
A study in resource federation for e-Science

Yutaka Kawai

DOCTOR OF PHILOSOPHY

Department of Accelerator Science
School of High Energy Accelerator Science

The Graduate University for Advanced Studies

2012

Abstract

This research seeks to seamlessly support the infrastructure of distributed com-
puting and storage through the development and study of a software-abstraction
layer that interfaces to multiple Grid middleware and to new Cloud environments.
Through this abstraction it is possible to sustain uninterrupted access to resources
that is robust to the dynamic nature of those resources (compute nodes may fail,
storage resources may go offline while a computation is being performed). We
studied the software-abstraction layer and provided our Universal Grid User In-
terface (UGI) architecture for multiple kinds of Grid and Cloud middleware to
support end users and application engineers. UGI is implemented based on A
Simple API for Grid Applications (SAGA) and provides supplemental and ex-
tended functions that are not included in SAGA.

We demonstrated that job submissions can be executed in the UGI-based user
environment with different Grid resources. We provided and verified a simple way
to execute the jobs based on High Energy and Nuclear Physics (HENP) libraries.
For file manipulation, we demonstrated that an application can access the differ-
ent file-system middleware in the Data Grids. The application enables to handle
pieces as completed files, even if a large file is cut up and the separated parts are
stored on different Data Grids. We managed the files distributed in heterogeneous
Data Grids by using a catalog service. The example demonstrated that an applica-
tion can obtain the location information about the pieces of files distributed among
different kinds of Data Grids, and then access the distributed files.

For applied tools and applications, we demonstrated a method to reliably man-
age files with Resource Namespace Service (RNS), a UGI-based Web application
for Particle Therapy Simulation (PTSim), and an approach inspired by Ant Colony
Optimization (ACO). Our method for reliably managing large files works on dif-
ferent kinds of Data Grids using RNS. The volume of digital data and the size of
an individual file are increasing due to the introduction of high-resolution images,
high-definition audiovisual files, etc. The reliable storage of such large files is be-
coming problematic with whole file replication as a failure in the integrity of the
file is difficult to localize. Our method involves managing large files in Data Grids
by splitting them into smaller units in a traceable manner and then managing the
smaller units. The RNS catalog service contains EPR (Endpoint Reference) and
metadata that describe the original locations as well as the checksum values. The
example we shows how our Grid application can retrieve the actual file locations

1

and the checksum values from the RNS service.
Our second tool is a UGI-based Web application for PTSim. PTSim is a sim-

ulation system for particle therapy. The application of particle physics to the
medical environment is one of the application areas that have a direct benefit to
mankind. PTSim makes use of the Geant4 toolkit to simulate the passage of par-
ticles through the human body. It includes a Web interface that can be used by
several collaborating medical particle therapy centers. The Web interface allows
a non-Grid environment to be easily ported to Grid to take advantage of the addi-
tional resources.

Our last tool is for an approach inspired by swarm intelligence, ACO. Swarm
intelligence is one of approaches to provide a fault tolerant and efficient means of
transferring data in a dynamic environment. Swarm intelligence is inspired pri-
marily by observations of the collective behavior of social insects in addressing
complex distributed problems. The basic idea is that each member of the swarm
has simple rules that govern its behavior, but the interaction among the members
of the swarm can be used to tackle problems that are difficult to solve with com-
plicated numeric methods. We investigate the problem of data distribution among
a client and servers in a dynamic environment. We regard each download from a
server to the client as a single member in a swarm. The member’s behavior is sim-
ply to reliably download a data file. Each member can communicate with other
members to allow the swarm to settle on the best set of servers to download the
data from based on the current status of the environment. ACO is one of Swarm
intelligence methods. We created a simulator following the ACO based approach
and showed that our approach works well, providing a fault tolerant and efficient
means of transferring data in a dynamic environment.

We can utilize the computing and storage resources with our implementation
and solution. The challenges of today’s researchers who need to collaborate with
geographically distributed colleagues with distributed computing and storage re-
sources can be overcome.

2

Acknowledgment

First of all, I appreciate my supervisor Takashi Sasaki. He gave me the opportu-
nity to get into this research. He has not only helped me shape my research but
also guided me in various aspects of my life as a researcher. Without him, this
dissertation would not have appeared.

I am grateful to Go Iwai. He was my colleague in RENKEI project at KEK
and also a committee member of this dissertation. He has supported me to work
on papers, talks and presentation slides for academic conferences. Also, he helped
me to set up my research environments in the beginning of my KEK life.

I would like to thank Hideo Matsuda who is another committee member. He
leads the RNS development which I was working on a software adaptor for. He
game me lots of discussions related to RNS and I was therefore able to improve
my implementation.

I would also like to thank other committee members: Toshaiki Kaneko, Kento
Aida, and Hiroyuki Matsunaga. I appreciated receiving their comments on my
work and this manuscript.

I also thank to those who worked with me on the iRODS researches. Adil
Hasan kindly suggested corrections against my wrong and vague parts in research
aspects and also in English expressions. Francesca Di Lodovico and Yoshimi Iida
suppoted to setup iRODS between KEK and QMUL. My implementaion used the
iRODS testbed which is set up by them with Jean-Yves Nief from CC-IN2P3,
Lyon, France and Mike Wan, Wayne Schroeder, Arcot Rajasekar and Reagan
Moore from the DICE group.

I wish to acknowledge the valuable supports provided by Yoshiyuki Watase
and Wataru Takase for the implementation of UGI and Web interfaces. I would
like to thank members of Geant4 collaboration and members of PTSim devel-
opment, especially, Takashi Akagi and Tomohiro Yamashita for using the DI-
COM data. It is also a pleasure to acknowledge the SAGA developer team led by
Shantenu Jha and Andre Merzky for their valuable suggestions and support.

I was encouraged much by some members in the RENKEI project: Kenichi
Miura, Kazushige Saga, Kiyoshi Yamada, Eisaku Sakane, Yoshiyuki Kido, Yoshikazu
Tanaka, Hitohide Usami, Osamu Tatebe, Shin’ichirou Takizawa, Nobukazu Yosh-
ioka.

I also thank to those who gave me precious comments and advices at CRC in
KEK: Sou Suzuki, Kouichi Murakami, Jiro Suzuki, Atsushi Manabe and Fukuko

3

Yuasa. I would also like to thank to CRC staffs, Mitsune Arai and Yumiko Kimura
for supporting my office environments.

Special thanks are expressed to Shannon S Jacobs for correcting the English
language of my conference papers, journals, and this manuscript.

Finally, I greatly thank my family. I appreciate my wife, Junko, for her pa-
tience. She supported me at home while I concentrate on this study. Our children,
Haruka and Wataru, bring me peace and comfort. My parents have given me fi-
nancial and mental support for many years. Any of my success will be also theirs.

4

Contents

Abstract 1

Acknowledgment 3

1 Introduction 12
1.1 Motivation . 12
1.2 Definitions . 13

1.2.1 e-Science Definition . 13
1.2.2 Grid Definition . 13
1.2.3 Resource Federation . 14

1.3 Related Difficulties and Problems 14
1.4 Research Approach . 15
1.5 Achievements . 16
1.6 Organization of this Dissertation 16

2 Background and Related Work 18
2.1 Computing Resource Definitions 18

2.1.1 Remote Execution of Applications 19
2.1.2 Batch Queuing Systems (BQS) 19
2.1.3 The Grid . 19

2.2 Job Submission . 20
2.2.1 Job Submissions to Different Middleware 20
2.2.2 Related Work for Job Submission 22

2.3 File Manipulation . 22
2.3.1 File Manipulation among Different Data Grids 22
2.3.2 Related Work for File Manipulation 23

2.4 User Interface . 25
2.4.1 Current User Interface to Control Differing Middleware . 25
2.4.2 Related Work for User Interface 27

3 Design of Abstraction Layer 31
3.1 Common Interface Solution . 31

3.1.1 Job Submission with Common Interface 31
3.1.2 File Manipulation with Common Interface 32

5

3.1.3 User Interface for Interoperability 32
3.2 UGI Design . 34
3.3 SAGA Implementation . 35
3.4 UGI Functionalities . 37

3.4.1 Job Handling . 37
3.4.2 File Manipulation . 38
3.4.3 Monitoring . 39
3.4.4 Authentication . 40

4 Implementation 41
4.1 Job Execution in Multi-Grid Environments 41

4.1.1 Setup Demonstration . 41
4.1.2 UGI Implementation . 43
4.1.3 Job Submission with UGI 44
4.1.4 Demonstration Results 46

4.2 File Manipulation in Multi-Data Grids 46
4.2.1 UGI Implementation . 47
4.2.2 File Access with UGI . 48
4.2.3 Demonstration Results 52

4.3 Metadata Control in Multi-Grid Environments 52
4.3.1 How to Access Distributed Files 52
4.3.2 UGI Implementation . 55
4.3.3 UGI Example . 56
4.3.4 Demonstration Results 58

5 Abstraction Layer Evaluation 60
5.1 Overhead Evaluation . 60

5.1.1 Inside of Abstraction Layer 60
5.1.2 Evaluation for Job Submission 61
5.1.3 Evaluation for File Manipulation 63

5.2 Evaluation Method for Abstraction Layer 67
5.2.1 Application Example . 69
5.2.2 Evaluation Results . 69
5.2.3 Correcting Comparison Tool 70
5.2.4 Discussion . 73

6 Example Tools and Applications 75
6.1 Reliably Managing Files with RNS 75

6.1.1 Background . 75
6.1.2 Related Work about Reliable File Management 76
6.1.3 Access to Distributed Files with RNS 76
6.1.4 Current Checksum Approach 78
6.1.5 Split and Checksum Approach 79

6

6.1.6 Performance Evaluation 80
6.1.7 Discussion of UGI . 83

6.2 Particle Therapy Simulation (PTSim) 85
6.2.1 PTSim Background . 85
6.2.2 PTSim Web Interface . 85

7 Applied Study 87
7.1 Ant Colony Optimization . 88
7.2 The Data Distribution Problem 88
7.3 Related Work . 89

7.3.1 ACO Related Work . 89
7.3.2 Compared with Other Services 90

7.4 Pheromone Definition . 90
7.4.1 Pheromone Element . 91
7.4.2 Pheromone . 92

7.5 Algorithm . 92
7.5.1 Algorithm to Select the Best Server 93
7.5.2 Algorithm to Update the Information File 93
7.5.3 Comparison with Traditional Method 94

7.6 Simulation . 96
7.6.1 Model . 96
7.6.2 Procedure . 96

7.7 Simulation Results . 97
7.7.1 Phased Degradation . 97
7.7.2 Random Degradation . 99

7.8 Test Implementation . 100
7.8.1 iping/iping.py . 101
7.8.2 iget.py . 101

7.9 Test Results . 101
7.10 Discussion about UGI Use . 103

8 Conclusion 104

Bibliography 113

List of Publications 114

7

List of Figures

2.1 Job execution by remote server 19
2.2 Job submission to Batch Queuing System 20
2.3 Job submission to Grid middleware 21
2.4 Difficulty of resource federation for job submissions 21
2.5 Difficulty of resource federation for file access 23
2.6 Difficulty of resource federation to control file locations 23
2.7 RNS: Hierarchical namespace management. 24
2.8 Job Description Example of gLite 26
2.9 Job Description Example of NAREGI 26
2.10 The design of SAGA implemented in C++. 28
2.11 Job execution example in Python interface. 29

3.1 Submitting jobs to different Grids via Common Interface 32
3.2 Place a common interface for job submissions 33
3.3 Place a common interface for file access 33
3.4 Place a common interface with RNS for file locations 33
3.5 Implementation proposal for a software-abstraction layer 34
3.6 Architecture of Universal Grid Interface 36
3.7 UGI monitoring mechanism . 39

4.1 An example of WFML script . 42
4.2 An example of PBS script . 42
4.3 UGI-based user environment with Grid middleware. 44
4.4 Workflow diagram in the user environment based on UGI. 44
4.5 Job execution example using UGI. 45
4.6 Job task example using SAGA. 45
4.7 Bubble chamber photo image. 47
4.8 UGI-based user environment with Data Grids. 48
4.9 Workflow diagram in the user environment based on UGI. 49
4.10 iRODS network between KEK and Kings College. 49
4.11 File Access via UGI. 50
4.12 File Access to separated image data via UGI. 50
4.13 img cat ugi.py:The sample UGI application. 51
4.14 filelist.txt:The URL list of file locations. 51
4.15 Attribute definition of virtual directory 53

8

4.16 UGI-based user environment with RNS. 55
4.17 Workflow diagram in the user environment based on UGI. 56
4.18 File access to separate pieces of a photograph via UGI. 57
4.19 img cat ugi.py – The sample UGI application with RNS. 57
4.20 The example of the attribute definition 58
4.21 EPR example indicating Gfarm resource 58

5.1 Call mechanism in SAGA with STA 60
5.2 PBS script for overhead evaluation 61
5.3 C++ code for overhead evaluation 62
5.4 Python script for overhead evaluation 63
5.5 Shell script to execute time commands. 63
5.6 Job submission performance in Torque 64
5.7 File access to separate pieces of a photograph via SAGA. 64
5.8 img cat cmd.cpp – The sample code for Case 1. 66
5.9 img cat saga.cpp – The sample code for Case 2. 67
5.10 img cat saga rns.cpp – The sample code for Case 3. 68
5.11 Performance results of file manipulation with SAGA and RNS . . 69
5.12 Performance results of file manipulation with normal commands

and SAGA . 71
5.13 i-commands vs. SAGA and iRODS 72
5.14 cat command vs. SAGA and local-file system 72
5.15 gf-commands vs. SAGA and Gfarm 73
5.16 Gfarm: GSI vs. Shared Secret 73
5.17 customized i-commands vs. SAGA and iRODS 74
5.18 customized cat vs. SAGA and local-file system 74

6.1 Metadata example contains checksum value 77
6.2 A part of SAGA C++ source example 78
6.3 Splitting a file with checksum . 79
6.4 Combining pieces with comparing checksum 79
6.5 Access to distributed pieces in different Data Grids 80
6.6 Performance evaluation results without SAGA 82
6.7 Performance evaluation results with SAGA 83
6.8 Script to execute a nuttcp test for network evaluation 83
6.9 Script to execute a dd command for storage evaluation 84
6.10 A part of UGI application example 84
6.11 Application for PTSim work bench 86

7.1 Environments of ants-foods and clients-data. 91
7.2 Simulator uses several information files. 97
7.3 Transfer-Rate and Pheromone for the phased degradation. 98
7.4 Transfer-Rate in the traditional way. 99
7.5 Transfer-Rate and Pheromone in the random degradation model. . 99

9

7.6 Random degradation model with Algorithm 7.3. 100
7.7 Transfer-Rate and Pheromone in the actual case. 102
7.8 ACO approach in different Data Grids with UGI. 103

10

List of Tables

2.1 Matrix between experiment and middleware. 20
2.2 Examples: Command differences between gLite and NAREGI. . . 26
2.3 Examples: Command differences between iRODS and Gfarm. . . 27
2.4 Pathname Examples between iRODS and Gfarm. 27
2.5 Frequently invoked APIs in SAGA job module. 29
2.6 Frequently invoked APIs in SAGA file module. 30
2.7 Frequently invoked APIs in SAGA replica module. 30

3.1 SAGA adaptors developed in KEK. 36
3.2 SAGA adaptors developed by other contributors. 37

4.1 Frequently invoked UGI APIs for job submissions. 43
4.2 Frequently invoked UGI APIs for file manipulations. 48
4.3 Frequently invoked UGI APIs to handle metadata. 55
4.4 Physical resource locations of the divided example files. 58

5.1 Average and standard deviation of the performance results. 61

7.1 The example of an information file (e.g. n=10, h=4) 93

11

Chapter 1

Introduction

1.1 Motivation

For efficient research we need to use information and communication technology
effectively. Grid computing and Cloud technologies are leading examples of dis-
tributed processing technologies using the Internet. Grid computing has already
been used widely since it was developed with a focus on the accelerator science
field. However, for the present Grid computing technology, the development and
operation of each kind of middleware varies widely among different countries or
areas. For this reason, the interoperability among different kinds of middleware
has become a major problem.

This research focuses on an infrastructure for seamless distributed comput-
ing studied and developed as a software-abstraction layer interface that can be
used with multi-Grid middleware and new Cloud environments. The calculations
and simulations in the accelerator science require many computing and storage
resources. Even if one site is damaged due to a disaster and the computing re-
sources are diminished, it is possible to prevent discontinuation of research by
using the resources of other sites. If a unified procedure that can be easily used
is available to handle the applications and data in the different sites and systems,
then utilizing the distributed processing and storage resources on a global scale is
more possible.

System complexity of Grid or Cloud computing is increasing but application
engineers and system administrators need to modify their systems, to add extra
services and to support users. The new required software libraries and interfaces
are always requested. The troubles and problems of Grid systems are also reported
by users everyday (e.g. the Global Grid User Support (GGUS) [1]) Then, the
system-complexity increase impacts on their workload. Therefore, a client-based
system that is no impact or changes on the server-side is required. Our software-
abstraction layer is designed to be independent from any middleware. We finally
found algorithms inspired by swarm intelligence[2] to obtain distributed data in
an optimal way without any change or overhead on the middleware-side. Our
software-abstraction layer and the client-based algorithms are good combination

12

to utilize resources in different kinds of Grid middleware.

1.2 Definitions

1.2.1 e-Science Definition

The UK National e-Science Centre (NeSC) [3] defines “e-Science” as:

e-Science is “the large scale science that will increasingly be carried
out through distributed global collaborations enabled by the Internet.
” [4, 5]

According to the intentions of NeSC, e-Science typically has to provide to
“access to very large data collections, very large scale computing resources and
high performance visualization back to the individual user scientists.”[4] They
also say “The Grid is an architecture proposed to bring all these issues together
and make a reality of such a vision for e-Science.”[4]

Grid computing is one of the foundations to make e-Science a reality. How-
ever, we are studying the realistic situations involving today’s Grid computing.
We found that the current state of Grid computing is inadequate for e-Science in
the truly intended sense. We first define the Grid and then consider its limitations
in the next sections.

1.2.2 Grid Definition

A history of the Grid definition appears in Professor Foster’s document “What is
the Grid? A Three Point Checklist” [6]. Ian Foster et al. wrote an initial definition
of the Grid in 1998 as:

“A computational Grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to
high-end computational capabilities.” [7]

They later refined the definition in the article[8] as:

“Grid computing is concerned with coordinated resource sharing
and problem solving in dynamic, multi-institutional virtual organi-
zations.” [8]

The key concept is the ability to negotiate resource-sharing arrangements among
a set of participating parties (providers and consumers) and then to use the result-
ing resource pool for various purposes. They defined this as a Virtual Organization
(VO):

13

“The sharing that we are concerned with is not primarily file ex-
change but rather direct access to computers, software, data, and other
resources, as is required by a range of collaborative problem-solving
and resource-brokering strategies emerging in industry, science, and
engineering. This sharing is, necessarily, highly controlled, with re-
source providers and consumers defining clearly and carefully just
what is shared, who is allowed to share, and the conditions under
which sharing occurs. A set of individuals and/or institutions defined
by such sharing rules form what we call a virtual organization.”

Finally, Ian Foster provided three criteria for a Grid as below:

1) A Grid must coordinate resources that are not subject to centralized control.

2) A Grid must use standard, open, general-purpose protocols and interfaces.

3) A Grid must deliver nontrivial qualities of service (e.g., relating to response
time, throughput, availability, and security) for co-allocating multiple re-
source types to meet complex user demands.

The Grid definition will be discussed in more detail in Section 2.1.

1.2.3 Resource Federation

The efforts of e-Science middleware providers have certainly resulted in more
mature Grid technology in recent years. In the last 10 years, different nations or
regions have developed and deployed different Grid middleware infrastructures
for e-Science. However, each Grid middleware is still utilized as just a fundamen-
tal infrastructure and is far behind of the primary idea analogized with electrical
power Grid.

Therefore, federating those resources on different Grids scattered around the
world becomes the very essence of e-Science now. Today’s international scientific
collaboration requires the resource federation which provides shared hardware
and software resources on the different kinds of middleware.

1.3 Related Difficulties and Problems

The current kinds of Grid middleware are variedly developed among different
communities, regions, and countries. As examples, Globus [9] is developed in the
US, EGEE [10] gLite [11] is developed by the European Organization for Nuclear
Research (CERN) [12], and NAREGI [13, 14] (NAtional REsearch Grid Initia-
tive) is created as the Japanese national Grid middleware by the National Institute
of Informatics (NII) [15]. The Globus technology has led in the Grid computing
area since 1997, when the first version of the Globus Toolkit [16] appeared. Most

14

of the other kinds of Grid middleware, such as gLite and NAREGI, also use the
Globus technology in their architectures. However, each kind of Grid middleware
still has a different interface.

Foster’s criteria require that a Grid interface be general-purpose, but such an
interface does not yet exist. The problem is that each kind of Grid middleware in
use has its own specialized interface. Users encounter difficulties in handling these
different kinds of Grid middleware. Each Grid relies on advanced middleware
to interface between its resources and applications[17]. Users have to be aware
of the underlying middleware layer and therefore they also have to make their
applications run within the middleware infrastructures that they are using.

In the High Energy Accelerator Research Organization (KEK) [18], there are
a number of computing systems and storage resources in different kinds of Grid
environments. It is not easy for the users at KEK to switch to different mid-
dleware. Learning how to use different kinds of Grid middleware is a burden
on the users whenever there are problems or when new middleware infrastruc-
ture appears. Also, recent scientific challenges require worldwide collaboration
among researchers and sharing of their resources, such as computing systems,
large amounts of distributed data, software, and knowledge.

Therefore it is an essential to provide a uniform architecture for application
developers and to offer a high-level abstraction layer as a bridge between the mid-
dleware and applications.

1.4 Research Approach

This dissertation describes the required functions to handle the various kinds of
Grid middleware with a unified interface. Today, we have several kinds of Grid
middleware: Globus from the US, EGEE gLite that is mainly developed by CERN,
NAREGI, the Japanese national Grid middleware, and so on. There are also some
local batch schedulers such as PBSPro, Torque, and LSF (Load Sharing Facil-
ity) [19]. In terms of storage resources, there are different kinds of Data Grid
middleware, including GridFTP (Globus) and The integrated Rule-Oriented Data
System (iRODS) [20, 21] that was primarily developed in the US, Grid data farm
(Gfarm) [22] that was developed by Tsukuba University in Japan, and others.

We tried to handle these different kinds of Grid middleware with our imple-
mentation so that our experimental implementation can be of practical use in ac-
tual research environments, according to the requirements of the researchers by
joining Open Grid Forum (OGF) [23] workgroups. We especially joined an OGF
working group of A Simple API for Grid Applications (SAGA) [24], created some
adaptors for SAGA, and evaluated our and their prototypes. We contributed to fa-
miliarize the Japanese Grid middleware, NAREGI, in the SAGA working group
with creating a NAREGI adaptor for SAGA.

With our implementation, we tried to clear the unified-interface benefits with

15

actual use cases through working with projects related to Grid middleware and
Data Grids, and published its contributions. We worked with RENKEI [25, 26]
(REsources liNKage for E-scIence) project to discuss issues about Grid middle-
ware in terms of NAREGI. We shared the issues and benefits about Globus-based
middleware with the members from TeraGrid [27] and the successor XSEDE (Ex-
treme Science and Engineering Discovery Environment) [28]. We also shared
those about gLite middleware with the experts in CERN and KEK. In terms of
Data Grids, we worked with the members of iRODS, Gfarm, and the Resource
Namespace Service (RNS) [29, 30] to share the cutting-edge technologies of dis-
tributed file system and metadata.

1.5 Achievements

Here are the achievements of this work:

1. A method to provide interoperability with different kinds of Grid and Cloud
middleware.

2. A new architecture to utilize distributed resources.

3. The development of a new software interface to utilize the computing and
storage resources of different kinds of Grid and Cloud middleware.

4. Example solutions using the new interface.

1.6 Organization of this Dissertation

This dissertation is organized as follows. In Chapter 2 we describe the background
of this study and discuss related work to clarify the current problems when using
distributed resources in different kinds of middleware. Also, we review previous
and related work on the utilization of distributed resources.

Chapter 3 describes our software-abstraction layer, the Universal Grid User
Interface (UGI). UGI with its various functions allows us to share Grid and Cloud
resources as well as local resources.

In Chapter 4 we describe our implementation. The methods for job submission
with different Grid resources are discussed in Section 4.1 and in Section 4.2 we
show how to access distributed storage resources in different kinds of Data Grids.
In Section 4.3 we show how to manage files distributed in heterogeneous Data
Grids with a catalog system. We discuss performance evaluations and the methods
for the software-abstraction layer in Chapter 5.

Chapter 6 deals with how to solve complex cases using our implementation.
Section 6.1 describes a method for reliably managing files distributed in differ-
ent kinds of Data Grids with RNS. This approach results in more reliability for

16

large-file replication since different sub-file units can be stored on different stor-
age systems, thus reducing the risks due to hardware failures. Section 6.2 shows
an example of UGI application that is a Web based user interface for Particle Ther-
apy Simulation (PTSim) [31, 32]. The prototype of the Web interface allows users
to easily request most of their job operations.

In the last part of the dissertation, Chapter 7, we consider an applied study to
solve complex distributed problems. The demonstration showed that our Swarm
Intelligence approach can find the optimum performance parameters in a real en-
vironment. This research has the potential to be used in different kinds of Data
Grids with UGI.

17

Chapter 2

Background and Related Work

We face challenges in using different Grid resources with various kinds of mid-
dleware today. It is easy for a user to access the resources within a given kind
of middleware, but there are significant interoperability problems if a user wishes
to combine (or federate) resources from different Grid and Cloud providers. We
need to ensure compatibility with our applications that are designed for our own
middleware environments. Researchers are now geographically distributed due
to the globalization of research activities and their middleware environments are
different.

The problems can be broken down into three main areas:

• Job Submission: executing jobs and obtaining results

• File Manipulation: sharing files and managing the catalogs in distributed
storage

• User Interfaces: submitting jobs and manipulating files with a unified inter-
face

In this chapter we first define Grid computing and then present problems and
related work in each of these areas.

2.1 Computing Resource Definitions

The distributed resources in the Internet can be classified into two general groups.
One is computing resources for submitted jobs and the other is storage resources
for manipulating files. To define the Grid, we discuss the submission of jobs using
computing resources in this section. When considering how to use the distributed
computing resources, there are three approaches to job submission:

1. Remote Execution of Applications

2. Batch Queuing Systems

18

3. The Grid

Each of these approaches requires a more complex system, with Grid comput-
ing being the most complex. Here is a summary of each approach for reference.

2.1.1 Remote Execution of Applications

There are many different ways to execute commands or run programs on a remote
server. For UNIX machines, examples include rsh, rlogin, telnet, and ssh [33].
Users log into a remote server and execute their programs on that server (Fig-
ure 2.1). This is the simplest method, but the degree of parallelism is restricted by
the server.

User

Remote Server

Job

Figure 2.1: Job execution by remote server

2.1.2 Batch Queuing Systems (BQS)

A Batch Queuing System (BQS) can manage batch jobs and multiple worker
nodes (Figure 2.2). The worker nodes are typically organized as a computing clus-
ter. The BQS clients submit jobs to the BQS server and the BQS server schedules
the submitted jobs to be executed on a selected worker node within the cluster.
Users can increase the degree of parallelism compared to using a remote execu-
tion host.

2.1.3 The Grid

Figure 2.3 shows a rough design of the current implementation of Grid middle-
ware. Each kind of Grid middleware basically consists of several main compo-
nents. The following components are the examples of NAREGI:

• Super Scheduler (SS): Manages multiple CEs

• Computing Element (CE): Manages its own BQS

• Information System (IS): Manages resource information about the Grid

• Security System: Manages account and VO authentication for the Grid

19

User

JobJob
Job

BQS Server

JobJobJob
BQS

Worker Nodes

Figure 2.2: Job submission to Batch Queuing System

• Portal System: Provides environment tools for users of the Grid. (such as
workflow tools, a Web interface, application-sharing tools, etc.)

The security and portal systems are closely related in many cases because
authentications are required to use the environment tools. In order to discuss the
file manipulation in a Data Grid, each Storage Element (SE) can be viewed as in
Figure 2.3, linked to or replaced with a CE.

2.2 Job Submission

2.2.1 Job Submissions to Different Middleware

There are a number of computing resources with different kinds of middleware
for job submissions in use today. Users need to ensure their backward compati-
bility because the applications of the users are specific to their own middleware
environments. Table 2.1 summarizes the current situation regarding middleware
that is being used, planned, or developed in several of the Virtual Organizations
(VO) participating at KEK (as of May 2012). Some VOs use non-interoperable
middleware in their resources.

VO gLite NAREGI Gfarm SRB iRODS
ILC Using Planning Planning
Belle Using Planning Using Using
Medical App. Using Developing Planning
Atlas Using
J-PARC Planning Planning Planning Testing

Table 2.1: Matrix between experiment and middleware.

20

BQSBQS

ISSS

Security & Portal System

Grid Middleware

CE1 CEn

User JobJobJob

Job
Job

Job

Figure 2.3: Job submission to Grid middleware

Grid‐A

Grid‐B

However, users encounter difficulties because the interfaces of
Grid‐B and Cloud‐X are different from Grid‐A

Cloud‐X

JobJobJob

Trying to use other Grid resources when encountering the lack of
computing resources in Grid‐A

Figure 2.4: Difficulty of resource federation for job submissions

For the resource federation, here is a simple example involving different kinds
of middleware: Grid-A, Grid-B, and Cloud-X (Figure 2.4). If the users usually
use Grid-A but Grid-A is not operating correctly, they cannot continue working
without the computing resources of Grid-A. In such a situation, they could use
Grid-B or Cloud-X instead. However, there will be new problems in using such
alternative resources because the interfaces of Grid-B and Cloud-X are different
from those of Grid-A.

21

2.2.2 Related Work for Job Submission

There are several framework projects for Grid middleware to solve the above is-
sues. Harald Gjermundrod developed the g-Eclipse [34] framework, which pro-
vides a workbench toolset based on the Eclipse architecture. This requires using
the Eclipse GUI whenever a job is submitted. This is not suitable for researchers
who mostly work with shell scripts or command interfaces. The gEclipse archi-
tecture is restricted to Eclipse-based plugin systems and its design depends on the
middleware functions. There is a gLite middleware as an example, but some of the
components required by gLite are scattered in various places in the architecture.

Erik Elmroth et al. created the Grid Job Management Framework (GJMF) [35].
The Job Control Service (JCS) is one component of GJMF, providing a functional
abstraction of the underlying middleware and offering a platform- and middleware-
independent job submission and control interface. GJMF supports the Globus and
NorduGrid/ARC middleware. However, it is difficult to support other middleware
because that would require changing the JCS components at the source level.

The Distributed Resource Management Application API (DRMAA) [36] pro-
vides a generalized API to facilitate integration of application programs. DRMAA
is limited to job submission, job monitoring and control, and retrieval of the fin-
ished job status. These functions are close to the functions we need. In the SAGA
specification [37] they note that “This API is also intended to incorporate the work
of the DRMAA-WG [38]. Much of this specification was taken directly from DR-
MAA specification [36]”. Therefore the experience of creating DRMAA is used
to build the SAGA specification and DRMAA rendering in SAGA is possible.
SAGA is a part of our software-abstraction layer (described in Section 2.4.2).

2.3 File Manipulation

2.3.1 File Manipulation among Different Data Grids

As shown Table 2.1, there are also a number of storage resources with different
Data Grid middleware. Users again need to be careful about the backward incom-
patibilities. Again, we show a simple example that is similar to the situation in
job submission. For the resource federation, we have different kinds of middle-
ware: DataGrid-A, DataGrid-B, and Cloud-X (Figure 2.5). If users usually use
DataGrid-A but DataGrid-A has some problems, they can use Grid-B or Cloud-X
instead. However, they would still have difficulties due to the differences among
DataGrid-A, DataGridB, and Cloud-X.

Other difficulties involve controlling the file locations in such differing Data
Grid environments. Figure 2.6 shows two difficulties. One of them is that the
path-name definition is different among the Data Grids. The other is that the file
location must be shared among different users. We introduced RNS to manage
files distributed in heterogeneous Data Grids. The detail of RNS is described in

22

DataGrid‐B

DataGrid‐A

Cloud‐X

Trying to use other storage resources when encountering the lack
of storage resources in DataGrid‐A

However, users encounter difficulties because the interfaces of
DataGrid‐B and Cloud‐X are different from DataGrid‐A

Figure 2.5: Difficulty of resource federation for file access

DataGrid‐ADataGrid‐B

App App

Storage Storage

How to find file locations?
Where are the files stored?

Figure 2.6: Difficulty of resource federation to control file locations

Section 2.3.2. The information about the physical file locations in our environ-
ment is managed as metadata entries in RNS.

2.3.2 Related Work for File Manipulation
RNS Overview

RNS, which was introduced in GFD101[29], “offers a simple standard way of
mapping names to endpoints within a Grid or distributed network” [29]. As shown
in Figure 2.7[39, 30], RNS provides hierarchical namespace management with
name-to-resource mapping[39]. RNS has two fundamental types of entries, vir-
tual directories and junctions. A virtual directory represents a non-leaf node in a
hierarchical RNS namespace tree. A junction links a reference to an existing re-
source into the hierarchical RNS namespace. All compliant RNS implementations
must have a valid WSAddressing[40] EPR.

The RNS application prototype is available from Osaka University[30] and

23

/grid

ogf jp

data gfs

fil 1 fil 3fil 2 fil 4

file1 file2

file1 file3file2 file4

EPR1
EPR2 Junction

Virtual Directory

EPR1

Figure 2.7: RNS: Hierarchical namespace management.

the University of Tsukuba[41] as a sub-project of the RENKEI project. The RNS
servers and clients in the application communicate with XML messages using
SOAP(Simple Object Access Protocol)[42] as defined in GFD101, and each RNS
directory or junction entry can also contain its own XML messages as metadata.

As regards how to manage the file catalog in RNS, the RNS research group
developed a metadata management system[43]. They assume the service sites
become widely distributed and the number of the services is rapidly increasing.
We can hierarchically search against all the RNS servers with a single query like
a Domain Name System (DNS). RNS entries can spread over multiple servers.
A logical file catalog in RNS can be built up among those RNS servers. RNS
can manage a large-scale file catalog and static load distribution using multiple
servers. In terms of dynamically updating the catalog among the servers, other
researchers showed in their paper [44] but it causes increasing complexities of our
test systems and environments. Therefore, in this study, we used RNS statically.

Our software-abstraction layer involves the RNS client implementation to man-
age files distributed in heterogeneous Data Grids. The API of the RNS prototype
in our implementation is described in Chapter 4.

Other Catalog Services

There are several existing catalog services. The Storage Resource Broker (SRB) [45]
has a uniform data access API and a metadata catalog. The SRB-derived iRODS
inherits SRB’s architecture and provides additional functions for rules and micro-
services that can be customized by users[46]. OGSA-DAI(Open Grid Services
Architecture - Data Access and Integration)[47] provides a client for metadata
management with XML in the same way as RNS. Hermes[48] provides a desk-
top client for file transfer and data management with metadata. These services
include mechanisms for resource discovery. However, the mechanisms are unique

24

to each service. To register the resources of a different service in the catalog of
one service, additional adaptors must be used to access the other service, though
OSGA-DAI tried to reduce these problems using an RNS approach[49, 50]. RNS
can obtain an EPR using the SOAP protocol without those extra efforts.

AMGA (ARDA Metadata Grid Application)[51, 52] is a metadata catalogue
service and part of the gLite middleware. AMGA provides a special SQL-like lan-
guage to express queries but it has a limited number of operators[53]. In contrast,
RNS accepts a general XQuery[54] to search the XML metadata.

Our work focuses on using RNS to minimize the special extensions needed by
our Grid environments when managing distributed files.

Other Solutions for File Manipulation

Various projects are underway to reliably manage files and to aggregate different
heterogeneous Data Grids or file systems for efficient data sharing. Here is a
summary of work related to various aspects of our study.

Zeng Dadan et al. used different file systems for their Map-Reduce implemen-
tation [55]. They supported three file systems: a local file system, HDFS (Hadoop
Distributed File System)[56] and the Kosmos File System[57]. However, they
load and configure the interface within Hadoop, which limits their work to file
systems supported by Hadoop.

Hamid-Reza Mizani et al. proposed VOFS (Virtual Organization File System)
to hide the heterogeneity of aggregated file systems[58]. VOFS also has a meta-
data management service so that VOFS can handle traditional information (file
size, last modification time, creation time, files in a directory, etc.) and VOFS-
specific metadata. However, VOFS requires each registered file system to install
a VOFS server.

Horst E Wedde et al.[59], Dan Feng et al.[60], and Yinjin Fu et al.[61] all
discuss efficient metadata management. However, they are using only one or a
few kinds of file systems.

Our solution with UGI is not limited to any specific environment. In addi-
tion, one only needs to modify a configuration file to switch file systems. UGI
can handle the differences with the URL schema itself, thus our application can
dynamically switch file systems. File systems do not need any customization in
the solution and RNS can handle the resources of any kind of file system. Those
are described in Section 4.2 and Section 4.3.

2.4 User Interface

2.4.1 Current User Interface to Control Differing Middleware

We need an interface to access middleware for job submission and file manipula-
tion. Each current middleware has its own special interface and the interfaces are

25

Executable = ”test.sh”;
StdOutput = ”std.out”;
StdError = ”std.err”;

Figure 2.8: Job Description Example of gLite

<?xml version=”1.0” encoding=”UTF−8” standalone=”no”?>
<JobDefinition xmlns=”http://schemas.ggf.org/jsdl/2005/06/jsdl” xmlns:naregi=”http://www.

naregi.org/ws/2005/08/jsdl−naregi−draft−02”>
<JobDescription>
<JobIdentification>
<JobName>Program</JobName>

</JobIdentification>
<Application>
<POSIXApplication xmlns=”http://schemas.ggf.org/jsdl/2005/06/jsdl−posix”>
<Executable>test.sh</Executable>
<WorkingDirectory>workdir</WorkingDirectory>

</POSIXApplication>
</Application>

</JobDescription>
</JobDefinition>

Figure 2.9: Job Description Example of NAREGI

not compatible with each other. For example, Table 2.2 shows some examples of
the differences between two kinds of middleware, gLite and NAREGI, in their job
submission commands. There are not only differences in commands, but also job
description differences between them. The differences of these job descriptions
are shown in Figure 2.8 for gLite and Figure 2.9 for NAREGI. When we want to
use both kinds of middleware, we must prepare job descriptions in both styles and
manually switch them to execute the appropriate commands.

Function gLite NAREGI
Proxy Delegation glite-wms-job-delegate-proxy naregi-signon
Job Submission glite-wms-job-submit naregi-job-submit
Job Status glite-wms-job-status naregi-job-status
Job Cancellation glite-wms-job-cancel naregi-job-cancel
Job Retrieval glite-wms-job-output naregi-std-print

Table 2.2: Examples: Command differences between gLite and NAREGI.

For file manipulation, the situation is the same as for job submission. For ex-
ample, Table 2.3 shows the differences between two kinds of middleware, iRODS
and Gfarm, for storage commands. Beyond the command differences, there are
also pathname differences between them. The differences in their pathname are
shown in Table 2.4. We can specify any pathname in Gfarm, but iRODS requires

26

a ZoneName in the beginning of its pathname.

Function iRODS Gfarm
List Files ils gfls
Copy File icp gfrep
Remove File imv gfmv
Concatenate File iget - gfexport
Create Directory imkdir gfmkdir

Table 2.3: Examples: Command differences between iRODS and Gfarm.

Middleware Pathname Example
iRODS /tempZone/home/user1
Gfarm /home/user1

Table 2.4: Pathname Examples between iRODS and Gfarm.

To add new middleware for computing or storage, the operations and styles of
the new middleware must be understood. Such extra work is basically wasteful
for researchers, since the tasks of the job are quite often unchanged.

2.4.2 Related Work for User Interface

Using a Grid system involves using specialized commands and rules to access
the middleware. The differences among these commands and rules can cause
problems for application developers and users. Using a framework interface is
one of solutions.

The Distributed and Unified Numerics Environment (DUNE) [62, 63] pre-
pares abstract interfaces and a modular toolbox to solve particular equations with
different kinds of Grid middleware. The DUNE framework consists of a number
of modules: core modules and extra modules. Several Grid implementations can
be used through the DUNE interface with the core modules. The extra modules
allows to use other further Grid implementations. However, the DUNE interface
does not apply published standards and it is especially designed for solving partial
differential equations (PDEs).

The Open Cloud Computing Interface Core (OCCI) [64, 65] gives an abstrac-
tion to identify, classify, associate and extend distributed resources. However,
OCCI is mainly used for Cloud systems because “OCCI was originally initiated
to create a remote management API for IaaS model based Services” and the cur-
rent OCCI is “suitable to serve many other models in addition to IaaS, including
e.g. PaaS and SaaS.”

SAGA is another architecture that provides a unified interface that conceals the
differences among the different middleware infrastructures. A SAGA implemen-
tation is part of our software-abstraction layer, but SAGA does not have enough

27

Figure 2.10: The design of SAGA implemented in C++.

functionality in such areas as authentication and job monitoring. We briefly de-
scribes SAGA in the next section. Supplemental and extended functions beyond
SAGA are supported by UGI (Section 3.3).

SAGA Overview

SAGA [66, 24], is Open Grid Forum (OGF [23]) standard compliant software
and is one of the realistic approaches to realize such an environment that is in-
dependent of the evolution of the middleware. SAGA is designed to be a bridge
among the various kinds of Grid middleware (Figure 2.10 [67]). Once a SAGA
adaptor for each kind of middleware has been prepared, the application develop-
ers only need the functional API without worrying about the specific features of
the middleware. We can use any type of Grid resources if the appropriate SAGA
adaptors are available. The SAGA community has released several SAGA core
implementations[24]. The current SAGA C++ implementation supports a wide
range of Grid middleware [68]. Python, C++ and Java APIs are currently avail-
able as the functional SAGA APIs. The APIs are used for the job modules, file
modules, and replica modules.

SAGA APIs for Job Modules

Application developers can use these modules when invoking the APIs to submit
jobs to the specified middleware. Application users need only specify the scheme
to switch to different Grid middleware with the same job description. Table 2.5
shows some examples that application developers can invoke SAGA APIs for job
submissions.

A SAGA job description has several attributes. The application developer can
configure them one time and reuse the job description to submit jobs on other
middleware infrastructures. The sample configuration of a SAGA job description

28

import saga
import sys

argvs = sys.argv
argc = len(argvs)

try:
Create a Job Description
js url = saga.url(argvs[1])
job caht = js url.get host()
job service = saga.job.service(js url)
job desc = saga.job.description()
job desc.executable = ’./test.sh’
job desc.working directory = ’$HOME/work dir’
job desc.candidate hosts = job caht
Submit a job
my job = job service.create job(job desc)
my job.run()

except saga.exception, e:
print ”SAGA Error: ”, e

Figure 2.11: Job execution example in Python interface.

is shown in Figure 2.11. Application users need only specify the job service (e.g.
NAREGI or gLite) and modify a part of job description to switch it to another
service.

SAGA APIs for File Modules

Application developers can use the file-module APIs to use file systems via SAGA.
The application users need only specify the scheme and logical path to switch to
some other file system middleware. Table 2.6 shows some examples that the ap-
plication developers can call SAGA API to use the Data Grids.

SAGA APIs for Replica Modules

We also need to control metadata via SAGA. The logical file and the logical di-
rectory in the SAGA replica package allow us to handle the required metadata.
Application developers can use these APIs to handle metadata for logical files and

SAGA API Function
saga::url::url() Specify job service (e.g. NAREGI or

Torque).
saga::job::description::description() Create a job description.
saga::job::service::create_job(description) Create a job with description.
saga::job::job::run() Submit a job.

Table 2.5: Frequently invoked APIs in SAGA job module.

29

SAGA API Function
saga::url::url() Specify directory or file location.
saga::filesystem::directory::open(file) Open a file in the directory.
saga::filesystem::file::read() Read the file.
saga::filesystem::file::write(*buffer) Write buffer data to the file.
saga::filesystem::file::get_size() Get file size of the file.
saga::filesystem::file::copy() Copy the file.

Table 2.6: Frequently invoked APIs in SAGA file module.

directories. Table 2.7 shows some examples of application developers calling the
SAGA APIs to handle metadata for the logical file and directory.

SAGA API for replica Function
saga::replica::logical_file::
add_location(url)

Add an url as a replica location to the logical file.

saga::replica::logical_file::
list_location()

List the locations in the location set.

saga::replica::logical_directory::
set_attribute(key, value)

Set a key(attribute) to a value.

saga::replica::logical_directory::
set_vector_attribute(key, values)

Set a key(attribute) to an array of values.

saga::replica::logical_directory::
get_attribute(key)

Get an attribute value.

Table 2.7: Frequently invoked APIs in SAGA replica module.

30

Chapter 3

Design of Abstraction Layer

This chapter describes a software-abstraction layer interface, the Universal Grid
User Interface (UGI), to control the resources of different kinds of middleware.
Today’s international scientific collaboration requires the resource federation which
provides shared hardware and software resources from various kinds of Grid and
Cloud middleware. One of the solutions involves a unifying interface between the
users and the middleware. We designed and implemented a UGI that provides
a seamless environment for end users of such remote resources (Grid or Cloud
resources) with their local resources. The UGI functions include job handling,
manipulating files, general file cataloging, and monitoring jobs. UGI includes the
SAGA (Simple API for Grid Applications) architecture and external components
that are not supported by SAGA. Our prototype UGI implementation provides a
Python API, a command line interface, and a Web interface.

3.1 Common Interface Solution

Current kinds of Grid middleware conform to most of Foster’s criteria (Section 1.2.2)
but there are still some issues. A general-purpose interface is one of his criteria,
but has not been fully realized. Each of the current Grid middleware systems
has a special interface based on its own architecture and none of the interfaces is
designed as a generalized interface. The next level of interfaces should resolve
the challenges of the interface differences among the Grid middleware and make
simultaneously available all of the different resources in Grid middleware (Fig-
ure 3.1). The target of this dissertation is to solve these interface problems.

3.1.1 Job Submission with Common Interface

Figure 3.2 shows that a common interface enables the users to easily access dif-
ferent resources. Local clusters can also be used via the common interface. In
addition, users can use all of the resources simultaneously. Such a situation can
be described as a resource federation for job submissions.

31

GridA

BQS

GridB

BQS

GridX

BQS

Common Interface

User

JobJobJob

Job

Job
Job

Figure 3.1: Submitting jobs to different Grids via Common Interface

3.1.2 File Manipulation with Common Interface

Preparing a common interface is also beneficial for file access. Figure 3.3 shows
that the common interface allows the users to easily access different kinds of stor-
age. Local file systems can be also used via the common interface. Obviously,
users want to use all of the kinds of storage simultaneously.

We need to address two difficulties when controlling the file locations in dif-
ferent Data Grid environments, as mentioned in Section 2.3.1. RNS can provide a
unified namespace among the Data Grids and its information can be shared among
different users. RNS was introduced into the common interface to manage files
distributed in heterogeneous Data Grids (Figure 3.4). The information about the
physical file locations in our environment can be managed by the common inter-
face. This makes it easier to share the metadata about each file between different
Data Grids. Then users can access all of the available storage simultaneously and
benefit from the catalog services for different kind storage resources.

3.1.3 User Interface for Interoperability

The common interface is a key component to solve the difficulties of job submis-
sion and file manipulation among different kinds of Grid and Cloud resources.
One of the implementations concerns is where to place a software-abstraction
layer for the common interface. The design objective of the software-abstraction
layer is to hide the complex treatment of middleware from users and to provide
them with seamless access to local, Grid, and Cloud resources.

Figure 3.5 shows the architecture of the software-abstraction layer with a
Python layer and an Adaptation layer. Users prefer to use easy interfaces such

32

Grid‐A

Grid‐B

Cloud‐X

JobJobJob

JobJobJob

JobJobJob

Local Cluster

JobJobJob

Interface

Local Cluster can be used via the common interface

The common interface enable to access different resources easily.

Figure 3.2: Place a common interface for job submissions

DataGrid‐B

DataGrid‐A

Cloud‐X
Interface

Local File System

The common interface enable to access different storages easily.

Local File System can be used via the common interface

Figure 3.3: Place a common interface for file access

GfarmiRODS

App App

Storage Storage

Interface

RNS

Find file locations

DB

Catalog Service

The common interface provides
understandable information of file locations

Figure 3.4: Place a common interface with RNS for file locations

as shell scripts, shell commands, and Web interfaces. Therefore the Python layer
needs to provide at least a Python API, shell commands, and a Web Interface. The

33

Other
FunctionsJob Client

RNS
Server Globus

Gfarm

GsiFTP

LFC

NAREGI

gLite

Python Layer

Application

iRODS/SRB

LSF/PBS/Torque

Cloud

Python API Command Line Interface Web Interface

Software Abstraction Layer Proposal

Catalog
Client

File
Client

Adaptation Layer

Figure 3.5: Implementation proposal for a software-abstraction layer

reason for adopting Python for the API is its popularity with scientists for quick
development of custom applications for their fields of study. The Adaptation layer
allows all of the clients to handle any middleware and consists of job clients, file
clients, and catalog clients. The Adaptation layer is also flexible to include other
functions for extra tasks such as authentication and monitoring.

In our currently supported environments, jobs are submitted to five kinds of
middleware: NAREGI, Globus, gLite, PBSPro, and Torque. To manage files, we
use three kinds of Data Grids: iRODS, Gfarm, GridFTP. The information about
the physical file locations in our environment is managed as metadata entries in
RNS. The abstraction layer helps application developers in building real applica-
tions for the end-user scientists.

The implementations of the software-abstraction layer must be easily main-
tainable and expandable for new kinds of middleware.

3.2 UGI Design

We designed a high-level user interface, UGI, and Figure 3.6 shows the archi-
tecture of the software building blocks. UGI is implemented based on SAGA
and also provides supplemental and extended functions beyond SAGA. The UGI-
based Web interface with the various functions can share Grid and Cloud resources
as well as local ones. In order to share scientific resources among collaborators,
we have to cope with different user interfaces to these different kinds of Grid mid-
dleware. We adopted SAGA to span the different Grid environments. SAGA aims
to address this heterogeneity and currently provides working implementations in
C++ and Java.

The current design of UGI functions includes job handling, file manipulation,

34

general file catalog, and monitoring. It runs on a host with SAGA C++ core
libraries, adaptors, and client software necessary to use the Grid middleware and
Data Grids.

For job handling, UGI supports multiple job submissions to various Grid kinds
of middleware infrastructure and local batch systems at the same time using same
job submission scripts. The job load sharing can be controlled according to the
availability of resources. The end users’ applications handle the results and data
files according to their own work flow designs, which may call for such as proce-
dures as chaining jobs, post processing, and graphic display.

UGI provides file manipulation functions such as copy, remove, transfer, and
catalog registration. These functions accept various file storage protocols within
the same API: Local file system, GridFTP, Gfarm, and iRODS. The file catalog is
a crucial facility for sharing large amounts of distributed scientific data. For shar-
ing files among different Grid middleware, a middleware-independent file catalog
system is needed. UGI adopted the OGF standard RNS as its file catalog. We
collaborated with Osaka University and the University of Tsukuba to implement
the RNS as a general-purpose file catalog system. It provides a tree structure of
the name space with virtual directories and junctions. Each junction has an EPR.
Both virtual directories and junctions can contain metadata about the files or di-
rectories. The metadata can be queried to find appropriate files to use from a large
archive of scientific data.

For monitoring a large number of jobs dispatched in different kinds of Grid
environments, we introduced a lightweight database. The database can store not
only job status data, but also job-related information such as job parameters, anal-
ysis conditions, output file locations, etc. Usually the status transition of jobs
submitted to Grid middleware is delayed due to the propagation time from the
middleware to the client. In UGI, a dispatched job can update the database by
itself through a XML-PRC [69] mechanism.

3.3 SAGA Implementation
SAGA Adaptors

SAGA is a part of our UGI implementation. We implemented the required soft-
ware modules to internationalize NAREGI. Actually, we developed the SAGA
adaptors shown Table 3.1, in compliance with the SAGA specification, as stan-
dardized within the OGF[66, 70].

Other SAGA adaptors for other kinds of Grid middleware have been developed
in other countries. Table 3.2 shows the currently available SAGA adaptors [68].

Through working on the SAGA adaptor implementations, we found that SAGA
has some limitations in addressing our requirements. We cannot monitor the sta-
tus of each job in real time via SAGA, SAGA does not support different kinds of
authentication processes, and SAGA cannot handle directly copying files among

35

Universal Grid user Interface (UGI)

Monit
oring

Authen
ticationSAGA Job

RNS Server Globus

Gfarm

GsiFTP

LFC

NAREGI

gLite

Universal Grid User Interface (Python)

Adaptation Layer

Python Layer

Application

iRODS/SRB

LSF/PBS/Torque

Cloud

Python API Command Line Interface Web Interface

RNS
Client

SAGA File

Figure 3.6: Architecture of Universal Grid Interface

Name Full Name Middleware
SNA SAGA NAREGI Adaptor NAREGI
STA SAGA Torque Adaptor Torque
SPA SAGA PBSPro Adaptor PBSPro
SIA SAGA iRODS Adaptor iRODS
SGFA SAGA Gfarm Adaptor Gfarm
SRA SAGA RNS Adaptor RNS

Table 3.1: SAGA adaptors developed in KEK.

different Data Grids. We describe these SAGA limitations in the next.

SAGA Limitations addressed by UGI

There are four problems in the current SAGA framework. First, there is a need
to monitor jobs in real time. We cannot get real-time job status using the SAGA
approach because the current system is designed to poll each job for its status.
The number and complexity of jobs in recent research projects is increasing so
we need to obtain the status of each job in real time. A UGI client can attach an
epilogue script to report the job status via XML-RPC so that the job status can be
monitored in real time.

Another problem is that the authentication for each kind of Grid middleware
is different. SAGA supports only X.509 certificate [71] authentication by follow-
ing the Globus procedure. NAREGI is one kind of Grid middleware that requires
special commands that are not same as the Globus GSI (Grid Security Infras-
tructure) [72] authentication commands. We cannot use SAGA for the NAREGI
authentication, and therefore we need a unified interface for any kind of Grid
authentication. UGI can easily invoke commands for each kind of Grid authenti-

36

SAGA Adaptor Description
SSH job submission and file transfer via SSH and FuseFS.
Globus access to Globus Gram, GridFTP and Globus RLS resources
Condor job submission to resources managed by Condor/Condor-G
LSF job submission to a Platform LSF scheduler
X.509 X.509 certificate handling
BES job submission to resource managers that support OGSA BES
EC2 job submission to Amazon EC2 compatible Cloud services
GridSAM job submission to OMII GridSAM resource managers
gLite job submission to gLite CREAM computing elements
HDFS interaction with the Hadoop distributed filesystem(HDFS)
DRMAA job submission to resource managers that support DRMAA

Table 3.2: SAGA adaptors developed by other contributors.

cation.
The next problem is the difficulty of file transfers among different kinds of

Data Grids. SAGA can allow some file manipulations that are restricted to file
systems using the same system. For example, when we want to copy a file from
an iRODS path X to an iRODS path Y , SAGA can start this copy operation with
the function:
saga.filesystem.copy(X ,Y)
However, we cannot directly copy a file from iRODS path X to Gfarm path Z,
because iRODS and Gfarm use different scheme in their SAGA URLs. Therefore,
we need to prepare some third storage area for temporary space while transferring
files between different kinds of middleware. UGI can directly copy these files
with the function:
ugi.file.transfer_copy(X ,Z).

The fourth problem is the developmental complexity of SAGA adaptors. Since
each SAGA adaptor needs an API for each kind of Grid middleware, it requires
several man-months for each implementation and the developer must understand
the unfamiliar Grid middleware and its API specifications. UGI is written in
Python and a new UGI adaptor can be created easily, because each adaptor just
calls the commands for each kind of Grid middleware. This approach to easier
implementation trades off some speed of development for performance.

3.4 UGI Functionalities

3.4.1 Job Handling

For a single job submission to a particular kind of Grid middleware, it is straight-
forward to write a script using Python. We introduced a Python object for multi-
ple job submissions (with parameters) to a Grid middleware resource at different
sites. The attributes of the object include the name of the middleware to be used,
the site name, the number of jobs sharing the load, and the path of the job script.

37

The Python API for task submission is

ugi.job.submit(list_of_task)

which calls for simultaneous job and task submission to different kinds of Grid
middleware. A typical shell command could be

ugi-job-muitiplejob-submit

with the arguments (middleware, site, njobs, path) providing the needed task
attributes.

3.4.2 File Manipulation

Each Grid middleware has its own file storage system with its specific protocol
for access. For multiple Grid environments, we need to hide these differences as
much as possible. The available file protocols are local file, GridFTP, Gfarm, and
iRODS. A typical example using this API is a file listing in a directory URL such
as

ugi.file.ls(URL,options)

which returns a list object of file names. The URL accepts:
file://...,
gsiftp://...,
gfarm://..., and
irods://...

with the option: -l for a long listing. It also accepts an RNS catalog tree path
such as /rns/kek/ilc. For files registered in RNS, there are additional options
to get information about the registered files: -u (get the URL of the file), -t (get
the transfer URL), and -query (a metadata query).

File transfers and copies are main functions in file manipulation. The SAGA
scheme cannot support direct file copying between different storage protocols.
The UGI API of ugi.file.copy() accepts different protocols for source and
destination URLs by wrapping the proper commands to copy each file to or from
its local file storage.

The RNS server running on a separate host stores the file catalog in a database
(where the current implementation uses Apache Derby [73]). UGI obtains access
to the catalog tree through the FUSE (Filesystem in Userspace) [74] mount mech-
anism to avoid the overhead of the client Java Virtual Machine (Java VM). The
UGI API for catalog manipulations include functions such as
ugi.file.register(),
ugi.file.unregister(),
ugi.file.replicate(), and
ugi.file.transfer-register().
UGI has command line interfaces corresponding to all of these API functions.

38

GridVM

Job script
‐Job Start
./ugi‐rpc‐client.py update
Status::Running

‐
‐
‐
‐
‐
‐
‐
‐
‐Job Finish
./ugi‐rpc‐client.py update
Status::Done

RPC server

UGI

RPC server

Compute nodes

RPC clients

XML‐RPC communication
between UGI and individual jobs

Figure 3.7: UGI monitoring mechanism

3.4.3 Monitoring

A SQLite [75] database is used as a lightweight database for storing the statuses of
jobs dispatched to multiple kinds of Grid middleware as well as the job parameters
and additional user-defined job information such as the output file location. UGI
provides a useful database access API and commands. The database information
is updated by each job using the API or commands in the job script. In order to
access the database from running jobs, an XML-RPC server and client mechanism
is used. The server runs on the local host and waits for client commands invoked
by the job script. The job scripts includes the following:

./ugi-rpc-client.py ugi-mon-job-update Status::Running

or

./ugi-rpc-client.py ugi-mon-job-update Status::Done

Figure 3.7 shows diagram of XML-RPC communication between UGI side
and jobs on the compute nodes. GridVM [76] in the figure is one of Grid-
middleware components. In the case of NAREGI, GridVM should monitor and
control resources and jobs per site. GridVM also should do the same per node
in a site. RPC server and client can communicate each other through GridVM.
RPC server is listening a specific port number (e.g. 24999) for client call. Then,
the server receives job statuses from the client and updates the database. As an
RPC client, a client script is staged-in in each job. The client sends user’s com-
mand and its arguments. We can easily specify the statuses, “Status::Running”
and “Status::Done”, anywhere.

39

3.4.4 Authentication

User authentication may differ on each middleware. gLite and Globus uses the
X.509 certificate authentication which requires a command, grid-proxy-init.
We can also use the command, voms-proxy-init to generate a proxy with the
VOMS (Virtual Organization Membership Service) [77] information. NAREGI
Command Line Interface (NAREGI-CLI) requires a naregi-signon command
to access NAREGI-Portal server. This mechanism involves MyProxy[78] tech-
nologies, thus NAREGI allows to use the commands of MyProxy to generate a
proxy. In the case of LSF as one of BQS examples, it has a authentication com-
mand kinit. As an example of Data Grids, iRODS can serve both password
and GSI authentications. iRODS requires a command iinit to use the password
authentication.

As can be seen in the previous paragraph each middleware tends to use its own
authentication commands. UGI uses a practical approach to provide a uniform
interface to the different commands using a simple script, such as

ugi-cert-init.sh

which is an integrated command containing the middleware commands. In the
current implementation the script supports:

• Globus Proxy Issue for Globus

• VOMS Proxy Issue for gLite and NAREGI

• VOMS Proxy Register to MyProxy Server

• naregi-signon for NAREGI

• kinit for LSF

• iinit for iRODS

This script can be easily expandable for other authentication commands and
procedures.

40

Chapter 4

Implementation

The current available Grid middleware environments vary among communities,
regions, and countries. Traditionally, using middleware requires using its own
specific commands and rules. This chapter describes our implementation to han-
dle the difference. Our computing and storage environments in this study are
mainly based on Grid middleware and Data Grids, thus this chapter does not really
discuss using Cloud services. Our implementation is easily applicable to Cloud
services because all we need is to prepare adaptors for the services (e.g. Amazon
EC2 adaptor shown in Table3.2).

4.1 Job Execution in Multi-Grid Environments

Under the multi-Grid environments, we are required to execute jobs and to define
job descriptions following specific commands and rules of each Grid middleware.
To manage the differences, we tried to deploy some applications which can work
across the available middleware infrastructures. For example, in the High Energy
and Nuclear Physics (HENP) community in Japan, the Computing Research Cen-
ter (CRC) at KEK maintains the computing infrastructure for HENP (e.g. the cen-
tral network services, software services, and so on). KEK is involved in RENKEI
and studying to efficiently use both Grid and non-Grid resources, particularly for
HENP users. Our applications work well for this community even in multi-Grid
environments for end users working on such projects as Belle [79], ILC [80], and
medical physics.

4.1.1 Setup Demonstration

Our software-abstraction layer, UGI, can mask the differences between different
kinds of Grid middleware. This section describes the use of two types of middle-
ware. One is NAREGI, and the other is Torque. Our demonstration shows how
easy it is to deploy our application examples with different types of middleware.
This chapter describes our software development using different middleware in-
frastructures, comparing the UGI environment with the traditional approach.

41

<?xml version=”1.0” encoding=”UTF−8” standalone=”no”?>
<JobDefinition xmlns=”http://schemas.ggf.org/jsdl/2005/06/jsdl” xmlns:naregi=”http://www.

naregi.org/ws/2005/08/jsdl−naregi−draft−02”>
<JobDescription>
<JobIdentification>
<JobName>Program</JobName>

</JobIdentification>
<Application>
<POSIXApplication xmlns=”http://schemas.ggf.org/jsdl/2005/06/jsdl−posix”>
<Executable>test.sh</Executable>
<WorkingDirectory>workdir</WorkingDirectory>

</POSIXApplication>
</Application>
<Resources>
<CandidateHosts>
<HostName>nrg04.cc.kek.jp</HostName>

</CandidateHosts>
</Resources>

</JobDescription>
</JobDefinition>

Figure 4.1: An example of WFML script

#! /bin/csh

#PBS −d workdir
#PBS −q @dg02.cc.kek.jp
cd $HOME/workdir
./test.sh

Figure 4.2: An example of PBS script

Traditional Approach

In the traditional approach, application developers need to follow the specific
commands and rules of each kind of middleware. NAREGI uses specific com-
mands such as
“naregi-job-submit”
to submit a job with a Work Flow Markup Language (WFML [81]) file. The
WFML file is needed to define the job description as shown in Figure 4.1. NAREGI
requires a WFML formatted file to describe the attributes for a job, such as the ex-
ecution file, working directory, and so on.

The other middleware, Torque requires the specific command
“qsub”
to submit a job with a PBS script file, as shown in Figure 4.2. The PBS script is
used to define the job description as with WFML in NAREGI.

The traditional approach forces the application developers to prepare differ-

42

ent formats of job descriptions and to use different commands for each kind of
middleware, even if the content of the job descriptions is the same. The applica-
tion developer must also insure the compatibilities with all of the middleware that
they are using. Also, additional efforts are required when a user’s applications are
deployed in other middleware infrastructures.

4.1.2 UGI Implementation

Once a UGI adaptor (including SAGA) for each kind of middleware is prepared,
application developers only need to use the functional API and do not need to
worry about the features of each specific middleware. Table 4.1 shows some ex-
amples that application developers can use to invoke UGI APIs for job submis-
sions to Grid middleware.

A UGI job description has several attributes. The application developer can
configure them once and reuse the job description to submit jobs for other mid-
dleware infrastructures. A sample configuration for a UGI job description is de-
scribed in Section 4.1.3. Application users need only specify the job service, such
as NAREGI, gLite, or Torque, etc. and modify part of the job description to switch
it to another service.

Figure 4.3 shows a detailed architecture using UGI. The UGI layer is lo-
cated over a SAGA layer that is located between “End users” and several kinds
of computing resources. Even if a firewall exists between computing resources
and higher-level components, users can use resources from all of the middleware
infrastructures through UGI. Users can use resources from all middleware infras-
tructures through UGI. Application developers can develop their own applications
without any concerns about the underlying Gird middleware. In addition this ap-
proach provides an easy mechanism such as a Web interface that end-level users
can use even behind firewalls. For the practical experiment, we have deployed a
host that has the pre-installed UGI, and the required software libraries.

We created SAGA adaptors for NAREGI (SNA: SAGA NAREGI Adaptor)
and for Torque (STA: SAGA Torque Adaptor) that comply with version 1.0 [37]
of the specification discussed in the OGF. We can access NAREGI and Torque
through SAGA in the UGI layer. The gLite SAGA adaptor was not available
as of May 2012, so we prepared another adaptor for UGI because it is easier to

UGI API Function
ugi.url.url() Specify job service (e.g. NAREGI or

Torque).
ugi.job.description.description() Create a job description.
ugi.job.service.create_job(description) Create a job with description.
ugi.job.job.run() Submit a job.

Table 4.1: Frequently invoked UGI APIs for job submissions.

43

Universal Grid User Interface (Python)

NAREGIgLite

FireWall

UI‐CLI

Adaptor Adaptor

PC

Torque

Local

Adaptor

FireWall

HTTPS

“Non‐GRID”

GRID

End users

NAREGI‐CLI

User Applications

UGI
Adaptors

sub

SAGA C++ Engine

Figure 4.3: UGI-based user environment with Grid middleware.

SAGA

Torque serverNAREGI
Scheduler front‐end

SNA STA
naregi://naregi‐front.kek.jp torque://torque‐server.kek.jp

Calculation nodes associated with NAREGI Calculation nodes associated with Torque

naregi‐front.kek.jp

torque‐server.kek.jp

grid‐grateway.kek.jp

gLite
Scheduler front‐end

UGI Adaptor
For gLite

glite://glite‐front.kek.jp

Calculation nodes associated with gLite

glite‐front.kek.jp

Universal Grid User Interface (UGI)

Figure 4.4: Workflow diagram in the user environment based on UGI.

implement a UGI adaptor than a SAGA adaptor. Our demonstration works in the
UGI environment with the adaptors we created. UGI should be installed on a host
server that is called the “UGI host”. Figure 4.4 shows the workflow diagram for
our demonstration.

4.1.3 Job Submission with UGI

A UGI application can be executed in NAREGI, gLite, and Torque. Figure 4.5
shows sample code (sample ugi.py) to submit a job using the UGI API. The sam-
ple code calls another script to define a job task (Figure 4.6). In this task, the job
description based on JSDL (Job Submission Description Language) [82] is sim-
ply defined in the code. The application developer can separate the job description
from the code if necessary. Users need specify only a pair of a job service and a
hostname as the argument to submit a job in these examples.

44

import ugi
import urlparse

argvs = sys.argv
argc = len(argvs)

middle = urlparse.urlparse(argvs[1])[0]
site = urlparse.urlparse(argvs[1])[1]
tasks = []

tk = ugi.job.task(middle)
tk.site = site
tk.share = share = [1,] # no. of jobs
tk.mode = ’multipleJob’
tk.script = script = ”jobtask.py”
tasks.append(tk)

Job submission
ugi.job.submit(tasks)

Figure 4.5: Job execution example using UGI.

import sys, saga

argvs = sys.argv
argc = len(argvs)

site = sys.argv[1]
middle = sys.argv[3]

try:
Create a Job Description
url = middle + ”://” + site
js url = saga.url(url)
job caht = site
job service = saga.job.service(js url)
job desc = saga.job.description()
job desc.executable = ’./test.sh’
job desc.working directory = ’$HOME/work dir’
job desc.candidate hosts = job caht
Submit a job
my job = job service.create job(job desc)
my job.run()

except saga.exception, e:
print ”SAGA Error: ”, e

Figure 4.6: Job task example using SAGA.

45

For example, here is a command to submit a job to NAREGI:

$ python sample_ugi.py naregi://naregi-front.kek.jp

The corresponding command to submit a job to Torque is:

$ python sample_ugi.py torque://torque-server.kek.jp

In the case of gLite, no SAGA adaptor is available, so UGI cannot call jobtask.py
directly. Instead, UGI calls the UGI gLite adaptor. Then we can also submit a job
to gLite as:

$ python sample_ugi.py glite://glite-server.kek.jp

There is no need to change the application itself as shown in this example.
Application developers do not need to deal with the incompatibilities between the
different kinds of middleware.

4.1.4 Demonstration Results

Our actual HENP applications created in a practical user environment with SAGA
were successfully submitted to RENKEI resources on the deployed NAREGI sys-
tem and also used local resources managed by Torque. We deployed a PTSim
program based on Geant4 [83, 84, 85] as a real application using resources from
both kinds of middleware. The application is a Monte Carlo simulation of the
particle interaction of a proton beam with the materials making up a human body.
Further discussion of PTSim appears in Section 6.2.

The Python script program successfully controlled the job submissions and
monitored the job status. The output files of the simulation were transferred to the
client host (UGI host) and post-processed to display dose distributions and particle
trajectories. The whole process of this workflow was described in a simple Python
program that is easy for the end users to understand. For application developers,
this provides a convenient environment for debugging and tuning the application.
Users can change the application parameters and submit jobs to use the resources
under both kinds of middleware for rapid and easy debugging.

This demonstration showed the usability of the universal Grid interoperable
environment. This also makes it possible for non-Grid applications that have al-
ways used local resources to become portable for export to distributed Grid re-
sources.

4.2 File Manipulation in Multi-Data Grids

This section describes practical file access applications for distributed storage
resources over multi-file-system middleware. At the CRC in KEK, many data

46

files are produced by physical experiments. Sharing bubble chamber image (Fig-
ure 4.7) files between KEK and Kings College in UK is one of the examples. We
tried to display one bubble chamber image file that is divided and stored on the
different kinds of file-system middleware. We used bubble chamber images that
can be interpreted visually for simplicity. For larger data files, our approach will
work even more efficiently.

The kinds of file-system middleware we used were iRODS and Gfarm. To
access these kinds of middleware, we created the UGI file APIs and the SAGA
adaptors for iRODS and Gfarm. We present the technical details for the user
environment and discuss the usability by using real bubble chamber image files.

Figure 4.7: Bubble chamber photo image.

4.2.1 UGI Implementation

There are several kinds of file-system middleware in use today. Using file-system
middleware requires using specific commands and rules to access files, and the
differences cause problems for application developers. UGI masks the differences
between different middleware infrastructures.

We use two types of file-system middleware: iRODS and Gfarm. Our demon-
stration shows how easy it is to access the different types of file systems. Table
4.2 shows examples of application developers using the UGI API to access the
file systems. Application users need only specify the middleware scheme (e.g.
iRODS or Gfarm) and each logical path to switch to other kinds of file-system
middleware.

Figure 4.8 shows the detailed architecture of the Data Grid environments when
using UGI. The UGI layer is located between the “End users” and the various
kinds of file-system middleware. A local file-system is located in the same layer
as “GRID” for our study, although the local file system is not a kind of Grid

47

UGI API Function
ugi.file.read() Read the file.
ugi.file.write(*buffer) Write buffer data to the file.
ugi.file.get_size() Get file size of the file.
ugi.file.copy() File copy within a protocol.
ugi.file.transfer_copy() Tramsfer a file across different protocol.

Table 4.2: Frequently invoked UGI APIs for file manipulations.

Universal Grid User Interface (Python)

SAGA C++ Engine

GRID

End users

User Applications

Adaptors

iRODSGfarm

PC

Local
Filesystem

FireWall

“Non‐GRID”

Figure 4.8: UGI-based user environment with Data Grids.

technology. That is because our goal is to use resources on different kinds of Grid
middleware as well as local resources. Even if a firewall exists between the other
kinds of file-system middleware and the clients, end users can access the storage
resources on all of the file-system middleware, iRODS, Gfarm, and the local file
system through UGI.

We created SAGA adaptors for iRODS (SIA: SAGA iRODS Adaptor) and
for Gfarm (SGFA: SAGA Gfarm Adaptor). Our demonstration works in the UGI
environment with the adaptors. The client applications for iRODS and Gfarm
should be installed on the UGI host. In our experiments, the i-command software
for iRODS and the Gfarm client software are installed on the UGI host. Figure
4.9 shows the workflow for our prototype. The command
ugi.file.transfer_copy()

transfers files among the different kinds of Data Grid middleware.

4.2.2 File Access with UGI

This section describes how to access files in different kinds of file-system mid-
dleware. First, we tried to share the bubble chamber photo image files among the
different kinds of file-system middleware. In the next step, we divided an image

48

User

Login

Put
Data

Get
Data

iRODSGfarm Local
Filesystem

SGFA SIA Default FILE

SAGA

UGI Host Copy Each Other

Figure 4.9: Workflow diagram in the user environment based on UGI.

Figure 4.10: iRODS network between KEK and Kings College.

file into smaller data files and stored the pieces in the different kinds of file-system
middleware. Then, we tried to combine the divided data to display the image file.

Access Files Stored in Different file systems

Figure 4.7 shows an example of a bubble chamber image. Such images are stored
in iRODS during normal use. The clients in KEK and Kings College can share
the image data as shown in the Figure 4.10.

We have other storage resources in another file system, Gfarm. Attaching the
existing Gfarm file system to our environment is simple. This allows us to share
the existing data in the Gfarm and also easily expand the storage resources. Figure
4.11 shows the clients using UGI to store and share the image files among iRODS,

49

User Upload

Put
Data

Get
Data

iRODSGfarm Local
Filesystem

SGFA SIA Default FILE

Read

UGI Host
Copy Each Other

SAGA

Figure 4.11: File Access via UGI.

User

Upload

Put
Data

Get
Data

iRODSGfarm Local
Filesystem

SGFA SIA Default FILE

Read
SAGA

UGI Host
Copy Each Other

Figure 4.12: File Access to separated image data via UGI.

Gfarm, and local file systems.

Combine Distributed Data

In considering the use of large files in the next step, sharing an image file that is
divided and stored on the different kinds of file-system middleware is convenient.
In our tests, we divided a bubble chamber photo into three pieces and stored them
on the different kinds of file-system middleware: iRODS, Gfarm, and the local
file system (Figure 4.12).

50

import ugi
import sys

argvs = sys.argv
argc = len(argvs)

img urls = []

for line in open(argv[1], ’r’):
img urls.append(line)

for img url in img urls:
f size = ugi.file.get size(img url)
mem = ugi.file.read (img url, f size)
print mem

Figure 4.13: img cat ugi.py:The sample UGI application.

gfarm://localhost/kawai/bubble/100780001 aa
irods://localhost/tempZone/home/kawai/bubble/100780001 ab
file://localhost/home/kawai/bubble/100780001 ac

Figure 4.14: filelist.txt:The URL list of file locations.

We created a sample UGI application, the “img cat.py” script showed in Fig-
ure 4.13, which concatenates the distributed files. The img cat command requires
the file list indicating the locations of the divided data as its argument. The Figure
4.14 shows the list of the distributed file locations. In this case, the example photo
(file name is 100780001) is divided as below:

100780001
100780001 aa
100780001 ab
100780001 ac

Each location is specified in the format of a URL compliant with RFC 1630 [86].
Then, we uses the “display” command of the ImageMagick software [87] to dis-
play the outputs of the img cat command, as:

$ python img_cat.py filelist.txt | display

The UGI application combines the distributed files and displays them as an
image file. There is no need to change the application if we use different kinds
of file-system middleware. All we need is to change the list of file locations. Ap-
plication developers do not need to worry about compatibility among the various
kinds of file-system middleware.

51

4.2.3 Demonstration Results

Our sample application accesses the distributed files on the different kinds of file-
system middleware and displays the image with the ImageMagick software. The
simple program is easy for the end users to read because the coding method is
similar to a traditional program accessing a local file system. Also, the users can
easily change the file locations for the different kinds of file-system middleware
without modifying the source code. For application developers, this provides a
convenient environment for debugging and tuning their applications because they
do not need to worry about the file-system differences.

In this demonstration, we displayed a bubble chamber image that is divided
and stored in different kinds of file-system middleware: iRODS, Gfarm, and a
local file-system. The sharing of files between KEK and Kings College will be
used not only for display, but also for analyses, simulations, and modifications in
the future. Using the ImageMagick API [88] or another CAD software API will
be required for future applications. We have not yet studied the memory man-
agement and speed of our prototype. The simple program we showed only reads
the divided data sequentially. Techniques to allocate memory and to implement
multi-threading methods are also required to improve the applications.

4.3 Metadata Control in Multi-Grid Environments

This section describes the management of files distributed in heterogeneous Data
Grids by using RNS. RNS provides hierarchical namespace management for name-
to-resource mapping to use Grid resources for different kinds of middleware.

RNS directory entries and junction entries can contain XML messages as
metadata. We define attribute expressions in XML for the RNS entries and give
an algorithm to access distributed files stored within different kinds of Data Grids.
The example in this section shows how our Grid application can retrieve the ac-
tual locations of files from the RNS server. An application can also access the
distributed files as though they were files in the local file system without worrying
about the underlying Data Grids.

4.3.1 How to Access Distributed Files

This section shows how to access distributed files in various Data Grids. As our
example of distributed file access, we assume that the large dataA file consists
of several pieces stored in different kinds of Data Grids. To manipulate dataA,
application users need to retrieve all of the distributed pieces by using a Grid
application.

A Grid application needs the physical locations of the existing resources in
the Data Grids. The required additional information can be attached to each RNS
entry because the RNS entries can include XML metadata. We define an XML

52

<?xml version=”1.0” encoding=”UTF−8”?>
<file xmlns=”http://kek.jp/rns/test”>
<rnskv key=”file num” xmlns=””>n</rnskv>
<rnskv key=”file data 0” xmlns=””>dataA 0</rnskv>
<rnskv key=”file data 1” xmlns=””>dataA 1</rnskv>
<rnskv key=”file data 2” xmlns=””>dataA 2</rnskv>

:
:

<rnskv key=”file data n” xmlns=””>dataA n</rnskv>
</file>

Figure 4.15: Attribute definition of virtual directory

attribute expression for each RNS entry to handle all of the physical locations.
We also describe the algorithm to retrieve the information of physical locations
for the distributed files.

Attribute Definition

We need to consider what kind of XML message should be contained in each RNS
entry. We primarily define how to express the attribute message in the virtual
directory. There are several forms for these definitions, so the last part of this
subsection considers some other possibilities that would have been less suitable
for managing this kind of distributed file.

RNS Virtual Directory If the dataA file consists of dataA0, dataA1, dataA2,
. . . , dataAn, the RNS path will be defined:

/. . . /dataA
dataA0

dataA1

dataA2...
dataAn

The file locations of the dataA pieces should be addressed in XML as metadata
in the virtual directory entry for dataA. Figure 4.15 shows the attribute definition
of the virtual directory in XML. The <rnskv> tag contains key-value metadata as
attributes. The “file num” key indicates that this virtual directory entry represents
a file consisting of several divided pieces and its value is the number of the pieces.
The value of the “file data i” key should be the relative RNS junction path-name
to the current RNS virtual directory entry (for dataA).

53

RNS Junction Each RNS junction should be registered to refer to the physical
file locations of the dataA pieces. Any RNS path name can be registered logically,
but it is better to register the pieces directly in the dataA virtual directory. In
particular, we must avoid specifying an absolute RNS path in the metadata for
any RNS entry because an absolute RNS path can be different for each client[29].

The EPR of each junction is by itself sufficient to address an existing resource.
An additional XML message can be attached to each junction when the addressed
resource is replicated.

Comparison with Other Expressions

One of the other ways to address a physical file location is by directly referenc-
ing an existing resource as the location value in the ”file data i” key instead of
referencing an RNS path. This method can avoid registering some RNS junctions
and thus improve the execution times by avoiding the processing required to ac-
cess those RNS junctions. However, this method has the serious disadvantage
that the XML attribute message must be modified whenever the physical location
of any piece of the file changes. Also, the XML still needs to handle the other
physical locations of the replicated pieces. This increases the complexity of the
implementation.

Another method is to define the attribute messages in the RNS junctions. This
method seems to work in the same way as with our definitions. However, this ap-
proach requires a dummy EPR to register each junction. That is because the RNS
specification requires that all of the compliant RNS implementations must em-
body the target information of a namespace junction within a valid WSAddress-
ing EPR[29]. Such a dummy EPR may cause side effects such as hard-to-detect
address conflicts or infinite RNS path loops.

Using an RNS lookup operation is effective for obtaining all of the entries
within a given target RNS virtual directory[29]. However, in this case RNS cannot
control the order of the junction entries, so the RNS junction names should include
ordering information. Also, if the obtained entries include invalid junctions or
virtual directories, we will need additional checks to detect them.

Algorithm

The physical location list of the existing resources can be obtained by using
Algorithm4.1. In this algorithm, L is the set containing the RNS locations spec-
ified in the XML metadata of the RNS virtual directory. The set R has all of the
RNS junctions in the RNS namespace. The function U maps each RNS junction
to an existing physical URL.

We need to add a NULL record to the urlList when the corresponding physi-
cal URL does not exist. This is because the Grid application must know about the
availability of each piece of the file to reconstruct dataA.

54

Algorithm 4.1 Get the location list of existing resources
1: for each rnsLocation li in L do
2: if li ∈ R then
3: add URL ui = U(li) to urlList
4: else
5: add NULL to urlList
6: end if
7: end for
8: return urlList

UGI API for metadata Function
ugi.file.transfer_register() Transfer a file to a destination and register to RNS catalog.
uig.file.replicate() Replicate a file registered in RNS.
ugi.file.set_metadata() Set metadata to a file registered in RNS catalog.
ugi.file.get_metadata() Get metadata of a file registered in RNS catalog.
ugi.file.get_epr() Get EPR of a file registered in RNS catalog.
ugi.file.mod_metadata() Modify metadata of a file registered in RNS catalog.
ugi.file.query_metadata() Query metadata of a file registered in RNS catalog.

Table 4.3: Frequently invoked UGI APIs to handle metadata.

Universal Grid User Interface (Python)

SAGA C++ Engine

GRID

End users

User Applications

Adaptor

iRODSGfarm

PC

Local
Filesystem

Adaptor

RNS
Server

FireWall

“Non‐GRID”

Figure 4.16: UGI-based user environment with RNS.

4.3.2 UGI Implementation

Using Data Grids involves using their specialized commands and rules to access
their files. The differences among these commands and rules cause problems
for application developers. UGI provides a unified interface that conceals the
differences among the different middleware infrastructures. We need to control
the RNS application via UGI.

Table 4.3 shows some examples of application developers calling the UGI
APIs to handle metadata. Figure 4.16 shows details of the architecture using dif-
ferent Data Grids and RNS with UGI.

55

User Login

Put
Data

Get
Data

iRODSGfarm Local
Filesystem

SGFA SIA Default FILESRA

RNS
Server

Put
Location

Get
Location

UGI Host Copy Each Other

SAGA

Figure 4.17: Workflow diagram in the user environment based on UGI.

Our demonstration works in a UGI environment with iRODS, Gfarm, a local
file system, and RNS. UGI is prepared on the “UGI Host”. Figure 4.17 shows the
workflow for our experiments.

The client application should get the information about the physical file loca-
tions from an RNS server via UGI before accessing the Data Grids. When the
application stores files on the Data Grids, the application should send the infor-
mation about the file locations to the RNS server after storing the files.

4.3.3 UGI Example

We divided a typical bubble chamber photograph into three pieces and stored the
pieces on the different Data Grids: iRODS, Gfarm, and the local file system (Fig-
ure 4.18). Also, we registered each physical file location in RNS catalog system.

We created a sample UGI application, the “img cat ugi.py” script shown in
Figure 4.19, which retrieves the physical locations of the distributed files and con-
catenates the identified files. We registered an RNS virtual directory and three
junctions:

rns://sg01.cc.kek.jp/100780001
100780001 aa
100780001 ab
100780001 ac

The RNS path-name of the virtual directory is required as an argument for the
img cat ugi.py script. The hostname “sg01.cc.kek.jp” is the RNS server in our
environment. Therefore, the RNS path-name of the argument becomes
“rns://sg01.cc.kek.jp/100780001”.

56

User

Upload

Put
Data

Get
Data

iRODSGfarm Local
Filesystem

SGFA SIA Default FILE

Read

SRA

RNS
Server

Get/Put
Location

SAGA

UGI Host Copy Each Other

Figure 4.18: File access to separate pieces of a photograph via UGI.

import ugi
import sys

argvs = sys.argv
argc = len(argvs)

// get RNS junctions
u = argv[1]
str file num = ugi.file.get metadata(u, ”−k=file num”)
file num = int(str file num)
rns jncs = []
for i in file num:

rns jncs.append(”file data ” + str(i))

// get physical locations
img urls = []
for rns jnc in rns jncs:

f url = u + ”/” + rns jnc
epr = ugi.file.get epr(f url)
img urls.appned(epr)

// read existing files
for img url in img urls:

f size = ugi.file.get size(img url)
mem = ugi.file.read (img url, f size)
print mem

Figure 4.19: img cat ugi.py – The sample UGI application with RNS.

We can specify the metadata of the RNS virtual directory, 100780001, as
shown in Figure 4.20. Table 4.4 shows the physical resource locations of the
divided files. Each URL for a physical location is specified in the format of a

57

<?xml version=”1.0” encoding=”UTF−8”?>
<file xmlns=”http://kek.jp/rns/test”>
<rnskv key=”file num” xmlns=””>3</rnskv>
<rnskv key=”file data 0” xmlns=””>100780001 aa</rnskv>
<rnskv key=”file data 1” xmlns=””>100780001 ab</rnskv>
<rnskv key=”file data 2” xmlns=””>100780001 ac</rnskv>

</file>

Figure 4.20: The example of the attribute definition

<ns1:EndpointReferenceType
xsi:type="ns1:EndpointReferenceType"

1 // 3 /200 /08/ ixmlns:ns1="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ns1:Address xsi:type="ns1:AttributedURI">

f // 07 k k j /k i/b bbl /100780001 bgfarm://sg07.cc.kek.jp/kawai/bubble/100780001_ab
</ns1:Address>

</ns1:EndpointReferenceType> Gfarm Path Name

Figure 4.21: EPR example indicating Gfarm resource

File name File System URL
100780001 aa iRODS irods://sg03.cc.kek.jp/tempZone/home/kawai/bubble/100780001 aa
100780001 ab Gfarm gfarm://sg07.cc.kek.jp/kawai/bubble/100780001 ab
100780001 ac Local File System file://sg01.cc.kek.jp/home/kawai/bubble/100780001 ac

Table 4.4: Physical resource locations of the divided example files.

URL compliant with RFC1630. As an EPR example, Figure 4.21 shows the RNS
junction EPR of a Gfarm file resource. The value of <ns1:Address> indicates the
URL of the physical Gfarm location. For iRODS and the local file system, each
URL is specified as an <ns1:Address> value for each EPR.

Then we can use the “display” command of ImageMagick to display the output
of the img cat ugi.py script as:

$ python img_cat_ugi.py rns://sg01.cc.kek.jp/100780001
| display

Our application retrieves the locations of the distributed files from the RNS
server, combines them and displays them as an image. There is no need to change
the application if we use different kinds of Data Grids. All we need to do is change
the RNS entries and the metadata. Application developers do not need to worry
about any incompatibilities among the different kinds of middleware.

4.3.4 Demonstration Results

The concept of managing the distributed files by RNS was validated by our proto-
types. Our sample application successfully retrieves the location information for

58

the distributed files on the different kinds of Data Grids by using RNS and accesses
the files. The application also displays them as an image with ImageMagick. This
simple program is easily understood by the end users because the coding method
is similar to a traditional program accessing a local file system and it only requires
some simple key-value operations. The file location information is fully managed
in the RNS system without modifying the source code of the application.

As an example, we displayed a bubble chamber image that was divided and
stored in the different kinds of Data Grids: iRODS, Gfarm, and the local file
system. We can consider several ways to store the physical locations of the divided
pieces. Using RNS metadata to manage the information about the file locations
supports sharing the metadata among different users. Once the RNS entries and
the metadata have been created, it is easy for Grid users to access the distributed
pieces without worrying about each physical file location. Sharing the metadata
in RNS is beneficial because the required information associated with each file in
the future work can be referred to and modified by distributed researchers all over
the world.

59

Chapter 5

Abstraction Layer Evaluation

As we mentioned in the previous chapters, we have already prepared the necessary
components for the software-abstraction layer to utilize different kinds of Grid
middleware, and have described the implementations and experimental results.
We must consider the overhead of the abstraction layer.

In this chapter, we evaluate the performance with a software-abstraction layer
such as SAGA and consider appropriate evaluation metrics for such abstraction
layers.

5.1 Overhead Evaluation

5.1.1 Inside of Abstraction Layer

We chose Torque [89] to evaluate the overhead of the abstraction layer. SAGA and
the STA can be used as an abstraction layer with Torque. Figure 5.1 shows the
application execution flow using STA. The job submission to the Torque system
is executed by using a qsub [90] command, which is one of the Torque client
commands. STA includes the qsub command internally and the qsub command
is invoked by the process Boost.Process [91]. SAGA has Python bindings, so we
can use the SAGA Python API.

C++
Application

Python
Application

SAGA
C++ API

Python
Bindings

SAGA
Python API

Boost.Process

qsub

Submit Torque Job

S
T
A

Figure 5.1: Call mechanism in SAGA with STA

60

#! /bin/sh
#PBS −N saga−app
#PBS −d /home/ykawai/tmp
#PBS −l walltime=300
#PBS −q @dg02.cc.kek.jp
#PBS −M yutaka.kawai@kek.jp
/bin/hostname

Figure 5.2: PBS script for overhead evaluation

Case Average Standard Deviation Variation Coefficient
(A) qsub 80.17 ms 108.01 1.35
(B) C++ 472.16 ms 148.76 0.32
(C) Python 539.10 ms 165.03 0.31

Table 5.1: Average and standard deviation of the performance results.

According to this design within the SAGA C++ implementation, it is clear that
the performance costs are increased in an order corresponding to these three cases
when submitting a job (which means that Python has the largest overhead):

(A) Direct use of qsub

(B) Using the SAGA C++ API

(C) Using the Python API

5.1.2 Evaluation for Job Submission
Performance Verification

For fair comparisons, we prepared each job description so that the content of
each job is the same in the three cases. The case A uses the PBS script shown in
Figure 5.2. The case B with the SAGA application written in C++ (Figure 5.3) and
the case B with the Python script is shown in Figure 5.4. We used very simple jobs
that only involved repeatedly obtaining the result of a “hostname” command, so
the calculations for the job load were not related to our calculations of the SAGA
overhead. The time test uses a “time” command in Linux and the shell script
shown in Figure 5.5. All of the three cases were tested simultaneously. Each trial
submitted five hundred sequential jobs.

Figure 5.6 shows the results and Table 5.1 shows the average elapsed time and
standard deviation of each set of results.

61

#include <saga/saga.hpp>
#include <iostream>
namespace sja = saga::job::attributes;
namespace sjad = saga::job::attributes::detail;

int main(int argc, char∗ argv[])
{

saga::url rm url (”torque://sg01.cc.kek.jp”);
saga::job::service js(rm url);

saga::job::description∗ jd;
jd = new saga::job::description();
jd−>set attribute(sja::description executable,

”/bin/hostname”);

std::vector <std::string> args;
args.push back(””);
jd−>set vector attribute(sja::description arguments, args);
jd−>set attribute(sja::description output, ””);
jd−>set attribute(sja::description error, ””);
jd−>set attribute(sja::description working directory, ”tmp”);
jd−>set attribute(sja::description wall time limit, ”300”);
std::vector <std::string> hosts;
hosts.push back (”dg02.cc.kek.jp”);
jd−>set vector attribute(sja::description candidate hosts, hosts);

saga::job::job j = js.create job(∗jd);

try {
j.run();
} catch (saga::exception e) {

std::cout << ” [what]=” << e.what() << std::endl;
std::cout << ”[error]=” << e.get error() << std::endl;
return 1;
}

return 0;
}

Figure 5.3: C++ code for overhead evaluation

Discussion and Results

In Figure 5.6, the required overhead to submit a job is clearly significant. The
overhead varied from 4.9 to 5.7 times of the base case. However, the overhead
costs did not accumulate during continuous job execution. In other words, the
average elapsed time in Table 5.1 would be the delay time perceived by the end
users. The users can tolerate the results with 0.5 seconds for job submissions in
real-world situations while performing their job manipulations.

The variation coefficient values for C++ and Python are almost the same
(0.31 ∼ 0.32) and both graphs appear to have similar distributions. It is reason-

62

#!/usr/local/python/bin/python
import pdb
import saga

job serv = ”torque”
job exec = ’/bin/hostname’
job args = (’’,)
job caht = (’dg02.cc.kek.jp’,)
work dir = ’/home/ykawai/tmp/’

try:
js url = saga.url(job serv + ’://sg01.cc.kek.jp/’)
job service = saga.job.service(js url)
job desc = saga.job.description()
job desc.executable = job exec
job desc.working directory = work dir
job desc.wall time limit = ’300’
job desc.arguments = job args
job desc.candidate hosts = job caht

my job = job service.create job(job desc)
my job.run()

except saga.exception, e:
print ”SAGA Error: ”, e

Figure 5.4: Python script for overhead evaluation

#!/bin/sh

for i in ‘seq 1 500‘
do

(time ./jobtest) 2>> time c.log
(time ./jobtest.py) 2>> time py.log
(time qsub pbs script.txt) 2>> time q.log

done

Figure 5.5: Shell script to execute time commands.

able to use average values to compare the cost deltas between Python and C++.
This indicates the Python cost is 14.2% higher than the C++ cost.

5.1.3 Evaluation for File Manipulation

In this section we describe the tests carried out to assess the impact of the overhead
of the abstraction layer while using RNS for the file manipulations. We found that
the Python costs are similar to the C++ costs in the previous section, so the original
commands and the C++ SAGA implementation are used here. As a baseline, the
first test was run without SAGA and RNS. The second test assesses the overhead

63

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

python

c

qsub

Elapsed Time for Job Submission (per one job)

sec

Job#

Figure 5.6: Job submission performance in Torque

SAGA Adaptor Host

Upload

PutGet

SGFA SIA Default FILERead SRA

Get/Put
Location

User DataData

iRODSGfarm Local
Filesystem

RNS
Server

Location

FilesystemServer

Figure 5.7: File access to separate pieces of a photograph via SAGA.

of SAGA and the last test assesses the overhead of the RNS.

Test Environment

The test environment consists of the iRODS server, the Gfarm server, the RNS
server, and the SAGA Adaptor host. Those machines run on CentOS 5.5 as virtual
machine guests on the same physical machine. The physical machine has an Intel
CPU i7-920 at 2.67GHz with 12GB of RAM. Each guest OS runs with 1GB of
RAM and one dedicated core. All of the machines are located on the same subnet.
The test environment can have a non-trivial and noticeable effect on the results of
such tests. Figure 5.7 shows an example of dividing and storing a bubble chamber.

64

Test Cases

We evaluated our implementations for the transfer of several sizes of files ranging
from 100MB to 1GB. For the evaluation, we stored a third of each file on each
of the three different Data Grids: iRODS, Gfarm and the local file system. Then
we combined the pieces and produced a complete file in the demonstration. For
example, with the 100MB file, we divided the file into 33MB pieces and stored
them in the different Data Grids. In the evaluation, we then combined the 33MB
pieces to create a complete 100MB file, measuring the elapsed time to combine
the pieces. For average values, the test program ran three times. We compared
three test configurations:

• Case 1: Normal Case

• Case 2: Case with SAGA

• Case 3: Case with SAGA and RNS

Here are detailed descriptions of the test cases:

Case 1 – Normal Case:
The normal case is a traditional situation. A list file of the file locations is

contained on a local file system and the specific commands for the Data Grids are
used. This case is the most basic because the list of files cannot be shared and the
commands to access the Data Grids are specified in the source code. Figure 5.8
shows sample source code for the “img cat cmd” commands for Case 1.

Case 2 – Case with SAGA:
This case is using SAGA. A list file of the file locations is still contained

on a local file system in this case, so the list file cannot be shared. However,
this case uses SAGA so that we can use standardized interfaces instead of spe-
cific commands for the Data Grids. Figure 5.9 shows sample source code for the
“img cat saga” commands for Case 2.

Case 3 – Case with SAGA and RNS:
This case is using both SAGA and RNS, which is the focus of this study. We

can use standardized SAGA commands and the information about the file loca-
tions is contained in the RNS catalogue. Therefore, the file locations can also be
shared. This sample source code for the “img cat saga rns” commands is shown
in Figure 5.10.

Test Results

Figure 5.11 shows the results of the tests. Case 2 is about 49.3% faster Case 1.
That means that the cost of I/O access through the abstraction layer of SAGA is

65

#include <saga/saga.hpp>
#include <fstream>

int main (int argc, char∗∗ argv)
{ // open a list file

std::ifstream ifs;
ifs.open(argv[1]);

// read the list file
std::vector<saga::url> img urls;
std::string input;
while (std::getline(ifs, input)) {

img urls.push back(input); }

// read iRODS file
char sys cmd[1024];
memset(sys cmd, ’\0’, sizeof(char));
strcat(sys cmd, ”iget ”);
strcat(sys cmd, img urls[0].get path().c str());
strcat(sys cmd, ” − ;”);

// read Gfarm file
strcat(sys cmd, ”gfexport ”);
strcat(sys cmd, img urls[1].get path().c str());
strcat(sys cmd, ”;”);

// read local file
strcat(sys cmd, ”cat ”);
strcat(sys cmd, img urls[2].get path().c str());

system(sys cmd);
return (0);
}

Figure 5.8: img cat cmd.cpp – The sample code for Case 1.

less than the cost of using the specified commands of the Data Grids. Case 3 takes
about 10 seconds longer than Case 2. The latency involves the accesses to the
RNS catalogue service. The current RNS is implemented in the Java language, so
the latency includes the cost of loading the Java VM.

This impact on the performance of using RNS should be considered. How-
ever, when considering the optimization of RNS implementations, it is practical
to control the tradeoff between access speed and high usability. When we com-
bine a large file, the ratio of the latency becomes smaller because the overhead of
RNS is always less than 10 seconds. Actually, for 100 MB to 500 MB files, Case
3 is about 61.9% slower than Case 2. In contrast, for larger files from 500MB to
1GB, it is about 18.5% slower. Therefore, our implementation works better with
files that are larger than 500MB.

66

#include <saga/saga.hpp>
#include <fstream>

int main (int argc, char∗∗ argv)
{ // open a list file

std::ifstream ifs;
ifs.open(argv[1]);

// read the list file
std::vector<saga::url> img urls;
std::string input;
while (std::getline(ifs, input)) {

img urls.push back(input); }

unsigned int bs=1024∗1024∗5;
char ∗mem = new char[bs];
saga::mutable buffer buf (mem, bs);

// read existing files
for(unsigned int i=0; i<img urls.size(); i++){
saga::filesystem::file f (img urls[i]);
const int f size = f.get size();
for(unsigned int i=0; i<=(f size/bs); i++){

f.read (buf);
if(i==(f size/bs))

std::cout << std::string (mem, (f size%bs));
else

std::cout << std::string (mem, bs); } }

return (0);
}

Figure 5.9: img cat saga.cpp – The sample code for Case 2.

Discussions

The speed performance was evaluated by three kinds of test cases. The first test
case is the most basic way without SAGA and RNS. The second one looks at
the impact of the overhead of SAGA. The last case concerns the overhead for
SAGA and the RNS service. We found that the performance using the SAGA
implementation is better than using the specific commands of the Data Grids, so
this matter is discussed in Section 5.2. Certainly, the RNS implementation has
some latency because of loading the Java VM and accessing the RNS service.
However, the ratio of the latency decreases when combining larger files.

5.2 Evaluation Method for Abstraction Layer

There are several points to consider when evaluating such an abstraction layer.
One of the points is that we need to verify is whether or not the existing software

67

#include <saga/saga.hpp>
#include <iostream>
#include <sstream>
#include <string>

int main (int argc, char∗∗ argv)
{ // Open RNS directory

saga::url u (argv[1]);
saga::replica::logical directory ld (u, saga::replica::Create

| saga::replica::ReadWrite);

// get RNS junctions
unsigned int file num;
std::string str file num = ld.get attribute(”file num”);
std::vector<std::string> rns jncs;
std::stringstream ss;
std::istringstream iss(str file num.data());
iss >> file num;
for(unsigned int i=0; i<file num; i++){

ss << i;
rns jncs.push back(ld.get attribute(”file data ” + ss.str()));
ss.str(””); }

// get physical locations
std::vector<saga::url> img urls;
for(unsigned int i=0; i<rns jncs.size(); i++){

saga::url f url = u.get string() + ”/” + rns jncs[i];
saga::replica::logical file lf (f url, saga::replica::Create

| saga::replica::ReadWrite);
std::vector<saga::url> epr list = lf.list locations();
img urls.push back(epr list[0]); }

unsigned int bs=1024∗1024∗5;
char ∗mem = new char[bs];
saga::mutable buffer buf (mem, bs);

// read existing files
for(unsigned int i=0; i<img urls.size(); i++){

saga::filesystem::file f (img urls[i]);
const int f size = f.get size();
for(unsigned int i=0; i<=(f size/bs); i++){

f.read (buf);
if(i==(f size/bs))

std::cout << std::string (mem, (f size%bs));
else

std::cout << std::string (mem, bs); } }
return (0);
}

Figure 5.10: img cat saga rns.cpp – The sample code for Case 3.

that is being considered as a candidate comparison tool is suitable for the per-
formance evaluation. To evaluate recently developed software, the pros and cons

68

70
sec

Speed Performance (smaller is better)

1)

40

50

60
1)

3)

2)

10

20

30

1) Normal Commands
2) SAGA
3) SAGA + RNS

2)

0
100 200 300 400 500 600 700 800 900 1,000

Combined File Size (MB)

Figure 5.11: Performance results of file manipulation with SAGA and RNS

of its functions and performance must be assessed. If the selected software for
the comparison is unsuitable, then it is difficult to correctly determine the perfor-
mance loss of the accesses going through the abstraction layer. We discuss how
to evaluate the overhead of SAGA-based applications in this section.

5.2.1 Application Example

The application example was introduced in Section 5.1.3. We tried to store each
piece of the file in the different kinds of Data Grids by dividing a large file into
three pieces and storing one piece in each of iRODS, Gfarm, and the local file
system. Figure 5.7 shows an example of dividing and storing a bubble chamber
image.

We had a sample command, “img cat saga” in C++, as shown in Figure 5.9 in
Section 5.1.3, which concatenates the distributed files and outputs them to stan-
dard output. We use the “display” command of the ImageMagick software to
display the outputs of the “img cat saga” command.

5.2.2 Evaluation Results

We evaluated the overhead of SAGA with the SAGA adaptors and the test applica-
tion from Section 5.1. This section describes the test environment, test cases, and
test results. We expected that the results would measure certain overhead costs,
but the results were contrary to our expectations.

Test Environment

The test host servers consist of three servers: an iRODS server, Gfarm server, and
SAGA adaptor host. The detail environments of the host servers are almost same

69

as Section 5.1.3 except for Gfarm authentication where we use the GSI authenti-
cation mode.

Test Case

The file size of the large file was adjusted from 100 MB to 1 GB in increments of
100 MB. As the same as Section 5.1.3, to prepare for this test, all of the files were
divided in advance into three pieces and one piece was stored in iRODS, Gfarm,
and the local file system. The first 1/3 of the file is stored in iRODS and the second
and third pieces are stored in Gfarm and the local file system, respectively.

The method of the test is measuring the elapsed time the following actions:

1. Reading the divided pieces from the different Data Grids.

2. Outputting the concatenated pieces to standard output.

There were two test cases.

Case 1 – Traditional Case

In this case, each client command that is needed for each Data Grid system is
used. This means that i-commands are used for iRODS, gf-commands are used
for Gfarm, and shell commands on a Linux system are used for the local file
system.

Case 2 – SAGA Case

In this case, a simple SAGA-based application is created and executed. As men-
tioned above, the command “img cat saga” is used for this test (as shown in Fig-
ure 5.9 in Section 5.1.3).

Test Results

Figure 5.12 shows the test results. The graph shows a similar trend line for all file
sizes. There were no significant differences observed between the traditional and
SAGA cases. Due to the architecture of an abstraction layer such as SAGA, there
should be some SAGA overhead requiring more time than in the traditional case.
However, the test results indicate that the SAGA overhead was negligible, which
indicated that our evaluation method needed improvements.

5.2.3 Correcting Comparison Tool

We determined that the problem with this naive performance evaluation method
was the use of the existing commands in the traditional case. Both the client
commands for the Data Grids and the standard shell commands on Linux systems
are mature in their operations and functions . In contrast, the SAGA application

70

Figure 5.12: Performance results of file manipulation with normal commands and
SAGA

we created with our prototype uses only the APIs of each of the client libraries, so
the application is not mature and has a limited number of functions, making it is
difficult to compare the new SAGA applications by simply comparisons with the
existing commands.

We used three different file systems simultaneously in the previous test cases
and thus, it is necessary to check whether similar results are shown with a single
file system. Figure 5.13, 5.14, 5.15 show the performance results of use of each
file system. The results of the iRODS and local file-system cases show that the ex-
isting commands are slower than SAGA use cases. We can say that these existing
commands are not suitable to use as a comparison tool in this test.

Additionally, we found no differences between Gfarm and Gfarm with SAGA
but the results of Gfarm is significantly different from (slower than) other file-
system ones. That is because we used Gfarm with the GSI authentication method.
Gfarm has both GSI and Shared Secret authentication methods. Figure 5.16
shows the performance differences of Gfarm between GSI and Shared Secret. The
Shared Secret method is very fast, and is easy to use because of no requirement to
acquire a public key. The performance curve of using the Shared Secret method
in Gfarm becomes similar to that of other file systems. On the other hand, the GSI
method supports data encryption and the encryption results in performance slower
than the case of the Shared Secret method. We typically used Gfarm with the GSI
method in terms of a variety of features for comparison.

We created a modified new iRODS command with a limited number of APIs,
similar to the APIs the SAGA application includes. The results of the new per-
formance evaluation shows that the modified iRODS command is relatively faster
than the SAGA application (Figure 5.17). Therefore, using the modified new

71

Figure 5.13: i-commands vs. SAGA and iRODS

Figure 5.14: cat command vs. SAGA and local-file system

command as a comparison tool is suitable to measure the overhead of the SAGA
abstraction layer. Also, we created a modified new cat command for the local file
system in the same way. In this case, using the new cat command is faster than
the SAGA application (Figure 5.18).

Therefore, we must pay careful attention to the maturity of the comparison
tools if the tools are already in the current systems. Whenever using existing
commands or APIs as a comparison tool, it is necessary to investigate inside of
the existing commands or APIs. If the existing commands or APIs have some
extra functions that are not related to the evaluation, we need to remove the extra
functions in the commands and APIs.

72

Figure 5.15: gf-commands vs. SAGA and Gfarm

0

10

20

30

40

50

60

70

80

100/3 200/3 300/3 400/3 500/3 600/3 700/3 800/3 900/3 1000/3

sec

File Size (MB)

Speed Performance (smaller is better)

Gfarm w/GSI

Gfarm w/o GSI

Figure 5.16: Gfarm: GSI vs. Shared Secret

5.2.4 Discussion

The results of the performance evaluation for software-abstraction layer can be
fluctuated by the definition of the comparison tool. Using the existing commands
and API is one of options for the evaluation. However, it is possible that we
encounter some difficulties to discuss overhead costs, functionalities or tradeoff
matters if we ignore the investigation of the existing commands and APIs. In
other words, if we can correctly investigate the existing commands and APIs, we
can prepare suitable comparison tools with some modifications.

In a pre-production stage, it is better to avoid the situation that we cannot cor-
rectly assess the overheads by simply using the existing commands and APIs as a
comparison tool. That is because the prototype software adds extra functions up to
the production release. For the software-abstraction layer, verifying its overhead

73

Figure 5.17: customized i-commands vs. SAGA and iRODS

Figure 5.18: customized cat vs. SAGA and local-file system

cost is one of the requirements. It is necessary to use a correct comparison tool
and to figure out the correct costs of the abstraction layer.

74

Chapter 6

Example Tools and Applications

6.1 Reliably Managing Files with RNS

This section describes a method for reliably managing files distributed in different
kinds of Data Grids with RNS . RNS provides hierarchical namespace manage-
ment for name-to-resource mapping when using Grid resources for different kinds
of middleware. We define attribute expressions in XML for the RNS entries and
give algorithms to access distributed files stored within different kinds of Data
Grids.

The volume of digital data and the size of a typical individual file are increas-
ing due to the introduction of high-resolution images, high-definition audiovisual
files, etc. The reliable storage of such large files is becoming problematic for
whole file replication, since a failure in the integrity of the file may be difficult
to localize. Our method involves managing large files in Data Grids by split-
ting them into smaller units in a traceable manner and then managing the smaller
units. The RNS catalog service uses the EPR and metadata that describe the orig-
inal locations as well as the checksum values. The example shows how our Grid
application can retrieve the actual file locations and the checksum values from the
RNS service via SAGA and UGI.

This approach can be used with various Data Grid systems to enhance file
reliability.

6.1.1 Background

The volume of digital data and the sizes of the individual files are increasing due to
the introduction of high-resolution images, high-definition audiovisual files, etc.
The reliable storage of such large files is becoming problematic and replication
failures anywhere in such a file are difficult to localize.

We describe a method of managing large files in different kinds of Data Grids
by splitting them into smaller units in a traceable manner and managing the smaller
units with the RNS. RNS catalog server contains the metadata that describes the
original locations of the divided pieces and their MD5 checksum values. We also

75

describe the tools developed to demonstrate the method that allows a file to be
split before ingestion into Data Grids and assembled after extraction from the Data
Grids. We can store metadata information in RNS and RNS allows the distributed
files to be discovered in the Grid systems.

We describe the use of metadata in RNS to manage files distributed in different
kinds of Data Grids. We use two kinds of Data Grids: iRODS and Gfarm. The
example involves sharing large files using an application based on SAGA to span
the environment with iRODS and Gfarm. We already showed how to manage
distributed files with RNS in such heterogeneous Data Grids[92] (Section 4.3).
That section presented an easier way to share the metadata about each file between
the sites of different research organizations for ongoing use. This section uses
the information for the physical file locations and the MD5 checksum values to
enhance the reliability of the files.

6.1.2 Related Work about Reliable File Management

Various projects are underway to reliably manage files and to aggregate different
heterogeneous Data Grids or file systems for efficient data sharing. Here is a
summary of work related to various aspects of our study.

Luis E G. Sarmenta presented sabotage-tolerance mechanisms that work with-
out depending on checksums or cryptographic techniques[93]. A new mechanism
using voting and spot-checking together with credibility-based fault-tolerance re-
duced the error rates. However, such a complex mechanism requires understand-
ing the approach and implementing it within existing systems. Also, they assumed
that the mechanism would be applied to only one type of storage system. It would
be difficult to apply it to different kinds of Data Grids simultaneously.

Jerzy Kaczmarek et al presented the concept and architecture of the ICAR
System (Integrity Checking And Restoring System)[94]. The ICAR System not
only covers the functions of integrity checkers but also automatically restores files.
However, ICAR is designed as a kernel module for the operating system, and
hence it is mainly used for local file systems. This is not suitable for use with
Data Grids.

6.1.3 Access to Distributed Files with RNS

As our example of distributed file access, we assume that the large file dataA con-
sists of several file pieces stored in different kinds of Data Grids. To manipulate
dataA, application users need to retrieve all of the distributed pieces by using a
Grid application.

A Grid application needs the physical locations of the existing resources in
the Data Grids. The required additional information can be attached to each RNS
entry because RNS entries can include XML metadata. We have defined XML
attribute expressions for each RNS entry to handle all of the physical locations.

76

<?xml version=”1.0” encoding=”UTF−8”?>
<file xmlns=”http://kek.jp/rns/test”>
<rnskv key=”checksum” xmlns=””>f1c9645dbc14efddc7d8a322685f26eb</rnskv>

</file>

Figure 6.1: Metadata example contains checksum value

An RNS virtual directory contains RNS junctions that have the physical location
and the checksum value for each piece of the file. The EPR contains the physical
file location and the metadata of the RNS junction contains its checksum value.
The algorithms to retrieve the data from the physical location and the checksum
value for the distributed files are described next.

File Piece Information

The expression of the file piece information in RNS is the same as the procedure
that is already discussed in Section 4.3.1. If the dataA consists of dataA0, dataA1,
dataA2, . . . , dataAn, then the RNS path will be defined in this way:

/. . . /dataA
dataA0

dataA1

dataA2...
dataAn

The dataAi RNS junctions contain the file piece information. These RNS
junctions can be listed by pointing at dataA in the RNS virtual directory. The RNS
virtual directories directly return the number of RNS junctions within themselves.

Physical Location and Checksum Value

Each RNS junction should be registered to refer to the physical file locations of
the dataA pieces. The EPR of each junction is by itself sufficient to address an
existing resource. The MD5 checksum value should be contained in each RNS
junction as metadata. The EPR example for an RNS junction is already shown in
Figure 4.21 in Section 4.3.3. Figure 6.1 shows metadata for an RNS junction in
XML.

Algorithm

The physical location list can be obtained by using Algorithm4.1, which was de-
scribed in Section 4.3.1. The checksum list (chkList) of the file piece can be
obtained by using Algorithm6.1. The function C maps each RNS junction to a

77

// Open RNS directory
saga::url u (argv[1]);
saga::replica::logical directory ld (u, saga::replica::Create | saga::replica::ReadWrite);

// get RNS junctions
std::vector<saga::url> rns jncs = ld.list();

// get physical locations and md5 checksum values
std::vector<saga::url> img urls;
std::vector<std::string> img md5s;
for(unsigned int i=0; i<rns jncs.size(); i++){

saga::url f url = u.get string() + ”/” + rns jncs[i].get string();
saga::replica::logical file lf (f url, saga::replica::Create | saga::replica::ReadWrite);
std::vector<saga::url> epr list = lf.list locations();
img urls.push back(epr list[0]);
img md5s.push back(lf.get attribute(”checksum”));

}

Figure 6.2: A part of SAGA C++ source example

checksum string of an existing file. Algorithm 4.1 and Algorithm 6.1 can com-
bine the files. Part of the SAGA C++ source code that gets the physical location
list and the checksum list is shown in Figure 6.2.

Algorithm 6.1 Get the checksum list of existing resources
1: for each rnsJunction li in L do
2: if li ∈ R then
3: add MD5CHECKSUM ci = C(li) to chkList
4: else
5: add NULL to chkList
6: end if
7: end for
8: return chkList

6.1.4 Current Checksum Approach

The traditional way to checksum a large file (such as 50 GB) is by preparing the
checksum value for the whole file and then reevaluate the checksum after a certain
period of time[95]. Such an approach has two main problems: recomputing the
checksum for the entire file is time consuming, and it is not possible to identify
the exact location of a discrepancy when the checksum comparison fails. If we
encounter checksum errors, there will be time-consuming work to redo the entire
operation or to find a copy of the file that has retained its integrity.

A typical application involving large files involves audiovisual data. For ex-
ample, television broadcasters need to preserve large archives of audiovisual data.

78

Data Grid

Piece 0 Checksum+

Data Grid

Source File

Piece 0

Piece 1

Checksum+
Checksum+

split

Piece n Checksum+
split

Figure 6.3: Splitting a file with checksum

Data Grid

Piece 0 Checksum+ Checksum OK Piece 0

combine

Piece 1

+
Checksum+ Checksum NG

Piece 0
Retry to

downloadX

Piece n Checksum+ Checksum OK Piece n

Source File

Figure 6.4: Combining pieces with comparing checksum

Movie files are very large and in some cases compressed. Using the traditional
approach to checksum an entire file, it is not easy to figure out where a problem is
or how to fix it if the downloaded data has incorrect or missing data.

6.1.5 Split and Checksum Approach

Our approach is to split each large file into smaller pieces, then checksum each
piece and assemble the file again when it is accessed. This approach reduces the
risks of incorrect or missing data. Figure 6.3 shows how to split a file and Figure
6.4 shows how to combine the pieces. If we encounter checksum discrepancies,
we can identify the problematic piece and retry the download of that piece to re-
solve the discrepancy. This approach is much faster than the traditional method of
erasing and downloading all of the data. To implement this approach, we devel-
oped a command that can split a large file into smaller pieces and store the pieces
into Data Grids with their metadata. The metadata information can also be stored
in RNS with XML expressions.

SAGA supports storing the pieces in different kinds of Data Grids. Figure
6.5 shows an example. If we divide a file into 100 pieces, we can store the first
pieces from #0 to #33 in iRODS. The next pieces from #34 to #66 can be stored
in Gfarm and the remaining pieces will be stored in the local file system. Each

79

Piece 00

Data Grids

Piece 00

Piece 33 iRODS

SIA
User

Piece 0
Piece 34

iRODS

SAGASGFA
Piece 66 Gfarm

SAGASGFA

Piece 99
Piece 67

Pi 99
Local
File

Default

Piece 99 File
System

SRA

Catalog Service

#00 #33 iRODS
RNS

#00 - #33 iRODS
#33 - #66 Gfarm
#67 - #99 Local

+ ChecksumChecksumChecksum

Figure 6.5: Access to distributed pieces in different Data Grids

physical location and checksum value will be recorded by the RNS catalog service
via SAGA. We do not need to worry about the different interfaces of the Data
Grids.

6.1.6 Performance Evaluation

In this section we describe some tests carried out to assess the overhead of check-
ing the MD5 checksum values of the divided pieces. We used a 1GB file and
divided it into different numbers of pieces from 10 to 100. We evaluated the
elapsed time to download the pieces for each collection.

Also, we evaluated the overhead of SAGA and RNS. The first test was run
without SAGA. The next test assessed the overhead of SAGA with RNS.

Test Environment

The test environment consists of an iRODS server, a Gfarm server, an RNS server,
and a SAGA adaptor host. The detail environments of the servers are same as
Section 5.1.3

Test Cases

We evaluated our implementations for the transfer of different numbers of pieces:
1, 10, and continuing to 100. For the evaluation, we stored all of the pieces on
the three different Data Grids: iRODS, Gfarm, and the local file system. Then we
downloaded the pieces and compared each checksum value. For example, in the
case of iRODS with 20 pieces, we divided the 1-GB source file into 50-MB pieces

80

and stored them in the iRODS system. In the evaluation, we then downloaded
all of the 50-MB pieces and compared the checksum of each piece, measuring
the elapsed time to download the pieces and compare the checksum values. To
obtain average values, each test program ran three times. We compared six test
configurations:

• Case 1: iRODS without SAGA

• Case 2: Gfarm without SAGA

• Case 3: iRODS with SAGA and RNS

• Case 4: Gfarm with SAGA and RNS

• Case 5: Local File System with SAGA and RNS

• Case 6: Mixture of iRODS, Gfarm and the Local File System with SAGA
and RNS

Here are detailed descriptions of the test cases:

Case 1, 2: Cases without SAGA The normal cases are traditional situations.
The specific commands for the Data Grids are used. Each checksum value is
contained in each Data Grid as its own metadata. This case is the most basic
because the list of checksum values cannot be shared and the commands to access
the Data Grids are specified in the source code.

Case 3, 4, 5: Cases with SAGA and RNS These cases are using SAGA with
RNS. We can use standardized SAGA interfaces and the information about the file
locations and checksum values are contained in the RNS catalogue. Therefore, the
file locations and the checksum values can be shared.

Case 6: Mixture of Different Data Grids with SAGA and RNS The mecha-
nism of this case is same as for Cases 3, 4, and 5. In addition, in this case, we
stored a third of the pieces on each of the three different Data Grids: iRODS,
Gfarm and the local file system. For example, in the case of 10 pieces, we divided
the 1-GB source file into 100MB pieces and stored them in the three different Data
Grids: 3 pieces in iRODS, 3 pieces in Gfarm, and 4 pieces in the local file system.

Test Results and Discussion

Figure 6.6 shows the results of the tests without SAGA. The overhead to compare
the checksum values in Case 1 grows linearly. The 10 piece version of Case 1
is about 10.9% slower than the non-divided cases, which is not so different. In
contrast, the 100 piece version of Case 1 is about 54.4% slower on average than
the non-divided case which is unacceptably slow.

81

Elapsed Time to download pieces

50

60

sec

p p
(shorter is better)

30

40

50

10

20

30

iRODS without SAGA

Gfarm without SAGA

0

10

1 10 20 30 40 50 60 70 80 90 100

of pieces *Size of Source File is 1GB

Figure 6.6: Performance evaluation results without SAGA

The latency involves accessing each piece to compare the checksum. As the
number of pieces increases, the elapsed time increases. However, in the versions
from 10 to 40 pieces for Case 1, the elapsed times are almost the same as for the
non-divided case. In these cases the checksum values can be compared efficiently
because the checksum overhead is absorbed in its access latency, which is around
25 seconds. Therefore, we can use this approach without worrying about the loss
of speed when we are dividing a large file into fewer than 40 pieces for Case
1. The same conclusion applies to the 10 to 90 piece versions of Case 2. The
checksum overhead of Case 2 is absorbed in its access latency, which is around
50 seconds.

Figure 6.7 shows the results of the tests with SAGA and RNS. The overhead
to use the SAGA abstraction layer in all of the cases grows linearly. The versions
with 100-pieces are about 50.7% (Case 3) and 58.8% (Case 4) slower than the
non-divided cases.

SAGA allows us to use different kinds of Data Grids. The speed degradation
can be mitigated with SAGA by using faster storage resources in a mixture. The
local file system is optimal for speed. The 100 piece version of Case 6 is about
34.5% slower than the non-divided version. The latency is decreased by using the
SAGA and RNS solution.

Incidentally, in Figure 6.7, we encountered the fact that the results of iRODS
are sometimes faster than that of local file. Strange as it may seem, such phenom-
ena can certainly happen in the recent technology trends. Actually, Jeffrey Dean
addressed “Numbers Everyone Should Know” saying network becomes faster
than disk [96]. Therefore, we tried to evaluate performances of both network
and storage with a “nuttcp” [97] application and a “dd” command in Linux, re-
spectively. To obtain average values, each application ran ten times.

For the network evaluation, “nuttcp” tests resulted 856.6 Mbps between iRODS

82

Elapsed Time to download pieces

80

90

sec

Elapsed Time to download pieces
(shorter is better)

50

60

70

20

30

40
iRODS with SAGA

Gfarm with SAGA

Local with SAGA

0

10

1 10 20 30 40 50 60 70 80 90 100

Local with SAGA

Mix with SAGA

of pieces *Size of Source File is 1GB
**Mix case starts from 10pcs

Figure 6.7: Performance evaluation results with SAGA

#!/bin/sh

for i in ‘seq 1 10‘
do

echo $1
nuttcp −n1G sg02

done

Figure 6.8: Script to execute a nuttcp test for network evaluation

server and client. Figure 6.8 shows an actual script to execute “nuttcp”. We found
the virtual Ethernet device on the same physical machine acted ideally because
the network is internally connected. For the storage evaluation, “dd” commands
resulted 77.1 MB/s when reading a local file and writing the file to local file sys-
tem. Figure 6.9 shows an actual script to execute “dd”. Both results showed that
the network transfer rate was faster than the local file one in our environments.

Both virtual machines of iRODS server and client ran on a same physical
machine. The performance of internal network achieved maximum transfer rate
that was faster than local file-system transfer rate. When the iRODS server also
has its own local storage the performance of iRODS became almost same as that
of local file system. It is considered that the performance advantage of network
over storage covered the overhead of iRODS service.

6.1.7 Discussion of UGI

Using UGI in this example is useful. Compared with Figure 6.2, part of the UGI
application code is shown in Figure 6.10. The complexities of SAGA C++ and
UGI Python are similar in this case. However, UGI allows us to implement the

83

#!/bin/sh

dd if=/dev/urandom of=/tmp/a bs=1M count=1000

for i in ‘seq 1 10‘
do

echo $1
dd if=/tmp/a of=/tmp/b bs=1M count=1000
rm /tmp/b

done

Figure 6.9: Script to execute a dd command for storage evaluation

// Open RNS directory
u = argv[1]

// get RNS junctions
rns jncs = ugi.file.list(u)

// get physical locations and md5 checksum values
img urls = []
img md5s = []
for rns jnc in rns jncs:

f url = u + ”/” + rns jnc
epr = ugi.file.get epr(f url)
md5 = ugi.file.get metadata(f url,”−k=checksum”)
img urls.append(epr)
img md5s.append(md5)

Figure 6.10: A part of UGI application example

file recovery functions easily. One of SAGA’s limitations is that SAGA can-
not transfer files among different kind of Data Grids directly, as mentioned in
Section 3.3. When we encounter a checksum error during a program’s execu-
tion, it is easy to recover the file by directly copying the piece from the source
data to the desired target storage. For example, if we assume the source data
is DataGrid-s://path-A and the target is DataGrid-t://path-B, we
can write one function within the checksum error handling:
ugi.file.transfer copy(”DataGrid-s://path-A”, ”DataGrid-t://path-B”)

In terms of speed, using UGI or Python is slower than using SAGA C++. Us-
ing the results of Section 5.1.2, the UGI application is 14.2% slower than SAGA
C++. This indicates that UGI takes roughly an additional 3 to 10 seconds accord-
ing to the results of Figure 6.7. That is a reasonable trade-off between performance
and the useful functions.

84

6.2 Particle Therapy Simulation (PTSim)

We created a UGI-based Web application for particle therapy simulation. As al-
ready mentioned, UGI is implemented based on SAGA and provides supplemen-
tal and extended functions that are not part of SAGA. The prototype of the Web
interface allows users to request most of the operations needed for their work.
This Web interface shows the UGI possibility that non-Grid applications work-
ing on local resources are portably exported to distributed resources over the Grid
resources.

6.2.1 PTSim Background

Geant4 is a toolkit for the simulation of the passage of particles. Geant4 is also
applicable to other general simulations of radioactive-particle-tracking processes.
The application of the Geant4 simulations to particle therapy using proton and
ion beams is one of the medical activities in high energy physics. The PTSim sys-
tem includes a graphical interface supporting collaboration among several medical
centers studying particle therapy. The detailed simulations for human bodies re-
quire extensive computations and significant CPU resources. Parallel processing
is useful to produce results with improved statistics and analyses. Here are some
of the use cases in particle therapy simulations related to Grid computing:

Distributed job execution
To calculate more accurate statistics, it is often effective to divide a sim-
ulation into many smaller tasks if multiple clients can be applied to the
calculations.

Secure job execution
Security has two relevant aspects. First, people who are working in hospitals
typically have restricted to access the Internet. Second, patients’ personal
information must be kept secure from unauthorized personnel.

Spatial requirements and storage capacities
Large-scale data for such applications as CT scans using DICOM (Digital
Imaging and Communication in Medicine) [98] which is a standard format
for the patient data scanned by medical imaging systems, need to be stored
in the hospital for treatment planning purposes.

6.2.2 PTSim Web Interface

The PTSim application requires tens of millions of particle ray tracings for a hu-
man body model. This requires thousands of jobs to be processed simultaneously
to obtain the results in reasonable elapsed times. The PTSim Web interface is de-
veloped using the Django framework, which is convenient for Web development

85

Figure 6.11: Application for PTSim work bench

in the Python language. The built-in Django Web server runs on the local host.
An end user desktop PC browses it as shown in Figure 6.11.

The available kinds of Grid middleware supported in the current testbed are
NAREGI, Globus, gLite for computing resources and GridFTP servers, Gfarm
storage, and iRODS storage. After logging in and registering a proxy for NAREGI,
multiple jobs described within a specific task script can be submitted to these kinds
of middleware and the job status is updated in the database. Each job transfers its
output file to a GridFTP server. The output files are processed on the user desk-
top PC for the graphic display, and all of these actions can be performed over the
Internet.

86

Chapter 7

Applied Study

This chapter shows the applied study to utilize distributed resources. Swarm in-
telligence is one of approaches to provide a fault tolerant and efficient means of
transferring data in a dynamic environment.

Swarm intelligence is inspired primarily by observations of the collective be-
havior of social insects in addressing complex distributed problems. The basic
idea is that each member of the swarm has simple rules that govern its behavior,
but the interaction among the members of the swarm can be used to tackle prob-
lems that are difficult to solve with complicated numeric methods. In this chapter
we investigate the problem of data distribution between a client and server in a
dynamic environment. We regard each download from the server to the client as
a single member in a swarm. The member’s behavior is simply to reliably down-
load a data file. Each member can communicate with other members to allow the
swarm to settle on the best set of servers to download the data from based on the
current status of the environment.

Some research work generates large numbers of small files and then interacts
with the generated small files in groups. For example, the T2K ND280 [99, 100]
group consists of hundreds of researchers in 12 countries and 62 research insti-
tutes, all of whom must reliably download their own data files. They are using
iRODS, which provides each user with a virtual file system that maps to dis-
tributed storage systems. iRODS has been developed by the Data Intensive Cyber-
Environments (DICE) [101] team and collaborators and is based on more than a
decade of experience with distributed data management systems ([20]). Different
iRODS installations can be federated together to provide a larger virtual file sys-
tem while allowing each member of the federation complete control over access
and management of their own iRODS. This approach also allows client applica-
tions to interact with the data. Our implementation uses iRODS i-commands to
download files from each system.

87

7.1 Ant Colony Optimization

Ant Colony Optimization (ACO) algorithms [102] are a type of swarm intelli-
gence. They are based on the behavior of foraging ants in which individual ants
search in a seemingly random manner for food. As an ant searches it leaves
pheromone or scent that records on its discovery of a food source and the path
used during its return to its nest. The amount of the pheromone reveals informa-
tion about the nature of the food source. Subsequent ants follow the pheromone
trail and also reinforce it when they return to the nest with food. There may be
multiple trails to the food source, but after some time the ants will converge on the
most direct path between the source and the nest. This is due to the evaporation
of the pheromone, since longer paths will have weaker intensities of pheromones
and will be less likely to be followed.

In solving complex problems ACO algorithms use computational agents (rep-
resenting the ants) that perform simple tasks. Each agent constructs a candidate
solution that is communicated to other agents via a probability (the pheromone
element) that is based on the components used to construct the solution. For ex-
ample, in the travelling salesman problem the probability is based on the edges
between cities. Each probability contains a weight based on the heuristic infor-
mation for the current problem. The weight represents the evaporation factor and
reduces the probability for each ant’s solution by a defined amount. The role of
the weight is to eliminate local or intermediate solutions and reinforce the global
or true solution.

7.2 The Data Distribution Problem

A common problem in almost any field that requires the processing of quantities
of data is the movement of data from the storage systems to the computational
systems where the data can be processed as quickly and reliably as possible. The
problem is compounded by the dynamic nature of the environment in which the
client is operating. The data collected by a central resource can rapidly become
stale. The activity of each server can vary over time, the network activity can
vary over time and the activity of each client can vary over time. In some cases
network status information is coupled with server information through a broker
service to guide the client to the best server [103]. However, these services require
each server to publish the necessary information in order for the clients to make
decisions. Since the servers cannot anticipate all of the needs of each client, it is
possible that crucial information for a client will not be published by the server.

We argue that such priori information, although necessary, is actually encoded
in the ’full’ transfer rate from client to server. The ’full’ transfer rate is simply the
time taken for the client transfer application to complete a transfer. This includes
the overhead of staging the data onto a disk on the server and finalizing the transfer

88

on the client (such as calculating a check-sum for the downloaded data). We
believe that this is a better metric since the client is often interested not only in
transferring the data as quickly as possible, but also in using the data as quickly
as possible.

7.3 Related Work

7.3.1 ACO Related Work

The main area where swarms and ACO algorithms have been used is in optimiz-
ing distributed computational processing [104, 105, 106]. In such cases Particle
Swarm Optimization (PSO), which is based on the flocking behavior of birds can
optimize computational job submissions to the most efficient and least loaded
nodes. Ant Clustering Algorithms (ACA) have been used to address the problem
of clustering data in which related data should be clustered together (or co-located)
for more efficient access ([107, 108]). Data clustering is crucial for data mining
where the data is studied for patterns and relationships.

As in the case of ACO an ACA agent possesses simple behaviors and the in-
teractions between agents allow complex problems to be solved. The ACA was
based on studies of ant cemeteries where worker ants sort the deceased ants ac-
cording to their size and function. Each ant works individually to arrange the dead
ants in its local vicinity into a uniform group. Global sorting is done by the de-
ceased ants on the edges being sorted by the neighboring worker ant. The ACA
works by having each agent sort the data within a restricted vicinity (typically a
3× 3 grid) so that all the data within that vicinity is of the same nature (where the
nature is defined by the current problem). The data on the edges between neigh-
boring agents is sorted first by one agent and then by the other (and then by their
neighbors until they match a pile). The final result is clusters of data with similar
properties.

In the area of data distribution using swarms the work by Peterson and Sirer [109]
investigates the problem of data distribution in a peer-to-peer network. Peer-to-
peer networks operate in a non-privileged manner where there is no central server
and each client is also a server of data. The paper described the development
of Antfarm, a system that manages the bandwidth usage of each server for the
optimal download rates by a swarm of clients. The Antfarm system consists of
coordinators that use information from seeders and peers to control the bandwidth
for the peers downloading data such that the data is downloaded to members of
the swarm in the most efficient manner possible. The system also encourages
downloads between peers to distribute the bandwidth requirements. This study
differs in that the main focus of this work is the problem of optimizing upload and
download performance in a client-server environment.

Ant Colony Optimization has been studied in peer to peer networks by Wang
Zhao and Hu [110] who looked at the problem of data replication optimization so

89

that the data would be replicated to the peers that could make the most efficient
use of the available resources. Each agent used the host latency, storage space
and bandwidth as ingredients in the pheromone to determine the best placement
for all of the data on all of the available hosts. The ACO then globally optimized
the placement of the replicas by allowing each agent to choose a placement based
on the previous agent’s attempt. The placement was governed by the strength of
the pheromone at each site. The optimization finished when the agents did not
return a better arrangement. The placement of replicas has similarities with the
work described in this paper except that the global optimization was done only
one time.

7.3.2 Compared with Other Services

There are some other services for redundancy mechanisms in distributed data sys-
tems. The Contents Delivery Network (CDN) [111] and load-balancing are well-
known examples.

A typical CDN application tries to find hosts are located at the fewest number
of hops from the client and it selects the best host to optimize the download per-
formance. A typical application of load-balancing is to provide a single Internet
service from multiple servers. However, both cases require installations of soft-
ware and services on the server side to manage the client load. Our approach does
not require the servers install any software. Our approach is client-based system
and there is no impact or changes on the server-side. Also, our approach imposes
no overhead on the server-side, but it offers advantages to the clients to get the
data more efficiently when it resides in a number of different locations. As long
as a user has access to the data (either through iRODS or any other file system)
then the user can use the ACO to obtain the data in an optimal way (as long as
there are multiple copies of the data).

7.4 Pheromone Definition

The essential component of the ACO is the pheromone. Ants collect their food
using their pheromone. The environment around ants is similar to the environment
of clients collecting data from servers (Figure 7.1).

The pheromone indicates to the agents which are the more promising paths
to use in constructing a solution to a problem. In our case the pheromone is a
metric of the viability of the server to serve the data to the client in as short a time
as possible. To encourage a quick convergence to a solution we first determine
the server availability to handle requests to download data. The availability is
dependent on the load on the server and on the network.

A ’ping’-like application that sends a light-weight query to the server can as-
sess the viability of the server (We describe an example of a ’ping’-like application

90

Data 1Sugar 1

Sugar 2

Sugar 3

Data 2

Data 3

Network

Pheromone ‐ Pinging
‐ Checking transfer rate

Figure 7.1: Environments of ants-foods and clients-data.

in Section 7.5). The servers would then be ranked according to their responses to
the ’ping’. It is important to point out that the application should ping the server
application that serves the data and not the server itself since the application may
be overloaded or down whilst the server is only moderately loaded or up and still
able to respond quickly to a ping request.

However, ranking servers according to their response times to a lightweight
query is not sufficient to optimize the download performance. It is possible that
a server may respond quickly to a lightweight query, but may be either unable
to serve the data due to some component of the storage system being offline (in
the case of a compound storage system with a disk cache and a tape store where
it is possible the tape store may be offline), or the storage resource being very
busy (possibly due to high fragmentation in the case of disk storage systems). To
address such situations we devised a pheromone element based on a transfer rate
metric. The rate is the inverse value of the complete download time measured from
the time that the download application starts to the time that it finishes. This rate is
necessarily smaller than the actual transfer rate because it includes the download
time for the server to fetch the data from its system, serve it to the client, and any
time required for the client download application to prepare the data for use. We
do not care about the actual transfer rate in the network but we only consider the
inverse value of the complete download time. Therefore, we redefine the inverse
value of the complete download time as the ‘TransferRate’.

7.4.1 Pheromone Element

A pheromone’s current value is based on the historical pheromone values so the
base pheromone element must be defined first. We define the set S that includes
all of the servers we want to use. M is defined as the number of servers in S, and

91

pi expresses the pheromone element of si∈S, 0≤i≤M . The pheromone element
is given by:

n = 1 :

pi(1) =
(CurrentTransferRate)i∑M
i=0 (CurrentTransferRate)i

(7.1)

n > 1 :

pi(n) =
(CurrentTransferRate)i∑M

i=0 (PreviousTransferRate)i
(7.2)

where CurrentTransferRate is the rate used by the download application to
start and complete for a given server. The PreviousTransferRate is the rate
taken by the download application for previous transfers. The n corresponds
to the number of files downloaded from a given server. The first time a file is
downloaded no prior history exists and the pheromone element pi(1) appears as a
weight of the current TransferRate as shown in the first equation (Eq. (7.1)).

The pheromone element value is calculated immediately after downloading a
file and is stored in a information file. This will be explained in Algorithm 7.2 in
the next section.

7.4.2 Pheromone

Now we can define the signature of the pheromone elements. We simply call
it ”pheromone”. The h is given as the number of pi histories. The capital Pi

expresses the pheromone and it is given by:

1 ≤ n ≤ h :

Pi(n) =
n∑

k=0

pi(k) (7.3)

n > h :

Pi(n) =
n∑

k=n−h

pi(k) (7.4)

The pheromone value is calculated by reading the information file just before
downloading a file. This is described in Algorithm 7.1 in the next section.

7.5 Algorithm

Our approach selects the best server using pheromone information before a client
tries to download a file from a server. It also requires an information file to record
each server’s information and to update the information file immediately after the
download. Our ACO agent uses these algorithms:

92

i Server Name iping Time Download TransferRate p(6) p(7) · · · p(10)

0 Host01.kek.jp 3.443 42.432 0.244 0.244 · · · 0.244
1 Host02.kek.jp 5.165 28.288 0.172 0.172 · · · 0.172
2 Host03.kek.jp 4.238 34.476 0.209 0.209 · · · 0.209
3 Host04.kek.jp 4.768 30.645 0.148 0.148 · · · 0.148
4 Host05.kek.jp 8.106 18.026 0.225 0.225 · · · 0.225

Table 7.1: The example of an information file (e.g. n=10, h=4)

7.5.1 Algorithm to Select the Best Server

The best server is obtained by using Algorithm 7.1. An example of an information
file is shown in Table 7.1. We created the command ’iping’ as an example of a
’ping’-like application that checks the responses from the servers. In this example,
the units for the iping values of Time and TransferRate are msec and MB/sec,
respectively. The set S has all of the servers that are listed in the information
file, infoText. The infoText file also has the historical pheromone element
values (pi) for each server that were previously defined in the equations(Eq. (7.1),
Eq. (7.2)). Reading Pi means to read the required pi from infoText and calculate
Pi as defined in the equations(Eq. (7.3), Eq. (7.4)). The n corresponds to the
number of downloads in progress at that time.

The iping Boundary Time (ipBT) is a fixed reference value for the iping re-
sults and is set at the hypothetically best response time. This helps to filter out
servers in the srvList that have unacceptable response times (either because they
are busy and cannot respond within an acceptable time or because they are offline).

7.5.2 Algorithm to Update the Information File

While executing a download, the given server becomes the bestServer that is
selected by Algorithm 7.1. The infoText file is then updated immediately af-
ter each download is completed. The infoText file is updated using Algorithm
7.2. TransferRatenew is the TransferRate of the current download from the
bestServer.

Using only Algorithm 7.2 sometimes ignores possibilities that the non-recorded
servers become predominant. As necessary, we use another Algorithm 7.3 to
download data from all servers to check the performance of non-recorded servers.
For example, when we want to check the performance of all servers once every
five times, updating infoText in the first four times uses Algorithm 7.2 and up-
dating in the fifth time uses Algorithm 7.3 instead of Algorithm 7.2. However,
Algorithm 7.3 causes network traffic. We need to consider the trade-off between
accuracy and network traffic when using Algorithm 7.3.

93

Algorithm 7.1 Select the best server with pheromone
1: open file infoText
2: create the set S
3: close file infoText
4: for each serverName si in S do
5: execute iping to si
6: tpi ← response time of si iping
7: add tpi to ipingList
8: end for
9: tpmin ← min(tp ∈ ipingList)

10: for each serverName si in S do
11: if tpi ≤ (tpmin + ipBT) then
12: add si to srvList
13: end if
14: end for
15: open file infoText
16: if n > 1 then
17: for each selectedServer ssi in srvList do
18: seek the location of ssi information
19: read Pi from infoText
20: add Pi to PList
21: end for
22: else
23: for each selectedServer ssi in srvList do
24: seek the location of ssi information
25: read TransferRatei
26: add TransferRatei to trList
27: end for
28: for each selectedServer ssi in srvList do
29: calculate pi(1) with TransferRatei and trList
30: add pi(1) to PList as Pi(1)
31: end for
32: end if
33: close file infoText
34: Pmax ← max(P ∈ PList)
35: for each selectedServer ssi in srvList do
36: if Pi is equal to Pmax then
37: bestServer ← ssi
38: break;
39: end if
40: end for
41: return bestServer

7.5.3 Comparison with Traditional Method

One of the traditional methods is just using the best transfer rate from the previous
session. The algorithm using this method can be implemented by using the best

94

Algorithm 7.2 Update the information file
1: execute download from bestServer
2: TransferRatenew ← TransferRate
3: open file infoText
4: create the set S
5: for each serverName si in S do
6: seek the location of si information
7: read TransferRatei
8: add TransferRatei to trList
9: end for

10: close file infoText
11: calculate pnew with TransferRatenew and trList
12: open file infoText
13: seek the location of bestServer information
14: update TransferRatebestServer ← TransferRatenew
15: add pbestServer ← pnew to infoText
16: remove poldest from infoText
17: close file infoText

Algorithm 7.3 Update the information file with downloading data from all servers
1: open file infoText
2: create the set S
3: close file infoText
4: for each serverName si in S do
5: execute download from si
6: TransferRatei ← TransferRate
7: add TransferRatei to trList
8: end for
9: open file infoText

10: for each serverName si in S do
11: calculate pi with TransferRatei and trList
12: seek the location of si information
13: update TransferRatei
14: add pi to infoText
15: remove pioldest from infoText
16: end for
17: close file infoText

transfer rate with the same algorithms (Algorithm 7.1, 7.2, 7.3) instead of using
Pi and pi. This method seems to be simple, but there is no difference in the algo-
rithms. In addition, with this method we cannot correct the historical information,
as when using h in our approach. The results of the traditional method are shown
in Section 7.7.

95

7.6 Simulation

We created a simulator to study the behavior of ACO-based data transfers. The
simulator provided a controlled environment within which it was possible to study
different types of scenarios.

7.6.1 Model

For the simulation we modeled two typical scenarios for downloading data in a
distributed environment. The model assumed the data set spanned five different
servers.

• Phased Degradation. In this case the performance of each server degrades
over time as shown in Figure 7.3. After the first file has been transferred the
first server’s performance degrades. The other servers’ performance also
degrades as they complete transfers. After seven transfers the performance
improves for all of the servers, so they return to their optimal performance
status after 12 files have been transferred. This situation is fairly common
in distributed environments when clients start working in lock-step among
the servers. Such a situation may appear when a group of clients start to use
one system until its performance becomes unacceptable and they search for
a new server for their downloads.

• Random Degradation. In this case the performance of each server degrades
randomly over time as shown in Figure 7.5. The performance of the first
server degrades after 10 transfers and then improves and degrades again af-
ter 17 transfers. The second server degrades after seven transfers, returns to
optimal performance after 13 transfers and then degrades after 20 transfers.
The other servers follow similar patterns. This situation models a more ran-
dom access pattern where there is no coupling among the performance of
the servers.

7.6.2 Procedure

The simulation first required the preparation of input data for the ACO-based data
transfer application. The models were used to generate several information files
(Figure 7.2). The server conditions for the two scenarios were defined in ad-
vance in each information file. The simulator runs by reading each information
file. These information files contain rows of numbers according to the following
schema (the example information file is already shown in the Table 7.1):

• server name
• ’ping’ time
• download transfer rate

96

Info Text nInfo Text 1Info Text 0

t = 0 t = 1 t = n

Time (t)

Simulator Simulator Simulator

Read Read Read

Figure 7.2: Simulator uses several information files.

• upload transfer rate
• pi(k)

Each row corresponded to the download information for a given file for a given
server. For these simulations the download information was based on the iRODS
iget download application. The simulation program read in a data set and ranked
the servers according to the ’ping’-like information. The ’ping’ information was
based on the results of the iping command for iRODS. This determined the initial
selections for which agents would use the hosts.

Each agent in the simulation program then used the best host on the list and
started to read the simulation data (which included simulated download rates for
the servers). The pheromone was then computed with Eq. (7.1) using the infor-
mation from all of the available hosts that had completed their first download.
Each agent ready to perform a download selected the available host with the best
pheromone and updated the pheromone value after the download using Eq. (7.2).
This procedure continued until the simulated data was exhausted.

7.7 Simulation Results

The results of the simulation are shown in Figure 7.3 for the Phased Degradation
model and in Figure 7.5 for the Random Degradation model. Both models are
using four pheromone histories (h = 4).

7.7.1 Phased Degradation

Figure 7.3 shows the first simulation results corresponding to the Phased Degra-
dation model. The upper figure shows the transfer rate for each server without the

97

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Host01

Host02

Host03

Host04

Host05

selected

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Host01
Host02
Host03
Host04

Host05
max P

MB/s

P

File Transfer Rate

Pheromone Level

(The x‐axis corresponds to the downloaded file number.)

Figure 7.3: Transfer-Rate and Pheromone for the phased degradation.

ACO-based download. The selected curve corresponds to the ACO-based down-
load. The lower figure shows the pheromone value for each host with the max P
curve corresponding to the ACO-based download case. In this case of rapid degra-
dation of the servers the ACO-based approach performed well. The pheromone is
based on history information and there is always a delay between the response of
the ACO-based download and the performance of the server.

In the initial stages the best server rapidly becomes the worst server resulting
in the ACO-based approach tracking the degradation of the servers. However, as
the servers improve in performance the ACO-based approach gradually improves.
Clearly, this situation is a troublesome case, but realistic, situation and it is en-
couraging that the trough in the performance is steeper than that for each server,
indicating that the algorithm is doing well in a bad situation. The lower graph
shows consistently that the value of max P corresponding to the best path consists
of those hosts with the best pheromone value at that time.

We also simulated this situation with the same data in the traditional method
described in Section 7.5. Figure 7.4 shows the results from using slightly lower-
performance hosts compared with our approach.

98

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Host01

Host02

Host03

Host04

Host05

selected

MB/s File Transfer Rate

Figure 7.4: Transfer-Rate in the traditional way.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Host01

Host02

Host03

Host04

Host05

max P

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Host01
Host02
Host03
Host04
Host05
selected

MB/s

P

File Transfer Rate

Pheromone Level

(The x‐axis corresponds to the downloaded file number.)

Figure 7.5: Transfer-Rate and Pheromone in the random degradation model.

7.7.2 Random Degradation

Figure 7.5 shows the simulation results for the random degradation model. This
case clearly shows that the results from the ACO-based approach shown in the
selected curve out-perform those based on any individual server. The visible dips
at the beginning and end of the transfer period are an artifact of the pheromone
having to rely on historical information. The pheromone for the best hosts shown
in the max P curve in the lower figure consistently corresponds to the best host at
that time.

99

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Host01
Host02
Host03
Host04
Host05
max P

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Host01
Host02
Host03
Host04
Host05
selected

MB/s File Transfer Rate

Pheromone Level

(The x‐axis corresponds to the downloaded file number.)

Figure 7.6: Random degradation model with Algorithm 7.3.

Moreover, checking all server performances with Algorithm 7.3 can improve
the accuracy to select servers. We checked the performance of all servers once
every five times in the above random degradation model and the results became a
little better as shown in Figure 7.6. The pheromone level in the beginning of the
results was not so different from Figure 7.5 but this case was finally optimized to
select the best server in the end.

7.8 Test Implementation

We took the ACO-based application and used it for a real test-setup consisting of
three distributed servers: one in the UK, one in the USA and one in Japan. We
used the iget application of iRODS to download files from each system. The im-
plementation required the development of scripts to provide the functions needed
to implement the ACO-based downloads. These consisted of:

• iping (new i-command for iRODS). This was needed to perform the light-
weight queries of the servers r to determine the server rankings.
• iping.py (script to drive the iping command). This script wrapped the iRODS

icommand with iget.py.
• iget.py (script using the original iget command). This script implemented

the ACO agent (as the ACO-based download algorithms) and called the

100

iRODS iget command.

7.8.1 iping/iping.py

Currently iRODS does not have a command like ping that can be used to check the
server availability. We created the iping application that calls the iRODS server
and gets the echo outputs from the server.

The iping.py can specify the iRODS host with the option ”-H” and iping the
server. That is because the iping command can execute only on the server that
is specified in the client’s iRODS configuration file (.irodsEnv). All i-commands
should follow the information in the .irodsEnv file so we avoid including the op-
tion specifying a server in the iping command, instead, the iping.py script takes
charge of the options. The iping application also includes ”ping to all()” function
that can execute iping to all servers specified in a configuration file. This function
is useful for checking all server availability just before executing iget commands.
After executing the iping command invoked by the ping to all() function, the ip-
ing.py updates the ranking of the servers.

7.8.2 iget.py

The scripts for downloading (iget.py) a file execute the following steps:

1) execute iping for all of the servers
2) read the configuration file
3) select the best server
4) execute iget for a file
5) get the current iget transfer rate
6) calculate pi(k)

7) update the transfer rate and pi(k)

The steps except for 4) executing iget are our ACO agent tasks. The best server
is selected in exactly the same manner as in the simulation. First, the servers are
ranked according to their ping responses, and then the server with the best P is
chosen.

7.9 Test Results

The test-setup was highly distributed and consisted of three iRODS servers: one
located at Queen Mary University of London (QMUL), UK, one at Louisiana State
University (LSU), USA and one at KEK in Japan.

The tests were performed at KEK which is regarded as the local host and so the
performance would be much better within unloaded servers. To address this we
artificially adjusted the ranking results from the iping to give KEK the lowest rank-
ing. The results are shown in Figure 7.7. In this example, the same pheromone

101

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11

LSU Host

QMUL Host

KEK Host

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

LSU Host

QMUL Host

KEK Host

selected

MB/s

P

File Transfer Rate

Pheromone Level

Figure 7.7: Transfer-Rate and Pheromone in the actual case.

values are given as for the initial pheromone and the pheromone history(h) is 4.
The first file was downloaded from LSU and the next from QMUL. In both cases
the pheromone value was low (with the initial value set to one third of the corre-
sponding pheromone for each server). The third file was downloaded from KEK
resulting in a much higher pheromone value. Subsequent agents quickly settled on
this host for downloading the data reinforcing the pheromone value for the KEK
server. This demonstrated that the ACO-based approach was able to quickly find
the optimum performance in a real environment.

We ran this demonstration with one client and three servers. This approach
can scale easily since each client independently checks the servers. Therefore, we
can use this approach in real environments (as mentioned in the introduction).

102

7.10 Discussion about UGI Use

The algorithms presented in this chapter can be used in our UGI implementation.
In particular, Python implementations can be easily migrated to the UGI imple-
mentation. In addition, using UGI provides the advantage of storing the informa-
tion. We can register any kind of information (or metadata) into the RNS catalog
service, so we are freed of worrying about a local text file to contain the informa-
tion. As we discussed in Chapter 3 and 4, UGI can access the storage resources
on different kinds of the file-system middleware. We can store the source data in
distributed storage resources in different kinds of Grid middleware and obtain the
data by using our ACO approach (Figure7.8). Our ACO approach and UGI do not
require any changes for the server side. Therefore, our ACO approach and UGI
are a good combination to utilize resources in different kinds of Grid middleware.

DataGrid

Cloud

NFSSugar

Network

UGI allows to handle different
kinds of middleware

Cookie

Dead Insect

Wide selection increases
food availability

Figure 7.8: ACO approach in different Data Grids with UGI.

103

Chapter 8

Conclusion

It is essential that we effectively share computing and storage resources to en-
hance our research. Grid computing and Cloud technologies are the main ex-
amples of distributed resources using the Internet. Recent scientific challenges
require the worldwide collaboration of researchers sharing their resources, such
as computational system, large amounts of distributed data, software, and knowl-
edge. However, we frequently encounter difficulties in exchanging or sharing
resources based on different kinds of middleware when the load of the computing
and the storage use are unbalanced. We studied the software-abstraction layer and
developed the UGI architecture for multiple kinds of Grid and Cloud middleware
to help end users and application engineers. UGI is implemented based on SAGA
and provides supplemental and extended functions.

Our tests have shown that job submissions can be executed in the UGI-based
user environment with different Grid resources. UGI allows us to address our
requirement that the applications should not need to be changed for new or un-
known middleware. We have also created and tested a simple way to execute the
jobs based on the HENP libraries. For file manipulation, we have demonstrated
that applications can access different kinds of file-system middleware and Data
Grids. The application allows us to handle them as a completed file, even if a
large file is divided into pieces and the divided data is stored on different Data
Grids. We verified to access iRODS, Gfarm and local file system via UGI. With
our approach, data sharing is more expandable and flexible. We confirmed that
there is no need to change the application itself to access files on the multi-file-
system middleware. We tested managing files distributed among heterogeneous
Data Grids by using the RNS application, proving that a UGI-based application
can retrieve the location information of the files distributed among different kinds
of Data Grids, and that it can access the distributed files as well as the local file
systems without worrying about the underlying Data Grids. Our tests showed
that not only our application can access files in the multiple Data Grids, but also
that the physical file locations and other metadata associated with each file can be
shared with RNS.

For use with applied tools and applications, we demonstrated reliably manag-

104

ing files, PTSim, and ACO. The method for reliably managing large files worked
well with different kinds of Data Grids using SAGA and RNS. We showed how to
split a large file and store its MD5 checksum value as metadata in the RNS catalog
service. We also showed how the application can test all of the checksum values
and then combine the pieces that were distributed among the different Data Grids.
Our tests showed that the physical file locations and MD5 checksum values asso-
ciated with each file can be shared by using RNS. Our tests also showed that the
speed degradation can be mitigated by using faster storage resources in a mixture.
The second applied tool is a UGI-based Web application for PTSim. The proto-
type Web interface allows users to request most of their PTSim job operations.
UGI also make it possible for non-Grid applications to use local resources that are
portably exported to distributed resources over the Grid. For an approach inspired
by swarm intelligence, we created a simulator using our ACO-based approach and
obtained results that proved our approach works well. This approach can provide
a fault tolerant and efficient means of transferring data in a dynamic environment.
We implemented this approach using several iRODS servers as the distributed file
systems. This approach is easy to apply to different kinds of Data Grids with UGI.

We can effectively utilize various computing and storage resources with our
implementations and solutions. The challenges of today’s researchers who need to
collaborate with geographically distributed colleagues and computing and storage
resources can be overcome. We believe that our studies of the resource federation
can greatly boost their usability for e-Science.

105

Bibliography

[1] “Welcome to GGUS - the Helpdesk,” Online, https://ggus.eu/pages/home.
php.

[2] B. G. and W. J., “Swarm Intelligence in Cellular Robotic Systems,” in Proc.
the NATO Advanced Workshop on Robots and Biological Systems, Tuscany,
Italy, Jun. 1989.

[3] “NeSC: National e-Science Centre,” Online, http://www.nesc.ac.uk/.

[4] “Defining e-Science (NeSC),” Online, http://www.nesc.ac.uk/nesc/define.
html.

[5] “Current Awareness Portal E742 - ARL (Japanese),” Online, http://www.
current.ndl.go.jp/e742.

[6] I. Foster, “What is the Grid? A Three Point Checklist,” Old Dominion
University Digital Library Group, Tech. Rep., 2002, http://dlib.cs.odu.edu/
WhatIsTheGrid.pdf.

[7] I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, 1998.

[8] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid,” In-
ternational Journal of High Performance Computing Applications, vol. 15,
no. 3, pp. 200 – 222, Aug. 2001.

[9] “Globus,” Online, http://www.globus.org/.

[10] “EGEE: The Enabling Grids for E-sciencE,” Online, http://public.eu-egee.
org/.

[11] “gLite: Lightweight Middleware for Grid Computing,” Online, http://glite.
web.cern.ch/glite/.

[12] “CERN: The European Organization for Nuclear Research,” Online, http:
//public.web.cern.ch/public.

[13] S. Matsuoka, S. Shimojo, M. Aoyagi, S. Sekiguchi, H. Usami, and
K. Miura, “Japanese Computational Grid Research Project: NAREGI,”
Proceedings of the IEEE, vol. 93, no. 3, pp. 522–533, March 2005.

106

[14] “NAREGI Middleware download site,” Online, http://middleware.naregi.
org/.

[15] “NII: National Institute of Informatics,” Online, http://www.nii.ac.jp/en/.

[16] “Globus Toolkit,” Online, http://www.globus.org/toolkit/.

[17] B. Jones, “EGEE - a worldwide Grid infrastructure,” August 2005, the
19th International Congress of the European Federation for Medical In-
formatics (MIE), Geneva. http://egee-intranet.web.cern.ch/egee-intranet/
NA1/presentations/ppt-fbm/2005/MIE-2005.ppt.

[18] “KEK: High Energy Accelerator Research Organization,” Online, http://
www.kek.jp/intra-e/.

[19] “IBM Platform LSF Product Family,” Online, http://www-03.ibm.com/
systems/technicalcomputing/platformcomputing/products/lsf/.

[20] “iRODS – the Integrated Rule-Oriented Data System,” Online, http://www.
irods.org.

[21] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder, “A Prototype Rule-
based Distributed Data Management System,” in Proc. HPDC workshop
on ”Next Generation Distributed Data Management”, Paris, France, May
2006.

[22] “Gfarm – Grid Data Farm,” Online, http://datafarm.apgrid.org/index.en.
html.

[23] “OGF – Open Grid Forum,” Online, http://www.ogf.org/.

[24] “SAGA: A Simple API for Grid Applications,” Online, http://saga.cct.lsu.
edu/.

[25] K. Aida, “Grid in Cyber Science Infrastructure,” April 2009, iSGC 2009,
Academia Sinica, Taipei, Taiwan.

[26] “RENKEI – REsources liNKage for E-scIence,” Online, http://www.
e-sciren.org/index-e.html.

[27] “TeraGrid Archives,” Online, https://www.xsede.org/tg-archives.

[28] “Extreme Science and Engineering Discovery Environment (XSEDE),”
Online, https://www.xsede.org/.

[29] M. Pereira, O. Tatebe et al., “Resource namespace service specifica-
tion (GFD-R-P.101),” GFS-WG, Tech. Rep., 2007, http://www.ggf.org/
documents/GFD.101.pdf.

107

[30] H. Matsuda, “File Catalog Development in Japan e-Science Project,”
GFS-WG, Tech. Rep., 2008, http://www.ogf.org/OGF24/materials/1403/
OGF24-GFS-matsuda.pdf.

[31] T. Aso, A. Kimura, S. Kameoka, K. Murakami, T. Sasaki, and T. Ya-
mashita, “GEANT4 Based Simulation Framework for Particle Therapy
System,” in Proc. IEEE Nuclear Science Symposium Conference Record,
Hawaii, US, Nov. 2007, pp. 2564–2567.

[32] T. Sasaki and S. Tanaka, “Comprehensive Software Suite for Particle Beam
Simulation — Special Feature — Development of a Simulation Framework
for Radiotherapy (Japanese),” Japan Society for Simulation Technology,
vol. 28, no. 1, pp. 2–3, Mar. 2009.

[33] “Remote execution of applications,” Online, http://www.faqs.org/docs/
linux intro/sect 10 03.html.

[34] H. Gjermundrod, M. D. Dikaiakos, M. Stumpert, P. Wolniewicz, and H. Ko-
rnmayer, “g-Eclipse – an integrated framework to access and maintain Grid
resources,” in Proc. the 9th IEEE/ACM International Conference on Grid
Computing, TsukubaCJapan, Sep. 2008, pp. 57 – 64.

[35] D. Johnson, K. Meacham, and H. Kornmayer, “A middleware independent
Grid workflow builder for scientific applications,” in Proc. the 5th IEEE
International Conference on E-Science, Oxford, UK, Dec. 2009, pp. 86 –
91.

[36] R. Brobst, W. Chan et al., “DRMAA - v1.0 Specification (GFD-R.022),”
DRMAA-WG, Tech. Rep., 2004, http://www.ggf.org/documents/GFD.22.
pdf.

[37] Goodale, Tom et al., “SAGA - v1.0 Specification (GFD-R-P.90),” SAGA-
CORE-WG, Tech. Rep., 2008, http://www.ggf.org/documents/GFD.90.
pdf.

[38] “DRMAA-WG: Distributed Resource Management Application API
Working Group,” Online, http://forge.ogf.org/sf/projects/drmaa-wg/.

[39] O. Tatebe, “Discussion of File Catalog Standardization,” GFS-WG, Tech.
Rep., 2008, http://www.ogf.org/OGF24/materials/1403/intro.pdf.

[40] “Web Services Addressing 1.0 – Core,” Online, http://www.w3.org/TR/
ws-addr-core/.

[41] N. Masahiro and T. Osamu, “Implementation of Resource Namespace Ser-
vice [in Japanese],” Information Processing Society of Japan (IPSJ), vol. 5,
pp. 145 – 146, Mar. 2008.

108

[42] “Simple Object Access Protocol (SOAP) 1.1,” Online, http://www.w3.org/
TR/2000/NOTE-SOAP-20000508.

[43] T. Ishibashi, Y. Kido, T. Fukumoto, S. Seno, Y. Takenaka, and H. Matsuda,
“A metadata management system for composing bioinformatics work-
flows,” in Proc. the 9th International Conference on Bioinformatics (In-
CoB), TokyoCJapan, Sep. 2010.

[44] M. Nakamura and O. Tatebe, “Load balancing of Resource Namespace
Management Service (Japanese),” in Proc. the Summer United Workshops
on Parallel, Distributed and Cooperative Processing (SWoPP), SagaC-
Japan, Aug. 2008.

[45] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The SDSC Storage Re-
source Broker,” in Proc. the 1998 conference of the Centre for Advanced
Studies on Collaborative research (CASCON 1998), Toronto, Canada, Nov.
1998, p. 5.

[46] M. Hedges, A. Hasan, and T. Blanke, “Curation and Preservation of Re-
search Data in an iRODS Data Grid,” in Proc. The Third IEEE Interna-
tional Conference on e-Science and Grid Computing, Bangalore, India,
Dec. 2007, pp. 457 – 464.

[47] V. Muppavarapu and S. M. Chung, “Semantic-based Access Control for
Grid Data Resources in Open Grid Services Architecture - Data Access
and Integration (OGSA-DAI),” in Proc. Tools with Artificial Intelligence,
2008. ICTAI ’08. 20th IEEE International Conference on, Dayton, OH,
Nov. 2008, pp. 315 – 322.

[48] ARCS and JCU, “Hermes,” Online, http://projects.arcs.org.au/trac/
commons-vfs-grid/.

[49] A. Grimshaw, M. Morgan, D. Merrill, A. S. Hiro Kishimoto, D. Snelling,
C. Smith, and D. Berry, “An Open Grid Services Architecture Primer,”
Proceedings of the IEEE, vol. 42, no. 2, pp. 27 – 34, Feb. 2009.

[50] J. Green, “An Implementation of the Resource Namespace Service Spec-
ification for OGSA-DAI,” Master’s thesis, The University of Edinburgh,
2008.

[51] “AMGA, ARDA Metadata Grid Application,” Online, http://amga.web.
cern.ch/amga.

[52] N. Santosa and B. Koblitza, “Metadata Services on the Grid,” in Proc.
Advanced Computing and Analysis Techniques (ACAT), Berlin, Germany,
May 2005.

109

[53] ——, “Distributed Metadata with the AMGA Metadata Catalog,” in Proc.
the Workshop on Next-Generation Distributed Data Management HPDC-
15, Paris, France, Jun. 2006.

[54] “XQuery: A Query Language for XML,” Online, http://www.w3.org/TR/
2001/WD-xquery-20010215/.

[55] Z. Dadan, C. Zhebing, W. Jianpu, Z. Minqi, and Z. Aoying, “Different File
Systems Data Access Support on MapReduce,” in Proc. Computational
Intelligence and Software Engineering (CiSE), Wuhan, China, Dec. 2009,
pp. 1 – 4.

[56] “Hadoop,” Online, http://hadoop.apache.org/.

[57] “Kosmos File System,” Online, http://kosmosfs.sourceforge.net/.

[58] H.-R. Mizani, L. Zheng, V. Vlassov, and K. Popov, “Design and Implemen-
tation of a Virtual Organization File System for Dynamic VOs,” in Proc.
The 11th IEEE International Conference on Computational Science and
Engineering (CSE), Sao Paulo, Brazil, Jul. 2008, pp. 77 – 82.

[59] H. E. Wedde and J.-O. P. Siepmann, “A Universal Framework for Managing
Metadata in the Distributed Dragon Slayer System,” vol. 2, pp. 96 – 101,
Sep. 2000.

[60] D. Feng, J. Wang, F. Wang, and P. Xia, “DOIDFH: an Effective Distributed
Metadata Management Scheme,” in Proc. Computational Science and its
Applications (ICCSA), Kuala Lumpur, Malaysia, Aug. 2007, pp. 245 – 252.

[61] Y. Fu, N. Xiao, and E. Zhou, “A Novel Dynamic Metadata Management
Scheme for Large Distributed Storage Systems,” in Proc. The 10th IEEE
International Conference on High Performance Computing and Communi-
cations (HPCC), Dalian, China, Sep. 2008, pp. 987 – 992.

[62] “DUNE:Distributed and Unified Numerics Environment.”

[63] P. Bastian, M. Blatt, A. Dedner, C. Engwer, and R. Klofkorn, “A generic
grid interface for parallel and adaptive scientific computing. Part I: abstract
framework,” Computing, vol. 82, no. 2-3, pp. 103 – 119, 2008.

[64] “OCCI:Open Cloud Computing Interface,” Online, http://occi-wg.org/.

[65] R. Nyren, A. Edmonds, and A. Papaspyrou, “Open Cloud Computing In-
terface Core Specification (GFD-P-R.183),” OCCI-WG, Tech. Rep., 2011,
http://ogf.org/documents/GFD.183.pdf.

110

[66] S. Jha, H. Kaiser, Y. El Khamra, and O. Weidner, “Design and Implemen-
tation of Network Performance Aware Applications Using SAGA and Cac-
tus,” in Proc. The 3rd IEEE Conference on eScience2007 and Grid Com-
puting., Bangalore, India, Dec. 2007, pp. 143–150.

[67] “The SAGA C++ Reference API,” Online, http://saga.cct.lsu.edu/cpp/
apidoc/.

[68] “SAGA Middleware Adaptors,” Online, http://www.saga-project.org/
download/adaptors.

[69] “XML-RPC Specification,” Online, http://xmlrpc.scripting.com/spec.html.

[70] “OGF – Open Grid Forum,” Online, http://www.ogf.org/.

[71] “RFC2459 – Internet X.509 Public Key Infrastructure Certificate and CRL
Profile,” Online, http://tools.ietf.org/html/rfc2459.

[72] “Overview of the Grid Security Infrastructure,” Online, http://www.globus.
org/security/overview.html.

[73] “Apache Derby,” Online, http://db.apache.org/derby/.

[74] “FUSE: Filesystem in Userspace,” Online, http://fuse.sourceforge.net/.

[75] “SQLite,” Online, http://www.sqlite.org/.

[76] “NAREGI Middleware GridVM (Japanese),” Online, http://middleware.
naregi.org/Download/Docs/AG-NAREGI-GridVM-j.pdf.

[77] “VOMS: Virtual Organization Membership Service,” Online, http://www.
globus.org/grid software/security/voms.php.

[78] “MyProxy, Credential Management Service,” Online, http://grid.ncsa.
illinois.edu/myproxy/.

[79] “Belle,” Online, http://belle.kek.jp.

[80] “ILC – International Linear Collider,” Online in Japanese, http://www.
linear-collider.org/.

[81] S. Matsuoka, K. Saga, and M. Aoyagi, “Coupled-Simulation e-Science
Support in the NAREGI Grid,” Computer, vol. 41, no. 11, pp. 42–49, 2008.

[82] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough,
D. Pulsipher, and A. Savva, “Job submission description language (jsdl)
(GFD.136),” JSDL-WG, Tech. Rep., 2008, http://www.ogf.org/documents/
GFD.136.pdf.

111

[83] “Geant4,” Online, http://geant4.cern.ch/.

[84] J. Allison et al., “Geant4 developments and applications,” IEEE Trans.
Nucl. Sci., vol. 53, pp. 270–278, February 2006.

[85] S. Agostinelli et al., “GEANT4 – A simulation toolkit,” Nucl. Instrum.
Meth., vol. A506, pp. 250–303, July 2003.

[86] “RFC1630 – Universal Resource Identifiers in WWW,” Online, http://
www.ietf.org/rfc/rfc1630.txt.

[87] “ImageMagick,” Online, http://www.imagemagick.org/script/index.php.

[88] “ImageMagick Program Interfaces,” Online, http://www.imagemagick.org/
script/api.php.

[89] “TORQUE Resource Manager,” Online, http://www.clusterresources.com/
products/torque-resource-manager.php.

[90] “TORQUE Resource Manager, qsub,” Online,
http://www.clusterresources.com/torquedocs21/commands/qsub.shtml.

[91] “Boost.Process,” Online, http://www.netbsd.org/ jmmv/process/.

[92] Y. Kawai, G. Iwai, T. Sasaki, and Y. Watase, “Managing distributed files
with RNS in heterogeneous Data Grids,” in Proc. the 11th IEEE/ACM In-
ternational Symposium on Cluster, Cloud, and Grid Computing (CCGrid),
California, US, May 2011, pp. 494–503, iSBN: 978-0769543956.

[93] L. E. G. Sarmenta, “Sabotage-tolerance mechanisms for volunteer comput-
ing systems,” in Proc. Cluster Computing and the Grid, Brisbane, Aus-
tralia, May 2001.

[94] J. Kaczmarek and M. Wrobel, “Modern approaches to file system integrity
checking,” in Proc. The 1st International Conference on Information Tech-
nology, Gdansk, Poland, May 2008.

[95] Z. Yong-Xia and Z. Ge, “MD5 Research,” vol. 2, pp. 271 – 273, Apr. 2010.

[96] J. Dean, “Software Engineering Advice from Building Large-Scale Dis-
tributed Systems,” Stanford CS295 class lecture, Tech. Rep., 2007, http:
//research.google.com/people/jeff/stanford-295-talk.pdf.

[97] “Phil Dykstra’s nuttcp quick start guide,” Online, http://www.wcisd.hpc.
mil/nuttcp/Nuttcp-HOWTO.html.

[98] “Digital Imaging and Communications in Medicine (DICOM),” Online,
http://medical.nema.org/.

112

[99] Y. Itow et al., “The JHF-Kamioka neutrino project,” KEK Report, vol. 4,
2001, 29pp.

[100] “T2K-ND280 collaboration,” Online, http://www.nd280.org/.

[101] “Data Intensive Cyber environments (DICE) Center at the University of
North Carolina at Chapel Hill,” Online, http://dice.unc.edu/.

[102] C. Blum, “Ant Colony Optimization: Introduction and recent trends,”
Physics of Life Reviews, vol. 2, pp. 353 – 373, Oct. 2005.

[103] C. Jiang, C. Wang, X. Liu, and Y. Zhao, “A Survey of Job Scheduling in
Grids,” Lecture Notes in Computer Science, vol. 4505/2007, pp. 419 – 427,
2007.

[104] G. Subashini and M. Bhuvaneswari, “Non Dominated Particle Swarm Opti-
mization For Scheduling Independent Tasks On Heterogeneous Distributed
Environments,” Int. J. Advance. Soft Comput. Appl., vol. 3 Number 1, Mar.
2011.

[105] A. Abraham, H. Liu, W. Zhang, and T. Chang, “Scheduling Jobs on Com-
putational Grids Using Fuzzy Particle Swarm Algorithm,” Springer-Verlag
Berlin Heidelberg, pp. 500 – 507, 2006.

[106] H. Izakian, B. T. Ladani, K. Zamanifar, and A. Abraham, “A Novel Parti-
cle Swarm Optimization Approach for Grid Job Scheduling,” Information
Systems, Technology and Management, Communications in Computer and
Information Science, vol. 31, Part 5, pp. 100 – 109, 2009.

[107] A. Abraham, S. Das, and S. Roy, “Swarm intelligence algorithms for data
clustering,” In Soft computing for knowledge discovery and data mining,
vol. Part IV, pp. 279 – 313, 2007.

[108] A. N. Sinha, N. Das, and G. Sahoo, “Ant colony based hybrid optimization
for data clustering,” Kybernetes, vol. 36, Issue 2, pp. 175 –191, 2007.

[109] R. Peterson and E. G. Sirer, “Antfarm: Efficient Content Distribution with
Managed swarms,” NSDI ’09: USENIX Symposium on Networked Systems
Design and Implementation, pp. 107 – 122, 2009.

[110] Y. Yang, Y. Zhao, and F. Hou, “Ant colony optimization algorithm based
P2P system replica optimal location strategy,” Service Operations and Lo-
gistics, and Informatics, pp. 494 – 497, Oct 2008.

[111] “Akamai technologies, Globally Distributed Content De-
livery,” http://www.akamai.com/dl/technical publications/
GloballyDistributedContentDelivery.pdf.

113

List of Publications

Journals

1. Y. Kawai, A. Hasan, G. Iwai, T. Sasaki, and Y. Watase, “A Swarm Inspired
Method for Efficient Data Transfer,” Parallel and Distributed Computing
and Networking, IEICE, vol. E95-D, no. 12, Dec. 2012, pp. 2852-2859,
ISSN: 1877-0509.

Conference Proceedings

1. Y. Kawai, G. Iwai, T. Sasaki, and Y.Watase, “Universal Grid User Inter-
face(UGI) for Multiple Grids and Cloud,” in Proc. International Sympo-
sium on Grids and Clouds (ISGC), in series Proceedings of Science, Taipei,
Taiwan, Mar. 2012.

2. Y. Kawai, A. Hasan, G. Iwai, T. Sasaki, and Y. Watase, “Performance Eval-
uation of The Software Abstraction Layer (Japanese),” in Proc. the 10th
Forum on Information and Technology (FIT), Hakodate, Japan, Sep. 2011,
pp. 257-258.

3. Y. Kawai, A. Hasan, G. Iwai, T. Sasaki, and Y. Watase, “A method for reli-
ably managing files with RNS in multi Data Grids,” in Proc. International
Conference on Computational Science (ICCS), in series Procedia Computer
Science, Singapore, Jun. 2011, pp. 412-421, ISSN: 1877-0509.

4. Y. Kawai, T. Sasaki, Y. Iida, Y. Watase, A. Hasan, and F. D. Lodovico,
“Managing Large and Small Files in a Distributed System,” in Proc. the
5th IEEE International Conference on Digital Ecosystems and Technolo-
gies (IEEE-DEST), Daejeon, Korea, Jun. 2011, pp. 182-187, ISBN: 978-
1457708718.

5. Y. Kawai, G. Iwai, T. Sasaki, and Y.Watase, “Managing distributed files
with RNS in heterogeneous Data Grids,” in Proc. the 11th IEEE/ACM In-
ternational Symposium on Cluster, Cloud, and Grid Computing (CCGrid),
California, US, May 2011, pp. 494-503, ISBN: 978-0769543956.

114

6. Y. Kawai, G. Iwai, T. Sasaki, and Y.Watase, “SAGA-based application to
use resources on different Grids,” in Proc. International Symposium on
Grids and Clouds (ISGC), in series Proceedings of Science, Taipei, Taiwan,
Mar. 2011.

7. G. Iwai, Y. Kawai, T. Sasaki, and Y. Watase, “A Development of Lightweight
Grid Interface,” in Proc. the 18th International Conference on Computing
in High Energy and Nuclear Physics (CHEP), Taipei, Taiwan, Jul. 2010.

8. Y. Kawai, G. Iwai, T. Sasaki, and Y. Watase, “An alternative method for
reliably managing large files,” in Proc. the 73rd National Convention of
Information Processing Society of Japan (IPSJ), Tokyo, Japan, Mar. 2011,
pp. 223-224.

9. Y. Kawai, G. Iwai, T. Sasaki, and Y. Watase, “SAGA based Grid Applica-
tion and the performance evaluation (Japanese),”in Proc. the 9th Forum on
Information and Technology (FIT), Fukuoka, Japan, Sep. 2010, pp. 395-
399.

10. Y. Kawai, G. Iwai, T. Sasaki, and Y. Watase, “SAGA-based File Access Ap-
plication over Multi-Filesystem Middleware,”in Proc. Challenges of Large
Applications in Distributed Environments (CLADE), in Proceedings of the
19th ACM International Symposium on High Performance Distributed Com-
puting, Chicago, US, Jun. 2010, pp. 622-626, ISBN: 978-1605589428.

11. G. Iwai, Y. Kawai, T. Sasaki, and Y.Watase, “SAGA-based user environ-
ment for distributed computing resources: A universal Grid solution over
multi-middleware infrastructures,”in Proc. International Conference on Com-
putational Science(ICCS), in series Procedia Computer Science, Amster-
dam, Netherlands, May 2010, pp. 1539-1545, ISSN: 1877-0509.

12. Y. Kawai and A. Hasan, “High Availability iRODS System (HAIRS),” in
Proc. iRODS User Group Meeting 2010, Chapel Hill, US, Mar. 2010, pp.
11-15, ISBN 1452813426.

13. G. Iwai, Y. Kawai, T. Sasaki, and Y. Watase, “A Prototyping of Web In-
terface for Treatment Planning in Radiotherapy in the Multi Grid Infras-
tructure,” in Proc. Asian Simulation Conference (ASC), ShigaCJapan, Oct.
2009.

115

