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Abstract

This paper describes a stochastic framework for intelligent humanoid

robots, which can cooperate and interact with humans through integra-

tion of symbolic expressions and sensorimotor patterns. The research is

divided into 4 steps. Contributions of the each research step are: 1) an

estimation method of sensorimotor patterns of others without having pre-

defined user specific model in advance through interaction between self

and other, 2) a method to dynamically modify displaying motion pat-

terns and to bind the motions with symbol expressions according to per-

formance of human-learners, in order for conveying slight differences in

motions, where robotic system coaches humans motions, 3) analysis and

modeling of human-coaches’ use of motions and symbolic expressions how

they change them dynamically according to learners performances, and

4) demonstration of the feasibility of the robotic motion coaching system,

which integrates the methods proposed in step 1) and 2), and the models

gained in step 3), through experiments of actual sport coaching tasks for

beginners resulted in improvements in motion learning.

In the Chapter 1, the main stream of robotics researches are introduced

as improvement in individual physical ability. Then, importance of in-

telligence of binding symbol expressions and unobservable sensorimotor

patterns, and intelligence to estimate the sensorimotor patterns from ob-

servable motions are discussed from interaction point of view.

In the Chapter 2, related works are introduced in various fields such



as Robotics, Conversation Analysis, Human-Agent Interaction, Skill and

Sports Science, and Anticipation of Intention of Others from neuroscience

and cognitive psychology point of view. Then, the chapter addresses chal-

lenges from the perspective of required functions for the research. After

the discussion of the approach for the resolution method, the Proto-symbol

Space method is introduced as a basic tool for the proposed methods.

The Chapter 3 describes an estimation method of sensorimotor patterns of

others from motion observation. An approach is to bridge sensorimotor ex-

perience, or the Proto-symbol Spaces, between the self and the other. The

sensorimotor experiences for each are represented by the Proto-symbol

Spaces for each in the research. This approach would result in estimation

error due to physical condition difference between the self and the other.

To clear this problem, a method is proposed in order for adaptive acquisi-

tion of Proto-symbol Space of other by sharing motion patterns and using

open questions asking the others’ sensing status described by symbols.

Simulation demonstrates that it is possible to estimate sensorimotor pat-

terns of others with 10-20% errors, even when estimation target motions

are not in database. In the second half of the chapter, I discusses about

a method to estimate others’ symbol conversion strategy from sensor pat-

terns. The method uses closed questions asking comparative evaluation

of sets of shared motions. The simulation demonstrates that the method

can estimate the symbol conversion strategy properly by sharing prepared

sets of motions and using closed questions.

The Chapter 4 describes a proposing method for dynamic modification

of motion demonstration and for binding the motions with symbol ex-

pressions according to performance of human-learners. This method can

convey slight differences between learning target motions demonstrated by

13



a coach and motions performed by learners. Feasibility of the method is

demonstrated through experiments of actual sport coaching tasks for be-

ginners by using a robotic coaching system. The robotic system coaches

human-learners tennis forehand swing, by using emphatic motions and

adverbial expressions generated from the proposing method. The exper-

iments resulted in improvements in motion learning. However, it is not

possible to confirm whether either emphatic motions and/or adverbial

expressions are contribution factors or not.

In the Chapter 5, I discuss about experiments for modeling how human-

coaches use emphatic motions and adverbial expressions. In the experi-

ments, human-coaches are asked to coach a robot-learner tennis forehand

swing, by using the emphatic motions and adverbial expressions. Analysis

of the results leads to models; two Adverbial Expression Use Models and

two Emphatic Motion Use Models.

In the Chapter 6, I attempt to integrate the methods proposed in Chap-

ter 3 and 4, and the models obtained in Chapter 5. At first, I discuss

about integration of the robotic motion coaching system from Chapter 4

and the models gained from Chapter 5. I then discuss a possible integra-

tion of the method to estimate sensorimotor patterns from the Chapter

3, the robotic motion coaching system from Chapter 4, and the models

gained from Chapter 5. I demonstrate the feasibility of the robotic mo-

tion coaching system integrated with one of the EMU-Model and one of

the AEU-Model, by experiments of a tennis forehand swing coaching task

for beginners. I confirm that the EMU-Model and the AEU-Model con-

tribute to improvement in motion learning. It is demonstrated that value

output by the EMU-Model is a contribution factor by a statistic analy-

sis. I also find there is an improvement in motion learning when using

14



the AEU-Models. However, even though I find positive contribution of

the adverbial expressions for the improvement in motion learning, it is

not able to decide whether the adverbial expressions chosen by using the

AEU-Model is a contribution factor or not.

The thesis is then concluded in the Chapter 7.
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Chapter 1

INTRODUCTION

In main stream robotics research, to deal with challenging issues in robotics, there

has been an evolving approach called probabilistic robotics [153]. As it had been

organized in the book [153], three concepts play an important role. These three as a

foundation, Bayes’ theorem [11][145], Markov Process [85][126] and Optimal Control

Theory [70], the probabilistic robotics has been evolved.

Specifically, since humanoid robots have a large degree of freedom or lots of joints

to consider, it is very useful and practical to have systems learn by themselves or

by demonstration [19]. There have been learning frameworks proposed for systems

to learn motions by themselves, such as, Reinforcement Learning [143], Imitation

Learning [16], and combination of these [5].

It has been discussed that mechanisms of imitation and social matching play a

fundamental role in development, communication, interaction, learning and culture

[99]. For social learning, it cannot avoid to have interaction between robots and

humans. This interaction should consist of both verbal language and non-verbal lan-

guage such as motion display. Having body, as it called the embodiment, is important

factor not only for the interaction, but also for understanding intelligence [115][114].

Using the embodiment with the constructive approach, robotics research can con-

tribute not only for understanding artificial intelligence, but also for understanding

real intelligence and human beings [55] [151].

16



Allegorically, these trends in robotics can be compared to humans’ training for

improvement in physical ability and skills in sports. In other words, the main stream

robotics research has been focused on improvement of an individual athletic ability

as a super-athlete. Then, recent focus on study in social learning can be compared to

humans’ training of improvement in teamwork and skills related to that. To improve

the social intelligence,it is important to improve ability to communicate, ability to

learn from each others, and ability to anticipate intention of other and so on.

For the future robotic system, it is needed to have a communication ability to

explain subtle difference by using motion display and symbolic expressions, For this

communication ability, robotics system requires to have following functions. Function

to estimate others’ sensorimotor patterns from motion observation. Function to ex-

plain slight difference in motions by symbolic expressions. Function to explain slight

difference in sensorimotor patterns by symbolic expressions.

Once, the system acquires these functions and become capable of interaction using

more complex verbal and non-verbal expressions, the robots would be able not only

to coach but to learn while the robots are coaching via discussion and interaction with

other humans. Being capable of having complex interaction would be an ultimate goal

of the Human-Robot interaction. Then, it would open up a new learning framework

for robotics that can learn while it coach, which is inspired by the Protege Effect,

”While we teach, we learn” [48][22][42], In this learning framework, the robots would

learn and share how to ground symbols to parameters, so that humans can understand

explanation of the robots, as well as would learn novel parameters to consider. This

way, robots and humans can develop their abilities together.

In this thesis, as the first phase toward establishing computational and construc-

tive communication sciences that would lead to studying teamwork among humans

and robots, I research how to realize three function in this thesis. A function to esti-

mate sensorimotor patterns from motion observation without predefined user specific
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model in advance. A function to convey slight difference in motions by symbolic ex-

pressions. A function to convey slight difference in sensorimotor patterns by symbolic

expressions. As an instance of the research, I develop and research about a robotic

motion coaching system that uses sensorimotor patterns and verbal expressions, in

order to convey slight differences in sensorimotor patterns. I believe that it will bene-

fit not only for motion coaching but for advanced in intelligent robotics, rehabilitation

robotics and human sciences.

To realize the system, the research is divided into four steps. In the Chapter 2,

introducing related work, challenges are addressed and approach of resolution method

and basic tools are explained. In the Chapter 3, as the 1st step, I propose and study

an estimation method of others’ sensorimotor patterns by motion observations. In the

Chapter 4, as the 2nd step, I propose and study an method to bind emphatic motions

and adverbial expressions to convey slight difference in motions, without user specific

model in advance. In the Chapter 5, as the 3rd step, I analyze and model coaching

skill of humans, how human coaches use emphatic motions and adverbial expressions.

In the Chapter 6, as the 4th step, I integrate the methods and the models, and study

a robotic motion system that coaches humans motions by referring to sensorimotor

patterns. At last, the thesis is concluded in Chapter 7.
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Chapter 2

Challenges, an Approach and Tools

2.1 Advance in Robotics: Physical Abilities

Since the first study of humanoid robots with WABOT-1 [66], thanks to improvement

in hardware and software [182][63], the progress of humanoid robots has reached at

a level to perform running [47], dancing [138][139], cooperative works with a human

[64], evolving by itself [102], and establishing cognitive robotics [146].

In the development of humanoid robotics, there have been lots of challenging

research topics addressed, such as, voice recognition [159][160], computer and robot

vision [83][112][23][40], grasping [82][13], tool manipulation [4][106][80], locomotion

[50][119], balancing [178][3][179], motion generation and planning [68][97][177], control

theory [96], utilization of tactile sensors [113][105][104] and so on.

As addressed in the Chapter 1, allegorically, the main focus of these researches is

to improve individual functions of robots as if human athletes train to improve their

individual physical abilities. There are researches for teamwork of multi-agents [1],

however, it does not consider embodiment agents and it has not been well addressed

what kind of communication among humans and robots will improve team work.
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2.2 Further Advance in Robotics: Communication

Abilities

Further advance in robotics depends partially on acquisition of abilities for communi-

cation with humans. The communication requires not only using symbolic expressions

of observable properties, but also using symbolic expressions bound to unobservable

properties to have anticipation of others’ intention.

For example, as discussed in the Chapter 1, proposing robotic motion coaching

system uses sensorimotor patterns and verbal expressions, in order to convey slight

differences in sensorimotor patterns. It requires to have an ability to estimate sen-

sorimotor patterns and then bind the estimated sensorimotor patterns to symbolic

expressions. It enables robots to recognize and convey subtle differences in sensori-

motor patterns.

To have this communication ability, the proposing robotics motion coaching sys-

tem requires to have following functions.

1. Motion Learning function, in order to demonstration motions when it is coach-

ing humans motions.

2. Motion Recognition function, in order to recognize and evaluate difference in

motions quantitatively.

3. Motion Generation function, in order to dynamically generate modified motions

according to reaction of users.

4. Motion Coaching function, which uses motion demonstration and symbolic ex-

pressions in order to convey slight differences in sensorimotor patterns.

5. Binding function between sensorimotor patterns and symbolic expressions, in

order to conveying slight differences in state of sensorimotor patterns.
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6. Estimation function of sensorimotor patterns from motion observation, in order

for anticipation of intention without having predefined user specific model in

advance.

2.3 Challenges in Related Works

1. Motion Learning

CPG (Central Pattern Generator) [89] has been applied for a generator of cyclic

motions, such as arm movements [173] and walking of robots [69]. Reinforce-

ment learning framework has been proposed [62][143][117], in order that a sys-

tem itself can learn parameters for motions. Researchers have also developed

robots that can learn to perform tasks by observing a person performing ac-

tions [77][132] [87]. This technique, often called ’learning from demonstration’

or ’imitation learning’, has been reviewed in detail by Schaal [132]. Atkeson

demonstrated that far fewer real-world practice trials were needed if the robot

could simulate its experience using a predictive forward model for a pendulum-

swing-up task [5][6]. Although systems that learn from demonstration have

been programmed to perform impressive feats, the systems are limited by the

fact that information flows only in one direction: from human to machine. The

one directionality resulted in lack of capability for interaction with humans us-

ing learned motions and symbolic expressions bound to them. While we are

interested in a design of motion learning framework where the system can have

bi-directional learning capability with humans. Taking advantage of binding be-

tween symbolic expressions and sensorimotor information, robots would learn

and transfer back the learned skills to humans.

2. Motion Recognition

The PCA (Principal Component Analysis）[61] has been used for categorization

or recognition of data sets, and it has been applied for face recognition [181]
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and motion recognition [21]. In motion coaching, what needs to be considered

is noise, lack of data, variety of motion speed with the same motions. For these

reasons, using the Hidden Markov Model (HMM) is appreciated, since a number

of researches have shown the robustness of the HMM to encode the temporal

and spatial variations of complex signals [131]. The HMM has been also applied

for researches, for example, recognition of para-linguistic information such as

head nods and shakes [35][65], highlight extraction from a baseball game clip

[24], and video segmentation [15]. These researches support use of HMM over

PCA for addressing motion recognition in this thesis.

3. Motion Generation

Sugihara proposed a method to generate motions through ZMP (Zero Moment

Point) manipulation based on inverted pendulum control [142]. [107] discusses

how a high level motion and action planner based motion generation functions

contribute to various real world humanoid tasks and a role of perception based

motion generation using a vision sensor and force sensors. The Octree [45]

and the RRT (Rapidly-exploring Random Tree) [78] are known for obstacle

avoidance motion generation. A compliant control of multicontact and center-

of-mass behaviors in humanoid robots has been proposed [136]. Creating a

virtual-linkage model for humanoid robots enables the characterization of com-

plex whole-body multicontact interactions and the creation of new compliant

skills needed to operate effectively in human environments. These method have

addressed dynamic motion generation/planning according to change in envi-

ronment. However, what is addressed in this thesis is how to generate motions

dynamically according to reaction of users, in order to assist users to recognize

slight difference in motions and to correct them.

4. Motion Coaching

There has been great advance in activities in the area of therapeutic robotics
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[167][166], medical and health care robotics [108][8], and rehabilitation robotics

[73][72][88][86]. In the researches on rehabilitation robotics [88][86], where a

robot interacts to motivate physical exercise, emotional effect was evaluated.

However, to address the objective of this thesis, quantitative evaluation of mo-

tion learning is needed.

At clinical site of rehabilitation, for patients to learn good rehabilitation mo-

tions, it is important to explain by binding not only motions and symbols but

also sensor and symbols. For example, the co-contraction [44] (contraction

in muscle that is opposite to muscle used to bend joint) cannot be noticed

or coached by kinematics-based information only. Studies in physical therapy

shows that there is positive influence of sensory interaction on balance control

[141], and shows that incorporation of external sensory cues in the rehabilitation

protocol can extend the short-term benefit of physical therapy in moderately

disabled patients with idiopathic Parkinson’s disease, possibly as a result of the

learning of new motor strategies [84].

Researches from clinical sides suggests that a method to work on somatosensor

plays an important role in rehabilitation, while current researches in rehabilita-

tion robotics has not yet addressed how to estimate sensorimotor information

and bind it to symbolic expressions.

5. Binding Sensorimotor Patterns to Symbolic Expressions

Taking advantage of the big data on the web, there are researches that generate

sentences from images [28][156][158][157]. While in [28], images are described

with natural sentences based on names of objects contained, Ushiku proposed a

method to generate sentences that describe mutual relations of objects contained

in images [156][158][157]. Even though these researches could be extended to

bind motion pictures to symbolic expressions, there is no discussion on how to

bind sensory information to symbolic expressions. Roy addressed method to
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bind visual perception, actions and symbolic expressions for a communication

robot [128][127]. However, there are not enough discussion how these binding

could be use for anticipation of intention of others.

6. Conversation Analysis, Interaction and Communication

Schegloff and Sacks studied the Conversation Analysis, and introduced ideas

that helped to understand communication, such as, Adjacency Pair [129], Turn-

Taking for Conversation [130], and other-Correction (other-Repair) in Conver-

sation [134]. Adjacency Pair is an idea of expected sets of pairs in conversation,

such as question and answer. Idea of the other-Correction in Conversation is

to repair the conversation when expected Adjacency Pair is not observed. For

multi-party interaction, Kendon suggested the idea of F-formation [67], which

describes a space for multi-party conversation, defined by location and direction

of participants’ bodies. Bono explained that study for multi-party interaction

is different from two-person conversation and explained the importance of mul-

timodality, such as gesture and eye lines [14]. In the paper [14], she discussed

how these research can be applied and contribute to research of human robot

interaction.

In this paper, interaction are limited to two agents, between a robot and a hu-

man. So, mainly the Conversation Analysis can be applied instead of Discourse

analysis. The communication I use in this paper is not a kind of communica-

tion using power of symbol communication that enable interaction even when

communication protocol is unknown and when meaning/intention of motion is

unknown. For estimation of sensorimotor patterns, interactive communication

protocol is fixed and shared between agents. The protocol is share motions and

exchange symbols that contains information of sensor patterns. In other words,

symbolic communication is used to obtain unobservable sensor information and

to correct estimation error of it. Therefore, this paper is focused on study of
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symbolic system rather than linguistic system.

In robotic motion coaching research, interactive communication is partially fol-

lowing the idea of Adjacency Pair and other-Correction in conversation. In the

research, the communication is based on emphatic motion display and use of

adverbial expressions. The emphatic motion is used to lead the interaction to

achieve a goal, to improve performance of learners. So, when performance of

learners is not improved, the system apply other-Correction by using emphatic

motions and adverbial expressions. In the research, multimodality is consid-

ered by using motions and symbolic expressions, however, symbolic expressions

are primitive. Timing and intonation of adverbial expression is not considered

as variables even thought it is controlled and fixed. This is because of the

main purpose of motion coaching research. The main purpose of the research is

to show feasibility of proposing method that dynamically change and combine

emphatic motions and adverbial expressions according to users reaction.

7. Human-Agent Interaction (HAI)

Yamada discussed an idea in a paper [175] that we need to design machines

and interaction so that humans can be friendly to machines, instead of thinking

how to design human-friendly machines. For example, there is a work suggesting

that suitable appearance of agents are different according to type and content

of information to convey in HAI [176]. Researches indicate that real robots

with physical bodies are more capable of making humans to involved in tasks,

compared to using virtual agents [71] [116] [137] [169]. In the paper [175], Ya-

mada also suggested importance of design of interaction where agents learn how

to interact with humans or rewarding interaction patterns, instead of learning

how to behavior. It is because that, in HAI, there will be multimodal rewards

and it is not practical to design all possible patterns of multimodal rewards

in advance. Thus, it is important to learn protocol of interaction between hu-
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mans and agents. For example, Austermann et al. proposed a method to learn

evaluation of behavior that was given by humans with multimodal properties

[7].

I agree to the idea that we should design machines and interaction so that

humans can be friendly to machines and take advantage of ability of humans,

instead of having automated machines with perfect ability. Based on these idea,

I decide to have a humanoid agent as a suitable appearance for motion coaching

task. Slight differences in motions is not easy to convey by using only motions

or symbols. I believe proper combination of motion patterns and symbolic

expressions according to reaction of users is important and having a human-like

appearance is important. I design an interaction for motion coaching to take

advantage of ability to humans. That is, to convey slight difference in motions,

robotic motion coaching system does not instruct in detail, but let humans to

adopt and improve performance themselves by displaying emphatic motions and

adverbial expressions. However, I do not design an interaction so that agents

can learn how to interact with humans. I use fixed communication protocol and

ask humans to follow it.

8. Skill and Sports Science

In sports science, there are many studies on how to improve individual physical

abilities [103] [33]. However, they do not discuss well how results of analysis

and discovery can be convey to players to improve their performance. I believe

that quality of communication skill will affect quality of improvement of perfor-

mance. Similarly, in skill science, researchers are trying to represent skills by

symbolic expressions, in order to improve skill to play instruments, for example

[37]. What I think is that proper combination of motion patterns and symbolic

expressions according to reaction of users is required to assist skill-improvement

of others. It is because that slight difference between skilled motion and de-
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cently skilled motion is not easy to convey by using either only motions nor

symbols. I believe that slight differences in skillful motions is easier to convey

by explaining information on relative differences in the motions.

Studies in operations research and teamwork in sports science usually falls into

theoretical research by considering players as mass points [90] [144]. Imamura

et al. propose a method to analyze quantitative relationship of players who

are matching man to man, by representation of relative velocity of center of

gravities [54]. Takanashi et al. studied soccer games from social interaction

aspect considering embodiment. They discussed qualitatively about importance

of anticipating intention of players by observing motions [147]. However, there

is no research which integrate these researches and study them quantitatively.

Applying proposing methods in this thesis can realize these. I will further

discuss about this in the Chapter 7 as a future work.

9. Anticipation of Intention of Others

In this thesis, estimation of sensorimotor patterns from motion observation will

be considered as anticipation of intention of others. Since, for example, robots

could initiate conversation with users to confirm whether users need help or

not, if robots could properly estimate sensorimotor patterns of users. There

are researches that estimate muscle tensions required to perform a given or

observed motion sequence on real-time [94][26][25]. Since these methods require

predefined user specific model in advance, it would not work well under situation

where lots of users come in turn. While these research addressed estimation

of sensory information from motion, there is no discussion how sensorimotor

information can be bound to symbolic expressions.

In cognitive science and psychology, theory of mind has been discussed as the

ability to attribute mental states to oneself and others and to understand that

others beliefs, desires and intentions that are different from one’s own. There

27



are two major approaches to theory of mind: theory-theory and simulation

theory. The theory-theorist imagines a veritable theory -”folk psychology”- used

to reason about others’ minds. The theory would developed automatically and

innately, though instantiated through social interactions [10] [9] [171]. Whereas,

the simulation theory takes an approach: ”people generally understand one

another by simulating being in the other’s shoes” [39] [38].

On the other hand, in computational neuroscience, researches have developed

a system enabling visual image reconstruction from reading activities of brain

[91][36], a system to capture visual activity in human brains and reconstruct it

as digital video clips [101], and are finding an explanation of humans’ perception

of surface qualities [93][92]. These results could be applied for as a approach to

anticipate intention of others. However, these methods requires to have infor-

mation of averaged brain activities in advance, and therefore it is not practical

for real-world environment considering the specialized devices requirement as

well.

There are researches with data speak against both Simulation Theory and

Theory-Theory in pure form and rather suggest a mixture of both concepts

[165]. However, the simulation theory approach, ”people generally understand

one another by simulating being in the other’s shoes”, has been supported by

a finding in the brain science or neurophysiology [39] [38].

In area F5 of the monkey premotor cortex there are neurons that discharge

both when the monkey performs an action and when he observes a similar

action made by another monkey or by the experimenter [124]. It is called The

Mirror Neuron system, and these neurons appear to represent a system that

matches observed events to similar, internally generated actions, and in this way

forms a link between the observer and the actor. This observation/execution

matching system provides a necessary bridge from ‘doing’ to ‘communicating’
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[122]. Furthermore, there has been discussion about relationship between the

mirror-neuron system and language [123], and about the mirror neuron system

also involved in understanding the intentions of others [52]. Understanding the

intentions of others while watching their actions is a fundamental building block

of social behavior. There are opposite opinions to the mirror neuron system,

such as [46]. However, the discussion point of this thesis is not about validity

of the mirror neuron system, but how it can inspire communication in robotics

research.

In the next section, an approach to these issues will be addressed and followed by

a section that describes basic tools to realize the approach.

2.4 Approach

In this thesis, inspired by the finding of the mirror neuron in the brain science and

the idea of the simulation theory, I take the approach, ”people generally understand

one another by simulating being in the other’s shoes”, for a method to estimate

sensorimotor patterns of others without preparing user specific model in advance, for

a method to recognize and generate motions according to users reaction, and for a

method to bind sensorimotor patterns and symbolic expressions in order to convey

slight difference in sensorimotor patterns for humans to learn. To be specific I apply

the Proto-symbol Space Method [56] as a basic tool for proposing methods, since it

has a capability to learn, recognize and generate motion patterns in one framework

as well as capability to interpolate/extrapolate motions and label them.

2.5 Basic Tools for the Approach: the Proto-symbol

Space (PSS) Method

This section explains the Proto-symbol Space Method [56] as a basic tool that is ap-

plied for proposing methods in this thesis. The Proto-symbol Space method consists
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of three properties; acquisition of symbols by abstracting motion patterns, recognition

of observed motion patterns by using these symbols, and generation of motion pat-

terns by the symbols. This system integrates these three properties in one framework,

or one Hidden Markov Model (HMM) for a motion recognition and generation.

• Motion Learning and Construction of the Proto-symbol Space

The left-to-right continuous Hidden Markov Model (CHMM) [183] is employed

to abstract motions M i. Motion patterns M = [θ[0]θ[1] · · ·θ[t]], which is a

matrix, where θ[t] = [θ1[t] · · · θi[t] · · · θn[t]]T is a vector of time series joint angle,

of humans and humanoid robots, where i is a index of a joint. It is one of

the most famous tools for recognition of time series data, especially in speech

recognition research. The CHMM consists of a set of parameter {Q, π,A,B},

where Q = {q1, ..., qN} is a finite set of states, A = {aij} is a state transition

probability matrix from qi to qj, and B = {bi} is a vector of output probabilities

of o[t], at qi, corresponding to the joint angle vector θ[t] at a discrete time t.

The π = 1 is the same for every CHMM because I assume that the Left-to-

Right model is used for every CHMM; hence the set of λ = {aij, bi} determines

the behavior of the stochastic process; λ is called a proto-symbol. The output

probability density o[t] at qi is defined as a mixture of the Gaussian functions

as

bi(o) =
m∑
j=1

cijNij(o;Σ,µ), (2.1)

where bi(o) is the probability density function for the output of continuous

vector o at the ith state node, m is the number of mixture Gaussian functions,

and cij is the mixture coefficient. N (o;Σ,µ) is the Gaussian function,

N (o;Σ,µ) =
1√

(2π)X detΣ
exp{−{ 1

2
(o−~µ)TΣ−1(o−µ)} (2.2)
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where Σ is the covariance matrix , µ is the mean vector, and X is the number

of dimensions of the continuous vector o. The parameters of the HMM are

optimized by the Baum-Welch algorithm [118] , which is a an Expectation-

Maximization algorithm.

The Proto-symbol Space [56] is a phase space that represents the relation-

ship between continuous motion patterns as locations of proto-symbols in the

space. The location of the proto-symbols is assigned by a multi-dimensional

scaling (MDS) [135] with the distance between CHMMs measured with the

Bhattacharyya Distance [12].

Bhattacharyya Distance between gaussian distributions p(x;µp,Σp), q(x;µq,Σq)

is denoted as BD(p, q) and defined as

DB(p, q) = −log

∫ ∞

−∞

√
p(x)q(x)dx

=
1

8
(µp − µq)(

Σp + Σq

2
)−1(µp − µq)

T +
1

2
log

|Σp+Σq

2
|

|Σp|
1
2 |Σq|

1
2

(2.3)

The Bhattacharyya Distance between two CHMMs λ1 and λ2 is calculated by

adding distance between each gaussian distributions assigned to each nodes,

and it is denoted as

d(λ1, λ2) =
∑
i

√
BD (b1i (0;Σ1i,µ1i) , b2i (0;Σ2i,µ2i)) (2.4)

where b1i (0;Σ1i,µ1i) is a probability density function for i-th node of HMM

λ1. The reason why the Bhattacharyya Distance [12] is employed instead of

Kullback-Leibler Divergence [76] is that the Bhattacharyya Distance has prop-

erty of symmetry and linearity in distance with respect to ratio of weight coef-

ficients of internal/external dividing points when motions are interpolated and

extrapolated.

The MDS accepts the distance among items and outputs the location of each

item x in a Euclidean space. Let the distance between the i-th item and j-th
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item be fij by Eq.(2.4), and let the Euclidean distance between the i-th item

xi and j-th item xj be dij. Then, the objective of the MDS is to calculate the

appropriate xi by minimizing the criterion S2 =
∑

i,j(fij −dij)
2. x corresponds

to the location of the proto-symbol in the proto-symbol space.

Therefore, when a database of motor patterns is defined as D = {M 1, ...,M i},

where i is index of motion patterns, Proto-symbol space represented as P is

built from D using a building process, denoted as,

P = Fbuild(D). (2.5)

In the P , there are static points xi, which corresponds toM i = [θ[0]θ[1] · · ·θ[t]],

where θ[t] = [θ1[t] · · · θj[t] · · · θn[t]]T is a vector of time series joint angle, of hu-

mans and humanoid robots, where j is a index of a joint.

• Motion Recognition

Motion patterns, which are not even in the D, can be recognized by first ab-

stracting motion patterns to the CHMM, then calculating the Bhattacharyya

Distance [12] among λs in the Proto-symbol Space. As a result, a motion pat-

tern can be recognized as a static point x in the P , This recognition process is

represented as Frecog.

x = Frecog(M ). (2.6)

• Motion Generation

Using the Proto-symbol Space method, an interpolated/extrapolated novel mo-

tion pattern M s, which is not in D, can be synthesized through an inter-

nal/external dividing point xs manipulation in the Proto-symbol space [58].

The M s can be generated from the novel internal/external dividing point xs

[58] by using motion generation process Fgen, defined as

M s = Fgen(xs). (2.7)

32



In detail, the averaging method over repetition of motion generation is adopted.

The detailed order of the generation is as follows.

1. Initialization. Let the starting node be q1 , let the node token be i = 1,

and let the motion elements sequence be O = φ.

2. Deciding the transition destination node qj using transition matrix A

stochastically, by using Monte Carlo Method.

3. Deciding the output label okt during the transition from node qi to qj

stochastically (by Monte Carlo Method) using output matrix B.

4. Adding the output label okt to the motion elements sequence O. O :=

[O okt ].

5. Let the generation process be stopped when the token reaches the end

node qN , or returns to step 2 letting i := j, t := t+ 1.

6. Finally, the sequential motion elements are transformed into continuous

joint angle representations.

The output motions using the above operations are not the same, but have

different time lengths and orders of motion elements, because the output opera-

tions are stochastic. However, it is possible to generate an approximate motion

pattern because the parameters A and B represent the abstraction of dynamics

in the motion pattern. Therefore, the above operations are repeated, and plural

generated motions are averaged.

• Association of Whole Patterns with Partially Observed Patterns

Using the Proto-symbol Space method, it is possible to associate whole patterns

with partially observed patterns [59].

Mwhole = Fgen(Frecog(M partial)) (2.8)
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In other words, the Proto-symbol space method can associate whole motion

patterns with partially observed motions.

From the next chapters, I will discuss about newly proposing methods which take

advantage of these basic tools to realize the approach addressed in this chapter.

2.6 Conclusion of the Chapter

I briefly over-viewed robotics research as improvement in physical ability. Then, I

described that communication ability is important for further advance in robotics.

After listed up functions required for the communication, related works were intro-

duced with challenges to achieve required functions. The approach taken in this

thesis, ”people generally understand one another by simulating being in the other’s

shoes”, was introduced. At last, the Proto-symbol Space method was introduced as

a basic tool for realizing proposing methods in this thesis.
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Chapter 3

An Estimation Method of Others’
Sensorimotor Patterns and Others’
Symbol Conversion Strategy of the
Patterns

3.1 Abstract of the Chapter

I am interested in a method to estimate sensorimotor patterns of others without hav-

ing predefined user specific model in advance. This is because that a situation where

lots of users comes in turns are expected in future service robots, and it is not realistic

to have all the model for all the users. In the first half of this chapter, an approach

bridging sensorimotor experience of self and other is taken. To realize the approach

a method to estimate Proto-symbol Space of other from that of the self is proposed

in this chapter. Estimation errors due to physical condition difference is cleared by

sharing motions and using open questions to ask for absolute heaviness the other find

the motions. Simulation demonstrated that the proposing method can be estimate

sensorimotor patterns of other with 10-20% errors even for unknown motions, which

are not in the database. In the second half, we addressed an issue that symbol con-

version strategy from sensor was given in the first half. Proposing a method sharing

sets of motions and using closed question that is a comparative evaluation question,

demonstrated that it is possible to estimate others’ symbol conversion strategy.
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3.2 Introduction

In sports, as it was discussed in the previous chapters, proper estimation of others’

sensorimotor patterns by motion observation is important for learning proper motions

and for estimation of others’ inner state that leads to a good teamwork.

On the other hand, similarly, it is important for service robots, which are expected

to be used in near future at home environment, to have a function to estimate sensori-

motor patterns of users. It is because that the robots could initiate conversation with

users to confirm whether the users need help if the robots could properly estimate

sensorimotor patterns by observation of users’ motion. Therefore, in this chapter, we

address the function for robots that are expected to serve for humans.

One of the hard problems of intelligent robots which work in daily life environment

is to understand user’s intention. To understand user’s intention, many methods

have been proposed. For instance, observation of user’s activity using video camera

and rooms with sensor embedded floor and use of RFID tags have been proposed

[121][34][180][51][170]. However, making estimation of inner states, such as whether

a user would like to be assisted is not easy to achieve by these methods. It requires

estimation of sensorimotor patterns of the user and it is an important basic technology

for the purpose.

Methods have been proposed to estimate tensional force on muscles with obser-

vation of a human’s motion patterns by utilizing electromyography information with

detailed musculo-skeletal model of human’s whole body [162][163][164][94]. Other

methods using measurement devices of brain activities, such as fMRI, PET and EEG,

have been also developed to estimate what motor command a subject is trying to at-

tempt [172][100][174][161][20]. These methods require preparation of user specific

musculo-skeletal model or information of averaged brain activities in advance. In

addition, these approaches cannot deal well with environment where many users are

expected to use in turn.
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We are interested in a method that can estimate sensorimotor patterns even in

such environment. Therefore, we take an approach that bridging between others’

and self’s sensorimotor experiences in order to estimate sensorimotor patterns of the

others without pre-defined user specific models in advanced. If the self can bridge their

sensorimotor experiences to the others’, the self could observe the others’ sensorimotor

patterns as if the self experienced that of the others’ when motion patterns are shared.

Human beings, in daily life, are thought to estimate the other’s sensorimotor patterns

using the other’s simulated experience.This is called simulation theory [39], and it has

been applied for grasping intentions of others [53].

This approach will work well if the self and the other have identical body con-

ditions. But, it is natural that the conditions are different. Therefore, there will

be estimation errors derived from the difference when the self makes the estimation

based on estimated sensorimotor experiences of the other. This problem needs to

be addressed especially in a situation where robots interacts with humans, since the

two have very different physical conditions. In robotics, this is called correspondence

problem[2][43][98]. Therefore, for Human-Robot interaction, it is required to have a

method that can be applied even when the body conditions are not identical.

Recurrent Neural Net Parametric Bias(RNNPB) has been introduced as a frame-

work to estimate inner information by Tani et al[152]. This system, for example, can

abstract motion patterns, and be able to deal with unknown motions which are not in

the database. However, it is known that calculations using RNNPB is not guaranteed

to be converged and tends to have local optimality.

Mirror Neuron system has been discussed in brain science [122][27]. The mirror

neuron system fires both when a subject observes a specific behavior and when the

subject acts in the same manner. One of the important concepts that mirror neuron

system suggests is that bridging sensorimotor experience between the self and the

other.
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Inspired by the these findings in brain science[122][27], Proto-symbol Space Method

has been proposed by Inamura et al[59]. It is an engineering model of mirror neuron

system[122]. As it was discussed in the Chapter 2, the Proto-symbol Space Method

can recognize, generate motions in one framework. The method, however, assumes

that both physical conditions are identical when it is used for estimating sensorimotor

patterns of others[58].

The problem in the approach –to estimate others’ sensorimotor patterns by bridg-

ing between others’ and self’s sensorimotor experiences– is how to overcome differ-

ences in physical condition between the self and the other. Thus, to address this

problem, an objective of the chapter is to propose a method to estimate others’ sen-

sorimotor patterns without user specific model in advance, by sharing motions and

using open questions and applying the Proto-symbol Space method.

3.3 Estimation of Others’ Sensorimotor Patterns

by sharing Motion Patterns and using Open

Questions

3.3.1 Approach to Estimate Others’ Sensorimotor Patterns

To estimate others’ sensorimotor patterns without preparing user-specific model in

advance, we take an approach bridging sensorimotor experience between self and

other. It is natural for humans to estimate sensorimotor patterns of other, by starting

assuming that the self and the other feel the same when performing identical motions.

For example, when there is a person whose size and shape are similar to the self,

it is natural for the self to estimate that the person will find lifting an object heavy

as same as self would find. However, the person could find it light if the person is

with more muscule and less fat. In other words, there will be errors in estimation of

sensorimotor patterns of others due to difference in physical conditions.
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3.3.2 Method 1
-Acquisition of Others’ PSS adaptively from the Self’s-

Inspired by the approach and the issue discussed, we propose a method to acquire

others’ Proto-symbol Space (PSS) by bridging sensorimotor experience of the self and

the other.

As described in the Chapter 2, the PSS method abstracts sensorimotor temporal

patterns of human beings and humanoid robots. It defines a space called the Proto-

symbol Space(PSS), according to the similarity among abstracted patterns[59]. The

PSS method can recognize and generate even unknown motion patterns, or those

not in database by interpolation and extrapolation of motions in the database. In

addition, by abstracting motions using sensor patterns as well as motor patterns, it

can associate motion patterns to corresponding sensor patterns.

In the original PSS method [59], one PSS was used to bridge between the self and

the other. When it was used for estimating sensorimotor patterns of others, there was

an assumption that the physical condition of both the self and the other are identical

(Figure 3.1).

With the PSS method, it is possible to estimate sensorimotor patterns even when

a novel motion pattern that is not in the database is observed. However, PSS of the

self and PSS of the other are different due to difference in the database of sensorimotor

experiences between the two. So, if we can estimate the PSS of the other adaptively

from the PSS of the self, we can estimate sensorimotor patterns of the others even

when we observe a novel motion pattern.

Thus, we want to acquire the others’ PSS denoted as P̂other from that of self

denoted as Pself . For this purpose, we propose a method to estimate P̂other, by

introducing the real Pother and by using a set of shared motions and an open question,

which asks for absolute evaluation of sensor. An image of the states before the

estimation P̂other = Pself (Figure 3.2- 3©) and the state after the successful acquisition
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Dialogue & Mo�ons

Figure 3.1: Image of acquisition of others sensorimotor experience with one PSS in
the original PSS method [59].Self and Other are assumed to have identical physical
conditions.

of P̂other (Figure 3.2- 3©) is depicted in Figure 3.2.

A unique acquisition method of P̂other is proposed in order to estimate the others’

torque patterns. The method uses open question type communication to estimate

the other’s sensorimotor patterns, even when physical conditions are different in self

and other [57]. The outline of this method is explained as follows and is depicted in

Figure 3.3.

1. As an initial state, the self sets the other’s inference model P̂other based on own
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Dialogue & Mo�on

Dialogue & Mo�on

Figure 3.2: Image of acquisition of other’s sensorimotor experience by estimation of
other’s Proto-symbol Space: Self 1© has PSS of both self 2© and other 3©. a Real PSS
of other is presented as 4©. After the success estimation the Self will have estimated
PSS of other 3© as same as the 4©, while 3© is as same as 2© before the acquisition.
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Figure 3.3: Adaptive acquisition flow diagram of the other’s proto-symbol space: 1.
The self sets the others’ estimated P̂other based on own experience Dself . 2. The self

builds P̂other using D̂other (Eq.(3.1)). 3. The other executes the shared motion M
and observes corresponding Sother, The self obtains Ŝother from M other utilizing P̂other

(Eq.(3.2)). 4. Both the self and the other converts Ŝother,Sother into symbol-indexes
kself , kother (Eq.(3.4)). 5. The self modifies the Ŝother in the D̂other (Eq.(3.5)). 6. The

self reconstructs P̂other with the newly modified D̂′
other (Eq.(3.6))

experience D̂other = {Sself ,M self}.

2. The self builds P̂other with D̂other by using Fbuild (Eq.(2.5)) function,

P̂other = Fconst(D̂other) (3.1)

3. The other executes the shared motion M and observes corresponding Sother.

The self obtains Ŝother from M other utilizing P̂other as an association func-

tion(Eq(2.8)).

Ŝother = Fgen(Frecog(M )) (3.2)

4. Both the self and the other converts Ŝother,Sother into symbol-indexes kself , kother
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respectively using a discretization function Fsymbolize,

kself = Fsymbolize(Ŝother) (3.3)

kother = Fsymbolize(Sother). (3.4)

The symbol-indexs are integers corresponding to strength of the sensor Ss.

5. The self modifies the Ŝother in the D̂other according to the result of exchange of

the symbols kself and kother.

Ŝ
′
other =

kother
kself

Ŝother (3.5)

6. The self rebuilds P̂other with the newly modified D̂′
other = {Mselfr, Ŝ

′
other} by

using Eq.(2.5),

P̂other = Fbuild(D̂
′
other). (3.6)

Steps through 2 to 6 are considered as single conversation set. The self adaptively

acquires P̂other with repetition of the conversation sets.

On the other hand, the Fsymbolize consists of two functions Fsymbolize = Fdiv(Fconv(S)).

Fconv is to convert vector value S into intermediate scalar vaule g.

g = Fconv(S) (3.7)

In this paper a condition represented by following equation is used.

Fconv(S) =
1

T

∫ T

0

|τ1(t)|+ |τ2(t)|+ |τ3(t)|
τMAX

dt (3.8)

With Fdiv symbol-index k is obtained from g, by dividing the interval of g into d

equal segments and assigned in accordance with Table 3.1.

3.3.3 Experimental Setup 1

The torque on joints of the other is estimated by using the proposing method. An

experiment is conducted using two humanoid robots, for the sake of investigation of

the concept with simple condition as an initial step.
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Table 3.1: Relation between expression and density of the expression

k d=2 d=4 d=6

1 light light very light

2 heavy bit light light

3 - bit heavy bit light

4 - heavy bit heavy

5 - - heavy

6 - - very heavy

Conditions:

• The experiment involved two virtual humanoid robots R1 and R2 in a simulator

environment, using the Webots.

• Both robots had the same structures as HOAP-2 produced by Fujitsu Corp,

with different weights; R1 weighted 2.4[kg], R2 weighted 4.8[kg]. The masses

were unknown to each other.

• DRi
= {M ,S}(i = 1, 2), for building PRi

, were prepared with four basic mo-

tions shown in Figure 3.4.

• M consisted of joint angles for the right elbow and pitch and roll rotation torque

on the right shoulder [θ1θ2θ3].

• S consisted of torque values of the same joint angles [τ1τ2τ3].

The Figure 3.4 shows a set of basic motions that were used for building the

P̂R2 . 10 unknown motions that are not in the database were prepared for evaluation

purpose of the proposed method. These unknown motions consist of moves of the

considered joints randomly. The Figure 3.5 shows two sample unknown motions used

for evaluation of the estimated P̂R2 .
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Figure 3.4: Basic shared motion patterns for constructing PSS

Figure 3.5: Two sample unknown motions used for evaluation of the estimated P̂R2

3.3.4 Experimental Result 1

Sets of experiments has been conducted using the procedure explained in the previous

section. For evaluation purpose, following criteria were introduced. Estimation errors

ratio of real scalar value of torque (Eq.(3.7)) of other compared to estimated torque.

ē =

∑n
i

|gi−ĝi|
gi

n
(3.9)

where n = 4 for basic/known motions, and n = 10 for unknown motions.

Other evaluation criteria are matching ratio between real and estimated symbols
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of others, and average distance between real and estimated symbols of other as

l̄ =

∑n
i

|ki−k̂i|
d−1

n
(3.10)

where d is the density of expressions defined in the Table 3.1, and n is number of

sample data used in experiment. n = 4 for basic/known motions, and n = 10 for

unknown motions.

Figure 3.6 shows that after a few conversation sets resulted in successful estimation

for torque g of R2 with approximately 10% error (Eq.(3.9)) with motion patterns in

the database, and 20% errors (Eq.(3.9)) even when with unknown motion patterns.

The larger d is, the less ē is.

Figure 3.7 shows a matching ration between real and estimated symbols. When

d = 4, the matching ratio between known and unknown motions are alike and around

80%. When d = 6, the matching ratio for known motion is 100% and the ratio for

unknown motions is about 70%. When d = 8, the matching ratio for known motion

is 100% and the ratio for unknown motions is about 30%.

Figure 3.8 shows the distance between real and estimated symbols (Eq.(3.10)).

The lower the value is, the closer the symbols are even when the symbols are not the

same. The result shows that estimated symbols k̂ are close to the real symbols k used

by the R2, even for unknown motions.
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Figure 3.6: Estimation errors of others’ torque (Eq.(3.9)) with different density of
expression. 1.d=4, 2.d=6, 3.d=8
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density of expression. 1.d=4, 2.d=6, 3.d=8
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Figure 3.8: Distance between real and estimated others’ symbols (Eq.(3.10)), with
different density of expression. 1.d=4, 2.d=6, 3.d=8

3.3.5 sub-Conclusion

We proposed a method based on the concept to estimate unobservable information

of the other when physical conditions are different. The concept is to bridge sensori-

motor experience of self and others. To realize this concept, a method was proposed

that is to estimate others’ PSS from the self’s adaptively by shared motions and

open questions. Experimental result shows that a few conversation sets resulting in

successful estimation of R2’s torque g with 20% error was confirmed, even when R2

performed unknown motion patterns, and with 10% error with known motions.

The proposed method assumes that both the self and the other have identical

body configuration other than having different mass in this paper. If the DoF are

different, the proposed method can be used only when joint configuration are similar

and movements are kinematically similar. This method will work when the self have

more large DoF than the other and when the self can imitate movements of the other
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by simply not using one or more joints. However, there needs to be more quantitative

analysis about allowed similarities.
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3.4 Estimation of Others’ Symbol Conversion Strat-

egy by Sharing Sets of Motions and using Closed

Questions

3.4.1 Remaining Problem from the previous Section

With the method proposed in the previous section[57], it becomes possible to estimate

others’ sensorimotor patterns without having pre-defined model of users in advance.

The method results in a successful estimation of other’s sensory patterns with 10%-

20% errors[57], after a few interaction sharing motions and using open questions.

However, there was a remaining problem, a symbolization strategy how to convert

sensory patterns into the symbol-index was given for sake of simplicity (Eq.(3.4),

Eq.(3.8) and Table 3.1) Intrinsically, the strategy is supposed to be unknown and it

should be changed dynamically according to circumstances.

It is possible to estimate the strategy by the method in the previous section [57]

if sets of motions and queries are prepared properly. However, it would require as

same or more number of queries as of the strategy candidates. It is because the open

question method was used and there are almost infinite number of choices for the

answers. When interactions between robots and humans are considered, it is better

to limit the number of queries from the robot to the human.

Thus, in this section we propose a method that uses closed questions and sets of

shared motions, in order to have less amount of queries. In this method, the other

was asked to perform two kinds of motions and answer which motion was heavier,

or observed larger torque on joints. The closed question is a comparative evaluation

question of a set of shared motions, asking which motion is heavier. This comparative

evaluation questions and sets of shard motions are used in the framework of the

previous section [57], in order to estimate the intrinsically unknown symbolization

strategy how to convert sensory patterns into the symbol-index.

The problem to solve in this section, specifically, is the function that converts
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Mo!on 2

Mo!on 1

Figure 3.9: Diagram of the method to estimate others symbol conversion strategy by
using comparative evaluation questions and sets of shared motions

temporal sensory patterns into a scalar value, defined in Eq.(3.7). With the proposing

method, it would be possible to estimate what kind of function the others’ are taking

–in the previous section, it was given as Eq.(3.8)–.

3.4.2 Method 2
–How to Estimate Others’ Symbol Conversion Strategy–

The proposing method uses closed questions and sets of shared motions in order for

the self to estimate other’s symbolization strategy Fsymbolize. When the self attempts

to estimate the other’s Fsymbolize, the self prepares more than two sets of shared motion

patterns. These motion patterns are designed specifically for the estimation of other’s
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Fsymbolize. As it was explained in the previous section, the closed question is to ask for

relative relationship of the observed sensory patterns for the motions, and the closed

question is called comparative evaluation question in this chapter. For example, an

answer would be ”Motion 1 is heavier”.

The following procedure is used for the estimation of F̂symbolize. The concept is

depicted in Figure 3.9.

1. According to the identification target Fsymbolize, the self prepares motion pat-

terns M i(i = 1, 2).

2. The other imitates each M i and observes corresponding sensory patterns Si.

3. The other converts Si into scalar value gi using conversion function Fsymbolize.

gi = Fsymbolize(Si), (3.11)

4. The other replies with a symbol-index K that tells the magnitude relation of

the g1, g2.

K = Fcomp(g1, g2), (3.12)

That is,K is either ”M1 is heavier”(’>’), ”M2 is heavier”(’<’) or ”same”(’equal’).

5. The self identifies the other’s Fsymbolize based on the replied symbol-index K.

If necessary, the self prepares a new set of motion patterns and repeats the steps

above till identifies the Fsymbolize.

3.4.3 Experimental Setups 2

The experimental condition is almost identical as the Experiment 1, but focused

joints. The right elbow, pitch and roll rotation on the right shoulder and the right

knee were used for D = {θ, τ}.

Conditions:
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• The experiment involved two virtual humanoid robots HOAP-2 in a simulator

environment called Webots.

• R1 weighted 2.4[kg] as the self and R2 weighted 4.8[kg] as the other were used.

• The masses were unknown to each others.

• Only symmetrical motions were used in the experiment, and considered joint

angles are that of the right elbow, right shoulder’s roll and pitch rotation and

the right knee θ = [θ1θ2θ3θ4].

• Considered joint torques were consisted of observed torques of the same joints

τ = [τ1τ2τ3τ4] respectively.

• The self prepared database DR1 = {τ ,θ} with four basic motions(Figure 3.10)

for building proto-symbol space PR1 .

To verify the proposed method, four conversion rules fi(i = 1, .., 4) were prepared

as the candidates of Fsymbolize, for the Fconv that converts joint torques(τ ) to an

intermediate scalar value g (Eq.(3.7)). 1. average torque over time period, 2. sum of

maximum torque of each joints, 3. maximum torque of composition of all joints and

4. maximum among maximum torque of each joints.

1. Average of all the torque patterns

f1(τ ) =

∑J
j

∫
τj(t)dt

T

J
(3.13)

This strategy is thought to be taken when carrying a light weighted objects for

a long time.

2. Sum of maximum values of each joint torques

f2(τ ) =
J∑
j

(max
t

{τj(t)}) (3.14)

This strategy is thought to be taken when carrying a heavy object.
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Figure 3.10: Basic shared motion patterns for building PSS

3. Maximum value of composed joint torque patterns.

f3(τ ) = max
t

{
J∑
j

τj(t)} (3.15)

This strategy is thought to be taken when carrying a heavy object.

4. Maximum value of maximum of each joint torques

f4(τ ) = max
j

{max
t

{τj(t)}}, (3.16)
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This strategy is thought to be taken when carrying a heavy object.

where T was the time period of τ and J = 4 in this paper.

Figure 3.11: Flow diagram of the rule estimation

For the procedure, sets of motions, m1 and m2, and m3 and m4 are required

to prepared in advance. The m1 and m2 are designed so that maximum torques

are different but average torques over time period between 0 and T1 are the same

(Figure 3.12). The m4(Figure 3.13) is a motion that the four joints bend and then

stretch simultaneously, and the maximum torque are taken at the same time at the

same value a. The m3(Figure 3.13) is a motion that starts with a bending and

stretching movement on the knee (a squat), followed by an up-and-down movement
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Figure 3.12: A set of motion 1 (m1) and 2 (m2) for use with the query 1, which is
a comparative evaluation question. The m1 and m2 are designed so that maximum
torques are different but average torques over time period between 0 and T1 are the
same.

of the pitch rotation on the shoulder, followed by an up-and-down movement of the

roll rotation on the shoulder, and ended with a bending and stretching of the elbow

joint. The m3’s maximum values of the joint torques are (τmax
1 , τmax

2 , τmax
3 , τmax

4 ) =

(αa, βa, γa, ωa). Constants a, α, β, γ, ω are required to meet the following conditions

for the identification of Fconv.

a < α < 4a (3.17)

4a = α+ β + γ + ω (3.18)

0 < ω ≤ γ ≤ β ≤ α (3.19)

In this paper,

(α, β, γ, ω) = (3.0a, 0.4a, 0.4a, 0.2a)

a = 0.5 (3.20)

was used.

With the condition Eq(3.20):

• if Fconv = f2 then f2(τ
m4) = 4.0, f2(τ

m3) = 4.0,
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Figure 3.13: A set of motion 3 (m3) and 4 (m4) for use with the query 2, which is a
comparative evaluation question. The m4 is a motion that the four joints bend and
then stretch simultaneously, and the maximum torque are taken at the same time
at the same value a. The m3 is a motion that starts with a bending and stretching
movement on the knee (a squat), followed by an up-and-down movement of the pitch
rotation on the shoulder, followed by an up-and-down movement of the roll rotation
on the shoulder, and ended with a bending and stretching of the elbow joint.

• if Fconv = f3 then f3(τ
m4) = 4.0, f3(τ

m3) = 3.0,

• if Fconv = f4 then f4(τ
m4) = 1.0, f4(τ

m3) = 3.0.

Therefore, by the answer of the query 2, it is possible to make identification of the

F̂R2
conv.

The flow of the method using comparative evaluation questions and sets of shared

motions is depicted in Figure 3.11 and described as below.

1. R1 asks R2 to imitate the motions m1 and m2, those meet requirements de-

scribed in Figure 3.12

2. R2 performs the m1 and m2, and observes corresponding τm1
R2

, τm2
R2

.

3. R2 converts both τm1
R2

and τm2
R2

into gm1
R2

and gm2
R2

using the chosen conversion

rule fR2 .

4. R2 replies with symbol KR2 that explains which motion is heavier or the same.

5. if KR2 =’equal’ then R1 identify as f̂R2 = f1, otherwise ask next question.

56



6. Execute the same procedure as 1-4, but replacing m1, m2 with m3, m4 (Figure

3.13) respectively.

7. R1 identify as f̂R2 = f2 if KR2 =’equal’, f̂R2 = f3 if KR2 =’<’, f̂R2 = f4 if

KR2 =’>’.

It is assumed that the R2 made perfect imitation of mi performed by R1, also

assumed that the same conversion rule Fconv was applied to all the joints regardless

of motion patterns.

3.4.4 Experimental Result 2

In the simulation, both R1 and R2 have identical body structures with proportional

relation on the masses. This results in 100% successful identification of the conversion

rule Fconv when the R2 imitated the motions of R1 perfectly. It is because that when

motions are relatively simple, it can be assumed that R2’s torque patterns τR2 and

R1’s τR1 are in proportional relationship.

To show the importance of identification of the Fconv, R2’s joint torques were

estimated both with a successful identification of the Fconv and with an incorrect

identification. 10 kinds of unknown motions M
′
i(i = 1, ..., 10), which were different

from the four basic motions shown in Figure 3.10, were introduced for the evaluation.

These unknown motions consisted of arbitrary movement of the 4 joints. An error e

between estimated torque ĝ and the real g were defined as follows, using both known

and unknown motions.

e =
1

N

N∑
i

|ĝi − gi|
gi

(3.21)

N was the number of motion patterns used for the evaluation and in this paper it is

N = 10. The results are shown on Figure 3.14 and Figure 3.15. The x-axis is number

of conversation sets, and the y-axis is the error e (Eq.(3.21)).
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Figure 3.14: result of torque estimation with successful rule inference when d = 5 and
Fconv = f4

Figure 3.15 shows that errors are 45− 60% for torque estimation when the identi-

fication of the F̂conv failed. On the other hand, after a few set of conversation, Figure

3.14 shows that estimation of the other’s torque can be achieved with approximately

10% error even if the motions are unknown.

The comparative evaluation questions with set of shared motions can estimate

3N kinds of symbolization strategies by making qeuries with motions N times. This

efficiency is important when the human robot interaction is considered, that is, the

human can use the system without complex and large amount of preparation.
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Figure 3.15: result of torque estimation with erroneous rule inference when d = 7,
F̂conv = f0 and Fconv = f2

3.5 Conclusion of the Chapter

In summary, I have realized interaction and communication to estimate sensorimotor

patterns of others by observing motion patterns without having user-specific model

in advance. However, the proposed method is tested with simple motions, and inves-

tigation with complex motions is needed. Quantitative study for cases, when number

of DoF and configuration of joints location is different, is required.

We proposed two methods based on the concept to estimate unobservable informa-

tion of the other when physical conditions are different. Two kinds of communication
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methods were proposed to realize the concept, which is to bridge sensorimotor ex-

perience of self and other. In the first half, we proposed a method based on the

concept to estimate unobservable information of the other when physical conditions

are different. The concept is to bridge sensorimotor experience of self and others. To

realize this concept, a method was proposed that is to estimate others’ PSS from the

self’s adaptively by shared motions and open questions. Experimental result shows

that a few conversation sets resulting in successful estimation of R2’s torque g with

20% error was confirmed, even when R2 performed unknown motion patterns, and

with 10% error with known motions.

In the second half of this chapter, we proposed a communication method, com-

parative evaluation questions with sets of shared motions. This made it possible to

estimate 3N kinds of symbolization strategies, how to convert torque patterns to

symbol-indexes, by making queries with motions N times. The method consists of

making queries with motions about unobservable sensory information, based on esti-

mated others’ experience P̂other that is acquired from the self’s sensorimotor experi-

ence Pself adaptively. We think that the method is a fundamental interaction method

for estimating other’s unobservable inner information, such as sensory information.

This method is also thought to be useful to deal with the correspondence problem

[2][43][98]. The correspondence problem is generally considered as a problem that

deal with correspondence relationship between directly observable body parts of the

self and the other. However, using the proposed method, it is possible not only to

deal with a new problem how to map between the self’s sensory information and the

other’s unobservable sensory information.

In addition, with comparative evaluation questions with set of shared motions, it is

possible to estimate continuous sensory pattern even when that cannot be expressed

by symbol representations. The comparative evaluation of sensory information is an

objective measure and the result is precise, even when an estimation target sensor is
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other’s unobservable one. Taking advantage of these properties, the proposed method

in this chapter can be applied, for instance, to estimate Fdiv defined at Table3.1 and

weight coefficient for each joints in Eq(3.13)-Eq(3.16).

The results of the section 3.3 was presented in [57] and [109]. The results of the

section 3.4 was presented in [110].
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Chapter 4

A Binding Method of Motion
Patterns and Verbal Expression for
Conveying Subtle Difference in
Motions

4.1 Abstract of the Chapter

Whole-body gestures and verbal expressions should be bound according to given tasks

and the current situation in intelligent human-robot interaction systems. Modifica-

tion of expressions, such as emphasis of motions and change in verbal expressions,

plays an important roll for successfully completing tasks according to user reaction.

For example, it is difficult to convey slight differences between learning target motion

demonstrated by a coach and a motion performed by a learner. The slight differ-

ences in motions can be conveyed by binding an emphasized motions and an verbal

expression. In robotics, however, even though the synthesis of gestures and speech

has been discussed, how to bind synthesized emphatic motions and verbal expressions

from an engineering point of view has not been adequately discussed. Synthesis of

motion and speech requires recognition of user reaction, we therefore should integrate

1) recognizing reaction, 2) planning to complete tasks, 3) modification of motions and

speech, and 4) maintaining a bi-directional interaction loop consisting of processes

1)–3). We think a common problem not being considered in existing works is that
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the four required elements were separated. Thus, in order to convey slight difference

in motions, we propose a method for binding emphatic motions and adverbial expres-

sions, and for evaluating and controlling these four required processes by using a sole

scalar parameter in a phase space. In the phase space, variety of motion patterns and

verbal expressions can be expressed as static points. To evaluate the feasibility of

the proposed method, we demonstrated motion coaching system using the method.

We show the feasibility and effectiveness of robotic motion coaching systems through

experiments of actual sport coaching tasks for beginners. From the results of par-

ticipants’ improvements in motion learning, we discuss about factors affecting such

motion coaching systems that realizes binding and controlling emphatic motions and

adverbial expressions using a sole scalar parameter in a phase space.

4.2 Introduction

To develop effective and intelligent human-robot interaction systems that use whole

body gestures and verbal expressions, verbal expression and gesture expression should

be strongly connected according to given tasks and current situation. Additionally

not only fixed expressions but also modification of the expressions such as empha-

sis of motions and changing speech words is also an important function to achieve

tasks smoothly according to reaction from users. Analysis of the connection between

gestures and speech are often discussed in the field of psychology; however synthesis

and emphasis of gestures and speech from engineering point of view has not been

discussed well. Since synthesis of motion and speech also requires recognition of cur-

rent situation such as reaction of users, we therefore should integrate 1) recognition

of reaction, 2) planning to achieve tasks, 3) synthesis and emphasis of motions and

speech, and 4) keeping interaction loop consists of 1)–3).

In this chapter, we propose a robotic system that coaches human beings motions

to discuss the above issues in order to convey slight difference in motions. The robotic
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coaching system should include all of the four elements.

1. recognition of reaction: The robot should evaluate humans’ performance and an-

alyze similarities and differences between the humans’ performance and coaching

target motion.

2. planning to achieve tasks: The robot should let the human subject to make

better performance based on feedback consists of motion and speech expressions.

3. synthesis and emphasis of both motion and speech: The robot should modify

and emphasize motion demonstrations and speech expressions based on the

result of 1.’s analysis.

4. The robot repeats above three processes in order to have continuous loop of

interaction for improvement of the performance.

On the other hand, in general, there are three steps to learn motions.

1. Learn motion by imitation and repetition.

2. Learn how much and when to apply forces. For example, maximum force should

be applied at the time of impact when one hit a ball in tennis.

3. Learn how to adjust trajectory and timing of a swing according to trajectory

and speed of the ball about to hit.

In this thesis, we focus on the step 1, and discuss how to bind motion and verbal

expression for effective coaching.

With regard to researches on binding of motion patterns and verbal expressions

in imitation learning frameworks, there are researches of systematic binding taking

advantage of interaction, such as [60][148][149][95][150]. These work bind different

but similar motions and modalities to a symbol. However, for motion coaching it
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is needed to bind similar but different motions and modalities to different verbal

expressions to convey slight difference.

When we look at researches of robotic system that coaches human beings motions,

there is a robot instructor for stroke patients [30][31][168][29]. It has realized estab-

lishing a loop of interaction controlled by the robot, with combining motion patterns

and verbal expressions. However it does not consider synthesizing emphatic motions

based on feedback of player’s imitation performances, and the evaluation is from

emotional aspect of users. We believe it is important to provide feedback not only

with verbal expressions, but also with emphatic motions, and having a quantitative

evaluation of learning motions.

On the other hand, there are many researches related to synthesis of motions, in

the computer graphics area [17][125][41][49]. However, how to synthesize motions are

subjectively decided by designers and how to bind motions and verbal expressions is

not considered.

Lee proposed a method to have slight changes in motions after a robotic system

learns from imitation learning [81] [79]. In this method, an appropriate impedance

controller is integrated for kinesthetic teaching. However, it does not discussed how

to integrate the slight modification in motions and verbal expressions.

We think a common problem not being considered in above related works is that

the four required elements were separated. Since each element is complex, we propose

a simple framework to integrate those elements that uses sole parameter to connect

all of the processes. In motion coaching tasks, considerable factors can be evaluated

by a scalar parameter such as similarity of performed motion between target motion,

degree of emphasis of motion, variety of verbal expression using adverb for feedback.

Furthermore we show feasibility and effectiveness of robotics motion coaching systems

based on the proposed method through experiments of real sports training tasks for

beginners.
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In the section 4.3, method to evaluation and control of motion patterns using

sole scalar parameter is explained. In the section 4.4, framework of robotic motion

coaching system is explained. In the section 4.5, we show experiment results. Finally

we discuss the results and conclude effective factors on motion coaching system.

4.3 Methods

In this section, proposing method, with one parameter α, how to control both synthe-

sis of emphatic motions and choice of adverbially expressions and how to bind them

will be explained.

The proposing coaching system, which uses the proposing method, is a coaching

system that attempts to have proto-symbol of learners’ performance be close to a

proto-symbol of a learning target motion as repeat the coaching interaction. The

purpose of the coaching system is not that it attempts to move proto-symbol of

learners’ performance to several other proto-symbols in the phase space (PSS) during

a coaching task.

4.3.1 A Method to Synthesize Emphatic Motions

For synthesis of output probability bi(O), we employ a single Gaussian model for the

output such that an intuitive synthesis of joint angle vectors can be achieved just by

using the mean and variance vectors of a Gaussian distribution. With the the mean

and variance vectors and using Monte Carlo method, the motion pattern is generated

[58]. Fgen; a function to generate sensorimotor patterns from a x, same as Eq.(2.7),

O = Fgen(x), (4.1)

For synthesis motion patterns, instead of directly interpolate/extrapolate of both

aij and bi(O): (1) The state transition probabilities and the output probabilities

are separately operated upon. (2) The state transition matrices are calculated in a

different domain, i.e., the time domain. (For the detail please refer to [58]) For the
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simplicity, in this thesis, a function to synthesis an internal/external dividing point

xs, which corresponds to interpolated/extrapolated novel motion pattern, from static

points xi, xj is represented as Fsyn;

xs = Fsyn(βxi + γxj), (4.2)

where β, γ are weight coefficients. To generate motion, use the Os = Fgen(xs)

(Eq.4.2).

4.3.2 A Method to Chose Adverbial Expressions

In this chapter, an adverbially expression, ”more like this” was introduced. As a

first step, only one kind of adverbial expression was used with the synthesized em-

phatic motions in experiments in this chapter. With this simple approach of the

adverbial expression usage, in this chapter, we are interested in discussing whether

the emphatic motion and the adverbial expression contributes to the improvement in

motion learning.

4.3.3 A Method to Control Emphatic Motions and Adver-
bial Expressions with one Scalar Parameter in a Phase
Space

We defined α as below, applying 4.2,

xs = xt + α(xt − xp) (4.3)

where α is a weight coefficient for extrapolation, xt and xp are static points in PSS

corresponding to motion Ot and P p respectively.

As it is depicted in Figure 4.1, this weight coefficient α corresponds to the degree

of emphasis of the synthesis motion. In addition, for example, we assign adverbially

expression such as ”a little more”, ”more”, and ”much more” according to the value

of the α as in Table 4.1. In this way, with one parameter α, it is possible to control

both degree of emphasis of synthesized motion and choice of adverbially expression.
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Figure 4.1: Example relationship between the weight α, adverbially expression and
synthesis motion

Table 4.1: Example assignment of adverbially expressions according to α

α 1.5 2.0 2.5

adverbially expression a little more more much more

4.4 Framework of a Motion Coaching System

4.4.1 Flow of a Motion Coaching System

A scene of the motion coaching is depicted in Figure 4.2.

At first, the database D = {θt,θp} that is consisted of one imitation target motion

pattern θt as well as one motion pattern performed by the player θp. Then, Proto-

symbol Space P is built with the D using Fbuild process (Eq.(2.5)). Now, let us define

the static point xt in the P , as the static point corresponds to the imitation target

motion θt.

As depicted in Figure 4.3, the motion coaching task will be executed as follow.

1. The coach (an agent in a virtual environment in this thesis) demonstrates mo-

tion pattern θc as the imitation target motion θt.

2. The human player imitates θc.

3. The coach observes the player’s imitated motion pattern θp and converts it to

a static point xp in the P , using recognize function Frecog(Eq.(2.6)).

4. If the xp is not close to xt, then it is interpreted that the player’s imitated

motion is imperfect. The coach calculate the missing elements in the imperfect

imitation of the player by xt − xp.
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Figure 4.2: A scene of the experiment: The system repeats a loop 1-5 as needed. 1)
the robot-coach demonstrates learning target motion. 2) a human player imitates. 3)
the coach observes the player’s motion. 4) the coach calculates the missing elements
in the player’s motion by comparison to the learning target motion. 5) the coach
synthesize a emphatic motion.

5. The coach calculate the external dividing point xs by adding the missing elements(xt−

xp) to the target motion(xt), using Eq.(4.3).

6. θc is generated from the xc, using the generation function Fgen(Eq.(4.1)). Use

the point xs as the xc, which corresponds to the re-demonstration motion pat-

tern θc for the next trial.

Repeat a loop 1-6 as needed. 1 loop is considered as 1 trial in the experiment.
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Figure 4.3: Flow of the motion coaching

4.4.2 An Example Result

An example outcome of this method are depicted in Figure 4.4, Figure 4.5 and Figure

4.6. Figure 4.4 shows the imitation target motion θt demonstrated by the coach θc.

The objective of the player is to imitate this motion as close to the target motion

as possible. Figure 4.5 shows the observed motion pattern imitated by the player

θp. As it can be seen the imitation is not perfect. For example, the left hand is

not as same as in the θc. Figure 4.6 shows a emphatic motion synthesized by the

proposing method. Not only the left hand has been considered as a missing elements,

and emphasized. The degree of bending right knee and the degree of bending upper

body forward are also taken into consideration for emphatic motion, synthesized by

the system according to the proposing method. As a result this seems to be perfectly

reasonable.
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Figure 4.4: An ideal motion pattern as the coaching target (pattern: θt, proto-symbol:
xt)

Figure 4.5: A motion pattern imitated by a beginner player (pattern: θp, proto-
symbol: xp)

Figure 4.6: An emphatic motion pattern generated with weight α = 2 in Eq.(4.3)
(pattern: θs, proto-symbol: xs)
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4.5 Experiments

We conducted series of experiments, in which a forehand tennis swing was coached to

males by the robotic system. All of the subjects were beginners of the tennis, or never

played before. A scene of the motion coaching is depicted in Figure 4.2, which follows

the procedure explained in the section 4.4.1 and depicted in Figure 4.3. The proposed

method and the flow of the coaching system explained in the previous section was

used with conditions below.

4.5.1 Common Conditions

• The coaching agent demonstrates motion pattern θt, shown as Figure 4.4, as

the imitation target motion and it was displayed on a large screen.

• The given instruction was ”please imitate this”, right before each motion demon-

stration.

• The view point of the imitation target motion was fixed and it was always from

the front.

• θ were consists of 17 joints, each has DoF of 3.

• The number of elements in the database D, which were used for building proto-

symbol space P is 2. In other words, only the imitation target motion θt and

subject’s imitated motion θp were used. D = {θt,θp}.

• 5 swings were used to abstract each player’s swing to HMM at each trials. Mo-

tion data were segmented into meaningful portions by the author subjectively,

while there are method proposed for autonomous segmentation [74] [75].

• Each trials were executed with 5 minutes intervals.

72



4.5.2 Experimental Setup 1

In the experiment 1, we tested with a subject to learn how different α would affect

to the motion learning performances. The emphatic motions with different α =

{1.25, 1.50, 1.75, 2.00, 2.25, 2.50} were synthesized and shown to the subject.

4.5.3 Experimental Result 1

To evaluate the result, the distance dil was introduced.

dil = |xt − xp| (4.4)

where i is an ID number of a subject, and we had only one subject (i = 1) in this

experiment 1. where l is the trial number, and l = 1 was used for this experiment.

The Eq.(4.4) means that the smaller the dil is, the better the imitation is. When

dil = 0, the imitation is perfectly identical. Thus, dil corresponds to an imitation

error of subject ID i at trial l.

As it is shown in Figure 4.7, it is reasonable to decide that α = 2.0 would provide

the best result for motion learning.Thus, in the following experiment 2, α = 2.0 was

used.

4.5.4 Experimental Setup 2

In the experiment 2, four different cases were tested to evaluate the proposing method.

Conditions are:

• The number of subjects were 13.

• The order of conducting each experimental cases were randomly shuffled for

each subjects.

• The adverbially expression, ”more like this” was introduced.
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Figure 4.7: Result of experiment 1: Imitation error against different values of αs. d̄l
in Eq.(4.4)

• Four kinds of experimental cases were introduced to evaluate how the emphatic

motion and the adverbially expression contributed.

1. Case 1:

The coaching agent repeated demonstrating imitation target motion θt

only, In other words, coached using motions with α = 0.0 and no adver-

bially expression was used.

2. Case 2:

Coached using motions with α = 0.0 and adverbially expression ”more like

this”.
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3. Case 3:

The coaching agent re-demonstrated with emphatic motion patterns θs

synthesized by the proposed method. In other words, coached using mo-

tions with α = 2.0 and no adverbially expression.

4. Case 4:

Coached using motions with α = 2.0 and adverbially expression ”more like

this”.

The cases are also summarized in Table 4.2.

Table 4.2: Cases in Experiment 2

- α = 0.0 α = 2.0

without ”more like this” Case 1 Case 3

with ”more like this” Case 2 Case 4

4.5.5 Experimental Result 2

To evaluate the results, the following measure was introduced. Average ratio of error

in imitation at trial l is:

R̄l =

∑m
i=1

dil
di1

m
(4.5)

If the imitation error is smaller compared to the initial trial in the same case, the R̄l

will be less than 1.0. If the imitation error is larger compared to the initial trial in

the same case, the R̄l will be more than 1.0. When imitation is perfect, the imitation

error is zero, R̄l = 0.0.

From Figure 4.8 and Table 4.3 executing Tukey-Kramer Method and ANOVA

for p < .05 with R̄l at 4th trail in Eq.(4.5) for Exp.2, it would be able to say that

emphatic motions contributed somehow to improve the motion learning of the players.

However, we would not able to say if the adverbially expression contributed or not.

It is because that between there is significant difference found between the Case 1

and 3, and Case 1 and 4 only.
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Figure 4.8: Result of experiment 2: Average ratio of imitation error: R̄l in Eq.(4.5)

4.6 Conclution of the Chapter

In summary, I have realized interaction and communication to convey slight differ-

ences in motions by dynamically combining emphatic motions and symbolic expres-

sions. I also designed an interaction in which approach to utilize humans’ ability was

taken, instead of an approach to have automated machine being friendly to humans.

However, from HAI and communication point of view, what I have not realized was

interaction and communication using power of symbol communication that enable in-

teraction even when communication protocol is unknown and when meaning/intention

of motion is unknown. In this research, the communication method adopted was fixed
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Case 1 Case 4Case 3Case 2

p < 0.05

Average Improvement Ratios with respect to the Initial Trails at 4th Trail for each Cases

Figure 4.9: Result of experiment 2: Average improvement ratios with respect to the
initial trails at 4th trail for each Cases. The average ratio of imitation error: R̄l in
Eq.(4.5)

and users were asked to chose symbolic expressions from limited set of choice prepared

in advanced. The communication used by users were limited to motion only, while the

robotic system communicated using motion display and symbolic expressions. The

expressions used in the motion coaching was primitive and limited, and it was not

able to generate sentences for coaching.

For effective and intelligent human-robot interaction systems that use whole body

Table 4.3: Tukey-Kramer Method for p < .05 with R̄l at 4th trail in Eq.(4.5) for
Exp.2. The numbers in the upper right are the Tukey-Kramer minimum significant
differences (MSDs). The numbers in the lower left are the observed absolute value of
the difference in means between each pair of groups, with an asterisk if it is greater
than the Tukey-Kramer MSD.

- Case 1 Case 2 Case 3 Case 4

Case 1 - 0.1194 0.1139 0.1139

Case 2 0.1068 - 0.1194 0.1194

Case 3 0.1421* 0.0353 - 0.1139

Case 4 0.2112* 0.1045 0.0692 -
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gestures and verbal expressions, verbal expression and gesture expression should be

strongly connected according to given tasks and current situation. To convey slight

difference between learning target motion demonstrated by a coach and motion per-

formed by a learner, we took an approach using the emphatic motions and adverbial

expressions. The adverbial expression used is a representation of a discrete value

that is meaningful and can be shared by both humans and robots. We believe that

having meaningful and sharable parameter expressions is a key for the Human-Robot

interaction.

In order to convey the slight differences in motions, we proposed a method to bind

and and control degree of emphasis of motion and adverbial expressions, with using

a solo scalar parameter in a Proto-symbol space, and to evaluate errors of performed

motions compared to the learning target motion. We demonstrated the feasibility of

robotics motion coaching systems through experiments of real sports training tasks

for beginners. With results of players’ improvement in motion learning, we validated

that the proposed method benefited for robotic system to have effective interaction

with human beings using whole body gestures and verbal expressions, for conveying

slight differences in motions.

The purpose of the coaching system is not that it attempts to move proto-symbol of

learners’ performance to several other proto-symbols in the phase space (PSS) during

a coaching task. This kind of approach can be applied when several learning target

motions are prepared as sub-goals. For example, the future coaching system could

first analyze learners’ swing motions and detect degree of errors in which body part

has the most, the second most and so on, compared to a learning target motion. Then,

the future coaching system could set several sub-goals, that is several proto-symbols

in the PSS, and attempt to coach so that proto-symbol of learners’ performance moves

to proto-symbols in certain order and finally get close to a learning target motion.

We neither corrected errors nor praising explicitly in the experiment using the
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proposed method, even though we implicitly corrected errors by demonstrating the

emphatic motions and adverbial expressions. Thus, the improvement in learning mo-

tions was not effected by ”Differential Reinforcement”, being reported the differential

reinforcement increased performance two to four times over baseline.[18]. (Differen-

tial reinforcement of other behaviors means that reinforcement/praise is provided for

desired behaviors, while inappropriate behaviors are ignored.)

Since the learners were voluntarily changing the swings to learn of imitate the

demonstrated emphatic motions, there might be an ”operant conditioning”, which

is reported to enhance skill development [32]. The operant conditioning is a form

of learning in which an individual’s behavior is modified by its consequences, and

distinguished from classical conditioning (Pavlovian conditioning [120]), or operant

conditioning deals with the modification of ”voluntary behavior”.

Other methods could synthesis emphatic motions, but there is a strong benefit

of proposing method applying the mimesis model. With the Proto-symbol Space

method, for example, it would be possible to make an instruction considering tenden-

cies of players, such as “Please, swing not like jumping, but more like squatting! ”,

instead of current simple verbal expression “more like this”. This chapter is to present,

as the first step, the feasibility of the proposed method, and therefore a simple verbal

expression was used. The technical basis to realize such motion synthesis by natu-

ral expression is that the Proto-symbol Space method can convert high dimensional

complex real world property to static points in low dimensional space, Proto-symbol

space(PSS), and can convert back from the static points to the high dimensional

property, such as motion patterns. If motions could be labeled such as ”jump” and

”squat” then the natural expression could be converted into external/internal division

of proto-symbols in PSS; then it corresponds to proper extrapolation/interpolation

of motion patterns in the high dimensional world. It means the PSS could be used

as the bridge between symbolic expression and motion synthesis. This is the most
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important reason why the Proto-symbol Space Method was used.

In this chapter, we only used joint angles as the (O), however it can be extended

to deal with sensory patterns S = [s1, ..., sn]
T , where s are time series data, becoming

O = {MT ,ST}T . In the Chapter 6, we will discuss a method and experiments how

the integration of motion patterns and sensory patterns works and benefits.

The results of this chapter was presented as a part of [111].
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Chapter 5

A Modeling of Emphatic Motion
Use and Adverbial Expressions Use
–A Design of a Interactive
Learning Framework–

5.1 Abstract of the Chapter

As a step of a robotics research toward integration of motion patterns and verbal

expression, in this chapter, we attempt to model how human uses motions and verbal

expressions for motion coaching. Through experiments of a tennis forehand swing

coaching task for beginners, we observed and analyzed three kinds of motions; learning

target swing performed by human coaches, swings performed by learners and emphatic

motions by human coaches. With results, we modeled relationship between difference

among the three motions and used verbal expressions in a phase space, and discussed

how the model can be applied for realizing an efficient motion coaching system.

5.2 Introduction

When humans coach, for example, a tennis swings to human learners, the human

coaches use proper whole-body motion demonstrations and verbal expressions in order

to help the learners improve in motion learning according to performances of the

human learners. For example, slight differences in motions is not easy to convey using
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only either motion demonstrations or verbal expressions. To convey slight differences,

it is needed to have a method to chose both effective motions and verbal expressions

and a method to bind them.

Human coaches can learn coaching skills from other coaches, when they do not

know how to coach. For example, from other coaches, human-coaches can learn what

to emphasize in motions and what kind of adverbial expressions should be bound

to the motions as a coaching skill. Then, they can apply acquired skills to coach

human-learners in order to have learners recognize their performances and improve

them. This is an interactive learning, in which humans learn new skills and apply the

learned skills to coach.

To realize this interactive learning between a robot and a human, a robot need

to be able to covert learned parameters for motion coaching, to appropriate motions

and verbal expressions. The problem is that parameters learned by robotic system

are usually not friendly for humans, therefore, parameters are not meaningful for

humans.

There have been a lot of research on imitation learning in robotics [133] [16]. How

to learn parameters was discussed, but there is no discussion about how to commu-

nicate with humans using the learned parameters. For example, Fasola and Mataric

developed a robot instructor for the elderly [30]. It motivates subjects to engaged

in rehabilitation exercises, by displaying motions and words. It evaluates emotional

aspect of subjects, but there is no discussion about how to communicate with humans

using learned parameters. Iwahashi [60] realizes binding a verbal expression to several

similar but different motion patterns. Similarly, stochastic binding method by Takano

and Nakamura [148] realizes generation of a motion pattern from a sentence and of

a sentence from several similar motion patterns. These methods could be extended

for a bi-directional interactive learning between humans and robots even though they

did not discuss about it. On the other hand, the methods cannot be used to bind
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several different verbal expressions to similar but different motions.

On the other hand, the robotic motion coaching system introduce in the chapter 4,

needs to learn from human coaches how to bind parameters to corresponding motions

and verbal expression for an effective motion coaching. This way, the robotic system

can learn parameters from human coaches and then coaches humans how to swing

better using the learned skill, by interaction using motions and verbal expressions.

In the chapter 4, we explained a method how to bind emphatic motions and

adverbial expression, and showed feasibility of the proposed method by studying a

robotic system coaching humans a tennis swing motion[111]. Emphatic motions are

such that missing elements in learners’ motions are emphasized in the direction of

being complemented. For example, when a learner is not bending knees enough and

a coach wants the learner to bend the knee more, the coach can demonstrate a motion

where bent of knees are emphasized. Adverbial expression are expression using adverb

such as ”more” for emphasis.

However, there are two remaining problem from the chapter 4. The first remaining

problem is that degree of emphasis α for emphatic motions was decided based on a

preliminary experiment with one subject. The second remaining problem is that the

adverbial expression was not controlled by any parameters.

Thus, the objective of this chapter is that we study human coaches to have models

that output the α and chose adverbial expression based on inputs. The inputs could

be parametrized representation of performance of motion learners, since it is natural

to change motions and verbal expression according to the performance of the learners.

Section 5.3 describes study of human coaches for modeling how human uses em-

phatic motions and adverbial expressions. Section 5.4 describes study and model of

relationship between improvements in motion learning and value of the α used. The

chapter is then concluded in section 5.5.
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5.3 Modeling Method 1:

Analysis of How Human Coaches use Emphatic

Motions and Adverbial Expressions

Figure 5.1: Example of relationship between degree of emphasis α and synthesized
emphatic motion, distance ds between xs and xt, and distance dp between xp and
xt. (a): a motion imitated by a beginner player xp, (b): the imitation target motion
demonstrated by the coach xt, (c): a synthesized emphatic motion xs with α = 2.0.
(α = (dp + ds)/dp, dp = |xt − xp|, ds = |xt − xs|）

As it was discussed in the section 5.2, we study human coaches to have models that

output degree of emphasis α and that chose adverbial expression Vi(i is an index of

adverbial expression) based on performance of motion learners. Since it is natural to

change motions and verbal expression in motion coaching according to performances

of the learners.

We define performance of the learners as distance dp between a static point xp

and xt in the Proto-symbol Space.

dp = |xp − xt| (5.1)

xp corresponds to a motion performed by a learner (Figure 5.1-(a)) and xt corre-

sponds to a fixed learning target motion (Figure 5.1-(b)).

To study how humans coach a robot-learner motions by using adverbial expressions

and emphatic motions, we investigated relationship between dp (Eq.(5.1)) and ds

(Eq.(5.2), use of emphatic motions) and Vi (choice of adverbial expressions) used by

human coaches. The ds is defined as,

ds = |xs − xt| (5.2)
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Figure 5.2: Motion coaching Scene by a Human coach

Figure 5.3: Flow of motion coaching with Emphatic Motions and Adverbial Ex-
pressions. θc is a motion demonstrated by human/robot coach. Vi is an adverbial
expression used in a trail. θp is a captured motion performed by human/robot player.
dp is a distance between learning target motion xt and player’s performed motion xp

in the proto-symbol space. xs is an emphatic motion. α is calculated by Eq. 5.3

The procedure is as follows and depicted in Figure 5.3 and coaching scene by a

human-coach is depicted in Figure 5.2.

1. The human-coach demonstrates motion patterns θc, and use an adverbial ex-

pression Vi. θc is from the xt in the initial trial, and is from the emphatic
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motion xs decided in step 5. in later trials. In the initial trial, no Vi is used,

and Vi is used according to the decision in step 5. in the later trials.

2. The robot player randomly performs one of pre-designed motions θp, which

are designed by the authors. The human coaches are told that the θp reflects

feedback of the human coaching.

3. The human coach observes the θp

4. The human coach analyzes missing components in θp compared to the imitation

target motion θt.

5. The coach decides emphatic motion xs and Vi to demonstrate in the next trail.

Repeat loop of processes 1.-5. as needed. 1 loop is considered as 1 trial in the exper-

iment.

The choice of adverbial expression Vi, and values of dp and ds will be recorded

in order to evaluate how humans bind the adverbial expressions and the emphatic

motions. The distance dp between motion performed by the robot player xp and imi-

tation target motion xt is calculated by using Bhattacharyya Distances [12] between

the corresponding CHMM of motions.

5.3.1 Experimental Setup 1

To study and model how humans bind performance of learners dp to both emphatic

motions and adverbial expressions, we conducted experiments where humans coach a

robot motions by using adverbial expressions and emphatic motions.

In the experiment, a forehand tennis swing was coached to a robotic system by

male beginning tennis players, using both adverbial expressions and emphatic mo-

tions. The experiment followed the procedure explained in the previous section as

depicted in Figure 5.3, with conditions described below.
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• There were 16 participants who were all beginners in tennis.

• They were given an instruction that the goal was to coach the robot to have it

swing as same as learning target motion xt shown in the Figure 5.1-(b).

• The xt was played on a wall screen during the experiment, apart from the xp

• The view point of the motions were fixed and always from the front.

• Motions θ consisted of 17 joints, each with DoF of 3.

• The values of dp corresponding to motions performed by the robot player were

ranged between 90 and 200.

• 23 different motions of the robot player were prepared in advanced, and out of

them, 10 motions were randomly used for experiments of each subjects.

• 5 swings were used to abstract each human-coach’s swing to an CHMM for each

trial.

• 10 trials were executed with 2 minutes intervals.

• The choice of adverbial expressions were V1 = ’little bit more’, V2 = ’more’, and

V3 = ’much more’.

5.3.2 Experimental Result 1

The Figure 5.4 shows distribution of motions, dp (Eq.(5.1)), performed by robot-

learner, and overview of relationship to choices of adverbial expressions Vi by human-

coaches.

From the results shown in Figure 5.5 and Table 5.1 executing Tukey-Kramer

Method and ANOVA, here we found that the distance dp (Eq.(5.1)) between xp and

xt, and the choice of adverbial expression Vi has a positive correlation. The larger
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Figure 5.4: Range of dp (Eq.(5.1)) corresponding to motions performed by the robot
player and Results of adverbial expression usage by human coaches in the experiment
1

the value of dp, the stronger adverbial expression was chosen. As the average, V1 was

bound to d̄p = 131.8, V2 to d̄p = 160.6 and V3 to d̄p = 174.1

Experimental data of 3 participants were excluded from the results shown in Figure

5.5 and Table 5.1. It is because that these participants bound V3 to low values of dp

and V1 to high value of dp. For example, one of them bound V3 to dp = 131.9 as the

average, and V1 to dp = 165.3 as the average. Following a common sense, as the rest

did, we assumed V3 should be bound to the larger values and V1 to the smaller values.

Table 5.1: Tukey-Kramer Method for p < .05 among mean values bound to the
adverbial expressions by human-coaches for experiment 1. The numbers in the upper
right are the Tukey-Kramer minimum significant differences (MSDs). The numbers
in the lower left are the observed absolute value of the difference in means between
each pair of groups, with an asterisk if it is greater than the Tukey-Kramer MSD.

- V1 V2 V3

V1 - 11.35 11.55

V2 20.35* - 11.59

V3 32.95* 12.60* -
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Figure 5.5: Result of the experiment 1: Learned binding strategy how adverbial
expressions are bound to the dp (Eq.(5.1)), distance between xp and xt

The Figure 5.6 shows selected results of experiment 1, in terms of how human

coaches use emphatic motion (ds) according to performance of robot-learners (dp).

The results could be categorized into 3 different patterns.

1. Most of the data match well to the regression line as shown in Figure 5.6-(1)(2).

2. The data does not match well to the regression line as shown in Figure 5.6-(3).

3. The data does not match well to the regression line and the gradient is negative,

as shown in Figure 5.6-(4).

5.3.3 AEU-Model 1: a Model of Adverbial Expressions Use

Analysis of number of adverbial expressions used by a participant showed that 7 out

of 16 (43.75%) participants used only 2 adverbial expressions in the experiments. 11

of 16 (68.75%) participants used only 2 adverbial expressions in more than 90% of the
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Figure 5.6: Selected Results: distance between xt and xp, or dp (Eq.(5.1)) as x-axis,
and distance between xs and xt, or ds (Eq.(5.2)) as y-axis. Gradients correspond to
the degree of emphasis α as difined in Eq. 5.5.

trials, or they used the least used adverbial expression by themselves for only once in

the entire trials. 15 of 16 (93.75%) participants used only 2 adverbial expressions in

more than 80% trials. This might suggest that the beginners can only distinguish 2

level of adverbial expressions when binding the expressions to performances. While

we confirmed that in a preliminary test, an trained tennis coach used 3 adverbial

expressions.

From the 13 participants, we chose 3 participants who had lots of experience

in sports and considered themselves athletic, even though they were all beginners in

tennis. For this 3 participants, the frequency of adverbial expressions used were fairly

even in the experiments. 2 participants used V1 for 4 times, V2 for 3 times and V3 for

3 times, 1 participants used V1 for 4 times, V2 for 4 times and V3 for 2 times.

This fact led to a hypothesis that trained coaches or those who have lots of expe-
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rience in sports, can recognize and use at least 3 adverbial expressions evenly. These

3 participants provided a different results for the binding strategy, compared to the

beginners.

For the beginners, as the average, V1 was bound to d̄p = 121.8, V2 to d̄p = 160.6

and V3 to d̄p = 174.1. For the experienced, as the average, V1 was bound to d̄p = 139.2,

V2 to d̄p = 169.1 and V3 to d̄p = 183.2.

Therefore, we decide to have 2 different model of adverbial expression use as

shown below and in Table 6.3. The models was denoted as AEU-Model 1 (from the

beginners) and AEU-Model 2 (from the experienced).

• AEU-Model 1:

Use V1 when dp ≤ 130, V2 when 130 < dp ≤ 165, and V3 when 165 < dp.

• AEU-Model 2:

V1 when dp ≤ 160, V2 when 160 < dp ≤ 180, and V3 when 180 < dp.

Table 5.2: Model of Adverbial Expressions Use 1

Choice of Adverbial Expression V1 V2 V3

AEU-Model 1 dp ≤ 130 130 < dp ≤ 165 165 < dp

AEU-Model 2 dp ≤ 160 160 < dp ≤ 180 180 < dp

5.3.4 EMU-Model 1: a Model of Emphatic Motion Use 1

The original definition of the degree of emphasis α is,

α = (dp + ds)/dp (5.3)

where dp = |xt −xp| and ds = |xt −xs|, where xt, xp and xs are static points in the

Proto-symbol Space corresponding to ’learning target motion’, ’motion performed by

a learner’ and ’emphatic motion’ respectively.
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This can be changed as,

α = 1 +
ds
dp

(5.4)

Thus, we define a model of Emphatic Motion Use, by substituting ds
dp

in Eq.(5.4)

by values of gradients of regression lines shown in Figure 5.6 and denoted as

• EMU-Model 1:

α = 1 +
d

ddp
ds (5.5)

Using this formula, Eq.(5.5), we calculated α for each participants. Results is

that value of α ranged between 0.75 and 1.46. The negative value contradicts to the

result from the Chapter 4, and the average of positive values is 1.17. As a degree of

emphasis, 1.17 is not convincing. It is because that emphatic motions with α = 1.17

seems almost as same as no emphasis and the result from the Chapter 4 indicates

that repetition of motion without emphasis resulted in no improvement. Thus we

attempt an extra analysis in the next section.

5.4 Modeling Method 2:

Subject-Optimized α based on Improvement in

Motion Learning Experiments

In this section, alternative modeling method is executed in order to study a model of

emphatic motion use. From the experimental result 1 of Chapter 4, it is known that

degree of improvement in motion learning has a relationship to value of α used.

Thus, we study by executing a modeling method where we investigate relationship

between value of α (Eq.(4.3)) and performance of human-learners (Eq. 4.4) This way,

we expect to gain subject-optimized α for each subjects. For motion coaching, the

motion coaching system introduced in the Chapter 4 was used. The motion coaching

task was executed as explained in the Chapter 4 and as depicted in Figure 4.3.
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5.4.1 Experimental Setup 2

In the experiment, we tested with 11 subjects to learn how different α would affect

to the motion learning performances. The emphatic motions with different α =

{1.25, 1.50, 1.75, 2.00, 2.25, 2.50} were synthesized and shown to the subjects. There

were two cases considered, case (a): without adverbially expression, and case (b): with

adverbially expression ”more like this”. The condition was as same as the common

condition in the Chapter 4.

5.4.2 Experimental Result 2

To evaluate the result, the distance (dil) was introduced, which is identical to Eq.(4.4),

dil = |xt − xp| (5.6)

where i is an ID number of a subject. where l is the trial number, and l = 1, 2, 3, 4 was

used for this paper. This means that the smaller the dil is, the better the imitation

is. When dil = 0, the imitation is perfectly identical. Thus, dil corresponds to an

imitation error of subject ID i at trial l.

Then, average of the distance d at trial l was also introduced,

d̄l =

∑m
i=1 dil
m

(5.7)

where m is number of subjects and m = 11 was used for this experiment.

As it is shown in Figure 5.7, it is reasonable to decide that average value of

α = 2.0 would provide the best result for motion learning in both cases. However,

use of α = 2.0 will result in as same result as in Chapter 4 where α = 2.0 was used.

We then do farther analysis and come up with a hypothesis that optimized α,

which results in better improvement in motion learning, is different from subjects

to subjects. This fact can be explained by that sensitivity to degree of emphasis is

depending on individual abilities, such as cognitive ability of motions and so on.
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Figure 5.7: Results of experiment 1: Imitation error d̄l in Eq.(5.7) against different
values of α (d̄l adjusted so that maximum value of each participant would be 200)

From results shown in Figure (5.8), the optimized α to improve motion learning

is different from subjects to subjects. For example, subject-A had optimized-α = 1.5

for case (a) and optimized-α = 2.0 for case (b). Similarly, subject-B had optimized-

α = 2.5 for case (a) and optimized-α = 2.25 for case (b). Same method was applied

to determine optimized α for the rest of the subjects.

5.4.3 EMU-Model 2: a Model of Emphatic Motion Use 2

As shown in Figure 5.8, the Model of (E)mphatic (M)otion (U)se 2 is decided empir-

ically for each subjects, denoted as ’EMU-Model 2’.
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Figure 5.8: example individual imitation error against different values of αs (subject-
A and subject-B): d̄l in Eq.(5.7)

• EMU-Model 2:

α is decided empirically for each subjects.

(Example)

Subject-A had optimized-α = 1.5 for case (a) and optimized-α = 2.0 for case

(b). (From Figure 5.8)
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5.5 Future Work: EMU-Model 1 with Corrected

Data Set

After analyzing the results for ’EMU-Model 1’, we come up with a hypothesis that the

beginners as the coach is not good. It is because that it is not easy for a beginner to

perform as a coach especially when performance of the robot-player is good, in other

words, when value of dp is small. The beginners performance, in general, ranges in

150 to 190. This fact suggests that the smaller the value of dp is, the more inaccurate

the ds is from a coaching point of view.

Therefore, we correct the data by introducing a new parameter dh,

dh = |xt − xh| (5.8)

where, xh is a static point on a line defined by xp and xt. projection of the emphatic

motion performed by a human-coach xs onto the line defined by xp and xt is the xh.

It is depicted in Figure 5.9.

For the EMU-Model 1 with corrected data set, dh will be used instead of ds as,

• EMU-Model 1 with corrected data set

α = 1 +
d

ddp
dh (5.9)

5.6 Conclusion of the Chapter

In summary, I have realized interaction and communication to obtain models of em-

phatic motion use and adverbial expression use. However, collecting data from experts

is missing and need to be done as soon as possible. Then, comparison among mod-

els gained from beginners(EMU-Model 1), experts, and empirically approach(EMU-

Model 2), is needed to be done. The the model (EMU-Model 1) is obtained assuming

linearity, but investigation of non-linear model is required.
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Figure 5.9: xh is a static point on a line defined by xp and xt and projection of the
emphatic motion performed by a human-coach xH

s onto the line defined by xp and xt

is the xh

In this chapter, we discussed about an interactive learning system, which can learn

skill from humans and teach skill to humans, by introducing a parameter space shared

by humans and robots. As an example of the system, we study how a motion coaching

robot can learn a binding strategy of emphatic motions and adverbial expressions from

humans, In this study, we dealt with remaining problem from the Chapter 4, which

is to study and have models of emphatic motion use and adverbial expression use for

motion coaching.

In the experiment 1, as shown in Figure 5.5 and Table 5.1, we found that the
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distance dp between learning target motion and learner’s performed motion and the

choice of adverbial expression Vi has a positive correlation. In the experiment 2, as

shown in Figure 5.8, we found that optimized α for improvement in motion learning

vary from subjects.

From the experimental result 1, we defined model of both emphatic motion use

as EMU-Model 1 and adverbial expression use as AEU-Model 1 and 2. From the

experimental result 2, we defined alternative model of emphatic motion use as EMU-

Model 2.

We have demonstrated that the robotic coaching system can learn the binding

strategy between emphatic motions and adverbial expressions, by studying how hu-

mans coaches a robot. The learned binding strategy is represented in a paramet-

ric representation that is interpretable and therefore sharable between humans and

robots.

The results in the section 5.4 was partially presented in [111].
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Chapter 6

An Integration of the Methods and
the Models
–A Robotic System that Coaches
Humans Motions–

6.1 Abstract of the Chapter

In this chapter, we discuss how the methods from the Chapter 3 and 4, and the

Models from the Chapter 5 can be integrated. We demonstrate integration of method

to estimate sensorimotor patterns from the Chapter 3, the robotic motion coaching

system from the Chapter 4, and Models of emphatic motions and adverbial expressions

use from Chapter 5.

We demonstrates the feasibility of the robotic motion coaching system integrated

with the emphatic motion use model and adverbial expression use model, by exper-

iments of a tennis forehand swing coaching task for beginners. We confirmed that

EMU-Model 2 and AEU-Model 2 contribute to improvement in motion learning.

At the end we propose a method and share a learning task that requires functions

to bind sensorimotor patterns and emphatic motions to convey slight difference in

sensorimotor patterns to learn.
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6.2 Introduction

In the previous Chapters,we have discussed about:

• Chapter 3: a method how to estimate others’ sensorimotor patterns, without

preparing user specific model in advance.

• Chapter 4: a method how to bind emphatic motions and adverbial expressions

for the motion coaching robot, in order to convey slight differences in motions.

• Chapter 5: models of how human use emphatic motions and adverbial expres-

sions for an effective motion coaching.

In this chapter, these methods and models are integrated and demonstrated as motion

coaching tasks.

In Section 6.3, integration of the method in chapter 4 and the models of emphatic

motion use in chapter 5 is demonstrated. In Section 6.4, integration of the method in

chapter 4 and the models of adverbial expression use in chapter 5 is demonstrated. In

Section 6.5, integration of the method in chapter 3 and 4, and the models of emphatic

motion use in chapter 5 is demonstrated. The chapter is concluded in Section 6.6.

6.3 Integration of the Motion Coaching System

and the Model of Emphatic Motion Use 2

6.3.1 A Motion Coaching Experiment using the Model of
Emphatic Motion Use 2

In this section, integration of the method in chapter 4 and the Models of Emphatic

Motion Use in chapter 5 is demonstrated. The experiment demonstrates integration of

EMU-Model 2 and the robotic motion coaching system, which uses emphatic motions

and adverbial expressions. In the experiment, to investigate how the learned EMU-

Model 2 effects improvement in motion learning, we conduct experiments where a
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robotic system coaches humans motions. This way we demonstrate the feasibility

of the interactive learning robotic system, where the robot applies a skill acquired

through imitation learning to coach humans.

6.3.2 Experimental Setups 1

In the experiment 1, a forehand tennis swing was coached to male beginning tennis

player by a robotic system explained in the Chapter 4. The procedure of the motion

coaching is as same as in the Chapter 4.

To investigate contribution of emphatic motions and adverbially expression, we

conducted experiments as Case 5 and 6 with 12 participants, using the EMU-Model

2 from the Chapter 5.

• Case 5:

Coached using motions with optimized α obtained by using EMU-Model 2 and

and no adverbially expression.

• Case 6:

Coached using motions with optimized α obtained by using EMU-Model 2 and

adverbially expression ”more”.

Table 6.1: Cases in Experiment 1

- α = 0.0 optimized α

without ”more” Case 1 Case 5

with ”more” Case 2 Case 6

The EMU-Model 2 gives subject optimized α. For example, as shown in Figure

5.8, subject-A had optimized-α = 1.5 for the Case 5 and optimized-α = 2.0 for the

Case 6. Similarly, subject-B had optimized-α = 2.5 for the Case 5 and optimized-

α = 2.25 for the Case 6. Same method was applied to determine optimized α for the

rest of the subjects.
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6.3.3 Experimental Results 1

As results shown in Figure 6.1 and Table 6.2, we are more confident that the emphatic

motions contributed to the learning performances. This is because that there was a

significant difference found between the Case 2 and the Case 6, by executing the

Tukey-Kramer Method. On the other hand, we could not yet conclude that the

adverbial expressions contributed to the learning performances, since

Figure 6.1: Result of experiment 1: Average ratio of imitation error, R̄l in Eq.(6.3),
with optimized α for each subjects

6.3.4 sub-Conclusion 1

Results shown as Figure 6.1 and Table 6.2 demonstrates that the emphatic motions

contributed for improvement in motion learning and that the subject optimized α
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Figure 6.2: Result of experiment 1: Average improvement ratios with respect to the
initial trails at 4th trail for each Cases. The average ratio of imitation error, R̄l in
Eq.(6.3), with optimized α for each subjects

is the contribution factor. On the other hand, we could not conclude whether the

adverbially expression contributed to improvement in motion learning or not.

Table 6.2: Tukey-Kramer Method for p < .05 with R̄l(Eq.6.3) at 4th trail (l=4) for
Experiment 1. The numbers in the upper right are the Tukey-Kramer minimum sig-
nificant differences (MSDs). The numbers in the lower left are the observed absolute
value of the difference in means between each pair of groups, with an asterisk if it is
greater than the Tukey-Kramer MSD.

- Case 1 Case 2 Case 5 Case 6

Case 1 - 0.1106 0.1106 0.1054

Case 2 0.1068* - 0.1155 0.1106

Case 5 0.1599* 0.05312 - 0.1106

Case 6 0.2191* 0.1123* 0.05916 -
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6.4 Integration of the Motion Coaching System

and the Model of Adverbial Expressions Use

6.4.1 A Motion Coaching Experiment using the Model of
Adverbial Expressions Use

In this section, integration of the method in chapter 4 and the models of adverbial ex-

pression use in chapter 5 is demonstrated. The experiment demonstrates integration

of the AEU-Model 1 and 2, and the robotic motion coaching system, which uses em-

phatic motions and adverbial expressions. In the experiment, to investigate how the

learned binding strategy effects improvement in motion learning, we conduct experi-

ments where a robotic system coaches humans motions. This way we demonstrate the

feasibility of the interactive learning robotic system where the robot applies a skill of

adverbial expression usage, acquired through imitation learning from human-coaches,

to coach human-learners.

6.4.2 Experimental Setups 2

We conducted experiments where a robot coached humans motions using the learned

binding strategy of adverbial expressions, or AEU-Model 1 and 2 in the Chapter 5.

In the experiment 2, a forehand tennis swing was coached to male beginning tennis

player by a robotic system explained in the Chapter 4. The procedure of the motion

coaching is similar to what is explained in the Chapter 4, but different.

At first, database D = {θt,θp}, which consists of one imitation target motion

pattern θt and one motion pattern performed by a player θp, is prepared for the

coaching system. Then, Proto-symbol Space, denoted as P , is built using D with

the Fbuild process (Eq.(2.5)). Let us define the static point xt in the P as that

corresponding to the imitation target motion θt. As depicted in Figure 6.3, the

motion coaching task is executed as follows.

1. The coach (an agent in a virtual environment in the paper) demonstrates motion

104



pattern θc as the imitation target motion and an adverbial expression Vi. Using

the generation function Fgen (Eq.(2.7)), θc is generated from xt in the initial

trial, and from xs synthesized in step 5. in later trials. No Vi is used in the

initial trial, but Vi is used according to the decision in step 5. in the later trials.

2. The human player imitates θc.

3. The coach observes the player’s imitated motion pattern θp and converts it to

a static point xp in the P , using recognize function Frecog (Eq.(2.6)).

4. The coach calculates the missing elements in the imperfect imitation of the

player by xt − xp and the distance dp (Eq.(5.1)).

5. The coach calculates the external dividing point xs by adding missing elements

(xt − xp) to xp, using Eq.(4.2). The xs is then used as a re-demonstration

motion pattern θc (Eq.(2.7)) for the next trial. The coach also decides Vi to be

used in the next trail based on the AEU-Models and the dp.

Repeat loop of processes 1)-5) as needed. 1 loop is considered as 1 trial in the

experiment.

• There were 14 participants.

• The coaching agent demonstrated motion pattern xt, shown in Figure 6.4, as

the imitation target motion.

• The given instruction was ’please imitate Vi like this’, where V1 =‘little bit

more’, V2 =‘more’ and V3 =‘much more’.

• The view point of the imitation target motion was fixed and always from the

front.

• Motions θ consists of 17 joints, each with DoF of 3.
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Figure 6.3: Flow of motion coaching with Emphatic Motions and Adverbial Ex-
pressions. θc is a motion demonstrated by human/robot coach. Vi is an adverbial
expression used in a trail. θp is a captured motion performed by human/robot player.
dp is a distance between learning target motion xt and player’s performed motion xp

in the proto-symbol space. xs is an emphatic motion. α is calculated by Eq. 5.3

Figure 6.4: An ideal motion pattern as the coaching target (pattern: θt, proto-symbol:
xt)

• Five swings were used to abstract each player’s swing to an CHMM for each

trial.

• Each trial is executed at 5 minutes intervals.

For emphatic motion synthesis, we used α = 2.0 since we knew that it was rea-

sonable choice from the results in the Chapter 4 and can be used as a baseline for

comparision. From the result in the Chapter 4, we have already confirmed that em-

phatic motion, not repetition of observing similar motions, was an effective factor.
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Figure 6.5: Results of experiment 2: average value of imitation error d̄l in Eq.(6.2)
against different values of α. (d̄l adjusted so that maximum error of each participant
would be 200)

To investigate how the AEU-Models 1 and 2 effects improvement in motion learn-

ing, Cases 7 and 8 were conducted and compared to the Case 3 that was conducted

in the Chapter 4.

The AEU-Model 1 reflects results of the beginners, and AEU-Model 2 reflects

results of the experienced as it was discussed in the Chapter 5.

• AEU-Model 1:

Use V1 when dp ≤ 130, V2 when 130 < dp ≤ 165, and V3 when 165 < dp.
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• AEU-Model 2:

V1 when dp ≤ 160, V2 when 160 < dp ≤ 180, and V3 when 180 < dp.

Table 6.3: Model of Adverbial Expressions Use 1

Choice of Adverbial Expression V1 V2 V3

AEU-Model 1 dp ≤ 130 130 < dp ≤ 165 165 < dp

AEU-Model 2 dp ≤ 160 160 < dp ≤ 180 180 < dp

The order of conducting each experimental cases was randomly shuffled for each

participants. The cases are summarized in Table 6.4.

Table 6.4: Cases in Experiment 2

- α = 2.0

with no adverbial expression Vi Case 3

with adverbial expression Vi Case 7 and 8

• Case 3:

The robotic coach re-demonstrated with emphatic motion patterns xs, i.e., the

robotic coach coached using motions with α = 2.0 and with no adverbial ex-

pression.

• Case 7:

The robotic coach demonstrated emphatic motions with α = 2.0. The coach

chose adverbial expressions using the AEU-Model 1.

• Case 8:

The robotic coach demonstrated emphatic motions with α = 2.0. The coach

chose adverbial expressions using the AEU-Model 2.

6.4.3 Experimental Results 2

To evaluate the results, distance dil was introduced as

dil = |xt − xil
p |, (6.1)
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where i was an ID number of a participant, l = {1, 2, 3, 4} was the trial number. The

xil
p corresponded to the performance of participant i in trial l. This meant that the

smaller the dil, the better the imitation. When dil = 0, the imitation was perfectly

identical. Thus, dil corresponded to an imitation error of participant ID i in trial

l. To minimize possible errors in the evaluation results that could be caused by the

difference in frame number of the evaluated motions, we used motion clips that had

a similar frame number, at most 20% differences. The average distance of dil in trial

l was introduced as

d̄l =

∑m
i=1 dil
m

, (6.2)

where m was the number of participants (m = 11 for the experiment 2). Finally, the

average error ratio in imitation at trial l was defined as

R̄l =

∑m
i=1

dil
di1

m
. (6.3)

If the imitation error is smaller than the initial trial in the same case, R̄l will be less

than 1.0. If the imitation error is larger than the initial trial in the same case, R̄l will

be larger than 1.0. When imitation is perfect, R̄l = 0.0. The di1 would not be zero in

practice because di1 = 0 means perfect imitation of the target motion and it would

not happen.

From the results shown in Figure 6.6 and Table 6.5 executing the Tukey-Kramer

Method and ANOVA for p < .05 with R̄l (Eq. 6.3) in 4th trial, l = 4, for experiment

2, here we found there was a better improvement in motion learning in both Case

7 and 8 compared to that of Case 3. Specifically, even though the improvements

between Case 3 and 7, and Case 3 and 8 were not statistically superior, we found

positive contribution of the adverbial expressions, which was changed dynamically

according to the distance dp between the target motion θt and performed motions θp.
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Figure 6.6: Results of experiment 2: average ratio of imitation error, R̄l in Eq.(6.3)
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Figure 6.7: Results of experiment 2: Average improvement ratios with respect to the
initial trails at 4th trail for each Cases. The average ratio of imitation error: R̄l in
Eq.(6.3)
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Table 6.5: Tukey-Kramer Method for p < .05 with R̄l (Eq. 6.3) in 4th trial, l = 4,
for experiment 2. The numbers in the upper right are the Tukey-Kramer minimum
significant differences (MSDs). The numbers in the lower left are the observed abso-
lute value of the difference in means between each pair of groups, with an asterisk if
it is greater than the Tukey-Kramer MSD.

- Case 3 Case 7 Case 8

Case 3 - 0.08094 0.08094

Case 7 0.02300 - 0.07777

Case 8 0.05605 0.03305 -

6.4.4 sub-Conclusion 2

We found there was an improvement in motion learning in both Case 7 and 8 com-

pared to that of Case 3, and found AEU-Model 2 was better than AEU-Model 1. Even

though the improvements between Case 3 and 7, and Case 3 and 8 were not statisti-

cally superior, we found positive contribution of the adverbial expressions, which was

changed dynamically according to AEU-Model 1 and 2.

6.5 A Future Work and Discussions

6.5.1 Integration of the Sensorimotor Patterns Estimation
and the Motion Coaching System

In this section, we discuss about a robotic coaching system that coaches humans

motions using emphatic motions and adverbial expressions bound to sensorimotor

patterns. This way, the robotic system can refer to how motion learners should

realize shift of center of gravity that cannot be observed directly and not easy to

mention.

In this thesis, only the method is explained and there will be no demonstration

of experiments using the robotic system with proposing method. This is partially

due to lack of time for submission of this thesis. The experimental result will be

demonstrated in a separate paper.

The method can be divided into 2 steps.
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[Step 1]

In the first step, the robot-coach attempts to coach humans and sharing throwing

motions of a medicine ball, which is a heavy and large ball used widely in sports

training and rehabilitation to correct how humans move their bodies. In this step,

in order for robot-coach to learn how a human-learner bind sensorimotor patterns to

symbolic expressions, the robot-coach shares emphatic motions with human-learners

when coaching human-learners to throw the ball as far as possible.

The system prepares and records following properties for coaching and evaluation

purpose. Learning target motion in the step 1, θs
t , demonstrates by robot-coach.

Motion performed by human-learners in the step 1, θs
p. Emphatic motion demon-

strates by robot-coach in the step 1, θs
t . Learning target trajectory of shift of center

of gravity demonstrated by robot-coach, xt
cop. Trajectory of shift of center of gravity

of human-learner, xp
cop.

With these recorded data, performance of human learner is calculated as,

dsp = |xs
t − xs

p| (6.4)

where xs
t and xs

p are static points in Proto-symbol Space, corresponding to θs
t and θs

p

respectively.

xcop are abstracted into CHMM, λcop , to define distance between xt
cop and xp

cop

as,

dcop = |λt
cop − λp

cop| (6.5)

The flow of motion coaching in step 1 is as follow.

1. The coach (an agent in a virtual environment in this thesis) demonstrates mo-

tion pattern θs
c as the imitation target motion θs

t , and an adverbial expression

Vi. θ
s
c is generated from xs

t in the initial trial, and from xs
s synthesized in step
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5. in later trials. No Vi is used in the initial trial, but Vi is used according to

the decision in step 5. in the later trials.

2. The human player imitates θs
c.

3. The coach observes the player’s imitated motion pattern θs
p and converts it to

a static point xs
p in the P ,

4. The coach calculates the missing elements in the imperfect imitation of the

player by xs
t − xs

p and the distance dsp (Eq.(6.4))

5. The coach calculate the external dividing point xs
s by adding the missing elements(xs

t−

xs
p) to the target motion(xs

t).

6. θs
c is generated from the xs

c, using degree of emphasis α calculated by using

one of the EMU-Model in the Chapter 5. Use the point xs
s as the xs

c, which

corresponds to the re-demonstration motion pattern θs
c for the next trial. The

coach also decides Vi to be used in the next trail based on the AEU-Models and

the dsp.

Repeat a loop 1-6 as needed. 1 loop is considered as 1 trial in the experiment.

[Step 2]

From the step 1, we have learned how a human-learn bind sensorimotor patterns

to adverbial symbolic expressions. Here, we chose appropriate adverbial symbolic

expressions VNB by using the Naive Bayesian Classifier, where dsp ≡ dp and dcop as

attributes a1 and a2, and V as class.

VNB = argmax
Vj∈V

P (Vj)
∏
i

P (ai|Vi) (6.6)

The flow of motion coaching in step 2 is as follow, denotation K is used to distin-

guish variables, for example tennis swing motions, from the step 1,
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1. The coach (an agent in a virtual environment in this thesis) demonstrates mo-

tion pattern θK
c as the imitation target motion θK

t , and an adverbial expression

Vi. θK
c is generated from xK

t in the initial trial, and from xK
s synthesized in

step 5. in later trials. No Vi is used in the initial trial, but Vi is used according

to the decision in step 5. in the later trials.

2. The human player imitates θK
c .

3. The coach observes the player’s imitated motion pattern θK
p and converts it to

a static point xK
p in the P ,

4. The coach calculates the missing elements in the imperfect imitation of the

player by xK
t − xK

p and the distance dp (Eq.(5.1))

5. The coach calculate the external dividing point xK
s by adding the missing

elements(xK
t − xK

p ) to the target motion(xK
t ).

6. θK
c is generated from the xK

c , using degree of emphasis α calculated by using

one of the EMU-Model in the Chapter 5. Use the point xK
s as the xK

c , which

corresponds to the re-demonstration motion pattern θK
c for the next trial. The

coach also decides Vi to be used in the next trail based on the calculation result

of VNB (Eq.(6.6))

Repeat a loop 1-6 as needed. 1 loop is considered as 1 trial in the experiment.

6.5.2 Discussion

A skilled human coach can coach motion of a body part by coaching motion of a

different body part from the target portion. For example, when human chiropractors

coach a human hip-extension as a rehabilitation, they touch abdominal muscle that

they want patient to use for realizing a proper motion, but not to overuse the latis-

simus dorsi muscle. To realize this, they also use a verbal instruction mentioning a
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feeling of another muscle that the patient should feel while exercising. This skill is

based on knowledge of human anatomy and learned from experience. Thus, intro-

ducing and using with knowledge, the proposed method and system can be extended

further and applied for rehabilitation.

The motion coaching method adopted in this research is using the emphatic motion

of the whole body motion. This motion coaching can be progressed into next phases

where specific portion of body part, such as right/left arm and lower body, can be

coached separately. This can be done by generating emphatic motions by having

partial inputs, such as right/left arm and lower body, instead of having entire joint

angles as input. For this purpose, we need to be sure which joints can be considered,

for example, as right/left arm and lower body. Survey with shoulder, elbow joints

(each has 3 DoF) will be needed to confirm what kind of emphatic motion would be

generated. How to assign score for each portion needs to be considered as well, in

order to have a system that can decide which part of body should be emphasized in

orders.

6.6 Conclusion of the Chapter

In summary, I have realized interaction and communication so that robotic system

learns models and uses the learned models to convey slight differences in motions.

However, I have only realized motion coaching that emphasize entire body motion,

and emphasize of portion should be studied. This can be realize by having partial set

of joint angles as input, however how to classify will require some investigation. It

requires model to decide which partially emphatic motion should be displayed, and

model to decide when to switch to next partially emphatic motions and so on.

In this chapter, we demonstrated integration of method to estimate sensorimotor

patterns from the Chapter 3, the robotic motion coaching system from the Chapter

4, and Models of emphatic motions and adverbial expressions use from Chapter 5.
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Experimental results 1 demonstrated that the emphatic motions contributed for

improvement in motion learning. It also demonstrated that the subject optimized α,

obtained by using the EMU-Model 2, is the contribution factor.

The range of the value α, degree of emphasis, is 1.0 ≥ 2.25 for practical use in sim-

ulation. To emphasize missing elements in motion performed by learners, compared

to learning a target motion performed by a coach, the lower value of the α has to be

more than 1.0. If the value of the α becomes too large the emphasis would become too

much and hard to recognize generated motions. It is because that too much emphasis

would result in maximum angles for many joints and then the generated motions

cannot be recognized as swings anymore. This consideration can be supported by

experimental result 2 in which subject optimized α was decided empirically.

In the paper, there was no experiment with real humanoid robots. With use of

humanoid robots, considering balancing, I assume that the maximum value for the

α need to be less. Subjectively speaking, the value of alpha would not surpass 2.0,

however, this issue is remained to be tested in experiments with real humanoid robots.

The method for motion coaching proposed in the paper would work well to learn

motions with certain form. However, discussion about kind of form the method work

well and kind of form the method would not work well remains to be investigated in

the future.

The result from the experiment 2 demonstrated that there was an improvement

in motion learning in both Case 7 and 8 compared to that of Case 3, and found

AEU-Model 2 was better than AEU-Model 1. That is, the use of adverbial expres-

sions contributed to improvement in motion learning, even though the improvements

between Case 3 and 7, and Case 3 and 8 were not statistically superior, we found

positive contribution of the adverbial expressions, which was changed dynamically

according to AEU-Model 1 and 2.

In the section 6.5, as a next step of the future work, a method to learn binding

116



rule between sensorimotor patterns and symbolic expression was proposed. Another

method for motion coaching using the learned binding rule was proposed in this

section with no demonstration of experiments using the proposed methods. Then, how

the proposed method can be applied was discussed with an example of chiropractic

rehabilitation, followed by a discussion of motion coaching by portion but not by

whole body.

The results in the section 6.3 was partially presented in [111].
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Chapter 7

Conclusion

7.1 Summary

This paper describes a stochastic framework for intelligent humanoid robots, which

can cooperate and interact with humans through integration of symbolic expressions

and sensorimotor patterns.

The main contributions of the research are:

1) The novel estimation method of sensorimotor patterns of others without having

predefined user specific model in advance through interaction between self and other

sharing motions.

2) The novel method to dynamically modify displaying motion patterns and to bind

the motions with symbol expressions according to performance of human-learners, in

order for conveying slight differences in motions where robotic system coaches humans

motions.

3) Analysis and modeling of human-coaches’ use of motions and symbolic expressions

how they change them dynamically according to learners performances.

4) the demonstration of the feasibility of the robotic system that coaches humans

motions, which integrated the methods proposed in step 1) and 2), and the models

gained in step 3), through experiments of actual sport coaching tasks for beginners

resulted in improvements in motion learning.

In the Chapter 1, using an example of ability needed for good teamwork in sports,
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main stream robotics researches were introduced as improvement in individual phys-

ical ability. Then, the significance of intelligent humanoid robots, especially intel-

ligence of binding symbol expressions and unobservable sensorimotor patterns, and

intelligence to estimate the sensorimotor patterns from observable motions, was dis-

cussed. These intelligence were important for establishing joint attention of unob-

servable with others to improve teamwork.

In the Chapter 2, related works were introduced in various fields such as neu-

roscience, cognitive psychology, education, sports science, rehabilitation, robotics,

informatics and so on. Then, the chapter discussed and addressed challenges from

the perspective of required functions for the research addressed in this thesis. After

the discussion of the approach for the resolution method, the Proto-symbol Space

method was introduced as a basic tool for the proposed methods in the thesis.

The Chapter 3 described a estimation method of sensorimotor patterns of others

from motion observation. The approach was to bridge sensorimotor experience, or the

Proto-symbol Spaces, between the self and the other. This approach would result in

estimation error due to physical condition difference between the self and the other.

To clear this problem, a method was proposed in order for adaptive acquisition of

Proto-symbol Space of other by sharing motion patterns and using open questions

asking if the other find it heavy or not. The simulation results demonstrates that it

is possible to estimate sensorimotor patterns of others with 10-20% errors, even when

estimation target motions are not in the database. In the second half of the chapter,

a method to estimate others’ symbol conversion strategy from sensor patterns was

proposed. The method uses closed questions asking comparative evaluation of sets of

shared motions. The simulation results demonstrated that the method can estimate

the symbol conversion strategy properly by sharing prepared sets of motions and

using the closed questions.

The Chapter 4 described the proposed novel method for binding emphatic motions
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and adverbial expressions, and for controlling degree of emphasis. This method can

convey slight differences between learning target motions demonstrated by a coach

and motions performed by learners. Feasibility of the method was demonstrated

through experiments of actual sport coaching tasks for beginners by using a robotic

coaching system. The experiments resulted in improvements in motion learning.

However, it was not possible to confirm whether either emphatic motions or adver-

bial expressions was a contribution factor or not by having a statistically significant

differences.

In the Chapter 5, experiments for modeling how human-coaches use emphatic

motions and adverbial expressions were executed. In the experiments, human-coaches

were asked to coach a robot-learner tennis forehand swing, by using the emphatic

motions and adverbial expressions. The analysis of the results leads to the models.

Adverbial Expression Use Model (AEU-Model 1 and 2) shown as Table 6.3 in chapter

5.3.3. Emphatic Motion Use Model (EMU-Model 1 and 2) shown as Eq.(5.5)(5.9) in

chapter 5.3.4 and 5.3.5, and in chapter 5.4.3 respectively.

In the Chapter 6, the methods and the models were integrated. We realized

integration of the method to estimate sensorimotor patterns from the Chapter 3, the

robotic motion coaching system from the Chapter 4 that uses emphatic motions and

adverbial expressions in order to convey slight difference in motions, and Models of

emphatic motions and adverbial expressions use from Chapter 5. We demonstrated

the feasibility of the robotic motion coaching system integrated with the emphatic

motion use model and adverbial expression use model, by experiments of a tennis

forehand swing coaching task for beginners. We confirmed that EMU-Model 2 and

AEU-Model 2 contribute to improvement in motion learning. It also demonstrated

that the subject optimized α, obtained by using the EMU-Model 2, is the contribution

factor. We found there was an improvement in motion learning when using the AEU-

Models, and found AEU-Model 2 was better than AEU-Model 1. Even though the
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improvements were not statistically superior, we found positive contribution of the

adverbial expressions being changed dynamically according to AEU-Model 1 and 2.

Summary of what I have realized in this research: 1) Interaction and commu-

nication to estimate sensorimotor patterns of others by observing motion patterns

without having user-specific model in advance, 2) interaction and communication to

convey slight differences in motions by dynamically combining emphatic motions and

symbolic expressions according to users’ performance, 3) interaction and communi-

cation to obtain models of emphatic motion use and adverbial expression use, 4)

interaction and communication so that robotic system can learn models and use the

learned models to convey slight differences in motions.

7.2 Remaining Issues

Summary of remaining issues in this paper are as follow.

The proposed method to estimate sensorimotor patterns of others’ is tested with

simple motions only. Investigation with complex motions is needed. Quantitative

study for cases, when number of DoF and configuration of joints location is different,

is required.

From HAI and communication point of view, what I have not realized was interac-

tion and communication using power of symbol communication that enable interac-

tion even when communication protocol is unknown and when meaning/intention of

motion is unknown. In this paper, the communication method adopted was fixed and

users were asked to chose symbolic expressions from limited set of choice prepared in

advanced. In the motion coaching, communication used by users were limited to mo-

tion only, while the robotic system communicated using motion display and symbolic

expressions. The expressions used in the motion coaching was primitive and limited,

and it was not able to generate sentences for coaching.

From modeling aspect, collecting data from experts is missing and need to be done
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as soon as possible. Then, comparison among models gained from beginners(EMU-

Model 1), experts, and empirically approach(EMU-Model 2), is needed to be done.

The the model (EMU-Model 1) is obtained assuming linearity, but investigation of

non-linear model is required.

From motion coaching point of view, I have only realized motion coaching that

emphasize entire body motion, and emphasize of portion should be studied. This

can be realize by having partial set of joint angles as input, however how to classify

will require some investigation. It requires model to decide which partially emphatic

motion should be displayed, and model to decide when to switch to next partially

emphatic motions and so on.

In the Chapter 5 Section 3, it was not able to come up with a conclusive model

of emphatic motion use (EMU-Model 1). It might be partially because that the

subjects were all beginner in tennis, and the beginners were asked to coach motions

using emphatic motions. It is very natural to conclude that the beginners were not

able to demonstrate using suitable emphatic motion especially when robot-player’s

motions were good in the first place. The good motions means the value dp (Eq.(5.1))

is small. Thus, we hypothesis that there needs to be additional experiments with

human-coaches who are experienced in tennis or tennis coaching.

In the paper, there was no experiment conducted with using real humanoid robots.

With use of humanoid robots, considering balancing, I assume that the maximum

value for the α, the degree of emphasis, should not surpass 2.0. however, this issue is

remained to be investigated in experiments with real humanoid robots.

The method for motion coaching proposed in the paper would work well to learn

motions with certain form. However, discussion about kind of form the method work

well and kind of form the method would not work well remains to be investigated in

the future.

The system proposed in this thesis is not fully automated. To verify proposing
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methods, we carefully excluded inevitable factors that might affect evaluation and

result of the methods, and designed experimental scenarios to demonstrate effective

factors by finding statistically significant differences. However, it is very natural to

think that there might be new insights found with fully automated system interacting

with humans real-time and dynamically learn and adjust on-line.

The research was not demonstrated using a real humanoid robots, it was partially

because that there was not enough time for generation of emphatic motions with

balancing considered. There were only very primitive symbolic expressions used in

the research, and it was not considered as intelligent dialog.

In the research, symbolic expressions, which were used to convey slight difference

in sensorimotor patterns, were just bound to emphatic motions according to the

simple model (AEU-Model, Table 6.3). These binding of the symbolic expressions is

far from being called language since language has two main characters of meaning

and grammar. Further research is needed on language modeling aspect.

7.3 Future Works

The purpose of the coaching system introduced in this paper is not that it attempts

to move proto-symbol of learners’ performance to several other proto-symbols in the

phase space (PSS) during a coaching task. This kind of approach can be applied

when several learning target motions are prepared as sub-goals.

For example, the future coaching system could first analyze learners’ swing mo-

tions and detect degree of errors in which body part has the most, the second most

and so on, compared to a learning target motion. Then, the future coaching system

could set several sub-goals, that is several proto-symbols in the PSS, and attempt

to coach so that proto-symbol of learners’ performance moves to proto-symbols in

certain order and finally get close to a learning target motion. This way the work,

focused on symbolic system, presented in this paper would be extended to a study of
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linguistic system.

The author believe that the work presented in this paper can be applied in the

future to study teamwork from embodiment social interaction, engineering and con-

structive approach perspective. Good teamwork as a team can be defined as having

both a good understanding in tactics and shared selection of strategy according to

dynamic environment. How to improve the understanding and execution level of the

team tactics and shared selection of strategy? Members of a team are required to

share keys and share how to make decision of next actions based on the shared keys

and team tactics. Sharing keys of directly observable property is called the joint at-

tention [155][154]. However, what is needed to be discussed more is a joint attention

of estimated value of unobservable property such as center of gravity. Estimation of

unobservable would contribute for anticipation of intention of others, and then for

establishing a better teamwork. By extending the proposed methods in the paper

and with some more ideas, the author believe that this can be done.

If I consider future research addressing computational and constructive communi-

cation method for studying a good teamwork from an engineering point of view, the

motion capture device might be a bottleneck that requires closed stage setting with

controlled lighting. To overcome this issue, a new motion capture system, motion

capture from body-mounted cameras [140] will be the motion capture of the future.

This method allow us to capture motions that requires an outdoor settings. Current

problem of this method is that it requires large calculation cost, so that it would take

about 24 hours for processing 5 minutes motion capture clip. However, this issue will

be resolved by research advancement in algorithm and computational power.

After more development, the system would be capable of interaction using more

complex verbal and non-verbal expressions. Then, the robots would be able not only

to coach but to learn while the robots are coaching via discussion and interaction with

other humans. Being capable of having complex interaction would be an ultimate goal
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of the Human-Robot interaction. Then, it would open up a new learning framework

for robotics that can learn while it coach, which is inspired by the Protege Effect

”While we teach, we learn” [48][22][42], In this learning framework, the robots would

learn and share how to ground symbols to parameters, so that humans can understand

explanation of the robots, as well as robots would learn novel parameters through

interaction with humans according to tasks. This way, robots and humans can develop

their abilities together.

This might then lead to a computational and constructive communication and

leadership research from an engineering point of view. It would open up an oppor-

tunity for robotics research for having consumer market, whereas current robotics

researches are strongly driven by industry and military demand.
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