# Phylogenetic analyses of Zostera species based on *rbcL* and *matK* nucleotide sequences: Implications for the origin and diversification of seagrasses in Japanese waters

Yumiko Kato<sup>1</sup>, Keiko Aioi<sup>2</sup>, Yuji Omori<sup>3</sup>, Naoyuki Takahata<sup>1</sup> and Yoko Satta<sup>1\*</sup>

<sup>1</sup>Department of Biosystems Science, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
<sup>2</sup>Aoyama Gakuin Women's Junior College, Shibuya, Tokyo, Japan
<sup>3</sup>Yokosuka City Museum, Yokosuka, Kanagawa, Japan

(Received 10 September 2003, accepted 7 November 2003)

Seagrasses are composed of four families belonging to angiosperms and they are thought to become adaptive to aquatic life independently. Zosteraceae is one such family and because of the relatively high species diversity around Japan and Korea coast areas, the family might have arisen therefrom. To elucidate the origin and evolution of Zosteraceae which consists of three genera, *Phyllospadix*, Zostera, and Heterozostera, 2.8 kb nucleotide sequences of rbcL and matK genes in the chloroplast genome were examined for various species, including cosmopolitan Z. marina and endemic Z. caulescens. The phylogenetic analysis reveals the following three features. First, based on the synonymous nucleotide substitution rate of the rice chloroplast genome, we estimated the divergence times between Zosteraceae and its closest relative, Potamogetonaceae, and between different genera, Zostera and Phyllospadix, as approximately 100 million years (myr) and 36 myr, respectively, suggesting that Zosteraceae emerged somewhere in the period from 36 myr ago to 100 myr ago. Second, two subgenera of Zostera, Zostera and Zosterella, exhibit their reciprocal monophyly and appear to have differentiated from each other approximately 33 myr ago. However, the third genus Heterozostera branched off only 5 myr ago from the stem lineage leading to Zosterella and this seems too recent in comparison with the ancient divergence of the two subgenera. Third, we estimated the most recent common ancestor of subgenus Zostera as 6 myr. In Z. marina four haplotypes were found in the sample and have diversified in the past 1.5 myr. One haplotype is shared by both sides of the Japan Archipelago and its closely related haplotypes occur also in eastern Pacific Ocean. Based on these phylogeographic analyses, we propose a provisional age related classification of Zosteraceae to argue the origin and evolution.

**Key words:** age-related classification, chloroplast DNA, molecular clock, molecular phylogeny, seagrass

#### INTRODUCTION

About 450 aquatic angiosperms represent 17% of the families and 1.5% of the genera of all flowering plant species (Cook 1990; Les and Philbrick 1993; Les and Schneider 1995). Among these relatively uncommon aquatic angiosperms, there are 60 marine species (seagrasses) which belong to four monocotyledon families in a single order Alismatales (Omori 2000). This taxonomic confinement to a single order and shared morphological or physiological characters necessary for survival in marine habitats circumstantially had suggested their monophyly (den Hartog 1970; Larkum and den Hartog 1989). Actually, however, morphological analyses (Dahlgren et al. 1985) and molecular phylogenetic studies (Les et al. 1993; Waycott and Les 1996; Les et al. 1997) demonstrated the polyphyletic origin of seagrasses.

Zosteraceae is a family of marine angiosperms and comprises three genera (*Phyllospadix*, *Zostera*, and *Heterozo*-

Edited by Yoshio Sano

<sup>\*</sup> Corresponding author. E-mail: satta@mailsv.soken.ac.jp

The family is distributed mainly in temperate stera). regions of the northern and southern hemispheres. No Zosteraceae species occur in both hemispheres, although some subtropical or tropical seagrass families (Hydrocharitaceae and Cymodoceaceae) do occur in both. In genus Zostera, there are 11 species which are classified into two subgenera Zostera and Zosterella (Kuo and den Hartog 2001). Subgenus Zostera consists of four species and they are found only in the northern hemisphere. Two of these are Z. caulescens and Z. caespitosa which are endemic to northwestern Pacific Ocean (Japanese, Korean and southeastern Russian waters) and Zostera asiatica occurs in Pacific Ocean including North American Coast, while the other one is Z. marina which is cosmopolitan and occurs in both the Atlantic and Pacific (Nakaoka and Aioi 2001; Short et al. 2001). On the other hand, subgenus Zosterella consists of seven species. Five species in this subgenus are limited to Australia and New Zealand (Larkum and den Hartog 1989; Les et al. 2002). The other two are Z. japonica which occurs in northwestern Pacific Ocean and Z. noltii which occurs in northern Atlantic Ocean and the Mediterranean Sea. The high species diversity of Zosteraceae in the northern hemisphere is observed around the Japan Archipelago, suggesting that the family has evolved therefrom (Nakaoka and Aioi 2001).

Fossil records also support the Asian origin of Zosteraceae. According to Larkum and den Hartog (1989), the earliest fossils that are assigned to seagrasses were discovered from the Cretaceous layer. Some fossils are well-preserved and designated as genus *Archaeozostera* and *Thalassocharis*. It is thought that these genera belong to extant families of Zosteraceae and Cymodoceaceae, respectively. Archaeozostera specimens described from the upper Cretaceous layer were found in several locations in Japan (Koriba and Miki 1931,1958; Oishi 1931). Based on the morphological characters, Koriba and Miki (1931, 1958) regarded these specimens as a genus that is related to modern Zosteraceae, more precisely to genus Phyllospadix. However, Kuo et al. (1989) argued that Archaeozostera is unlikely to be related to Zosteraceae and instead suggested that Zosteraceae has arisen after the Tertiary (Aioi 2000). The origin of Zosteraceae remains thus controversial. Recently, Tanaka et al. (2003) analyzed matK sequences of all 11 species in Zostera in addition to Heterozostera tasmanica and *Phyllospadix iwatensis*. They found the monophyly of H. tasmanica and subgenus Zosterella and that Zosteraceae consists of three taxa of genus Phyllospadix, subgenus Zosterella and Heterozostera, and subgenus Zostera. Based upon these findings, they suggested some refinements in taxonomic classification of Zosteraceae. However, Tanaka et al. (2003) did not set the time frame for the origin and evolution of the family.

The purpose of this paper is to provide the tempo and mode of evolution in family Zosteraceae together with other related seagrasses. To this end, we have retrieved all rbcL and matK sequences in the chloroplast genome which are available for Alismatales. In addition, we have collected 30 seagrasses of five species from ten locations of Japan and Korea coast areas as well as from western coast areas of North America. For these samples, we determine about 2.8 kb sequences of rbcL and matKgenes. Based on these nucleotide sequences, we carry out the molecular phylogenetic analysis with special reference to the geographic distribution of Zostera species.

|                                                            |        | $\mathbf{S}_{]}$ | $pecies^{a}$ |        |        |
|------------------------------------------------------------|--------|------------------|--------------|--------|--------|
| $Location^{b}$                                             | Z. mar | Z. cau           | Z. cae       | Z. asi | Z. jap |
| A. Akkeshi, Hokkaido                                       | -      | _                | -            | 2      | -      |
| B. Yamada or Otsuchi, Iwate <sup>c</sup>                   | 2      | 3                | 2            |        | -      |
| C. Shizugawa, Miyagi                                       | 1      | _                | -            | -      | -      |
| D. Sajima, Hayama or Minamishitaura, Kanagawa <sup>d</sup> | 2      | 1                | -            | _      | 1      |
| E. Maisaka, Shizuoka                                       | 3      | _                | -            | -      | 1      |
| F. Asamushi, Aomori                                        | 2      | <b>2</b>         | -            | -      | -      |
| G. Uchiura, Ishikawa                                       | 1      | 1                | -            | -      | -      |
| H. Gabae, Korea                                            | 1      | 1                | -            | -      | -      |
| Seattle, U.S.A                                             | 2      | _                | -            | -      | -      |
| Ensenada, Mexico                                           | 2      | -                | -            | -      | -      |
| Total                                                      | 16     | 8                | 2            | 2      | 2      |

Table 1. Sampling locations and sample sizes

<sup>a</sup> Abbreviations are; Z. mar: Zostera marina, Z. cau: Z. caulescens, Z. cae: Z. caespitosa, Z. asi: Z. asiatica, Z. jap: Z. japonica.

<sup>b</sup> An alphabet (A to H) represents a sampled location on the geographic map in Fig. 1.

<sup>c</sup> Z. caulescens samples are collected from Otsuchi and others are from Yamada.

<sup>d</sup> Z. japonica sample is collected from Minamishitaura and Z. caulescens are from Sajima.

## MATERIALS AND METHODS

Collection of seagrasses. Regarding genus Zostera, twelve individuals of Z. marina were collected from seven locations around Japan and Korea and similarly eight of Z. caulescens from five locations (Table 1, Fig. 1). For Z. marina, four more were sampled from coast areas of Mexico and Seattle. In addition, two Z. caespitosa, two Z. asiatica, and two Z. japonica were sampled (Table 1). The habitats of these three species are restricted to coast areas of Japan and Korea (Nakaoka and Aioi 2001 for review). In general, two samples taken from a particular location were separated at least 10 m away from each other and regarded as different individuals (Inglis and Waycott 2001). There are two types of Z. marina in terms of their life style, annual or perennial. In the present analysis, however, we used mainly perennial Z. marina. Samples from Maisaka contained both annual and perennial individuals, but there were no nucleotide differences between them.



Fig. 1. Collection sites in Japan and Korea coasts. Akkeshibay (A), Otsuchi and Yamada-bay (B), Shizugawa-bay (C), Sagami-bay (D), Hamanako-lake (E), Mutsu-bay (F), Tukumo-bay (G), Gabae (H). These symbols are the same as those in Table 1.

**DNA isolation, PCR and sequencing of chloroplast genes.** Genomic DNA was extracted from 5 g of blotted wet weight of leaf materials by the Cetyltrimethylammonium bromide (CTAB) protocol (Murray and Thompson 1980; Ban 1997). The concentration of the CTAB extraction solution was 1.5% CTAB, 75 mM Tris-HCl (pH8.0), 15 mM EDTA (pH8.0), 1.05 M NaCl and that of the CTAB pellet solution was 1% CTAB, 50 mM Tris-HCl (pH8.0), 10 mM EDTA (pH8.0).

Genomic PCR was performed in 50 µl reactions containing 25 pmol of each PCR primer, 50 ng of genomic DNA, 200 µM dNTPs, and 0.6 units of ExTaq DNA polymerase (TaKaRa) in TaKaRa ExTaq buffer containing 2mM MgCl<sub>2</sub>. Amplifications were carried out in a RoboCycler Gradient 96 (Stratagene) under the following standard conditions: denaturation 1 cycle of 94°C for 2 min, 50°C for 2 min, and 72°C for 3 min; 30 cycles of 94°C for 90 sec, 50°C for 2 min, and 72°C for 3 min; and an additional extension at 72°C for 15 min. The following primers were used (Tanaka et al. 1997): rbcL-Forward, ATGTCAC-CACAAACAGAGACTAAAGC; rbcL-Reverse, GCAGCAG-CTAGTTCCGGGCTCCA; matK-Forward, TGGGTTGC-CCGGGACTCGAA; and matK-Reverse, TAGAGTACTC-GGCTTTTAAG. All PCR products were purified through QIAquick PCR Purification Kit (Qiagen), and were directly sequenced. Sequencing reactions were performed with ABI BigDye Terminator Kit and analyzed on an ABI 377 DNA sequencer (Applied Biosystems). To avoid sequencing errors, PCR products were sequenced two to four times in both directions. These sequences were deposited in DDBJ (DNA Data Bank of Japan). Accession numbers for these sequences are AB125348 to AB125361.

Phylogenetic analysis. In addition to 30 samples of five Zostera species mentioned above, 207 rbcL and 115 matK sequences (accession numbers are listed in Appendix 1 and 2 of order Alismatales were retrieved from DDBJ/Genbank/EMBL databases (as of April 2003). These sequences were aligned by CLUSTAL X (Thompson et al. 1997) and the alignment was further modified by eye. Since chloroplast DNAs have a relatively slow rate of nucleotide substitutions (Wolfe et al. 1987), there was no problem to obtain an unambiguous alignment. In the following analysis, sites or codons including any gaps were excluded. The maximum parsimony (Fitch and Farris 1974), minimum evolution (Rzhetsky and Nei 1993), and neighbor-joining (Saitou and Nei 1987) methods were used to construct the phylogeny. Programs for these tree-making methods are implemented in PHYLIP version 3.572 (Felsenstein 1995) and MEGA2 (Kumar et al. 2000). The synonymous and nonsynonymous substitutions are distinguished based on the modified Nei-Gojobori method (Nei and Kumar 2000) and multiple-hit substitutions are corrected by Jukes and Cantor (1969) method. Hereafter the nucleotide differences (p-distances) are used for studying closely related sequences and the nucleotide divergences (d-distances) after multiple-hit corrections are used for studying the time frame of the phylogeny.

**Relative rate test.** The rate heterogeneity of nucleotide substitutions within Zosteraceae was tested through the two-cluster method by Takezaki et al. (1995). In addition, the rate heterogeneity at the synonymous sites



Fig. 2. NJ trees of Alismatales based on rbcL (A) and matK (B) sequences. There are 207 rbcL and 115 matK sequences available from DDBJ/Genbank/EMBL. The size of region used in the analysis is 949 bp for rbcL and 1157 bp for matK. The *d*-distance in the entire region is used for constructing the phylogenetic tree. Different colors correspond to different families. Families including seagrass species are boxed. The lineages leading to seagrasses are shown in red thick lines. The bootstrap values for each family of more than 75% are shown.

was examined by looking at the correlation in the d-dis-

tances between *rbcL* and *matK* genes over various species pairs. Also, the rate heterogeneity of nucleotide substi-

tutions of Zosteraceae relative to Oryza sativa was tested

by using *Arabidopsis thaliana* as an outgroup. This test was carried out by the Tajima's method (1993) imple-

mented in MEGA2.

**Phylogenetic position of Zosteraceae in order Alismatales.** We determined 24 *rbcL* sequences of 1376 bp from four *Zostera* species (*Z. marina, Z. caespitosa, Z. caulescens,* and *Z. japonica*) as well as 1288 bp from *Z. asiatica* and 30 *matK* sequences of 1503 bp from the all

(A) Z. marina R1 Z. marina R2 Zostera caulescens 100 Z. caespitosa Zostera Z. asiatica Z. japonica 98 Z. noltii Zosterella Z. muelleri 100 Z. capricorni Z. mucronata 100 79 H. tasmanic Heterozostera · P. torreyi **Phyllospadix** P. distinctus A. commutatus - W. arrhiza 0.01 **(B)** Z. marina M1 Z. marina M2 Z. marina M3 Zostera marina M4 caespitosa 100 Z. caulescens Zostera Z. asiatica Z. japonica 100 Z. noltii Zosterella Z. muelleri Z. mucronata 100 100 Z. capricorni 100H. tasmanica Heterozostera P. iwatensis Phyllospadix - P. distinctus A. commutatus W. arrhiza

0.01

Fig. 3. NJ tress of Zosteraceae based on rbcL (A) and matK (B) sequences. The bootstrap values of more than 75% are shown. Sequences of A. commutatus and W. arrhiza from family Araceae are used as outgroups. Both trees are constructed based on d-distances.

five Zostera species. In addition, to search for the most closely related species to Zosteraceae, we used 207 rbcL and 115 matK sequences of order Alismatales to which four seagrass families (Zosteraceae, Posidoniaceae, Cymodoceaceae, and Hydrocharitaceae) and other ten families belong. The rbcL sequence data cover all 14 families of Alismatales while the matK sequence data cover seven. Using the nucleotide sequences from family Araceae as

outgroups (Les et al. 1997), we first constructed the NJ trees based on the d-distances at rbcL and matK sequences, separately (Fig. 2). Both trees show consistently that the most closely related family to Zosteraceae is Potamogetonaceae. This conclusion does not change whether the synonymous or nonsynonymous substitutions are used. The same is true for tree-making methods. The cluster of family Zosteraceae and Potamo

| (A)           |                                                                                 |             |
|---------------|---------------------------------------------------------------------------------|-------------|
| species       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                           | 1 2 6 0 8 9 |
| Z. marina R1  | G A C C G T C G C C G A T T T A A T G T C G T T A C A A A T C C T G T C T T T T | сс          |
| Z. marina R2  |                                                                                 |             |
| Z. caulescens |                                                                                 |             |
| Z. caespitosa |                                                                                 |             |
| Z. asiatica   |                                                                                 |             |
| Z. japonica   | . G A A                                                                         | г.          |
| Z. noltii     | . G A A G C . C G . C T T . A . T C . G A T C                                   | ſT          |
| Z. muelleri   | . G A A G C . C G . C T T . A . T C . G A T C                                   |             |
| Z. mucronata  | . G . , A A , G C . C G . C T T . A . T C A T C                                 | . т         |
| Z. capricorni | . G A A G C . C G . C T T . A . T C . G A T C                                   |             |
| H. tasmanica  | . G A A T C G C . C G . C T . T T . A . T C A T C                               | . т         |
| P torrevi     | AGGT ATTGCCC GCTC CAG CGGCG G A CCCC                                            | Т           |

| 1 | 1 | n | 1  |
|---|---|---|----|
| £ | 1 | н |    |
| ٦ |   | v | ., |

| (B)           |                |                |             |                |             |             |                   |                |             |                   |                   |             |                  |                                                                                          |                  |                  |                      |                                                                                       |                            |                  |                  |                  |                  |                                                                       |                          |                  |             |             |             |                                                                                        |                  |                  |             |                  |                                                                                        |                                                                                   |                  |                  |                                                                                              |                                                                                                     |                  |                  |                       |                          |                  |                                                                                                   |                   |                  |                  |                      |                  |                  |                          |                        |                  |                      |                        |                  |                  |             |      |                |             |
|---------------|----------------|----------------|-------------|----------------|-------------|-------------|-------------------|----------------|-------------|-------------------|-------------------|-------------|------------------|------------------------------------------------------------------------------------------|------------------|------------------|----------------------|---------------------------------------------------------------------------------------|----------------------------|------------------|------------------|------------------|------------------|-----------------------------------------------------------------------|--------------------------|------------------|-------------|-------------|-------------|----------------------------------------------------------------------------------------|------------------|------------------|-------------|------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------|------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|------------------|-----------------------|--------------------------|------------------|---------------------------------------------------------------------------------------------------|-------------------|------------------|------------------|----------------------|------------------|------------------|--------------------------|------------------------|------------------|----------------------|------------------------|------------------|------------------|-------------|------|----------------|-------------|
| species       | 49             | 1 2            | 3           | 4 6            | 57<br>35    | 8           | 1<br>0<br>4       | 11<br>22<br>58 | 1<br>3<br>5 | 1<br>3<br>6       | 1 1<br>5 7<br>6 2 | 1 1 7 7 2 8 | 1<br>9<br>4      | 22<br>11<br>59                                                                           | 2 2 2            | 2<br>2<br>3      | 2<br>2<br>4          | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                               | 2 2 3 4 9 9                | 2<br>5<br>6      | 2<br>6<br>7      | 2<br>8<br>2      | 2<br>8<br>3      | 2<br>8<br>9                                                           | 2 3                      | 3                | 3<br>6<br>1 | 3<br>6<br>2 | 3<br>6<br>4 | 33<br>68<br>51                                                                         | 3<br>3<br>9<br>6 | 4 0 2            | 4<br>0<br>8 | 4<br>1<br>0      | 4 4 3 3                                                                                | 44<br>34<br>82                                                                    | 4<br>5<br>9      | 4<br>6<br>3      | 4 2                                                                                          | 55<br>46<br>7                                                                                       | 569              | 5<br>7<br>1      | 5<br>8<br>2           | 5 5<br>8 9<br>7 0        | 5<br>9           | 6 (<br>0 )                                                                                        | 56<br>11<br>28    | 6<br>2<br>5      | 6<br>2<br>9      | 6 6<br>3 5<br>0 7    | 66               | 6<br>7<br>3      | 6 1<br>8 1<br>6 (        | 7713                   | 7<br>4<br>7      | 7 1                  | 1755                   | 7 7 5            | 7<br>8<br>3      | 7<br>8<br>9 | 7799 | 78<br>90<br>91 | 8<br>0<br>4 |
| Z. marina M1  | ΑT             | с              | 5 G         | Τı             | ٩G          | i C         | A                 | тс             | c c         | Т                 | Т                 | ГG          | с                | T /                                                                                      | ۱A               | т                | Т                    | G 1                                                                                   | ΓA                         | ۰c               | т                | т                | С                | Τ.                                                                    | A /                      | ١C               | ст          | Т           | т           | A 1                                                                                    | ГС               | C G              | т           | т                | A '                                                                                    | τс                                                                                | G C              | Т                | A                                                                                            | т                                                                                                   | G A              | с                | Α.                    | Λ /                      | ιT               | A (                                                                                               | GΑ                | Т                | т                | т                    | G G              | С                | T (                      | G C                    | А                | G '                  | rс                     | : с              | G                | т           | τA   | ٩C             | G           |
| Z. marina M2  |                |                |             |                |             |             |                   |                |             |                   |                   |             |                  |                                                                                          |                  |                  |                      |                                                                                       |                            |                  |                  |                  |                  |                                                                       |                          |                  |             |             |             |                                                                                        |                  |                  |             |                  |                                                                                        |                                                                                   |                  |                  |                                                                                              |                                                                                                     |                  |                  |                       |                          |                  |                                                                                                   |                   |                  |                  |                      |                  |                  |                          |                        |                  |                      |                        |                  |                  |             |      |                |             |
| Z. marina M3  |                |                |             |                |             |             |                   |                |             |                   |                   |             |                  |                                                                                          |                  |                  |                      | . ·                                                                                   |                            |                  |                  |                  |                  |                                                                       |                          |                  |             |             |             |                                                                                        |                  |                  |             |                  |                                                                                        |                                                                                   |                  |                  |                                                                                              |                                                                                                     |                  |                  |                       |                          |                  |                                                                                                   |                   |                  |                  |                      |                  |                  |                          |                        |                  |                      |                        |                  |                  |             | . (  | с.             |             |
| Z. marina M4  |                |                |             |                |             |             |                   |                |             |                   |                   |             |                  |                                                                                          |                  |                  |                      |                                                                                       |                            |                  |                  |                  |                  |                                                                       |                          |                  |             |             |             |                                                                                        |                  |                  |             |                  |                                                                                        |                                                                                   | т                |                  |                                                                                              |                                                                                                     |                  |                  |                       |                          |                  |                                                                                                   |                   |                  |                  |                      |                  |                  |                          |                        |                  |                      |                        |                  |                  |             | . (  | с.             |             |
| Z. caulescens |                |                |             |                |             |             |                   | G.             |             |                   | . (               | с.          |                  |                                                                                          |                  |                  |                      | А                                                                                     |                            |                  |                  |                  |                  |                                                                       |                          |                  |             |             |             |                                                                                        |                  |                  |             |                  |                                                                                        |                                                                                   |                  |                  |                                                                                              |                                                                                                     |                  |                  |                       |                          |                  |                                                                                                   | Α.                |                  |                  |                      | . т              | т                |                          |                        |                  |                      |                        |                  |                  |             |      |                |             |
| Z. caespitosa |                |                |             |                |             |             |                   |                |             |                   |                   | . т         | т                |                                                                                          |                  |                  |                      |                                                                                       |                            |                  |                  |                  |                  |                                                                       |                          |                  |             |             |             | . (                                                                                    | с.               |                  |             |                  |                                                                                        |                                                                                   |                  |                  |                                                                                              |                                                                                                     |                  |                  |                       |                          |                  |                                                                                                   | Α.                |                  |                  |                      |                  |                  |                          |                        |                  | A                    |                        |                  |                  |             | . (  | с.             |             |
| Z. asiatica   |                | . ,            | λ.          |                |             |             |                   |                |             |                   | . (               | с.          |                  |                                                                                          |                  |                  |                      |                                                                                       |                            |                  |                  |                  |                  |                                                                       | . (                      | з.               |             |             |             | с                                                                                      |                  |                  |             |                  |                                                                                        |                                                                                   |                  | с                |                                                                                              | с                                                                                                   |                  |                  |                       |                          |                  |                                                                                                   | Α.                |                  |                  |                      |                  |                  |                          |                        |                  |                      |                        |                  |                  |             | . (  | с.             |             |
| Z. japonica   | G A            |                |             | . (            | а.          |             | с                 |                | T           |                   | с                 | с.          |                  | A 1                                                                                      | r.               | A                |                      |                                                                                       |                            |                  | С                | с                | A                |                                                                       | . (                      | 3 A              | ۱C          |             |             |                                                                                        |                  | Т                | с.          |                  | G                                                                                      | . (                                                                               | з.               | С                | С                                                                                            | С                                                                                                   | гο               | A                |                       | с                        |                  |                                                                                                   | Α.                | С                | Α                | C /                  | ٩.               |                  | С                        | . A                    | G                | . (                  | с.                     | т                |                  | с           | G    | с.             | Λ           |
| Z. noltii     | GΑ             |                |             | . (            | з.          |             | С                 |                | . т         |                   | с                 | с.          |                  | A 1                                                                                      | r.               | А                |                      |                                                                                       |                            |                  | С                | с                | A                |                                                                       | . (                      | G A              | ١C          |             |             |                                                                                        |                  | т                | c           |                  | G                                                                                      | . 0                                                                               | :.               | С                | С                                                                                            | с                                                                                                   | гс               | A                |                       | с                        |                  |                                                                                                   | Α.                | с                | Α                | c /                  | ٩.               |                  | с                        | . A                    | G                | . (                  | с.                     | . т              |                  | с           | G    | с.             | А           |
| Z. muelleri   | GΑ             |                |             | . (            | з.          |             | с                 |                |             |                   | с                 | с.          |                  | A                                                                                        |                  | А                |                      |                                                                                       |                            |                  | с                | с                | A                |                                                                       | . (                      | G A              | ١C          |             |             |                                                                                        |                  | . т              | c           |                  | G                                                                                      | . 0                                                                               | :.               | С                | С                                                                                            | с                                                                                                   | гο               | А                |                       | с                        |                  |                                                                                                   | Α.                | с                | А                | ¢,                   | ٩.               |                  | с                        | . A                    | G                | . (                  | с.                     | . т              |                  | с           | G (  | с.             | А           |
| Z. mucronata  | GΑ             |                |             | . (            | з.          |             | с                 |                |             |                   | С                 | с.          |                  | A                                                                                        |                  | А                |                      |                                                                                       |                            |                  | С                | с                | A                |                                                                       | . (                      | G A              | ١c          |             |             |                                                                                        |                  | . т              | c           |                  | G                                                                                      | . 0                                                                               | :.               | с                | С                                                                                            | C '                                                                                                 | гc               | A                |                       | ¢                        |                  | G.                                                                                                | Α.                | С                | А                | с                    | ٩.               |                  | с                        | . A                    | G                | . (                  | с.                     | . т              |                  | с           | G    | с.             | A           |
| Z. capricorni | G A            |                |             | . (            | σ.          |             | с                 |                |             |                   | с                 | с.          |                  | А                                                                                        |                  | А                |                      |                                                                                       |                            |                  | с                | с                | A                |                                                                       | . (                      | 5 A              | ١c          |             |             |                                                                                        |                  | . т              | c           |                  | С                                                                                      | G                                                                                 |                  | с                | С                                                                                            | C 1                                                                                                 | гс               | A                |                       | с                        |                  |                                                                                                   | Α.                | С                | А                | С                    | ٩.               |                  | с                        | . A                    | G                | . 1                  | с.                     | . т              |                  | с           | G (  | с.             | А           |
| H. tasmanica  | G A            |                |             | . (            | G.          |             | с                 |                |             |                   | C I               | с.          |                  | A                                                                                        |                  | A                |                      |                                                                                       |                            |                  | С                | с                | A                |                                                                       | . (                      | 3 A              | ۸.          |             |             |                                                                                        |                  | . T              | c           |                  | G                                                                                      | . 0                                                                               | 2.               | С                |                                                                                              |                                                                                                     |                  |                  |                       |                          |                  |                                                                                                   | Α.                | С                | А                | С                    | ۹.               |                  | С                        | . A                    | G                | . (                  | ċ.                     | . т              | т                | С           | G    | ст             | A           |
| P. iwatensis  | G A            | Τ,             | ٩A          | C (            | GΑ          | ιт          |                   | . A            | ٩.          | G                 | C (               | с.          |                  | A                                                                                        | . т              | 'A               | A                    | . (                                                                                   | сı                         | ΓG               | G C              |                  |                  | A                                                                     | G                        | 3.               |             | С           | С           |                                                                                        | . 7              | Γ.               | С           | A                | G                                                                                      | . (                                                                               | 2.               | A                | С                                                                                            | Сí                                                                                                  | ГC               |                  | С                     | C 1                      | C                |                                                                                                   | Αī                | C C              | A                |                      | ٩.               |                  | с.                       | A A                    | G                | . 1                  | ст                     | ΓТ               |                  | с           | G (  | с.             |             |
|               |                |                |             |                |             | _           |                   |                |             | _                 |                   |             |                  |                                                                                          |                  |                  |                      |                                                                                       |                            |                  |                  |                  |                  |                                                                       |                          |                  |             |             |             |                                                                                        |                  |                  |             |                  |                                                                                        |                                                                                   |                  |                  |                                                                                              |                                                                                                     |                  |                  |                       |                          |                  |                                                                                                   |                   |                  |                  |                      |                  |                  |                          |                        |                  |                      |                        |                  |                  |             |      |                | _           |
|               |                |                |             |                |             | _           |                   |                |             | _                 |                   |             |                  |                                                                                          |                  |                  |                      |                                                                                       |                            |                  |                  |                  |                  |                                                                       |                          |                  |             |             |             |                                                                                        |                  |                  |             |                  |                                                                                        |                                                                                   |                  |                  |                                                                                              |                                                                                                     |                  |                  |                       |                          |                  |                                                                                                   |                   |                  |                  |                      |                  |                  | _                        |                        |                  |                      | _                      | _                |                  |             |      |                |             |
| species       | 88<br>49<br>08 | 99<br>01<br>26 | 9<br>2<br>2 | 99<br>55<br>46 | 9<br>5<br>7 | 9<br>5<br>9 | 9 9<br>6 6<br>4 5 | 9956           | 9<br>7<br>2 | 9 9<br>7 1<br>5 1 | 99<br>89<br>03    | 9           | 1<br>0<br>0<br>1 | $   \begin{array}{c}     1 & 1 \\     0 & 0 \\     1 & 2 \\     4 & 2 \\   \end{array} $ | 1<br>0<br>2<br>8 | 1<br>0<br>3<br>8 | 1<br>0 (<br>3 /<br>9 | $   \begin{array}{c}     1 & 1 \\     0 & 0 \\     4 & 4 \\     3 & 6   \end{array} $ | 1<br>0<br>0<br>5<br>5<br>7 | 1<br>0<br>6<br>0 | 1<br>0<br>6<br>2 | 1<br>0<br>6<br>4 | 1<br>0<br>7<br>0 | $   \begin{array}{c}     1 \\     0 \\     7 \\     1   \end{array} $ | 1 1<br>0 0<br>7 8<br>7 4 | 1<br>0<br>8<br>9 | 1<br>1<br>9 | 1<br>3<br>1 | 1<br>4<br>1 | $   \begin{bmatrix}     1 & 1 \\     1 & 1 \\     5 & 6 \\     5 & 7   \end{bmatrix} $ | 11<br>156<br>78  | 1<br>1<br>7<br>6 | 1<br>9<br>3 | 1<br>1<br>9<br>4 | $   \begin{bmatrix}     1 & 1 \\     2 & 2 \\     2 & 2 \\     7 & 8   \end{bmatrix} $ | $   \begin{bmatrix}     1 \\     2 \\     2 \\     4 \\     5   \end{bmatrix}   $ | 1<br>2<br>4<br>8 | 1<br>2<br>9<br>9 | $     \begin{array}{c}       1 \\       3 \\       4 \\       1 \\       3     \end{array} $ | $   \begin{bmatrix}     1 & 1 \\     3 & 3 \\     4 & 5 \\     3 & 8 \\     3 & 8   \end{bmatrix} $ | 1<br>3<br>6<br>2 | 1<br>3<br>6<br>5 | 1<br>3<br>6<br>7<br>8 | 1 1<br>3 4<br>5 0<br>3 3 | 1<br>4<br>0<br>4 | $     \begin{array}{c}       1 & 1 \\       4 & 4 \\       1 & 1 \\       0 & 6     \end{array} $ | 1 4<br>1 1<br>5 7 | 1<br>4<br>2<br>1 | 1<br>4<br>2<br>5 | 11<br>44<br>24<br>65 | 1<br>4<br>7<br>3 | 1<br>4<br>8<br>8 | 1 1<br>4 4<br>8 5<br>9 ( | 1<br>  4<br>  9<br>  2 | 1<br>4<br>9<br>4 | 11<br>44<br>99<br>67 | 1<br>  4<br>  9<br>  8 | 1<br>4<br>9<br>9 | 1<br>5<br>0<br>0 |             |      |                |             |
|               |                |                |             |                |             |             |                   |                |             |                   |                   |             |                  |                                                                                          |                  |                  |                      |                                                                                       |                            |                  |                  |                  |                  |                                                                       |                          |                  |             |             |             |                                                                                        |                  |                  |             |                  |                                                                                        |                                                                                   |                  |                  |                                                                                              |                                                                                                     |                  |                  |                       |                          |                  |                                                                                                   |                   |                  |                  |                      |                  |                  |                          |                        |                  |                      |                        |                  |                  |             |      |                |             |

| species       | 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z. marina M1  | A C T A T A C T G G T T T T T T T T A C C G T T A A C A T T T C A G A A A A C T G T T A T C T A T T C G A C A T G C T T C A G C A A C G T A T A T T C A |
| Z. marina M2  |                                                                                                                                                         |
| Z. marina M3  | · · · · · · · · · · · · · · · · · · ·                                                                                                                   |
| Z. marina M4  |                                                                                                                                                         |
| Z. caulescens | C                                                                                                                                                       |
| Z. caespitosa |                                                                                                                                                         |
| Z. asiatica   |                                                                                                                                                         |
| Z. japonica   | . G . C . G C . C . A C . G T T . C C A G . C . T . A T G G . T C A C C . C G C C . T T A G C T A . C . C G                                             |
| Z. noltii     | . G . C A . C . C . C . A C . GTT . C C A G . C . T . A T G G . T C A C C . C G C C . T T A G C T A . C . C G                                           |
| Z. muelleri   | . G . C C . C C G T T . C C A G . C . T . A T G G C A C C . C C C . T T A G C T G . C                                                                   |
| Z. mucronata  | . G . C C . C C C C C A G . C . T . A T G G C . C A C C . C C C . T T A G C T G . C G                                                                   |
| Z. caricorni  | . G . C C . C C . GTT . C CAG . C . T . ATGG CACC . C C . T T AGC T G . C G                                                                             |
| H. tasmanica  | . G A A . C . A C . GTT . C CAG . C . T . A . GG CACCT CC . TTAGCTT . C                                                                                 |
| P. iwatensis  | GGACATCC.CACCGTCCG.AGCCCTTGGG.AACCATTAGCTG.CTCA.GG.CAGCTGGTG                                                                                            |

Fig. 4. DNA variation in rbcL (A) and matK (B) genes of species in Zosteraceae. Nucleotide positions of variable sites are indicated at the top. Z. marina R1 and R2 of rbcL and M1 to M4 of matK are polymorphic haplotypes. For other species, polymorphism is not detected. Dot (.) represents the same nucleotide as that in the top line.

getonaceae is always supported by more than 87% bootstrap value for rbcL and 99% for matK. It is also to be noted in Fig. 2 that the other three seagrass families form three distinct clades. Two clades of Cymodoceaceae and Posidoniaceae share a direct common ancestor and are closely related to Ruppiaceae, while seagrasses in Hydrocharitaceae form the other distantly related clade. These results support the polyphyletic origins of aquatic angiosperms (Les et al. 1997). For further investigation of Zosteraceae evolution, we hereafter focus on family Zosteraceae and Potamogetonaceae with Araceae as an outgroup (Fig. 3).

It is currently accepted that there are three genera within family Zosteraceae, Phyllospadix, Zostera, and Heterozostera, and two subgenera Zostera and Zosterella within genus Zostera (den Hartog 1970). To date the origin and subsequent diversification of Zosteraceae, we used rbcL and matK sequences of Z. noltii (U80733, AB096170), Z. capricorni (AY077963, AB096167), Z. mulleri (AY077962, AB096169), Z. mucronata (U80732, AB096168), H. tasmanica (U80730, AB096171), P. torreyi and P. iwatensis (U80731, AB096172) together with the Zostera sequences we determined (Table 1). Fig. 3A (rbcL) and 3B (matK) clearly show that two subgenera Zostera and Zosterella are reciprocally monophyletic and each clade is supported by 100% bootstrap value for both rbcL and matK. The monophyly of genus Zostera with respect to genus Phyllospadix (represented by P. torreyi for *rbcL* or *P. iwatensis* for *matK*) is also supported by 100% bootstrap value. However, the phylogenetic position of *Heterozostera* which consists of a single species *H*. tasmanica is problematic. As Tanaka et al. (2003) and Les et al. (2002) noted, our result also shows that Heterozostera is more closely related to subgenus Zosterella than

to subgenus Zostera (79% and 100% bootstrap value for rbcL and matK, respectively) despite its current taxonomic classification as a genus (Kuo and den Hartog 2001). As discussed later, *Heterozostera* can be ranked as the same taxonomic level as Zosterella.

Nucleotide differences between and within Zostera species. Fig. 4 shows variable sites observed among 12 Zosteraceae species, and Table 2 shows the average number of nucleotide differences (the p-distances) between and within these species.

The *p*-distances among the *matK* sequences reveal that Z. marina is more closely related to Z. caespitosa than to Z. caulescens (Table 2). There are two phylogenetically informative sites which support the clustering of Z. marina and Z. caespitosa to the exclusion of Z. caulescens (Fig. 4). As for the *rbcL* sequences, however, the *p*-distances between Z. marina and Z. caulescens are smaller than those between Z. marina and Z. caespitosa or between Z. caulescens and Z. caespitosa (Table 2). In fact, there is one informative site which can support the clustering between Z. marina and Z. caulescens (Fig. 4). Thus, both *matK* and *rbcL* support mutually incompatible phylogenetic relationships these three among species. This incompatibility is most easily explained by one parallel synonymous substitution in *rbcL*, so that we inferred that Z. marina is more closely related to Z. caespitosa than to Z. caulescens.

Among five Zostera species, Z. marina exhibits the highest nucleotide diversity (Nei and Li 1979), although it is as low as 0.07% for matK and 0.03% for rbcL (Table 2). In 16 matK sequences of Z. marina, there are four haplotypes (M1 to M4) which are different at one to three segregating sites. Haplotype M1 is common (12/16 =

| Subgenus       |                                | Zos               | tera                 |                    | Zosterella         |
|----------------|--------------------------------|-------------------|----------------------|--------------------|--------------------|
| Species $^{a}$ | Z. marina <sup>b</sup><br>(16) | Z. caulescens (8) | Z. caespitosa<br>(2) | Z. asiatica<br>(2) | Z. japonica<br>(2) |
| Z. marina      | 0.36 (0.03)                    | 1.2 (0.09)        | 2.2 (0.17)           | 2.2 (0.17)         | 19.2 (1.5)         |
|                | 0.99 (0.07)                    |                   |                      |                    |                    |
| Z. caulescens  | $11.9\ (0.79)$                 | 0 (0)             | 3 (0.23)             | 3 (0.23)           | 20 (1.6)           |
|                |                                | 0 (0)             |                      |                    |                    |
| Z. caespitosa  | 5.7 (0.38)                     | 18 (1.2)          | 0 (0)                | 2 (0.16)           | 21 (1.6)           |
|                |                                |                   | 0 (0)                |                    |                    |
| Z. asiatica    | 12.7 (0.84)                    | 21 (1.4)          | 15 (1.0)             | 0 (0)              | 19 (1.5)           |
|                |                                |                   |                      | 0 (0)              |                    |
| Z. japonica    | 71.7 (4.8)                     | 86 (5.7)          | 81 (5.4)             | 75 (5.0)           | 0 (0)              |
|                |                                |                   |                      |                    | 0 (0)              |

Table 2. The number of nucleotide differences per locus and the per–site % nucleotide differences (in parenthesis) within and between *Zostera* species. *rbcL* (1288 bp; above the diagonal) and *matK* (1503 bp; below the diagonal)

<sup>a</sup> The sample sizes are given in parenthesis.

<sup>b</sup> The number of Z. marina sequences of rbcL is 10 and that of matK is 16.

0.75) and found in both northwestern and eastern Pacific Ocean, while the other three haplotypes are rare and restricted to particular sampling locations. One M2 is represented in each of Ishikawa and Shizuoka. Likewise, one M3 and one M4 are represented in Mexico. In rbcL sequences, there are two haplotypes, designated as R1 and R2, which differ by only one segregating site. Haplotype R1 occurs in almost all samples while rare haplotype R2 is found only in Mexico. However, Z. caulescens, Z. caespitosa, Z. asiatica, and Z. japonica are monomorphic for both rbcL and matK (Table 2).

Molecular clock at the synonymous sites of Zosteraceae *rbcL* and *matK* sequences. Phylogenetic analysis based on RFLP or DNA sequences revealed that the nucleotide substitution rate at the chloroplast genome greatly varies among different lineages (Wilson et al. 1990; Bousquet et al. 1992; Gaut et al. 1992; Bremer 2000). In order to date the origin and subsequent diversification of Zosteraceae, it is necessary to test the rate constancy and to examine whether the rate does not differ from that in other species such as *Oryza sativa* of which the synonymous substitution rate is well studied (Li 1997).

First, we tested the rate heterogeneity of nucleotide



Fig. 5. Correlation in the synonymous divergences (*d*-distances) between *rbcL* and *matK* genes. Open circles represent comparison within a family of Zosteraceae, and crosses stand for comparisons between Potamogetonaceae and Zosteraceae. Open triangles represent comparisons between Araceae and Zosteraceae. Open squares show comparisons between *Oryza sativa* and Zosteraceae or Potamogetonaceae or Araceae. The coefficient of the regression line is  $b = 1.01 \pm 0.03$ .



Fig. 6. NJ tree of Zosteraceae based on the synonymous divergence (*d*-distances) in the concatenated *rbcL* and *matK* sequences. The total number of synonymous sites is 809. The sequences of *A. commutatus* and *W. arrhiza* from family Araceae are used as outgroups. Symbols of A to G stand for the nodes corresponding to divergences between family Zosteraceae and Potamogetonaceae, between genus Zostera and Phyllospadix, between subgenus Zostera and Zosterella, among subgenus Zostera species, between Heterozostera and Zosterella, between Z. marina and Z. caespitosa, or among Zosterella species, respectively. Bootstrap values are shown at these nodes. Within Zostera marina, four haplotypes (H1 to H4) are found in concatenated *rbcL* and *matK* sequences.

substitutions among Zosteraceae, Potamogetonaceae and Araceae sequences by the two-cluster test of Takezaki et al. (1995). The result shows that although there is no rate heterogeneity in *rbcL* ( $\chi^2 = 10.54$ , P > 0.10), there is significant rate heterogeneity in matK ( $\chi^2 = 50.88$ , P < 0.01). We then tested the rate heterogeneity at the third codon positions of *matK* and found no significance ( $\chi^2$  = 25.30, P > 0.025). Therefore, it is likely that synonymous substitutions in matK have accumulated at a constant rate and that the rate heterogeneity is attributed largely to nonsynonymous substitutions. Next we tested the rate constancy of synonymous substitutions between rbcL and *matK*. For given species pairs, we compared the ddistances in *rbcL* with those in *matK* by plotting these against the X and Y axes to obtain the coefficient of the regression line. It is  $1.01 \pm 0.03$  which is not different from 1 (Fig. 5). We therefore conclude that rbcL and matK genes have evolved at a similar rate of synonymous substitutions even when Oryza sativa is included. Tajima's relative rate test (1993) also shows no significant differences between rice and seagrasses in substitution rates at the third codon positions (P > 0.122 for rbcL andP > 0.026 for *matK*). Based on these results, we concatenate *rbcL* and *matK* sequences into one and calculate the synonymous substitutions to get more reliable estimates of species divergence times.

Fig. 6 shows the NJ tree based on the number of synonymous substitutions in the concatenated sequences. We computed the average d-distances  $(d_A, d_B, d_C, d_D, d_E,$  $d_{\rm F}$ , and  $d_{\rm G}$ ) from tips to a common node of A to G in Fig. 6. Each node corresponds to the divergence between family Zosteraceae and Potamogetonaceae, between genus Zostera and Phyllospadix, between subgenus Zostera and Zosterella, among subgenus Zostera, between genus Heterozostera and subgenus Zosterella, between Z. marina and its closely related species Z. caespitosa, and among subgenus Zosterella, respectively. We obtained  $d_{\rm A} = 0.120 \pm 0.012, d_{\rm B} = 0.043 \pm 0.007, d_{\rm C} = 0.039 \pm 0.007,$  $d_{\rm D}$  = 0.007 ± 0.003,  $d_{\rm E}$  = 0.006 ± 0.003,  $d_{\rm F}$  = 0.003 ± 0.002 and  $d_{\rm G} = 0.003 \pm 0.002$ . Applying the synonymous substitution rate of 0.9 -  $1.2 \times 10^{-9}$  per site per year for *rbcL* of Oryza sativa (Li 1997), we dated node A as 100 - 133 million years (myr), node B as 36 - 48 myr, node C as 33 - 44 myr, node D as 6 - 8 myr, node E as 5 - 7 myr, node F as 3 - 4 myr, and node G as 2 - 3 myr. We are also interested in local differentiation of subgenus Zosterella. There are two species confined to the northern hemisphere (Z. *japonica* and Z. *noltii*) and three are confined in the southern hemisphere (Z. capricorni, Z. mulleri and Z. mucronata). The synonymous divergences between these northern and southern hemisphere species range from  $0.005 \pm 0.002$  to  $0.008 \pm 0.003$ , corresponding to the divergence time from 2 to 4 myr.

## DISCUSSION

The origin of Zosteraceae and species divergence associated with geological events. There are two possible evolutionary hypotheses on the origin of seagrasses: they were descended from a fresh-water hydrophyte primitive stock or from a saltmarsh-type (mangrovelike) primitive stock (den Hartog 1970). Morphological and physiological evidence shows that several characters, such as salt and wave tolerance, are shared between seagrasses and saltmarsh-type plants, supporting the saltmarsh-type origin of seagrasses (Larkum and den Hartog 1989). Our molecular phylogenetic analysis has however shown that the most closely related family to Zosteraceae is Potamogetonaceae which is a family of fresh-water angiosperms (Les et al. 1997). In other seagrasses, the closest family to the clade of Posidoniaceae and Cymodoceaceae is Ruppiaceae which is also fresh-water angiosperms. Moreover, some genera within Hydrocharitaceae are marine angiosperms and these genera also appear to be derived from fresh-water angiosperms. These suggest that seagrasses have independently developed mangrove-like salt and wave tolerances in the early evolutionary phase. It is also interesting to date the origins of these seagrasses, Posidoniaceae, Cymodoceaceae, and Hydrocharitaceae. The rbcL synonymous divergences become  $0.142 \pm 0.020$  between Ruppiaceae and the clade of Posidoniaceae and Cymodoceaceae as well as  $0.279 \pm 0.027$  for seagrasses within Hydrocharitaceae. These values are comparable with the d-distances between Zosteraceae and Potamogetonaceae,  $0.234 \pm 0.026$ . Since there is no rate heterogeneity of synonymous substitutions at *rbcL* among these seagrasses (P > 0.10) and if Zosteraceae and Potamogetonaceae diverged from each other 100 myr ago, the common ancestor between Ruppiaceae and the clade of Posidoniaceae and Cymodoceaceae is dated as  $69 \pm 8$  myr ago and the origin of seagrasses within Hydrocharitaceae is dated as  $119 \pm 11$  myr ago. These divergence times agree well with the preposition that primitive seagrass might have occurred on shores of the Tethys Sea (Larkum and den Hartog 1989).

Since the rather ancient emergence of Zosteraceae about 100 myr ago, the family only began to diversify into two extant clades 36 myr ago. This does not contradict fossil records of *Archaeozostera* found in the Cretaceous layer in Japan (Koriba and Miki, 1931, 1958; Oishi 1931). However, Koriba and Miki (1931, 1958) concluded that these fossils belong to a genus that might be related to extant *Phyllospadix*. This conclusion is inconsistent with our estimate of the emergence time of *Phyllospadix* and supports the relatively recent origin hypothesis of Zosteraceae by Kuo et al. (1989) and Aioi (2000).

Similarly, we estimated the divergence time between Zostera and Zosterella as 33 - 44 myr. This geological

time coincides with the completion of significant continental drift. It is thought that this completion led great temperature changes; polar seas got colder and the tropical seas became warmer (Galloway and Kemp 1981; Valentine 1984; Frakes 1979). This temperature change might limit the distribution of temperate Zostera and Zosterella into either northern or southern hemisphere. Within subgenus Zostera, four species diverged around 3 to 6 myr ago. At that time, the Japan Archipelago had been shaped into the present form. Prior to this formation, the Japan Archipelago had been divided into a large number of small islands. If sea currents in Japanese waters changed by formation of the Japan Archipelago, it is possible that this change altered gene flow between the northern and southern part of Japanese waters. Such alternation might facilitate the diversification of Zostera species in Japanese waters. The geographic distribution of species in subgenus Zosterella between the northern and southern hemisphere was probably initiated 2 myr ago. However, unlike speciation among subgenus Zostera around the Japan Archipelago 6 - 8 myr ago, there is no obvious geological event that can account for the separation of Zosterella species between the northern and southern hemisphere and the cause remains enigmatic (Tanaka et al. 2003).

**Genetic variability within** *Zostera* species. The extent of nucleotide differences observed among samples sequenced is generally low. This is mainly due to the low nucleotide substitution rate  $(0.9 - 1.2 \times 10^{-9})$  per site per year) of chloroplast genes compared with the rate at nuclear encoded genes (Wolfe et al. 1987; Li 1997), a relatively short generation time in flowering plants, and a relatively small effective population size of chloroplast genes owing to the cytoplasmic inheritance and haploid nature.

A pair of most diverged sequences (M1 and M4) found in Z. marina matK sequences differs by only three substitutions. Therefore, the time back to the most recent common ancestor (MRCA) of Z. marina sequences becomes about 1/4 of the divergence between Z. marina and its closely related species Z. caulescens or Z. asiatica (Table 2). If Z. marina and Z. caulescens or Z. asiatica diverged 6 myr ago as estimated above, the MRCA of Z. marina matK sequences must have occurred 1.5 myr ago. This estimate of MRCA as the origin of polymorphism appears to be old, if we take into account a relatively short generation time of the plant. One possibility for this rather high extent of polymorphism is long-lasting limited migration between northwestern and eastern Pacific populations. However, this possibility cannot easily explain the observation that a common haplotype (M1) occurs in both northwestern and eastern Pacific populations and M2 ancestral to M4 occurs also in northwestern populations. In any case, in order to address these

issues, information on local genetic differentiation is needed. In this regard, it would be worth studying microsatellites or nuclear genes which are generally much more variable than chloroplast genes.

The age related re-classification of family Zosteraceae. The phylogenetic relationships of Zosteraceae species in Fig. 6 are in good agreement with those of Tanaka et al. (2003) based on matK sequences of Zostera and Heterozostera. The monophyletic relationships are strongly supported at each of three taxonomic levels of subgenus, genus, and family (99 - 100% bootstrap values). The position of genus Heterozostera in the molecular phylogeny, however, seems to contradict the rank in the taxonomy. Since *Heterozostera* shows the most primitive features among all zosteroids, it is thought that Heterozostera has an ancient origin and is ranked as a genus (den Hartog 1970; Larkum and den Hartog 1989). However, molecular phylogenetic analyses support the clustering of Heterozostera with subgenus Zosterella (Les et al. 1997; Tanaka et al. 2003). In fact, some recent morphological studies suggested the sister relationship between genus *Heterozostera* and subgenus *Zosterella* (Taylor 1981; Soros-Pottruff and Posluzny 1995; Tomlinson and Posluzny 2001; Tanaka et al. 2003).

To resolve this disorder, there may well be merit to an age related phylogenetic classification, at least for groups where a crude correlation exists between rank and age in existing classification (Goodman et al. 1998). In an age related phylogenetic classification, taxa at a higher rank should not only be older than taxa at a lower rank, but also taxa at the same rank should be roughly at about the same age. In this regard, it is not reasonable that genus Heterozostera is as old as subgenera Zostera and Zosterella (Fig. 6). It is also inappropriate that two different ranks of genera (Zostera and Phyllospadix) and subgenera (Zostera and Zosterella) have a similar age of 33 - 36 Thus, our study of the time frame requires some myr. re-classification of present subgenera Zostera and Zosterella as well as present genus Heterozostera.

Similar modification of ranks in Zosteraceae based on morphological characters has been proposed by Tomlinson and Posluzny (2001) or on molecular phylogenetic analysis (Tanaka et al. 2003). Tomlinson and Posluzny (2001) proposed to elevate ranks for subgenera of *Zostera* and *Zosterella* to genera, and divide family Zosteraceae into four genera, *Phyllospadix*, *Zostera*, *Nanozostera*, and *Heterozostera*. On the other hand, Tanaka et al. (2003) proposed inclusion of two subgenera *Zosterella* and *Heterozostera* into a new genus of *Nanozostera*. Our phylogenetic study supports these proposals. Although the ages of family, genus and subgenus in Zosteraceae seem to be too old as the names imply in the sense of Goodman et al. (1998), our provisional age related re-classification of the family is as follows:

| Family Zosteraceae (100 myr)           |
|----------------------------------------|
| Genus Phyllospadix (36 myr)            |
| Phyllospadix torreyi                   |
| Phyllospadix iwatensis                 |
| Genus Zostera (33 myr)                 |
| Subgenus Zostera (6 myr)               |
| Zostera (Zostera) marina               |
| Zostera (Zostera) caespitosa           |
| Zostera (Zostera) caulescens           |
| Zostera (Zostera) asiatica             |
| Genus Nanozostera (33 myr)             |
| Subgenus Zosterella (5 myr)            |
| Nanozostera (Zosterella) japonica      |
| Nanozostera (Zosterella) noltii        |
| Nanozostera (Zosterella) capricorni    |
| Nanozostera (Zosterella) mulleri       |
| Nanozostera (Zosterella) mucronata     |
| Nanozostera (Zosterella) novazelandica |
| Nanozostera (Zosterella) capensis      |
| Subgenus Heterozostera (5 myr)         |
|                                        |

Nanozostera (Heterozostera) tasmanica

We thank Ms. Masako Watanabe (Hokkaido University), Dr. Seiichi Tamura (Marine Biological Station, Tohoku University), Dr. Yukimasa Higashide (Noto Marine Center), Dr. Sang Yong Lee (Hanyang University), and Dr. Shawn Larson (the Seattle Aquarium) for collecting samples. We also thank two anonymous reviewers for their comments and suggestion. This work was supported in part by Sokendai Group Project and in part by the Sasakawa Scientific Research grant from the Japan Science Society.

#### REFERENCES

- Aioi, K. (2000) A daybreak in the studies on Japanese Zostera beds. Aquabiology 22, 516–523 (in Japanese with English abstract).
- Ban, Y. (1997) Methods of DNA and RNA isolation of Oryza sativa. In: PCR experiments protocol of plants (eds.: K. Shimamoto, and T. Sasaki), pp. 34–40. Shujunsha, Tokyo (in Japanese).
- Bousquet, J., Strauss, S. H., Doerksen, A. H., and Price, R. A. (1992) Extensive variation in evolutionary rate of *rbcL* gene sequences among seed plants. Proc. Natl. Acad. Sci. USA. 89, 7844–7848.
- Bremer, K. (2000) Early Cretaceous lineages of monocot flowering plants. Proc. Natl. Acad. Sci. USA. 97, 4707–4711.
- Cook, C. D. K. (1990) Aquatic plant book. SPB Academic Publishers, The Netherlands.
- Dahlgren, R. M. T., Clifford, H. T., and Yeo, P. F. (1985) Families of the monocotyledons: Structure, Evolution, and Taxonomy. Springer-Verlag, Berlin.
- den Hartog, C. (1970) The seagrasses of the world. North-Holland Publ. Co., Amsterdam.
- Felsenstein, J. (1995) PHYLIP (Phylogeny Inference Package) version 3.572. Distributed by the author. Department of Genetics, University of Washington, Seattle.
- Fitch, W. M., and Farris, J. S. (1974) Evolutionary trees with minimum nucleotide replacements from amino acid sequences. J. Mol. Evol. 3, 263–278.

- Frakes, L. A. (1979) Climates Throughout Geologic Time, Elsevier, Amsterdam.
- Galloway, R. W., and Kemp, E. H. (1981) Late Cainozoic environments in Australia. In: Ecological Biogeography of Australia (ed.: A. Keast), pp. 53–80. Dr W. Junk, The Hague.
- Gaut, B. S., Muse, S. V., Clark, W. D., and Clegg, M. T. (1992) Relative rate of nucleotide substitution at the *rbcL* locus of monocotyledonous plants. J. Mol. Evol. **35**, 292–303.
- Goodman, M., Porter, C. A., Czelusniak, J., Page, S. L., Schneider, H., Shoshani, J., Gunnell, G., and Groves, C. P. (1998) Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. Mol. Phylogenet. Evol. 9, 585–598.
- Jukes, T. H., and Cantor, C. R. (1969) Evolution of protein molecules. In: Mammalian protein metabolism (ed.: H. N. Munro), pp. 21–132, Academic, New York.
- Inglis, G. J., and Waycott, M. (2001) Methods for assessing seagrass seed ecology and population genetics. In: Global Seagrass Research Methods (eds.: F. T. Short, and R. G. Coles), pp. 123–140. Elsevier, Amsterdam.
- Koriba, K., and Miki, S. (1931) Observation on Archaeozostera from Upper Cretaceous Izumi Sandstone. Chikyu (The Globe) 15, 165–201 (in Japanese).
- Koriba, K., and Miki, S. (1958) Archeozostera, a new genus from Upper Cretaceous in Japan. Palaeobotanist 7, 107–110.
- Kumar, S., Tamura, K., and Nei, M. (2000) MEGA: Molecular evolutionary genetics analysis, ver. 2 Pennsylvania State University, University Park, and Arizona State University, Tempe.
- Kuo, J., and den Hartog, C. (2001) Seagrass taxonomy and identification key. In: Global Seagrass Research Methods (eds.: F. T. Short, and R. G. Coles), pp. 123–140. Elsevier, Amsterdam.
- Kuo, J., Seto, K., Nasu, T., Iizumi, H., and Aioi, K. (1989) Notes on Archaeozostera in relation to the Zosteraceae. Aquat. Bot. 34, 317–328.
- Larkum, A. W. D., and den Hartog, C. (1989) Evolution and biogeography of seagrasses. In: Biology of Seagrasses (eds.: A. W. D. Larkum, A. J. McComb, and S. A. Shepherd), pp. 112– 156. Elsevier, Amsterdam.
- Les, D. H., and Philbrick, C. T. (1993) Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications. Aquat. Bot. 44, 181–228.
- Les, D. H., and Schneider, E. L. (1995) The Nymphaeales, Alismatidae, and the theory of an aquatic monocotyledon origin.
  In: Monocotyledons: systematics and evolution (eds.: P. J. Rudall, P. J. Cribb, D. F. Cutler, and C. J. Humphries), pp. 23-42. Royal Botanical Gardens, UK.
- Les, D. H., Garvin, D. K., and Wimpee, C. F. (1993) Phylogenetic studies in the monocot subclass Alismatidae: evidence for a reappraisal of the aquatic order Najadales. Mol. Phylogenet. Evol. 2, 304–314.
- Les, D. H., Cleland, M. A., and Waycott, M. (1997) Phylogenetic studies in Alismatidae II: Evolution of marine angiosperms (Seagrasses) and hydrophily. Syst. Bot. **22**, 443–463.
- Les, D. H., Moody, M. L., Jacobs, S. W. L., and Bayer, R. J. (2002) Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Syst. Bot. 27, 468–484.
- Li, W. -H. (1997) Molecular evolution. Sinauer Associates, Sunderland, MA.
- Murray, M. G., and Thompson, W. F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321-4325.
- Nakaoka, M., and Aioi, K. (2001) Ecology of seagrasses Zostera spp. (Zosteraceae) in Japanese waters: A review. Otsuchi

Marine Science 26, 7–22.

- Nei, M., and Li, W. -H. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273.
- Nei, M., and Kumar, S. (2000) Molecular Evolution and Phylogenetics. Oxford University Press, Oxford, New York.
- Oishi, S. (1931) Discovery of Archaeozostera and Sigillaria-like impressions in Hokkaido. J. Geog. Tokyo 43, 717–719 (in Japanese).
- Omori, Y. (2000) Japanese seagrasses distribution and morphology -. Aquabiology **22**, 524–532 (in Japanese with English abstract).
- Rzhetsky, A., and Nei, M. (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol. Biol. Evol. 10, 1073–1095.
- Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
- Short, F. T., Coles, R. G., and Pergent-Martini, C. (2001) Global seagrass distribution. In: Global Seagrass Research Methods (eds.: F. T. Short, R. G. Coles), pp. 5–30. Elsevier, Amsterdam.
- Soros-Pottruff, C. L., and Posluzny, U. (1995) Developmental morphology of reproductive structures of *Zostera* and a reconsideration of *Heterozostera* (Zosteraceae). Int. J. Plant. Sci. **156**, 143–158.
- Tajima, F. (1993) Simple methods for testing molecular evolutionary clock hypothesis. Genetics **135**, 599–607.
- Tanaka, N., Setoguchi, H., and Murata, J. (1997) Phylogeny of the family Hydrocharitaceae inferred from *rbcL* and *matK* gene sequence data. J. Plant Res. **110**, 329–337.
- Tanaka, N., Kuo, J., Omori, Y., Nakaoka, M., and Aioi, K. (2003)

Phylogenetic relationships in the genera Zostera and Heterozostera (Zosteraceae) based on matK sequence data. J. Plant Res. **116**, 273–379.

- Takezaki, N., Rzhetsky, A., and Nei, M. (1995) Phylogenetic test of the molecular clock and linearized trees. Mol. Biol. Evol. 12, 823–833.
- Taylor, A. R. A. (1981) A reconsideration of the taxonomic position of *Zostera tasmanica*. In: XIII International Botanical Congress (abstract), Sydney, pp. 338. Australian Academy of Science, Sydney.
- Thompson, J. D., Gibbon, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882.
- Tomlinson, P. B., and Posluzny, U. (2001) Generic limits in the seagrass family Zosteraceae. Taxon 50, 429–437.
- Valentine, J. W. (1984) Neogene marine climate trends: implications for the biogeography and evolution of the shallow-sea biota. Geology 12, 647–650.
- Waycott, M., and Les, D. H. (1996) An integrated approach to the evolutionary study of seagrasses. In: Seagrass Biology: Proceedings of an International Workshop (eds.: J. Kuo, R. C. Phillips, D. I. Walker, and H. Kirkman), pp. 71–78. The University of Western Australia, Perth.
- Wilson, M. A., Gaut, B., and Clegg, M. T. (1990) Chloroplast DNA evolves slowly in the palm family (Arecaceae). Mol. Biol. Evol. 7, 303–314.
- Wolfe, K. H., Li, W.-H., and Sharp, P. M. (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA. 84, 9054–9058.

**Appendix 1** List of the accession numbers in NCBI of *rbcL* sequences using Figure 2 (A)

| family          | accession# | family  | accession# | family  | accession# | family           | accession# | family           | accession# |
|-----------------|------------|---------|------------|---------|------------|------------------|------------|------------------|------------|
| Alismataceae    | L08767     | Araceae | AF497080   | Araceae | AJ005631   | Butomaceae       | U80685     | Hydrocharitaceae | AB004897   |
|                 | L08759     |         | AF497081   |         | AJ005632   | Cymodoceaceae    | U03727     |                  | AB004898   |
|                 | U80677     |         | AF497082   |         | AJ007543   |                  | U80686     |                  | AB004899   |
|                 | U80678     |         | AF497083   |         | AJ007544   |                  | U80687     |                  | AF206832   |
|                 | U80679     |         | AF497084   |         | AJ235807   |                  | U80688     | Juncaginaceae    | U80713     |
|                 | U80680     |         | AF497085   |         | AY034222   |                  | U80689     |                  | U80714     |
|                 | U80681     |         | AF497086   |         | AY034223   |                  | U80690     |                  | U80715     |
|                 | U80682     |         | AF497087   |         | AY034224   |                  | U80691     | Limnocharitaceae | U80716     |
| Aponogetonaceae | U80683     |         | AF497088   |         | AY034225   |                  | U80692     |                  | U80717     |
|                 | U80684     |         | AF497089   |         | AY034226   | Hydrocharitaceae | U03726     |                  | AB004900   |
|                 | AY175465   |         | AF497090   |         | AY034227   |                  | U03731     | Posidoniaceae    | U80718     |
| Araceae         | L10246     |         | AF497091   |         | AY034228   |                  | U80693     |                  | U80719     |
|                 | L10247     |         | AF497092   |         | AY034229   |                  | U80694     | Potamogetonaceae | L08765     |
|                 | L10248     |         | AF497093   |         | AY034230   |                  | U80695     |                  | U03725     |
|                 | L10250     |         | AF497094   |         | AY034231   |                  | U80696     |                  | U03730     |
|                 | L10254     |         | AF497095   |         | AY034232   |                  | U80697     |                  | U80720     |
|                 | L10255     |         | AF497096   |         | AY034233   |                  | U80698     |                  | U80721     |
|                 | M91360     |         | AF497097   |         | AY034234   |                  | U80699     |                  | U80722     |
|                 | M91626     |         | AF497098   |         | AY034235   |                  | U80700     |                  | U80723     |
|                 | M96963     |         | AF497099   |         | AY034236   |                  | U80701     |                  | U80724     |
|                 | U68092     |         | AF497100   |         | AY034237   |                  | U80702     |                  | U80725     |
|                 | AF065474   |         | AF497101   |         | AY034238   |                  | U80703     |                  | U80726     |
|                 | AF497060   |         | AF497102   |         | AY034239   |                  | U80704     |                  | U80727     |
|                 | AF497061   |         | AF497103   |         | AY034240   |                  | U80705     |                  | U80729     |
|                 | AF497062   |         | AF497104   |         | AY034241   |                  | U80706     |                  | AB004901   |
|                 | AF497063   |         | AF497105   |         | AY034242   |                  | U80707     | Ruppiaceae       | U03729     |
|                 | AF497064   |         | AF497106   |         | AY034243   |                  | U80708     |                  | U80728     |
|                 | AF497065   |         | AF497107   |         | AY034244   |                  | U80709     | Scheuchzeriaceae | U03728     |
|                 | AF497066   |         | AF497108   |         | AY034245   |                  | U80710     | Tofieldiaceae    | AJ131774   |
|                 | AF497067   |         | AF497109   |         | AY034246   |                  | U80711     |                  | AJ235798   |
|                 | AF497068   |         | AF497110   |         | AY034247   |                  | U80712     |                  | AJ286562   |
|                 | AF497069   |         | AF497111   |         | AY034248   |                  | AB004886   | Zosteraceae      | U80730     |
|                 | AF497070   |         | AF497112   |         | AY034249   |                  | AB004887   |                  | U80731     |
|                 | AF497071   |         | AF497113   |         | AY034250   |                  | AB004888   |                  | U80732     |
|                 | AF497072   |         | AJ005623   |         | AY034251   |                  | AB004889   |                  | U80733     |
|                 | AF497073   |         | AJ005624   |         | AY034252   |                  | AB004890   |                  | U80734     |
|                 | AF497074   |         | AJ005625   |         | AY034253   |                  | AB004891   |                  | AY077962   |
|                 | AF497075   |         | AJ005626   |         | AY034254   |                  | AB004892   |                  | AY077963   |
|                 | AF497076   |         | AJ005627   |         | AY034255   |                  | AB004893   |                  | AY077964   |
|                 | AF497077   |         | AJ005628   |         | AY034256   |                  | AB004894   |                  |            |
|                 | AF497078   |         | AJ005629   |         | AY034257   |                  | AB004895   |                  |            |
|                 | AF497079   |         | AJ005630   |         | AY034258   |                  | AB004896   |                  |            |

family accession# family accession# family accession# AB040179 AF78417 AY034203 Alismataceae Araceae Araceae Araceae AF78379 AF78418 AY034204 AF78380 AF78419 AY034205 AF78381 AF78420 AY034206 AY034207 AF78382 AF78421 AF78383 AF78422 AY034208 AF78423 AF78384 AY034209 AF78385 AF78424 AY034210 AF78386 AF78425 AY034211 AF78387 AF78426 AY034212 AF78388 AF78427 AY034213 AF78428 AY034214 AF78389 AF78429 AY034215 AF78390 AF78391 AF78430 AY034216 AF78392 AF78431 AY034217 AF78393 AF78432 AY034218 AF78394 AB040177 AY034219 AF78395 AB040178 AY034220 AY034182 AB002566 AF78396 Hydrocharitaceae AY034183 AF78397 AB002567 AF78398 AY034184 AB002568 AF78399 AY034185 AB002569 AF78400 AY034186 AB002570 AF78401 AY034187 AB002571 AF78402 AY034188 AB002572 AF78403 AY034189 AB002573 AF78404 AY034190 AB002574 AF78405 AY034191 AB002575 AF78406 AY034192 AB002576 AY034193 AB002577 AF78407 AB002579 AF78408 AY034194 AF78409 AY034195 Limnocharitaceae AB002580 AF78410 AY034196 Potamogetonaceae AB002581 AF78411 Tofieldiaceae AY034197 AB040157 AF78412 AY034198 AB040158 AF78413 AY034199 AB040159 AF78414 AY034200 AB040160 AF78415 AY034201 AF78416 AY034202