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Abstract
We study evolutionary games on graphs. Each player is represented by a vertex of the graph. The
edges denote who meets whom. A player can use any one of n strategies. Players obtain a payoff
from interaction with all their immediate neighbors. We consider three different update rules, called
‘birth-death’, ‘death-birth’ and ‘imitation’. A fourth update rule, ‘pairwise comparison’, is shown to
be equivalent to birth-death updating in our model. We use pair-approximation to describe the
evolutionary game dynamics on regular graphs of degree k. In the limit of weak selection, we can
derive a differential equation which describes how the average frequency of each strategy on the
graph changes over time. Remarkably, this equation is a replicator equation with a transformed payoff
matrix. Therefore, moving a game from a well-mixed population (the complete graph) onto a regular
graph simply results in a transformation of the payoff matrix. The new payoff matrix is the sum of
the original payoff matrix plus another matrix, which describes the local competition of strategies.
We discuss the application of our theory to four particular examples, the Prisoner’s Dilemma, the
Snow-Drift game, a coordination game and the Rock-Scissors-Paper game.
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1. Introduction
Consider an evolutionary game with n strategies, labelled i = 1, …, n. The payoff matrix, A, is
an n × n matrix, whose entries, aij, denote the payoff for strategy i versus strategy j. The relative

abundance (frequency) of each strategy is given by xi. We have . The fitness of

strategy i is given by . For the average fitness of the population, we obtain

. The replicator equation is given by

(1)

This equation is one of the fundamental equations of evolutionary dynamics. It describes
evolutionary game dynamics (=frequency dependent selection) in the deterministic limit of an
infinitely large, well-mixed population. Stochasticity and spatial effects are ignored. ‘Well-
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mixed’ means that population structure is ignored; all individuals are equally likely to interact
with each other.

The replicator equation is defined on the simplex Sn, which is given by the set of all points

(x1, …, xn) with the property . The simplex Sn is invariant under replicator
dynamics: a trajectory which begins in the simplex, never leaves the simplex. Each face of the
simplex, defined by one or several startegies being absent, is invariant. The replicator equation
describes pure selection dynamics. Mutation is not considered. Each corner point of the simplex
is an equilibrium. If a strategy is evolutionarily stable or a strict Nash equilibrium, then the
corner point of the simplex corresponding to a homogeneous population using this strategy is
an asymptotically stable fixed point. There can be at most one isolated equilibrium point in the
interior of the simplex. For n ≥ 4, if there is an interior equilibrium, there can also be a limit
cycle or a chaotic attractor. Many more properties of this system and the relationship to Lotka-
Volterra equations of ecology are descibed in the book by Hofbauer & Sigmund (1998). The
replicator equation was introduced by Taylor & Jonker (1978), followed by Hofbauer et al
(1979) and Zeeman (1980). Evolutionary game theory was invented by Maynard Smith & Price
(1973) and Maynard Smith (1982). For recent reviews see Hofbauer & Sigmund (2003) and
Nowak & Sigmund (2004). Books on game theory and evolutionary game theory include
Fudenberg & Tirole (1991), Binmore (1994), Weibull (1995), Samuelson (1997), Fudenberg
& Levine (1998), Hofbauer & Sigmund (1998), Gintis (2000), and Cressman (2003).

In this paper, we study evolutionary game dynamics in structured populations (Nowak & May
1992, 1993, Ellison 1993, Herz 1994, Lindgren & Nordahl 1994, Nowak et al 1994, Killingback
& Doebeli 1996, Nakamaru et al 1997, 1998, Epstein 1998, Szabó & T oke 1998, Van Baalen
& Rand 1998, Watts & Strogatz 1998, Eshel et al 1999, Hartvigsen et al 2000, Page et al
2000, Szabó et al 2000, Skyrms & Pemantle 2000, Abramson & Kuperman 2001, Hauert
2001, Irwin & Taylor 2001, Ebel & Bornholdt 2002, Hauert et al 2002, Szabó & Hauert
2002, Brandt et al 2003, Le Galliard et al 2003, Hauert & Szabó 2003, Hauert & Doebeli
2004, Ifti et al 2004, Szabó & Vukov 2004, Szolnoki & Szabó 2004, Eguíluz et al 2005, Hauert
2005, Nakamaru & Iwasa 2005, Santos & Pacheco 2005, Vukov & Szabó 2005, Santos et al
2006ab). The individuals occupy the vertices of a graph; the edges of the graph determine
which individuals interact with each other (Lieberman et al 2005, Ohtsuki et al 2006). We
consider n strategies and the general payoff matrix A = [aij]. Each individual derives a payoff,
P, from the interaction with all of its neighbours in the graph. The fitness of an individual is
given by 1 − w +wP, where the parameter w determines the intensity of selection. The case
w → 0 represents the limit of weak selection, while w = 1 denotes strong selection, where
fitness equals payoff. Strong selection is a special case, because in general the fitness of an
individual will not only depend on the particular game that is under consideration, but on many
different factors (Nowak et al 2004). Therefore, introducing a parameter for varying the
intensity of selection is an important step, which was never taken in the traditional framework
of the replicator equation, because there w cancels out.

In games on graphs, the fitness of an individual is locally determined from interactions with
all adjacent individuals. The traditional replicator equation (1) describes the special case of a
‘complete graph’, where all vertices are connected to each other and hence all individuals are
adjacent.

We consider three different update rules for the evolutionary dynamics (Fig 1a–c), which we
call ‘birth-death’ (BD), ‘death-birth’ (DB) and ‘imitation’ (IM). (i) For BD updating, an
individual is selected for reproduction from the entire population proportional to fitness; the
offspring of this individual replaces a randomly chosen neighbor. (ii) For DB updating, a
random individual from the entire population is chosen to die; the neighbors compete for the
empty site proportional to fitness. (iii) For IM updating, a random individual from the entire
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population is chosen to revise its strategy; it will either keep its current strategy or imitate one
of the neighbors’ strategies proportional to fitness. Note that our imitation updating is different
from the ‘imitation dynamics’ introduced by Weibull (1995) and Hofbauer & Sigmund
(2003), which describe deterministic game dynamics in a well-mixed population, where
random pairs of players compare their payoffs and possibly imitate the strategy of the other.

These three update rules define three slightly different stochastic processes. In each process,
one elementary step involves two random choices, one of them is proportional to fitness. For
BD updating the first choice is proportional to fitness, for DB and IM updating the second
choice is proportional to fitness. We will find that this detail can introduce interesting
differences.

In the Appendix, we also consider a fourth update rule called ‘pairwise comparison’ (PC) (Fig
1d). Here one player is chosen at random, then one of its neighbors is chosen. The first
individual will adopt the strategy of the second indvidual with a probability that is given by 1/
[1+exp(− wΔP)] where the payoff difference is ΔP = P2 − P1. Interestingly, this update rule
leads to the same behavior as BD updating in our current analysis. Therefore, we do not need
to consider it as an additional case.

Games on graphs are stochastic, while the replicator equation is deterministic. Recently
Traulsen et al (2005, 2006a) have found that the Moran process in a well-mixed population
lead to the deterministic equation that is called adjusted replicator dynamics. What we want to
do in this paper is to derive a system of ordinary differential equations that describes how the
expected frequency of each strategy in a game on a graph changes over time. We will use pair-
approximation (Matsuda et al 1987, 1992, Van Baalen 2000) on regular graphs of degree k
(Ohtsuki et al 2006). This means each individual is connected to k other individuals. Strictly
speaking pair-approximation is formulated for infinitely large Bethe lattices (or Caily trees)
which have no loops and no leaves. It is well known, however, that pair-approximation gives
good results for random regular graphs; as the number of vertices, N, increases the probability
of short loops becomes negligible. As we will point out below our calculation requires k > 2.
For an analysis of k = 2 see Ohtsuki & Nowak (2006).

Let us introduce the n × n matrix B = [bij] for the three different update mechanisms as follows:

(2)

Let us further introduce the quantities

(3)

If xi(t) is the expected frequency of strategy i on an infinitely large graph of degree k at time
t, then our pair-approximation calculation in the limit of weak selection leads to the surprisingly
simple equation

(4)

We propose to call this equation the ‘replicator equation on graphs’. It describes how the
expected frequencies of strategies on a graph of degree k > 2 change over time. The simplicity
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and symmetry of this equation is remarkable given the complexity of the underlying stochastic
process that describes games on graphs.

The term  denotes the average fitness of strategy i, as in the replicator equation,
and comes from well-mixed interactions among all strategies. The additional term, gi,
characterizes the local competition among strategies. Note that the population average of the
local competition term sums to zero,

(5)

Therefore the average fitness of the population, , remains the
same as in the replicator equation.

As seen in eqs (2), the term for local competition, bij, includes the payoff that strategy i gets
from strategy i plus the payoff that strategy i gets from strategy j minus the payoff that j gets
from i minus the payoff that j gets from j. The diagonal terms, aii and ajj, characterize the effect
of assortativeness, while the off-diagonal terms, aij and aji, characterize the effect of spite. Note
that the matrix (bij) is antisymmetric, i.e. bij = − bji. This makes sense, because the gain of one
strategy in local competitiveness is the loss of another. In particular the diagonal terms bii are
always zero, suggesting that the payoff for one strategy playing against others using the same
strategy will always be the same irrespective of population structure.

In a structured population, it is especially important which payoff players get when interacting
with another player who uses the same strategy (assortativeness) and also which payoff
strategies provide to others with whom they are in direct competition (spite). As in eqs (2), for
BD updating the contributions from assortativeness and spite are equally strong, while for DB
updating assortativeness is stronger than spite (the coefficients for assortativeness in eqs (2)
have relative weight k + 1). IM updating has a balance of assortativeness and spite that is
somewhere between BD and DB updating.

For a zero sum game, which can be defined by aii = 0 and aij = −aji for all i and j, we find that
bij is equal to aij times a constant. Therfore, the graph has no consequence for the evolutionary
dynamics (other than affecting the time scale). For pair approximation and weak selection, a
zero sum game on a regular graph has the same evolutionary dynamics as in a well-mixed
population.

Observe also as k increases the relative contribution of gi compared to fi decreases. In the limit
k → ∞, eq (4) leads back to eq (1), the replicator equation on a highly connected graph converges
to the normal replicator equation, which agrees with the result by Traulsen et al (2006a) for
weak selection.

Finally, we note that the replicator equation on graphs can also be written in the form

(6)

Therefore, moving evolutionary game dynamics from a well mixed population (the complete
graph) onto a regular graph of degree k is simply described by a transformation of the payoff
matrix
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(7)

Our results will be derived for degree homogeneous (=regular) graphs and weak selection, but
we expect that the replicator equation on graphs is also a good approximation for many games
on non-regular graphs and for higher intensity of selection. In any case, an exact understanding
of the limiting scenario is a good point of departure for investigations of more complicated and
more specific scenarios.

The paper is structured as follows. In Sections 2,3 and 4, we will show the pair-approximation
calculations for BD, DB and IM updating, respectively. In Section 5, we will study the
Prisoner’s Dilemma, and in Section 6 the Snow-drift game, where we investigate the effect of
spatiality on the evolution of cooperation. In Section 7 we will study a coordination game to
see the possibility whether local population structure favors efficient outcomes for groups
through individual selection. In Section 8 we will study the Rock-Scissors-Paper game to
investigate spatial effect on evolutionary cycles. Section 9 contains conclusions. There is a
short Appendix showing the equivalence between PC and BD updating.

2. Birth-death (BD) updating
For BD updating, a player is chosen for reproduction from the entire population proportional
to fitness. The offspring of this player replaces a random neighbor. In this section, we will
derive the replicator equation for games on graphs with BD updating, assuming weak selection
w ≪ 1.

In a well-mixed population, the probability that a player meets an i-strategist is equal to its
global frequency, xi. For games on graphs, however, this is not necessarily true. Since dispersal
is limited, those who use the same strategy tend to form clusters. Therefore, we have to take
into account the correlation in strategies of two adjacent players.

Let qi|j be the conditional probability that the focal player uses strategy i given that an adjacent
player uses strategy j. In other words, qi|j is the local frequency of strategy i around strategy
j. The local frequency qi|j is expressed by the global frequencies of strategies as qi|j = xij/xj.
Here xij denotes the global pair-frequency of i-j pairs.

Similarly one can imagine more detailed local frequencies such as qi|jl, which represents the
conditional probability that the focal player uses strategy i given that an adjacent player uses
strategy j and that a two-step adjacent player uses strategy l. For analytical tractability, we will
adopt the pair approximation method (Matsuda et al 1987, 1992, Van Baalen 2000), which
assumes qi|jl = qi|j. The crucial assumption is that a two-step adjacent player does not affect the
focal site directly.

We are interested in the dynamics of global and local frequencies. Because we consider weak
selection, global frequencies change at a rate of order w, which is very slow. Local frequencies
change at a rate of order 1. Therefore, we have a separation of two time scales.

Let us first derive local frequencies at equilibrium. While local frequencies equilibrate, we can
regard global frequencies as constant. Suppose that a player is chosen for reproduction on
average once per unit time. Then the dynamics of local frequencies are calculated as follows

(8)
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Here δij is the Kronecker delta; δij = 1 if i = j, otherwise it is 0. From eq (8) and by using the
identity qi|jxj = qj|ixi equilibrium local frequencies are calculated as

(9)

We see that  holds. Players using strategy i have more i-neighbors than is
expected by the global frequency, while players using another strategy have less i-neighbors
than is expected.

Given these local frequencies, we can derive the dynamics of global frequencies. For
convenience we rewrite  as qi|j. We invent the term ‘(i; k1, …, kn)-player’ denoting a player
using strategy i who has k1 neighbors with strategy 1, …, and kn neighbors with strategy n.

Let us now consider one elementary step of BD updating.

The number of i-strategists increases by one, when (i) an (i; k1, …, kn)-player is chosen for
reproduction and (ii) the offspring replaces a neighbor who does not use strategy i. The first
event occurs with probability

(10)

Here W(i; k1,…kn) denotes the fitness of an (i; k1, … kn)-player, which is given by

(11)

W ̄ is the average fitness in the population. The second event occurs with probability 1 − (ki/
k).

In contrast, the number of i-strategists decreases by one when (i) an (j; k1, …, kn)-player (j ≠
i) is chosen for reproduction and (ii) the offspring replaces an i-player. The first event occurs
with probability

(12)

The second event occurs with probability ki/k.

From these calculations we obtain the expected increment of the frequency of strategy i,
denoted by E[Δxi], in one elementary step of updating, which takes time Δt. In infinite
populations stochasticity resulting from random sampling vanishes and the quantity E[Δxi]/
Δt becomes equal to ẋi. Thus we obtain the deterministic evolutionary dynamics

(13)
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We have

(14)

Neglecting the constant factor, w(k − 2)2/(k − 1), which is equivalent to a change of time scale,
gives us the replicator equation on graphs,

(15)

3. Death-birth (DB) updating
For DB updating, a random player is chosen from the entire population to die. Then the
neighbors compete for the vacancy proportional to their fitness. Again, we will derive the
replicator equation for games on graphs using DB updating and assuming weak selection w ≪
1.

First we derive the steady state of the local frequencies. Direct calculation shows that the
dynamics of local frequencies are exactly the same as eq (8). Hence, the local frequencies
converge to

(16)

Next we study the dynamics of global frequencies. Let us consider one elementary step of DB
updating.

The number of i-strategists increases by one when (i) an (j; k1, …, kn)-player (j ≠ i) dies and
(ii) one of its i-neighbors wins the competition for the vacancy. The first event occurs with
probability

(17)

The second event occurs with probability

(18)

Here Wi|j represents the fitness of an i-player one of whose neighbors is j-player, given as

(19)

In contrast, the number of i-strategists decreases by one, when (i) an (i; k1, …, kn)-player dies
and (ii) one of its neighbors not using strategy i wins the competition for the vacancy. The first
event occurs with probability
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(20)

The second event occurs with probability

(21)

From these calculations we obtain

(22)

We have

(23)

Again, neglecting the constant factor yields the replicator equation on graphs,

(24)

4. Imitation (IM) updating
For IM updating, a random player is chosen for updating his strategy from the entire population.
Then he will either keep his current strategy or imitate one of the neighbors’ strategies
proportional to fitness. As before, we assume weak selection w ≪ 1.

First we derive the steady state of local frequencies, regarding global frequencies as constant.
Direct calculation leads to

(25)

From this, we obtain the steady state of local frequencies as

(26)

As before, let us derive the dynamics of xi. Consider an elementary step of IM updating. The
number of i-strategists increases by one when (i) an (j; k1, …, kn)-player (j ≠ i) is chosen for
updating and (ii) he imitates one of his i-neighbors. The first event occurs with probability
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(27)

The second event occurs with probability

(28)

The number of i-strategists decreases by one, when (i) an (i; k1, …, kn)-player is chosen for
updating and (ii) he imitates one of his neighbors not using strategy i. The first event occurs
with probability

(29)

The second event occurs with probability

(30)

From these calculations we obtain

(31)

We have

(32)

Neglecting the constant factor yields the replicator equation for games on graphs using IM
updating,

(33)

5. The Prisoner’s Dilemma
Consider a Prisoner’s Dilemma game (Rapoport & Chammah 1965, Trivers 1971, Axelrod &
Hamilton 1981). A cooperator pays a cost c for his opponent to receive a benefit b. We assume
b > c. A defector pays nothing. The payoff matrix of this game is given by

(34)
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Defection, D, dominates cooperation, C. Defection is a strict Nash equilibrium. The traditional
replicator equation of a well-mixed population is given by

(35)

Here x represents the frequency (=relative abundance) of cooperators in the population.
Equation (35) has two fixed points: (i) at x = 1 there is an unstable equilibrium where everybody
cooperates; at x = 0 there is a stable equilibrium where everybody defects. Therefore x = 0 is
the global attractor of these dynamics. Hence, evolutionary game theory predicts the victory
of defectors in well-mixed populations.

The game dynamics can drastically change if we consider a structured population. The
replicator equation of the Prisoner’s Dilemma on a graph of degree k for the three different
update rules is given by

(36)

For BD updating, defectors always win over cooperators as in well-mixed populations. For
DB updating, however, if b/c > k, then cooperators win over defectors. Similarly, for IM
updating, cooperators win over defectors if b/c > k + 2. We note that these conditions are
identical to those derived by Ohtsuki et al. (2006), when analyzing the fixation probabilities
of cooperators and defectors on graphs. For DB updating, natural selection favors cooperators
over defectors if the benefit-to-cost ratio of the altruistic act exceeds the degree of the graph,
k (which denotes the number of neighbors of any one individual). Smaller connectivity, k,
favors cooperators because then clustering is easier. Interestingly, Ohtsuki et al (2006) observe
that the conditions b/c > k and b/c > k +2 also hold in numerical simulations of the Prisoner’s
Dilemma on degree heterogeneous (=non-regular graphs) such as random graphs and scale
free networks. In this case, the parameter k denotes the average number of neighbors per
individual. Therefore, we conjecture that the replicator equation on graphs (eq 4) will also
extend to many non-regular graphs, but we cannot prove this at present.

DB and IM updating can also predict a couple of interesting phenomena for the general
Prisoner’s Dilemma game given by the payoff matrix

(37)

The game is a Prisoner’s Dilemma if T > R > P > S. As a specific example, let us consider

(38)

If this game is played on a graph with degree k = 3, then the corresponding replicator dynamics
for DB updating is given by

(39)

There is a stable equilibrium at x* = 1/2. Therefore, in this example, unconditional cooperators
and defectors can coexist.

Ohtsuki and Nowak Page 10

J Theor Biol. Author manuscript; available in PMC 2008 June 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



As another example consider the Prisoner’s Dilemma given by the payoff matrix

(40)

The replicator equation of this game for DB updating and weak selection on a regular graph
with k = 3 is given by

(41)

There is an unstable equilibrium at x* = 5/7. Hence, the system exhibits bistability between
cooperation and defection.

6. The Snow-drift game
Consider a snow-drift game. Two drivers are trapped on either side of a snowdrift in a blizzard.
Cooperation means to get out of the car and shovel. Defection means to relax, remain in the
car and let the other one do the work. If either one of them cooperates, then both gain the benefit
of getting home, b. The cost of removing the snowdrift is c. If both drivers shovel (cooperate),
then the cost for each of them is c/2. It is assumed that b > c. The payoff matrix of this game
is given by

(42)

Let x denote the frequency of cooperators. The traditional replicator equation describing a well-
mixed population leads to stable coexistence of cooperators and defectors at x̂ = 1 − r, where
r = c/(2b − c).

For DB and IM updating on a regular graph of degree k ≥ 3, we find that the equilibrium
frequency of cooperators, x*, is always greater than x̂. Furthermore, we find that x* = 1 if b/c
> (k2 + 1)/(2k + 2) for DB updating and if b/c > (k2 + 2k + 3)/(2k + 6) for IM updating. Therefore,
spatial effects (graph selection) always favors cooperators for these two update rules.

For BD updating, we find that the equilibrium frequency of cooperators is greater than in the
well-mixed case, x* > x̂, if b/c > 3/2. Remarkably, this condition does not depend on the degree
of the graph. (but remember that all our results are derived for k ≥ 3). In addition, for BD
updating some parameter choices lead to dominance of one strategy over the other. If b/c > (k
+1)/2 then x* = 1, which means that defectors become extinct. If b/c < (2k − 1)/(2k − 2) then
x* = 0, which means that cooperators become extinct.

Hauert & Doebeli (2004) have studied the effect of spatial structure on the snow-drift game.
One of their update rules is equivalent to our PC updating and therefore similar to BD updating
in our analysis (see Appendix). Based on numerical simulations, Hauert & Doebeli (2004)
make the interesting observation that spatial structure can inhibit cooperation in the snow-drift
game. This finding is in qualitative agreement with our result for BD updating: if b/c < 3/2
then the equilibrium frequency of cooperators on a regular graph of (small) degree k is less
than the equilibrium frequency of cooperators in a well-mixed population. A quantitative
comparison is difficult, however, because Hauert & Doebeli did not study the case of weak
selection. Our prediction is that for weak selection and DB or IM updating, spatial structure
always favors cooperators in the snow-drift game.
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7. Pareto-efficiency versus risk-dominance in a coordination game
Consider the payoff matrix

(43)

If a > c and d > b then both strategies A and B are strict Nash equilibria. In this case, the game
is called a ‘coordination game’. It is best to do the same as the opponent; hence, both players
want to coordinate their actions. But should they play A or B? If a + b < c + d, then strategy
B is called risk-dominant (Harsanyi & Selten 1988). In the standard replicator equation
describing a well-mixed population, the basin of attraction of B is then greater than 1/2. It could
be, however, that a > d, in which case strategy A is called pareto-efficient. For both players,
the best outcome is that both choose strategy A, but the risk of receiving a low payoff is
minimized by choosing strategy B. This is an interesting dilemma. How does population
structure affect the evolutionary dynamics of such a game?

Let us consider the specific coordination game given by the payoff matrix

(44)

Let us assume that the parameter a satisfies 1 < a < 3. Therefore, both strategies A and B are
strict Nash equilibria, but B is always risk dominant over A. If a < 2 then B is both risk-dominant
and Pareto efficient. If, however, a > 2 then an interesting conflict arises, because strategy A
is pareto-efficient, while strategy B is risk-dominant.

First we study the replicator dynamics of this game in a well-mixed population. Let x denote
the frequency of strategy A. There is an unstable equilibrium at x* = 2/(1 + a). As illustrated
in Fig 2a, the system is bistable: if the initial fraction of A is greater than x*, then strategy A
will take over the whole population; if the initial fraction of A is less than x*, then strategy B
will take over the whole population. As we see in Fig 2a, strategy B always has the larger basin
of attraction.

Let us now consider this coordination game on a graph. For BD updating, the basin of attraction
of strategy B is always larger than in a well-mixed population. Therefore, BD updating favors
risk dominance. For DB updating, if a > (3k + 1)/(k + 1) then strategy A has the larger basin
of attraction. For IM updating, the equivalent condition is a > (3k + 7)/(k + 3). Since k ≥ 3 both
conditions imply that a > 2, which means that A is Pareto efficient. Therefore, DB and IM
updating of game dynamics on graphs can favor Pareto efficiency over risk dominance (Fig
2). See Ohtsuki & Nowak (2006) for similar results on the cycle (k = 2).

8. The Rock-Scissors-Paper game
Let us consider the rock-scissors-paper game (Hofbauer & Sigmund 1998). This game has
three pure strategies, R1, R2 and R3. In a pairwise matching, R1 is defeated by R2, R2 is defeated
by R3, and R3 is defeated by R1. As an example, we study the rock-scissors-paper game with
the payoff matrix
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(45)

Figure 3a shows the phase portrait of the replicator equation of this game in a well-mixed
population. Each vertex of the simplex is an unstable equilbrium corresponding to a
monomorphic population. There is an unstable equilibirum in the interior of the simplex. The
Jacobian matrix at this internal equilibrium has three eigenvalues, one of them is associated
with the transversal direction for the simplex S3 and is of no consequence. The other two
eigenvalues form a pair of complex conjugates and determine the stability of the equilibrium.
For matrix (45), the real part of those two eigenvalues is given by Re[λ] = 1/28 > 0. The fact
that this quantity is positive implies that the internal equilibrium is unstable. All orbits starting
from the interior of the simplex ultimately converge to the heteroclinic cycle at the boundary,
which consists of three edges, e1 → e2, e2 → e3, and e3 → e1. There are oscillations of increasing
amplitude, which will eventually result in the extinction of two of the three strategies (see May
& Leonard 1975).

Playing the rock-scissors-paper game on a graph not only changes the position of the internal
equilibrium, but can also affect its stability. Figures 3b–d show the phase portraits of the
replicator equation on a graph of degree k = 3 for BD (b), DB (c) and IM (d) updating,
respectively. The real part of the two essential eigenvalues of Jacobian matrix at the internal
equilibrium is

(46)

For DB and IM updating, this suggests that the internal equilibirum is stable and hence is the
global attractor of the dynamics. We observe that DB updating stabilizes the internal equilbrium
more than IM updating. In contrast, BD updating does not change the stability of the internal
equilibrium in this example.

9. Discussion
Evolutionary game dynamics in a well-mixed population can be described by the replicator
equation,

(47)

Here xi denotes the frequency of strategy i, the quantities aij denote the payoff for strategy i
versus strategy j and φ = Σij aijxixj is the average payoff in the population.

Evolutionary game dynamics on a regular graph of degree k in the limit of weak selection (w
≪ 1) can be described by the ‘replicator equation on graphs’,

(48)

For the three different update rules, birth-death (BD), death-birth (DB) and imitation (IM), the
coefficients of the B matrix are given by
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(49)

Therefore, moving a game from a well-mixed population onto a regular graph preserves the
structure of the replicator equation and only results in a transformation of the payoff matrix

(50)
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Appendix: Pairwise comparison (PC) updating
For PC updating, a random individual is chosen for updating its strategy. Then it chooses a
random neighbor. The first player adopts the neighbor’s strategy with probability 1/(1 + exp
[− wΔP]) where the payoff difference is ΔP = P2 − P1. Here w works as inverse temperature
in statistical physics (Szabó & T oke 1998, Hauert & Szabó 2005, Traulsen et al 2006bc).
Unlike the three updating rules in the main text, w can be any non-negative real number here.
As w → ∞, PC updating becomes deterministic: an updating player always imitates the
neighbor with a higher payoff but never imitates the neighbor with a lower score. This is called
imitate the better rule (Hofbauer & Sigmund 2003). In contrast, here we assume weak selection
w ≪ 1.

First we derive the steady state of local frequencies, regarding global frequencies as constant.
We obtain

(A.1)
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From this, we obtain

(A.2)

Let us derive the dynamics of xi. Consider one elementary step of PC updating. The number
of i-strategists increases by one, when a j-player is chosen for adopting the strategy of an i-
neighbor (where j ≠ i). This event occurs with probability

(A.3)

On the other hand, the number of i-strategists decreases by one, when an i-player is chosen to
adopt the strategy of a j neighbor (where j ≠ i). This event occurs with probability

(A.4)

From these calculations we obtain

(A.5)

We have

(A.6)

Neglecting the constant factor yields the replicator equation for games on graphs,

(A.7)

Note that this equation is exactly the same as for BD updating.
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Figure 1.
Four different update rules are studied in this paper. (a) Birth-death (BD) updating. A player
is chosen for reproduction from the entire population proportional to fitness. The offspring
replaces a randomly chosen neighbor. (b) Death-birth (DB) updating. A random player is
chosen to die. The neighbors compete for the empty site proportional to their fitness. (c)
Imitation (IM) updating. A random player is chosen for updating his strategy. The player keeps
his current strategy or imitates one of the neighbors’ strategies proportional to fitness. (d)
Pairwise comparison (PC) updating. A random player is chosen for updating his strategy. One
of the neighbors is chosen at random. The first player either keeps his current strategy or adopts
the neighbor’s strategy with a probability that depends on the payoff difference. Random
choices are shown in dark blue. Choices that are proportional to fitness are shown in red. BD
and PC updating (yellow background) lead to identical evolutionary dynamics in our present
analysis. DB and IM updating (light blue background) have similar behavior.
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Figure 2.
Replicator dynamics of a coordination game in a well-mixed population (a) or on a regular
graph of degree k = 3, 4 or 5 for three different update rules (b–d). The payoff matrix for the
two strategies A and B is given by eq (44). Both strategies are strict Nash equilibria. The
horizontal axes represent the parameter a. For 1 < a < 2, strategy B is both risk-dominant and
Pareto efficient. For 2 < a < 3, strategy A is Pareto efficient, while strategy B is still risk-
dominant. The solid line in each figure shows the boundary between the two basins of attraction.
The broken line indicates the point where both basins are equally large (1/2). (a) In a well-
mixed population, strategy B always has the larger basin of attraction. (b) For BD updating,
the basin of attraction of strategy B is even larger than in a well-mixed population. BD updating
favors risk-dominance. (c,d) For DB and IM updating, if a is close to 3, then strategy A has the
larger basin of attraction. Hence, DB and IM updating can favor pareto-efficiency over risk
dominance.
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Figure 3.
The replicator dynamics of the rock-scissors-paper game (eq 45) for a well-mixed population
(a), or played on graphs with degree k = 3 for BD, DB and IM updating (b–d). Each panel
shows the simplex S3. Each corner point, ei, corresponds to the monomorphic population where
only strategy Ri is present. Open and solid circles in figures represent unstable and stable
equilibria respectively. For the well-mixed population (a) and for BD updating (b), the internal
equilibrium is unstable; all orbits converge to the heteroclinic cycle at the boundary. But for
DB updating (c) and IM updating (d), the internal equilibrium is stable and becomes the global
attractor of the dynamics.
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