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CHAPTER 1

GENERAL INTRODUCTION

The subject of chemical dynamics typically consists of two different but complemen-
tary steps. First, one desires to know the behavior of the potential energy between interact-
ing species, and secondly, one needs to study how this potential energy surface influences
the chemical reactions between these chemical species. The former is the focus of a large
number of active researchers who have adapted the tools of quantum chemistry to obtain
chemically-accurate potential energy surfaces which have been used to reproduce results of
various experiments in spectroscopy, chemical reaction studies etc. The latter effort, using
equations of motion derived from physical laws for reactions studies, is the subject matter
of this thesis.

Along with the elegant approximations and simpler formulations which have enabled a
better understanding of the physics and chemistry of these problems, the sophistication
of modern computers have also played quite a role in pushing advances in this field to its
current state. The availability and development of increasingly fast computers with bigger
storage capabilities continue to influence the course of chemical dynamics studies in no
small measure; researchers therefore consider this bit of good fortune as an invitation to
tackle systems which are progressively larger and more complicated than those that were

being studied a decade or two ago.

The sheer power of these computational resources does not, however, obliterate the dif-
ficulty to contend with, if one intends to treat a large system (like the smallest of proteins
or enzymes) with a fully quantum-mechanical scheme. The quantum mechanical equations
to describe these many-body systems become so large and unwieldy that the expectation of
using a wholly quantal approach to routinely study those systems remains an impractical

undertaking.



Nonetheless, the approaches which are based on the solution of the classical equations
of motion continue to offer recourse to studying chemical dynamics in systems of various
size and complexity. The earliest calculations based on the solution of the classical equa-
tions of motion were carried out by Wall, Hiller and Mazuron [1] to determine the transition
probability for a simple chemical reaction. Some years later they also pioneered the use
of the pseudo-random numbers in selecting initial condition for collision[2], completing the
groundwork for what has become the standard technique for implementing classical trajec-

tory computations.

As experimental results from crossed molecular-beam studies of chemical reactions became
more available, people like Blais et al [3], and Karplus et al [4], became more interested in
further testing the validity of classical methods. In a simple, but notable study of an A+
BC type reaction, Karplus and co-workers introduced the quasiclassical assumption that
the initial molecular states were quantized properly. This replaced the earlier practice of
taking the energy levels as continuous as suggested by classical mechanics, marking the
start of attempts at situating a bit of quantum effects within classical simulations. How-
ever, the presence of more critical quantum effects like interference and tunneling at low
energies, demonstrated that classical mechanics, as a stand-alone technique, was inherently
flawed. In chemical reactions, the pertinent quantum effects one needs to consider include
the zero-point energy problem, tunneling, resonance[5], nonadiabatic transitions, amongst

others.

In a series of papers[6, 7|, Miller, inspired by earlier works by Ford and Wheeler[8], de-
veloped the concept of the classical S-matrix theory which uses classical mechanics to con-
struct the classical limit of the quantum mechanical transition amplitude and manipulate
it quantum mechanically[9]. The goal was to show how classical trajectories could be used
to obtain a classical approximation to the S-matrix elements in order to compute the quan-
tum mechanical cross sections. Similar ideas were put forward by Pechukas[10] who used
the path integral of Feynman to derive a semiclassical scattering theory, while Marcus[11]
employed a WKB-type method to directly calculate the S-matrix for inelastic and reactive
collisions. These efforts were the first of the many imaginative pursuits that have come to
mark the attempts at grafting quantum effects into the simpler task of computing classical
trajectories, and together, are considered among the highlights of semiclassical research

endeavors.



For routine work however, it is more practical to revert to more straight-forward appli-
cations of classical simulations because as far as the overall reaction probabilities are con-
cerned, it is expected that a little averaging goes a long way in washing out the quantum
interference effects.[9] This guarantees that classical trajectory methods, with nonadiabatic
transitions and tunneling taken into account, would be very much useful and feasible for

chemical dynamics especially for large systems.

The search for such a simple approximation that could act as an accessory to the full tra-
jectory simulation of the chemical dynamics motivated the paper by Tully and Preston[12].
They formulated what has become known as the Trajectory Surface Hopping Method in
order to include multi-surface effects in classical calculations. In this scheme, the nuclear
motion is treated classically on a single adiabatic potential energy surface, and on reach-
ing an avoided crossing between the potential energy surfaces, the trajectory is split into
different branches which follow the different potential energy surfaces. Since this work was
published, there have been several modifications regarding how to choose a better criterion
for hopping location or hopping probability, but the central idea has endured. Examples of
related works are those of Miller and co-workers[13], Truhlar and co-workers[14], Stine and
Muckerman[15], Zhu and co-workers[16, 17].

In a similar fashion, Makri and Miller[18], proposed an approximate way to treat tun-
neling just as Tully and Preston had done for nonadiabatic transition. They relaxed the
requirement that the model be rigorously accurate, when compared to previous theories
like the complex-valued trajectories|[19], the classical S-matrix theory[7], or the instanton
model[20], because they were more concerned with the ease of applicability. A classical
trajectory is made to evolve in a classically-allowed region of space and on encountering an
intervening barrier between two separated classically-allowed regions, it has a probability
to make an instantaneous transition in real time. The model gave a fair description of
tunneling phenomena under a wide variety of conditions providing a simple but practical

starting-point for adding tunneling to classical methodology.

It is obvious from the foregoing, that making classical simulations better has been the
goal of an extensive number of research efforts and we argue here that, there is even a
whole lot more to be achieved with classical simulations. This is especially true if we have
good semiclassical analytical theory to deal with the important quantum effects such as
nonadiabatic transitions and tunneling. These issues provide the motivation for the theme

of this thesis where I report the several dynamical studies that have been carried out, in



some sense, to push the envelope further in the use of classical trajectory methods by using

improved semiclassical theories of quantum effects.

In Chapter 2, I report on our study of finding caustics-an important feature in semiclassical
analysis, in multi-dimensional space. The study of caustics is important not only because
they are geometrical objects in their own right, but because they mark the points where the
behavior of the WKB wavefunction becomes intractable. Since the momentum vanishes at
these caustics, it is clear that they are points at which tunneling paths emerge and therefore
are crucial to the attempts at adding tunneling effects to classical simulations. There has
not been any simple and systematic way of finding caustics but the present theory can

present a general method that works for any system.

To complete chapter 2, we present numerical demonstrations of how to locate caustics
of trajectories in the Henon-Heiles potential and also extended the same to the caustics in
a potential of a triatomic system undergoing reaction. This extension to chemical reaction
systems, called for a retooling of our method, since the condensation region of the reaction
process has caustics happening almost simultaneously in different regions of configuration
space. The final method[21] capably treats this case of multiple caustics and therefore is
a good candidate for use in studying multi-dimensional systems. The light masses of the
constituent atoms in the Hs system makes it a good testing ground for many tunneling the-
ories. With this realization, I seize the advantage offered by the caustics-locating method,
merging it with a simple “straight-line tunneling path” method to calculate the thermal
rate constant of the Hz system. Our method proves especially useful because the direction
of tunneling used in this calculation, can be easily obtained from a by-product quantity of

our caustics method.

Chapter 3 concerns the semiclassical study of nonadiabatic transition. I report here, an
improvement and generalization of the Trajectory Surface Hopping Method of Tully and
Preston which was briefly mentioned above. In the original method, the hopping points were
dictated by the location of the seam surface and the probability of hop was determined by
integrating the time-dependent coupled equations or by using the Landau-Zener formula.
The small size of the DH; [16] system permitted the use of an analytical expression to
determine the seam surface for the system. [The seam surface is the locus of the points
along the potential surface of a system which defines the points where hopping can take
place]. For large and complicated systems, this geometrical construct is not easily defined

and hence, cannot be easily obtained for use in calculation. Also, the Landau-Zener formula



for curve-crossing has been known to be quite inaccurate in a wide variety of situations and

its use has been a weakness of previous surface hopping implementations.

The method presented in this chapter, avoids these problems by seeking a generalized
method which does not require the knowledge of the seam surface. This is particularly
desirable if one intends to extend the scope of problems which surface hopping methods
can tackle. The use of the Zhu-Nakamura theory[8] is also introduced, with the approx-
imation that the nonadiabatic transition can be reduced to a one-dimensional problem.
The Zhu-Nakamura theory adds a crucial advantage to classical treatments of nonadiabatic
transitions because the theory is valid for classically-forbidden hops. These hops arise when
the energy of the classical trajectory is not enough to reach the crossing point. Other meth-
ods fail completely at treating such non-classical scenarios and this underlines the crucial
modification which the work in this thesis adds to classical simulations. Even the fewest
switches method of Tully[22], which has been recently proposed and quite widely used,
cannot fully take into acount these transitions. I present the results of the application of
the improved surface hopping method to two systems; first is the simple test case of DHy
system which features only the Landau-Zener type hops and secondly, a conical intersection

system which has a richer variety of transitions.

The goal of chapter 4 is the extension of the aforementioned quasiclassical methodologies
to the subject of the real chemical reactions O + HCl — OH + Cl, H + CIO, in the OHCI
system which is an important molecule in atmospheric chemistry[23]. The ground 1 1A’
potential surface has two deep wells corresponding to HCIO and HOCI and there are two
other excited potential surfaces, the 1'A” and the 2' A’ which participate in the reactions.
The differential cross section, branching ratio and product internal state distribution of
this system are of utmost interest and have been measured experimentally. However, since
the possible mediating effects of the two excited surfaces have never been considered in
quasiclassical calculations, the results of this chapter should help in clarifying the reaction

dynamics in important atmospheric events.

In the final chapter, I present the conclusion and offer my conjectures as to what the
future holds for quasiclassical methods. My submission is that classical approaches remain
very relevant to the practice of chemical dynamics as long as it is carefully coupled to semi-
classical theories. Developments in semiclassical theories is expected to encourage even
more imaginative use of classical trajectories in dynamical studies for a long time to come,

especially in the future when they should prove essential to the study of large systems.
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CHAPTER 2

CAUSTICS OF CLASSICAL
TRAJECTORY

2.1 INTRODUCTION

A widely-employed tool for visualizing systems of 2 degree of freedoms is the surface-
of-section method pioneered by Poincaré[1] and which was used to great effect by Henon
and Heiles. This method displays the curves of the integrable system in the form of a map
and the trace left by these curves as they pierce the 2-dimensional submanifold. However,
for systems with dimensions greater than 2, (the dimension of the surface of section, m has
2N-2 degrees of freedom) visualization in the form of these sections are immensely difficult.
Despite attempts by Martinet and Magnenat[2], and by Froeschelé[3] to obtain projections
on 4-dimensional surface of section, the problem of visualizing of such system is still far
from solved. However, since the nature of integrability or otherwise of a general Hamil-
tonian system of n>3 system can be obtained from the behavior of the projection of the
boundary which are the caustics, a method to determine caustics should offer a very useful
approach to obtain the information which are unavailable using the Poincaré surface-of-

section method. The contents of this chapter address these issues.

Apart from their nature as important semi-classical geometrical objects worthy of study
in their own rights, the importance of caustics for practical dynamical studies is crucial to
the thematic thrust of this thesis. Caustics arise in diverse fields of physics and chemistry
especially when semiclassical approximations are used to describe a system. For instance,
in the short-wavelength limit of the theory of semiclassical interferences, the divergences
between the classically-allowed and classically-forbidden regions correspond to the caustics

in the diffraction pattern[4]. Other examples of the significance of caustics arise in the



application of semiclassical quantization schemes[5], in astronomy and astrophysics[2, 6],
in chemical reaction dynamics and in many other fields. Caustics are important in the
study of multi-dimensional systems because they are the multidimensional analogues of the

turning point in 1-dimensional system.

In chemical reaction dynamics, the clever use of classical mechanics has generated great
interest because of its low computational cost when compared to the alternative of using
the quantum mechanical approach, particularly in large systems. Important quantum me-
chanical effects such as tunneling, phase interference and nonadiabatic transition should,
of course, be taken into account|7, 8]. Tunneling, both potential tunneling and dynamic
tunneling, play vital roles in multi-dimensional chemical dynamics and several workers have
suggested different methods to include its effects into conventional classical trajectory prop-
agation. (See, for example, review by Takatsuka et al[9] and references therein). In any
case, non-classical propagation beyond the classically-allowed region is required and a log-
ical starting point for such propagations is the boundary between the classically-allowed
and -forbidden areas. By devising a method to locate the caustics, this boundary can be

accurately identified.

It is well known that in a 2/V-dimensional phase space, the N-dimensional Lagrange man-

ifold is generated by a continuous set of the map of coordinates and momenta in time,

{q(t),p(t)}. On projecting this manifold onto the configuration space, almost all points

are diffeormorphic while some points show up as singularities. These singularities can be
9q(t) ap(t)

mathematically written in two forms: either 59(0) = 0 or ag(t) = O This formal description

suggests two approaches for numerical determination of the location of caustics.

One approach is to propagate gg—((é)), a minor of the monodromy matrix which is the solution
of certain coupled linear differential equations[10, 11]. This system of coupled equations is
reducible to a 2™ order differential equation equivalent to the equation for linear deviation
of a classical trajectory. For long propagation time, the solution of such an equation may
become unstable due to exponentially growing and decaying terms which can be several
orders of magnitude apart. The second approach, adopted in this work, is to propagate
ZZ—Eg, which is a solution of a Riccatti-type differential equation [12]. The higher degree
of numerical stability common to this type of non-linear differential equation makes this
approach particularly appealing, but the divergence of the solution at the caustics persists
and hinders solution of this equation beyond the singularity. This divergence is an intrinsic

property of the solution and cannot be avoided simply by improving the sophistication of
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the numerical recipe. By this reckoning, we propose in this chapter a sequence of canonical
transformations capable of avoiding the divergence of the solution of the differential equa-

tion while accurately locating the caustics.

The outline of this chapter is as follows; in Section 2.2, we present the basic equations
and explain the transformations which ensure the avoidance of singularities. To test its
efficiency, the method is first used to locate caustics of trajectories of the 2-D Henon-Heiles
potential in both regular and chaotic regimes, and then applied to trajectories used to sim-
ulate a triatomic chemical reaction process. The reaction case is of a higher dimension and
the distribution of caustics is more complicated, especially in the condensation region of
chemical reaction. This includes the appearance of two or more caustics in different spatial
coordinates at almost the same instant in time (In a time profile of the eigenvalue of the
propagated matrix, these coalescent caustics appear as split peaks). For these reasons, the
formulation used in the 2-D case does not adequately handle all the divergences in the
higher dimension and needs to be reworked to prevent divergence when successive caus-
tics occur very closely. Our method has been generalized to treat such higher-dimensional
problems making it applicable to any arbitrary N-dimensional system. The results of these
numerical tests as well as the generalizations used in the higher-dimensional case are dis-
cussed in Section 2.3. Some applications of the use of the caustics method are presented in

Section 2.4 and concluding remarks are presented in Section 2.5.

2.2 BASIC EQUATIONS AND STRATEGY

In a Lagrange manifold, in order to obtain the matrix of the derivatives A;; = g—gj,
i,j=1,2,..., N, we consider the family of charactersitics for the Hamilton-Jacobi equation
(g(7),p(7)) where 7 is an N-dimensional parameter. The matrix of the second derivatives

A;; can be written in terms of the derivatives with respect to the dimensional parameter,

Y
Opi  Op; ( 0qg; ) !
A = = . 2.1

dq; 07 \0v; (21)

Along the charactertistics, the time derivative of the matrix of second derivative can be

=) Ge) - alaGaG) @2

Differentiating Hamilton’s equations with respect to the parameter ~, one obtains

written as
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d (Op; a%‘) (api>

° = - — - — 2.
dt(87§> EGq(@Yj }ﬂm 87j ’ ( 3)
4096\ _ %) (%)

dt (8%) N Hpq (87] +pr 8% (24)

where H,,, H,, ... are the matrices of second derivative of the Hamiltonian taken along the

9’H 9%*H
9qdq’ 9qop

Riccati-type differential equation

trajectory, i.e. ... Inserting these relations to Eq. 2.2, one obtains the following

A=Hy+ HypA+ AHyy + AH AL (2.5)

During propagation of the classical trajectory, the solution of equation 2.5 diverges at the

caustics where
Det | A(tequstics)| = 00- (2.6)
As stated in the introduction, further solution of the differential equation is not possible

beyond this point and we have to reformulate the problem. To achieve this, we propose the

following transformations.

2.2.1 Propagation and Transformation of the Matrix A.

To clarify the idea behind the proposed transformations, consider a one-dimensional

problem with solution, A = g—g. At the turning point, p(¢g) = 0 and A diverges. By in-
verting A to obtain A= g—g, the divergence is eliminated and propagation of A proceeds

smoothly through the caustics. This inversion is equivalent to a canonical transforma-
tion, (p,q)—(—¢,p) (The sign change ensures that the transformation is canonical and that
Hamilton’s equations of motion remain invariant in the new representation). It is relevant
to reiterate that the second derivative coefficients are also changed in the new representa-

tion and it can be shown that Eq. 2.5 does not change under the transformation.

The reason is that if the matrix A has an element which is a derivative of an integral-
of-motion, such an element vanishes and the inversion of the matrix diverges for reasons
not directly related to the presence of caustics. A more workable approach is to selec-
tively invert only the diverging element(s) of the old matrix. If the diverging element is

assumed to be Ay, the inversion of this element corresponds to a transformation of type

! The preceeding proof is obtained thanks to Dr. G. V. Mil’nikov
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(pn,qn) — (—qn, pn) which in the new representation, mixes the momenta and coordinates.
The new matrix A formed becomes free of any diverging element and its propagation pro-

ceeds smoothly through the caustics.

For numerical implementation, the sequential steps to carry out these procedures are sum-
marized below:

(1). For an N x N matrix, irrespective of the position of the diverging matrix element, a
simple rotation ensures the repositioning of the diverging element as the (N, N) element of
the matrix. This rotation is a canonical transformation and we note that such a rotation is
best achieved using the orthogonal matrix which diagonalizes A. Writing this diagonalizing

matrix as S, the rotationally-transformed version of A is obtained by
p'=Sp and ¢ =S¢ (2.7)
so that

A= SAST. (2.8)

(2). By invoking the transformation (ply, ¢&) — (—Gy,Dn), we obtain A’ — A, i.e.

D(p' D(p
(pl) D) (2.9)
D(q¢') D(q)
where:
ﬁi)""ﬁN_l:pli7""pIN71 (2'10)
Diseesn-1=G4r - 4N 1 (2.11)
p,N = —(y, and CIIN = Dn- (2-12)

Equations 2.9 — 2.12 are then used to compute the matrix elements of A in terms of the
elements of A’ by evaluating partial derivatives of the new Jacobi matrix %. The second
derivative coefficients in the new representation are derived by rotating the old coefficients
as in Eq. 2.7 for consistency, and then substituting the new momenta and coordinates into

the old coefficients. For instance, replacing py and ¢y with —¢y and py respectively give
(Hfi(i)NN = (pr)NN- (2.13)

Similar trivial substitutions are used to compose all the other elements of the second deriva-
tives in the new representation. The newly-composed matrix A also satisfies Eq. 2.5 using

the modified second derivatives as coefficients.
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In the new form, the singularity has been eliminated and the propagation runs smoothly
through the hitherto divergent region and the solution of Eq. 2.5 can be obtained with
the added advantage of locating the caustics by monitoring either its determinants or its
eigenvalue. Well beyond the point of divergence, the inverse transformation is carried in
exact reverse order to revert to the matrix A. The original propagation is then continued

at regions far away from caustics.

2.3 NUMERICAL TEST

2.3.1 Caustics in Chaotic case.

To test the ideas presented here, we apply the method to a 2-D Henon-Heiles Hamil-

tonian (in atomic units)[13]
Lo oy, 1o 9 2 L 3

H=3p, +py) + 5@ +y7) + (2% = 5v°)- (2.14)

For this Hamiltonian, the Poincaré surface section method has been successfully used to dis-

tinguish between the regular and chaotic regimes depending on the energy. The destruction

of the regular pattern of caustics after the full onset of chaos is a well-known phenomenon

and following the work of Stuchi and Vieria-Martin[10], we also seek to locate caustics of

these trajectories in both regular and chaotic regimes and compare the picture of caustics

in this potential with the surface section at the same initial condition.

The classical trajectory was generated from the turning point (p{(0) = 0) which corre-
sponds to initial condition A™! = 0 for Eq. 2.5 After short time propagation of A~! the
propagation is continued with matrix A. In the cases considered, the initial xq is -0.43 while
the yo has been taken to be -0.37, -0.39 and -0.41. These cases correspond to a progressive
degeneration of a regular trajectory into full chaos as the accompanying figures show. As
is well known, in the case of the regular regime (Fig. 2.1), the caustics clearly provide the
envelope of the family of trajectories. As the system becomes chaotic, discontinuites (Fig.
2.3) and separatrices (Fig. 2.5) appear in the Poincaré surface section and the caustics is
no longer discernible with the tori totally destroyed. The present method works well in all

these regimes(See Fig. 2.4 ).
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Figure 2.1: Henon-Heiles trajectory for initial condition: xy=-0.43 and y,=-0.37. The asterisks indicate location of caustics.
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2.3.2 Caustics in Reaction Dynamics

The second example to which we have applied our method is that of a triatomic chem-
ical reaction. The natural motivation here is to construct a recipe which forms an important
component in the effort to take into account the effects of tunneling in chemical reaction
dynamics in both classical and semiclassical treaments. In order to run tunneling trajecto-
ries such as the instanton trajectories in the classically forbidden region[14], it is inevitable
to find caustics along each trajectory in the classically allowed region. For the numerical
test here, we have used the lowest adiabatic potential energy surface of a DIM(Diatomics-
in-Molecule) potential mimicking the CHy molecule[15, 16, 17]. Further information about
the construction of this potential is provided in Chapter 3. In this chapter, we only provide

the important parameters of the potential. The DIM matrix is defined as

g1+ %(93 + h3 + hy + go) %(93 — hs) %(92 — hy)
V= (g3 — hs3) 92+ 3(95 + hs + hi + g1) (91— ha) ;
%(92 — ho) %(91 — hy) gs + %(91 + h1+ he + g2)

(2.15)

where, (hy, hy, h3), and (g1, g2 and g3) represent the ground and excited states of 3 diatomic

species respectively. The functional forms of these terms are taken as:

= —Dy[l+ai(r —rm,) + as(r — rm,)* + as(r — ra,)’Jexp™ @40 77)
= Dy[1+ Bir + Bor’lexpFs") (2.16)
= Bh (exp_'Yh("'_"'CH) _2)eXp—’}’h (r—rcwm)

= B, (exp ™ (r—rcm) _Q)GXP*%(T*TCH)

The parameters r¢y and ry, are 2 a.u and 1.401 a.u respectively.  The total angular
momentum J, is assumed to be zero while the collision energy and the initial ro-vibrational
states are taken to be 1.2eV and (v=0, j=0). It should be noted that the PES has an
attractive well of depth about 2.3 eV and thus many trajectories are trapped in the well

region for long time as seen in Fig. 2.6. The parameters values used are listed in Table 2.1.

Without loss of generality, a triatomic system can be described by the Jacobi coordinates
and then using the assumption that the center of mass is stationary and also the constraint
J=0, the system can be described by four coordinates (i.e. the collision is confined to a

plane[18]) and thus by a 4 x 4 matrix. These four coordinates are here referred to as XY x
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Table 2.1: Parameters of the functional form of the potential energy surface of Egs. 2.15
and 2.16

{ 1 2 3 4

o; | 2.1977034  1.2932502 0.64375666 2.835071
Bi | -1.3874149 0.9098728  2.181301 —

J h g
D; | 0.15796326 4.502447

B; 0.13 0.10
v 1.3 1.5
and y.

The initial condition for the A matrix is obtained by using the energy and momentum

conservation.

1

E., = P2+ P2
I 2M’BC( x + Py)
1
By = 5——@2+5)+V(z,y) (2.17)
HA,BC

J. = (zpy —yps) + (X Py — Y Px)
J? = (XPy —YPx)*+ (zpy — ypz)?

Differentiating each of the four conservation equations partially with respect to the four

D(PX7PY:pr7py)

coordinates yields the analytical expression for the matrix in the asymptotic

D(X7Y5'f'ciy)
region. The initial condition so obtained is
AA 0
A= , (2.18)
0 aa
where
1 Py —Px Py
AA= — —— 2.19
PxX +PyY ( )

—PyP, P
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and

1 N VL

= (2.20)
PxX + PyY

aa
—y S —papy  —py%y + 03

To solve Eq. 2.5, we have employed the fourth-order Adams-Bashforth-Moulton predictor-
corrector scheme where the corrector is iterated until convergence is achieved. This scheme
acts as the first check on the validity of the transformations. Namely, the non-convergence
can flag an error in the solution of Eq. 2.5 caused by a defective implementation of the

suggested canonical transformations.

In order to show the feature of propagation, an example is given in Fig. 2.6 showing a
family of reactive trajectories and their numerically-determined caustics. As expected, the
caustics occur periodically in the asymptotic region corresponding to the turning points
of the vibrational motion. The value of our method is seen in the rearrangement region.
Here, the trajectory is no longer periodic and the caustics cannot be easily identified by
observation. This method works well to determine those points which are important to

incorporate tunneling effects in reaction dynamics.

2.3.3 Case of closely-occuring caustics

As mentioned above, it may happen that two or more eigenvalues of the matrix
A almost simultaneously diverge around the same propagation time, especially when the
multi-dimensional potential has a deep well. This often occurs in the condensation region
of the insertion type of chemical reactions. This requires consecutive multiple canonical
transformations to treat concomitantly-occuring divergences. A bit of care is also needed
in choosing time step and the divergence criterion. Fig. 2.7 clearly demonstrates this.
This is a time-profile of the maximum absolute eigenvalue of the propagated matrix in the
condensation region with the peaks signifying the occurence of caustics. In the asymptotic
region(not shown), the period corresponds to that of vibrational motion of the diatomic.
The value of the method of multiple transformations is highlighted by the detection of
the internal structure which breaks the periodicity of caustics. Here the split of the peak
corresponds to the situation where three caustics occur within a time-interval of about

one-tenth of the period of the caustics in the asymptotic region.
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2.4 APPLICATIONS OF THE CAUSTICS METHOD IN TUNNELING

2.4.1 Collinear Tunneling

The Hj system is the prototypical system for investigating tunneling because of the
light masses of the reactant species. We attempt to carry out a test calculation to in-
vestigate the adaptability of the caustics method described above when it is incorporated
into the conventional quasiclassical trajectory propagation approach. Previous works have
studied the effects of tunneling in this system [19, 20, 21] and it is typically regarded as a
good testing ground to see how well a tunneling recipe does in including tunneling effects
in quasiclassical calculations. No elaborate tunneling trajectory method is proposed here
since no rigorously correct method exists at the moment to describe tunneling trajectory.
Instead, I have used a simple straight-line path to represent the tunneling between two
opposite ends of the barrier. The LSTH potential[22] is a widely-used potential for the Hj
system and its features are equally well-known[cf. Fig. 2.8]. On this potential, the thresh-
old for purely classical trajectory is 0.276 eV and reaction below this point takes place via

tunneling.

For the collinear case, the A matrix of Eq. 2.5 is a 2 X 2 matrix and the initial con-
dition of this matrix is obtained using the relevant equations for a collinear system with

coordinates X,x and conjugate momenta, Px and p,.

1
Ecol = 9 :
HA,BC
1
Enj = 27(1057”/(90)) (2.21)
HABC

As the trajectory is being propagated, the solution of the A matrix is also being solved in
time. The calculated vibrational period 161.024 a.u which is in excellent agreement with
the 161 a.u. obtained from the solution of differential equation.(Fig. 2.9). At the point of
caustic, the eigenvector corresponding to the maximum eigenvalue of the A matrix, is used
as the direction in which the one-dimensional potential barrier to tunneling is sought. A
straight-line path is initiated at the beginning of the barrier and tunneling is considered to
terminate when the trajectory “hits” the barrier where the value of the potential equals the
value at the starting point. See Fig. 2.10. From the result of this simple test calculation,
Fig. 2.11, it is seen that the quantum threshold is well reproduced and the probability
agrees quite well if one couples the caustics method and the simple straight-line tunneling

method to ordinary quasiclassical methodology.
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2.4.2 Thermal Reaction Rate Constant

The collinear case above serves to verify tunneling effects in the H3 system and most
importantly, confirms that the method of this chapter can be very useful in actual dynam-
ical calculations. In this subsection, I proceed to calculate the thermal rate constant of the
same system with inclusion of tunneling. The quasiclassical approach to determining the
thermal rate constant involves a temperature-averaging over the reaction cross section. The
complete procedure involved in the quasiclassical recipe for determining the cross section
is well-explained in Chapter 4 and I only present the details related to the temperature
averaging in this section. The trajectories to be run to determine the reaction cross section
involves summing over all possible impact parameters, i.e. a 3-dimensional problem with
a non-zero total angular momentum. A 3-D problem such as this should provide a more
exacting test than the collinear system of the previous section because of the multidimen-
sionality. It follows that in this 3-D case, a different initial condition for the A matrix has
to be determined. The relevant equations are obtained as always with the assumption that
in the asymptotic region the potential is separable. This initial condition of the S—Z; matrix
for whatever dimension of the system are dictated by writing the conservation equations of
the constants of motion of the classical S-matrix. In the 2-dimensional case as seen above,
the conservation equations used were those for Energy, Total angular momentum, and the
projection of the total angular momentum on a chosen axis. The 6 constants of motion
for the 3-dimensional case can be chosen as E.y, the collision energy, E,;, the vibrational
energy of the diatomic, [n and j are vibrational and rotational level respectively of the
diatomic], j,, the projection of the angular momentum of the diatomic on the z axis, j?, the
total angular momentum of the diatomic, J, the projection of the total angular momentum
of the system on the z axis, and J2. For an incoming A atom and a vibrating BC diatomic,

the equations for these constants of motion are,

1
Ecol = (P)2(+P}2’+P§)
214,BC
1
E, = (03 + 02 +02) + V(x,y,2)
2/4A,BC
J: = (yp. — 2py)cosay + (2py — Tp,)cosoy + (xpy — Ypg)cosa, (2.22)

(ypz - Zpy)2 + (szc - xpz)2 + (xpy - ypac)2
J, = (YP; — ZPy)cosa, + (ZPx — X Pz)cosay + (X Py — Y Px)cosa,
(YPg — ZPy)* 4+ (ZPx — XP;)* + (X Py — Y Px)?

In order to calculate the thermal rate constant, the cross section is calculated [see chapter
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5 for complete description| and then averaged over the collision energy. The simple straight
line tunneling path is once again coupled to the caustics method in order to account for
tunneling effect. Fig. 2.12 confirms the utility value of the caustics-locating technique of

this chapter.

2.5 CONCLUDING REMARKS

I have presented an efficient method to determine caustics in multi-dimensional chem-
ical dynamics. The formulation can be easily applied to any general, N-dimensional system.
This is a salient point to note because, for any N-dimensional system, the maximum number
of divergences which could occur almost in the same time instant is the same as the dimen-
sionality of the system. This method can treat even this extreme case quite capably and is
expected to be a potentially powerful complement to future work in the areas of classical
and semiclassical multi-dimensional dynamics. In fact, within the limitation of a lack of a
rigorous method to propagate tunneling trajectory, tunneling effects have been studied in a
prototypical tunneling sysetem with a method which is based on the formulation presented
in this chapter. This is quite significant since nonadiabatic transition can be incorporated
properly with the use of the Zhu-Nakamura theory both in the TSH(Trajectory Surface
Hopping) method and the semiclassical IVR (Initial Value Representation) theory[30, 31],
with simultaneous tunneling. Thus, this should become an important candidate for compu-
tation so that quantum mechanical effects can now be nicely incorporated in the classical

and the semiclassical dynamics theories to deal with large chemical and biological systems.
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CHAPTER 3

TRAJECTORY SURFACE
HOPPING(TSH) METHOD WITH
USE OF THE ZHU-NAKAMURA

THEORY.

3.1 INTRODUCTION

The rapidly-growing interest of physical chemists and chemical physicists in studying
chemical processes in biological molecules almost guarantees that the subject of nonadia-
batic transitions will continue to engage the attention of researchers in the foreseeable fu-
ture. This is because apart from its well-known ubiquity in chemical reactions in relatively
small molecular systems, it has become accepted that nonadiabatic transitions are also vi-
tal in systems as large as amino acids and in transition metal centers in enzymes|1, 3, 4],
which are both very crucial to life-sustaining processes. In studying these large systems,
fully quantum calculations are still far from becoming routine, with the implication that
classical methodologies continue to be the practical and appealing alternative, principally
because of their low computational costs and the physical insights they provide into under-

standing the underlying dynamics of the reaction.

The ideal compromise has always been some kind of mixed quantum-classical techniques,
treating nuclear motion classically, and the electronic motions quantum-mechanically. For
treating nuclear motion, the choices in literature include the semiclassical initial value rep-
resentation method[5, 6], the frozen Gaussian methods[7, 8|, or the usual single-surface

propagation of classical trajectories. When the trajectory reaches a region where electronic
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surfaces approach each other closely enough, the effect of possible nonadiabatic transi-
tions is included by solving the time-dependent coupled equations[9], by ab-initio multiple
spawning of Martinez et al[10], or using analytical expressions to predict the probability of

transitions between adjoining surfaces.

The Trajectory Surface Hopping (TSH) method introduced by Tully and Preston[9] has
enjoyed widespread application as a realization of such a quantum-classical recipe. As the
nuclei moves on the initial adiabatic potential surface, the time-dependent coupled equa-
tions are solved, in order to compute the probability of hopping. At a point which satisfies
a set criterion, the decision is made for the trajectory to either hop or remain on the initial
surface after comparing the computed probability with a randomly-generated number. In
the event of a hop, the nuclear velocity is adjusted to ensure conservation of energy of the
system. The simplicity of this technique is its biggest benefit and makes it attractive in
studying high-dimensional systems. Also in the same publication, they suggested the use
of the famous linear Landau-Zener (LZ) model[11] to compute the transition probability as

a way of reducing computational efforts.

While there have been several modifications to the TSH model since this earliest effort[12,
13], its central ideas have remained the same and much research effort continue to be de-
voted to finding improvements. Solving the coupled-equation is not much of a choice as
the system becomes more complicated, while the convenience of using the analytical LZ
formula is offset by a number of its shortcomings. [See for instance [14]]. The inadequacy
of the LZ formula which is most relevant to our discussion here, is in the event that the
region of large nonadiabatic coupling is located where the energy in the hopping direction
cannot reach the crossing between the relevant two potential energy surfaces. These hops
are commonly known as classically-forbidden hops. If the LZ expression were used for TSH
in such a scenario, the results would be clearly wrong. The widely-used fewest switches
method of Tully[13] also cannot be employed in treating these classically-forbidden transi-

tions.

The Zhu-Nakamura (ZN) theory [1] provides the complete analytical solution for one-
dimensional non-adiabatic transition across a wide range of energies. It thus improves upon
the LZ analytical formula since the validity of the ZN theory in low energy regions implies
that it works well in treating tunneling effects and can therefore be used to properly include
energetically forbidden hops in TSH. Such a modification would make the conventional TSH

scheme considerably more powerful as a computationally-cheap and easily implementable
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tool to study nonadiabatic dynamics in more complicated system. This new scheme (Zhu-
Nakamura Trajectory Surface Hopping or ZN-TSH for short) has been explored in a series
of papers by Zhu et al [15, 16, 17] which focused on the collinear Hi and the 3-dimensional
DH; systems. In the current work, we retain the crucial improvements made possible by
the Zhu-Nakamura (ZN) theory; but the points of departure between the ideas contained

in the current work and that of Zhu et al in Ref.[17] are quite significant.

The first concerns the issue of dimensional reduction. The application of the ZN theory
to multidimensional problems requires a careful reduction of the nonadiabatic transition to
a 1D problem. For the 3-dimensional DHJ, Zhu and co-workers carried out the analysis
for the one-dimensional reduction in terms of internal curvilinear coordinate, going so far
as to predefine the seam-surface(i.e. locus of the points important for nonadiabatic transi-
tion) in terms of these coordinates. Being able to so delineate the seam-surface before the
start of actual calculations drastically reduces overall computational time but one impor-
tant critique of such an approach is that, it is the specific nature of the topology of simple
systems like the 3-D DH; which makes the seam-surface amenable to being so determined
analytically. In the DHJ system, the nonadiabatic transitions are induced almost by the
one-dimensional vibrational motion away from the asymptotic region, making the treatment
of the nonadiabatic transition problem very simple. Chemical systems are seldom so simple
and it is strongly required to develop a general method without predefined knowledge of

crossing seam-surface.

The next issue is the direction of nonadiabatic transition. In the case of DHJ, the geometry
of the seam-surface is clear and the direction of the transition is taken to be perpendicular
to the seam-surface. The transition in the parallel direction is the non-crossing type and is
usually negligible compared to the crossing type. In view of the applications to the large
system, this is not very convenient. Here, I propose a method to use the non-adiabatic

coupling vector which can be estimated even if its direct knowledge is not available.

The third difference between the work of Zhu et al and the present work, is the man-
ner of treating the conservation of angular-momentum after a classically-forbidden hop. In
this case, the energy of the trajectory in 1D on a lower surface is not enough to reach
the upper surface and hop cannot ordinarily be made to originate from the lower surface.
However, because the ZN theory is valid in computing the transition probability even in
this case, we may find a suitable point on the upper surface where the hop terminates while

keeping the total energy of the system conserved. Hopping in such manner though, would
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be accompanied by a shift of coordinates thereby violating the conservation of angular mo-
mentum. We show in section II that finding a suitable matrix to rotate the coordinate is

simpler than the method of Ref. [17] and works as well.

The final issue is that in general, both Landau-Zener and Nonadiabatic tunneling types
of transitions appear in the same reaction and we have to build up an algorithm to treat

both of them properly including the classically-forbidden ones.

To illustrate the present problem and to demonstrate the value of the present method,
we make use of a DIM potential matrix constructed to mimic the CHy system which has a
conical intersection. The behavior of the 1-dimensional cuts of this DIM potential energy
surface is also quite interesting because there exists two different types of crossings: in
the first type, the two diabatic surfaces cross with the same sign of slope (Landau-Zener
(LZ) type) and in the second, the signs of the slope of the diabatic curves are different
(Nonadiabatic tunneling (NT) type). Unlike the DHJ system which has only the LZ-type,
the presence of both curve-crossing possibilities in our potential surfaces makes the current
work to be the first full implementation of the ZN theory and to be applicable to various

nonadiabatic processes in large systems.

This chapter is arranged as follows. Section 3.2 provides a detailed description of the
theory behind the generalization we propose. Section 3.3 provides a brief summary of the
Zhu-Nakamura theory and section 3.4. contains the numerical demonstrations of the gener-
alized recipe and consists of two parts. The first part is the test calculation where we apply
our method to DHJ and compare our results with those of Zhu et al. We obtain nice agree-
ment between the results of both approaches confirming the validity of our methodology.
The second part of the section goes a step further. We apply the generalized TSH method
to the newly-constructed DIM potential surfaces featuring conical intersection and the gen-
eralized TSH is shown to compare well enough with quantum results. In this same section,
we discuss the results obtained by the generalized TSH and offer concluding remarks in

Section 3.5 as well as possible future directions and applications.

3.2 DESCRIPTION OF GENERAL FORMULATION OF ZHU-
NAKAMURA TRAJECTORY SURFACE HOPPING METHOD

The steps involved in a typical implementation of the TSH are (i) propagating clas-

sical trajectories with sampled initial conditions on an adiabatic surface; (ii) Inclusion of
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the nonadiabatic effects by some hopping algorithm and (iii) counting the trajectories af-
ter scattering to obtain the probability. The first and the last steps are standard tasks in
quasiclassical trajectories methods and we do not provide further details about these here,
leaving any further details to the section on numerical demonstrations. The question of the

choice of hopping algorithm shall thus be the central focus of this section.

In order to provide a direct contrast between the present methodology and the ideas con-
tained in the previous ZN-TSH by Zhu et al, we provide here more specific details of the
ideas involved in their implementation. Zhu et al implemented the 1-dimensional reduction
of the potential in terms of the coordinates of 3-dimensional space, (r, R, x). The seam
surface is defined in such a way that the difference AV(r, R, x) between the two adiabatic
surfaces V1(r, R, x) and Vy(r, R, x) becomes a minimum along its normal line r=f(R, x).
The differential equation defining this minimum was solved close to the avoided crossing
and the solution was found to easily converge to the true seam-surface and obtaining the
outline of the effective coupling parameter a?, of the ZN theory followed easily. All these
were done before starting the propagation of trajectories. The predeterminations of the
seam-surface and the coupling parameters were used to classify the important diabatic,
nonadiabatic and adiabatic zones in the system, and to assign unity or zero probability
in the diabatic and adiabatic regions, respectively ensuring that nonadiabatic transition

probabilities were computed only in the important nonadiabatic transition zones.

Hops are taken to occur in the direction (e,), perpendicular to the seam surface and in
the case of classically-allowed hops, only the component of the momentum, P in the direc-
tion, e, changes while P-P.e, does not change. The coordinates of the trajectory similarly
do not change. The case of classically forbidden hops is more delicately treated. The
discontinuity in trajectory coordinates occasioned by the non-vertical nature of the hops
implies a change in the coordinates after the hop which in turn, leads to a violation of
the conservation of the total angular momentum. For these non-vertical hops, Zhu and
coworkers suggested adjusting all the coordinates other than the internal, without changing
the components of the momentum. We will show below that this idea can be generalized

to an arbitrary case and a unique general recipe can be formulated.

A generalized TSH method should be usable for any system irrespective of the location
of the important nonadiabatic transitions and should provide easy answers to two of the
more important practical questions in TSH calculations i.e: what should be the location of

hopping and in what direction should the trajectory hop. And the better if such a method



39

is not limited by the availability of system-defined geometrical features. In answering the
first question, a local description of the potential surface separation along the trajectory,
suggests itself as an invariably simpler technique for determining the location and time of
hopping. This should work reasonably well even for potential energy surfaces with different
types of curve-crossings. This implies that, there is actually no need to analytically con-

struct the seam-surface.

To answer the question of finding the direction to be used for the one-dimensional reduction
of the potential and thereby obtain the parameters of the ZN theory, two ideas are tested
here. First, is to use the nonadiabatic coupling vector. If the diabatic potential is available
in a matrix form, the nonadiabatic coupling vector <¢,‘ %}'> is easily evaluated by using the
Hellman-Feynman theorem, where, in the DIM approach, the electronic wavefunctions are
written in terms of basis functions which are taken to be orthogonal. To obtain the second
approximation of the direction of the nonadiabatic transition, consider the topology of the
potential energy surface near the conical intersection. Writing the diabatic Hamiltonian in

the vicinity of the conical intersection in the form,

AiX;  BiX;
: (3.1)
where A;, B; = const, X; = R;—R;, where R; is the point of conical intersection. From
this diabatic matrix, it is easy to obtain AV =V,—V;, the difference of the two adiabatic

energies. The Hessian matrix of this difference gives

D*AV

m = €4€; (32)
where,
3
k=1

At the conical intersection, or at a point on the seam line where the off-diagonal elements
of Eq. 3.1 are constant, Eq. 3.2 is exact and is actually equal to the direction dictated by

the nonadiabatic coupling vector. In the general case however,

RAW
I e 4
dX;0X; eicj(1 + &i5) (3.4)

The extra matrix €;; has order of magnitude % where A is the element of the DIM

Hamiltonian. The closer the trajectory moves to the exact point of conical intersection, the
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smaller €;; becomes, i.e. (A — 0). In order to evaluate e; for use in the determination of

the nonadiabatic direction, we suggest the following steps :

(i)
(i)

AV
9X;0X;

Diagonalize the matrix.

Substitute {e;} by the eigenvector corresponding to the maximum eigenvalue of the

matrix.

In summary, the steps involved in the generalized-TSH approach are :

(i)

(i)

(iii)

(iv)

(v)

3.2.1

Monitoring the adiabatic energy separation along the classical trajectory and initiat-

ing hopping at a local minimum.

Reducing the potential to a 1-dimensional problem by using either of the two methods
above. For this generalized ZN-TSH, the reduction is carried out in terms of the
generalized cartesian coordinates so that the algorithm is very simple and totally

independent of the nature of the system.

Determination of the transition type i.e.(LZ or NT-type) and the computation of the
hopping probability using the appropriate component of the Zhu-Nakamura theory.

Using the ant-eater method suggested by Tully and Preston[9], a hop/no hop deci-
sion judgement based on random numbers is used to determine the surface on which
the trajectory continues, and the velocities and coordinates(if necessary as in the
case of non-vertical hops) are adjusted in order to conserve energy and total angular

momentum.

Counting trajectories after reaction and assignment to final scattering channel.

Classically Forbidden Nonvertical Hopping
One important improvement introduced by the ZN-TSH model is the subject of non-

vertical hopping. At the point of hopping, if the energy in the direction of hopping is not

enough to make a vertical transition possible, the treatment of non-vertical hops emerges

naturally from the ZN theory. These hops result in scenario where for a system of coordi-

nates written in terms of R for relative motion and r for internal motion, the change J R,

0r between the coordinates before and after hopping,

SR, 61 # 0. (3.5)
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Zhu et al, treated the problem of shift in total angular momentum J, by adjusting the
coordinates other than the internal, without changing the components of the momenta.
Following Zhu, we want to adjust the final J' (all primed quantities represent quantities
after hop) so that §J =0. Such an adjustment should not of course, change the configuration
of the molecule after hop. This corresponds simply to a rotation of the system as shown

schematically as
R,r R i 2% R ¢ R TS QR Q' R, (3.6)

The rotation is determined by three components of the angular velocity (or three angles in

the rotation matrix) which are found by fixing the three componenets of J.

1. For the (J = 0) case, motion takes place in the (x, y) plane and (2 signifies the matrix
of rotation in this plane. Writing (2R, Qr) as (R”, r”), the angular momentum after

hop
J =R x R" +[r' x r"] = 0. (3.7)
Since all z-components are zero, before and after hop, we are left with,

J.=RLR) — R\ R + vyl — 1!l (3.8)

Yy x

The expression for rotation,

R cosa  sina R,
= (3.9)
RZ —sina  cosa R;

and the analogous relation between r” and r’ are substituted into Eq. 3.8, to obtain

RyRy + 75y — RyRy — 7'yry
Rme + T.wrm + RyRy + T:Z/Ty ’

tana = (3.10)

which provides the angle of rotation that ensures conservation of the total angular
momentum.

2. For J #0, the conditions 6.J,, ,=0 gives three nonlinear equations with respect to the

three angles which parametrize this matrix. The elements of the rotation matrix are
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written in terms of direction cosines. At infinitesimal angle of rotation, the relations

lim cosa = 1, lim sina = « (3.11)
a—0 a—0
can be used to extract a “linear part” from the nonlinear equation and a final equation

in the form,

«

Al g |=AT+F(87)

Y
can thus be formulated more simply, for a system of arbitrary dimensionality.

For a general (N+41)-dimensional system,

R.7" — [QxR]I[Qx7] (3.12)
R, — R, (3.13)

Components of J and €2 can always be found so that §J = 0.

3.3 ZHU-NAKAMURA THEORY
The Zhu-Nakamura(ZN) theory[1, 2] provides the complete analytical solution to the

one-dimensional curve crossing problem. The accuracy of this theory even at collision
energies below the crossing point introduces the possibility of improving upon previous
quasiclassical treatments of nonadiabatic transitions which employed the Landau-Zener
linear model formula. In order to include the ZN theory into quasiclassical propagation, it
is necessary to obtain a 1-dimensional energy cut of the potential surface and the ZN theory
provides the analytical expression for computing the nonadiabatic transition probability in

two different cases, the Landau-Zener type and the Nonadiabatic Tunneling type crossings.

3.3.1 Landau-Zener(LZ) Type Transition

In a 1-dimensional cut of the potential energy surface, when the diabatic curves cross
with the same sign of slope, this is known as a Landau-Zener type transition.[See Fig.
3.1]. This case is divided into two regions, i.e. regions where the energy of the trajectory
E;, is higher than the crossing energy, E, and the other region where E; is lower. These

two regions are covered by two different sets of formulas[1, 2]. R3 and R} on the figure
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Landau-Zener type

-— Hopping is classically allowed
_|| ====+ Hopping is classically forbidden

Potential Energy

Coordinate R

Figure 3.1: Landau-Zener type potential curve-crossing with same sign of diabatic slopes

Nonadiabatic Tunneling type

7 — Hopping is classically allowed
=-===4 Hopping is classically forbidden

Potential Energy

Coordinate R

Figure 3.2: Nonadiabatic tunneling type potential curve-crossing with different sign of
diabatic slopes

correspond to the turning points on the upper and lower surfaces respectively while Ry 4
is the coordinate at the crossing point and the possible processes are also shown. If the
trajectory which is initially on the lower adiabatic surface approaches the 1-D potential
from the left of the figure, it could hop onto the upper surface, proceed beyond the crossing

point while remaining on the same surface, or become reflected at the hopping point.

3.3.2 Nonadiabatic Tunneling(NT) Type Transition

The Nonadiabatic tunneling type is shown in Fig. 3.2. E; and Ry have the same
definitions as in the LZ case, R} and RY. are the left and right turning points respectively,
while E, and E; denote the bottom and top of the upper and lower adiabatic potential. The
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NT-type crossing is covered by three sets of formulas[1, 2], one for region where E; is higher
than the bottom of the higher adiabatic potential, another for the region where E; is lower
than the top of the lower adiabatic potential and a third one for the energy region between
the top of the lower adiabatic potential and the bottom of the upper adiabatic potential. In
this case, the trajectory approaching from the left on the lower adiabatic surface could hop

to the upper surface, proceed adiabatically, tunnel through the barrier or become reflected.

3.4 NUMERICAL DEMONSTRATIONS

3.4.1 DHjJ

The nonadiabatic charge transfer processes in the 3-D DHy (J = 0) case is the focus
of this subsection. The effect of the second intervening potential energy surface on the
dynamics of this system and its different isotopic variants, has elicited interest for a long
time with the earliest attempts being the series of papers by Tully and Preston[9]. This

subsection presents a comparison of our results of our method with those of Ref. [17]

Details of the potential energy surface used are given in Ref. 3 and 4. Contours of this
potential is shown in Figs. 3.3 and 3.4 for the ground and excited states at /(HDH) of 120°.
The TSH calculations are carried out on the ground and excited adiabatic surfaces obtained
from the DIM diabatic surfaces. As seen in Fig. 3.5, the diatomic potential curves of H,
and HJ cross at a diatomic distance of r, &~ 2.5a.u. Such crossings dominate the potential
energy surface of this system, with all the nonadiabatic crossings being only those of the
LZ-types and limited around the entrance and exit regions. A system with such topological
features only, is simple compared to many other nonadiabatic systems which may have the
NT-type crossing in addition to the LZ-type , with nonadiabatic crossings possible over the
entire potential energy topography. It is thus the relatively uncomplicated topology that
permits the elaborate analytical formulation presented by Zhu et al[17]. Namely, because
the true avoided crossing seam of DHJ may be given by an almost straight-line relation,
S(r) = rs — 2.50a.u [9], where ry is the smallest of the interatomic distances, the solution
of the differential equation in [17] quickly converges to this straight line. It is almost cer-
tain that an analogous seam relation will not exist for a system which in spite of a similar

dimensionality, possesses richer and more varied nonadiabatic dynamics.

The processes under study here are the charge transfer processes,
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Diatomic potential curves(in a.u.) of the DH3 system at angle(HDH)=120°:Ground PES
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Figure 3.4: Diatomic potential curves(in a.u.) of the DH3 system at angle(HDH)=120°:Excited PES
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HD* + H (reactive)
Hy(v,j)+ D" —

Hy, + Dt (nonreactive),
Classical trajectories restricted to a plane were generated from the conventional Monte-
Carlo procedure for J=0 and the initial energy of each (v, j) state chosen from the quantized
rovibrational levels. Trajectories were propagated on the initial adiabatic surface. The
time profile of the separation between the two adiabatic surfaces is monitored and at a
local minimum separation, the hopping algorithm is implemented as described above. The
trajectories are then counted to assign the products of scattering into the different possible
exit channels. The results obtained are shown in Figs. 3.6-3.11 alongside those of Ref.
[17]. The good agreement between the present and the more analytical formulation of [17]
confirms that the generalization recipe of this chapter works well enough and I go ahead to

apply to a system with a more complicated nonadiabatic dynamics.

3.4.2 Model CHy System with Conical Intersection

3.4.2.1 Construction of DIM Hamiltonian

The numerical demonstration in the preceeding section was carrried out for a sys-
tem where the nonadiabatic transition profile is limited only to those of the Landau-Zener
types. We therefore construct a new DIM Hamiltonian purposely to obtain potential en-
ergy surfaces with interactions that yield a richer variety of nonadiabatic transition events.
The surfaces are made to mimic a CH, system with conical intersection and also exhibit
nonadiabatic tunneling-type transitions. We are thus able to implement the Trajectory
Surface Hopping method, exploiting the full use of the various constituent results of the

Zhu-Nakamura theory.

Using the DIM method, we choose the basis functions

U, = |abc|,

Uy, = |abc|, (3.14)
and

Uy = |abel,

where a, b and c represent 1s orbitals located on the three atom centers, with a bar over
the orbital denoting 3 spin and no bar denoting « spin. For A—B, the valence-bond wave-

functions are given by
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©'% = |ab| + [ab],
®,F = |ab| — [ab],
®4B = abl, (3.15)
and
48 = [ab|.

The Hamiltonian in terms of those of the atomic and the diatomic constituents of the ABC

system is
H:HAB+HAC+HBC_HA_HB_HC (316)

The 3 x 3 matrix is calculated directly by taking the relevant matrix elements in terms of

the basis functions, ¥;,7 = 1,2,3. As an example,

HAB\I’1 = HAB|abc\ = HABAABA(AB)G,[)C
= AapHaglablc (3.17)
where A4p is the operator which antisymetrizes the electrons belonging to AB, and fl( AB)

is the rest of the antisymmetrization operator.
AB AB
Using |ab] = &% and Hap¢'§ = E{F¢{F, one easily obtains
R ¢AB + ¢AB
HapV¥, = A(AB)HAB%C

AB JAB | [AB AB
E77 01 + By 7 ¢

C

1
= Aupg

~

= Ay B2 (ab] — Jab]) + B2 (1ab] — ab])
_ BB BT B

2 2

C

0. (3.18)

So that, B ., B B
E B __ E B E B __ E B
< Uy |Hypp|¥y >= 2 L—Spp + =2 !

where S;; =< ¥;|¥; > and the overlap matrix, S;; = d;;.

Slla

Using the DIM method, the matrix elements of the 3 x 3 diabatic Hamiltonian is obtained
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as
Hy Hip His
H=| Hy Hy Hy |,
H; Hj Hss
where

1
Hu = B+ o (By" + BE7 + B¢ + B{),

1
Hyy = E3°+ §(E5‘B + E*8 + EPC + EBC),

Hss = E}P + %(E;‘C + B¢ 4+ EBC 4+ EBO), (3.19)
Hy = Hy = %(Eéw - Ele)a
H13 = HSI = %(Eg‘c - EflC)’

andHyy = Hsp = %(EQBC — EP9).

(EEC, EAB, FAC), and (EPC, E4P and F4°) represent the ground and excited states
of diatomic which makes up the molecule as is conventionally done in DIM approaches.
However for this particular case, we have only subsituted the atomic masses with those of
Carbon and 2 Hydrogen atoms. The diatomic potentials are those of a rescaled E¢xy and
Epys. The rescaling of the diatomic potential was done to ensure that (1) the potential well
is reduced in the condensation region to ~ 0.6 eV in order to simplify quantum scattering
calculations and (2) to introduce a 50/50 chance for the occurence of LZ-type and NT-type
transitions. In our actual calculations for this CHs model, we reduce the dimensionality of
the DIM Hamiltonian to a 2 X 2 matrix as follows:

Noting that the original basis functions of Eq. 3.14 are not independent, we can reduce the

3 x 3 DIM matrix by choosing another basis

o1 = 1 — (3.20)

and

¢2 = Tﬁz—%
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which in matrix form is

0] 1 =1 0 v
. —
= vy |- (3.21)
o 0 1 -1
V3
In terms of ¢1¢9, the DIM matrix then becomes,
1 0
1 =1 0
Hay2 = Hsxs | -1 1 ) (3:22)
0 1 -1
0 -1
and the overlap matrix is
1 0
1 -1 0
Ssz = -1 1 . (323)
0 1 -1
0 1

The final 2 x 2 Hamiltonian matrix is obtained by removing the overlap matrix by
H2><2 — Sil/Qnggsil/Q, where

1+ 1-2L
Sax2 = \f \f (3.24)
11 14+

3.4.2.2 Topology of DIM Potential Surface
Fig. 3.12 shows a cut in the DIM potential surface obtained at /(HCH)= 110°.

The corresponding 2D-contour diagrams at the same angle is shown in Figures 3.13 and
3.14. Fig. 3.15 and 3.16 are potential contours of the same surface but at /(HCH)=
150°. The two sets of figures give a fair idea of the general features of the potential energy
surfaces. The conical intersection is found on the straight line rcy, =rcpm, and this line
has been projected on the contour diagrams in Figs.3.13 and 3.14 . The conical intersec-
tion point corresponding to the angle here is identified with a (+) sign. For the ground
potential surface, at small angles of about 30°-60°, a well is found close to the potential

wall and the saddle points are well separated from the condensation region positioned about
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Figure 3.13: Contour of ground surface at same angle as Fig. 3.12. Cross shows point of conical intersection.
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rcw, =I'cu, > 2.5 a.u. As the angle between the two C—H bonds becomes wider, to between
90°-130°, the well situated close to the potential wall passes through its deepest which is
about -0.07 a.u, and the saddle shift inwards moving towards the well. In between the point
on the minimum energy path and the potential energy wall, the surfaces arches upwards,
touching the bottom of the upper potential surface to form the point of closest approach
between the two surfaces. At about the same range of angles, the upper potential surface
has a wide, flat bottom which is less than 0.01 a.u higher than the lowest point in the

condensation region. The processes considered are:

- H+CH(f)
C + Hy(v,j,1) — (3.25)
C+H2(f) ’
and
- H+ CH(f)
H+CH(v,j,i) — (3.26)
C+H2(f)7

(1, f) represent the initial and final surfaces respectively. On the second surface, the H,

channel is closed because of the repulsiveness mentioned above.

Initial conditions of classical trajectories were chosen as with those in the DH; case and
are similarly propagated. For each initial state, 10,000 trajectories were propagated using
a time-step of 1 a.u. As usual, at the point along the trajectory where the criterion for
hopping is satisfied, the hopping algorithm is implemented and trajectory propagation con-
tinues either on the same surface as it was before reaching the hopping region, or on the new
surface where it has emerged. In this CH, case, it is necessary to note that an important
part of the hopping algorithm is making the judgement of whether the transition is of an LZ
or NT-type in order to employ the appropriate Zhu-Nakamura expressions[1] to compute
nonadiabatic probabilities. For the first process, the only possible initial surface is (i=1);
for process 3.25a, the channels on the ground and excited surfaces are both open while for
process 3.25b, the channel on the excited state is closed. For processes 3.26, both (i=1,2)
are considered and 3.26a may have (f=1,2) while 3.26b like 3.25b has the (f=2) channel
closed. In both processes, the initial seclected channels were those for (v=0,1) while the

final channels were summed over all rovibrational states.

3.4.3 Quantum Mechanical Result

The results of the quasiclassical method described is compared with quantum results

obtained by using the Hyperspherical elliptic coordinate approach. For a fuller description,
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see [18]. A brief outline of the method follows. In the hyperspherical elliptic coordinate
system, the hypersphere is parametrized by the hyperradius p and the hypershperical el-
liptic angles (£,n). The Schrodinger equation for J (total angular momentum) = 0 can be

written as

(K (p) + Haa(&,m5 p) — pp*EN(p; €,m) = 0, (3.27)

where K(p) represents the kinetic energy relative to p, H,q is the adiabatic Hamiltonian
composed of the angular kinetic energy and the potential is defined at fixed p, p is a char-
acteristic mass factor, and F is the total energy measured from the ground rovibrational

state of the Hy diatomic potential of the model potential. Solving the eigenvalue equation

[Haa(€,7m; p) — 1p” E1®, (€,7; ) = 0, (3.28)
yields the adiabatic potential curves U, (p) and the adiabatic channel eigenfunctions @, (&, n; p).
The good separability of the hyperspherical elliptic angle coordinates is utilized in obtaining
a step-by-step solution of this eigenvalue problem. Eq. 3.28 is first solved with respect to

the &-motion which represents the vibrational motion of the reactants and the products:

[haa (€ = 1, p) — pp®(cos n — €S 1) Ung(n,p)]dne (&7, p) = 0, (3.29)

where h,q is the adiabatic hamiltonian defined at fixed p and 7, u,¢ is the vibrationally
adiabatic potential and ng¢ represents the corresponding vibrational quantum number. The

eigenfunctions of the adiabatic channel can be expanded in terms of ¢, as

@, (&5 p) = annpa&ngﬁnp) (3.30)

Then the total wavefunction ¥(p,&,n) can be expanded in the form,

U(p, &) =p 23" F,(p)®u (& m; p)- (3.31)

Actual computations of Egs. 3.27 and 3.29 are carried out by using the slow-variable-
discretization (SVD)method[18]. The obtained total wavefunction in each sector of p is
propagated to the asymptotic region by employing the R-matrix propagation method. This
is then used to obtain the S-matrix elements which is compared with the results of the

quasiclassiclal recipe above.
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3.4.4 Discussion of Results

Figs. 3.17-3.21 are the first set of published results using the Zhu-Nakamura theory
to study systems where nonadiabatic transition events are to a large measure more pro-
nounced in the exchange region of the potential energy surfaces and where hops of different
nature (i.e. LZ-types and NT-types) are treated simultaneously in a single system. In all

the cases shown, the calculations are run at a total energy of 0 - 1.1 eV.

The results presented are compared with quantum results. Since the threshold of the
nonadiabatic processes in every case is at total energy value of 0.8 eV, comparisons made
for the nonadiabatic transition-induced processes are for energies between 0.8-1.1 eV. The
processes shown in Figs. 3.17 and 3.18, i.e. those with C + H, reactants(v=0,1), agreees
quite well with quantum results. In the case of the H + CH(v=0,j=0) shown in Fig.3.17
for the nonadiabatic processes on the upper surface, the ZN-TSH results have similar trend
with quantum results and provides quite a good average of the quantum results. For the
adiabatic processes on the lower surface, the resonances are not well reproduced. This is
not surprising since quasiclassical methodology can generally not treat resonances well and
actually, the long-lived trajectories are killed in the present calculations. However, the

trends on this surface is equally good not just qualitatively but quantitatively as well.

In Fig. 3.18, we see the same channel but with vibrationally-excited reagents, the re-
sults become a lot better than the v=0 case. The little discrepancy seen at the high energy
end in Fig. 3.17 is no longer the case here. It was mentioned above that the locus of the
points of conical intersection in this system is located on the symmetric r¢gy, = reg, line
which means that this line is on the path of the incoming diatomic. It can then be said
that a higher vibrational energy favors reaction for a diatomic approaching the reaction
zone in the direction of this line. Figs. 3.19 is the result for the H + CH initial channel at
v = 0,5 = 0. The nonadiabatic probability for this process is low compared with Fig. 3.20,
helping to confirm the importance of vibrational excitation in the success or failure of the
trajectory reaching the important non-adiabatic region. The final plot, Fig.3.21 is the result
of the only process started on the second surface. In this H + CH(i=2) entrance channel
case, the nonadiabatic transition probability for the H + CH(f=1) product channel is much
higher than H+CH(f=2) process. This makes clear that the bottleneck to nonadiabatic
transition is the complicated topology on the lower surface where the highest point on the
potential surface touches the bottom of the upper surface at the conical intersection and
the wells surrounding the points of conical intersection prevent transitions from being easily

accomplished. The almost flatness of the upper surface, precludes any such complicated
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mechanism from influencing adiabatic and nonadiabatic reactions.

In general, for the processes occuring on these surfaces, one may propose a simplified pic-
ture for the mechanism leading to nonadiabatic reactions as follows: a trajectory approaches
from the entrance channel, and on entering the condensation region, hops to the second
surface, and exits into the reflection or the exchange channel. As mentioned earlier, the
topology of the second potential surface features a wide-bottomed well and it is expected
that trajectories may be trapped in this well and afterwards become rather statistically

distributed into the two channels on the second surface.

3.5 CONCLUDING REMARKS
In an attempt to generalize the TSH method so that it can nicely applied to large

systems, I have improved upon the conventional method in the following respects:

1. Any type of transitions (LZ and NT) can be treated by full use of the Zhu-Nakamura
theory.

2. Use of minimum energy separation to detect transition point.

3. Direction of transition along the coupling vector which can be roughly estimated even

if it is not available.

4. Simple algorithm to conserve total angular momentum, J.

We restate that the generalized method presented here is more valuable because of the ease
of its applicability since detailed analysis of the potential energy surface before hand is
not necessary. Since the Zhu-Nakamura theory is accurate, even classically forbidden cases
can be properly treated. Except for the case of resonances, the method is quite accurate
with encouraging results in comparison with quantum. The agreement with the quantum
mechanical results is not perfect, of course, because of the limitations of the treatment
such as the reduction of dimensionality, the approximate direction of transition and neglect
of phases(resonances). However, we can probably safely conclude that the present simple
and general TSH method can be applied to complicated systems. Namely, it should be
the case that the possibility of obtaining, at the very minimum, a rough description of
how nonadiabaticity mediates processes in complicated multidimensional systems should
become more and more closer to fruition. We hope to continue with this approach in our

future endeavors.



72

REFERENCES

[1] H. Nakamura, Nonadiabatic Transitions, Concepts, Basic Theories and Applications,
(World Scientific,2002)

[2] C. Zhu, G. Mil'nikov, and H. Nakamura, Modern Trends in Chemical Reaction Dy-
namics(Advanced Series in Physical Chemistry), ed. K. Liu and X. Yang, (World Sci-
entific,2002)

[3] J. Michl and V. Bonacic-Koutecky, Electronic Aspects of Organic Photochemistry, (Wi-
ley,1990)

[4] J.R. Bolton and N. Mataga and G. Mclendon, Electron Transfer in Inorganic, Organic
and Biological Systems, (American Chemical Society,1991)

[6] W.H. Miller, J. Chem. Phys. 53, 3578, 1970.

[6] W.H. Miller and X. Sun, J. Chem. Phys. 106, 916, 1997.

[7] E.J. Heller, J. Chem. Phys. 94, 2723, 1991.

[8] A.R. Wolton and D. E. Manolopoulos, Mol. Phys. 84, 961, 1996.

[9] J. Tully and R.K. Preston, J. Chem. Phys. 55, 562, 1971.
[10] M. Ben-Nun and T. Martinez, J. Chem. Phys. 108, 7244, 1998.
[11] L.D. Landau, Phys. Zts. Sov. 2, 46, 1932, C. Zener, Proc. Roy. Soc. A137, 696, 1932.

[12] M. S. Topaler, T. C. Allison, D. W. Schwenke, and D. G. Truhlar, J. Phys. Chem. A
102, 1666, 1998.

[13] J. C. Tully, J. Chem. Phys., 93, 1061, 1990

[14] E. E. Nikitin, Ann. Rev. Phys. Chem. 50, 1, 1999.



73

[15] C. Zhu and K. Nobusada and H. Nakamura, J. Chem. Phys. 115, 3031, 2001.
[16] C. Zhu and H. Kamisaka and H. Nakamura, J. Chem. Phys. 115, 11036, 2001.
[17] C. Zhu and H. Kamisaka and H. Nakamura, J. Chem. Phys. 116, 3234, 2002.

[18] K. Nobusada et al, J. Mol. Str. (Theochem) 461-462, 137, 1999.



74

CHAPTER 4

CHEMICAL REACTIONS IN THE
OHCI1 SYSTEM

4.1 Introduction

There has been a sustained interest in studying the dynamics of the O(*D) + HCI
system for a period which stretches back over the past 3 decades|1, 2, 3, 4, 5, 6, 7, 8, 9].The
reasons for these interest is not far-fetched since it is well-known that OHCI is known to
be of great importance in atmospheric processes[10, 11]. HOCI, which is an intermediate
in this system is known for its role in the balance of ozone in the stratosphere in the polar
regions of the earth. It is especially believed that HOCI helps in the depletion of the stable
chlorine reservoir in their conversion into more reactive species in polar clouds.[12]. These
processes are further helped by the intense UV radiation which enhances the release of
O('D) by photodissociation of oxygenated species. Taken together, these processes play
crucial role in Ozone layer depletion which is an issue that has become an issue of high

priority for environmental policy-makers.

The chemical reactions of the O(' D) with HCI are:
O(*D) +HCI(*v") — OH(*II) + CI(®P), AHy = —44 kcal/mol
— OCI(*IT) + H(®S), AHy = —6 kcal/mol (4.1)

The first reaction which has a larger rate constant compared to the second is known to
be a good sink in the conversion of chlorine into free radicals[13]. The second reaction
is of considerably less exoergicity. Both of these reactions, apart from their practical im-
portance, are also important in resolving fundamental chemical dynamical questions. Are

the reactions of insertion or abstraction type ? What is the branching ratio of the two
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product channels 7 And what role if any, do the excited state potential surfaces play on
the reactions. In this chapter, I intend to report on the dynamical studies which have been

carried out on this system using the quasiclassical methodology.

4.2 POTENTIAL ENERGY SURFACES (PES)

Nanbu and co-workers [14] have presented, for the first time, the three lowest potential
energy surfaces (symmetry of electronic configuration: 1' A’, 1' A” and 2' A") which correlate
asymptotically to O(*D) + HCI and OCI + H. Previous potential energy surfaces of this
system have been presented by Peterson[12, 15, 16] and Martinez[13, 17]. Both potential
energy surfaces constructed by Peterson et al and Martinez et al were obtained using the
CASSCF(Complete Active Space Self-Consistent field) and MRCI(Multi-Reference Config-
uration Interaction) quantum-chemical methodology. But while Martinez et al used the
double-zeta + polarization basis set, Peterson et al employed three different basis sets in
the extrapolated complete basis set limit with the three basis sets being the double, triple
and quadruple of the diffuse-function augmented, correlation consistent, polarized valence,
zeta basis sets. The potential energy surface of Nanbu et al, which is used for the chemical
dynamical studies reported in this chapter, were computed by using the MRCI method
with the Davidson correction (MRCI4-Q). The reference functions are constructed by the
CASSCEF calculations using the diffuse functions-augmented quadruple-zeta basis sets and
the computations are carried out for almost 5000 conformations of the molecule on each of
the potential surface. These potential energy surfaces by Nanbu et al, is the first report of
the potential energy surface for the two excited states, 1'A” and 2'A’. The ground surface
is as accurate as Peterson’s in the well regions, and is supposed to be more accurate in the
asymptotic regions which are important for chemical reaction dynamics. In order to ob-
tain a global surface suitable for use in chemical dynamical studies, the ab-initio potential
surfaces are finally interpolated using the interpolant moving least squares (IMLS) method
combined with Shepard Interpolation[19]. Further details of the energetics and topology of

these surfaces are provided below.

4.2.1 Energetics of 1'A’, 1'A”, and 2' A’ surfaces

The correlation diagram constructed from the final interpolated potential energy sur-
faces is shown in Fig. 4.1. The dissociation limit of O(*D) + HCI is taken as the zero of
energy. There are two deep wells on the ground state which are found in the bent geometries
coresponding to the HOCI and HCIO molecules. These wells are labelled P1 and P3 re-
spectively, in the diagram. The depth of P1 is 4.38 eV, that of P3 is 1.94 eV, while between
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these two wells, the barrier to isomerization from the HCIO side is about 0.84 eV. The ex-
cess energy of formation for the OH(*II) + C1(®P) channel is -1.92eV (Experimental=-1.93
eV[20, 21, 22|) while that for the H(2S) + CIO(*II) is -0.02eV (Experimental=-0.13eV).
The experimental value is obtained from a thermodynamical cycle. The OCI channel ex-
cess energy of formation is in agreement with the exoergicity of the channel as predicted by
experiment. [note the endoergicity(~ 0.33eV) of the ClO channel in the potential energy
surface used by Schinke[24]]. Two transition states TS2 and T'S4 on the 1' A” PES correlate
to OH + Cl and H + CIO channels respectively. The TS2 is triangular while the TS4 is
linear. The energetic differences between these two transition states imply that their con-
tributions to the final channels are dissimilar. Through TS2, the 1! A" easily contributes to
the OH + Cl channel while the T'S4 which has a height ~ 0.70eV implies that the contribu-
tion of 1' A” to the ClO channel will be limited unless the collision energy is high. The 2' A’
has no direct correlation leading to the ClO channel. The only transtion state, labelled TS3
in the diagram, correlates to the OH+Cl and its relatively low height of 0.29eV, implies

possible appreciable contribution to the overall dynamics of the reaction.

4.2.2 Topology of 11 A’, 11 A" and 2! A’ surfaces

Fig. 4.2 shows the two minima on the 1' A’ surface at the conformation corresponding
to the bent HOCI and bent HCIO complexes with the HOCI well about 2.5 €V deeper. Fig.
4.3a is a contour map of the 1! A" with the bond geometry fixed at the geometry of the
transition state, TS2. The location of the transition state at the O4+HCI entrance channel,
suggests that the reaction mechanism is an early-barrier type. Such a reaction would lead
to backward scattering due to the late release of excess energy. Fig. 4.3b shows the second
transition, T'S4 which is of linear conformation as mentioned above. This is located at the
interaction region of the potential surface. However, because of the presence of the wells
on the 1' A’ surface, the reaction mechanism is expected to be different between these two
surfaces. Fig. 4.4 shows the contour map of the 2' A’ around the TS3 transition state shown
in the correlation diagram. The profile of the surface at this configuration is similar to that
of the TS2 on the 1'A”, i.e. an abstraction-type reaction with early barrier and late energy
release. The barrier heights, though, are different on the two surfaces. As a whole, from
the topological features of these potential energy surfaces, it can be surmised that the OH
+ CI production, can be affected by the excited surfaces. Also, at collision energies higher
than 0.6 eV, the 1' A” will play an important role in ClO production. However, the absence
of wells on the excited states would imply that the mechansim on the excited states are

expected to be less of the statistical-type and more of the state-selected variety.
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Y(A)

Figure 4.2: Contour plots of the 1' A’ electonic state for H-Cl distance (a) r = 1.3 A (b) r
=1.7A, (c) 2.1 A and (d) r = 3.6 A. Contours are drawn in steps of 0.2 eV. [Reproduced
with the kind permission of Dr. Shinkoh Nanbul]
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Figure 4.3: Contour plots of the 1' A” electonic state around two transition states (a) the
potential around TS2 at angle(OHCl)=130°; (b) the potential around TS4 in the linear

geometry. Contours are drawn in steps of 0.2 eV. [Reproduced with the kind permission of
Dr. Shinkoh Nanbul
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Figure 4.4: Contour plots of the 2! A’ electonic state around the T'S3 transition state in

the linear geometry. Contours are drawn in steps of 0.2 eV. [Reproduced with the kind
permission of Dr. Shinkoh Nanbul]
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4.3 OTHER EXPERIMENTAL AND THEORETICAL RESULTS

4.3.1 Brief Summary of Experimental Results

At 12.2 kecal/mol collision energy, Balucani, et al carried out an angular distribution
measurement of the ClO product from the O(*D) + HCI reaction using a crossed-molecular
beam study. Their measurement yielded a backward-forward symmetric scattering, with
slight favoring of the backward scattering. Also, they reported a branching ratio %%f of
0.34. This particular experiment is of interest to us because QCT calculations have been
performed at the same collision energy. Also, the group of Toshinori Suzuki in RIKEN,
Japan has measured the OH product angular distribution at a collision energy of 0.26 eV
at which we have also carried out another QCT calculation. The RIKEN group have kindly
provided us with the measurement of the OH product differential cross section as well as

its internal energy distribution.

4.3.2 Brief Summary of two Quasiclassical Calculations (QCT) and
Quantum Mechanical Calculations for J =0

There are some previous calculations, relevant to this chapter, which have been carried
out for the O('D) + HCI system using different potential surfaces[16, 17, 24]. These three
works employed the quasiclassical trajectory approach as is done in this chapter. However
the results of Schinke has a clear discrepancy compared to the other two because of the
endoergicity of the potential surface which clearly contradicts the exoergicity predicted by
experiment. Also, since the work of Schinke is not carried out at either of the collision
energies of interest in this chapter, the results are not shown here. Some properties of the
different PESs used for the different QCT studies is shown in Table. 4.1

Table 4.1: Comparison between energetics reported from on the 11 A’ PES for the O + HCI
sytem. Values are in eV

R ef .[14] Ref. [16] Ref. [17]

Transition State above the HOCI minimum 3.28 3.21 3.98
Difference between HOCI and HCIO minima 2.44 2.34 2.65

These two QCT calculations were carried out only on the 1' A’ PES. The cross sec-
tions and branching ratio obtained from the other two workers are shown in Table. 4.2.
Kamisaka et al, using the PES reported in Ref.[14], however, have carried out a J=0 quan-
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Table 4.2: Quasiclassical reactive cross Sections for O + HCI at (v=0,j=0) initial state,
Ect = 0.529 eV

aao(aﬁ) UOH(a%) 0cCl0:00H

Christoffel et al Ref.[16] 2.34 45.06 0.0519

Martinez et al Ref.[17] 14.36 50.06 0.288

tum calculation on the 1' A’ surface as well as on the newly-obtained 1! A” and 2! A’ surfaces.
The quantum results for the three different surfaces are shown in Figs. 4.5, 4.6 and 4.7.
One immediately striking observation from Fig. 4.6 is the sharp rise of the ClO products
at higher energies at the point marked with the arrow B. Further discussion of the possible

effects on the overall branching ratio is continued below.

4.4 METHOD OF CALCULATIONS

The quasiclassical method has been used to determine the DCS and other prob-
ability distribution functions on the 1'A’ ground potential surface [13, 16, 17]. T pro-
vide below the relevant formulation of the problem including the sampling of the ini-
tial conditions. This is done to make this chapter wholly self-contained and also be-
cause in chapter 2, a reference was made to this chapter as containing the full details
of the quasiclassical techniques used throughout the extent of this thesis. The objective
is to study an A + BC-type collision using a Monte-Carlo sampling to generate initial
conditions for trajectories with specified initial quantized rotational and vibrational en-
ergies and fixed initial translational energy. These trajectories are propagated by inte-
grating the equations of motion using any stable and efficient numerical recipe and at
the end of reaction, one calculates the relevant probability distribution function from the
bunch of such trajectories. It is conventional to work in terms of a generalized space-
fixed coordinate of nine dimensions, which for the O + HCI system, can be written as
x={zzi=1,...,3forO,i=4,...,6 for Hand i = 7,...9 for Cl.} with corresponding

conjugate momenta, px = {ps,;% = 1,...,9}. The Hamiltonian is written in the form,
H(x,px) =T(px) + V(zs,i=1,...,9), (4.2)
where
G L Ly L
T(px) = Z<2—pzl 2—pxl+3 2—pwl+6> (4 3)
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In this representation, Hamilton’s equations of motion are,

. OH aT

e = =1,... 4.4
oy ap, T DY) 4
oH oV
= — ot = — 4,
Pa; oz, oz, (4.5)

It is conventional to employ a generalized coordinate system made up of

4 = Tive — Tit3
1
= mi— —— mp@ies + Mo 4.6
@ Y ompg + mcl[ frits orio) 49
S, = M[moxi + Mmyiy3 + MoiTive

where M = mgop + myg + m¢g; and g, Q and S are the internal, relative and the center of

mass coordinates respectively and together are called the Jacobi coordinates.

Eqgs. 4.4 and 4.5 together give a total of 18 coupled first-order differential equations which
could be reduced to 12 equations using the variables of Eq. 4.6 and the arguments that the

center of mass of the system, S; is cyclic. Using the F, generating function|[18],

3
Fy(p, P, Ps,x) = Y _[pizi + Pizivs + Ps, i) (4.7)

i=1

and the relation p,, = %, the Hamiltonian, in terms of the generalized coordinates, be-

comes

H = T(p7 Pa PS) + V[Rl (q7 Q)7 R2(q7 Q)7 R3(qa Q)]? (48)
where

T(p,P,P,) — 233( L oy bt pi ! P2>
P, &5 b - im1 2[LHClpz 2,U'O,HCl ! 2M Si )
WHCl __mamer (reduced mass of internal motion)
(mH + mCl)
and
Ho,HCl mo(mu + mcy) (reduced mass of relative motion).

M

In the generalized coordinate system, the 1¥-order Hamilton’s equations are
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8H oT
= op ~ op; =LY,
. OH 0T
P = =1,2
Q ap. = 8 H (1=1,2,3),
oOH oV oV OR,

), = — = — = - — , 4.9
P 0g; 5%‘ — ORy, Og; (4.9)
. oOH oV ORy

P- = — =
’ 0Q; an Z 1 ORy 8Q;’
and the ‘%& and 6—R& terms are evaluated from
-3 2,1
mqcy 2
ror = (")
OH Z ma + mczq Q
Ryci = 2(112] 27and (4.10)
Li=1
-3 2.1
mg 2
Roo = 2"y a)]
clo z:zl S mczq Q

where Roy, Ryc; and Rgio being the distances between the atoms in the subscript.

The initial conditions sampled are:

b : impact parameter (the z component of the initial relative coordinate i.e., Q)

6 : initial azimuthal orientation angle of the HCI internuclear axis(angle between q and the
+z axis)

¢ : initial polar orientation angle of the internuclear HCI axis(angle between the projection
of q onto the xy plane and the +x axis)

n : initial orientation angle of the HCl angular momentum(the angle between q X p and
some reference vector normal to the HCI internuclear axis)

¢ : initial phase angle of the HCI vibration(defined to be zero and 7 at the inner and outer

turning points respectively and varies linearly with time)

If R® is taken as the initial separation between O and the center of mass of HCI, then

the initial conditions for the relative motion are,

0 =0

€z

0 = b (4.11)

ey

0 — _RO

€z
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Figure 4.8: Specification of an initial coordinate system for a of an O + HCI reaction in
the impact parameter picture.

P =0
P =0
Y

N

P = (2uo,uciEea) (Ecor is the initial collision energy),

while for the diatomic, letting 7 = |q|, and r° be the initial internuclear separation gives,

qu = r%infcose,
qu = r%infsing, (4.12)
qu = 79cosh.

RY is chosen so large that interaction potential essentially vanishes while r° is placed at
the inner turning point so that initial radial momentum of the diatomic is zero implying
that all the initial momentum of the diatomic is angular momentum. In the figure below,

the e, vector defines the direction of approach of the O atom towards the HCI diatomic
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Figure 4.9: Initial orientation of the angular momentum vector.

and 7 defines the angle between the angular momentum vector |r X p|, and a reference vec-
tor |r xe,|, normal to the BC internuclear axis. Solving for the components of p, one obtains

7 (singcosn — cosfcosypsing)
’ r_
(cospcosn + cosBsingsing) (4.13)

0o _
pem -

0
e, = ~r T

(singsinn)

pgz = J T
where J, is taken to be the magnitude of the angular momentum of the diatomic and r_ is

the inner turning point of the initial rovibrational level.

Choosing initial conditions as done above is equivalent to selecting points in collision pa-
rameter space in order to evaluate a multidimensional integral. For example, the reaction
cross section o,, written in terms of the maximum impact parameter of collision, b,,,; is,

(4.14)

— 71'[)2 < Pr(EcolaVaj) >’

Or mazx
where
< Pr(Ecol,v,j) >= (27r)31b?naw
b=bmaz rmT 27 27 2
X / / / / PT(b, 9,@;77’6; Ecol,l/,j)b
b=0 0=0 J =0 Jn=0 J¢=
(4.15)

X sinfdbdfdpdndE.
In the integral above, v and j are the vibrational and rotational states respectively, and all

the other parameters are as defined above. If the thermal rate constant is to be determined
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as done in Sec. 2.4 of this thesis, then the expression need only be averaged over the colli-

sion energy to yield,

kT(T) = < Ucolar(Ecol,u,j) >T

8kT \1/2
= (o) b,
THA,BC

00 b=bmaz rm 27 27 2
X / / / / / / Pr(ba 0’9057’75; Ecol,l/,j)b
Eop1=0 Jb=0 0=0 Jp=0 Jy=0 Je=0
X By exp™ & sinfd B dbd0dodnde,

(4.16)
where k in the equation above is the Boltzmann constant. The Monte-Carlo approach is
commonly employed in quasiclassical simulations to solve the integral in Eq. 4.15. This in-
volves expressing the integral in terms of a probability integral and writing the parameters
of the integral in terms of independent coordinates with well-defined distribution within a
given interval. These coordinate transformations imply that the intergral can be rewritten

as ,

< Py(Buorj) >= /01 /01.../01f(ﬂ)dﬂ, (4.17)

2
ﬁl = (b:az> )

o = %(1—(:059),

where

Ps = 29 (4.18)
7
1

64 = %77,

and
1

Bs = %6-

In actual computations, the procedures for selecting appropriate values of the collision

parameters are to

1. Select a set of five random numbers (1, Bs, ..., 85 uniformly distributed in the interval
(0,1), and

2. Obtain corresponding values of collision parameter by inverting the set of equations
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above. This gives

1/2
- 1 bmaza

= cos (1 —2p),

27 B3, (4.19)
= 2mpy,

= 270s.

m 3 € @ o
Il

These values are then used to compose the initial condition of the trajectory to be prop-
agated. After termination of trajectory propagation at a separation distance between the
diatomic and the third body, where the interaction potential is almost non-existent, the
probability distribution of interest can be obtained by manipulating the relevant data ob-

tained from the final conditions of the reaction.

4.4.1 Differential Cross Section(DCS)
From N total trajectories, the value of < P, > of Eq. 4.14 is estimated to be

1 X N, (v, J, Ecor)
< Po>= =Sy = S\ Zeol) 4.20
N ; YT N, 1, By (4.20)

w; is statistical weight of i** trajectory and N, is the number of reactive trajectory.

The distribution over different reaction/product variables can be used to provide useful
information about the system of interest. Histogrammic representation over these variables
consistent with o, provides a good choice. For a f(z) vs z distribution, where f(z) is related

to o, via a weighting function, g(z), one writes[23],

oy = /;mwf(:c)g(a:)dx = /G(mmw)f(ar)d(} (4.21)

Dividing the intervals [Zin, Tmaez| into n segments,
n

Opr = Z Ork
k

— ;/kfdG - ;fk/kd(} (4.22)
= Y RAG
k

In a QCT calculation, each trajectory may be identified with one of the Az intervals, and
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on grouping yields

o, = ;ark = ;02(%) (4.23)

with

1 Ny, 1 Nyg
( ) Z Pw; = sz , (4.24)

where the latter summation is only over the (V) reactive trajectories of the kth interval.

The final expression is obtained by equating

A
ore = [t AGy = 0 ]\f) (4.25)
or
%4 4.26
fo = e A (4.26)
The DCS with reference to the scattering angle is finally given by
do, o N,y
=— d 4.2
(d@’) 2nAG, N (4.27)
where @' is the final scattering angle and is obtained from the expression
PI
0 = (4.28)

\/P'2 + P/Q i P/2

All primed quantities denote the final conditions of the trajectory. Eq. 4.27 is the opera-

tional equation used to obtain the DCS results presented in this chapter.

4.4.2 Opacity Function
The integral in Eq. 4.15 as well as the probability of Eq. 4.20 both involve averaging

over the entire parameters which define the collision. However, an important quantity— the
opacity function which yields very important information— can be obtained if the averaging
is not carried out over the impact parameter, b. The analogue of Eq. 4.20 for the opacity

function is

NT(Va j7 Ecola ba db)
N(Va j7 Ecolaba db) ’

P(v,j, Ecor, b, db) = (4.29)

where N, (v, j, Ecy, b) being the number of reactive collisions at energy, F., occuring at
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impact parameters between b and b-+db with molecule initially in the (v,j) state.

The impact parameters of the population of the trajectories leading into a specific channels
are parititioned into grids and are used to compose the opacity function of the respective

reaction processes.

4.4.3 Internal Distribution of Products

The internal energy distribution of the products is composed from the sum of the
internal energy of the product diatomic. This internal energy €, is written as,
1 3
€=o——3 p'+Vo(r) (4.30)
2Ndiatomic i=1
The p} are the components of momenta of the final diatomic and the Vp(r) is the potential
energy, which is equal to the potential energy of the whole system if the outgoing third-body

is far enough from the diatomic that that all possibilities of interaction is eliminated.

4.5 COMPARISON WITH OTHER RESULTS: EXPERIMENTAL
AND COMPUTATIONAL RESULTS

4.5.1 At Collision Energy of 0.529eV

QCT calculations were carried out for the O + HCI at the initial rovibrational state
of (v=0, j=0) system at a collision energy of 0.529 eV. This is the same energy at which
the group of Balucani et al in Perugia, Italy have carried out experimental measurements
[8] and also at which previous QCT studies have been done by Bowman and coworkers[16]
and Martinez and coworkers[17]. The 3 QCT studies, including the present, have been
carried out on different PES, although the PES used here is closer to that of Peterson et
al as mentioned earlier in section 4.2. The data available for comparison between the three
studies are the DCS and the branching ratio %%‘f{l The DCS for the two product channels
from the present calculations are shown in Figs. 4.10 and 4.11 for the OH and ClO product
channels respectively. The DCS for the OH product has similar qualitative features with
that of Ref. [17] with both results showing a predominantly forward-backward scattering
preference with strong dominance in the forward hemisphere. However, the ratio between
the yields of the forward and backward hemispheres is different, being about 2.5 times for
the present result while it is about 5 in Ref. [17]. Balucani et al did not publish experi-

mental data for this channel.
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In case of ClO product, the experimental DCS for the ClO product channel was measured|8]
displaying a near backward-forward symmetry with a slight preference for the backward
hemisphere. The present result, like that of Martinez et al is also nearly backward-forward
symmetric but unlike in the experimental result, both QCT results display a bit of pref-
erence for the forward hemisphere. The values of DCS are also different, with the peak of
Martinez et al being about 0.7A%sr~! while the present calculation gives a peak of about
0.25A%sr 1. The experimental peak is at about 0.42 A2sr—!. The final reaction probability
for the present calculation on the 1'A’ surface for OH production, pog is 0.452 and pcio
is 0.032. This gives a branching ratio of 0.071 compared with 0.052 for Bowman et al and
0.288 for Martinez et al while the experiment of Balucani et al gives a value of 0.34. The
differences among the QCT results may basically be ascribed to the differences in the PES
topography. However, in terms of comparison with experiment, the uncertainty in the dis-
tribution of the collision energy %, which may be as high as +£30%, may contribute to
an inadvertent overmeasurement of ClO. This is explained further with supporting figures

in the section discussing the effect of excited states.

4.5.2 At Collision Energy of 0.26eV

At a collision energy of 0.26 eV, QCT calculations were similarly carried out for the O
+ HCI at the same initial rovibrational state, (=0, j=0) as was done for 0.529 eV. This en-
ables a comparison with the experimental results obtained by the group of Toshinori Suzuki
at RIKEN, Japan[27]!. H. Koguchi and T. Suzuki measured two physical quantities, (1)
the DCS of the OH product channel and (2) the distribution of the internal energy of the
OH product. Fig. 4.12 shows very good agreement between the quasiclassical results and
the experimental DCS . Fig. 4.13 shows comparison between experimental and theoretical
distribution obtained for the internal energy distribution of the OH diatomic.[The QCT
internal energy distribution was arbitrarily normalized to enable comparison with experi-
ment|. The internal energy distribution from QCT is equally good, showing a peak-shift of
less than 2000 cm~! compared to experiment. Due to some experimental constraints, mea-
surements have not been made for the ClO product channel and comparisons are thus not
possible. However, results for C1O production obtained from the present QCT are shown
in Figs. 4.14 for the DCS. It is seen from the internal energy distribution for the ClO
displayed in Fig. 4.15 that the ClO is produced with a relatively narrow range of energy
distribution, specifically within about 4000 cm~'. The plots of the opacity function P(b)

'T am grateful to Drs. Koguchi and Suzuki for providing me with their unpublished results
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vs. b, for the two channels are presented in Figs. 4.16 and 4.17. The contribution of the
high impact parameters dominates in the production of the OH product with a maximum
at about 5 a.u. This behavior is a reflection of the smaller centrifugal barrier of the OH
channel. With the cone of acceptance also smaller for the Cl side than the H side [13], the
centrifugal barrier is smaller for an O atom attack on the H side of HCI than on the Cl side

thereby favoring production of OH.

The branching ratio %%‘? at this collision energy is 0.073. At this energy, there is no
data in literature with which I can make a comparison. However as explained later, the
two excited PESs do not contribute much at this low energy and thus, this branching ratios
is considered to be an appropriate value. In discussing the mechanism of these reactions,
because of the two deep wells on the 1'A’ potential surface, the facile conjecture would
be to regard the reactions as a purely insertion-type mechanism. In fact, it used to be
considered as a prominent prototype of insertion reaction because of the presence of the
HOCI intermediate which is strongly-bound in nature.[17]. However, the results shown in
the accompanying figure dispute such a notion. It is seen that the bond distance of the
HCIO complex is almost the same as that of the isolated HCl molecule. It can then be
suggested that the formation of the HCIO complex would be facilitated by the entry of the
O atom into the well region, forming the complex in the entrance channel. Looking at Fig.
4.18, it is easy to visualize the mediating effects of the potential well. In Fig. 4.18a and b,
two deep wells are seen which correspond to the HO-CI and the H-ClO intermediates. It
is observed that the motion of the H atom in the direction of the hyperradius parameter
7, dictates the formation of either the OH or the ClO product and the easy separation of
the deep well seen in Fig. 4.18c and d, leads asymptotically to the H + ClO product. This
supports the idea that unlike in typical insertion reaction, the trajectory is not trapped in
the well long enough to cause an isotropic distibution of scattering angle. This is supported
by the DCS plots where it is seen that the forward-backward scattering is favored. The
single peak seen in the internal energy distribution also underlines the direct nature of the

mechanism of these reactions.

4.6 EFFECTS OF EXCITED PES

4.6.1 2tA
The fact that 2! A’ surface is not correlated to the H4+ClO channel means that, a purely

quasiclassical approach yields zero probability for this product channel on this surface. This

is confirmed from the calculations at both collision energies considered. However for the
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Figure 4.18: Contour plots of the 1' A’ potential surface in terms of the hyperradius (a) p =
5.5a, (b) p=6.54a, (c)p="7.52a, and (d) p = 8.5 a,. The left-bottom corner, right-bottom
corner and mid-point at the upper edge corresponds to the united atom limit of HCI, OH
and ClO respectively. [Reproduced with the kind permission of Dr. Shinkoh Nanbul]
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OH + CI product, on the 2'A’ surface at a collision energy of 0.529 eV, the reaction
probability pog, is 0.018, confirming that the channel is open. In fact, with inclusion
of tunneling, using the methods of Chapter 2, the probability showed an almost two-fold
increase to 0.033, a scenario which was anticipated because of the presence of the barrier in
the entrance channel. At 0.26eV collision energy, the inclusion of tunneling also boosts the
production of the OH channel although the probability is quite small at this energy even
with tunneling. Actually without tunneling at this energy, the channel is almost closed
with the order of magnitude of the probability being about 10~*. This trend of decreasing
probability with decreasing energy on the 2' A’ surface is similar to the J= 0 quantum case
shown in Fig. 4.7 but from the same figure, it is seen that a large contribution would arise

when the initial reagent is rovibrationally excited.

4.6.2 1tA"

On the 1'A”  the ClO channel is closed since the PES is not correlated to the ClO
production. On the other hand, although tunneling effects do not contribute appreciably
to the OH product reaction probability as it does on the 2! A’, using the ordinary QCT
without tunneling yields a reaction probabilty pog, of 0.192 at 0.529 eV which is almost
half the probability on the ground 1'A’ surface at 0.529 eV. This is striking because such
contribution would alter the relative contributions of the two product channels especially
since the ClO channel is completely closed on this surface. The probability poy at 0.26 eV
is not similarly high, being about 0.039 showing that the reaction probabilities on this sur-
face are much higher than those on the 2' A’ surface. Overall, at the collision energy of 0.26

eV, the two excited PES do not give any appreciable contribution to the reaction dynamics.

The discrepancy mentioned before between the experimental and the QCT branching ratio
at the 0.529 eV collision enenrgy could also be regarded as an effect of the excited state.
At this collision energy, the magnitude of uncertainty in the experimental collision energy
means that the total energy could extend to more than 0.8 eV. At around this energy range,
there is a sharp rise in the probability of C1O product which may lead to higher detection
of ClO and consequent increase in the measured branching ratio.(See arrow labelled B in
Fig. 4.6)

Another possible effect of the excited states is the possibility of nonadiabatic transition
between the 1' A’ and the 2'A’ surfaces at higher energies which could lead to ClO prod-
ucts on the 2! A’ surface. Nanbu and coworkers have been able to compute the diabatic

coupling terms and it would be very interesting to include simultaneously, both tunneling
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and nonadiabatic transition, using the ideas expounded in Chapter 2 and 3 in the study of

this important chemical system.

In conclusion, the excited states are certain to be quite important at high energies or
for rovibrationally excited reactants(See Fig. 4.6 and 4.7). It would be especially interest-
ing to investigate the internal state distribution of products under these conditions because
the two excited PES depict very different dynamics i.e state-selectivity dynamics, from the
ground-state PES.

4.7 CONCLUDING REMARKS

The quasiclassical method developed here with tunneling effects included has been
applied to OHCI at the »=0,j=0 rovibrational state with the use of the most accurate PES.
The reaction mechansim at collision energies of 0.26 and 0.529 eV are clarified and it is
deduced that the excited PES do not play crucial roles at these energies, although the effect
of tunneling is significant on the 2! A’ PES. On this surface, the order of magnitude of reac-
tion probability is one and two orders of magnitude smaller than that of 1'A” at collision
energies of 0.26 and 0.529 eV respectively. Although the ground PES is strongly attractive,
the reaction proceeds by an abstraction-type mechanism rather than the insertion which

would instead be the dominant mechanism at much lower energies.

Good agreement of the present QCT results have been obtained with experimental mea-
surements of DCS and internal energy distribution. The branching ratio is predicted to be
~ 0.08 at 0.26 eV. At 0.529¢V, the product branching ratio is also ~ 0.08 contrasting with
the experimental value of ~ 0.34. The disagreement between the QCT and the experiment,
particularly regarding the branching ratio is ascribed to the ~30% uncertainty of the initial
experimental collision energy and the strong ClO production via the 1'A” PES at E_| >
~ 0.6 eV.

For future work, I would like to investigate the effects of nonadiabatic coupling on the
system. Although it may be present, the effects are not expected to be large since the PES
are all correlated to the same asymptotic channels. Secondly, I intend to carry out a study
to determine at which energy the mechanism transitions from abstraction to insertion. Also,
because of the larger contributions of the excited PES, study of reactions at higher collision
energies would be carried out most importantly for the branching ratio and the internal
state distribution. And finally, T intend to investigate the effects of rovibrational excitation,
motivated by the kind of effect seen in fig. 4.7.
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CHAPTER 5

CONCLUSION

In this thesis, the goal has been to extend the usefulness of quasiclassical method-
ologies in chemical dynamics. Methodologies which have been expounded upon here, like
the caustics determination method and the generalized formulation of the Zhu-Nakamura
Trajectory Surface Hopping method offer a viable path through which important chemical

and biological processes in practically large systems could be studied.

The effiency of the caustics method developed in chapter 2 was checked using the well-
known 2-dimensional Henon-Heiles potential and a triatomic reactive 3-dimensional system.
A big selling-point of this method is that it works even in the chaotic regime. The utility of
this method is further highlighted by its use in tunneling calculations for both the simple
collinear and 3-D Jtotal angular momentum # 0 cases of the H3 system to good effect.
This makes it an important component in the continous task at describing tunneling with

the semiclassical framework[1, 2, 3, 4].

In chapter 3, the trajetory-surface method is generalized with the use of the Zhu-Nakamura
theory so as to be applicable to multi-dimensional system without prior knowledge of the
crossing seam and irrespective of the type of crossing i.e. Landau-Zener(LZ) or Nonadia-
batic tunneling(NT) types. The method is applied to the model CH, system and found to
work nicely in comparison with the exact quantum mechanical results. The model system
constructed in order to feature rich nonadiabatic dynamics has a conical intersection which
provides both LZ and N'T types. Even if the knowledge of the nonadiabatic coupling vector

is not available, the direction of the nonadiabatic transition can be approximately estimated.

The caustics and straight-line tunneling method of chapters 2 is finally applied to the

real triatomic reaction system O + HCIL. Unfortunately, full inclusion of the effects of
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nonadiabatic transitions could not be finished and included in this thesis. However, the
reaction mechanism could be clarified and actually good agreement with experiment has
been obtained. The predominantly forward scattering, and anisotropy seen from experi-
ment is well-reproduced and the internal energy distribution agrees quite well, with a shift
peak of less than 2000 cm~!. Further thorough investigations of this system can clarify
reaction dynamics in many respects such as the collision energy dependence, the effects of

rovibrational excited reagents and the effects of nonadiabatic transitions and tunneling.

The new methodology developed in this thesis, namely the quasiclassical method with tun-
neling and nonadiabatic transition included can be useful and efficient in the investigation
of large systems. The emergence of the Zhu-Nakamura theory should definitely drive these
efforts because of its ease of inclusion in a variety of semiclassical methodologies and this is
to the great benefit of ordinary quasiclassical methodologies when the system to be studied
is too large to make full quantum calculations feasible. Although semiclassical theories
including the effect of phases are more accurate[5, 7, 8, 9] than quasiclassical techniques,

they are not yet straightforwardly applied to high-dimensional non-harmonic systems.

Since classical trajectories are easy to run as is evidenced by the surge in the various types
of molecular dynamics(MD) simulation studies, this thesis advocates the incorporation of
important quantum effects like tunneling and nonadiabatic transition to formulate a more

useful modification of MD simulations.

Further necessary improvements include the formulation of better and more rigorous tun-
neling trajectories. These have been found for tunneling splitting and decay[10] but not
for reaction. Also, the inclusion of such method should be incorporated into the methods

which have been developed in this thesis.
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