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ABSTRACT

We investigate the collision process of two cosmological shock waves produced by explosions by two-
dimensional numerical hydrodynamical calculations in relation to the formation of large-scale structures. The
numerical hydrodynamical code is designed to include self-gravity and cooling processes as well as the cosmic

expansion.

The structures resulting from the collisions can be classified into four categories by their global appear-
ances: complete merging case, merging case with a dense ring at the intersection of the two shock waves,
nonmerging case with a ring, and nonmerging case separated by a dense wall.

From calculations with various parameters, we obtain the parameter dependence of the structures formed.
The parameters searched, which affect the resultant structures, are the explosion redshift, the comoving dis-
tance between the two explosions, and the explosion energy for the case that two explosions are identical. In
addition, we also calculate the cases that the explosion redshifts are different.

From these, we explore the conditions for merging and ring formation, obtain their semianalytical expres-
sions, and discuss the mechanism of ring formation: a ring is not produced by self-gravity, but it results from
the cancellation of momenta in the direction perpendicular to the interaction plane at the collision.

In addition, gravitational instability and fragmentation of expanding rings are examined. These results are
discussed in relation to the formation of large-scale structures in the universe.

Subject headings: galaxies: formation — hydrodynamics — shock waves

I. INTRODUCTION

The distribution of galaxies shows us how luminous matter
is distributed on large scales. In the last decade, several redshift
surveys of galaxies have revealed the three-dimensional dis-
tribution of galaxies on scales greater than tens of mega-
parsecs. In particular, the first result of the extension of the CfA
survey showed a bubble-like distribution of galaxies (de Lap-
parent, Geller, and Huchra 1986): the universe is filled with
nearly spherical voids and galaxies seem to be distributed on
the surfaces of the voids. Recent progress of the CfA survey has
confirmed this impression (Huchra et al. 1988). The first survey
in the southern hemisphere has given a similar appearance (da
Costa et al. 1988). In addition, the H 1 redshift survey by Gio-
vanelli and Haynes (1985) has shown the existence of a very
long elongated structure in the Pisces-Perseus region.

Most theories for the formation of large-scale structures and
galaxies are based upon the idea that these structures in the
universe were produced by gravitational growth of primordial
Gaussian density perturbations imprinted in the very early
universe. They are often called Gaussian models.

On the other hand, non-Gaussian theories have also been
proposed. Popular models are the cosmic string theory and the
explosion model (Ostriker and Cowie 1981; Ikeuchi 1981).
Although the cosmic string theory can explain many observa-
tional facts, it is questionable whether the line density needed
for galaxy formation will be obtained from the phase tran-
sition.

In the explosion model, shock waves produced by explosive
energy release from a small number of seeds such as first-
generation objects (Ostriker and Cowie 1981; Ikeuchi 1981;
Yoshioka and Ikeuchi 1988) or superconducting cosmic strings
(Ostriker, Thompson, and Witten 1986) sweep up ambient
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intergalactic gas into spherical shells, which fragment into new
objects. Galaxies form on these large shells, and thus the
bubble-like structure of the galaxy distribution is naturally
produced. In addition, thermal electrons produced in the blast
waves can give rise to the distortion of the cosmic background
radiation (Yoshioka and Ikeuchi 1987; Ostriker and Thomp-
son 1987) recently discovered by Matsumoto et al. (1988).

On the basis of the explosion model, Saarinen, Dekel, and
Carr (1987) simulated the formation process of structures pro-
duced by explosions and the subsequent gravitational clus-
tering by the N-body method. They found that the explosion
model can reproduce the observed galaxy distribution on
scales of a few to a few tens of megaparsecs provided the gal-
axies formed at a redshift z ~ 5-10, although they did not
consider the effect of overlapping of gaseous shells.

Several difficulties with the explosion model have been
pointed out. The most serious one is the inevitable appearance
of anisotropies of the cosmic background radiation (CBR)
(Hogan 1984; Vishniac and Ostriker 1986). The temperature of
the CBR in the Rayleigh-Jeans part decreases by inverse
Compton scattering when the CBR photons pass through hot
gas in the blast wave (Zel’dovich and Sunyaev 1969). Fluctua-
tions of the number of explosions in observing beams will
result in spatial fluctuations of the CBR temperature.
Yoshioka and Ikeuchi (1988) showed that only voids with
radius smaller than 7.5h{5, Mpc can be produced without con-
tradicting the observed isotropy of the CBR, where h, ,, is the
Hubble constant in units of 100 km s~! Mpc ™. Yoshioka and
Ikeuchi (1987) and Ostriker and Thompson (1987), however,
suggested these anisotropies may be erased out by subsequent
Thompson scatterings with ionized intergalactic gas if the
explosion redshift is larger than 40 ~ 50. Merging of relatively
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small: shells may make the observed large voids. Thus, the
overlapping of expanding shells must be explored.

In recent years, several attempts to analyze the overlapping
structures of expanding shells have been proposed from the
standpoint of view of space division. In Yoshioka and Ikeuchi
(1989), we examined the structures which result from the over-
lapping of shells produced by explosions or negative density
perturbations using a three-dimensional Voronoi tessellation.
The tessellation was made by a simple Monte Carlo method
where mass distribution is represented by particles. The result-
ant structure was compared with the real structure by utilizing
correlation functions of the mass particles and vertices where
Voronoi cells intersect. The correlation function of the
Voronoi vertices was shown to follow a power law with index
~ —2, which is similar to that of clusters (Bahcall and Soneira
1983). Pierre, Shaver, and Iovino (1988) performed calculations
similar to ours using a Voronoi tessellation as a minimal model
and examined void structure in relation to the distribution of
the Lyman-a forest. In addition, van de Weygaert and Icke
(1989) have constructed three-dimensional Voronoi tessella-
tion and obtained a similar conclusion regarding the corre-
lation of the Voronoi vertices. Ostriker and Strassler (1989)
also calculated structures produced by overlapping of bubbles
and compared them with the CfA survey slice. Moreover,
Weinberg, Ostriker, and Dekel (1989) also calculated struc-
tures produced by overlapping of shells. They assumed clusters
form at points where three shells collide and tried various
statistical comparisons with the observations. They suc-
cessfully reproduced the two-point correlation function of clus-
ters as in Yoshioka and Ikeuchi (1989).

However, these simulations do not have a sufficient physical
basis; especially, collision processes of cosmological shock
waves have not been made clear. Collision processes of two
supernova remnants in the interstellar medium have been
investigated with two-dimensional hydrodynamical calcu-
lations by several authors (Ikeuchi 1978; Jones et al. 1979;
Bodenheimer, York, and Tenorio-Tagle 1984; Rozyczka,
Tenorio-Tagle, and Bodenheimer 1986). In particular,
Roézyczka et al. succeeded in simulating complicated pheno-
mena with their high-resolution hydrocode. However, self-
gravity has not been included in the existing calculations.

In this paper, we investigate the collision process of the
cosmological shock waves produced by explosions using
numerical hydrodynamical calculations, including self-gravity
and cooling as well as cosmic expansion. The aims of this
investigation are to resolve the following questions.

1. What structures are formed by the collisions of two
cosmological shock waves? What are conditions for merging
of the shock waves?

2. How large a structure can be produced by merging of
collided shells? How is the structure in the universe produced
based on the explosion model?

The plan of this paper is as follows. In § II, we introduce the
method of calculations and the underlying model. In § ITI, we
show the typical results of calculations and the parameter
dependences of structures produced by the collisions. In § IV,
we analyze the numerical results in more detail. In § V, we
examine gravitational instabilities of rings produced by colli-
sions. In § VI, we constrain the model parameters by compar-
ing the numerical results with observations. In § VII, we
summarize our results and discuss the structure formation in
the explosion model.

II. MODEL AND METHOD OF CALCULATION

a) Cosmological Model

We take three cases of model universe: (1) the HD model: a
baryon-dominated, flat universe (Q = Q, = 1, where Q is the
density parameter of the universe and Q, is the fraction of the
gas density to the closure density); (2) the LD model: a baryon-
dominated, open universe (Q =Q, = 0.1), and (3) the DM
model: a flat universe dominated by dark matter which is
assumed to be distributed homogeneously and treated only as
a background gravitational source (Q = 1 and Q, = 0.1). Theo-
ries of primordial nucleosynthesis in the standard big bang
cosmology predict 0.01 < Q, < 0.1 (e.g., Yang et al. 1984) and
so the cosmological models (2) and (3) may be adequate.
However, inhomogeneities created at the quark-hadron phase
transition could influence nucleosynthesis and may allow a
baryon-dominated, flat universe (model [1]) (Witten 1984;
Applegate, Hogan, and Scherrer 1987; Alcock, Fuller, and
Mathews 1987). As to model (3), the assumption that dark
matter has a role only as a homogeneous background field is
valid for relatively early phase of blast waves, though it may
not be valid when potential wells of gas shells become deep to
affect the motion of dark matter. The fractional density pertur-
bation to the total density by a thin gas shell produced by the
explosion is ~Q,. Then, this perturbation would go into a
nonlinear stage at z ~ Q1 + z) — 1. Thus, the assumption
made on the dark matter would break down at early epoch for
models of high z; explosions. Throughout the calculations,
the Hubble constant is set to H, = 100 kms™! Mpc™1, ie.,
hyoo = 1.

b) Basic Equations

We express the equations of gas dynamics in Eulerian coor-
dinate. Let p be the gas density, u the gas velocity, p the gas
pressure, € the specific internal energy of the gas, and @ the
gravitational potential.

The equations of continuity, motion, and energy are, respec-
tively,

2,9 gm0, 8
p[%+(u-V)u]= —Vp— pVao , )]
%(pe)-FV'(pEu): —pVu—A, 3)

where A represents the energy loss rate per unit volume due to
radiative cooling and inverse Compton cooling. The gravita-
tional potential is determined by the Poisson equation,

V2® = 47Gp , )

where G is the gravitational constant. We take the usual equa-

tion of state with the ratio of specific heats y,
1 p

€=—-"=, s

y—1p )

The above equations are based upon the Newtonian

approximation, which is valid since length scales are small

compared to the Hubble length ¢/H in the present situation. In

order to treat the cosmological expansion properly, we follow

the method of Shandarin (1980) and Shapiro and Struck-
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Marcell (1985). We define a new set of dimensionless, comoving
variables, which describe perturbed fluid quantities relative to
the mean, adiabatic cosmic expansion as follows:

fi= a_l(ri/ro) s di = a_z(dt/to) , P= as(/’//’o) >
¥; = a(v;/vo) , ¢ =aXd/po), B =ap/p,), (6)
& = a¥(e/ey) ,

where a is the scale factor of the universe, t is the time, r; are the
spatial coordinates, ¢ and v; are the peculiar gravitational
potential and velocity, respectively, and all zero-subscripted
variables are fiducial values of the corresponding physical
quantities. The actual velocity u; can be written as a sum of the
average expansion of the universe and this peculiar velocity as
follows:

ui(t’ ri) = H(t) tr; + U,—(t, ri) E (7)
where H(t) = a/a is the Hubble constant. Similarly, the actual
gravitational potential ® can be written as the sum of the

contribution from a homogeneous, isotropically expanding
universe and that from the perturbation, as follows:

®(t, r) = 2nGpri/3 + ¢(t, 1) , ®

where p is the mean mass density at time ¢. The scale factor a is
related to the dimensionless time ¢t as

at)= (-, ©
where
Q) = (1 — Q0)/Q . (10)

The zero-subscripted, dimensional constants are fixed by the
present value of Hubble constant H,, the present density
parameter Q,, and the parameter r, as follows:

2
to = W s Vo= ro/to s Po= 3QOH(2)/(87[G) >

P0=P0U<2): 6o=4’o=U(2)- (1)

The equations of continuity, motion, and energy are then
rewritten to

J . -
a—;p+V'(pU)=0, (12)
» %+(v~V)v]=—V§—ﬁV<§, (13)

a%(ﬁé) + V - (p&v) = h()2pe — 3p) — Vo — K,  (14)

where A(t) = a~ '(da/dt). )
The peculiar gravitational potential ¢ is given by the
Poisson equation in the present coordinate system as

V24 = 6a(i¥p + pom — 1) » (15)
where pp,, is the dimensionless density of the background dark
matter and

1

E=—

o (16)

™

For the case considered here, y is 5/3 and the first term of the
right-hand side of equation (14) vanishes. The term A is the
dimensionless cooling rate:

R =(@to/poA . 17)
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¢) Numerical Hydrodynamics

We take a cylindrical symmetric coordinate system, i.e., Z-R
coordinate, which is adequate for the geometry considered
here. The numerical code is constructed following Norman and
Winkler (1986), Rozyczka (1985), and Hawley, Smarr, and
Wilson (1984). The scheme is two-dimensional Eulerian. One
time step is divided into two independent steps, i.e., the source
and transport steps. In the source step, we accelerate fluid
velocities, perform pressure work, and subtract internal energy
due to cooling loss. In the transport step, fluid is transported
through the computational mesh, for which we employ van
Leer’s (1977) second-order accurate monotonic interpolation
scheme.

In order to handle shock discontinuities, we add a von
Neumann-type artificial viscosity in the source step. We adopt
the scalar viscosity which behaves like isotropic pressure:

0- Cp:-(V0)?2 forV-v<0,
B 0 forV-v>0.

Throughout the calculation, we take C = 2.0. Owing to this
viscosity, a shock front is somewhat widely smeared, although
this value of C is needed to conserve the total energy.

At the outer boundaries, the following conditions are
adopted: p = p(z;), p = p(z;), and & = 0. On the symmetry axis
(R = 0), the velocity components perpendicular to the sym-
metry axis are set to be zero.

We follow the method of Black and Bodenheimer (1975) for
calculating the self-gravity. The boundary values of gravita-
tional potential are computed from a multipole expansion. On
the symmetry axis (R = 0), d¢/0R = 0 should be satisfied. The
adopted technique for solving the Poisson equation is the ADI
method. Although we try the ILUBCG method, the computa-
tional time per step is nearly the same.

In cosmological hydrodynamics, we must consider two types
of cooling processes: inverse Compton cooling and radiative
cooling. The rate of inverse Compton cooling is given by

Acomp =54 x 1073%(1 + z)*nergscm3s™ 1,  (19)

where we took the present CBR temperature as 2.7 K. The rate
of radiative cooling in gas with the primordial abundance
(H:He =9:1 in number) is approximated by the following
functional form (Ikeuchi, Tomisaka, and Ostriker 1983):

24 x 10°27T%%  for T > 7 x 10°

59 x 10718714 for7x 105> T > 8 x 104
19 x 10742T*°  for8 x 10*> T > 5 x 10*
81x 10718717 for5x 10*> T >3 x 10%.

(20)

We cut off cooling below T, =3 x 10* K, which approx-
imately corresponds to the equilibrium temperature due to UV
heating from quasars, some unknown sources, or the blast
wave itself. Cooling by molecules such as H, may make a
significant contribution to the total cooling rate at low tem-
peratures if formed (Mac Low and Shull 1986; Shapiro and
Kang 1987), but we do not include it.

d) Tests
We performed several test runs on our hydrodynamical
code. They are the Riemann (Sod) shock tube in one-
dimension, the adiabatic shock wave produced by a point
explosion in a stationary, homogeneous medium, and super-
nova remnants in the interstellar medium in two-dimensional

(18)

Avaa/n* =
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Z-R coordinate. Agreements of the results are sufficiently good
compared to preexisting analytical, or numerical solutions.
The cosmological version of the code is tested in the case of a
point explosion in an expanding universe. The adiabatic case
without cooling in Q = Q, = 1 is compared with the analytical
solution (Ikeuchi, Tomisaka, and Ostriker 1983; Bertschinger
1983). The radius of the shock wave obtained by the simulation
agrees with the analytical one within one or two mesh sizes;
the agreement concerning the density distribution is less suffi-
cient, which may be attributed to the singular nature of the
self-similar solution or insufficient resolution of the present
calculation. Cases considering cooling in Q = Q, =02 and in
Q=1 and Q, =0.2 are compared with the spherically sym-
metric hydrodynamical calculation by Vishniac, Ostriker, and
Bertschinger (1985). The shock radius agrees within 5% accu-
racy. The agreement of the density distributions are fairly
good, although the density enhancement behind the shock is
relatively small because of the resolution. Conservations of
mass and momentum are automatically achieved by the
numerical scheme. Total energy conserves within the error of
3%—5%.

III. RESULTS

a) Initial Condition

Initially ambient gas is at rest in comoving coordinates and
has density p, = Q, p.,;,. The temperature of the ambient gas is
assumed to be T; = 100 K. This choice does not have any
reasoning, but it will not affect the results as long as T; is as
small as this order, since a sufficiently developed, cosmological
blast wave is pushed by gravity, not by pressure.

As seen in Figure 1, the first explosion with the energy E;,is
set at the redshift z; | and the second explosion with the energy
E, , at the redshift z; , at the comoving distance d. Throughout
the calculations, we take E,, = E; , = E,. In the first, we set
the explosion redshifts to be z,, = z"2, and then we also
examine the cases of different z;,. Energy of each explosion is
deposited as thermal energy into several mesh volumes.

Z
b

Explosion 2

2,2, Ei,2

Explosion 1

2i1y E-‘,l

F1G. 1.—Configuration of the present calculation. The first explosion with
energy E, , occurs at the redshift z; ; and the second explosion with energy E;,
occurs at the redshift z; ,. The two explosion points are put at the comoving
distance d Mpc.
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b) Results for Same Explosion Redshifts

We summarize parameters of various models in Table 1.
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The results of calculations can be classified into four types
by the appearances of global structures: (1) merging case (M
case), (2) merging case with a ring (MR case), (3) nonmerging
case with a ring (WR case), and (4) nonmerging case with a wall
(W case). We present typical examples of these four cases for

TABLE 1A

NUMERICAL RESULTS FOR THE HD MODEL
Q=1,9,=1, E = 10% ergs, A = 0.06 Mpc)

z; d Merge Vew Vo/Vo R,, Ring Komax
5., 1.2 Yes 94.8 1.54 2.83 No
1.8 Yes 99.0 1.61 2.87 No ..
24 Yes 104.4 1.69 2.92 Yes 18.0
3.0 Yes 111.2 1.81 2.98 Yes 21.5
3.6 No No
10..... 1.2 Yes 85.6 1.55 2.73 No e
1.8 Yes 89.8 1.63 2.78 Yes 20.5
24 Yes 95.3 1.73 2.83 Yes 28.5
30 No Yes 19.7
36 No No
20..... 1.2 Yes 62.2 1.56 2.46 Yes 18.7
1.8 Yes 66.4 1.66 2.51 Yes 22.8
24 No Yes 250
3.0 No Yes 12.6
3.6 No No
30..... 1.2 Yes 48.6 1.57 2.26 Yes 19.2
1.8 Yes 52.3 1.69 2.32 Yes 19.3
24 No Yes 174
3.0 No No
TABLE 1B
NUMERICAL RESULTS FOR THE LD MODEL
Q@ =01,Q,=0.1, E, = 10°" ergs, A = 0.1 Mpc)
% d  Mege V, V¥, R, Ring K,
10..... 20 Yes 432.1 1.53 4.69 No
30 Yes 4479 1.59 475 No .
4.0 Yes 477.3 1.70 485 Yes 9.0
50 Yes 509.9 1.81 497 Yes 12.1
6.0 No Yes 10.6
20..... 2.0 Yes 2529 1.52 3.92 Yes 12.0
30 Yes 273.5 1.64 4.03 Yes 214
40 No Yes 183
50 No No
30..... 1.0 Yes 1814 1.45 3.51 No ...
20 Yes 190.7 1.52 3.57 Yes 15.8
30 Yes 211.1 1.69 3.69 Yes 208
4.0 No ... . Yes 14.3
TABLE 1C
NUMERICAL RESULTS FOR THE DM MODEL
Q@=1,9,=01, E, = 10° ergs, A = 0.1 Mpc)
d  Mege ¥, VY, R, Ring K,
10..... 20 Yes 256.1 1.56 3.94 No
3.0 Yes 271.0 1.65 4.01 No
4.0 Yes 293.2 1.79 4.12 No
50 Yes 312.7 1.90 421 No
6.0 No No
20..... 2.0 Yes 124.1 1.60 3.09 No ...
30 Yes 137.6 1.78 3.20 Yes 7.8
4.0 No No
30..... 1.0 Yes 71.9 1.49 2.58 No .
2.0 No Yes 9.6
3.0 No No
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the model universe Q =Q, = 1(z;, = z; , = z;, and E, = 10°!
ergs). These evolutionary features are shown in Figures 2-7.
All of contour maps of density, pressure, etc., are shown in
terms of the dimensionless values. Arrows in the contour maps
represent peculiar velocity fields.

i) Merging Case (z; = 10, and d = 1.2 Mpc): Model A

The evolution of the density distribution in this case is illus-
trated in Figure 2. Shock waves produced by explosions at the
same redshift z; = 10 collide at z ~ 9.5, when the shock waves
have not been yet cooled by Compton cooling. Then, the colli-
sion occurs during the adiabatic phase. Immediately after the
collision, reflected shocks emerge from at the plane of inter-
action and move outward perpendicular to the plane of the
interaction. This situation is clearly seen in Figure 2b at the
epoch z = 7.2. We can see the positions of reflected shocks by
steep gradients of density contours or velocity fields. After the
reflected shocks overtake the outer shocks, disordered gas
motions arise due to the disturbing waves in the cavity, and
eventually the two outer shocks merge into a single shell. The
final structure can be hardly distinguished from that produced
by a single explosion, except that it is somewhat elongated
along the symmetry axis.

ii) Merging Case with a Ring (z; = 10, and d = 2.4 Mpc): Model B

In this case, the explosion redshift is the same as that of the
model A, but the distance between the two explosions is twice
as large. The evolution is illustrated in Figure 3. Although the
shock waves do not suffer significant cooling before the col-
lision, the cooled dense shells begin to form soon after the
collision, and weak reflected shocks emerge. The weak reflected
shocks disappear in a short time, and the outer shock waves
merge into a single shell by z = 0 as is seen in Figure 3d. The
clearly different feature from model A is the formation of a

0.0 ey g e = 0.0
1.8 2.4 3.0 3.6

R

----------------------------
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high-density region at the spot where the two outer shocks are
colliding. This high-density region is a ring from the geometry.
The density enhancement of the ring is k = p;,./p, = 28.5,
which is larger than that of the outer shell. The mass of the ring
isM, ~3 x 10> M.

iii) Nonmerging Case with a Ring (z; = 20, and d = 2.4 Mpc): Model C

In this case (Fig. 4), the explosion redshift z; = 20 far earlier
than model B. At such a high redshift, the inverse Compton
cooling is so efficient that cooled dense shells are formed before
the collision. At the collision time, the shells have been com-
pletely cooled, and reflected shocks do not emerge. Instead, a
dense wall is formed at the plane of the interaction. Similarly to
model B, a high-density ring is formed as seen in Figure 4d.
The (}gnsity enhancement of the ring is k = 25.0, and its mass is
~10"* M.

For this case, the calculation with finer mesh size A = 0.03
Mpc, which is half as large as in the other calculations, is also
performed (Fig. 5). The global structure, the radius of the shock
wave, and the major radius of the ring are almost the same as
those with the ordinary mesh size of A = 0.06 Mpc. On the
other hand, the shell thickness changes from ~0.3 Mpc for
A = 0.06 Mpc to ~0.2 Mpc for A = 0.03 Mpc; the minor dia-
meter of the ring changes from x0.3 Mpc for A = 0.06 Mpc to
0.2 Mpc for A = 0.03 Mpc; the density enhancement of the
ring is k¥ = 52.9, which is about twice as large as that of the
low-resolution calculations. This result suggests to us that the
calculations with A = 0.06 Mpc cannot resolve the fine struc-
ture of the ring, but they can reproduce the same evolution and
global structures. Closed-up views at Z = 0 near the plane of
the interaction and the ring are shown in Figure 6. Figures 6a
and 6b show the density and pressure contours in addition to
the velocity fields, respectively. The ring grows gathering

1.8 2.4 3.0 3.6

FiG. 2.—Evolution of the density distribution for model A (Q = 1,Q, = 1, z; = 10, E; = 10°! ergs, and d = 1.2 Mpc), representing the complete merging case. The
mesh size is A = 0.06 Mpc. The redshifts are 9.1, 7.2, 3.4, and 0.0 from left to right. The density is shown by the dimensionless value, normalized by the average density
of the universe. Each contour interval is a factor of 10%!*, and only the contours of the top 10 levels are plotted. The logarithms of the maximum levels of the density
contours are 0.204, 0.252, 0.557, and 0.716 for each epoch. The peculiar velocity fields are also shown by the arrows, whose lengths are proportional to the absolute
values of velocities. The maximum velocities are 8.3 x 10*kms~*,4.6 x 10°kms™*,2.0 x 102kms~!,and 1.1 x 10?kms~?, respectively.
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F1G. 3—Evolution of the density distribution for model B(Q = 1,Q, = 1,z = 10, E, = 10°" ergs, and d = 2.4 Mpc), represening the merging case with a ring. The
redshifts are 7.0, 4.5, 2.1, and 0.0 from left to right. The logarithms of the maximum levels of the density contours are 0.271, 0.596, 0.932, and 1.274, respectively. The
maximum velocities are 2.9 x 102kms~ 1,22 x 102kms~%,1.6 x 102kms~!,and 1.2 x 10> km s~ !, respectively.

- - " . - 9.6 , . ; . - ~
9.0 g g.0f B g.0} 1 9.0 1
8.4 4 8.4 4 8.4 8.4 | 1
7.8 4 7.8 } g 7.8 781ru", ]
Trrrrrr
rrrrrrr2
RNy,
T2 RIS ONDY 1
RNV,
RIS §
5005252020
| 6.6 brirsl1l222200 J
1 q
1 q
1.8 b 1 1.8 4 1.8 4 -
1.2 g .2 f 1 .2+ 1 2t 1
0.6 1 0.6 | q 0.6 4 .6 1
0.0 & e o 0.0 bermeprmr ey e amcmce—e— o 0.0 bememprm ey ey ] 0 by g g
0.0 0.6 1.2 1.8 2.4 3.0 3.6 0.0 0.6 1.2 1.8 2.4 3.0 3.6 0.0 0.6 1.2 1.8 2.4 3.0 3.6 0.0 0.6 1.8 3.0 3.6

* FIG. 4‘.—Evolution of the density distribution for model C(Q = 1,Q, = 1, z, = 20, E; = 10°! ergs, and d = 2.4 Mpc), representing the no-merging case with a ring.
The redshifts are 11.2, 8.0, 0.8, and 0.0 from left to right. The logarithms of the maximum levels of the density contours are 0.313, 0.542, 1.002, and 1.216, respectively.

The maximum velocities are 3.0 x 10> kms™!,2.3 x 102kms~%, 1.1 x 102kms~*,and 1.0 x 10> km s~ !, respectively.
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9-6 i j j ' ' i) Dependence on the Explosion Redshift and the Separation
of the Two Explosion Points
9.0} 1 First, we examine the dependence on the explosion redshift
z; and the separation of the two explosions d. The explosion
8.4 . energy is set to E; = 10! ergs. In the case of the HD model
(Q =Q, = 1), the dependence of the structure formed on z; and
7.8 - d is summarized in Figure 8a. At a fixed explosion redshift (e.g.,

0.0 | L L | 1
0.0 0.6 1.2 1.8 2.4 3.0 3.6

R
F1G. 5—High-resolution calculation with mesh size A = 0.03 Mpc. Param-
eters are the same as in Fig. 4. This shows the density contour with the velocity

field at z = 0. The logarithm of the maximum level of the density contour is
1.527. The maximum velocity is 1.1 x 102kms™?,

matter from the cooled shells and the wall. Figures 6¢ and 6d
illustrate the contours of the peculiar potential ¢. At the ring, a
deep potential well is formed, but this does not play a role in
accumulating matter to the ring, as is seen from the arrows of
the velocity fields. The physical cause of ring formation is dis-
cussed in § IV.

iv) Nonmerging Case (z; = 20, and d = 3.6 Mpc): Model D

The distance between two explosions is the largest of the
cases explored. The collision just occurs at the epoch z ~ 3,
when cooled, dense shells have already been formed. In this
case, a relatively dense wall is formed, but no ring feature
appears (Fig. 7), because there is no time needed to form a ring.
This reason is also discussed in § IV.

¢) Parameter Dependence

Here, we survey the parameter dependence of the global
structure produced by the collision of shock waves. The objects
of the calculation are to see under what conditions two shocks
are merged into a single shell and whether they form a ring by
the present z = 0.

z; = 20), the structures change according to the distance d as
follows. For a fairly small d, the two shock waves completely
merge into a single shell, not forming a ring. With increasing d,
the two shock waves merge into a single shell, forming a high-
density ring. With further increasing d, the two shock waves do
not merge and leaving a wall structure in the plane as well as
the ringlike density enhancement. For a still larger d, the shock
waves do not form a ring. The critical distances classifying the
above four cases decrease with increasing explosion redshift z;.
Since at a larger redshift the Compton cooling is efficient,
cooled dense shells are quickly formed, and they can merge
only for smaller d. Strong cooling at large redshifts prohibits a
shock wave expanding to a larger size, and thus the critical
distances scale to smaller ones.

The LD model (Q =Q, = 0.1) and the DM model (Q =1,
and Q, = 0.1) show similar parameter dependences as shown
in Figures 8b and 8¢, respectively, although the classification of
structures formed cannot be made so definitely in the latter
model. These parameter dependences are discussed in relation
to the physical cause of ring formationin § IV.

ii) Dependence on the Explosion Energy

Since a larger explosion energy makes a larger shell, the
increase in the explosion energy leaving d unchanged will have
a similar effect to the case of decreasing d leaving E;
unchanged Here, we examine the dependence on the explos1on
energy using the scale transformation. As given in § II, all
physical quantities are transformed to nondimensional form
by dividing zero-subscripted constants such as r,, t,, and p,.
These constants scale with respect to the scale transformation
ro — fro as follows:

vy = Bvy, Do _'lgzl’o s
¢0_’ﬂz¢o .

The total energy scales as E — B°E. Therefore, models in which
ro— Pro, and E; — B5E; are all similar. This similarity holds
perfectly only for the adiabatic phase in which any cooling
process is not effective. On the other hand, for the radiative
phase cooling is effectively more efficient in the dimensionless
forms in the case of larger E;, ie., larger r,. Utilizing this
scaling law, we can easily see the essential effect of changing the
explosion energy.

We calculated two models in addition to model C (Q =
Q, = 1,z,= 20, E; = 10°! ergs, and d = 2.4 Mpc), the model E
for E; = 10%° ergs, and d = 0.96 Mpc = 2.4 x 100~ /> Mpc,
and the model F for E;=10% ergs, and d=6
Mpc = 2.4 x 1005 Mpc. Density contour maps at z =0 of
models E and F are shown, respectively, in Figures 9a and 9b,
which should be compared with Figure 4d for model C. The
global appearances are very similar: a wall as well as a dense
ring is formed. At the range of E; = 10°°-10°3 ergs, the above
scaling law holds within the error of ~ 1% for the shock radius,
of ~5% for the ring major radius, and of ~5% for the total
energy. The density enhancements in the rings show the,energy
dependence as k = p;,./po = 25(E;/10%" ergs)®-!.

o=, Po—Po>

eo*ﬂzeo s
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Fi1G. 6d

FIG. 6.—Closed-up views of the high-resolution calculation. (a) Contour maps of the distribution of dimensionless density. The logarithms of the maximum level
of the density contour is 1.527. The maximum velocity is 1.1 x 10% km s~ *. (b) Contour maps of the distribution of dimensionless pressure. The logarithm of the
maximum level of the pressure contour is 0.936. (c) and (d) Contour maps of the peculiar potential distributions for the positive part and the negative part,
respectively. The logarithms of the maximum levels of the potential contours are —0.537, and — 1.285, respectively.

d) Results for Different Explosion Redshifts

Here, we will present two examples of the case that two
explosions occur at different epochs. In the model G (Fig. 10),
the first explosion occurs at z; ; = 20, and the second explosion
occurs at z; , = 10, when the first one has already formed a
cooled, dense shell (Fig. 10a). Both explosion energies are set
E; = 10" ergs. The collision of the two shock waves occurs at

z ~ 8, at which both shocks are in the radiative stage. After the
collision, a wall forms, but by z =0 it almost disappears
accompanying a dense ring. The density enhancement of the
ring is k¥ = 21.7, which is somewhat smaller than the corre-
sponding cases with simultaneous explosions: x = 25.0 for
2y = 2;, = 20,and k = 28.5,forz, ; = z; , = 10.

In the model H (Fig. 11), the first explosion occurs at Z;1 =
20 and the second one occurs at z; , = 5. At the time of the
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FI1G. 7.—Evolution of the density distribution for model D (Q = 1, Q =1,
z; =20, E; = 10°" ergs, and d = 3.6 Mpc) representing the no-merging case.
The redshifts are 10.1 and 0.0 from left to right. The logarithms of the
maximum levels of the density contours are 0.338 and 0.736, respectively. The
maximum velocities are 2.7 x 102km s™*,and 8.7 x 10" km s~ !, respectively.

collision the first explosion has formed a cooled, dense shell,
but the second one does not suffer sufficient cooling, remaining
in the adiabatic phase. The high-pressure gas in the second
shock can break the dense shell of the first shock, and a strong
shock wave goes into the cavity of the first shell, as is seen in a
rapid change of velocity vectors in Figure 11c. At z = 0, the
two shocks merge into a single shell, leaving only a trailing
structure which is the debris of the dense shell of the first
explosion. The maximum value of the density enhancement in
the ringlike region x = 13.0.

From the above calculations, we can conclude that the
younger shock works to inhibit the formation of a wall or a
ring, although a dense ring can be produced when the younger
shock wave has already suffered much cooling before the colli-
sion.

IV. PHYSICAL ANALYSIS OF NUMERICAL RESULTS

a) Physical Cause of Ring Formation

As seen in § III, self-gravity is not the main cause for the ring
formation, but the hydrodynamical interaction of colliding gas
leads to the ring formation. This statement can be justified by
the fact that the shock collision in non-self-gravitating inter-
stellar medium, which was calculated as a test, results in ring
formation in agreement with the result by Roézyczka et al.
Suppose that two cooled, dense shells produced by two explo-
sions with the same energy collide at the plane of the inter-
action. When the collision of matter is perfectly head-on, the
matter loses its momentum normal to the plane and stops in

Vol. 360

the plane. When the collision of matter occurs obliquely, its
component of momentum perpendicular to the plane is lost,
but the parallel component is conserved. Since the shock waves
decelerate as time goes on, the matter moves along the plane to
overtake the shock front. A ringlike density enhancement is
formed at the place where the two outer shock waves intersect.
Ring formation does not occur when radiative cooling is inef-
fective, because in such a case reflected shock waves expand
inside the cavity as the incident angle of the shock waves
increases, and gas with zero momentum in perpendicular to
the plane does not remain along the plane.

Here, we will analyze this process in some detail. For simpli-
city, we first examine the collision of two identical spherical
shocks in a nonexpanding, nongravitating medium. The
expansion law of the shock wave is supposed to follow a power
law, R, = Ct*. We assume the shock waves are completely
cooled and the pressure does not affect the dynamics. We
follow the trajectory of a mass particle P. The configuration is
shown in Figure 12. The mass particle P starting from point P;,
whose distance from the explosion point Q is r,, begins to be
entrained into the shocked shell at the time t,, where ¢, is given
by r, = R(t,). The particle P collides with another shell at the
time t,, where ¢, is given by

Ry(t,) = Ct? =l sec O(=d sec 0/2) , (21)

where 0 is the angle OQP; and ! is the distance from Q to the
interaction plane. Thus, we have

t, = (I sec B/C)V= . 22)

The particle P loses its momentum perpendicular to the plane
and moves along the plane conserving its momentum parallel
to the plane at t > ¢.. If it is a free particle, it will move at the
constant speed

v, =v(t,) sin 0 = aCt* 'sin 0. (23)
Therefore, the position of the particle P at time ¢ is given by
qg,=1Itan 0+ v,(t —t.)=1tan 6
+ aC(l sec /C)* Ve gin 0t —t,). (24)

On the other hand, the position of the shocked shell along the
plane is given by

g, = (R? — P)12 = (¥ — )12, 25)
and its velocity is

. (XCZ t2a -1
4= Co_pn- (26)
Then, for R, = Ct* > I, and if « < 1, the shock wave decelerates
and the particle P with the constant speed will catch up to it
soon after.

Figure 13a shows the trajectories of colliding particles in the
case of the momentum-driven snowplow phase in the station-
ary medium, i.e, « = . The time ¢ measured from the explo-
sion time is normalized by ¢, which is defined by 2R (t,,) =
d = 2l. The distance g along the symmetry plane from the
origin is normalized by | = d/2. The solid lines show the trajec-
tories of mass particles, corresponding to the angle 6 from 10°
to 60° in every 5° from below. The dashed line indicates the
trajectory of the shock intersection. The trajectories of mass
particles of 6 ~ 35°-50° converge to nearly the same spot g, ~
1.6 at t ~ 13, where a dense ring is to be formed. Soon after, the
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convergent point catches up to the intersection point of the
outer shock waves and the ring grows with collecting matter.
8 - We can make a similar analysis in an expanding medium.
Figure 13b shows the case of the cosmological adiabatic blast
| wave with index o = £. The time ¢ measured from the explo-
I sion time is normalized by ¢, which is defined by 2R(t..,)
(1 + z.n) = d = 2. The comoving distance g is normalized by
6 F a i I = d/2. In this figure, the solid lines show the trajectories of
mass particles corresponding to the angle 6 from 20° to 50° in
every 5° from below. The dashed line indicates the position of
B O - the shock intersection. In this case, the particles with  ~ 35°—
50° converge to nearly the same spot g, ~ 1.3 at t ~ 50. Hence,
d , L o o | we may conclude that the ring can be formed after the intersec-
tion point of shock waves reaches g ~ 1.3I(i.e,, R, ~ 1.6l).
B O A 0 E b) Conditions for Merging and Ring Formation
First, we examine the conditions for merging of the shock
o L 0 0 o | waves. As seen in § III, the collision of adiabatic shock waves
leads to complete merging without producing a ring. Thus, we
may safely give the condition for complete merging as
b O .
tcoll < tcool(zi) ’ (27)
0 ) [ | where ¢, is the time of the collision, and ¢_,,(z;) is the cooling
0 10 20 time evaluated at z = z;. Though ¢,,,(z.,,) may be more ade-
30 . » . .
2 quate for this condition, we take t_,(z;) for a simple numerical
FiG. 8¢ estimate. The expansion law of the adiabatic shock wave in an

F1G. 8—Classification of produced structures. (a) The case of the HD
model (Q = 1,Q, = 1), and E, = 10%! ergs. Open circles, triangles, diamonds,
and squares represent the merging cases, merging cases with a ring, no-
merging cases with a ring, and no-merging cases, respectively. All calculations
were perfomed with A = 0.06 Mpc. (b) The case of the LD model (Q = 0.1,
Q,=0.1), and E, = 10°' ergs. All calculations were performed with A = 0.1
Mpc. Each symbol has the same meaning as in (a). (c) The case of the DM
model (Q = 1,Q, = 0.1), and E; = 10°* ergs. All calculations were performed
with A = 0.1 Mpc. Each symbol has the same meaning as in (a).

Q = Q, = 1 universe can be approximated as
R(1) = 1.1 x 10" ELPt*3(t, ; + t)*° cm (28)

where ¢, ; is the cosmic time at z = z;. The collision time ¢, is
given by d = 2R (t ;{1 + z.oy)- Since the cooling time due to
the inverse Compton process, which dominates at z > 10, is
given by ¢, = 7.67 x 10'%(1 + z,)™* s, the condition (27) can
be translated into the condition for d at a given z, d <
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Fi16. 9—Dependence on the explosion energy. (a) The case of a smaller explosion energy: model E. Parameters are the same as in Fig. 4 except that the explosion
energy E; = 103% ergs and d = 2.4 x (0.01)°2 Mpc. The logarithm of the maximum level of the density contour is 1.018. The maximum velocity is 3.9 x 10! km s~ 1.
¢b) The case of a larger explosion energy: model F. Parameters are the same as in Fig. 4 except that the explosion energy E; = 10%3 ergs and d = 2.4 x (100)°-2 Mpc.
The logarithm of the maximusm level of the density contour is 1.424. The maximum velocity is 2.8 x 10?kms™*.
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F1G. 10.—Case of different explosion redshifts: model G (Q = 1,Q, = 1,2, , = 20,2, , = 10, E,; , = E; , = 10%' ergs, and d = 2.4 Mpc). The mesh size is A = 0.06

Mpc. The redshifts are 10.0, 7.6, 3.0, and 0.0 from left to right. The logarithms of the maximum levels of the density contours are 0.343, 0.300, 0.753, and 1.154,
respectively. The maximum velocities are 7.1 x 103kms~1,3.6 x 102kms™!,1.7 x 102kms~*,and 1.1 x 10> kms~?, respectively.
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F16. 11.—Case of different explosion redshifts: model H Q= I,Qg =12,=20,z,=5, E,,=E;,= 108! ergs,and d = 2.4 Mpc). The mesh size is A = 0.06
Mpc. The redshifts are 4.2, 2.4, 1.0, and 0.0 from left to right. The logarithms of the maximum levels of the density contours are 0.452, 0.674, 0.737, and 0.932,
respectively. The maximum velocities are 4.9 x 102kms™*,2.6 x 10*kms~*, 1.5 x 10km s~ !,and 1.0 x 102 km s~ !, respectively.

2R(teoa)[1 + 2(tcoop]- In fact, the condition d < Ry(t.o0)
[1 + z(t.,,)] seems to agree better with the numerical results
except for higher z;. The cooling of shells just after the collision
leads to ring formation.

Next, we examine the conditions for ring formation. As seen
in the previous subsection, a ring forms at the intersection
point of outer shock waves by overtaking of colliding matter so

Explosion 2

Explosion 1

F16. 12.—Schematic diagram of particle motions for inducing the ring for-
mation.

long as the matter has been cooled in the dense shells. Since the
convergence occurs when the intersction point proceeds ~ d/2
along the plane of the interaction, the condition for ring forma-
tion by z = 0 will be given by

d<a,R(z=0). (29)

The condition for the merging of cooled, dense shells by
z = 0 will be given by

d<a,R(z=0). (30)

Rz = 0) is the shock radius at z = 0 considering cooling and it
can be obtained not analytically but numerically. The coeffi-
cients a; and a, are fitting parameters of ~ O(1). Taking a, =
1.4 and a, = 1.1, the conditions (29) and (30) reproduce the
numerical results as seen by the dash-dotted and dashed lines
in Figure 14, respectively. The conditions obtained here are
given for E; = 10°' ergs, but the scaling law d — d(E,/10°"
ergs)'/* can be applied to different explosion energies. The
reason why we can use the scaling law of R, oc E!'® is as
follows: The thermal energy of the shock wave becomes negli-
gible compared to its total energy at about the cosmic time
scale t, (Bertschinger 1983), and the total energy remains
approximately constant after cooling. Thus the total energy
after cooling E,,, can be written as E,,, ~ E; exp (—b), where
b~t,/t,,. When the Compton cooling is dominant, the
cooling time ¢, does not depend upon E;. Therefore, E.../E;
depends only very weakly on E;, since the evolution of the
shock wave after cooling is similar to that of an adiabatic
shock wave whose initial energy is set to be E. .1, particularly,
concerning the expansion law, the scaling R, oc EL/3 oc E!/5 is
achieved for fixed z;. ‘
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FiG. 13.—Trajectories of the colliding particles on the symmetry plane. (a) The case in the stationary medium. The expansion law of the shock wave is R, oc 1925,
The time ¢ and the distance g are normalized by the collision time ¢, and I = d/2, respectively. The solid lines show the trajectories of mass particles on the symmetry
plane for angles 6 from 10° to 60° in every 5° from below. The dashed line indicates the position of the shock intersection. (b) The case in the expanding universe. The
expansion law of the shock wave is R, oc t%8. The solid lines show the trajectories of mass particles on the symmetry plane for angles 8 from 10° to 60° in every 5°

from below. The dashed line indicates the position of the shock intersection.

¢) Volume of Merged Bubbles

In Table 1, we summarize the numerical results at z = 0.
When the two shock waves merge, the total volume of the
merged shell V,,, their effective radius R, = (3V,,/4n)'/3, and

T T T T
48 0 T .. -
36 | 0 (=] =] -

\'\.§'\~\
.~'s.~'

- A O "®~.\_\.\ [m] .

‘\.“
d 24 b
1.2 1

0 1 1 1 1

0 5 10 20 30

Zi

F1G. 14.—Analytically derived dependence of produced structure in the
case of the HD model (@ = 1,Q, = 1, and E; = 108! ergs). Below the solid line,
the shock waves merge, not forming a ring. Between the solid and dashed lines,
the shock waves merge, forming a ring. Between the dashed and dash-dotted
lines, the shock waves do not merge with a ring. Between the dash-dotted and
dotted lines, the shock waves do not merge without a ring. Above the dotted
line, the two shock waves do not collide each other by z = 0.

the ratio of the volume to that of a single explosion for the
same z; and E; are tabulated. Corresponding values for single
explosions are tabulated in Table 2 for comparison. In addi-
tion, it is indicated whether a ring is formed. When a ring
structure is seen, the dimensionless maximum density enhance-
ment in the ring k,,,, = p,ing/Po is shown.

The self-similar solution of the adiabatic cosmological shock
wave predicts the radius of the shock wave with twice energy to
be 2'/5 times as large as a single one. Thus, the volume of the
bubble produced by merging of two shells is expected to be
23/5 = 1.52 times as large. In the case of smaller d’s, the volume
ratios obtained in numerical calculations are ~ 1.5, which con-
forms to this expectation. However, with increasing d the

TABLE 2

NUMERICAL RESULTS OF A SINGLE EXPLOSION
IN AN EXPANDING MEDIUM

Z; Nhen Vew R,
A. HD Model
Q=9 =1, E; =10% ergs, A = 0.06 Mpc)
S5..... 3.1 x 10** 61.6 245
10..... 3.1 x 10*? 55.2 2.36
20..... 2.8 x 10'? 399 2.12
30..... 2.4 x 10?7 310 195
B. LD Model
@ =Q,=0.1, E, = 10° ergs, A = 0.1 Mpc)
5..... 5.2 x 108 362.5 4.52
10..... 5.0 x 10'8 2814 4.07
20..... 40 x 10'8 166.8 342
30..... 3.8 x 1018 125.2 3.10
C. DM Model
@=1,9Q,=0.1, E; = 105 ergs, A = 0.1 Mpc)
See.. 4.1 x 108 2270 3.78
10..... 3.8 x 10'8 164.2 3.40 )
20..... 3.5 x 108 71.5 2.64
30..... 2.8 x 108 48.3 2.26
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volume ratios considerably increase, because the merged
volume'is not determined by energy, but by simple overlapping
of the two shells.

d) Mass of the Rings

As shown above, a ring is formed for appropriate z; and d.
The absolute values of k,,,, in Table 1 may not have physical
meaning owing to the limited resolution of the calculations,
but relative comparison of them will give the tendency of
density enhancements in the rings.

It is rather difficult to estimate exactly the mass of a ring
because of the ambiguity of identification of the ring region. In
the HD models, the approximate values of ring masses for
E;=10°' ergs are M, ~ (2-3) x 10'> My; in the LD
models, M,;,, ~ 10'*> M. These values are estimated in the
following way. Suppose two cooled, dense shells having the
same explosion redshift and energy collide. All colliding matter
is assumed to concentrate to the point where the two shocks
intersect to form a ring. Then, the mass of the ring is given by

[iosnd(cos 6) _ My(1 — cos 1)
L 1d(cos 0) 2 ’

where M is the total mass swept up into a single shell given by
My = (4n/3)R?p.,, Q,, and 7 is the angle between the sym-
metric axis and the direction to the point of the intersection
given by cos 1 = d/2R,. Hence,

Mg = My x (1)

2
MR = ?n Rgngpcrit(l -

d
2R ) = 5.8 X 101199 h%oo(l + 2)3

R, \? d
x (——1 Mm) (1 - 2_R,> Mo. (32)

In the HD and LD cases, the radius of the shell at z = 0 is
R, =~ 2.1 Mpc and 3.4 Mpc, respectively, for z; = 20 and E; =
10°! ergs for instance. These give My ~ 2.7 x 10’2 M, and
1.1 x 10'? M, for R, = d. Note that in the LD model the ring
mass is comparatively large even for the low gas density.

V. GRAVITATIONAL INSTABILITY OF THE RING

The ring produced by the collision is expanding with the
velocity of the outer shock waves. The problem of the gravita-
tional instability of expanding rings may be replaced by that of
cylinders stretching along their axis so long as the ring radius is
much smaller than the curvature radius and the wavelength is
small. The gravitational instability of an infinitely long, equi-
librium cylinder has been investigated by linear stability
analysis by many authors (Chandrasekhar and Fermi 1953;
Stodolkiewicz 1963; Nagasawa 1987; see also Larson 1985),
but that of stretching cylinders has never been examined. Here,
we present a simple stability analysis using the energy principle
similar to that by Ostriker and Cowie (1981) for an expanding
spherical shell.

First we study the stability of an infinite cylinder at rest.
Suppose a column with length 2x along the axis is cut out from
the infinite cylinder of radius h. If the sum of its thermal energy
and gravitational energy is negative, we can expect this column
may fragment out from the cylinder. The gravitational energy
of the column is calculated by approximating it as a spheroid.
When x < h, it is an oblate spheroid, whose gravitational
energy per unit mass is given by

h
=—§m—Gsin"e=—@x Gp

5 he 5

sin"!e, (33)
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where e is the eccentricity defined by x2 = h%(1 — e?) and
m = nth? - 2xp is the mass of the column. When x > h, it is
prolate and its gravitational energy is given by

3 mG 1+e) 3n h2Gp (1+e>
- m = PP e (~EL), (34
10 xe log(1—e) 5 e og(1T,) 9

where h? = x*(1 — €?).

From the equation of motion for an equilibrium cylinder,
the thermal energy per unit mass of the column is estimated as
T =b,Gph?, where b, is a numerical constant of order unity. If
W + T <0, the instability will occur. This condition obtained
here is similar to that obtained from a linear stability analysis
(e.g., Larson 1985) except for numerical factors. In addition
(W + T)/x* has a minimum value —b, Gp, where b, is a con-
stant of order unity.

Next, we obtain the instability criterion for an expanding
ring using the above results. When the ring expands with the
velocity Vg, the velocity structure along the axis of the column
cut out from the ring is given by V;; = Vi(y/R), where y is the
distance from the center of the column and R is the curvature
radius of the ring from the symmetric axis. Thus, the kinetic
energy per unit mass of the column is

L (*pVimh®dy 1 [Vi)?,
=— e T X . 5
K 2J_ m 6\R/)” (33)

Thus, the criterion that the ring has unstable modes is
expressed as

W+T K 1 (V)2
< 3 >min+;=—bsz+g(E) <0. (36)

W=—

x

X

Supposing that R oc t% this condition leads to
% < (6b,Gp)'> . (37)

In a flat universe (Q =1), a ~0.8 for R~R, and taking
account of the density of the ring p = KQy p o = 1.879
x 1072°Q, hi,o k(1 + z)°, where k is the density enhancement
in the ring, we find from equation (37)

0.64r

b,Q, "
This criterion is easily satisfied in the HD models, x > 20 in the
present results, and the ring will fragment. In a low-density
universe (Q < 1), @ = 1, and the criterion is rewritten as

- 4rn 1
K>——
9b, Q1 + z)

This condition does not seem to be satisfied in the LD models.
However, because of the limited resolution of our calculations

and the crudeness of the instability criterion, it is quite possible
that the ring may fragment.

K> (38)

(39)

VL. LARGE-SCALE STRUCTURES

Here, we discuss the formation of large-scale structures by
cosmic explosions using the numerical results. First, we express
the conditions for merging of shells and ring formation in
terms of the explosion energy and the number density of
exploding seeds. The mean distance between the seeds 7 is
given using their present number density n, as follows:

4n \"13 n 13
F=|— =062 —=—
7 <3 ns> 0.6 <1 pc_3> Mpc.  (40)
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If the shock waves expand independently and the merging of
them is not significant, 7 can be interpreted as the mean radius
of the bubbles. Using the mean separation d = 27, we express
the conditions of collision, merging, and ring formation at a
fixed z; in the E; — n, plane, where we make use of the condi-
tions obtained by simulations and the scaling laws for different
E;as in Figure 15.

Further, we plot there other related important quantities:
the mean efficiency of energy release, the Compton y-
parameter, and the degree of the anisotropy of the cosmic
microwave background radiation (CBR) produced by explo-
sions.

a) Mean Efficiency of Energy Release

If we assume the energy is released from baryonic matter, the
mean efficiency of energy release € is defined by

E;n E. n
=15 i 1 -5 ! S -15,-2 .
€ P, 201 x 10 (1061 ergs)(l pc‘3)Q’ hico
(41)

I the energy is produced by nuclear reactions, € is at most
~1072, and usually € ~ 10™* in the case of supernova explo-
sions of massive stars. This efficiency is calculated with respect
to all the baryonic matter, and hence it must be much higher if
only a part of the baryonic matter participates in the energy
release.

b) Compton y-Parameter

The Compton y-parameter measures the degree of the dis-
tortion of the CBR spectrum from the Planck one by inverse
Compton scattering. In addition, the distorted fraction of the
radiation energy density is given using the y-parameter as
follows:

Au

T=e% - 14y, 42)
ur

where the radiation energy density is u, = aT? = 4.02
x 107'¥(T;/2.7 K)*(1 + 2)*. If we assume all the released
energy is instantaneously converted to the radiation energy,
ie, Au, = ep (1 + z)°c?, which will be approximately justified
in the Compton cooling era (z 2 10), the y-parameter is given
by

y = 1.05 x 10°Q, koo (1 + 2)~* . 43)

The Nagoya-Berkeley rocket observation discovered a distor-
tion of the CBR at submillimeter wavelengths (Matsumoto et
al. 1988). If this distortion is due to the inverse Compton scat-
tering, the y-parameter is estimated as y ~ 0.02 (Hayakawa et
al. 1987; Yoshioka and Ikeuchi 1987). Then, the mean effi-
ciency of the energy release must be

€ =2 x 107 5(y/0.02)Q; *hid(1 + z) . 44

¢) Anisotropy of the Cosmic Background Radiation

Here, we roughly estimate the anisotropy of CBR produced
by explosions. When the explosion sources are distributed ran-
domly in space, the expected Sunyaev-Zeldovich anisotropy is
given by (Vishniac and Ostriker 1986; Yoshioka and Ikeuchi
1987, 1988)

() B s
b. e

where a7 is the Thomson cross section, m, is the electron mass,
E,, is the thermal energy per explosion, and 4, is the cross
section of the observing beam. When the Compton cooling is
efficient, ie., z 2 10, the main contribution to the integral
comes from the time interval At ~ t ., = 7.67 x 10'°(1 + z)~*
s. When z > 1, 4, ~ n[(c/Hy)AOQ™ (1 + z)~*]?, where AQ is
the beam angle. Hence, the expected anisotropy A is given by

AT 2\ 1/2 E.
A= p——— =3, 10~4 i
<( T) > 316 x10 (1061 ergs>

ng 12 AG\ !
x <W> hwo(?) (1+2)4%, (46)

where we assume E, = E,.

The most stringent upper limits to anisotropy are
1.9 x 107% on Af = 0!75 (Uson and Wilkinson 1984) and
2.1 x 107° on A6 = 1'8 (Readhead et al. 1989). However, we
conservatively take the upper limit to be ~10~* in consider-
ation of the roughness of the present estimate and possible
correlation between the beams.

d) Summary

Figure 15a shows the conditions of merging or ring forma-
tion, as well as the mean efficiency €, the Compton y-
parameter, and the expected CBR anisotropy A in the HD
model with z; = 20.

The model satisfying the bubble filling factor f ~ 1, defined
by f=R?n(1+2z)> and A~10"* corresponds to E,~
10%°-°* ergs and 7 ~ 1-2 Mpc. This scale length seems much
smaller than that of the observed bubbles. If the CBR aniso-
tropy can be erased by subsequent Thomson scattering, explo-
sions with E; ~ 10°° ergs can make bubbles with 7 ~ 20 Mpc
and produce the CBR distortion with y ~ 0.01, although the
explosion redshift must be greater than ~ 100.

Figure 15b shows the relations in the LD model, in which
large bubbles are easy to make. The model satisfying f ~ 1 and
A ~ 10™* corresponds to E; ~ 10%2-53 ergs and 7 ~ 7-8 Mpc,
which is larger than in the MD model but still not satisfactory.
If the CBR anisotropy can be erased out by Thomson scat-
tering, explosions with E; ~ 10%¢ ergs make bubbles with
F ~ 20 Mpc. The CBR distortion with y ~ 0.01 is also pro-
duced. The required efficiency of energy release is € ~ 104,

In sum, explosions with E; ~ 10% ergs can make the
observed large bubbles, producing the CBR distortion dis-
covered by Matsumoto et al. (1988) at the same time, although
subsequent Thomson scattering and large efficiency of energy
release are needed (Yoshioka and Ikeuchi 1987).

A completely different situation may be possible. Merging of
multiple shock waves may make the observed large bubbles.
For instance, explosions with E; ~ 10°°-61 ergs and n, ~ 1-20
Mpc~? will result in significant merging of shock waves
without violating the CBR isotropy. This energy scale is mod-
erate in galaxy evolution. Since the radius of a single shock
wave is ~ 1 Mpc, we must examine the merging process of such
small shock waves.

VII. DISCUSSION

We summarize the results of the calculations:

1. We investigated the collision process of two cosmological
shock waves produced by explosions by two-dimensional
numerical hydrodynamical calculation.

The structures resulting from the collisions can be classified
into four categories by their global appearances; complete
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F1G. 15—Constraints on the formation of large-scale structures in the explosion model. (@) The HD model (Q = Q, = 1) and the explosion redshift z; = 20. The
solid lines indicate the conditions of merging or ring formation. The dashed lines represent the efficiency of energy release € as well as the Compton y-parameters. The

dash-dotted lines represent the expected anisotropy of the cosmic background radiation in the scale A6 = 1'. (b) The same as in (a) but for the LD model (Q = 1,
Q,=0.1).
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merging case, merging case with a dense ring, nonmerging case
with a ring, and nonmerging separated by a dense wall.

2. From calculations by varying various parameters, we
obtained the parameter dependence of the structure formed. In
particular, we classified the resultant structures in the plane of
the explosion redshift z; and the comoving distance between
the two explosions d. Moreover we discussed the dependence
on the explosion energy E; by using a scaling law. We also
calculated the evolution in the cases that the explosion red-
shifts are different.

3. We made clear the physical cause of the ring formation as
a hydrodynamical process. In addition, we explored the condi-
tions for merging and ring formation and obtained their simple
semianalytical expressions for them.

4. From the analysis of the gravitational instability of an
expanding ring, we concluded that in the HD model, the ring is
gravitationally unstable, giving rise to the fragments.

5. In the framework of the explosion model, explosions with
E; ~ 10253 ergs can make bubble-like structures with a
typical void diameter ~10 Mpc consistent with the CBR
anisotropy and distortion. If the CBR anisotropy has been
smoothed out by subsequent Thomson scattering, formation of
larger voids is possible. The required efficiency of energy
releaseise ~ 1074,

Rozyczka et al. found similar phenomena to the results pre-
sented in this paper in a situation without self-gravity or
cosmic expansion: they showed that (a) in an adiabatic case, a
local density maxima occurs behind the shock intersection, but
it is not maintained for a long time and the two shock waves
merge, and (b) in a cooling case, a dense ring forms behind the
shock intersection.

Finally, we discuss the formation of large-scale structures by
comparing the present results with the simple treatment by
Yoshioka and Ikeuchi (1989), in which we model the cosmo-
logical structures by utilizing the three-dimensional Voronoi
tessellation. The tessellation is made by a simple Monte Carlo
method where the mass distribution is represented by particles.
We take three types of models for the structures produced by
the collisions: (1) the mass particles are distributed on the
surfaces of the Voronoi polyhedra, (2) the mass particles on the
surfaces are concentrated to the edges of the Voronoi poly-
hedra, and (3) the mass particles are concentrated to the ver-
tices of the Voronoi polyhedra. The resultant structures are
compared with the real structure by calculating the correlation
functions of mass particles and the Voronoi vertices. The
correlation function of the Voronoi vertices, which we may
regard as clusters of galaxies, is shown to follow a power law
whose index ~ —2.

In the Voronoi tessellation, the complete merging of the
shock waves is not considered, i.e., each seed belongs to a single
cell. This will be valid for the case of high-z; explosions and/or
small number density of explosion seeds, since the collisions of
young shock waves are rare. The numerical results obtained
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here will have the following correspondences to the above
models. For fixed z;, when d is sufficiently large, a wall is
produced in the colliding plane, which corresponds to the
above model (1). When d has a moderate value, a dense ring is
produced in the intersection of the shock waves, and the wall
disappears. This corresponds to the above model (2). Although
our two-dimensional calculation cannot give a definite answer
to collisions of more than two shock waves, we may expect
high-density spots will be formed at the intersection points
among plane shocks and rings. This will correspond to the
above model (3). In fact, the real structures produced by colli-
sions of many shock waves will be a mixture of these three
models.

From the above, we may imagine the evolutionary sequence
of the universe. At z 2 10, explosions with energy ~ 10°3 ergs
occur and produce shock waves, which sweep up primordial
gas into spherical shells. Small-d collisions of the shock waves
form larger merged shells. In these shells, objects with rela-
tively small mass such as Lya clouds and dwarf galaxies
formed by gravitational instabilities and/or hydrodynamical
instabilities. Moderate-d collisions first produce high-density
walls, which gradually concentrate to rings. In walls or rings,
objects with mass comparable to typical galaxies are produced.
Collisions of rings and shells make very massive objects in their
intersections, where clusters of galaxies form. The present uni-
verse is a mixture of these structures. The universe shows a
bubble-like appearance, where rings and walls still dominate.
This requires the present bubble filling factor f~ 1, as also
pointed out by other authors (Weinberg, Ostriker, and Dekel
1989; Ostriker and Strassler 1989).

The above scenario also reproduces the correlation of
objects on various scales. The structures dominated by rings
and walls correspond to the galaxies of the correlation function
¢, with the power index ~ —1.5. Objects with relatively small
mass such as Lya clouds and dwarf galaxies which formed in
the shells only have weak correlations. Clusters of galaxies,
which formed in intersection spots of rings and shells, are rare
objects, having the correlation function with the power index
—2 (Yoshioka and Ikeuchi 1989; Weinberg, Ostriker, and
Dekel 1989; van de Weygaert and Icke 1989).
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