multi-overlap weight

factor. The multi-overlap weight factor realizes a constant probability distribution in a

multi-dimensional dihedral-angle-distance space. In Sec. 2.4.3 we present the equations

of motion in the multi-overlap ensemble. The equations of motion in the multi-overlap

ensemble is constructed by adding the derivative of a dimensionless free energy to the

equations of motion in the usual canonical ensemble. We discuss details of the updating

procedure of the dimensionless free energy in Sec. 2.4.4. In Sec. 2.4.5 we explain the

reweighting techniques [13],[14]. Utilizing the reweighting techniques, we can calculate

appropriate physical quantities and obtain the free-energy landscape at any temperature.

2.4.1 Definition of dihedral-angle distance

In order to explore transition states among any reference configurations, we would like

to perform a simulation which focuses on the reference configurations and does not get

trapped in local-minimum states. While a free random walk in the potential energy space

is realized in the multicanonical MD method, we would like to perform a random walk in

some reaction coordinate so that the reference configuration can be efficiently sampled.

In the multi-overlap algorithm [18], the overlap is introduced as this reaction coordinate.

The overlap O with respect to a reference configuration is defined as follows [18],[19]:

O = 1 − d , (2.20)

where d is the dihedral-angle distance given by

d =
1

nπ

∑

i

da(vi, v
0
i ) . (2.21)

Here, n is the total number of dihedral angles, vi is the dihedral angle i, and v0
i is

the dihedral angle i of the reference configuration. The distance da(vi, v
0
i ) between two

dihedral angles is defined by

da(vi, v
0
i ) = min(|vi − v0

i |, 2π − |vi − v0
i |) . (2.22)

21



The dihedral-angle distance d in Eq. (2.21) takes on a value in the range 0 ≤ d ≤ 1.

From Eq. (2.20), correspondingly, 0 ≤ O ≤ 1. In particular, if we consider a system at

infinite temperature (T0 = ∞), the average values of the dihedral-angle distance d and

the overlap O are 1
2
. This is because the distance da(vi, v

0
i ) in Eq. (2.22) will have a

uniform distribution in the range between 0 and π at T0 = ∞. Furthermore, if d = 0

(O = 1), all dihedral angles are coincident with those of the reference configuration. The

dihedral-angle distance (the overlap) is thus an indicator of how similar the conformation

is to the reference conformation. As one can see in Eq. (2.20), the dihedral-angle distance

d is equivalent to the overlap O. Hereafter, we employ the dihedral-angle distance d as

the reaction coordinate in the multi-overlap algorithm.

2.4.2 Constant probability distribution in dihedral-angle dis-

tance space

We want the simulation to realize a random walk in a multi-dimensional dihedral-angle-

distance space. In other words, the simulation needs to have a constant probability distri-

bution with the dihedral-angle distance reaction coordinates. As discussed in Sec. 2.2, the

probability distribution Pc is not constant and takes a much smaller value in high-energy

region for the Boltzmann weight factor. Consequently, canonical-ensemble simulations

will get trapped in local-minimum states at a low temperature. In the multi-overlap

ensemble at a constant temperature T0, on the other hand, the probability distribution

is determined by the following non-Boltzmann weight factor, which we refer to as the

multi-overlap weight factor:

Wmuov(d;E) = e−β0Emuov(d;E) , (2.23)

where Emuov(d;E) is the ‘multi-overlap potential energy’ defined by

Emuov(d;E) = E − kBT0f(d) . (2.24)

The function f(d) is the dimensionless free energy at dihedral-angle distance d.

The generalization to the multi-dimensional dihedral-angle distance space is straight-

forward, and the multi-overlap weight factor is given by

Wmuov(d1, · · · , dN ;E) = e−β0Emuov(d1,···,dN ;E) , (2.25)
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Figure 2.4: (a) probability distribution Pc(d1, · · · , dN) in canonical ensemble and (b)
Pmuov(d1, · · · , dN ) in multi-overlap ensemble. Pc(d1, · · · , dN ) has a bell-like shape but
Pmuov(d1, · · · , dN ) has a uniform distribution.

and

Emuov(d1, · · · , dN ;E) = E − kBT0f(d1, · · · , dN) , (2.26)

where N is the number of the reference configurations and di is the dihedral-angle distance

of reference configuration i (i = 1, · · · , N). The function f(d1, · · · , dN ) is the dimensionless

free energy with the fixed values of dihedral-angle distances d1, · · · , dN . The dimensionless

free energy f(d1, · · · , dN ) is defined so that the probability distribution Pmuov is flat:

Pmuov(d1, · · · , dN ) =
∫

dE n(d1, · · · , dN ;E)Wmuov(d1, · · · , dN ;E)

=
∫

dE n(d1, · · · , dN ;E)e−β0E+f(d1,···,dN )

≡ constant , (2.27)

where n(d1, · · · , dN ;E) is the density of states. In Fig. 2.4 we show probability distribu-

tions in canonical and multi-overlap ensemble with dihedral-angle distance axes. Thus,

we are able to perform simulations, which realize a random walk in the multi-dimensional

dihedral-angle distance space.

In this thesis we use only the two-dimensional version of these methods. Namely,

N = 2 in Eqs. (2.25), (2.26), and (2.27). we can then perform a simulation which is
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focused on two specific reference configuration. Accordingly, we can explore a transition

state between the two reference configurations. We will deal with the two-dimensional

version of these methods hereafter.

2.4.3 Equations of motion in multi-overlap MD simulations

The equations of motion with Gaussian thermostat for the canonical MD simulations and

the multicanonical MD simulations are described in Eq. (2.2) and Eq. (2.7), respectively.

Correspondingly, the multi-overlap MD simulation is carried out by solving the following

modified equations of motion with Gaussian thermostat:

q̇i =
dqi

dt
=

pi

mi

,

ṗi = F muov
i − ζmuovpi .

(2.28)

The ‘force’ F muov
i acting on atom i is calculated from (see Eq. (2.26))

F muov
i = −

∂Emuov

∂qi

= F i + kBT0
∂f(d1, d2)

∂qi

. (2.29)

The coefficient ζmuov is defined by

ζmuov =

∑

i

F muov
i · q̇i

2
∑

i

p2
i

2mi

. (2.30)

2.4.4 Determination of the dimensionless free energy

The dimensionless free energy f(d1, d2) in Eq. (2.26) is not a priori known and we must

obtain its good estimate by iterations of short simulations. Several methods [20]-[25]

to determine the dimensionless free energy f(d1, d2) exist and we determine it by the

following process [22]. We update the dimensionless free energy f(d1, d2) at each MD step

of a short multi-overlap MD simulation, and we iterate this procedure. Suppose that we

have f = f (l)(d1, d2 : k − 1) at the (k − 1)th MD step of the lth iteration of the short

multi-overlap MD simulation, and that the configuration at the kth MD step has the

value d1 = c1 and d2 = c2. We then update the dimensionless free energy by

f (l)(d1 = c1, d2 = c2; k) = f (l)(d1 = c1, d2 = c2; k − 1) − a(l) , (2.31)
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where a(l) is an appropriately chosen positive constant. The lth iteration of the multi-

overlap MD simulation with the updating procedure of Eq. (2.31) is continued until the

probability distribution Pmuov(d1, d2) in Eq. (2.27) becomes reasonably flat with fluctua-

tions of order a(l). For the (l+1)th iteration, we make the value of the constant a smaller

i.e., a(l+1) ≤ a(l), and repeat the updating procedure of Eq. (2.31) with l replaced by l+1.

The initial value can be set as follows:

f (1)(d1, d2; 0) = 0 . (2.32)

The iteration is terminated when the probability distribution Pmuov(d1, d2) becomes satis-

factorily flat. After the dimensionless free energy f(d1, d2) is determined, we make a long

production multi-overlap MD simulation of Eqs. (2.28) and (2.29) with this f(d1, d2).

2.4.5 Reweighting techniques

Results of the multi-overlap production run can be analyzed by the reweighting techniques.

Suppose that we have determined the dimensionless free energy f(d1, d2) at a constant

temperature T0 and that we have made a production run at this temperature. The

expectation value of a physical quantity A at any temperature T is calculated from

< A >T =

∑

d1,d2,E

A(d1, d2;E)n(d1, d2;E)e−βE

∑

d1,d2,E

n(d1, d2;E)e−βE
, (2.33)

where the best estimate of the density of states is given by the single-histogram reweighting

techniques [13],[14]:

n(d1, d2;E) =
Nmuov(d1, d2;E)

Wmuov(d1, d2;E)
, (2.34)

and Nmuov(d1, d2;E) is the histogram of the probability distribution that was obtained

by the multi-overlap production run. By substituting Eqs. (2.25), (2.26), and (2.34) into

Eq. (2.33), we have

< A >T =

∑

d1,d2,E

A(d1, d2;E)Nmuov(d1, d2;E)eβ0E−f(d1,d2)−βE

∑

d1,d2,E

Nmuov(d1, d2;E)eβ0E−f(d1,d2)−βE
. (2.35)
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We can also calculate the free energy (or, the potential of mean force) with appropriate

reaction coordinates. For example the free energy F (ξ1, ξ2;T ) with reaction coordinates

ξ1, ξ2 at temperature T is defined by

F (ξ1, ξ2;T ) = −kBT lnPc(ξ1, ξ2;T ) , (2.36)

where Pc(ξ1, ξ2;T ) is the reweighted canonical probability distribution of ξ1 and ξ2 and

given by (see Eq. (2.35))

Pc(ξ1, ξ2;T ) =

∑

d1,d2,E

Nmuov(ξ1, ξ2; d1, d2;E)eβ0E−f(d1,d2)−βE

∑

ξ1,ξ2,d1,d2,E

Nmuov(ξ1, ξ2; d1, d2;E)eβ0E−f(d1,d2)−βE
, (2.37)

and Nmuov(ξ1, ξ2; d1, d2;E) is the histogram of the probability distribution that was ob-

tained from the multi-overlap production run.

2.5 Jackknife Methods

We introduce the jackknife methods [26]-[28] to correct errors of results from computer

simulations. Assume that we have random variables {xi} (i = 1, · · · , N). The mean value

x̄ is defined by

x̄ =
1

N

N
∑

i=1

xi . (2.38)

We consider an arbitrary function f of x. When f is a non-linear function, we have, in

general,

〈f(x)〉 6= 〈f(x̄)〉
N→∞
−→ 〈f(x̂)〉 , (2.39)

where 〈· · ·〉 stands for expectation values and we write

x̂ ≡ 〈x〉 . (2.40)

Note that we have

x̂ = lim
N→∞

x̄ . (2.41)
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Thus, any non-linear function of random variables {xi} have bias. Typically, the function

f(x) and the function f̄ ≡ f(x̄) have the bias of order 1 and the bias of order
1

N
,

respectively. Namely, we have

bias(f) ≡ f̂ − 〈f〉

= O(1) , (2.42)

and

bias(f̄) ≡ f̂ −
〈

f̄
〉

=
a1

N
+
a2

N2
+O

(

1

N3

)

, (2.43)

where the function f̂ is defined by

f̂ ≡ 〈f(x̂)〉

= f(x̂) . (2.44)

Therefore, the variance σ2(f̄), which is defined by

σ2(f̄) ≡
〈

(f̄ − f̂ )2
〉

, (2.45)

cannot be calculated from the standard equation for error bars:

σ2(f̄ ) =
1

N
σ2(f)

=
1

N(N − 1)

N
∑

i=1

(fi − f̄)2 . (2.46)

This is because 〈fi〉 (= 〈f(xi)〉 = 〈f〉) is not a valid estimator of f̂ (see Eq. (2.42)). The

jackknife methods reduce such a bias and provide well-founded error bar analysis.

In jackknife methods we use jackknife estimators fJ
i and f̄J :

fJ
i = f(xJ

i ) , (2.47)

and

f̄J =
1

N

N
∑

i=1

fJ
i , (2.48)
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where

xJ
i =

1

N − 1

∑

k 6=i

xk . (2.49)

From Eq. (2.43) the bias of f̄J is given by

bias(f̄J ) ≡ f̂ −
〈

f̄J
〉

=
a1

N − 1
+

a2

(N − 1)2
+O

(

1

N3

)

. (2.50)

Subsequently, we introduce bias-corrected estimators f c
i and f̄ c:

f c
i = Nf̄ − (N − 1)fJ

i , (2.51)

and

f̄ c =
1

N

N
∑

i=1

f c
i . (2.52)

From Eqs. (2.43) and (2.50), the bias of f̄ c is given by

bias(f̄ c) ≡ f̂ −
〈

f̄ c
〉

= −
a2

N(N − 1)
+O

(

1

N3

)

. (2.53)

Accordingly, utilizing the bias-corrected estimators, we can reduce bias of an arbitrary

function. Furthermore, the variance σ2(f̄ c) can be calculated from the standard equation:

σ2(f̄ c) =
1

N
σ2(f c)

=
1

N(N − 1)

N
∑

i=1

(f c
i − f̄ c)2 . (2.54)

This variance is rewritten with the jackknife estimators fJ
i , f̄J as follows:

σ2(f̄ c) =
1

N(N − 1)

N
∑

i=1

(f c
i − f̄ c)2

=
1

N(N − 1)

N
∑

i=1

(

(N − 1)fJ
i − (N − 1)f̄J

)2

=
N − 1

N

N
∑

i=1

(fJ
i − f̄J )2 . (2.55)

Thus, by using the jackknife methods, we can calculate readily the variance and the error

bar of the an arbitrary function with respect to the mean of random variables in Eq. (2.49).
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In summary, we use f̄ c in Eq. (2.52) as the estimator for f̂ = f(x̂) and σ(f̄ c) in

Eqs. (2.54) or (2.55) as the estimator for the error bar of the measurement of f̂ . In Ap-

pendix B we explain concretely the application of the jackknife methods to the reweighting

techniques.

2.6 Potential Energy Function

Potential energy function which we adopted in this thesis is an all-atom model (CHARMM

param22) [29]. This potential energy function Etot is expressed as follows:

Etot = Ebond + Eangle + Edih + Eimp + EUB + ELJ + EC . (2.56)

Namely, it consists of the bond-stretching potential energy term Ebond, the bond-angle-

bending potential energy term Eangle, the torsion potential energy term Edih, the improper

torsion potential energy term Eimp, the Urey-Bradley term EUB, the Lennard-Jones 12-6

term ELJ , and the electrostatic term EC. In the following we explain each term one by

one.

The first five potential energy terms characterize geometries of biomolecules. The

bond-stretching potential energy term Ebond is defined by

Ebond =
∑

bonds

Kb(b− b0)
2 , (2.57)

where Kb is the bond force constant, b is the bond length, and b0 is the natural bond

length, and
∑

bonds

stands for the summation over all covalent bonds in biomolecules. This

term is needed to keep the covalent bond of biomolecules and represents the vibration

two atoms that are covalently bound. In Fig.2.5 we illustrate a vibration of two atoms

connected by a covalent bond.

The bond-angle-bending potential energy term Eangle is given by

Eangle =
∑

angle

Kθ(θ − θ0)
2 , (2.58)

where Kθ is the angle force constant, θ is the bond angle, θ0 is the natural bond angle, and
∑

angle

stands for the summation over all bond angles in biomolecules. This term controls

bendings of bond angles. Fig.2.6 illustrates the bending of a bond angle.

29



Figure 2.5: Illustration that represents the bond-stretching potential energy term. The
figure was created with RasMol [30]

In Fig. 2.7 we describe the model of the Urey-Bradley term EUB. The Urey-Bradley

term EUB is defined by

EUB =
∑

UB

KUB(S − S0)
2 , (2.59)

where KUB is the Urey-Bradley force constant, S is the Urey-Bradley 1,3-distance, S0

represents the equilibrium value, and
∑

UB

stands for the summation over all pairs of atoms

in 1,3 configurations. The purpose of this term is to account for steric interactions between

non-bonded atoms.

The torsion potential energy term Edih is calculated from

Edih =
∑

dihedrals

Kχ (1 + cos(nχ− δ)) , (2.60)

where Kχ is the dihedral angle force constant, χ is the dihedral angle, and
∑

dihedrals

stands

for the summation over all dihedral angles in biomolecules. Fig.2.8 is an illustration that

corresponds to this potential energy term.
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Figure 2.6: Illustration that represents the bond-angle-bending potential energy term.

The improper torsion potential energy term Eimp is given by

Eimp =
∑

impropers

Kimp(φ− φ0)
2 , (2.61)

whereKimp is the improper torsion force constant, φ is the improper torsion angle, with the

subscript zero representing the equilibrium value, and
∑

impropers

stands for the summation

over all improper torsion angles in biomolecules. The improper torsion potential energy

term has been designed both to maintain chirality about a tetrahedral extended heavy

atom (e.g., an α carbon), and to maintain planarity about certain planar atoms (such as

a carbonyl carbon). In Fig.2.9 we show a perpendicular motion for a plane constructed

by three atoms excepted for a center atom.

The Lennard-Jones 12-6 term ELJ is defined by

ELJ =
∑

nonbonds

ǫij





(

Rminij

rij

)12

−

(

Rminij

rij

)6


 , (2.62)

where ǫij is the Lennard-Jones 12-6 well depth, rij is the distance between atoms i and

j, Rminij
is the value of rij where the Lennard-Jones 12-6 potential energy becomes zero,

and
∑

nonbonds

stands for the summation over all non-bond atom-pairs. The Lennard-Jones

parameters between pairs of different atoms are obtained from the Lorentz-Berthelodt
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Figure 2.7: Illustration that represents the Urey-Bradley term.

combination rules, in which ǫij values are based on the geometric mean of ǫii and ǫjj and

Rminij
values are based on the arithmetic mean between Rminii

and Rminjj
.

The electrostatic term EC is the Coulombic term that is given by

EC =
∑

nonbonds

qiqj

ǫrij

, (2.63)

where qi is the partial atomic charge and ǫ is the effective dielectric constant. The value

of ǫ is 1 for vacuum and about 80 for the bulk water environment. Note that when we

include explicit water molecules in the simulation, we also take the value ǫ = 1.
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Figure 2.8: Illustration that represents the torsion potential energy term.

Figure 2.9: Illustration that represents the improper torsion potential energy term.
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3.1 Introduction

We proposed the multi-overlap MD methods to sample efficiently the conformational space

and explore the transition states among specific reference configurations in Sec. 2.4. In

this Chapter, we apply the multi-overlap MD method to a penta-peptide Met-enkephalin

in vacuum with two reference configurations and check the effectiveness of this method

by comparing the results with those of the conventional canonical MD method [1]-[5] and

the multicanonical MD method [6],[7]. Moreover, from the detailed free-energy landscape

obtained from the results of the multi-overlap MD simulation, we identify a transition

pathway between two specific configurations of Met-enkephalin. The details of the con-

dition of various simulation methods are given in Section 3.2. We present the results of

the application of these methods to Met-enkephalin in Section 3.3.

3.2 Computational Details

Met-enkephalin is one of the simplest peptides and has the amino-acid sequence Tyr-Gly-

Gly-Phe-Met. This peptide is often adopted as a test system in biomolecular simulations.

Therefore, we also adopted Met-enkephalin in vacuum as a test system of the multi-overlap

MD method. In our simulations the N-terminus and the C-terminus were blocked with

the acetyl group and the N-methyl group, respectively. This is because we wanted the

total charge of the Met-enkephalin system to be neutral. Accordingly, the total number

of atoms of Met-enkephalin in our simulations is 84. The force field that we adopted is

the CHARMM param 22 parameter set [8] (see Sec. 2.6). Our multi-overlap MD simu-

lations were performed by implementing the method in the CHARMM macromolecular

mechanics program [9]. The main part of implementation is shown as follows. We intro-

duced the Gaussian constraint method (Gaussian thermostat) [1],[2] to the CHARMM

macromolecular mechanics program. The corresponding equations of motion were im-

plemented. Namely, we used Eq. (2.2) for the canonical MD simulations, Eq. (2.7) for

the multicanonical MD simulations, and Eq. (2.28) for the multi-overlap MD simulations.

The time step was taken to be 0.5 fs and leap-frog algorithm [10] was employed for the

numerical integration (see Appendix A).
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We consider two local-minimum-energy states of Met-enkephalin as reference configu-

rations. These configurations were obtained by the simulated annealing MD method [11],

which was explained in Sec. 2.2.2. During the simulated annealing run, the temperature

was decreased linearly from 1000 K to 100 K with an increment of 50 K, and the canonical

MD simulations were performed for 500 ps at each temperature (9.5 ns in total). This

simulated annealing MD run was repeated 10 times with different initial random num-

bers. The obtained final conformations were further minimized by the conjugate gradient

method, and two conformations were identified as the reference configurations from the

backbone hydrogen-bond patterns. In Fig. 3.2 we show these reference configurations of

Met-enkephalin. Reference configuration 1 (RC1) has a β-turn structure with two back-

bone hydrogen bonds between Gly-2 and Met-5, and reference configuration 2 (RC2) has

a γ-turn structure with two backbone hydrogen bonds between Gly-2 and Phe-4. Refer-

ence configuration 1 also has a hydrogen bond between hydrogen bond acceptor CO of

Gly-2 and hydrogen bond donor NH of Phe-4. We remark that with ECEPP/2 energy

function [12]-[14] RC1 corresponds to the global-minimum state and RC2 corresponds to

a local-minimum state [15].

The backbone dihedral angles are of three types: the rotation angle about the N − Cα

bond of the backbone (φ), that about the Cα − C bond (ψ), and that about the peptide

bond C −N (ω). In Fig. 3.1 we illustrate the definitions for these dihedral angles. Our

multi-overlap MD simulation was performed using the all-atom model, but we used only

φ and ψ angles in the definition of the dihedral-angle distances in Eq. (2.21). This is

because the dihedral angles of the backbone ω have almost the fixed value of 180◦ for the

peptide bond C − N. Furthermore, by using only the backbone dihedral angles (and not

side-chain dihedral angles) as the elements of the dihedral-angle distances, we focused on

the backbone structures of Met-enkephalin. In Eq. (2.21), consequently, the number n of

the elements of the dihedral-angle distances is 10 because Met-enkephalin has five pairs of

φ and ψ. In Table 3.1 we list the dihedral angles φ, ψ of the two reference configurations

in Fig. 3.2.

Our multi-overlap MD simulation was carried out at T0 = 300 K. We first have to

determine the multi-overlap weight factor Wmuov(d1, d2;E) in Eq. (2.25), or the dimen-
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sionless free energy f(d1, d2) in Eq. (2.26), to get a flat probability distribution in the

two-dimensional dihedral-angle distance space (d1, d2). For that purpose we used the

procedure in Sec. 2.4.4. We first set f (1)(d1, d2) = 0 according to Eq. (2.32). We then

performed the multi-overlap MD simulation of Eq. (2.28) for 14 ns. The dimensionless free

energy f (1)(d1, d2) was updated by Eq. (2.31) at each MD step with a(1) = 0.0001. For this

calculation, the dihedral-angle distances (d1, d2) were discretized with a bin size of 0.01.

This 14 ns MD simulation was sufficient to obtain an optimal multi-overlap weight factor,

and we did not further iterate the process. Finally, the multi-overlap MD production run

was then performed with this weight factor for 24 ns after equilibration of 1 ns. Because

the multi-overlap MD simulations perform a random walk in the configurational space,

the results will not depend on the initial conformation. For the initial conformation of

the multi-overlap MD simulation production run, we thus simply adopted one of the final

conformations obtained by the above simulated annealing runs. In Fig. 3.3 we show this

initial conformation and list their backbone dihedral angles in Table 3.2.

For the purpose of comparisons, we also performed a usual canonical MD simulation

and a multicanonical MD simulation for 24 ns at T0 = 300 K. We already explained

the canonical and multicanonical MD methods in Secs. 2.2 and 2.3. These MD simu-

lations were also performed by implementing the corresponding equations of motion in

the CHARMM macromolecular mechanics program. The multicanonical weight factor,

or equivalently the multicanonical potential energy Emuca(E;T0), was determined from

Eq. (2.15). Namely, we obtained 〈E〉T from the canonical MD simulations at 19 tempera-

tures ranging from 100 K to 1000 K with an equal interval of 50 K. We then obtained 19

values of T (E) as the inverse function of 〈E〉T . We then numerically integrated Eq. (2.15)

by the trapezoidal rule to obtain Emuca(E;T0). The initial conformation for both the

canonical production run and the multicanonical production run was the same as that for

the multi-overlap production run.

3.3 Results and Discussion

We developed the multi-overlap MD method to realize a random walk in the dihedral-angle

distance space and focus on the specific reference configurations (see Sec. 2.4). In this
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Table 3.1: Backbone dihedral angles φ and ψ for reference configuration 1 and reference
configuration 2.

Reference configuration 1 Reference configuration 2
Residue Type Angle Residue Type Angle

1 φ1 −100.1◦ 1 φ1 −136.0◦

1 ψ1 136.2◦ 1 ψ1 139.3◦

2 φ2 −149.2◦ 2 φ2 −163.8◦

2 ψ2 56.6◦ 2 ψ2 68.8◦

3 φ3 76.4◦ 3 φ3 88.7◦

3 ψ3 −78.2◦ 3 ψ3 −61.0◦

4 φ4 −87.9◦ 4 φ4 −108.3◦

4 ψ4 −37.5◦ 4 ψ4 −179.7◦

5 φ5 −79.8◦ 5 φ5 −92.2◦

5 ψ5 138.9◦ 5 ψ5 146.1◦

section we present the results of the multi-overlap MD simulation of Met-enkephalin in

vacuum. Furthermore, we compare the results of the usual canonical, multicanonical, and

multi-overlap MD simulations. The various time series are given in Sec. 3.3.1. In Sec. 3.3.2

we show the raw data of the probability distributions and discuss the effectiveness of the

multi-overlap MD method. The physical quantities can be calculated by the reweighting

techniques [16],[17]. In Sec. 3.3.3 the physical quantities, which were obtained from the

usual canonical and multi-overlap MD simulations are compared with those from the

multicanonical MD simulation. In the last Section we describe the detailed free-energy

landscape calculated from the multi-overlap MD simulation and identify conformations

in the transition state between RC1 and RC2.

3.3.1 Time series of simulations

We first examine time series of various quantities from the usual canonical, multicanonical,

and multi-overlap MD simulations. Figs. 3.4, 3.5, and 3.6 show the time series of the

dihedral-angle distances with respect to each of the two reference configurations. When

d1 = 0, the values of the backbone dihedral angles are completely coincident with those
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Table 3.2: Backbone dihedral angles φ and ψ for the initial conformation.

Initial conformation
Residue Type Angle

1 φ1 −107.3◦

1 ψ1 149.5◦

2 φ2 −156.7◦

2 ψ2 64.6◦

3 φ3 68.3◦

3 ψ3 −89.2◦

4 φ4 −89.3◦

4 ψ4 −13.4◦

5 φ5 −77.7◦

5 ψ5 110.3◦

of reference configuration 1 and it turned out that d2 = 0.159. Conversely, when d2 = 0,

we have d1 = 0.159. In the usual canonical MD simulation at T0 = 300 K (see Fig. 3.4),

the configuration transited from a RC1-like state to a RC2-like state near 5 ns, and

did not transit back from the RC2-like state to the RC1-like state. In other words, the

canonical MD simulation got trapped in the RC2-like local-minimum state. Thus, the

usual canonical MD simulation does not sample efficiently the conformational space, and

we cannot calculate accurate free-energy landscape. On the one hand, the multicanonical

MD simulation did not get trapped in the local-minimum states, as we can see Fig. 3.5.

Both d1 and d2 we observe random walks both in d1 space and in d2 space; both dihedral-

angle distances often visited small values as well as large values beyond 0.5, which is

the average value at T0 = ∞. Therefore, we had efficient sampling in the conformational

space in the multicanonical MD simulation. When we look into Fig. 3.5(a) more carefully,

however, we find that the multicanonical MD simulation did not sample around the RC1-

like state very much (d1 values did not take very small values). Accordingly, we may not

obtain accurate free-energy landscape near RC1 from the results of the multicanonical

MD simulation. Finally, as one can see in Fig. 3.6, the multi-overlap MD simulation

did not get trapped in the local-minimum states, either. Although the ranges of the
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dihedral-angle distances that were covered are less in the multi-overlap MD simulation

than in the multicanonical MD simulation (reflecting the fact that the latter explores a

wide conformational space than the former), the multi-overlap simulation indeed visited

both RC1 state and RC2 state. We observe transitions between RC1 state and RC2

state several times in the Figure. Thus, the multi-overlap MD simulation can realize a

random walk in the two-dimensional dihedral-angle distance space and yet focus on the

two reference configurations RC1 and RC2.

In Figs. 3.7, 3.8, and 3.9 we show the time series of the root-mean-square distance

(RMSD) of the backbone of Met-enkephalin with respect to each of the two reference

configurations from the canonical, multicanonical, and multi-overlap MD simulations,

respectively. The RMSD ri with respect to reference configuration i is defined by

ri = min





√

√

√

√

1

N

∑

j

(qj − q
(i)
j )2



 , (3.1)

where N is the number of atoms, {q
(i)
j } are the coordinates of reference configuration i,

and the minimization is over the rigid translations and rigid rotations of the coordinates

of the configuration {qj} with respect to the center of geometry. The behavior of the

three simulations in Fig. 3.7, Fig. 3.8, and Fig. 3.9 is the same as in Fig. 3.4, Fig. 3.5, and

Fig. 3.6, respectively; there are strong correlations between the dihedral-angle distance d1

(d2) and the RMSD r1 (r2). By employing the RMSD as the reaction coordinates, however,

the boundary between RC1-like state and RC2-like state is more clarified. Incidentally,

when r1 = 0 (r2 = 0), we have r2 = 1.52 (r1 = 1.52).

Figs. 3.10, 3.11, and 3.12 show the time series of the potential energy of the three

simulations. The multicanonical MD simulation covers widely the potential energy space,

as we can see in Fig. 3.11. The time series of the potential energy of the multi-overlap

MD simulation, however, is not much different from that of the canonical MD simulation

(compare Figs. 3.10 and 3.12). This is because the multi-overlap algorithm is based on the

Boltzmann weight factor at temperature T0 as far as energy dependence is concerned (see

Eqs. 2.25 and 2.26), while the multicanonical algorithm is independent of temperature.

The multi-overlap MD method aims at a random walk in the dihedral-angle distance

space, not in the potential energy space.
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3.3.2 Raw probability distributions of configurations

We discuss the probability distributions of configuration from the three simulations, the

usual canonical, multicanonical, and multi-overlap MD simulations. In Figs. 3.13, 3.14,

and 3.15 we show the raw data of the histograms with respect to the two dihedral-angle-

distance coordinates. The bin size of the two-dimensional histograms is 0.01×0.01. These

histograms represent the probability distributions in the two-dimensional dihedral-angle-

distance space for the three ensembles. From Figs. 3.13 and 3.14, it is obvious that the

probability distributions of the usual canonical and multicanonical MD simulations are

biased towards RC2; there are pronounced peaks near (d1, d2) = (0.159, 0.0). In other

words, as previously stated, the usual canonical and multicanonical MD simulations did

not sample efficiently the RC1-like states (near (d1, d2) = (0.0, 0.159)). In Fig. 3.15,

on the other hand, we confirm that the multi-overlap MD simulation has a rather flat

probability distribution in the two-dimensional dihedral-angle-distance space containing

both RC1 state and RC2 state (see Eq. (2.27)).

In Figs. 3.16, 3.17, and 3.18 we show the raw data of the histograms with respect to the

two RMSD coordinates. The bin size of the two-dimensional histograms is 0.1 Å× 0.1 Å.

In this case, the histograms were taken every 100 MD steps (50 fs). Therefore, these his-

tograms are rugged in comparison with those with the dihedral-angle-distance coordinates

in Figs. 3.13, 3.14, and 3.15, where the data were taken every MD step (0.5 fs). The two

peaks that correspond to RC1 and RC2 states are disconnected in the case of the canon-

ical MD simulation (see Fig 3.16), and they are connected in both the multicanonical

MD simulation and the multi-overlap MD simulation (see Figs. 3.17 and 3.18). However,

while the multicanonical MD simulation has to visit a region with large r1 and r2 (high

energy region) in order to have transitions between RC1 and RC2, the multi-overlap MD

simulation can connect both states within a region with small r1 and r2. The character-

istics of the probability distributions in Fig. 3.16, Fig. 3.17, and Fig. 3.18 are essentially

the same as in Fig. 3.13, Fig. 3.14, and Fig. 3.15, respectively. Namely, in Figs. 3.16

and 3.17 the probability distributions are biased distribution towards RC2, and that from

the multi-overlap MD simulation in Fig. 3.18 has finite contributions in both RC1 state

and RC2 state. In the multi-overlap ensemble, however, the probability distribution is
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not needed to become flat in the RMSD space (compare Figs. 3.14 and 3.17). This is

because the multi-overlap ensemble is devised to obtain a flat probability distribution in

the dihedral-angle-distance space and not in the RMSD space. Nevertheless, the multi-

overlap MD simulation realized efficient sampling in the RMSD space between RC1 and

RC2. Thus, the multi-overlap MD simulation is suitable to sample between the reference

configurations in comparison with the other methods.

Fig. 3.19 shows the raw data of the probability distributions of the potential energy.

The bin size of histograms is 1.0 kcal/mol. The probability distribution of the potential

energy in the multicanonical MD simulation, as a matter of course, is flat. Thus, the

multicanonical methods is suitable to sample the potential energy space, not the confor-

mational space between the specific reference configurations. The probability distribution

of the potential energy in the multi-overlap MD simulation is almost the same as that in

the usual canonical MD simulation. The probability distribution in the multi-overlap MD

simulation is, however, a little wider than in the usual canonical MD simulation. This is

because the multi-overlap MD simulation has to sample a little higher-energy region in

order to overcome the potential energy barrier between RC1-like state and RC2-like state.

3.3.3 Physical quantities calculated by the reweighting tech-

niques

We now examine the physical quantities calculated from the results of the three simula-

tions, the usual canonical, multicanonical, multi-overlap MD simulation, by the reweight-

ing techniques. The reweighting techniques for the multicanonical MD method and the

multi-overlap MD method were explained in Sec. 2.3.3 and Sec. 2.4.5, respectively. Those

for the canonical MD method are essentially the same as for the multicanonical algorithm;

in Eq. 2.19 we just replace the multicanonical weight factor Wmuca(E) by the Boltzmann

weight factor Wc(E;T0).

In Fig. 3.20 we show the probability distributions and physical quantities calculated by

the reweighting techniques. Here, the error bars were calculated by the jackknife method

[18]-[20] (see Sec. 2.5 and Appendix B). The number of bins was taken to be 8. The results

from the multicanonical MD simulation are shown as a reference in the Figure, because
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the multicanonical algorithm is well-known for giving accurate expectation values for a

wide range of temperature [21]. As we can see Fig. 3.20(a), the probability distributions

of the potential energy at T = 300 K calculated from the results of the usual canonical

and multi-overlap MD simulations are in good agreement with those of the multicanonical

MD simulation. Furthermore, the average potential energy as a function of temperature

is also in agreement with that from the multicanonical MD simulation, although we see

slight deviations beyond error bars below T ≈ 250 K and above T ≈ 350 K in the case of

the canonical MD simulation. In Fig. 3.20(c), however, we see that the specific heat as a

function of temperature calculated from the results of the canonical MD simulation does

not coincide with those of the multicanonical MD simulation in the entire temperature

range (the error bars do not overlap). This is because the usual canonical MD simula-

tion got trapped in the local-minimum states and did not have enough sampling in the

conformational space. The specific heat here is defined by

Cv =
1

kB

d 〈E〉T
dT

= β2
(〈

E2
〉

T
− 〈E〉2T

)

. (3.2)

The specific heat is the derivative of the average potential energy, and it is more difficult

to obtain accurate results than the average potential energy itself. In the case of the

multi-overlap MD simulation, the results well coincide with those from the multicanonical

MD simulation between about 250 K and 350 K. In the region under 250 K and above

350 K, however, we see deviations between the results of the two simulations. This sets a

reliable range of temperature where accurate thermodynamic quantities can be calculated

by the multi-overlap MD simulation. The reason for the deviations is that the multi-

overlap algorithm samples conformations in the dihedral-angle distance space but not in

the energy space. Accordingly, the multi-overlap simulation is difficult to give an accurate

estimate of the density of states in Eq. (2.34) over a wide potential energy range. Thus,

in the multi-overlap MD method, the expectation values calculated by the reweighting

techniques in Eq. (2.35) are correct only in the neighborhood of the temperature at which

simulations were performed.
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3.3.4 Free-energy landscape and transition states

We now study the free-energy landscape that given information about the transition

between the two states, RC1 and RC2. The free-energy landscape was calculated from

Eq. (2.36) with appropriate reaction coordinates by the reweighting techniques. In Figs. 3.21,

3.22, and 3.23 we show the free-energy landscape at T = 300 K obtained from the three

simulations with respect to the reaction coordinates of the two dihedral-angle distances.

The free-energy landscape of the usual canonical MD simulation is inaccurate due to in-

sufficient sampling in the conformational space as previously mentioned. The results from

the multicanonical MD simulation have rugged surface but cover a wide region in the two-

dimensional dihedral-angle distance space in comparison with those of the multi-overlap

MD simulation (compare Figs. 3.22 and 3.23). This is because the multi-overlap method

samples efficiently and selectively the conformational space between the two reference con-

figurations. On the other hand, the multicanonical MD simulation makes widely sampling

in the conformational space, but not focuses on specific reference configurations. Thus,

the multi-overlap method is better in the sense that a detailed free-energy landscape in

the neighborhood and between the two specific reference configurations can be obtained

In Figs. 3.24, 3.25, and 3.26 we show the free-energy landscape at T = 300 K cal-

culated from the three simulations with respect to the two RMSD axes. Although the

characteristics of these Figures are essentially the same as those in Figs. 3.21, 3.22, and

3.23, the saddle point between the two local-minimum states (RC1 and RC2 states) can

be clearly identified. In Fig. 3.26 we labeled the local-minimum states (A1, A2, and B)

and the transition state (C). In Fig. 3.27 we show representative conformations in the

local-minimum states A1, A2, and B. The conformations in the local-minimum states A1

and A2 have the same backbone hydrogen bonds as in RC1. The local-minimum state

B, which has the same as the backbone hydrogen bonds as in RC2, corresponds to the

global-minimum free-energy state at T = 300 K. The free energy difference between the

global-minimum state (B) and the local-minimum state (A1) (or (A2)) is about 3 kcal/mol.

The saddle point C in Fig. 3.26 corresponds to the transition state between the global-

minimum state (B) and the local-minimum state (A1) (or (A2)). The free energy difference

between B and C is about 6 kcal/mol and that between A1 (or A2) and C is about
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Table 3.3: Free energy difference (kcal/mol) among the states.

A1 A2 B C
A1 0 0 3 3
A2 0 0 3 3
B 3 3 0 6
C 3 3 6 0

3 kcal/mol. Because kBT ≈ 0.6 kcal/mol at T = 300 K, these barrier heights are rather

high. This is why the usual canonical MD simulation got trapped in the vicinity of the

global-minimum state B (RC2-lile state). In Table 3.3 we list the free energy difference

among the states. Two representative conformations in C are shown in Fig. 3.28. These

structures have a backbone hydrogen bond between CO of Gly-2 and NH of Phe-4. This

hydrogen bond in C is common to both RC1 and RC2. The hydrogen bond between NH

of Gly-2 and CO of Met-5 which exists in RC1 and that between NH of Gly-2 and CO of

Phe-4 which exists in RC2 are missing in C. These structures are thus more extended than

reference configurations 1 and 2. Accordingly, the conformations in C are very reasonable

as intermediate structures between RC1 and RC2.

In Table 3.4 we list the backbone dihedral angles φ and ψ of the conformations in

Figs. 3.27 and 3.28. From Tables 3.1 and 3.4 and Figs. 3.27 and 3.28, we can deduce

the transition pathways from RC1 to RC2. Note that the major difference between RC1

and RC2 in Tables 3.1 is the value of ψ4. The two hydrogen bonds (between Gly-2 and

Met-5) in RC1 will be simultaneously broken by a large rotation of ψ4, but this direct

pathway is impossible because of high energy barriers. In the following we focus on the

relation between the changes of backbone dihedral angle and the formation/breakage of

backbone hydrogen bonds in order to elucidate a possible transition pathway from RC1

to RC2. The dihedral angle φ5 first rotates while keeping the hydrogen bonds. This

process corresponds to the conformational change from Fig. 3.27(a) to Fig. 3.27(b). The

dihedral angles φ2 and φ5 then rotate and the hydrogen bond between NH of Gly-2 and
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CO of Met-5 is broken (transition from Fig. 3.27(b) to Fig. 3.28(a)). From Fig. 3.28(a)

and Fig. 3.28(b), we also see that the hydrogen bond between CO of Gly-2 and NH of

Met-5 is brink of collapse. Finally, the dihedral angle ψ4 rotates again and the hydrogen

bond between NH of Gly-2 and CO of Phe-5 is formed (transition from Fig. 3.28(b) to

Fig. 3.27(c)). In summary, we have the following transition pathway: A1 (Fig. 3.27(a))

→ A2 (Fig. 3.27(b)) → C (Fig. 3.28(a)) → C (Fig. 3.28(b)) → B (Fig. 3.27(c)).
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Table 3.4: Backbone dihedral angles φ and ψ for the structures in Figs. 3.27 and 3.28.

Conformation in Fig. 3.27(a) Conformation in Fig. 3.27(b) Conformation in Fig. 3.27(c)
Residue Type Angle Residue Type Angle Residue Type Angle

1 φ1 −157.3◦ 1 φ1 −145.9◦ 1 φ1 −131.2◦

1 ψ1 122.7◦ 1 ψ1 122.0◦ 1 ψ1 142.3◦

2 φ2 −130.4◦ 2 φ2 −126.7◦ 2 φ2 −171.6◦

2 ψ2 47.2◦ 2 ψ2 59.1◦ 2 ψ2 64.6◦

3 φ3 88.1◦ 3 φ3 74.3◦ 3 φ3 90.7◦

3 ψ3 −91.1◦ 3 ψ3 −64.7◦ 3 ψ3 −59.4◦

4 φ4 −95.0◦ 4 φ4 −83.1◦ 4 φ4 −118.3◦

4 ψ4 −34.5◦ 4 ψ4 −69.9◦ 4 ψ4 −167.9◦

5 φ5 −74.1◦ 5 φ5 −136.2◦ 5 φ5 −82.9◦

5 ψ5 135.9◦ 5 ψ5 −169.3◦ 5 ψ5 139.1◦

Conformation in Fig. 3.28(a) Conformation in Fig. 3.28(b)
Residue Type Angle Residue Type Angle

1 φ1 −148.5◦ 1 φ1 −147.5◦

1 ψ1 136.6◦ 1 ψ1 163.7◦

2 φ2 −166.6◦ 2 φ2 −174.9◦

2 ψ2 66.1◦ 2 ψ2 64.7◦

3 φ3 86.1◦ 3 φ3 73.3◦

3 ψ3 −66.1◦ 3 ψ3 −62.5◦

4 φ4 −86.9◦ 4 φ4 −86.0◦

4 ψ4 −68.2◦ 4 ψ4 −72.9◦

5 φ5 −170.1◦ 5 φ5 −164.9◦

5 ψ5 151.8◦ 5 ψ5 177.2◦
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(a)

(b)

Figure 3.2: (a) Reference configuration 1 and (b) reference configuration 2. The dotted
lines denote the hydrogen bonds. The N-terminus and the C-terminus are on the right-
hand side and on the left-hand side, respectively. The figures were created with RasMol
[22].
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Figure 3.3: The common initial conformation of the usual canonical, multicanonical,
multi-overlap MD simulations. See also the caption of Fig. 3.2.
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Figure 3.4: The time series of the dihedral-angle distances (a) d1 and (b) d2 in the usual
canonical MD simulation at T0 = 300 K.
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Figure 3.5: The time series of the dihedral-angle distances (a) d1 and (b) d2 in the
multicanonical MD simulation at T0 = 300 K.
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Figure 3.6: The time series of the dihedral-angle distances (a) d1 and (b) d2 in the multi-
overlap MD simulation at T0 = 300 K.

55



(a)

(b)

0

1

2

3

4

5

0 5000 1 10
4

1.5 10
4

2 10
4

2.5 10
4

r1
 (
Å

)

time (ps)

0

1

2

3

4

5

0 5000 1 10
4

1.5 10
4

2 10
4

2.5 10
4

r2
 (
Å

)

time (ps)

Figure 3.7: The time series of the RMSD (a) r1 and (b) r2 in the usual canonical MD
simulation at T0 = 300 K.
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Figure 3.8: The time series of the RMSD (a) r1 and (b) r2 in the multicanonical MD
simulation at T0 = 300 K.
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Figure 3.9: The time series of the RMSD (a) r1 and (b) r2 in the multi-overlap MD
simulation at T0 = 300 K.
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Figure 3.10: The time series of the potential energy E in the usual canonical MD simu-
lation at T0 = 300 K.
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Figure 3.11: The time series of the potential energyE in the multicanonical MD simulation
at T0 = 300 K.
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Figure 3.12: The time series of the potential energy E in the multi-overlap MD simulation
at T0 = 300 K.
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Figure 3.13: The raw data of the probability distribution with respect to the dihedral-
angle distances d1 and d2. from the results of the usual canonical MD simulation at
T0 = 300 K.
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Figure 3.14: The raw data of the probability distribution with respect to the dihedral-
angle distances d1 and d2. from the results of the multicanonical MD simulation at
T0 = 300 K.
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Figure 3.15: The raw data of the probability distribution with respect to the dihedral-
angle distances d1 and d2. from the results of the multi-overlap MD simulation at T0 =
300 K.
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Figure 3.16: The raw data of the probability distribution with respect to the RMSD r1
and r2. from the results of the usual canonical MD simulation at T0 = 300 K.
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Figure 3.17: The raw data of the probability distribution with respect to the RMSD r1
and r2. from the results of the multicanonical MD simulation at T0 = 300 K.
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Figure 3.18: The raw data of the probability distribution with respect to the RMSD r1
and r2. from the results of the multi-overlap MD simulation at T0 = 300 K.
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Figure 3.19: The raw data of the probability distribution of the potential energy E. The
dotted line, the dashed line, and the solid line show the results from the usual canonical
MD simulation at T0 = 300 K, the results from the multicanonical MD simulation, and
the results from the multi-overlap MD simulation at T0 = 300 K, respectively.
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Figure 3.20: (a) Probability distributions of the potential energy at T = 300 K, (b)
average potential energy as a function of temperature, and (c) specific heat as a function
of temperature. These results were calculated from the usual canonical MD simulation
(dotted line), the multicanonical MD simulation (dashed line), and the multi-overlap MD
simulation (solid line) by the reweighting techniques.
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Figure 3.21: The free-energy landscape obtained from the usual canonical MD simulation
at T0 = 300 K with the dihedral-angle distance axes d1, d2. Contour lines are drawn every
1 kcal/mol.
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Figure 3.22: The free-energy landscape obtained from the multicanonical MD simulation
at T0 = 300 K with the dihedral-angle distance axes d1, d2. Contour lines are drawn every
1 kcal/mol.
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Figure 3.23: The free-energy landscape obtained from the multi-overlap MD simulation
at T0 = 300 K with the dihedral-angle distance axes d1, d2. Contour lines are drawn every
1 kcal/mol.
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Figure 3.24: The free-energy landscape obtained from the usual canonical MD simulation
at T0 = 300 K with the RMSD axes r1, r2. Contour lines are drawn every 1 kcal/mol.
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Figure 3.25: The free-energy landscape obtained from the multicanonical MD simulation
at T0 = 300 K with the RMSD axes r1, r2. Contour lines are drawn every 1 kcal/mol.
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Figure 3.26: The free-energy landscape obtained from the multi-overlap MD simulation
at T0 = 300 K with the RMSD axes r1, r2. Contour lines are drawn every 1 kcal/mol.
The labels A1, A2, and B locate the local-minimum states. The label C stands for the
saddle point between A1 (or A2) and B.
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(a) (b)

(c)

Figure 3.27: (a) The structure in A1, (b) A2, and (c) B in Fig 3.26. See also the caption
of Fig. 3.2.
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(a)

(b)

Figure 3.28: Two conformations in the saddle point C in Fig 3.26. See also the caption
of Fig. 3.2.
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In order to understand protein folding and function, it is important that a detailed

free-energy landscape of the protein system is obtained. Given the detailed free-energy

landscape, we are able to find the folding pathway and the stability of any structures of

the protein. However, complex systems such as proteins have many energy local-minimum

states, and it is difficult to get an accurate free-energy landscape by the usual canonical-

ensemble simulations [1]-[6]. This is because the usual canonical-ensemble simulations

will get trapped in states of energy local minima and cannot efficiently sample the confor-

mational space. Furthermore, the conventional generalized-ensemble algorithms [7]-[11],

which aim at achieving a wide range sampling in the conformational space, are not used to

focus on any specific configurations. Accordingly, the conventional generalized-ensemble

simulations cannot estimate the detailed free-energy landscape around the specific con-

figurations and specify the transition states among the specific configurations.

In this thesis, we have proposed an MD version of multi-overlap algorithm [12], which

we refer to as the multi-overlap MD algorithm, because it is difficult for the MC version

of this method to have efficient sampling in many-particle systems such as proteins in

solution. We also generalized this method to a multi-dimensional version. This method is

useful to efficiently sample conformations around any reference configurations, while con-

ventional simulation methods are hard to have sufficient sampling in the conformational

space around any reference configurations.

We applied the usual canonical, multicanonical, and multi-overlap MD methods to

a penta-peptide system of Met-enkephalin in vacuum and showed the effectiveness of

the multi-overlap MD method over the canonical and multicanonical MD methods. The

multi-overlap MD simulation was performed so that it will realize a random walk between

two reference configurations. The canonical MD simulation got trapped in the vicinity of

one of the two reference configurations. The multicanonical MD simulation, on the other

hand, did not get trapped in states of energy local minima, but it sampled widely only

around one of two reference configurations. Finally, the multi-overlap MD simulation

did sample the configurational space around both reference configurations. Therefore,

we could obtain the detailed free-energy landscape between two reference configurations

from the results of the multi-overlap MD simulation. From the free-energy landscape we

74



identified the transition state and deduced the transition pathway between the two local-

minimum states. Thus, the multi-overlap MD method is a very powerful tool for studying

the free-energy landscape and transition state between two specific configurations.

Some of possible future applications of the present method are as follows. Firstly,

we used only the dihedral angles of the backbone as the elements of the dihedral-angle

distances. If dihedral angles of side-chains are also included, we will be able to investigate

the effects of the side chain conformations on protein folding. Secondly, we studied a

peptide in vacuum. We can easily apply the method to a protein in solution, which is a

more realistic system. Thirdly, we presented the case with two reference configurations.

Because we generalized this method to a multi-dimensional version, it is straightforward

to deal with more than two reference configurations
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Appendix A

Leap-Frog Algorithm with the

Gaussian Constraint Method

In this thesis we employ the leap-frog algorithm for the numerical integration of the

three simulations, namely, the usual canonical, multicanonical, and multi-overlap MD

simulations. In this Appendix we explain the leap-frog algorithm in Eq. (2.2) which is the

equations of motion for canonical MD simulations with the Gaussian constraint method.

From a Taylor expansion, coordinate vectors qi at time t+∆t and t−∆t are given by

qi(t+ ∆t) = qi(t) + q̇i(t)∆t+
1

2
q̈i(t)(∆t)

2 +O
(

(∆t)3
)

, (A.1)

and

qi(t− ∆t) = qi(t) − q̇i(t)∆t+
1

2
q̈i(t)(∆t)

2 +O
(

(∆t)3
)

. (A.2)

From Eqs. (A.1) and (A.2) we obtain

qi(t+ ∆t) = 2qi(t) − qi(t−∆t) + q̈i(t)(∆t)
2 +O

(

(∆t)4
)

. (A.3)

Velocity vectors at time t are obtained from the basic definition of derivative with an error

of the order of (∆t)2:

q̇i(t) =
qi(t+ ∆t) − qi(t− ∆t)

2∆t
. (A.4)

From Eqs. (A.3) and (A.4), we get the following equation at half time step:

q̇i(t+
∆t

2
) = q̇i(t−

∆t

2
) + q̈i(t)∆t+O

(

(∆t)2
)

. (A.5)
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From Eqs. (A.3), (A.4), and (A.5), the coordinate vectors at time t + ∆t are obtained

from

qi(t + ∆t) = qi(t) + q̇i(t +
∆t

2
)∆t+O(∆t3) . (A.6)

In the leap-frog algorithm, we compute the coordinate and velocity vectors from Eqs. (A.6)

and (A.5). Note that the time that gives the velocity vectors is shifted by ∆t
2

from that

for the coordinate vectors (and the force). The velocity at the latter time can be simply

obtained from

q̇i(t) =
q̇i(t + ∆t

2
) + q̇i(t−

∆t
2

)

2
. (A.7)

For the Gaussian constraint method in Eq. (2.2), this leap-frog algorithm is imple-

mented as follows. Firstly, we make an unconstrained half step using Eq. (A.5):

q̇′
i(t) = q̇i(t−

∆t

2
) +

1

2mi

F i(t)∆t . (A.8)

Secondly, calculate a scaling factor

χ =
(

T0

T

)

1

2

, (A.9)

where T0 is the desired temperature of canonical ensemble and T is calculated from the

unconstrained velocity vectors q̇
′
i(t) as follows:

T =

N
∑

i=1

mi

2
(q̇′

i)
2

3

2
NkB

. (A.10)

Finally, we complete the full step using

q̇i(t+
∆t

2
) = (2χ− 1)q̇i(t−

∆t

2
) +

χ

mi

F i(t)∆t . (A.11)

This equation can be derived by substituting Eqs. (2.2) and (A.7) into Eq. (A.5). We

remark that χ−1 = 1 + 1
2
ζc∆t.

The leap-frog algorithm in Eq. (2.2) with the Gaussian constraint method is per-

formed by these procedure (Eqs. (A.6), (A.8), and (A.11)). We can also carry out the

multicanonical or multi-overlap MD simulations by replacing the force vectors F i with

F muca
i or F muov

i .
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Appendix B

Estimation of Simulation Errors in

Reweighting Techniques

By using the reweighting techniques, we can calculate expectation values of physical

quantities from the results of multicanonical or multi-overlap simulations. In Sec. 2.5 we

introduced the jackknife methods which reduce bias of simulation data and allow us to

estimate the correct error bars. In this Appendix we explain how to use the jackknife

methods with the reweighting techniques.

We consider the case of multicanonical simulations in Eqs. (2.18) and (2.19). We first

divide the entire MD simulation time into N bins with an equal interval. For each bin i

of simulation time, we take a histogram of the potential energy, Nmucai
(E) (see Fig. B.1).

The binned histogram Nmucai
(E) then corresponds to a random variable {xi} in Sec. 2.5.

The number of samples, N , in Sec. 2.5 is now generalized to be the number of bins. we

can write

Nmuca(E) = N ×Nmuca(E)

= N ×

(

1

N

N
∑

i=1

Nmucai
(E)

)

, (B.1)

we consider the expectation value of a the physical quantity A, 〈A〉T , in Eqs. (2.18)

and (2.19). This expectation value 〈A (Nmuca(E))〉T , or equivalently,
〈

A
(

Nmuca(E)
)〉

T
,

corresponds to the arbitrary function f in Sec. 2.5, and we would like to obtain the

quantities corresponding to f(x̂) and σ2(f̄). For that purpose, we define the jackknife

estimators for 〈A〉T (see fJ
i , f̄J , and xJ

i in Eqs. (2.47), (2.48), and (2.49)):

〈

AJ
mucai

〉

T
=

〈

A
(

NJ
mucai

(E)
)〉

T
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=

∑

E

A(E)NJ
mucai

(E)eβ0Emuca(E;T0)−βE

∑

E

NJ
mucai

(E)eβ0Emuca(E;T0)−βE
, (B.2)

and

〈AJ
muca〉T =

1

N

N
∑

i=1

〈

AJ
mucai

〉

T
, (B.3)

where

NJ
mucai

(E) =
1

N − 1

∑

k 6=i

Nmucak
(E) . (B.4)

From these jackknife estimators
〈

AJ
mucai

〉

T
and 〈AJ

muca〉T , we can calculate the bias-

corrected estimators as follows (see Eqs. (2.51) and (2.52)):

〈

Ac
mucai

〉

T
= N 〈A (Nmuca(E))〉T − (N − 1)

〈

AJ
mucai

〉

T
, (B.5)

and

〈Ac
muca〉T =

1

N

N
∑

i=1

〈

Ac
mucai

〉

T
. (B.6)

Eq. (B.6) gives the bias-corrected estimator for the expectation value of the physical

quantity 〈A (Nmuca(E))〉T . Likewise, we can readily calculate the error bars as the square

root of the following variance (see Eqs. (2.54) and (2.55)):

σ2
(

〈Ac
muca〉T

)

=
1

N(N − 1)

N
∑

i=1

(〈

Ac
mucai

〉

T
− 〈Ac

muca〉T

)2
, (B.7)

or

σ2
(

〈Ac
muca〉T

)

=
N − 1

N

N
∑

i=1

(〈

AJ
mucai

〉

T
− 〈AJ

muca〉T

)2
. (B.8)

The case for the multi-overlap simulations essentially follows the same set of equations.

The jackknife estimator for 〈A〉T are given by

〈

AJ
muovi

〉

T
=

〈

A
(

NJ
muovi

(d1, d2;E)
)〉

T

=

∑

d1,d2,E

A(d1, d2;E)NJ
muovi

(d1, d2;E)eβ0E−f(d1,d2)−βE

∑

d1,d2,E

NJ
muovi

(d1, d2;E)eβ0E−f(d1,d2)−βE
, (B.9)
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and

〈AJ
muov〉T =

1

N

N
∑

i=1

〈

AJ
muovi

〉

T
. (B.10)

where

NJ
muovi

(d1, d2;E) =
1

N − 1

∑

k 6=i

Nmuovk
(d1, d2;E) . (B.11)

We can calculate the bias-corrected estimators from

〈

Ac
muovi

〉

T
= N 〈A (Nmuov(E))〉T − (N − 1)

〈

AJ
muovi

〉

T
, (B.12)

and

〈Ac
muov〉T =

1

N

N
∑

i=1

〈

Ac
muovi

〉

T
. (B.13)

The variance of 〈A (Nmuov(E))〉T is also given by

σ2
(

〈Ac
muov〉T

)

=
1

N(N − 1)

N
∑

i=1

(〈

Ac
muovi

〉

T
− 〈Ac

muov〉T

)2
, (B.14)

or

σ2
(

〈Ac
muov〉T

)

=
N − 1

N

N
∑

i=1

(〈

AJ
muovi

〉

T
− 〈AJ

muov〉T

)2
. (B.15)
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.....

.....

Nmuca1(E)

E

Nmuca2(E) NmucaN-1(E) NmucaN(E).....

Figure B.1: The definition of the binned histogram Nmucai
(E) (i = 1, · · · , N). The total

MD time step is divided into N equal intervals of duration t0. The histogram Nmucai
(E)

is taken for the time interval between (i− 1)t0 and it0.
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