The Evolution of Protoplanetary Disks Due to the

Gravity of Protoplanets

Taku Takeuchi

Department of Astronomical Science, School of Mathematical and Physical Science,

The Graduate University for Advanced Studies

November, 30, 1995



ABSTRACT

We study the evolution of a protoplanetary disk due to tidal interactions
hetween the disk itself and an emnbedded proioplanet. In particular, the follow-
ing two processes are analyzed in detail: (1) Solutions for the propagation of
density waves excited by the gravity of the protoplanet and their subsequent vis-
cous damping are obtained within the context of the WKB approximation. The
angular momentum carried by these waves and the torque exerted on the disk
through the damping of the waves are obtained. (2) The evolution of the disk
arising from angular momentum transfer by the density waves is simultaneously
computed by solving the hydrodynamical equations in an infinitesimally thin and
non-self-gravitating disk with a Keplerian rotation law.

The propagation distance (or damping length) of the waves can be quite
large in disks with low viscosity. Indeed, we find that with a viscosity parameter,
a < 1073, m = 2 waves can reach the inner edge of the disk, whereas for a < 1074,
m ~ (rQ2fe), ~ 20 waves can reach the inner edge as well. In disks with such
small values for the viscosity, the gap size is determined by the damping length
of the waves. The gap size becomes wider as the disk viscosity is decreased.
When the viscosity becomes small enough to allow the waves to propagate to the
inner region near the stellar surface, the removal of the inner disk ensues. We
find that a Jupiter mass protoplanet facilitates the removal of the inner disk if
a £ 3x107*, and that the time scale for this depletion is 10° years. Furthermore,
inner disk depletion can be detected from the infrared spectrum of T Tauri stars
surrounded by protoplanetary disks. We determine the conditions for the gap
formation in terms of relations between the masses of the protoplanets and the
properties of the protoplanetary disks.

We apply our results to the gap sizes derived from recent observations of the
disks around the pre-main-sequence binary stars, GW Ori and GG Tau. We infer

that e ~ 1072 in the disks around GW Ori and GG Tau.
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Chapter 1

Introduction

1.1. Purpose of this work

Stars surrounded by planets are believed to arise from the gravitational collapse of
molecular cloud cores (e.g. Shu, Adams & Lizano 1987). Because molecular cloud cores
rotate slowly (Goodman et al. 1993), a flattened disk revolving about the central star
should form naturally. The presence of circumstellar disks around pre-main-sequence stars
has been confirmed by recent infrared observations (e.g. Adams, Lada & Shu 1987; Basri &
Bertout 1993; Strom, Edwards & Skrutskie 1993), by radio observations (e.g. Beckwith &
Sargent 1993; Kawabe et al. 1993; Haya.sh-i., Ohashi & Miyama 1993; Dutrey, Guilloteau &
Simon 1994; Sargent 1995; Saito et al. 1993) and by optical observations performed with the
Hubble Space Telescope (O'Dell & Wen 1994 ). These disks are believed to be the precursors

of planetary systems, and are thus called protoplanetary disks.

The theory of planet formation in protoplanetary disks has long been an active field
of investigation (see review by Hayashi, Nakazawa & Nakagawa 1985; Lissaner 1993). The
theory assumes a protoplanetary disk with a mass of 0.01 — 0.02M; as an initial state,
and argues that planets grow via the accumulation of small bodies known as planetesimals.
Although the theory successfully explains some of the physical properties of the solar system

(e.g. the enhancement of the condensable material in the planets) there remain several
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unresolved problems.

One of these unresolved issues concerns the mechanism of dissipation of the residual gas;
the removal of the gas from the protoplanetary disk after the planet formation is needed to
make the present solar system with its highly vacant interplanetary space. Photo-evaporation
of the gas by the strong UV flux of a young central star was proposed as a possible mecha-
nism({Hayashi, Nakazawa & Nakagawa 1985). However, recent calculation by Shu, Johnstone
& Hollenbach (1993) showed that only the outer part of the protoplanetary disk can be dis-

sipated through photo-evaporation.

The tidal effect of protoplanets embedded in the disk has also been suggested as a
relevant mechanism for gas evacuation (Larson 1989) and has been investigated by Lin &
Papaloizou (1986a, b) and Artymowicz & Lubow (1994). These calculations suggested that
the tidal effect of the protoplanets is not an effective agent in eliciting the gas removal.
However, these authors did not include the effect of the propagation of density waves excited
by the gravity of the protoplanet, which lead them to underestimate the size of the region
where the structure of the disk is changed by the protoplanet’s gravity. In the calculations
of Lin & Papaloizou (1986a), the effect of wave propagation was included, but in that case,
attention was focused on the evolution of the disk within a dynamical time scale, and hence
the long term evolution, i.e. longer than several hundred rotation periods, was not studied.
It is therefore necessary to investigate how wave propagation affects the long term evolution

of the disk. This is the main purpose of this thesis.

The evolution of the protoplanetary disk due to the protoplanet’s gravity is also im-
portant in the formation process of giant gaseous planets. Terrestrial {ype planets and the
cores of giant planets are formed via the accumulation of planetesimals. When the mass of a
protoplanet exceeds some critical value (~ 10 Earth mass), the gas around the protoplanet
begins to contract to form the gas giant (Mizuno, Nakazawa & Hayashi 1978; Mizuno 1980).
On the other hand, the tidal torques due to a Jovian mass planet will tend to evacuate

gas from the orbital track, which tends to open up a gap (Cameron 1979; Miki 1982; Lin



& Papaloizou 1979a,b). Consequently, gas accretion onto a protoplanet is a self-regulating
process, i.e. after acquiring a critical mass for gap formation, a gap in the disk forms and

quenches further growth (Sekiya, Miyama & Hayashi 1987, 1988; Lin & Papaloizon 1993).

The tidal interaction between the protoplanetary disk and the companions plays an
important role, not only in planetary systems, but also in binary systems. More than half
of T Tauri stars seem to have binary companions, and the observational evidence for disk
evolution due to the effect of binary companions has been reported (Mathieu 1994). These

subjects are also discussed in this thesis.

In summary, the major topic of this thesis concerns the evolution of a protoplanetary
disk due to the companion’s gravity. In particular the effect of the propagation of the density
waves is studied in detail. The outline of the dissertation is as follows: We review the previous
theoretical and observational work in the following sections of this chapter and discuss the
nature of the unresolved problem. In chapter 2, we describe the basic equations that govern
the evolution of the disk due to the wave propagation. Our numerical method for solving
these equations is also described. In chapter 3, we present numerical results, The effect of
the wave propagation is described in detail. In chapter 4, the applications of our results
are presented. First, the spectral evolution of the protoplanetary disk is discussed. Second,
we apply our results for the binary T Tauri stars and compare them with the observational
results. Finally, applications for the formation process of the solar system are presented.
In our work, the protoplanetary disk is assumed to be infinitesimally thin. The effect of
finite thickness on the disk is discussed in chapter 5. We also discuss the self-gravity of the

protoplanetary disk. Finally, we summarize our findings in chapter 6.

1.2. Tidal interaction between the protoplanet and the protoplanetary disk

The evolution of the protoplanetary disk under the protoplanet’s gravity has been stud-
ied by many authors. They estimated the torque exerted on the disk by the protoplanet and

investigated the evolution of the disk.



Goldreich & Tremaine (1979) studied the dynamics of the disk under the external po-
tential (e.g. the potential of the protoplanet) using the perturbation theory and the WKB
approximation. In the disk there are the special locations where the motion of the gas res-
onates with the external force (see e.g. Binney & Tremaine 1987). The gas whose angular
velocity is commensurate with the pattern speed of the external potential always suffers the
same force. This is called as the co-rotation resonance (CR). If the external force is the
potential of the protoplanet with the circular orbit, the location of the CR coincides with

the orbital radius of the protoplanet, r,
g = Py (11)

The resonance also occurs on the gas whose frequency of the epicycle oscillation is commen-
surate with the frequency of the external force observed by the gas. This is called as the
Lindblad resonances (LR). For the protoplanet with the circular orbit, the location of the

LRs are given by !
1 2f3
rrp = (1 + —) Tps (12}

m

where m is the positive integer. For fixed m, there are two LRs; one locates outside the
protoplanet’s orbit (outer Lindblad resonances [OLR]) and the other locates inside it (inner
Lindblad resonances [ILR]). Note that the distribution of the positions of the resonances are

concentrated close to the protoplanet.

Since the effect of the external force is most effective at these resonances, Goldreich
& Tremaine (1979) studied the dynamics of the gas near these resonances. They found
that the density waves are excited at the LRs. If the self-gravity of the disk is negligible
(this approximation is adequate for the protoplanetary disk with a mass of ~ 0.01Mg),
the waves excited at OLRs propagate outward and the waves excited al ILRs propagate
inward, that is, the waves propagate away from the protoplanet. Further, they calculated

the angular momentum carried by these waves and showed that the waves excited at OLR

'In this thesis, the upper and lower signs apply to the disk outside and inside the protoplanet, respectively.



have positive angular momentum, while the waves excited at ILR have negative angular
momentum. When these waves damp through viscosity of the disk or the shock formation,
the angular momentum which they have are deposited into the disk. Thus the disk material
outside the protoplanet’s orbit gains angular momentum and moves outward, while the disk
material inside the orbit loses angular momentum and moves inward. This process of wave

excitation and dissipation forms a gap around the protoplanet’s orbit.

Goldreich & Tremaine (1980) calculated the angular momentum carried by the waves
excited at LRs as a function of m, which is the order number of LRs (see eq.[1.2]). They
found that the angular momentum is carried most effectively by the waves excited at LRs
with m ~ 7,0, /¢ , where €, is the angular velocity of the protoplanet and ¢ is the sound
speed in the disk (see also Artymowicz 1993a,b; Korycansky & Pollack 1993). Assuming
that the waves damp immediately at LRs, they calculated the torque density exerted by the

protoplanet on an annulus of unit radial width as,

GM,)* 1
ﬂg (r— r,,)“’

T(r) = £ 32 (2Ko(2/3) + Kn(2/3))?22 (13

where G is the gravitational constant, M, is the mass of the protoplanet, o is the surface
density of the disk, and K, and K, are modified Bessel functions. Note that this expression
is valid only for |r — r,| 2 ¢/f). For |r — ry| — 0, T'(r) should approach zero. This formula

is also derived independently by Lin & Papaloizou (197%a).

Equation (1.3) shows that the torque density rapidly decreases with the distance from
the protoplanet. This is because the density of the positions of the LRs decreases with the
distance(eq. [1.2]). Thus, when a gap is formed and the excitation of waves at LRs close to
the protoplanet is suppressed, the torque is quite reduced as the gap width increases. On
the other hand, viscous diffusion of the gas works to close the gap. Thus, the gap width
is determined by the balance between the protoplanet’s torque and the viscous diffusion as
illustrated in Figure 1-1a (Lin & Papaloizou 1979a, 1986a, b; Papaloizou & Lin 1984). Since
the torque is a rapidly decreasing function of the gap width, the gap width derived by this

balance is rather small, i.e. the disk gas could not be dissipated completely by this
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Fig. 1-1.— (a) A schematic illustration of the gap formation in the local wave dissipation
model. Arrows indicate the positions of LRs with the appropriately labeled mode number,
m. The position of the m = 1 inner LR (ry = 0) is not shown in this figure. The tidal
torque exerted by the protoplanet leads to the broadening of the gap. The viscous diffusion
leads to the filling of the gap and therefore a reduction in the gap width. The gap size
is determined by the balance between the tidal torque and the viscous diffusion. (b) A
schematic illustration of wave propagation in the disk. Waves are excited at the LRs. These
waves propagate away from the protoplanet’s orbit, and are dissipated by the viscous stress.
The angular momentum is carried by the waves, and deposited into the gas in the disk
through the wave dissipation. The protoplanet’s gravity indirectly affects the evolution of

those regions of the disk where the waves are dissipated.



mechanism. In fact, the protoplanet can open a gap at most from the farthest ILR to the

farthest OLR, i.e. from m = 2 ILR (r; = 0.63r;) to m = 1 OLR (rg = 1.50r,). 2

Artymowicz & Lubow (1994) argued that a protoplanet which has eccentric orbit can
open a wider gap. If the orbit of the protoplanet is eccentric, then there are additional LRs
corresponding to the epicycle motion of the protoplanet, and some of them locate farther
from the protoplanet than r = 0.63r, or r = 1.59r,. However, these LRs are not effective
unless the eccentricity is near unity. Thus, they argued that the wider gap than 0.63—1.59r,
is formed only if the eccentricity of the protoplanet is near unity or the viscosity of the disk
is quite small. However, the eccentricity of the protoplanet’s orbit is found to become nearly
zero during the growth of the protoplanet via the accumulation of planetesimals (Ida 1990;

Ida & Makino 1993). Hence, the effect of LRs due to the eccentricity would be very small.

In the above discussion, excited waves are assumed to damp immediately at LRs. How-
ever, if the viscosity of the disk is small enough, waves can propagate throughout the disk.
Lin & Papaloizou (1986a) showed that the waves can reach the boundary between the disk
and the central star if the viscosity is as small as o« = vQ/c? ~ 10>, where v is kinetic
viscosity. If the disk is convective, a can be as large as 1077 (Ruden & Lin 1986). How-
ever, the convection ceases at the late stage of the evolution of the protoplanetary disk, and
small value of o are expected (Watanabe, Nakagawa & Nakazawa 1990; Ruden & Pollack
1991). The protoplanet affects the structure of the disk at the location where the waves are
dissipated. Thus, if the waves propagate throughout the disk and the distribution of the
angunlar momentum is rearranged in the whole disk, then the evolution of the disk occurs in

the wider region than that derived from the above discussion (see Fig. 1-14).

Thus, in order to know the evolution of the disk, we have to answer two guestions. First,
how far away do waves propagate and which part of the disk do these waves dissipate in?
Second, how does the disk evolve under the angular momentum transfer due to the wave

propagation? We will solve these problems in this thesis. The effect of the wave propagation

*The m = 1 ILR locates at rp = 0 and is not effective to open a gap by the protoplanet.



on the gap formation has been suggested as a mechanism for inducing a wide gap in the

Cassini division in Saturn’s rings by Goldreich & Tremaine (1978).

Goldreich & Tremaine (1979) also calculated the torque exerted on the CR. Ward (1989)
and Korycansky & Pollack (1993) improved their formula. The torque due to the CR is
weaker than the torque due to the mth-order LRs by a factor 1/m. Thus, the effect of the
CR is negligible, because the most effective LR is with m ~ r,Q,/c > 1. Further, the
disturbance at CR cannot propagate as density waves and dissipates in the narrow region
around the CR, i.e. the protoplanet’s orbit. Therefore, the torque exerted on the CR cannot

contribute to making a wide gap.

Next, we consider the evolution of the orbit of the protoplanet as a result of the tidal
interaction with the protoplanetary disk. The protoplanet exerts negative torque on the disk
inside its orbit, while it exerts positive torque on the disk outside its orbit. Thus, it gains
angular momentum from the disk inside its orbit and deposits angular momentum in the disk
outside its orbit. The absolute values of these positive and negative torques are in general
different from each other because of the asymmetry of the disk properties with regard to the
orbital radius of the protoplanet. This difference causes the migration of the protoplanet.
Ward (1986) argued that the asymmetry in the locations of LRs, surface density, pressure
gradient and temperature profile causes the migration of the protoplanet. He calculated the
time scale of the decay of the orbit and showed that the decay time for a protoplanet of
an Earth mass is of order 10° years. This time scale is quite short in comparison with the
time scale of the growth of the protoplanet (Nakagawa, Hayashi & Nakazawa 1983). Thus,

protoplanets move substantial distance during their formation.

However, Lin & Papaloizou (1986b) pointed out ihat the gap formation suppresses
the orbital migration of the protoplanet. Once a gap is formed, the torque between the
protoplanet and the disk becomes small to balance with the viscous diffusion of the gas.
Further, the protoplanet moves in the gap to the location where the inner torque and the

outer torque balance, and it is fixed there after that. Hence, the time scale of the orbital



decay becomes about the time scale of the viscous diffusion after the gap formation.

On the other hand, Hourigan & Ward (1984) and Ward & Hourigan (1989) pointed out
that rapid migration of the protoplanet suppresses the gap formation. If the protoplanet
moves a distance larger than the size of the gap before the completion of the gap formation,
then it escapes from the gap, and therefore the gap formation would be inhibited. They
assumed that the width of the gap is comparable with the disk thickness, and estimated
the condition for the gap formation against the escape of the protoplanet from the gap.
However, if the wave propagation contributes to making a wider gap, their estimation should

be modified. This effect will also be investigated in this thesis.

1.3. Observational evidences for the gap formation

We have not observed directly extra-solar planets up to now. Thus, we have no ob-
servational evidence for the evolution due to the protoplanet’s gravity. However, an insight
into the tidal interaction could be obtained from the observations of the protoplanetary
disks around young binary stars. Recent surveys of young stars revealed that about half
of 'I' Tauri stars have binary companions (Simon et al. 1992, 1995; Ghez, Neugebauer &
Matthews 1993; Leinert et al. 1993) and the interaction between the protoplanetary disk

and binary companions is investigated by radio and infrared observations.

The truncation of the disks by thé companions 1s suggested from the observations of the
millimeter-wave continuum (Beckwith et al. 1990; Simon et al. 1992, 1995; Jensen, Mathieu
& Fuller 1994, 1996; Osterloh & Beckwith 1995); the T Tauri stars with companions show
less flux than the single stars. The millimeter-wave continuum is considered to be emitted
from the disk with radius of 100AU and the typical separation of binaries found by infrared
surveys is also about 100AU. Thus, binary companions seem to deplete the disks on the
scale length of their semimajor axis. The direct images of the protoplanetary disk around
GG Tau are obtained by Dutrey, Guilloteau & Simon (1994) and Roddier et al. (1996) and

show the inner hole with radius of 220AU, which is several times the separation of the binary



components.

Jensen, Mathieu & Fuller (1996) measured the flux of 800 pm continuum of 25 pre-
main-sequence binary stars. Only the upper limits are obtained for most of the objects.
They combined their observations with the 1300 gm continuum flux in the literature and
compared with the flux expected from their theoretical model. In their theoretical model,
they assumed that the disk around binary stars has a gap. They used the gap size derived
by assuming that the waves damp immediately at LRs according to Artymowicz & Lubow
(1994) and estimated the flux emerging from such the disk. The upper limits of the observed
flux for binaries with separation of several tens of AU are not inconsistent with the theoretical
model. However, for close binaries with separation of several AU, the upper limits are smaller
than the expected values. This discrepancy for close binaries suggests that the gas is more
depleted than the prediction by their theoretical model. The wider gap than their model

may explain the observed upper limits for close binaries.

Some close binaries show the presence of a gap in the protoplanetary disks by the
absence of near or mid-infrared flux which would normally have emerged from that region
of the disk. Since the effective temperature of a protostellar disk decreases monotonically
with the distance from the central star, the spectral energy distribution (SED) of disks with
a physical gap is characterized by a dip at an appropriate wavelength. This type of SED
has been observed in the continuum spectrum of a classical T Tauri star GW Ori (Mathieu,
Adams, & Latham 1991). This system is a spectroscopic binary with a separation of 1.1
AU and eccentricity of 0.17 (Mathieu & Jensen 1995, private communication). The dip in
the SED has been interpreted as due to the presence of a gap between disk radii 0.17 and
3.3AU. The derived size of the gap is rather large, and requires low viscosity. In fact, if we
assume the waves damp immediately at LRs, then we can derive the Revnolds number of
the disk as B = 10° — 10® for the circumbinary disk and R 3 10'! for the circumprimary
disk (see Figs. 3 and 5 in Artymowicz & Lubow 1994). The luminosity of the disk around
GW Ori is estimated as 34Ls. When we assume that this luminosity is emitted by the disk

accretion, then a large accretion rate (~ 5 x 107¢Mg /year) is required (Mathieu, Adams &
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Latham 1991). To supply such a large accretion of mass, the viscosity of the disk is required
as R < 10%, if the disk mass within 100AU is less than 1My. Therefore, the values of R
required by the gap size is too large compared with the value derived by the accretion rate.
This discrepancy may be resolved if the wave propagation forms a wider gap in the disk with

a large viscosity.

Another example of binaries showing the SED with a dip 1s DF Tau (Marsh & Mahoney
1993). The projected separation of the binary is 12AU, and the SED indicates a gap from
0.1AU to 17AU. The inner radius of the circumbinary disk is consistent with the theory
assuming wave damping at LRs. However, it is difficult to explain the small radius of the
circumstellar disk unless the binary orbit is very eccentric or waves propagate substantial

distance in the disk.

Only three close binaries have been reported to have the SED indicating the gap; GW
Ori, DF Tau and 162814-2427 (Mathieu 1994). The sample is too small to discuss the gap
width statistically. Further, some binaries show no evidence for the gap in their SED. For
example, the binary AK Sco, with a separation of 0.2AU, shows an excess in the near-infrared
without the dip(Andersen et al. 1989). The depletion of the disk by the companion does
not seem to have occurred in this system. The SEDs of more close binaries should be taken

in order to confirm the gap formation.

To summarize, the observational evidences for the tidal interaction between the proto-
planetary disk and the companions seem to be insufficient though they are accumulating.
The gap size derived from the observation are somewhat wider than the gap size inferred
from the previous theory. In this thesis we discuss the effect of the wave propagation on the

size of the gap in the disks around the binary stars.
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Chapter 2

Formulation and numerical method

In this chapter, we present the basic equations which govern the evolution of the disk. Next,
we describe our numerical procedure to solve the equations. The basic physical processes
operate in the following manner. A protoplanet excites density waves in the disk at the LRs.
The waves propagate away from the protoplanet and carry angular momentum. As the waves
are dissipated by the viscous stress, the excess (deficit) angular momentum is deposited into
the disk material exterior (interior) to the orbit of the protoplanet. This exchange of angular
momentum induces the evolution of the density structure of the disk and the orbit of the

protoplanet.

2.1. Basic equations

In accordance with the minimum-mass nebula model, we assume that the disk mass is
negligibly small compared with the mass of the central star, M. The temperature profiles of
the protoplanetary disks derived by the infrared spectra (Adams, Lada & Shu 1988) show
that the sound speed, ¢, is much smaller than the Keplerian velocity of the disk. Hence, the
effect of pressure is small in comparison with the gravity of the central star. Under these

circumstances, the protoplanetary disk can be approximated as being infinitesimally thin
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and rotates around the central star with a Keplerian speed Q = (GM/r®}'/? everywhere.

We assume the presence of a turbulent shear viscosity » and the bulk viscosity (. For
computational convenience, we adopt the standard « prescription for the viscosity (Shakura
& Sunyaev 1973). As will be discussed in §5.1.1, the protoplanetary disk at the late stage
could be considered as isothermal in the vertical direction. The convection as the source of
the turbulent viscosity does not occur in such a disk. There are, however, some mechanism
for the source of the turbulence. For example, the differential rotation of the protoplanetary
disk might cause turbulence and induce the viscosity (Papaloizou & Pringle 1984; Balbus
& Hawley 1991). The energy released through the dissipation of the waves could be the
source of the turbulent viscosity. In the absence of viscous damping, density waves steepen
into shock waves (Larson 1990). The energy dissipation rate of these non-linear waves would
provided an effective viscosity with & ~ (¢/r2)® in the disk with a gap (Savonije, Papaloizou

& Lin 1994).

During the growth of the protoplanets their eccentricity and inclination damp via the
dynamical Iriction of the planetesimals, and are nearly zero at the stage considered in this

thesis (Ida 1990). Thus, we assume the orbit of the protoplanet to be circular in the plane

of the disk.

The evolution of the surface density distribution of the protoplanetary disk is caused by
the viscous diffusion and the tidal effect of the protoplanet. The time scale of the evolution
of the disk is much longer than the revolutionary period of the protoplanet which induces
the non-axisymmetric perturbations on the disk. Then, averaging over all azimuthal phases.

the equations of the angular momentum conservation and continuity of mass are

2rro [% + ug;] (r*Q) = 2#*5?; (raavj—?) + T, (2.1)
ad 10
27412 =0, (2.2)

where o and u are the surface density and the radial velocity component of the disk, re-

spectively. The first term of the right-hand side of equation (2.1) is the viscous torque

13



(Lynden-Bell & Pringle 1974) and the second term, 7'(r), is the torque density exerted on an
annulus of unit radial width in the disk by the protoplanet. Eliminating u from equations

(2.1) and (2.2), and using a Keplerian rotation law, we obtain

do _308 |0 1/2) _ ! 12
E = ;é; {?" E); (Vﬂ'?" ) WT ] 2 (2.3)

The torque density, T'(r), is calculated using the linear density wave theory. A proto-

planet excites waves at LRs in the disk. The position of the mth-order LR is given by
D(r)=r*—m*(0-Q,)* =0, (2.4)

where k(r) is epicycle frequency, and 2, is angular velocity of the protoplanet. For a Kep-
lerian disk, & = ), and the positions of the LRs are given by equation (1.2). These waves
transfer the angular momentum and the torque is exerted on the disk through their dissi-
pation. Goldreich & Tremaine(1979, 1980) derived angular momentum flux carried by the

waves excited at mth-order LR as

a

rdD/dr

; dy 20) ?
n 2 m
Fmﬂ =mn JrC { [T d?. + ﬁ = np"pﬂ'ﬁ] } 3 (2'5)
TL

Here the mth-order Fourier component of the protoplanet’s potential, ¢,.(r), are expressed

by the Laplace coefficients, b}‘}m as

GM, i
rn(r) = =——2(2 = bmo) (Bja(r') = r'bus) . (2.6)
P
2 cos mbdé
n ' - — -
bI_ﬂ'Z(T‘) = ‘JT-[U (1 _27".[:050_'_?,2}1”! (2-[)

where M, is protoplanet’s mass, r, is the radius of the protoplanet’s orbit, ' = r/r,, and
émn s the Kronecker delta function. In the derivation of the original form of the angular
momentum flux by Goldreich & Tremaine(1979), they approximated that m < (r{)/¢),,
where the subscript “p” means a quantity evaluated at the protoplanet’s position. For m >
(r€l/¢),, the correction factor f. in equation (2.5) is needed. Goldreich & Tremaine(1980)
calculated f. numerically and Artymowicz(1993) derived an approximate formula as

1 OH Ko(2H/3) + K. (2H/3)]?

fe= H(1 + 4€2) 2Ko(2/3) + Ky(2/3) !

(2.8)
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where

& = m(c/r(d), (2.9)

H=+/1+¢2, (2.10)

and K, and K, are modified Bessel functions. For m < (r{}/c),, f: = 1, and for m 3
(rQ/¢),, f. decreases exponentially with m. Therefore Fi,o has its maximum value at m ~

(r©d/¢),, i.e. the protoplanet excites waves with m ~ (r{2/c), most effectively (Fig. 2-1).

These waves propagate away from the protoplanet and dissipate either through shock
formation or the action of the viscosity. If the mass ratio between the protoplanet and the
central star, ¢ = M,/M, is less than 10~%, the amplitude of the excited waves is small and
perturbations are linear at the resonance. Because the perturbations propagate as pressure
waves, and the growth of their amplitude is slow(Ward 1986), the non-linear process of
the shock formation would be negligible and the waves can be considered to damp only by
viscosily. In the Appendix, the propagation and the dissipation of the waves are solved
using the WKB approximation, and the angular momentum flux transferred by the waves is

obtained as

v = -
pen [ ()} 2 20] 2

Fn(r) = r < rm)

0 (?‘H_, <r C:‘."'g,:),
(2.11)
where ror, and rrr, are the positions of the outer and inner Lindblad resonances, respectively.

The radial wave number k(r) is

270 2_ x2 1/2
k{r):(m {1 — 1) ) : (2.12)

62

The dissipation of the waves causes exertion of torque on the disk. The torque density

exerted on an annulus of unit radial width in the disk is

- dF
J!m(?'} = —'F. {2i13)



The total torque density is calculated by summing over the waves excited at all resonances,

T(r) = > Tm
_ _Zd}".

m dT

(2.14)

The back reaction of the excitation of waves causes the orbital evolution of the proto-

planet. The change of the orbital radius is calculated by the angular momentum transfer

d Tout
S (Mr20,) = — f ", (2.15)
or
d’."p 1 ( Tp )11'{2 Tout -
—L = 9 Ir. 2.1
it - M, \oM [ 15

2.2. Numerical method

Numerical calculations are performed to solve for the surface density evolution of the
disk. We introduce dimensionless variables such that ¢ = (vo/rd3)t,0’' = o /aq, 7' = r /70, and
V' = v/v,, where the quantities labeled with the subscript “0” are evaluated at the initial
position of the protoplanet. The time is normalized by the viscous diffusion time scale. The

non-dimensional version of equations (2.3) and (2.16) are

30' 3 a9 n/e 2
ot o nf2 .I"If?r“rr :
5 7 O [ (u rte) — 3 (2.17)
dr! 67rio, Tout
P_ o0 nj2 T dr! 91
dt’ M, | da T (2:18)
where
1
1= — 2.19
1 3rroQotaog ( )

Above equations are solved numerically with an explicit finite difference method.

The torque density in equation (2.14) is summed up with m = 1 —200 for the outer disk

and m = 2200 for the inner disk. The contribution from m > 200 is negligible. The m = 1
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ILR, which locates on r = 0, can be important for interactions with binary companions with
the mass comparable to the central star (Ostriker, Shu & Adams 1992). For interactions

with the protoplanet, however, the effect of the m = 1 ILR is negligible.

In the summation of equation (2.14), the terms with m ~ (rQ/¢), > 1 dominate. For
m > 1 the Laplace coefficients and these derivatives can be approximated by modified Bessel

functions(Goldreich & Tremaine 1980), as

2 '
T:*:LL e ;ﬁo(zz’ 3), (2.20)
dby, 2m
2|~ 320K (2 9291
& |, ~F e 21)

The position of the LRs is approximated by rg 2 r, for m 3> 1 (eq. [1.2]). Thus, variables
can be evaluated at r, except for o, which is a rapidly varying function of r. We also
approximate that rdD/dr|,, ~ F3mQ*(r;). We use above approximation in evaluating

Fa, because m > 1 terms dominate the torque. Then we obtain

GM,

iy

: ) [2}{0(2/3) +Kx(2/3) ~ Zons {2F 1}]2. (2.22)

Frop = Emzfca(r;‘) (

Figure 2-1 shows F), o as a function of m for various values of the sound speed. The waves
with m ~ (r}/¢), carry the maximum angular momentum. As the sound speed ¢ becomes
smaller, the larger m waves, which are excited at LRs closer to the protoplanet, becomes

effective, and hence more angular momentum are carried by these waves.

2.3. Boundary condition

To solve equations (2.17) and (2.18), we need boundary conditions at the inner and
outer edges of the disk. First, we consider the boundary layer between the surface of the
star and the disk. The central star rotates more slowly than the inner part of the disk which
rotates at a Keplerian rate. In the boundary layer, the rotation of the disk is slowed down by
the friction of the central star. Thus the angular velocity, 22, which was increasing inwards,

now decreases to the rate commensurate with the central star. There must be the critical
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Fig. 2-1.— Angular momentum flux carried by waves excited at mth- order LRs in the disks

with various sound speed.
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point, r., where df1/dr = (0, and the shear vanishes(Lynden-Bell & Pringle 1974). Hence,
the inner boundary condition should be that there is no viscous torque at r.. We have
to solve the boundary layer to determine r.. Instead of this, we use the simple boundary
condition. We assume the Keplerian rotation law for the whole disk. The inner boundary
condition is achieved by o = 0 at the inner edge of the disk, r;,, rather than dQ/dr = 0
at r.. This boundary condition assures that viscous torque vanishes at r;,. We checked
the inner boundary condition using the analytic solution derived by Lynden-Bell & Pringle
(1974). This analytic solution is derived with the boundary condition d}/dr = 0 at r. = 0.
We found that the substituted inner boundary condition, o = 0 at ry,, does not affect the

global evolution of the disk in the numerical calculations.

We consider the stage after the formation of the protoplanetary disk has finished and
the envelope from which the star and the disk was formed has dissipated. Thus, the outside
of the disk is vacant, and the outer edge of the disk should be allowed to freely expand. We
adopt a sufficient range in r in the numerical calculation to account for the freely expanding

edge.

2.4. Disk model

The surface density profile is assumed to be a power law in r,
r\=3/2

Bt (r—o) , (2.23)
and is truncated at ry, = 107%rg and r.u¢ = 10r initially. This surface density profile
was derived by Hayashi(1981) for the solar nebula under the assumption that dust material
accumulated into the terrestrial planets and the cores of the giant planets with minimum
displacement in radial directions both inward and outward. Since dust grains in the proto-
planetary disk have been accumulated into the protoplanet, the disk is transparent to the

central star’s visible radiation. The temperature profile of the disk is determined mainly by

19



this radiation, and is described by

~1/2
T=1, (l) . (2.24)
To
The sound speed is given by
r\ L/
= co (_) . (2.25)
To

For simplicity we assume that the bulk viscosity, ¢, is zero and use o prescription as
v = ac’/f. (2.26)

We neglect the evolution of the temperature profile because the viscosity of the disk at the
stage considered here is so small that the generation of the heat by the viscous stress is

negligible.

The properties of the disk and the protoplanet are characterized by four parameters:
« is the viscosity parameter, hg = ¢o/roflo is the scale height, A = ¢*/(3ak?) is the ratio
of the strength of tidal effects to viscous effects, and B = 3moyri/M, is a measure of the

mobility of the protoplanet. A and B are the same parameters which were used by Lin &

Papaloizou(1986b).

In numerical calculations, the following disk properties are adopted. The mass of the
central star is M = 1 M. The disk has the minimum mass to create a planetary system like
the solar system. The total mass of the disk is 0.017Mg. The protoplanet is initially located
at ro = 5.2AU from the central star (the present position of Jupiter). The scale height at
5.2AU is hg = 0.05. Hence, for the protoplanet with the Jupiter mass in the above disk,
A~10"*a"! and B =~ 3.

The computational space is divided into 529 cells spaced logarithmically between r, =
rin = 107%rg and ro = 2r,: = 20rg. For comparison, calculations with 267 cells and 1054
cells were carried out and we found that the gap size changed by less than 6%. We also

varied ry, from 1073ry to 2 x 1072rg. and the gap size changed less than 15%.
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Chapter 3

Results

3.1. Estimation of gap size

The evolution of the disk is obtained by solving equations (2.17) and (2.18). Before
solving the disk evolution numerically, we discuss the approximate relation between the gap

size and the disk properties.

First, we derive an approximate value of the gap size appropriate for the disk whose
viscosity is small enough for waves to propagate a large distance. In the region where
the waves propagate, the gas of the disk interior to the protoplanet’s orbit loses angular
momentum, and the gas exterior to the orbit gains angular momentum, so that a gap opens
in this region. It is considered that the waves can transfer angular momentum effectively in
the disk where the integral of equation (2.11) is less than unity. We define the wave damping
length [ such that the integral of equation (2.11) becomes unity at rp 4+ [. An approximate

value for [ is obtained by

4 B m(§, — Q) =
e+ G + =)} % "”]w“l‘ e
Near the LR, Q is approximately
371
Q(rp +1) ~ Q(rg) (1 i (—)) . (3.2)
2\rg,
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Assuming that the sound speed varies slowly, equation (2.12) becomes approximately

o+ ~3(m+1) (ﬂ'z) ( E ) ! (3.3)

c? rL
For large m, we can approximate ry, = r, by equation (1.2), Q(rz) &= Q,, and &*/m*(Q(ry, +
[) - Q,)* = 0. Then equation (3.1) becomes

2/5
i e 2" (3.4)
3V (C + 4)

P

We have to sum up the angular momentum flux for all m to calculate the surface density
evolution of the disk, and in the next section this summation is performed numerically. The
amplitude of waves has maximum value when m ~ (rQ1/¢),. We can make a rough estimate of

the gap size by calculating the wave damping length of waves with m = (r2/¢),. Considering

the gap size Ar is equal to the damping length of the wave [, the gap size becomes

2 (5) o, (3.5)
£ ./,

where we used the a prescription for the viscosity Jaw. 1 Ar/r, = 1, then the disk interior
to the protoplanet’s orbit falls onto the central star. The criterion for the removal of the

inner disk becomes
e \5/2

og (Fﬁ)r ; (3.6)

If the viscosity of the disk is large enough for waves to damp immediately, then the

effect of the wave propagation can be neglected. In this case, the protoplanet’s torque works

most effectively on the boundary between the disk and the gap. This torque should be

balanced with the viscous torque that works to narrow the gap. The balance between tidal
and viscous torque is expressed as

2%% (VGTS%I-) =.—T(r) (3.7)

Here we use the expression for the torque density T'(r) which is derived by Goldreich &

Tremaine (1980) assuming the waves damp immediately at LRs and given in equation (1.3).
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surface density

gap boundary

Fig. 3-1.— Illustration of the boundary between the gap and the disk. The disk and the
gap outside the protoplanet’s orbit is shown in this figure. The surface density inside ry is

reduced by the tidal torque of the protoplanet, and is completely reduced at r,.
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The surface density, o, equals zero at the edge of the disk, r, = r, + Ar/2, and increases
with distance from the protoplanet (see Fig. 3-1). This boundary extends between r, and ry,
and the surface density recovers its original value at r4. Integrating equation (3.7) between

r, and 4, we have
Td
27 [ua’r @] / T'dr. (3.8)
Ty

In the integral of equation (3.8), ro/Q? in equation (1.3) is evaluated approximately at r,.
Because most of the contribution to the integral comes from r = r,, the upper boundary

of the integration region is extended to infinity. Then the right hand side of equation (3.8)

becomes
25 OM) (7)1 {2Ko(2/3) + K2/ (3.9)
Td
Using o = 0 at ry, the left-hand side of equation (3.8) becomes
2d02
2m (vcrr E) d. (3.10)

Assuming the Keplerian rotation law and that the gap size is small, so that ry 2 r,, the gap

size is obtained as

Ar 2 4 1/3
=~ 09 (thg) ~ 1,345, (3.11)
P

The condition for gap formation has been derived previously by Goldreich & Tremaine
(1980), and also by Papaloizou & Lin(1984). The angular momentum deposited in a ring
with radius from r, to r, + Ar via the dissipation of the waves with mode m is given by (see
eqs. [2.13] and [2.22])

T = x[7 Todr

P

+fom’eQir'e’, (3.12)

2

where we assumed that waves are completely dissipated within this ring. The angular mo-

mentum AH needed to open a gap of width Ar is

AH = o, (r,Ar)i. (3.13)
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The time required to open a gap through the waves with mode m is

2

P || om0 \ 1y

On the other hand, the time to fill up a gap by the viscous diffusion is

Ar?
Leiose ™ T (315)

The condition for gap formation through the waves with mode m is .15 2 tg’;‘m or

1 C 1/2 .
12T (m)p‘* ; (3.16)

For small m such that f. ~ 1, i.e. m g (r/¢),, this condition is rewritten using A defined
in §2.4 as
Az e (3.17)

m?’
The total torque due to all rn waves is given by
P = - B T, =~ orig? /(;W m? fo(m)dm, (3.18)
m=1
where we approximate summation by integrals. This integral is approximated by (rQ}/ c)i
(Goldreich & Tremaine 1980; Ward 1986). Hence,
3
T ~ ot (r_ﬂu) q . (3.19)
C/p
The time to open a gap by all m waves is

e\ fAar)? 1 )
q (E)F(E) Q, e

1
topeﬂ ~ =

The condition for gap formation becomes

e\ L,
q> (m) a'l?, (3.21)
P

In the following sections, the approximate formula for the gap size (3.5) and (3.11) are
compared with the numerical results. The condition for the gap formation through the
waves with mode m (3.17) and through all m waves (3.21) will be used to understand the

numerical results.



3.2. Protoplanet’s torque

The torque density, T(r), is calculated numerically from equations (2.11), (2.14) and
(2.22), and is shown in Figures 3-2 — 3-6. In this section, the surface density profile is assumed
to be constant with radius for simplicity, whereas elsewhere in this thesis the surface density
is treated as a function of radius and time. The scale height is Ay = 0.05. Figure 3-2
shows the torque deusity exerted through the m = 2 waves. Near the LRs (0.63 for m = 2
ILR and 1.31 for m = 2 OLR), because wave length of excited waves is large as seen from
equations (2.4) and (2.12), the waves can propagate suffering little damping. After they
have propagates some distance from the LR, the wave length becames short enough to suffer
viscous damping, and deposil their angular momentum into the disk. Therefore, the torque
density profiles have their peak at sornewhat distant place from LR. The position where the
absolute value of the torque density has maximurm grows farther away from the protoplanet’s
position as the viscosity parameter a decreases. If a is less than 10~%, the m = 2 waves reach
the boundary between the central star and the disk. The m dependence of torque density
is shown in Figure 3-3. In these caleculations, « is set at 107% for each value of m. The
position of the LR grows nearer to the protoplanet’s position as m increases. The length of
the wave propagation becomes shorter as m increases. The protoplanet exerts the largest
torque through the waves with m ~ (rQ2/c), ~ 20. The summation of the torque exerted
through the waves with all m are shown in Figure 3-4. The region where the protoplanet
exerts the torque effectively becomes wider as o decreases. If « is less than 10™%, then the
protoplanet exerts the torque effectively on the disk material near the central star, because

the waves with m ~ (rf}/c), ~ 20 can reach the central star in such a disk with low viscosity.

The torque density is calculated for additional values of scale height, hg = 2.5 x 1072
and 107!, and shown in Figure 3-5, where each torque density is normalized as the total
torque exerted on the disk inside and outside the orbit of the protoplanet are unity. Note
that the total torque is inversely proportional to the cube of the scale height (eq. [3.19]),

because the waves with higher m contribute to the total torque as scale height (sound speed)
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Fig. 3-2.— Torque density exerted on the disk through the m = 2 waves, normalized by
the total torque exerted by the protoplanet, Tist.1, and divided by the orbital radius of the
protoplanet, r,. Fach line is labeled by the appropriate value of a. The scale height is

hg = 0.05. Arrows show the positions of the m = 2 LRs.
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Fig. 3-3.— Torque density through the waves with various modes. The viscosity parameter
is & = 10™*, Each line is labeled by the appropriate value of m. The scale height is ko = 0.05.
Arrows show the positions of the m = 2,5,20, and 40 LRs.
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Fig. 3-4.— Summation of the torque density through the waves with all modes. Each line

is labeled by the appropriate value of a.
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Fig. 3-5.— Torque density exerted on the disk through the waves with all modes. Each line

is labeled by the appropriate value of hy. The viscosity parameter is & = 1072,
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Fig. 3-6.— Torque density exerted on the disk through the waves with all modes. Each lines

show the torque density for various temperature profiles. The scale height is hg = 0.05. The

viscosity parameter is a = 1073,
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becomes smaller. Thus, normalization factors for each lines in Figure 3-5 are quite different
from each other. As the scale height (sound speed) increases, the wave length at same radius
becomes larger (eq. [2.12]), and viscous damping of waves is reduced. Therefore, the waves

can propagate wider regions.

In Figure 3-6, calculations for the models with different temperature distributions are
shown. There is only a small differences in torque density when the power law index for the
temperature profile is varied by a factor 2. This is because sound speed is proportional to
the square root of the temperature, and then varies slowly with r near the protoplanet. In

~1/3

the following sections, the calculations only for the models with 7' o r are presented.

3.3. Gap size

In this section the parameter of protoplanet’s mobility, B, is set to be zero and the
effects of the orbital migration of the protoplanet are neglected, because we are interested
in how the wave propagation affects the process of the gap formation. The effects of the
orbital migration on the gap formation are discussed in the next section. The parameters,
A =10"" and hg = 0.05, are adopted as a standard model. These parameters correspond to

the protoplanet with the Jupiter mass in the disk with the minimum mass when o = 1072,

Equation (2.17) is integrated numerically up to a non-dimensional time ¢ = 107'. In
the standard model, the process of the gap formation finishes by ¢’ = 107'. The evolution
of the disk after that time is dominated by the viscous diffusion process and the rate of the
change of the gap size is slow (see Fig. 3-8). We are interested in evolution with a time scale

shorter than the time scale of the viscous diffusion and hence we terminate time integration

at ¢! =101

Figure 3-7 shows the evolution of the surface density of the protoplanetary disk without
the protoplanet. In this case the disk evolves only through the viscous diffusion process. It

can be seen that the disk experiences little evolution in # = 10~'. Figure 3-8 show the gap

32



no planet

2~
> B
2 1_.5_—
D
o B
: I
S B
= 1=
—
N B
5
0_1 L [ .
0 1 2

Fig. 3-7T.— Surface density evolution of the disk without the protoplanet. The dots and

solid curve correspond to non-dimensional time, ¢’ = 1072, 1071, respectively.
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Fig. 3-8.— Surface density evolution of the disk. Weset A =10"", B = 0 and hy = 0.05. The
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Fig. 3-10.— Surface density evolution of the disk for A = 1. The viscosity parameter is
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Fig. 3-11.— Relation between the gap size and the viscosity parameter . The gap size is
defined as the width of the region where the surface density of the disk is reduced to less than
half the value for the disk without a protoplanet. The gap sizes are evaluated at t' = 107",
The values of B and hy are 0 and 0.05. The squares, circles and triangles correspond to
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outer disk is plotted.
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Fig. 3-12.— Surface density evolution of the disk for A = 1, B = 0, hg = 0.05, and o = 107*
The dots, short dashes, long dashes, and solid curve correspond to t' = 10751092 %

102,107, respectively. Arrows show the positions of inner LRs(m = 2 — 5) and outer
LRs(m =1 —5).
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formation by the protoplanet in the standard model. The viscosity parameter, e, is 1077,
1073, 10~%, and 10~° in Figures 3-8 (a), (8), (¢) and (d). respectively. The protoplanet is put
at ' =1 at t' = 0. Because of the wave propagation protoplanet exerts maximum torque
on the disk distant from it (see Fig. 3-4). The gap formation occurs at the distant place
from the protoplanet at first, and the surface density profiles have two dips. The dips grows
toward the protoplanet, and the gap formation finishes by ¢’ = 10~*. Once gap formation is
completed, the development of the gap size is slow after that. The size of the gap becomes
wider as & becomes smaller. For a@ = 107", the waves can reach the inner edge of the disk,
and dissipate there. The disk material falls onto the central star from the innermost part of

the disk. Finally the disk inside the protoplanet’s orbit is removed.

The evolution of the surface density for A = 10~% is shown in Figure 3-9. The evolution
is quite similar to the case of A = 10~!. Figure 3-10 shows the evolution of the surface
density for A = 1. It is seen that the removal of the inner disk occurs even if the viscosity

is as large as o = 107°.

The gap sizes at ¢’ = 10~! are plotted as a function of the viscosity parameter e in
Figure 3-11 for A = 1,107 and 1072, The gap size is defined as the width of the region
where the surface density of the disk is reduced to less than half the value for the disk without
a protoplanet. The filled marks in Figure 3-11 show the removal of the inner disk. If the
inner disk is removed, then the radius of the inner edge of the outer disk is plotted. It can be
seen from Figure 3-11 that the gap size increases with increasing A. The gap size decreases
with increasing a. For A = 1072, the decrease in the gap size with a stops for a > 1072,
and for A = 107" it stops for a > 10~%. However, for A = 1 the gap size decreases with a
even if viscosity is as large as @ ~ 107!, For A = 107" and 1072, the disk material inside
the protoplanet’s orbit is removed if o is less than 3 x 107°. For A = 1, the disk material

inside the orbit is removed if a is less than 10—,

For A = 10" and 1072, the o dependence of the gap size is explained as follows. The

region in which torque is exerted effectively on the disk material becomes narrower as «
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increases (Fig. 3-4). Hence, the gap size decreases with o. The o dependence of the gap
size is compared with the approximate formula (3.5). Our approximation for the radial wave
number (eq. [3.3]) tends to be an underestimate as the waves propagate from the LR. The
wave dissipation is also underestimated. Hence, the gap size increases more slowly with
decreasing o than equation (3.5). The numerical results are described by the formula
DY il (i) a4, (3.22)
Ty ril/ ,
For highly viscous disks (e > 1072 for A = 1072, and & 3 107 for A = 107"), waves damp
immediately near the LRs. In this case the effect of the wave propagation can be neglected,
and the gap size is approximated by equation (3.11). This approximation formula agrees

with the numerical result.

For A = 1, protoplanet’s mass is sufficiently large to open a gap through the lowest m
waves (i.e. m = 1 for outer disk, and m = 2 for inner disk). Of course, the waves with
m ~ (rQ/c), ~ 20 are most effective in opening a gap. However, if A > 1, even the lowest m
waves can be effective as seen from equation (3.17). The m ~ (r€)/c), waves open a relatively
narrow gap quickly. Most of the LRs fall into the gap, and the wave excitation is suppressed.
Only LRs with small m survive, because their positions are far from the protoplanet. After
that, small m waves broaden the gap. Because the m = 1 or 2 waves can propagate even if
the viscosity of the disk is as large as @ = 107! (Fig. 3-2), the effect of the wave propagation
cannot be neglected. The gap size increases with decreasing e even if « is as large as 107",
If @« < 1072, m = 2 waves can arrive at the inner radius of the disk(Fig. 3-2) and the disk
material interior to the protoplanet’s orbit falls onto the central star. Figure 3-12 shows the
evolution of the disk for A = 1 and & = 1072, High m waves open the narrow gap quickly.
This gap formation suppresses the wave excitation at most of the LRs. Only small m LRs
can contribute to the evolution of the disk after the formation of a narrow gap. However,

protoplanet’s mass is large, therefore, the inner disk is removed even by the m = 2 waves.

The gap sizes are calculated for additional values of the sound speed, ¢;. In Figure 3-13

the gap sizes are shown for kg = (¢/r))o = 0.025,0.05 and 0.1. In each case A = 107! and
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B = 0. The gap size increases with hg. This is due to the fact that the length of wave
propagation increases with sound speed (eq. [3.4]). For a 3 1072, the waves excited at LR
damp immediately. In this case the gap size is determined by the balance of the tidal and
viscous torques (eq. [3.11]). The same value, 107!, is adopted for A in each calculations.

Thus the same gap size is obtained for different kg for a 2 1072,

3.4. Effects of orbital migration

In this section the effect of the protoplanet’s orbital migration on the gap formation
is discussed. The protoplanet gains the angular momentum via the tidal interaction with
the disk inside its orbit, while it loses the angular momentum via the fidal interaction
with the disk outside its orbit. The difference between the gains and losses of the angular
momentum causes the migration of the protoplanet (Ward 1986; Lin & Papaloizou 1986b). If
the protoplanet migrates to a larger distance than the size of the gap before the completion
of the gap formation, then it escapes from the gap, and the gap formation is inhibited
(Hourigan & Ward 1984; Ward & Hourigan 1989). If protoplanet cannot escape from the
gap, then a gap opens. Once a gap is opened, the interaction between the protoplanet and
the protoplanetary disk is reduced until the tidal torque balances with the viscous torque.
The protoplanet’s orbital migration is suppressed and proceeds on a viscous diffusion time

scale after the gap formation(Lin & Papaloizou 1986b).

In order to calculate protoplanet’s orbital migration we must know the density and
temperature structure of the disk near the protoplanet exactly. However, we have little
information about the structure of the disk at present. Thus, it is difficult to calculate the
orbital migration exactly. Therefore, we have simplified the problem and considered only
the effects of the surface density profile on the changes in the orbit. Note that other ignored
effects due to the pressure or temperature profile may be on the same order as the effects
due to the surface density profile(Ward 1986), and hence, our calculation may contain order-

unity uncertainties. Therefore, this discussion of orbital migration must be considered as
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qualitative.

In Figure 3-14, the evolution of the orbital radius of the protoplanet is plotted. We
adopt A = 107, = 107 and hy = 0.05, and vary the protoplanet’s mobility, B, from 3
to 70. For the protoplanet with the Jupiter mass in a minimum-mass disk (Hayashi 1981),
the value of B is about 3. The evolution of the surface density and the position of the
protoplanet for B = 50 are shown in Figure 3-15. Because the surface density decreases
with the radius, the protoplanet interacts more strongly with the inner disk than the outer
disk. Thus, the protoplanet gains angular momentum from the inner disk and migrates
outward. Concurrently, the protoplanet changes the surface density profile. At ¢’ =2x1072,
the surface density near the protoplanet increases with radius. Therefore, the protoplanet
deposits its angular momentum into the outer disk and turns inward. By # = 3 x 10~?, the
protoplanet forms a gap around it. The orbital migration of protoplanet is suppressed after
the gap formation occurs. If B is smaller than 50, the gap formation suppresses the orbital
migration. The gap size is not affected by the orbital migration. On the other hand, for
B > 60, the protoplanet moves rapidly such that it escapes from the gap. Thus, in this case,

protoplanet moves large distance, and the gap formation is inhibited.

The condition for the inhibitation of gap formation is derived as follows. The differential

between the inner and outer torque is derived by Ward(1986) as

Gyd
ﬁT:—Gf(Jrﬂ), (3.23)
P

2

where C is a numerical factor of order of unity. This differential torque causes the change

of protoplanet’s angular momentum, written as
d
E(Mprgﬂp) e KT, (3.24)

The rate of the orbital drift is
dr,  2AT
dt 11’1',9;,1'?.

The time required for the protoplanet to escape from the gap of the size Ar is

—1
M c? :
= 2Cq (m-ﬁm) o S

b

(3.25)

dr,

dt

tss{:ﬂpe =y
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Fig. 3-14.— Evolution of the orbital radius of the protoplanet. The values of A, kg and o
are 107',0.05 and 102, respectively. Each line is labeled by the protoplanet’s mobility, B.

At t' = 0, the protoplanet is located at r, = 1.
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Fig. 3-15.— Surface density evolution of the disk for B = 50. The values of A, hy and
« are 1071,0.05 and 1073, respectively. The dots, dashes, and solid curve correspond to

t'=10"%,2x107%,3 x 1072, respectively. The locations of the protoplanet are shown by the
filled circles.
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From equations (3.20), (3.22) and (3.26) the condition for the gap formation against the

escape of the protoplanet, ¢,pen < tescape becomes

2 2
g2 2.6C (%) %a—”“. (3.27)
P 4

The gap formation oceurs only if both conditions (3.27) and (3.21) are satisfied.

The a dependence in equation (3.27) implies that for large a’s, the gap is narrow and
the surface density in the vicinity of the protoplanet’s orbit can quickly self adjust in order
to maintain a torque balance. This limiting case is equivalent to the impulse approximation
adopted by Lin & Papaloizou (1986b) which is based on the assumption that the density
waves are dissipated just at the location where they are excited and launched. In this
case, when the condition (3.21) is satisfied, gap formation is unlikely to be inhibited by the
protoplanet’s orbital migration. In the limit of small e, however, the protoplanet’s tidal
effect spreads over the entire disk such that the disk response becomes more inert. This is
equivalent to the situation considered by Ward & Hourigan (1989). In this case, the evolution

of disk surface density is inadequate to halt the orbital migration of the protoplanet.

3.5. Calculation for various models

We present the results of the calculation for various models of the protoplanetary disks
and discuss the condition for gap formation and the size of the gap formed by a protoplanet

with the Jupiter mass in this section.

Table 1 lists the parameters for the protoplanetary disks used in our calculations. Model
A is the standard model introduced in §2.4. Variation from the standard model is examined
by models B-G; surface density profile is changed in models B and C, sound speed is changed
in models D and E, the disk mass is changed in model F, and the initial location of the

protoplanet is changed in model G.

Model A — The condition for the gap formation is shown in Figure 3-16. We consider

gap formation in the numerical calculation to have occurred if the surface density at the
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Table 1.

Model parameters.

Model o rin(AU)  rou(AU)  Mp(Mg) T ho ro(AU)  M(Mp)
A o r~3/2 52 x10-? B2 17xir® el 5 x 102 5.2
B ocr~2 52x10°2 52 8.2x107% ocp 2 5 x 10~ 5.2
C const. 5.2x107* 52 14x107% o«r Y2 5x10-2 5.2
D xr~32 52 x 1072 52 1L7x107? xr V2 25x1072 5.2 1
B ocr~3/2 52 x10"2 52 1.7x1072 or-1/2 10-1 5.2 1
F xr~3?  52x10-? 52 17x10"' ocr /2 5x 1072 5.2 1
G ocr=3/2 2 x10-3 52 17x1073 oy M2 Hx10-3 9.6 1
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Fig. 3-16.— Condition for gap formation in model A. The filled squares represent the gap

formation in the numerical calculation. The open squares represent the absence of a gap

m the numerical calculation. Two solid lines indicate the critical conditions for the gap

formation, Zopen < tetose and Zopen < teseape: The masses of Jupiter, Saturn, and Neptune are

indicated on right axis.
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Fig. 3-17.— Gap size opened by a Jupiter mass protoplanet and location of the protoplanet
in model A. The squares show gap size at # = 10~*. The filled symbols indicate that the
inner disk has fallen onto Sun. If the inner disk is removed, the radius of the inner edge of

the outer disk is plotted. The circles show the location of the protoplanet at ¢ = 107",
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Fig. 3-18.— Orbital evolution of the protoplanet with Jupiter mass in model A.
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protoplanet’s position is reduced to less than the one tenth of the value for the disk without
the protoplanet. The filled squares represent that a gap opens in the numerical calculation.
The open squares indicate the absence of a gap. Two solid lines show the boundary of the
conditions for the gap formation, fopen < tetose a0 Topen < tescape, With a numerical correction
factor applied in order to fit the numerical result. With these correction factors, topen < Leiose

(inequality [3.21]), becomes

e\ .
4% 8.0 (__) all?, (3.28)
rQd/,
and t,pen < teseape (inequality [3.27] with opposite inequality sign) becomes
¢ \? (ar%)y -1/4
i —_—] — : 3.29
qz840(rﬂ)p M )

The numerical results in Figure 3-16 indicate that a gap opens when both conditions are
satisfied. For the adopted model parameters, the mass of the protoplanet must be larger

than 3 x 107*M in order to form a gap. This value is about the Saturn mass.

Figure 3-17 shows the gap size formed by a protoplanet with the Jupiter mass (¢ = 107?)

at #' = 10~1. It also shows the location of the protoplanet at ¢’ = 10~1.

For the protoplanet with the Jupiter mass, A = ¢*/(3ah}) = 107*a~! is much less
than unity if « 3 10~%. The condition for gap formation through the waves with mode
m =1 or 2 (eq. [3.17]) is not satisfied if A < 1. Thus, for @ 2 1073, we argue the gap
size according to the discussion for A = 107! or 10~? cases described in §3.3. In this case
the gap size is obtained as the larger one of the values derived from equations (3.11) and
(3.22). For the protoplanet with the Jupiter mass in the disk model A with e 2 1072, the
gap size derived from equation (3.11), which is derived under the assumption of immediately
damping of the waves, exceeds the value derived as the damping length of the waves from
equation (3.22). Hence, the gap size is mainly determined by the balance between the tidal
torque and viscous diffusion. The gap size increases as a decreases, because the effect of
viscous diffusion becomes weak. For a 3 107!, A is smaller than 107, Under such the
large viscosity, even the waves with m ~ (rQ2/e), ~ 20 cannot open a gap against the

viscous diffusion, as seen from equation (3.17). Thus, the gap formation is inhibited. The
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protoplanet moves in viscous time scale after the gap formation. In model A, the surface

density profile, o o r—%/?2

is adopted. In this case, the protoplanet happens to move little
distance. However, the protoplanet can move large distance in the disk with the another

surface density profile (see model B or C).

For e« £ 3 x 1074, A is as large as or larger than unity. In this case, m = 2 waves can
be effective to open a gap, as discussed A = 1 case in §3.3. The protoplanet removes the
disk inside it through the m = 2 waves, because m = 2 waves can propagate throughout the
inner disk if & £ 1077 (see Fig. 3-2). The time scale of the removal of the inner disk is about
10° years. If the viscosity is enough small, such that m ~ (rQ/c), waves can propagate
throughout inner disk (e g 10~°), the removal of the inner disk occurs through m ~ (r2/c),

waves, and the time scale of the removal is quite short (~ 10? years).

After the removal of the inner disk, the protoplanet interacts with only the outer disk.
The protoplanet deposits its angular momentum into the outer disk and migrates inward.
Thus, the distance between the protoplanet and the outer disk increases, and the tidal
interaction is reduced. Hence, a protoplanet cannot dissipate the outer disk. It can only
push the disk material away to a distance of about 15AU. For @ = 10~°, the inner radius
of the outer disk is smaller than the case of @ = 3 x 107%. For a = 10~°, the waves in the
outer disk can propagate substantial distance from the protoplanet, and the gap size which
protoplanet should form is quite wide. In this case, the gap formation should take a long
time, and when inner disk is removed, gap formation in the outer disk have not finished(see
Iig. 3-8d). Hence, the protoplanet migrates inward largely after the removal of the inner

disk, and the inner radius of the outer disk remains small.

Figure 3-18 shows the orbital evolution of the protoplanet with Jupiter mass. Note that
rp is plotted as a function of non-dimensional time ¢'; for @ = 107%,10™* and 10~%, ¢’ = 10!
corresponds respectively to 10%,10° and 107 years in real time. For a = 107, the gap
formation completes by ¢’ = 107%. It suppresses the rapid migration of the protoplanet. For

a = 1074, it takes longer time than o = 10~2 to open a gap, because the gap is wider. Thus,



the protoplanet migrates outward rapidly during the gap formation. After the gap formation
(' = 3 x 107*), the migration of the protoplanet becomes mild. As m = 2 waves remove
the inner disk, the interaction between the protoplanet and the inner disk becomes weaker,
and the protoplanet turns to inward. The removal of the inner disk finishes at ' = 9 x 1072,
For @ = 107%, the protoplanet moves outward and reach about 9.5AU quickly. However the
inner disk is removed through m ~ (rf/c), waves by t' = 10~°. The protoplanet migrates

inward after that.

Model B — The profile of the initial surface density of model B is ¢ o r=2. The surface
density at the initial location of the protoplanet, o(ry), is set as the same value with model A
because the same amount of the material of the protoplanetary disk around the protoplanet
is needed to form the protoplanet with the same mass as model A. This surface density

profile yields the disk mass, Mp = 8.2 x 107°M.

Figure 3-19 shows the condition for gap formation, and Figure 3-20 shows the gap size
and the location of the protoplanet at ¢ = 10~'. The protoplanet gains much more angular
momentum from the disk inside its orbit than the loss of the angular momentum by the
disk outside its orbit because of rapid decrease of the surface density with radius. Thus, the
protoplanet migrates outward, where surface density is smaller (Fig. 3-20). This migration
reduces the torque exerted on the disk. Consequently, it takes much longer time for the
protoplanet to remove the inner disk than model A. The protoplanet removes the inner
disk through m = 2 waves in 10® — 107 years (in non-dimensional time, #' = 3 x 10~!) for
3 x107% < @ £ 3 x 10~*. In Figure 3-20 the removal of the inner disk for 3 x 107° < o
3 x 107* is not shown, because the disk removal has not completed at ¢’ = 10~!, when this
figure is plotted. For @ = 10™° the inner disk is removed through m ~ (rQ2/c), waves by

t' = 5 % 1072 The protoplanet migrates inward after that.

Model C — The surface density of model C is initially constant, which is the value at
the initial position of the protoplanet, o(rg), in model A. The mass of the disk is Mp =

1.4 x 107'M. In our calculation, the protoplanet does not move if there is no gradient in
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Fig. 3-19.— Condition for gap formation in model B.
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Fig. 3-20.— Gap size opened by a Jupiter mass protoplanet and location of the protoplanet

at ¢’ = 107! in model B.
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Fig. 3-21.— Condition for gap formation in model C.
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Fig. 3-23.— Condition for gap formation in model D.
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Fig. 3-25.— Condition for gap formation in model E.
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Fig. 3-27.— Condition for gap formation in model F.
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at ' = 107! in model F.

63



model G

|II|II| II]IHIII I||!|HJ| [[IIIIH{ WL

10°-m m @ m m m m m 0 —eM,
= E N E RN N a
B m OO O :+M5
E O O O
O O

B
L
[

!IIII

Mass ratio
QO

topon=toacapt

| I|IHl|

H O B8 0O Lk 0 =

tc-psn=t¢lune

100 0 0o oo oo O—
Gl v ol ] 13
10 107" 107 107 107

o

Fig. 3-29.— Condition for gap formation in model G.
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density profile (see discussion in §3.4). Thus, the protoplanet does not migrate at first. After
the surface density profile was changed by the protoplanet’s torque and the density gradient
was produced, the protoplanet begins to move. Because the protoplanet moves toward where
the surface density is reduced, it would be trapped in the gap. Thus, the inhibitation of gap
formation due to the rapid migration of the protoplanet does not occur (Fig. 3-21). Because
there is little material in the innermost part of the disk with the constant surface density,
the protoplanet opens an inner hole quickly if the waves reach the innermost part of the
disk. Even the protoplanet with a mass as small as ¢ = 10™° can open a inner hole (~ 3AU)
if @ £ 3 x 107%, in spite of the condition t,pen < foose is not satisfied. The protoplanet’s
torque changes the surface density to be increasing with radius. This evolution of the surface
density causes the inward migration of the protoplanet (Fig. 3-22). In particular, when an
inner hole is formed, the protoplanet migrates inward quickly to be trapped in the inner
hole. Hence, the protoplanet can make only a small inner hole with radius of ~ 3AU, and

its orbital radius is quite reduced.

Model D — The scale height (i.e. sound speed) at the initial position of the protoplanet
is half of model A (hy = (¢/rf2), = 2.5 x 1072). The LRs up to m ~ (rQ2/c), are effective in
exerting torque. Thus, the protoplanet exerts more torque as sound speed decreases. The
protoplanet larger than about Neptune mass (¢ 3 x 107°) can open a gap in model D (Fig.

3-23). The gap size and the location of the protoplanet is shown in Figure 3-24.

Model E — The scale height (i.e. sound speed) at the initial position of the protoplanet
is twice of model A (hy = (¢/rf2), = 10~'). The condition of gap formation is shown in
Figure 3-25. With the large value of the sound speed, in this model the LRs only up to
m ~ (rQl/c), ~ 10 are effective in exerting torque. Hence, even the protoplanet with a
Jupiter mass cannot open a gap against viscous diffusion if o > 3 x 10*. For the cases of
g = 107% and @ = 107%, a gap is formed, although these cases locate in the region of the
inhibitation of gap formation due to the migration of the protoplanet in Figure 3-25. This is
because the gap size is overestimated in the process of deriving the condition fopen < fescape

for these cases. For a g 107*, the gap size, Ar, derived from equation (3.22) with such
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a large sound speed is larger than r,. Because the distance between the inner edge of the
gap and the protoplanet cannot exceed r,, equation (3.22) overestimates the size of the gap
formed inside the protoplanet’s orbit. Using Ar = r, as the size of the gap, the condition,

topen < lescape With the correction factor same as equation (3.29) becomes

2 .
¢< 6.50%—}3 (riﬂ) ~8 % 1079, (3.30)
P

which explains the numerical results. The gap size and the location of the protoplanet is

shown in Figure 3-26.

Model F — The mass of the protoplanetary disk (Mp = 1.7 x 107'M) is 10 times
larger than model A. As the disk mass increases, the disk becomes more inert, and the tidal
torque works to move protoplanet rather than to change disk structure. For a g 107%, the
protoplanet with a Jupiter mass moves outward rapidly and cannot open a gap (Fig. 3-27).

Therefore, the removal of the inner disk due to the protoplanet does not occur (Fig. 3-28).

Model G — The initial position of the protoplanet is 9.6 AU (present position of Saturn).
The scale height at the initial position of the protoplanet is kg = 5 x 1072, same as model A.
The result is quite similar to that obtained in model A, except that the values of the gap size
and the position of the protoplanet become about twice of that in model A (Figs. 3-29 and
3-30). Hence, we conclude that the initial position of the protoplanet does not affect neither
the condition for the gap formation nor the gap size within the scaling factor. However, if
the scale height of the disk varies with the radius, the protoplanets with the different initial
positions cause the different results via the variation of the scale height at the position of

the protoplanets, as discussed in models D) and E.
To summarize, the essential conclusions to be drawn from above results are:
1. The condition for the gap formation are written by t,,.n < foose and 50, < Leseape-

2. The protoplanet with the Jupiter mass removes the disk inside its orbit for a g
3 x 107* unless it migrates outward rapidly. This removal of the inner disk can occur even

through m = 2 waves.
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3. After the removal of the inner disk, the protoplanet migrates inward in viscous time

scale.
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Chapter 4

Application

4.1. Spectral evolution of the protoplanetary disks

Recent observations of binary pre-main-sequence stars show that binary companions
affect the structure of protoplanetary disks (Dutrey, Guilloteau & Simon 1994; Mathieu
1994; Roddier et al. 1996). In particular for close binary systems, infrared spectral energy
distribution (SED) shows the presence of a gap in protoplanetary disks by the absence of
radiation flux which would normally have emerged from that region of the disk (Mathieu,
Adams & Latham 1991; Marsh & Mahoney 1992; Mathieu 1994). Marsh & Mahoney(1992,
1993) reported the similar changes in the SEDs of the protoplanetary disks around pre-main-
sequence stars, whose binary companions are not detected. They argued the presence of the

unseen companions, i.e. planets.

Another mechanisms are also proposed to explain the SED with a dip. Boss & Yorke
(1993) showed that the temperature distribution which shows a dip in the SED can be
produced during the formation process of the protoplanetary disks. Miyake & Nakagawa
(1995) pointed out that some objects show mass accretion rates higher in innermost parts
than in outer parts of the disks. These different mass accretion rates in the inner and outer
parts of the disks could produce inner holes in the disks, which cause the deficit in near-

infrared fluxes. They also argued that the rapid growth of the dust particle in the inner part
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of the disks can cause a dip in the SED.

In this section, we investigate the evolution of the SED due to the presence of the
protoplanet with the Jupiter mass. To make models for the SED of pre-main-sequence stars

with planets, we adopt the following simplifying assumptions.

1. We assume that the central star has the typical values for T Tauri stars (Beckwith
et al. 1990): the effective temperature and the luminosity are respectively 7, = 4000K and
L. = 1Lg. With these parameters, we obtain the stellar radius R. = (L./Le)*(T./T5) *Rs
= 2.09Re =~ 9.70 x 10-2AU.

2. We assume that the protoplanetary disk extends from R, to Ks; = 100AU. The
temperature distribution is assumed to be a power law in radial distance,

T =T, (ﬁ)_p, (4.1)

and isothermal vertically. Here we take Ty = 280K and p = 1/2 (Hayashi 1981). This choice
of Ty and p produces the flat spectrum in the SED. If the temperature distribution of the real
disks has p greater than 1/2, then the SED shows less flux in longer wavelengths than our
model (Kenyon & Hartmann 1987; Miyake & Nakagawa 1995), but essence of our conclusion

does not change.

We use the surface density distribution of the standard model(model A) calculated in
the previous chapter. Our calculation of the evolution of the surface density was performed
only between 5.2 x 1072AU — 52AU. To obtain the surface density profile between R.
and 5.2 x 1072AU, it is extrapolated linearly from innermost two meshes of our numerical
calculation. For the disks between 50AU and 100AU, we simply use the surface density

profile of the power law form according to Hayashi(1981)

700 (——) """ g/cm? 4.2
J_IUU(M\U) g/em”, (4.2)

because the protoplanet at several AU does not affects the spectrum emerged from that
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3. We use the simple opacity law as

102552 for logv < 13.05
K, =4 1096 for 13.05 < log v < 13.75 - (4.3)

10226176 for 13.75 < log v

This approximates the opacity law used in Adams & Shu (1986) and Adams, Lada & Shu
(1988), except for the Hy0 ice and silicate resonance features. The growth of the dust
particles in the protoplanetary disks reduces the power law index of the opacity law in the
long wavelength side (Beckwith & Sargent 1991; Miyake & Nakagawa 1993). Although this
change of the opacity affects the millimeter wave emission, we neglect this change, because
the gap formation due to the protoplanet affects only the near and mid-infrared emission.
We also neglected the effect of the evaporation of dust particles near the stellar surface,
because we are interested in the evolution of the disk of severa.i AU scale, most of where the

dust particles are coagulated. The effect of scatiering is also neglected.

Adopting above assumptions, the radiative flux of the entire disk received by an observer

at distance D (do not confuse D) defined in §2.1) and polar angle § can be computed from
R
47 D?FP = 4 cos 0 fn ? ¥B,[T(r)|{1 — exp(—7,)}2nrdr, (4.4)

where B, is the Planck function and the slant optical depth 7, is given by

e E). (4.5)
cos 0
In a similar fashion, the radiant flux received from the star is given through
4rD*F? = 47*R2B, (1) gp(0). (4.6)

Here, gp(9) is the function which takes into account the shadowing of the star by the disk
(Adams, Lada & Shu 1988). On the other hand. the shadowing of the disk by the star is

neglected. In the following calculations, @ is assumed to be 60° (# = 0° is face on).

Figure 4-1 shows the evolution of the surface density for @ = 3 x 107%. The mass of the

protoplanet is assumed as the Jupiter mass (M, /M = 107?%). First, a gap is formed around
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Fig. 4-1.— Evolution of the surface density distribution for model A. Protaplanet’s mass is

103M.
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the protoplanet’s orbit (2.5 x 10%yr after the formation of the planet). Next, the disk inside
protoplanet’s orbit falls onto the central star from inside (1.3 x 10°yr). By 2.5 x 10°yr the
inner region of the disk is removed. Finally, the protoplanet migrates inward due to the tidal
torque from the outer disk, and the inner edge of the outer disk also moves inward due to

the viscous diffusion of the gas (5.1 x 10°yr).

The corresponding evolution of the SED is shown in Figure 4-2. At 2.5 x 10® years,
although the protoplanet has formed a gap, the SED does not show any sign of the gap
formation. This is because the slope of the surface density profile at the edge of the gap is
rather gentle, and a small amount of the gas (and dust) is still remained near the protoplanet.
The protoplanet has to excite density waves at the LLRs which locate near it to maintain a
wide gap against the viscous diffusion of the gas. Therefore, a small amount of the gas near
the protoplanet is needed for the protoplanet to excite density waves even after a wide gap
has formed. The amount of the dust remained in the gap is enough large to be opaque at near
and mid-infrared, such that the SED is not affected by the gap formation. However, when
the inner region of the disk is removed, the SED begins to show a dip in the near-infrared.
The dip becomes deeper as the removal of the inner disk proceeds. It is seen that the SED
changes in a time scale of 10° yr. At 5.1 x 10%yr, the dip in the SED becomes shallower than
that at 2.5 x 10°yr, because inner edge of the outer disk moves inward after the removal of

the inner disk.

To summarize our result, the protoplanet makes a dip at near and mid-infrared in the
SED, if the viscosity of the disk is enough small such that the protoplanet removes the disk

inside its orbit.

Next, we discuss the gap size derived from the infrared observations of the SED of some
T Tauri stars without any binary companions. Table 1 lists the gap sizes derived by Marsh
& Mahoney (1992, 1993). In Table 1. ry and r, are inner and outer radius of the edge of
the gap, respectively. Note that the derived gap sizes show the large ratio between the inner

and outer radius of the gap. It suggests that the inner region of the disk is almost removed.
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Table 1.

Observed gap size.

Star le:AU) TQ(AU) ?‘2/7‘; Ref.
GM Aur 0.02 0.7 35 1
HK Tau 0.06 0.9 15 2
GK Tau 0.065 2.4 ar 2
RY Tau 0.20 3.0 15 1

References. — (1) Marsh & Mahoney 1992 (2) Marsh & Mahoney 1993
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This large gap size can be explained if the viscosity of the disk is small (o g 1073).

4.2. Application for binary T Tauri stars

As discussed in §1.3, many of pre-main-sequence stars have been found to have binarv
companions. Some of these objects show the deficit of the radiative flux in the infrared or the
millimeter-wave, suggesting the presence of a gap in the protoplanetary disk. However, the
gap sizes estimated from observations are rather wider than the prediction by the previous
theoretical models. We apply our wave propagating model to interpret the observed gap

sizes.

In the previous sections, the influence of the protoplanet is considered and the linear
approximation is used to calculate wave propagation. However, the binary companion has
enough mass to disturb the disk non-linearly and induce shocks. Paczynski(1977) showed
that the binary companion induces shock in the disk near its orbit and opens a relatively nar-
row gap quickly. After this gap formation, the companion’s tidal disturbance may continue
to induce non-linear spiral density waves. However, the amplitude of the waves is rapidly
decreasing function of the distance between the edge of the gap and the companion’s orbit
(Savonije, Papaloizou & Lin 1994). Thus, the gap formation quite reduces the amplitude of
the waves. We consider the stage after the gap formation reduced the wave amplitude such
that these waves can be treated by the linear approximation. These waves can propagate

over a substantial region of the disk, and broaden the gap.

4.2.1. GW Ori

GW Ori is a classical T Tauri star of 2.5 M with a binary companion which was
discovered by spectroscopic observations. From radial velocity measurements, Mathieu et
al.(1991) derived the separation between the primary and the secondary, a =~ 1.1 AU, and
the secondary mass, M, =~ 0.6Mg. The eccentricity of the orbit is small(e = 0.17 + 0.06,
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Mathieu & Jensen, 1995 private communication). The SED of GW Ori has a dip in the
continuum near 10pm which is interpreted as due to the presence of the gap from 0.17AU
to 3.3AU. Since the eccentricity of the binary orbit is small and the extent of the gap is
wide, the theoretical model assuming that the waves damp immediately at LRs requires the

extremely small viscosity (Artymowicz & Lubow 1994).

Mathieu, Adams & Latham (1991) argued the minimum size of the gap. The orbit of
the gas which resided initially between 0.37a and 1.75a intersects other orbit by the strong
disturbance of the companion, and hence cannot be stable. Thus, the companion opens a
gap quickly from 0.37a to 1.75a via strong shock dissipation. Here, we consider the evolution
of the gap subsequent to its formation. The inner radius of the circumbinary disk, 1.75a,
is near the position of the m = 1 LR(1.59a). The companion can excite m = 1 waves near
the disk edge. The gap becomes wider through the propagation and non-local dissipation of
these m = 1 waves. The gap width is increased by the damping length of m = 1 waves. The

damping length, [, is calculated by (see eq. [2.11])

o 4 K2 m(@, - 0), ,
J7 e (54 mmmmmpp) | 0 ki w1, gt

where r; is the initial radius of disk edge, 1.75a. The temperature profile of the disk is

estimated as

; r =1/2
T'= K 4.
535(1.1AU) i 45

by fitting the theoretical model to the profile of the SED of the disk (Mathieu, Adams
& Latham 1991; Mathicu et al. 1995). Using the « prescription for the viscosity law,
the condition that the radius of the inner edge of the circumbinary disk is 3.3AU yields
o = 7 x 107%, The circumprimary disk truncates to 0.37a through the shock formation
initially and has no strong LR located within it. The companion may excite the m = 2 waves
at the outer edge of the disk even though the relevant LR is excluded (Savonije, Papaloizou
& Lin 1994). These waves also broaden the gap. The outer edge of the circumprimary disk
is calculated from equation (4.7). Substituting & = 7 x 10~ into equation (4.7), we find that

the edge radius is reduced to r; &~ 0.20AU, which is in good agreement with the observation.
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We compare o & 7 x 107 derived above with the value derived from the luminosity
of the disk. The luminosity of the disk around GW Ori is estimated as 34L;. When we
assume that this luminosity is emitted by the disk accretion, then the accretion rate is
5 x 10~ Mg /year(Mathieu, Adams & Latham 1991). If the disk mass within 100AU is less
than 1 Mg, this accretion rate infer that the Reynolds number R < 10%, i.e. & 3 107!, Thus
there still remains a discrepancy between the value derived from the gap size and from the
disk luminosity by a factor 10. The estimation of the gap size from the infrared spectrum
and the derivation of a from the gap size are crude. It needs more precise estimation of o

to resolve the above discrepancy.

4.2.2. GG Tau

With near infrared speckle interferometry, Leinert et al.(1991) found GG Tau to be a
binary with an angular separation of 0.255” on the plane of the sky. Images of the gas and
dust disk around GG Tau were obtained using the interferometer of millimeter-wave(Kawabe
et al. 1993; Dutrey, Guilloteau & Simon 1994) and recently by infrared (Roddier et al. 1996).
The dust images show that the disk has an inner cavity of radius 220AU. The orbit of the
binary is estimated from the infrared observations. There still remains uncertainty in the
orbit because of the uncertainty of the total mass of the binary. Roddier (1996) showed that
If the total mass of the binary is less than 1.6 Mg, then the semi-major axis of the binary
orbit is larger than T3AU and the eccentricity is larger than 0.58. The total mass less than
1.6 My is inferred from the gas motion of the circumbinary disk (Kawabe et al. 1993; Dutrey.
Guilloteau & Simon 1994). If the total mass is less than 1.4M, then the semi-major axis
is larger than 117AU and the eccentricity is larger than 0.72. We simply assume that the
components of the binary system have equal mass, because the mass ratio does not affect

our analysis largely. The temperature profile of the disk is estimated as

r —1;'2 ]’{ 4
T =30 (W) , (4.9)
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by fitting the theoretical model to the profile of the ?CO(J = 1 — 0) line emitted from
the disk (Kitamura et al. 1993). Initially, the binary would truncate the circumbinary disk
to the radius r = 1.68¢ through strong shock dissipation (see Table 1 of Artymowicz &
Lubow 1994). To explain the gap size, the waves excited at m = 1 LR (r;, = 1.59a) must
damp before reaching at 220AU. Using the above temperature profile, we conclude that
a 2 2 x 1072, If total mass is less than 1.4 M, a large value of the viscosity, @ > 4 x 10~!

is required.

4.3. Application for proto-Jupiter

In this section, the interaction between a proto-giant-planet and the solar nebula is dis-
cussed. For the purpose of illustration, we adopt the minimum-mass nebula model (Hayashi

1981}, which adequately accounts for the mass in the cores of giant planets today.

According to this model, planetesimals grow through coagulation which eventually leads
to the formation of solid cores of giant planets (Nakagawa, Hayashi & Nakazawa 1983). At
radil commensurate with the position of Jupiter, the core mass reaches 10 earth masses in
107 years. With such a large mass, the protoplanetary core rapidly acquires an atmosphere
via gas accretion (Mizuno 1980). The gas accretion timescale for a protoplanet with a mass
comparable to that of Jupiter is of order 10* yr (Bodenheimer & Pollack 1986; Sekiya et
al. 1987). Concurrently, the protoplanet exerts a tidal torque on the disk. When the pro-
toplanet grows to Saturn or Jupiter mass, it opens a gap (Fig. 3-16). This gap formation
occurs through m ~ (rf2/e), waves. The timescale for gap formation is a decreasing func-
tion of protoplanet’s mass and viscosity. When the timescale for the gap opening becomes
comparable with the accretion timescale, a gap is formed and the gas accretion phase is ter-
minated (Lin & Papaloizou 1980). Our numerical calculations showed that the protoplanet
with a Saturn mass opens a gap in 10® — 10* years, and that the protoplanet with a Jupiter
mass opens a gap in 102 — 10? years. Therefore, when the protoplanet grows to the Jupiter

mass, the gap formation predominates over the gas accretion onto the protoplanet, and the
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accumulation of the gas stops.

After the gap formation through m ~ (rf2/e¢), waves, the lowest m waves broaden the
gap size. For a £ 3 x 107, the m = 2 waves can propagate to the inner edge of the disk,
and deposit negative angular momentum there. The results described in §3.5 show that if
a < 3 x 107*, the entire disk interior to the orbit of a proto-Jupiter would be depleted onto
the Sun. Such a low value for « is possible if convection is stabilized by the surface irradiation
(Watanabe, Nakagawa, & Nakazawa 1990), provided it occurs after the proto-Jupiter has
already acquired most of its present mass. The time scale for the removal of the inner disk

is about 10° years.

After the removal of the inner disk, a proto-Jupiter interacts with only the outer disk,
and migrates inward. The distance between proto-Jupiter and the outer disk increases, and
the tidal interaction is reduced. Hence, a proto-Jupiter cannot dissipate the outer disk.
However, the depletion of the outer regions of the solar nebula is inferred from the present
masses of the atmospheres of Saturn, Uranus, and Neptune, which are considerably smaller
than that of Jupiter. If all the gaseous planets in the solar system were formed under the
assumed conditions, only Jupiter and Saturn would have terminated their growth through
gap formation. The smaller masses of Uranus and Neptune imply that either they did not
acquire sufficient mass to undergo dynamical accretion or that there was little residual gas
in the solar nebula left for them to accrete. Further, unless the outer disk is removed by
some mechanism, the inward migration of the proto-Jupiter continues on viscous diffusion
time scale. Shu, Johnstone & Hollenbach (1993) suggested photo-evaporation by strong UV

flux from the Sun as a possible mechanism of removal of the outer part of the disk.
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Chapter 5

Discussion

5.1. Waves in the disk with finite thickness

In the previous chapters, the protoplanetary disk is assumed as infinitesimally thin and
the vertical structure of the disk is neglected. In such a disk a protoplanet with no inclination
excites only two-dimensional waves, i.e. the waves without velocity component in the vertical
direction. However, the radius of the protoplanet (10'%cm for the proto-Jupiter and 10%cm
for the proto-Earth) is much smaller than the thickness of the protoplanetary disk (3 10" em
at 1AU in the model of the minimum-mass disk). Therefore, the protoplanet may induce
waves with the non-zero vertical component of the velocity, 1.e. three-dimensional waves. In

this section, the effect of the finite thickness of the disk on the gap size is discussed.

5.1.1. Unperturbed disk

A protoplanetary disk may have the temperature gradient in the vertical direction im-
mediately after the formation from the molecular cloud core (Lin & Papaloizou 1980). At
the late stage of the evolution, however, the protoplanetary disk becomes isothermal in the
vertical direction. Ruden & Pollack(1991) solved for the long term evolution of the density

and temperature structures within protoplanetary disks. They assumed that initially the

81



disk is optically thick, and the temperature gradient in the vertical direction is large, and
that the whole disk is convectively unstable. However, they found that the disk outside
1AU becomes optically thin in 107 years, and the convective instability disappears. Hence,
isothermal structure in the vertical direction is expected at late times. Watanabe et al.(1990)
solved the vertical structure of the protoplanetary disk at 1AU. They found that the radi-
ation of the central star heats the surface of the disk, and stabilize the disk against the
convection. The disk inside 1AU evolves toward an isothermal structure on a time scale of
10° years. Finally, in the stage considered in this thesis. a substantial fraction of dust grains
may have already accumulated into the protoplanetary cores. Thus, the disk is expected to

be optically thin and isothermal.

We assume that the protoplanetary disk rotates around the central star with Keplerian

velocity and that the orbit of the protoplanet is circular with no inclination.

For the region of the disk where the distance from the protoplanet is much larger than
the disk thickness, the disk can be treated as infinitesimally thin. Thus if the protoplanet
has no inclination, it cannot induce the waves with the non-zero vertical component of
the velocity at that region, where the gravity of the protoplanet points nearly horizontal
direction. Therefore, it is sufficient that we investigate the dynamics of the disk only near
the protoplanet to study the three-dimensional waves. We set up Cartesian axes (z,y, z)
with origin at the location of the protoplanet. The z-axis is perpendicular to the equatorial
plane of the disk. The z and y-axes rotate around the z-axis with angular velocity 2, such
that the z-axis points outward from the central star. We consider only the region near
the protoplanet such that |z|,|y| and |z| are much smaller than the orbital radius of the

protoplanet, 7.

Because the dimension of the region considered here is small in comparison with the
length scale of the variation of the density, temperature and scale height, they can be con-

sidered as constant in the horizonial direction. Since the disk is assumed as isothermal in
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the vertical direction, the density profile in the vertical direction is given by

2

po(z) = poo exp (*;;22)1 (5.1)

where pgo is the density at the equatorial plane and h = ¢/, is the scale height of the disk

at the location of the protoplanet. The unperturbed flow of the disk is approximated as
vo = (o, e, wo) = (0,2Az,0), (5.2)

where A is Oort’s parameter defined as

_ 5
A= g rp. (5.3)

This unperturbed state is the three-dimensional version of the shearing sheet model (Gol-

dreich & Lynden-Bell 1965).

5.1.2. Perturbation equations

We assume that the perturbations are isothermal. This is due to a technical reason
(Chiueh & Tseng 1994). The perturbation equations are in general the partial differential
equations and complicated to be solved. However, this assumption makes the perturbation
to be separable in the radial and vertical directions and simplifies the mathematics con-
siderably. Thus, we adopt this assumption as the first step to attack the problems of the
three-dimensional waves. The equation of motion and the equation of continuity describing

perturbations are

‘%‘ L ZAQ:% — 200y = -i% - %’%, (5.4)
% + Qﬂx%—t; —2Buy = —;1;%‘ ~ %’—‘;‘, (5.5)
% 2 2Aw%? = —iégz == p;zpl - %i', (5.6)
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where ¢, is the potential of the protoplanet

GM,
= — - 5.8
#1 (2 + y2 + 22)1/2 (5.8)
py is the pressure perturbation, B is Qort’s parameter defined as
1 d
B=——(r0)| , 5.9
2 " Y (5:9)
Tp
and the subscript “1” means the perturbed quantity.
Without loss of generality, we write each perturbation variable X in the form
X(z,y,2,t) = X(x,z)expi(k,y — wt). (5.10)

Because the potential of the protoplanet is stationary in this coordinate, w becomes zero for
the forced oscillations. Eliminating the velocity components from equations (5.4)-(5.7) and

introducing the non-dimensional coordinate variables as

¢ = 2gf (5.11)
(=1 (5.12)

we have a partial differential equation for p,(£, () as

{32 200, 8 205 O ngp} QiD {aﬂ
Ae - 0

9
a6 "D o T DA 1A 1akia [P\ T anka | e M@_C“}p'

B # 2w, 28 O UDpo [ & .8 ,
== {E *D s TDA Zﬁ}"” imaee ¢ Cacf P G13)
where
& =0, (5.14)
and
D =4BQ, — &*. (5.13)

In this coordinate, the positions of the LRs become £ = £1. For farther progress, we expand

p1 in the separable form

(. C) = ZPﬂ(‘S)Zﬂ(G: (5.16)
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and the right hand side of the equation (5.13) in the form

RHS =3 Wa(£) Za(C)- (5.17)
Substituting above expressions, equation (5.13) is rewritten in the two ordinary differential
equations,
?  200,d 20 2 Q2D A 02
de? dé TIAT = = U, (6). 5.18
{d§2+ D d{‘+ DA~ 4A?  41A4%k2? 1 2 P.(€) (6. (5.18)

d* p
{£2+¢—+1+A}ZAO=0, (5.19)
where ), is constant. Similar equations for the polytropic gas disk are derived by Okazaki
& Kato (1985).

5.1.3. Solution for vertical direction

To solve equation (5.19), we need the appropriate boundary conditions. We require that
kinetic energy density per unit volume, po(ui + v{ + w]), approaches zero as ( approaches
infinity. To satisfy this condition, A, should be zero or positive integer, otherwise Z, diverges
exponentially for large |(|. We set

Ag =T (5.20)

The solution of equation (5.19) becomes
%

40 = moexp (~5 ) 1:(0), 5:21)
where H,, is Hermite polynomial. The nth-order Hermite polynomial has n nodes. Hermite
polynomials with even n are even functions, and those with odd r are odd functions. We
take only the even functions in (, i.e. functions with n = 0 or even n, because the potential
of the protoplanet is symmetrical with regard to the equatorial plane. Figure 5-1 shows the

functional forms of Z, for several n.



Z,(¢$)/ Poo

Fig. 5-1.— Functional forms of Z,(().
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5.1.4. WKB solution for radial direction

Integration of equation (5.18) needs numerical calculation. Before numerical integration,
we solve the homogeneous version of equation (5.18) using the WKB approximation. The
WKB solution will help us to understand the nature of waves, and will be used in determining

the boundary condition in the numerical integration.

We write P, in the form

Po(€) = II(€) exp [z' [ kfdf’] . (5.22)

Substituting above expression into equation (5.18) and remaining only the highest terms of
ke > 1 and Q,/k,c > 1, we obtain
2

B = _4—%@62 (1 _ f—z) , (5.23)
where we used w = 0 for the forced oscillation. The wave number .-'cg is plotted for various
n in Figure 5-2. The waves can propagate only where kf > 0. The region of k} < 0 is
the evanescent region, where the perturbations grow or damp exponentially in the radial
direction. If the wavelength is much shorter than the length scale of the variation of the
potential of the protoplanet, then the effect of the potential of the protoplanet would cancel
when it is integrated over the one wavelength. The protoplanet’s potential affects the waves
most effectively where the wavelength is largest. Thus, the waves are considered to be excited

at where k¢ = 0 and propagate toward where k7 > 0.!

First, we consider the n = 0 waves. From equation (5.6), it is seen that the verfical
component of the velocity is zero. Thus n = 0 waves represent the two-dimensional waves.
Figure 5-2 shows that n = 0 waves can exist only where |£| > 1, i.e. outside of the LRs.

These waves are excited at LRs and propagate away from the protoplanet.

1AL ke = 0 the validity of WKB approximation is lost. However, more careful calculation also shows the
wave excitation at kg = 0 (see Goldreich & Tremaine 1978).
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Fig. 5-2.— WKB wave number for various n. The waves propagate only where k% > 0.
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For n > 2 waves, they have the non-zero vertical component of the velocity, and thus
represent the three-dimensional waves. They can propagate where || < 1 or [{| > /n.
Thus, there are two types of three-dimensional waves. One is excited at LR (§ = £1) and
propagates toward the protoplanet. The other is excited at £ = ++/n and propagates away
from the protoplanet. The former waves cannot propagate outside the LRs, because there
are the evanescent regions just outside the LRs. Therefore, these waves cannot contribute
to broaden the gap. The latter waves are excited at ¢ = +./n, that are farther from the
protoplanet than the location where the n = 0 waves are excited. Because the gravity of
the protoplanet decreases with the distance, the amplitude of the three-dimensional waves
are smaller than the two-dimensional waves. Therefore, the effect of the three-dimensional

‘waves on the gap size can be neglected.

5.1.5. Angular momentum flux

In this subsection equation (5.18) is integrated numerically and the angular momen-
tum carried by the three-dimensional waves is calculated. The boundary condition is that
only out-going waves exist at infinity, because there is no source of the waves except the
protoplanet. This condition requires that the solution approaches the WKB solution (5.22)
with negative k¢ at large |€|. Equation (5.18) has the singular point at £ = 0 (co-rotation
resonance). According to Lin’s rule (Lin 1955, chap.8), we took the path of integral in the
complex £ plane passing below this singular point to treat the singularity. This procedure
is equivalent to introducing a small viscosity around the singular point. The solutions for
the two-dimensional waves (n = 0) are shown in Figure 5-3, where the real and imaginary
parts of P, are plotted as a function of £ for various wave number in y direction, k,. Figure
5-4 shows solutions for the three-dimensional waves (n = 2). For k, = 2, the solutions are

plotted only for |¢| < 5. In these figures we adopt the sound speed as € = 5 x 10778,

The angular momentum flux is calculated by (Lynden-Bell & Kalnajs 1972;
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2~ k=20

Po(£)

Fig. 5-3.— Wave functions for n = 0 two-dimensional waves. Solid lines show the real part
of the functions, and dotted lines show the imaginary part. For k, = 2, the function is

plotted only for €] < 5.
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P,(£)

2l k=40

Fig. 5-4.— Wave functions for n = 2 three-dimensional waves. Solid lines show the real
part of the functions, and dotted lines show the imaginary part. For k, = 2, the function is

plotted only for |£| < 5.
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Fig. 5-5.— Angular momentum flux as a function of £ for n = 0 two-dimensional waves.
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Fig. 5-6.— Angular momentum flux as a function of £ for n = 2 three-dimensional waves.
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Lin, Papaloizou & Savonije 1990a)

Por

2 reo 2nfk
F= P fm i fu " dyRe[u]Relvi). (5.24)

=k
Figure 5-5 and 5-6 show the angular momentum flux carried by the two-dimensional waves
(n = 0) and by the three-dimensional waves (n = 2), respectively. Since the functional form
of the flux is symmetrical with regard to £ = 0, the flux is plotted only for £ > 0. It is
seen that the angular momentum flux is constant in £ for large |£|. Figure 5-7 shows the
angular momentum flux at large |£| for various n. The angular momentum carried to infinity
by the three-dimensional waves (n > 2) is quite smaller than by the two-dimensional waves
(n = 0), as seen from the WKB approximation. Therefore, the three-dimensional waves do

not contribute to broaden the gap in the case of the protoplanetary disk.

It should be noted that our analysis is restricted to the isothermal perturbation. If
the perturbation is not isothermal, not only the pressure waves discussed here but also the
gravity waves would propagate in the disk, and carry additional angular momentum. In this
case, however, the perturbation equations are not separable, and hence difficult to solve.
Calculating the angular momentum carried by the gravity waves is remained as the future

problem.

5.1.6. Wave refraction toward vertical direction

Finally, we discuss the wave refraction due to the temperature gradient in vertical
direction. Lin, Papaloizou & Savonije(1990a,b) investigated wave propagation in a disk
which has density and temperature structure in vertical direction. They found that vertical
temperature gradient causes the wave refraction toward the disk surface. The waves excited
at LRs propagate horizontally at first. If the temperature increases vertically toward the
midplane, the sound speed also increases toward midplane. Thus, the wave front become
progressively more retarded as the vertical distance from the midplane increases. The wave

front may tilt until it becomes almost parallel to the plane of the disk. Waves begin to
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propagate in the vertical direction after they have propagated a moderate distance beyond
the LR in the radial direction. Because the density decreases with height, the amplitude of
the waves becomes larger as the waves propagate toward the surface of the disk, and the
waves may dissipate through the shock formation. Waves with larger m have larger radial
wave number and refract more easily. Waves with m ~ rQ/e dissipate through vertical
propagation and cannot propagate over a large distance in the radial direction. Only the
small m waves can propagate in the radial direction. Hence, the gap size may become smaller

than indicated by our calculation.

However, if the disk is isothermal in the vertical direction, then the wave refraction does
not occur. As discussed in §5.1.1 the protoplanetary disk is expected to have an isothermal
structure at the stage considered in this thesis. Thus, we conclude that the effect of the

wave refraction can be neglected.

5.2. Effects of the self-gravity of the protoplanetary disks

In this section, we consider the effect of the self-gravity of the protoplanetary disks on

the wave propagation and discuss the validity of the approximation of the non-self-gravitating

disks.

The waves excited at LRs propagate toward the orbit of the protoplanet in the disk
with self-gravity, while the waves propagate away from the protoplanet if only the pressure
force is exist. The wave length of these waves becomes shorter as they propagate, and thus
the effect of the pressure force becomes stronger. Before the waves reach at the radius of
the protoplanet’s orbit, they are reflected by the pressure force and then propagate away
from the protoplanet as the pressure waves discussed in the previous chapters. Therefore, if
the waves launched to the protoplanet damp before they reflect and return to the LR, the

expansion of the gap due to the wave propagation does not occur. We derive the condition

for this.
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For the disks with self-gravity, the expression for the radial wave number (eqs. [A14]

and [A15]) are modified as

Relik(r)]| = T2 [(“f;’"’)z - 2]f (5.25)
1

m[k(r)] =

- m(Q — Q,){2¢Re[k] — sgn(Re[k])2nGog )}
2

4 K
2 2 2 ‘ 3
X {m (ﬂ e ﬂp} (C + §b‘ -+ mv) R,B[k] ER 2?1'GJ;]V|R.€[R‘]| } a
(5.26)
The waves excited at LRs have positive sign of Re[k]. From equation (5.25), it is seen that

the reflection of the waves occurs at

rGoo\®> D & i
( E “) -5 =0 (5.27)
The distance from the LR to the reflection point is approximately
o~ T_L -2
d=s e : (5.28)
where
el
= 5.29
Q e (5.29)

is Toomre’s stability parameter. The wave number of the waves having returned at the LR
18
2rGog

Relk(rz)] = T

(5.30)

If |Im[k(rz)]|d < 1, then the waves do not damp before returning to the LR (see eq. [A17]),

and then the disk can be treated as non-self-gravitating. From equations (5.26), (5.28),
(5.29) and (5.30)

Cicn [ ]k = ﬁ (‘"Lc”) (%Q'a + 8Q"5) - (5.31)

where we assume ( = 0 and v = ac?/9Q for simplicity. The self-gravity is effective for small
m and small ¢. Even for the disks with a large viscosity as e = 1, and a small sound speed

as rQl/ec =102, if Q > 6, then the waves does not damp before returning to the LR.

For the protoplanetary disks with the minimum-mass adopted in this thesis, @ is as

large as 20. Therefore the effect of the self-gravity can be neglected.
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Chapter 6

Summary

The evolution of the protoplanetary disks due to the protoplanet’s gravity is investigated.

In particular the effect of the wave propagation is studied in detail.

The propagation and damping of the density waves excited at LRs are solved using
WKB approximation. Our calculation shows that waves can propagate in disks with low
viscosity. For a £ 1073, m = 2 waves, and for a g 107*, m ~ (r}/e), ~ 20 waves can
propagate to the inner edge of the disk. The torque exerted through the damping of these
waves is spread over the entire disk with such a low viscosity. Thus, for the disks with the

low viscosity, whole the disk evolves by the protoplanet’s gravity.

The gap sizes are calculated for the various value of the viscosity and the mass of the
protoplanet. We found that the gap size is determined by two mechanisms. If the viscosity
of the disk is enough large for waves to damp immediately, the gap size is determined by
the balance between the protoplanet’s torque and the viscous diffusion of the gas, as derived
previously by Lin & Papaloizou(1986a). However, for the disk with a low viscosity, the gap
size is determined by the propagation distance (damping length) of the waves. Because the
damping length increases with decreasing viscosity, the gap size becomes wider for the disk
with the lower viscosity. If the mass of the protoplanet is larger than Jupiter, even the lowest

m waves can be effective to open a gap. These low m waves propagate large distance even
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in the disk with a high viscosity(a ~ 107'), and the effect of the wave propagation cannot
be neglected. The protoplanet with a Jupiter mass would induce the depletion of the inner
disk onto the central star if & £ 3 x 10™* and the m = 2 waves propagate to the inner edge

of the disk. The time scale of the depletion of the inner disk is of order 10° years.

This removal of the inner disk causes the evolution of the spectral energy distribution
of the pre-main-sequence star. Our calculation suggests that some T Tauri stars whose

spectrum has a deficit in the near-infrared have unseen companions, i.e. protoplanets.

We derived the conditions for the gap formation. One is the condition for that the
protoplanet opens up a gap before the diffusion of the gas closes it, as derived by Goldreich
& Tremaine (1980) and Lin & Papaloizou (1979a). The other is for that the protoplanet
does not escape from the gap, which is proposed by Hourigan & Ward (1984). We improved

these conditions to include the effect of wave propagation.

Our results are applied to the gap sizes derived from the observations of the disks around
pre-main-sequence binary stars, GW Ori and GG Tau. We infer that a ~ 1072 in the disks

around GW Ori and GG Tau.
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Appendix

A. Transport of angular momentum

The disk is assumed to be infinitesimally thin and non-self-gravitating and has small
shear viscosity v, and bulk viscosity (. The viscosity may vary with the surface density and
the temperature. The uncertainty in the viscous damping of waves arises from the unknown
dependence of the viscosity on the surface density or the temperature. Some models of
the viscosity promote wave growth rather than a decay of the wave (Kato 1978; Borderies,
Goldreich & Tramaine 1985). In this thesis we assume that the variation of the viscosity

due to the perturbation is negligible for simplicity.

The basic equations governing the disk are

%v + (v Vo ==V(n+po+¢1) +vhv + (C + '1:;”) V(V - v), (A1)
a 3
prid +V:(ov) =0, (A2)

where v is the velocity, o is the surface density,  is the enthalpy, ¢ is the potential of
the central sté.r, and ¢, is the potential of the protoplanet. In cylindrical coordinates (r,#8),
the velocity is written as v = (u,v). The pressure, p, relates to the surface density through
polytropic relation,

p=Ka". (A3)

The enthalpy and sound speed, ¢, satisfy

_ 9
(y—1n=d=—. (Ad)
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The viscosity is assumed to be small. Thus, the radial drift of the disk is neglected
for the unperturbed state. The unperturbed disk rotates as, vo = (up,v0) = (0,70(r)).

Considering small perturbation, the variables are

u(r) = 0+ z Re[utim](r) exp{im(8 — Q,t},
v(r) = rQ(r)+ Z Re[v{™(r) exp{im(0 — Q,t}], -
o(r) = oo(r) + Y Relo{™(r) exp{im(6 — Q,t}],

no(r) + 3_ Re[ni™ (r) exp{im(8 — Q,t}],

Il

n(r)

where (2, is the angular velocity of the protoplanet. These expressions are substituted into
equations (Al) and (A2), and crim) is eliminated using equations (A3) and (A4). We then

obtain the following perturbation equations for each Fourier components

. 18 ( du m? 2im u
im (= Qphuy — 20v; = ‘“_{7?1 +¢m) +v { o (Ta—;) —EWs U r_;]
da|l1a 2
(“ )ar L-ar( W)+ T”‘] ° (A6)
. 2 -
QBH]_ + H'H{Q— —_ -.QP)U] = —?[?}'1 + E1":".|'r;) + v [_E ( C;:) —_ %Ul <+ I_TUI _ U_:
1 14 im
= © (C - EV) ; dr(rul) +— ] (A7)

TJoh
{:2

}-i(rm}ul) + imEc? + im( — Q)

ror =0, (A8)

where ¢, is the Fourier component of the protoplanet’s potential and given by equation

(2.6). We omit superscript “(m)” on perturbation variables. The Qort parameter B is

defined by
B(r) = 2,_,&_,( r*Q), (A9)

and is related to the epicycle frequency &(r) by &* = 4BQ.

The protoplanet’s potential, ¢,,, excites density waves at LRs (Goldreich & Tremaine
1979). These waves have angular momentum flux, Fi,q, and propagate far away from the

protoplanet. As the waves propagate, the wave length becomes shorter, and the waves tend
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not to couple with the slowly varying potential, »,,. Thus, once the waves are launched from
the LR with angular momentum flux, F,,o, they propagate as free waves. We consider the

homogeneous free wave solutions of equations (A6) - (A8). We look for solutions of the form

ui(r) = U(r)expli [ k(r")dr],
vi(r) = V(r)exple [T k(r")dr], (A10)
m(r) = H(r)expli 7 k()dr')

where the radial wave number, k(r), is complex. Substituting equation (A10) into homo-

geneous form of equations (A6) - (A8), i.e., setting ¢, = 0, and assuming |kr| > 1, we

obtain
im(Q — Q,)U — 20V + ikH + (g + %y) KU =0, (A1)
2BU + im(Q — Q,)V + vk2V =0, (A12)
ST np)g ), (A13)

Neglecting quantities quadratic in v and (, the dispersion relation is given by

m(Q — 0,)% — &2

Relk(r)]? = "=

; (Al14)

and

Im{k(r)] = ~ {c n (§ b ﬂp}z) } 0= L) pefy) (AL5)

Similar relation for the planetary rings is derived by Shu (1984). The group velocity of the
waves is given by

4  Relle?
(") = Fraiy ™) = “m@—y

The waves excited at LRs and propagating away from the protoplanet have positive sign of

Refk].

(A16)

The angular momentum flux carried by the waves is given by (Lynden-Bell & Kalnajs

1972; Lin et al. 1990a)

F.(r) = r?og f:f Re[uy exp{im(8 — ,t}|Re[v, exp{im(8 — Q,t}]d0.
= 7rooRelUV*) exp[—2 f " Im[k]dr]. (AL7)
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For an inviscid disk {Im[k] = 0), the angular momentum flux should be constant with r

(Goldreich & Tremaine 1979). Thus,
:rrrzo'uRe[UV'] = constant. (A18)

Because at LR F,,(ry) = F, this constant is F),,o. Then, we obtain for r > rop, and r < rpg

r 2 (0 —0
Fo(r) = Fphoexp li-— [n {C + (% + m"-’{_ﬂn— ﬂp}z) u} m(922 }Re[k]dr'] . (A19)

For rrp < r < rop, m*(Q — Q,) — &% in equation (A14) becomes negative. Thus, waves

cannot propagate into that region. Then, for rjp <r < rop

Fu(r) =0. (A20)
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