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i ABSTRACT

Abstract

The escape phenomena in the three-body problem with zero initial velocities and
equal masses are studied both numerically and analytically. In particular, the effects of
triple and binary collisions are considered in detail. Here, escape means that two parti-
cles form a binary and the third particle recedes from the binary to infinity. Collision is
defined as the event when the distance between particles vanishes.

First, escape orbits are searched for by a numerical survey of the initial-value space
and compared with collision orbits obtained by Tanikawa et al. (Cele. Mech. Dyna.
Astr., 62 (1995) 335-362). Most escape phenomena occur after triple encounter as a re-
sult of slingshot. A particle passes through between the other particles receding from
each other. It is found that escape orbits due to slingshot distribute around a particular
family of binary-collision orbits which maintain nearly isosceles configuration. The con-
figuration and the velocity vectors are almost symmetric. Moreover, if orbits approach
sufficiently close to triple collision, all escape orbits distribute around the binary-collision
orbits. Furthermore, orbits without escape during the first triple encounter are also found
sufficiently close to triple-collision orbits. Therefore, it becomes clear that explaining the
distribution of escape orbits only by triple-collision orbits is impossible. The particular
family of binary-collision orbits has a central role in escape phenomena as well as triple
collision does.

Discovery of escape orbits due to exchange encounter is also one of the results. Two
close approaches between different pairs successively occur. The dynamical features of
slingshot and exchange are compared with each other. Escape probabilities and incre-
ments of binding energies are evaluated statistically for the respective encounter-types.
It is shown that some of slingshot encounters result in more energetic evolution than
all of exchange encounters. So the conditions of slingshot configurations restrictive and
favorable for escape are searched for, respectively. Using the slingshot conditions, it is
answered why slingshot-escape orbits distribute around the particular binary-collision or-
bits showing nearly symmetrical motion.

Finally, it is proved analytically that both escape and non-escape orbits after the
first triple encounter exist arbitrarily close to the particular triple-collision orbit, the
homothetic-equilateral triple-collision orbit. It is proved that in the initial-value space
escape orbits distribute around three kinds of isosceles orbits where different particles es-
cape and non-escape orbits are distributed in between. In order to show this, it is proved

that the homothetic-equilateral orbit is isolated from other triple-collision orbits so far as
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the collision during the first triple encounter concerns. Moreover, the escape criterion is
formulated in the planar isosceles problem and translated into the words of regularizing
variables. The results explain the orbital structure numerically obtained in the beginning
of the present thesis. With the aid of numerical integrations, it is shown that the distribu-
tion of escape orbits around another triple-collision orbit are topologically similar to the
one around the homothetic-equilateral orbit. Here, it is found that the binary collision

has an important role in determining the dynamical evolution.
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Chapter 1

Introduction

1.1 Three-body problems in astrophysics

In the present thesis, escape phenomena in the free-fall three-body problem with
equal masses are studied both numerically and analytically. The free-fall three-body
problem is the case with zero initial velocities. In particular, the effect of triple and bi-
nary collisions are studied in detail.

In the present section consisting of three subsections, we review various works which
lead the author to the study of escape, triple collision and binary collision. In Section 1.2,
the purpose and the outline of the present paper are described. In Section 1.3, we will
introduce several numerical methods to analyze the three-body problem in the present
thesis. They are the initial-value space, the escape criterion and the procedure searching

binary-collision orbits.

1.1.1 Works on final motions

The gravitational three-body problem is a simple problem where three particles
attract each other by the Newtonian law. However, the three-body problem is too com-
plicated to be explored completely. Under various situations in the field of astrophysics,
many types of the three-body problem are considered: binary-single star scattering (here-
after referred to as the scattering system), hierarchical triple stars (hereafter as the hi-
erarchical system), sun and two planets (hereafter as the planetary system), wide galaxy
triplets, and so on.

The scattering system means a system of a binary and a third star which approaches

1



2 CHAPTER 1. INTRODUCTION

the binarv from a distance. This system has been investigated by Yabushita (1966), Heg-
gie (1975), Saslaw et al. (1974), Lin and Saslaw (1977), Hut and Bahcall (1983), Hut
(1983), Mikkola (1984a, 1984b), Hut (1993), Heggie and Hut (1993), McMillan and Heg-
gie (1996), Hut and McMillan (1996). In the hierarchical system. a binary and a third
star are also located at a distance; however, the third star revolves around the binary. See
Harrington (1975), Szebehely and Zare (1977), Graziani and Black (1981), Black (1982),
Kiseleva, Eggleton and Anosova (1994), Kiseleva, Eggleton and Orlov (1994), Anosova
(1996), and Mikkola and Tanikawa (1998). The planetary system means that two planets
revolve around a central star. See Nacozy (1976), Laskar and Robutel (1995), Robutel
(1995). In the system of wide galaxy triplets, intergalactic distances and respective masses
are comparable to each other, respectively. Moreover, the velocities are not so large. This
system is investigated by Chernin et al. (1994) and Dolgachev and Chernin (1997).

The common purposes of the works in the above three-body systems can be catego-

rized into two:

Common purposes
(1) determining the location of the partition of final states in the phase space,

(2) finding out factors which effect the distribution of the phase-space partition,

where a final state means a state of the system as time goes to infinity. In order to achieve
the above goal, it is first necessary to classify possible final states in a given system.

In the beginning of 20th century, a French astronomer and mathematician Chazy
(1922) described all possible types of final motions in the three-body problem. If the
total energy of the system is negative, more varieties of final motions exist compared
with the zero-energy and positive-energy systems. Final motions are classified into the
following four categories for the negative-energy system. Here, r;, j = 1,2,3 denotes the
distance between particle k and [, where (j, k.!) is (1.2.3) or its permutation. The time

is denoted by t.

1. Hyperbolic-elliptic escape for m:

ASL—*OO,‘.'"J'<C,?‘k—>{x;and?‘kft—+c,}>0,j#;:.

2. Parabolic-elliptic escape for m;:

Ast—l-oc-,rj{G,?';‘—?DOand'rkjtz'm—!'(jk,}{),j?ek-
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3. Bounded motion:

for all j =1,2,3, r; < C < oo during t € [0, c0).

4. Oscillatory motion:

at least one of the r; is unbounded, however it does not tend to infinity.

From purely logical considerations, Chazy (1922) asserted the existence of the oscillatory
motion. This existence had been remained in doubt for a long time. After about 40 years,
it was found in the restricted three-body problem where the symmetrical configuration is
maintained (Sitnikov, 1959). Its existence for the general three-body problem has been
proved by Alekseev (1968) for the three-dimensional case with my = m, > mg and Xia
(1994) for the planar case with m; > m; > mg3. Tanikawa and Umehara (1998) con-

tributed to the problem for m; = m, = ma.

Moreover, in the zero-angular-momentum case, there is triple-collision motion of
which the final motion can not be defined. If triple collision occurs at a finite time, al-
most all solutions after triple collision can not be defined (Siegel, 1941; McGehee, 1974).

Sundman (1912) proved that triple collision is possible only in the system with zero
angular momentum. From the equations of motion, Sundman derived an inequality which
is now called Sundman’s inequality. The inequality shows the relation between the be-
havior of the moment of inertia I(t), the total energy h and the total angular momentum
¢. From the inequality, Sundman also proved that it is necessary for a triple collision to
occur that the angular momentum ¢ is equal to zero. Sundman’s inequality shows that

I(t) vanishes only if ¢ = 0. Zero moment of inertia means triple collision.

In contrast to the negative-energy system, there is not any drastic difference among
final motions in zero-energy or positive-energy systems. The possible motion in both
systems is only disruption. Here, disruption means that either one particle escapes or
three particles recede from each other. There are neither bounded nor oscillatory motion.
See Alekseev (1981) which contains a good review of final motions, and Siegel and Moser
(1971) which contains the classical analysis of triple collision.

Therefore, many negative-energy systems are investigated intensively. After Chazy’s
classification, the distribution of phase-space partitions of final motions and the factor

determining final motions are searched for by both analvtic and numerical methods.

It has been considered that the close triple encounter is important to escape phe-
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nomena in negative-energy systems. Many authors investigated the relation between close
triple encounter and escape phenomena, and attempted to quantify the triple encounter
leading to escape.

For a system where the total energy is negative and the total angular momentum
is not zero, Birkhoff (1927) was the first to mention the importance of the close triple
encounter as a necessary mechanism for escape. Analysis by Birkhoff is based on the time-
dependent moment of inertia I(t) of the three particles. Using Sundman’s inequality, it
was asserted that I(t) increases indefinitely as ¢ — oo if it has the minimum less than
a critical value [.. The divergence I(t) — co means the hyperbolic-elliptic or parabolic-
elliptic escape. Such a formulation is called the escape criterion since we can judge one
of final states in a finite time.

From the critical value I, we can construct the boundaries in the phase space. These
boundaries separate the phase space into two kinds of regions: a region in which I of a
phase point is less than I, and a region where I > [.. If a phase trajectory enters the
region satisfying I < I. once, I(t) along the trajectory is controlled to increase monoton-
ically as ¢ — oo. However, the location of the boundaries does not agree with one of the
phase-space partition perfectly. Since the escape criterion is only a sufficient condition,
we can conjecture a rough distribution of the partition. Moreover, it is verified that the
close triple encounter is a dominant factor for escape.

After that, a lower boundary of I where the system leads to escape in the non-
zero-angular-momentum case has been improved by Merman (1955, 1958), Sibahara and
Yoshida (1963), Szebehely (1973b), Zare (1981), Laskar and Marchal (1984) and Marchal
et al. (1984a). The work of Birkhoff has been reviewed by Szebehely (1973a).

However, the lower boundary of I leading to escape is not available for the system
with zero angular momentum. In zero-angular-momentum system, quantifying the close
triple encounter leading to escape has been not successful. The zero-angular-momentum
system is treated only in the final part of the paper by Zare (1981). However, escape

criterion is not mentioned in this system.

Without moment of inertia I(t), confinement of regions in the phase space where
the system leads to escape is formulated by Khil'mi (1951). Merman (1952, 1953, 1954),
Alekseev (1961), Tevzadze (1962), Standish (1971), Yoshida(1972, 1974) and Marchal et
al. (1984b). These formulae describe necessary conditions of the hyperbolic-elliptic es-

cape at a finite time, and so they are also called the escape criteria.
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Although escape criteria by the above authors avoid the judgement of escape during
the close triple encounter, the inequalities of the criteria define regions in the phase space,
and so we may determine a rough distribution of the phase-space partition of escape even
if the system is of zero-angular-momentum.

Szebehely (1973a) reviewed the proof of the escape criteria derived until 1971. Yoshida
(1972, 1974) unified the criteria by Merman (1954), Tevzadze (1962) and Standish (1971)
into the improved formulation. Marchal (1984b) refined the criterion in the phase-space

region corresponding to the close triple encounter.

A new method analyzing the three-body problem began in 1960s. This method
is the numerical integration. The first numerical investigation was done in Yabushita
(1966) who analyzed the scattering three-body problem.

Szebehely and Peters (1967) observed the behavior of one orbit leading to escape
after many times of the interplay motion among three particles. The three masses of the
system are not equal (mass-ratio is 3 : 4 : 5). The initial velocities of the three masses are
zero. The system with zero initial velocities is a special case of the zero angular momen-
tum. They showed that the exact solution can be evaluated by the integration with the
suitable regularization between the closest two particles even if the motion is complicated
enough. Moreover, from the result of the evaluated orbits, the close triple encounter is
confirmed to be one of the effective factors for escape phenomenon.

The system with zero initial velocities is called the free-fall system.

Agekian and Anosova (1967) started the project to determine the partition in the
phase space with the aid of numerical integration. Agekian and Anosova (1967, 1968)
investigated the final states for 100 initial values in the system with small angular mo-
mentum. Anosova (1969) investigated the free-fall system with unequal-masses. The
mass combinations were 9:3:1,3:3:1 and 3:1 : 1. Instead of the moment of inertia
I(t), they used the time-dependent perimeter p(t) of the triangle, and observed that the
escape practically always occurs if the minimum value of p(t) is so small. Agekian et al.
(1969) and Agekian and Anosova (1971) also showed the importance of triple encounter
for escape phenomena by observing 1600 and 10000 systems. respectively. The initial con-
figuration and initial velocities were sampled at random. They evaluated the potential
energy U when the moment of inertia J(t) becomes minimum for each system.

Until 1986, Agekian, Anosova and their collaborators continued to investigate var-

ious systems and to publish their results in the Russian journals. See the references in



6 CHAPTER 1. INTRODUCTION

Anosova (1986). The results obtained during about 20 years are summarized in Anosova
(1986). The minimum value of p(t) and the binding energy of the formed binary as a
result of escape are found to be well correlated in the sense that close triple encounters
produce tight binaries. The investigated systems are the following four: the free-fall sys-
tem with equal masses, the planar non-zero-angular-momentum system with equal masses.
the three-dimensional non-zero-angular-momentum system with equal masses and with
unequal masses. Anosova (1989) reviewed the numerical results of three-body systems
since 1960s.

After that, Anosova and Zavalov (1989) observed systematically the initial-value de-
pendence of the escape orbits in the free-fall system with equal masses. They found a
sequence of sets of orbits escaping just after the first triple encounter without interplay.
According to them, moreover, most of these escape orbits seem to have the minimum
values of p(t) smaller than non-escape orbits.

Agekian and Anosova (1990) defined the time-dependent current size p(l) as the max-
imum distance of the components from the gravity center of the three particles. They
evaluated a minimum value of p(t) in the same system as in Anosova and Zavalov (1989).
The result of min p(t)-distribution of the escape orbits were similar to that of min p(t)-
distribution by Anosova and Zavalov (1989).

Johnstone and Rucinski (1991) also observed the initial-value-dependence of final
motions in the free-fall system with equal-mass case. They evaluated the life-time and
min p(t), and confirmed the above conclusions. According to their results, in general, the
initial value leading to a small value of p(t) causes the system to escape at an early time.
Anosova (1991), Anosova and Orlov (1992, 1994) increase the sample number of initial
values, and confirmed the above conclusions.

In 1990s, there appeared numerical works showing the relation between escape and
minimum value of the time-dependent moment of inertia I(t). Aarseth et al. (1994a,
1994b) evaluated the minimum value of I(¢) in the free-fall svstems with both cases of

equal masses and unequal masses, and confirmed the above conclusions.

The importance of the close triple encounter for escape phenomenon is stressed by
the above numerical works evaluating min p(¢), . min p(t) and min I{t). However, the
confinement of the phase space leading to escape is not successful by numerical as well
as by analytical methods. In this stage. it is expected naturally that there exists a non-

escape orbit experiencing sufficiently close triple encounters.
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1.1.2 Works analyzing chaotic behavior

In the field of mathematical theory of the three-body problem, a new method an-
alyzing orbits close to triple collision is developed in 1970s. In almost all cases of the
three-body problem, triple collisions show non-regularizable features, and so the continu-
ity of the solutions does not hold at the configurational point representing triple collision.
Therefore, the solution close to triple collision is complicated and difficult to analyze.
However, the research of the motion close to triple collision has begun with the aid of a
device due to Waldvogel (1973) and McGehee (1974) which blows up the singular point
in the configurational space to a high-dimensional manifold. This manifold is referred to
as the triple-collision manifold.

McGehee (1974) developed blow-up variables in the collinear three-body problem.
Although the flow on the triple-collision manifold is entirely fictitious since orbits on it
do not correspond to any orbit in the original phase space, the flow in the blow-up coor-
dinates extends smoothly over the fictitious flow on the triple-collision manifold. We can
describe the solutions close to the triple collision if the fictitious flow is described. By
investigation of flows in the triple-collision manifold, we can understand behavior close to
triple collision. The set of orbits ending in triple collision in the original phase space is in-
terpreted so as to form the stable manifold of the equilibrium point on the triple-collision
manifold. The orbit close to triple collision corresponds to the flow starting to recede
in the direction of the unstable manifold of the equilibrium point after approaching the
equilibrium point along the stable manifold.

Furthermore, McGehee (1974) found one possible mechanism for escape: one particle
may get an arbitrarily large velocity as an orbit approaches triple-collision manifold. This
implies that the motion closer to triple collision tends to escape in the collinear system.

In 1980s, the analysis of triple collision has been progressed in the planar isosceles
problem by McGehee’s blow-up method where the motion maintains symmetric configura-
tion of an isosceles triangle shape forever on the two-dimensional plane. Devaney (1980)
developed the blow-up variables and derived the triple-collision manifold in the planar
isosceles problem. The fictitious flows on the triple-collision manifold, especially the un-
stable and stable manifolds, with any mass ratio are analyzed by Simé (1980). Simé and
Martinez (1988) considered the near-collision flow and proved the existence of various

features about the behavior close to triple collision. They also suggested the relation
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between close triple encounter and escape in the planar isosceles problem as well as in
the collinear problem. Now, Umehara and Tanikawa (1997) completed the proof of the
relation between triple collision and escape in the case with equal masses. See Section 4.2
for a detail.

In the collinear and planar isosceles systems, the close triple encounter seems to be
the only factor effective for escape phenomenon.

Investigations of the planar problem by the blow-up method also started in 1980s
(Waldvogel, 1979, 1982; Moeckel, 1983; Simé and Susin, 1989; Susin and Simé, 1991).
Waldvogel (1982) introduced the blow-up variables in the planar problem. Moeckel (1983)
investigated the existence of the connection of the stable and unstable manifolds among
various equilibrium points, and made a list of possible motions passing near triple col-
lision. There are escape phenomena for each of the three particles after the close triple
encounter in the list of possible motion.

In the above theoretical works, however, it is still unknown whether bounded orbits
distribute close to a triple collision orbit or not in the planar problem. It is also not known
how escape orbits distribute around a triple collision orbit in the planar problem. There-
fore, it is naturally expected that there is another factor except close triple encounter

effective for escape phenomenon.

1.1.3 Expected effects of binary collision

In the present thesis, we will verify that binary collision as well as triple collision
are closely related to escape phenomenon. Tanikawa et al. (1995) was the first to suggest
it. Some preliminary numerical results in this relation have already been reported in
Umehara et al. (1995), and Umehara and Tanikawa (1996).

Expecting the importance of binary collision is novel. In the field of the numerical
astronomy and the theoretical mathematics, binary collision seems to be considered as a
worthless event hitherto.

In the numerical works, triple and binary collisions are ignored both consciously and
unconsciously. Since the phase space of the three-bodyv problem is high dimensional and
broad, authors in statistical field may consider that collision orbits are detected acciden-
tally if we sample orbits randomly. Moreover, they may want to avoid collisions since the
numerical error increases rapidly if the orbit passes through close to collision singularity.

On the other hand, various authors in the mathematical field consider triple-collision
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singularity as the origin of chaos. Since binary-collision singularity is regularizable, it
seems to be considered that there is not any remarkable event around binary-collision
singularity in the phase space. Several authors concentrated their attention on binary-
collision orbits in the general three-body problem (Delibaltas, 1983; Hadjidemetriou,
1984). However, they used binary-collision orbits as a tool to search periodic orbits
in the planetary system. So they did not consider any relation between binary collision
and escape.

Binary collision in the two-body problem is not any effective factor for the evolution
of the system. In the three-body problem, however, binary collision can become a candi-

date for an influential factor because of the existence of the third mass.

The following works on the two-body problem and on the restricted three-body
problem suggest the relation between binary collision and chaotic phenomenon: Devaney
(1982), Llibre (1982), Lacomba and Llibre (1988), Delgado-Fernandez (1988), and Llibre
and Pinol (1990).

In the two-body problem, Devaney (1982) described analytic formulae of binary-
collision orbits by means of blowing up binary-collision singularity. It was shown that
binary-collision singularity is transformed to a manifold, a binary-collision manifold. As
a result, a set of binary-collision orbits in the original phase space is transformed to stable
manifolds of fixed points on the binary-collision manifold.

In the circular restricted three-body problem, Llibre (1982) considered binary colli-
sions between one component of a finite-mass binary and a mass-less particle and devel-
oped the blow-up variables. As a result, stable and unstable manifolds corresponding to
an orbit ending at binary collision and starting at binary collision are found. Lacomba
and Llibre (1988) and Delgado-Fernandez (1988) showed that these stable and unstable
manifolds intersect transversely with each other in some limiting cases. In other words,
binary collision singularity in the restricted three-body problem has been shown to be the
origin of chaos. Therefore, we expect that binary collision as well as triple collision have

a central role for chaotic phenomena even in the general three-body problem.

The following works on the various Hamiltonian systems suggest the relation be-
tween chaotic phenomenon and escape: Ding et al. (1990). Meyer et al. (1995) and Toda
(1995, 1997). Some chaotic phenomena result in disruption of the system in the Hamilto-

nian system where the phase space is not closed but open. The phase space in the general
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three-body problem is also open even if the total energy is negative.

In some simple but non-integrable Hamiltonian systems, it is well-known that phase-
space partitions of final states have fractal structures. Moreover, phase trajectories leading
to disruption of the system distribute around unstable manifolds of a periodic orbit which
extend to infinity. Ding et al. (1990) and Meyer et al. (1995) show such phenomena
in the scattering problems with the fixed potential and with rotating rigid discs, respec-
tively. The structure of stable and unstable manifolds of the invariant manifold in the
three-body scattering system with lower-bounded potential is investigated by Toda (1995,
1997). However, due to the difference of purposes, Toda (1995, 1997) did not mention
physical states in the unstable manifolds.

In the gravitational three-body problem, there are works by Boyd and McMillan
(1992, 1993) and Mikkola and Hietarinta (1989, 1990, 1991) who studied the topological
structure of phase-partitions of final motions. Boyd and McMillan (1992, 1993) investi-
gated initial-value distribution of escape phenomena in the scattering system. Mikkola
and Hietarinta (1989, 1990, 1991) investigated phase-space structures of final motions
in the collinear problem. In both three-body systems, fractal structures of phase-space
partitions of escape motions have been observed.

The above works imply the close relation between escape phenomena and unstable
manifolds even in the general three-body problem. Thus escape orbits may distribute
around unstable manifolds of fixed points corresponding to triple or binary collision.
Many works considering triple encounter have shown that the close triple encounter is not
only one factor effective for escape. Therefore, not only triple collision but also binary

collision may be crucial to escape phenomena in the three-body problem.

Furthermore, behavior of escape orbits with respect to binary collision were expected
by Tanikawa et al. (1995). Let us consider a near-binary-collision orbit which is perturbed
from an orbit experiencing binary collision in the presence of a faraway third particle. Two
components of the near-collision binary approach and begin to recede from each other.
One of the components of the receding binary passes through the linear arc connecting
the other component and the third particle. At this configuration, particles outside may
be receding from each other. In general, when a particle passes through between two
particles which are receding from each other. it is possible that the passing particle ob-
tains enough kinetic energy to escape. See Fig.3 of Tanikawa et al.(1995) and Fig. 3.26

in Subsection 3.4.2 of the present thesis. This suggests that escape orbits are distributed
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around binary collision orbits.

The mechanism obtaining kinetic energy suggested in the above scenario is called
“slingshot” which is one type of triple encounters. The triple encounters have been classi-
fied in three categories by Anosova and Zavalov (1981) for the first time, and summarized

by Valtonen (1988).

1. A single particle goes through between components of a temporary binary in a nearly

straight line orbit, which is called as “slingshot” by Saslaw et al. (1974).

2. A single particle scatters strongly from one of the components of a temporary binary,
which is called as “fly-by”.

3. A single particle exchanges its place with one of the components of a temporary

binary, which is called as “exchange”.

Slingshot encounter is investigated by Saslaw (1974). Lin and Saslaw (1977), Anosova’
(1986), Anosova and Zavalov (1989), Mikkola and Valtonen (1990), Agekian and Anosova
(1991), Xia (1992), Hut and Rees (1992), Basu et al. (1993), Valtonen et al. (1994),
Anosova and Tanikawa (1995), Zare and Szebehely (1995), Umehara and Tanikawa (1996),
Valtonen (1996), and Anosova (1997). Fly-by and exchange encounters are investigated
by Heggie (1975), Mikkola (1983), Hut and Bahcall (1983), Hut (1983), Mikkola (1984a,
1984b), Heggie and Seatman (1991), Hut (1993), Heggie and Hut (1993), McMillan and
Heggie (1996), and Hut and McMillan (1996).

The slingshot 1s an effective mechanism for the energy transfer between a binary and
the third particle. This mechanism has been used to prove the existence of an oscillatory
motion in the three-body problem (Sitnikov, 1960; Tanikawa and Umehara, 1998) and to
verify the existence of a non-collision singularity in the five-body problem (Xia. 1992).
Recently, the mechanism of energy increment for the escaping particle due to slingshot
was analyzed by Zare and Szebehely (1995) in the planar isosceles three-body problem.
The microscopic mechanism to obtain kinetic energy from a binary is clarified in the case
of the idealized configurations.

Roughly speaking, a third particle is accelerated by the gravity of a binary if the third
particle passes through the gravity center of the binary when the components are reced-
ing from each other. In this way, the third particle can escape obtaining enough kinetic
energy from the binary. Conversely, the third particle is decelerated if it passes through

the gravity center of the binary when the components are approaching each other.
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Note that these mechanisms are considered in the isosceles problem. In the pla-
nar system, the slingshot configurations leading to escape are searched by Agekian and
Anosova (1991). However, surveying grid size in the phase space is coarse, and so it is
necessary to investigate more intensively the condition of slingshot configurations leading

to escape in the planar or three-dimensional three-body problem.

1.2 Goal of the research and outline of the thesis

The main purpose of the present paper is to explain the features of escapes by way
of not only triple collision orbits but also binary collision orbits. The main result of the
present paper is that the dominant motion for escape is a particular type of binary col-
lisions, i.e., the slingshot close to isosceles configurations after the binary collision. In
order to derive this result, we will investigate the free-fall three-body system. Triple colli-
sions may occur in the free-fall problem. So this system is adequate to study the relation
between escape phenomena and collisions. In the free-fall three-body problem, we will
follow the two purposes mentioned at the beginning of the present chapter.

In Chapter 2, we will investigate the initial-value distributions of escape, binary colli-
sion and triple collision in the free-fall problem. In Section 2.3, we survey the initial-value
space numerically. The dominant encounter for escape is the slingshot which experiences
binary collision maintaining isosceles configurations approximately. See Section 2.4. By
the survey, we find another type of encounter, exchange, in the free-fall problem with
equal masses. It will be described in Section 2.5.

Motions close to triple collision will be considered in Subsection 2.4.2. We will find
initial values of orbits which are sufficiently close to the initial value ending in triple col-
lision but do not escape just after the first triple encounter. From the result, we find that
the close triple encounter is not the only cause of escape phenomena. We will also find
that escape orbits experiencing close triple encounter distribute around binary collision
orbit. So we can conclude that binary collision is also an important factor.

In Chapter 3, we will compare the difference of physical features between respective
encounters, slingshot and exchange, by the statistical analysis of the samples evaluated nu-
merically. In Section 3.2, probabilities of escape due 1o respective encounters are evaluated
and compared with each other. In Section 3.3, energy transfers due to respective encoun-

ters are evaluated and compared with each other. We will conclude that the slingshot
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encounter is more important to the evolution of the system than the exchange encounter.
In Section 3.4, conditions of slingshot configurations leading to escape in the free-fall
problem are determined numerically, and frequent configurations of slingshot leading to
escape are shown. In particular, the escape behavior expected in the above around binary
collision orbits is confirmed in Subsection 3.4.2.

In Chapter 4, we will concentrate our attention to motions close to triple collision. In
Section 4.2, we will prove that initial values of orbits leading to escape just after the first
triple encounter distribute around the planar-isosceles orbits arbitrarily close to initial
value ending in homothetic-equilateral triple collision, i.e., triple collision maintaining the
equilateral triangle configuration. Using the result, we will prove that initial values of or-
bits which do not escape just after the first triple encounter also distribute arbitrarily close
to the initial value ending in homothetic-equilateral triple collision. The planar-isosceles
motion is shown to be important to escape phenomena around the homothetic-equilateral-
triple-collision orbit. In Section 4.3, we will assert that these features around the special
collision, are also established around the other triple collisions with the aid of systematical
analysis by numerical integrations. From the results, it will be clear that behavior of the
binary collision orbit close to triple collision tends to maintain planar-isosceles configura-
tion. Using such a feature, it will be confirmed that binary-collision orbits are important
to escape phenomena experiencing the close triple encounter.

In Chapter 5, we will compare the dynamical features in the free-fall problem shown
by us and the scattering problem. The respective fractal structures of phase-space par-
titions of escape are similar to the structure in the free-fall problem. Therefore, we will
conjecture that binary collision as well as triple collision are also crucial to escape in the
different types of three-body systems, although we analyzed the limiting case, the free-fall
system.

Before starting the project. in the next section, we will introduce the initial-value
space in the free-fall problem, review initial-value dependence of escape orbits in the free-
fall problem, and also review initial-value dependence of collision orbits in the free-fall

problem, respectively.
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1.3 Tools for studying the free-fall three-body prob-

lem

1.3.1 Initial-value space in the free-fall three-body problem

In the present subsection, we explain why studying the free-fall problem is favorable
for considering the common purposes mentioned at the beginning of Subsection 1.1.1.
After that, we introduce the initial-value space of the free-fall problem.

The free-fall problem has advantageous features in investigating the relation between
collisions and escape phenomena. Since the total angular momentum of the system is
zero, it contains triple collision orbits. Moreover, there exist both orbits which experience
and do not experience binary collision. Because of the existence of collisionless orbits,
we expect to extract some effects of binary collision upon escape phenomena. This is in
contrast to the collinear and the planar isosceles systems with total negative energies. In
these cases binary collision occurs inevitably.

Furthermore, the initial-value space is a low-dimensional subspace in a high-dimensional
phase space. The phase space in the planar system is a five-dimensional manifold with
constant energy. So, in general, a systematical survey by numerical integrations is difficult
in the planar system. In the free-fall problem, however, the initial-value space is reduced
to a two-dimensional surface which we will explain below. The dimension is low, and so

systematical survey is possible.

Let us introduce the exact definition of the free-fall three-body problem (Agekian
and Anosova, 1967; Tanikawa et al., 1995; Broucke, 1995). We consider the three-body
problem in R? of particles with positive masses m; > 0, j = 1,2, 3 which interact accord-
ing to the mutual gravitational attraction. Let q; € R?, j = 1.2,3. be the position vectors
of the particles of mass m;. Their dynamical evolution is described by the Newtonian

equations of motion as
3
§i=2 %E(% —q;) where  rji = |g; — g, (1.1)
k#5 "1k
Following Broucke (1995), we consider the rectangular (z. y)-coordinates in the plane.
The half-plane {(z,y)|y = 0} is denoted by D. Let three mass points my, my and my
stand still at P(z,y) € {(z,y)ly = 0}, A(—0.5,0) and B(0.5,0), respectively. If m,
changes its position on D), then triangles with given masses located at the respective

vertices are exhausted. Conversely, any weighted triangle 1s similar to one of the triangles
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formed by m;,m, and ma under rotation in R* and reflection. Motions starting from
similar weighted triangles transform into one another with appropriate changes of scales
of length and time, so we identify these motions. Then the positions of m, specify all
possible initial conditions, i.e., D is the initial-value space of the free-fall three-body
problem with given masses.

The present paper explores the case where all particles have equal masses, i.e., m; = 1,
: = 1,2,3. In this case, the initial-value space can be further specified owing to the
additional symmetry (Agekian and Anosova, 1967; Tanikawa et al., 1995). Let us define
region ) by

D = {(z,y)lz >0,y > 0,(z+0.5)* +y* < 1}. (1.2)

Let m, stand at P(z,y) € D. If m; changes position in D, then triangles satisfying

the relations AB > PA > PB among edges are exhausted. Conversely, any triangle is
similar to one of the triangles formed by m,, ms; and ma. Motions starting from similar
triangles transform into one another under appropriate changes of coordinates and time,
so we identify these motions. Then a position of m,, P € D, specifies any possible initial
condition with the equal-mass case. The initial-value space of the free-fall three-body
problem with equal masses is ). Hereafter D is called the extended initial-value space.
We will use D as well as D for later convenience.

In the case of equal masses, the initial-value set of isosceles configurations with the
base of the same pair forms one-dimensional curve. We will call this an isosceles curve.
Orbits starting from this curve maintain isosceles configurations. Let I; denote an isosceles
curve corresponding to the isosceles configuration with base mypm; where each 7, k, [ be-
longs to a cyclic permutation of 1,2,3. The equations of [;, j = 1,2, 3 can be represented

by z and y:
L:z2=0, L:(z403)%+y*=1, L:(z—05°+y’ =1 (1.3)

If we provide the unit length and the unit mass as 1]pc] and 1]Mg], respectively, then
the unit time is 1.5 x 107[year]. If we provide the unit length and the unit mass as 1[{AU]
and 1[Mg], respectively, then the unit time is 92{vear]. The free-fall time, which is defined
as the time necessary for the system to collapse to the triple collision starting from the

equilateral triangle with unit edges until the triple collision, is equal to —= =~ 0.641.
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1.3.2 Escape criteria for the general three-body problem

In the general three-body problem, the classification of the types of final motion, i.e.,
motion as ¢ — oo, is well-known after investigation by Chazy (1922). After that, many
authors investigated the initial-value dependence of final motion. However, it is difficult
to determine the types of motion for any given initial condition.

If we investigate the final motion by computer simulations without any criterion. it
takes an infinite time to follow the orbits. Fortunately, there are criteria for the hyperbolic-
elliptic motion, where one particle recedes to infinity with non-zero velocity and the other
two particles form a binary as ¢t — co. Let r be the distance between the closest two
particles, and p denotes the distance between the third particle and the gravity center of
the closest particles. In order to determine that the motion is of hyperbolic-elliptic type,
it is sufficient to prove that p(t) increases indefinitely with order ¢ as £ — +oco and r(t) is
bounded for t > #;.

Yoshida (1972) developed escape criteria. Corollary by Yoshida (1972) is convenient

to numerical integration. After that, Yoshida (1974) revised the criterion as follows:

Corollary (Yoshida, 1972, 1974). Suppose that h = —H > 0 and m; < m;. Let

_ m; N T
A= ~————*—mi+mj, and = ——-—-—-—mi_l_mj. (1.4)
If there exist positives d and a > A such that
d > m,-mj-, (1-5)
h
p(t1) = ad > ar(ty), (1.6)
and moreover
A v
o(t1) > 4| 2M ' : D
Aa) \} s ) -5

then the motion of the system is of hyperbolic-elliptic type ast — +o0, and

m;m;

r < h

f(-'r 4 :2 11. (1<8)

Also, if m; > m;, then the above conditions are replaced by

plti)—vd " pty) + \d

a>v, and p(t;) > JEJI{ 2 v }, (1.9)
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In the present thesis, the constant values d and a are fixed as

T ;

= h

and a=1, (1.10)

and all masses are assumed to be equal to each other. Therefore, we will use the following

formulae.

The escape criterion applied to the present work. Let h = —H > 0. If at

some arbitrary time t = 1, the following condilions are satisfied:

m.l-m_.,-

p(t) 2 ——, (1.11)
p(t) 2 r(t), (1.12)
and
)'S 2M{ . S } (1.13)
LAk 2p(t) +1  2p(th) — A’ '
then the motion of the system is of hyperbolic-elliptic type as t — +o0, and
r< m;mj- for t>t;. (1.14)

The dynamical meaning of the escape criterion is the following. When the above
inequalities are satisfied at some t;, they remain so forever for ¢ > ;. These conditions
separate the phase space into two regions: the region where the conditions are not satis-
fied (hereafter referred to as region I), and the region where they are satisfied (hereafter
as region II). The passages of orbits are possible only in one direction: from the region I

to the region II.

The procedure deriving the escape criterion is summarized as follows: first, a lower
bound of the acceleration at a given time is derived; second, using the energy integral
and the inequality representing the bounded acceleration, it is proved that the minimum
distance is finite; finally, the escape velocity is shown to be positive forever using the

above inequality.
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1.3.3 Numerical search for collision orbits

Tanikawa et al. (1995) developed a systematical procedure searching for binary col-
lision orbits and found the initial values which experience binary collisions in the free-fall
problem.

The procedure is summarized as follows. The close approach is defined as a state of
the system when the time-dependent distance between the closest two particles experi-
ences a minimal value. Let us find a binary-collision orbit such that the collision occurs
when the i-th close approach. Hereafter, we call such a collision orbit the orbit BY). For
a sufficiently small B > 0, there is a region on the initial-value space which includes the
initial point of the binary orbit such that all orbits starting on the region experiences the
approach of two particles within a distance R after the (i — 1)-th close approach.

For each orbit, we sample the direction angle of the relative velocity between the
two parficles approaching at a distance R. These angle are denoted by ¢ € [—7/2,7/2].
Motions of the colliding particles are almost rectilinear at a binary collision when seen
from their center of mass. So binary-collision orbits are characterized by ¢ =~ 0.

We consider two orbits under the opposite perturbations to the collision. Suppose
that a direction angle of one orbit is ¢ > 0 when a distance between the approaching parti-
cles becomes K. Then the angle of the other orbit i1s ¢ < 0. Therefore, there is a sub-region
where the direction angle is positive and the other sub-region where the angle is negative.

Then initial values experiencing binary collision at the i-th close approach lies in between.

Tanikawa et al. (1995) examined the isosceles curves located on the boundary of
D which corresponds to the known initial values of binary collision in order to justify the
procedure. It was shown that the signs of the direction angles on the both sides of the
isosceles curve are opposite.

The initial values satisfying ¢ = 0 are detected for several integer numbers :. It was
found that the initial values experiencing binary collision form one-dimensional curves on
the two-dimensional initial-value space. A curve which consists of initial values experi-
encing binary collision is called a binary-collision curve.

This phenomenon can be suggested by the dimension analysis if a set of solution
flows corresponding to binary-collision orbits intersect the initial-value space. However,
the transversality can not be proved. The transversalitv is one of our numerical results.

Moreover, Tanikawa et al. (1995) found a lot of initial values leading to triple colli-

sion. It is obtained as a cross point of three binary collision curves where the respective
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colliding pairs are different and the respective step numbers of minimal mutual distance

until the collision are the same as each other. An initial point leading to triple collision

is called a triple-collision point.



Chapter 2

Qualitative results

2.1 Introduction

In the present chapter, we will clarify the qualitative relation between escape phe-
nomena and collisions. Most escape orbits are found to distribute around a particular
type of binary-collision orbits. It becomes clear that among orbits which are close to
triple-collision orbits, the escape orbits distribute around the binary-collision orbits.

In Section 2.2, we prepare for the numerical and analytical investigations in subse-
quent sections. Here, we define the state of triple encounter in order to investigate initial-
value distribution of escape orbits, taking account of the frequency of triple encounters.
There already exist several definitions of triple encounter based on the virial-equilibrium
theorem. We simulate many free-fall systems under several definitions and clarify that
these definitions fail in counting the number of triple encounters. Wide triple encounters
have been frequently missed. Thus we should seek for a scale larger than the one which
characterizes the virial equilibrium, and so we will find a suitable scale for the definition.

In Section 2.3, we study regions leading to escape on the extended initial-value space
D) by detailed numerical computations, and we find a fractal distribution of escape orbits.
In most escape orbits, escape phenomena occur after the triple encounter of slingshot
type, where an escaper passes through between a binary whose components are receding
from each other.

In Section 2.4, we compare the initial-value dependences of escape and collision in
order to investigate what is the dominant factor for the fractal structure. As a result,
we see that on the initial-value space, regions where the svstems lead to escape after
surviving the first triple encounter spread around triple collision points. Moreover, we

show that the respective regions corresponding to the different particle’s escape converge

21
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to triple-collision points, and regions where no particle escapes after surviving the first
triple encounter also converge to triple-collision points. This shows that phase trajectories
without escape exist in any small neighborhood of a triple collision trajectory, and so we
can comprehend that the occurrence of close triple encounter is not sufficient for escape.

We clarify that not only triple collision but also binary collision plays the dominant
role on escape. The escape regions converge to triple-collision points. In a neighbor-
hood of a triple-collision point, each of the escape regions spreads along a binary collision
curve. The escape regions extend around particular binary collision curves, where the con-
figuration after the triple encounter maintains approximately isosceles. Anosova (1991)
emphasized the importance of slingshot behavior. We find that among various sling-
shot motions, the above special slingshot lies at the center of each escape regions. This
isosceles-like slingshot will be called the near-isosceles slingshot.

We discover a different type of triple encounter in the free-fall system with equal
masses in Section 2.5. It is the exchange type: successive binary close approaches occur.
Escape regions due to slingshot and due to exchange are connected each other. Thus we
have defined the dynamically reasonable boundaries between them. From the location of
the boundaries, we have concluded that exchange-escape orbits do not distribute around
any triple-collision orbit. It suggests that the escape due to slingshot is more important
to the evolution of the system than the escape due to exchange.

A classification of the triple encounters leading to escape has been summarized by
Anosova (1986, 1991) for both equal-mass and unequal-mass cases. In the system with
zero angular momentum, there are two types of triple encounters, slingshot and exchange.

In the slingshot encounter, a temporary binary is first formed, while the third parti-
cle passes through between components of the binary when the components are receding
from each other. This phenomenon leads to acceleration of the passing particle. Passage
through a line segment connecting the binary components is called the syzygy crossing.

In contrast to acceleration due to slingshot, the syzygyv crossing when binary compo-
nents are approaching affects decelerating phenomenon of third particle. We will call it
the inverse slingshot.

Another type of triple encounter is exchange. Successive approaches between two
particles occur. We should distinguish between the exchange type of triple encounters
and the exchange type of final evolutions. Chazy (1922) classified types of final states
and conjectured possible evolutions from original states to final ones. Here, the final state

is defined by asymptotic motion as time { — +oc, whereas the original state is defined by
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motion as + — —oo. Recently Marchal (1990, p.424,425,494,495) summarized the main
combinations between original and final states. According to them, the definition of ex-
change is that the original state is escape for one particle (say m;, ¢ = 1,2, or 3) and the
final state is escape for another particle, 1.e., m;, j # 1.

We must notice that exchange type of final evolution is impossible in the free-fall
problem. Both time evolution as ¢ — +oo and one as t — —oo are identical by the
symmetry of time inversion in this problem. Thus in the present thesis, exchange type of
triple encounter is called ezchange simply.

Anosova (1986, 1991) mentioned that exchange can occasionally result in escape of
the particles of intermediate or maximum mass in the unequal-mass case. Anosova also
asserted that escape phenomena after exchange type of triple encounter seldom take place
in the equal-mass system. However, we will show that probability of exchange-type escape
is not small in the free-fall problem with the equal-mass case in Section 3.2 of the next
chapter.

Aarseth et al. (1994b) suggested the existence of orbits showing a strange triple en-
counter which is different from slingshot by their statistics. So they conjectured that their
strange encounters are due to exchange. However, we have found that the procedure to
sample the behavior during triple encounter is not reasonable. More detailed explanation

will appear in Subsection 3.4.1.

2.2 Triple-encounter criteria

2.2.1 Previous and new definitions of triple encounter

We will classify escape orbits by the frequency of triple encounters until leading
to escape. Any three-body system with negative-total energy which begins to shrinking
once expands if the system does not end in triple collision. After that, the size of the
three-body configuration will oscillate as long as one particle does not escape to infinity
or the system does not end in triple collision. Let us define the triple encounter as the
following way.

Let {,;n be a time ¢ when the time-dependent moment of inertia I(¢) becomes minimal
or zero. Let p be a vector from the gravity center of the nearest two particles to the third
particle. The absolute value of p is denoted by p {i.e., p = |p|). The total energy of the

system is h. We assume h < 0.
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If p(tmin) > po, the system is defined as out of triple encounter, where

M,
o= W, M. = mymy + mamg + mamy (2.1)

Otherwise, we define a time interval during a triple encounter as follows.
Before defining the time interval, we introduce t7, tF, ¢ ¢+ i and tf;. Let

7 tp s tmoms tmoms Linf>
t; and tF (t; < t}) denote endpoints of a connected maximal interval containing fmin
on which the system satisfies p < pg if I(tmin) # 0 and such endpoints exist. If such
an initial time or a terminal time does not exist, 7 or t7 is considered as —oo or +oo,
respectively. For example, it is possible that no particle recedes from the other particles
and p(t) continues to be less than po. In this case, we define 7 = +co.

Let t,m and tf  (toom < th.m) denote endpoints of a connected maximal interval

containing ;. on which the system satisfies I < [ if I{tnn) # 0 and such endpoints

exist, where

M3
= > . 2.2
o= tw (22
If I(#min) = 0 which corresponds to the triple collision, we define t} = t.4,. If such an

initial time or a terminal time does not exist, t_

+ ' -
mom OF 11 is considered as —oo or +oo,

respectively.

Let t; and 1, (7, < tf;) denote endpoints of a connected maximal interval con-
taining tumm on which the system satisfies 1(¢) > 0 if such points exist. If [{lyn) = 0, we
define ¢; = tmin. If such an initial time or a terminal time does not exist, t; or £t is

considered as —oo or 400, respectively.

Triple-encounter criterion (Our definition of triple encounter). The sys-
tem with negative energy ts called to be in triple encounter during the time interval

t € [to., th.], where an initial time 1, and a terminal time 1., of the triple encounter

enc? Eenc

are defined as
tone = Max{t)  tpom B}y fone = min{E] At} (2.3)

At the time tF

aer the system is called to survive the triple encounter.
Until we revise the definition of the triple encounter as above, the following three
definitions are formulated. The first definition is presented by Agekian and Martynova

(1973). They paid attention to the time-evolution of the moment of inertia.
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Definition 2.1 (Agekian and Martynova, 1973). The system with negative

energy is called to be in triple encounter during the time interval t € [t 1]

Anosova and Zavalov (1989) formulated another definition in terms of the perimeter

of the triangle formed by the three particles.

Definition 2.2 (Anosova and Zavalov, 1989). The system with negative energy
is called to be in triple encounter if o < oy, where ¢ is a perimeter of the configuration

triangle and

dg = Sd,_,m-;, dnnjl_ = = (2.4)

Recall that pg is expressed in eq.(2.1). Physically, d . 1s the mean harmonic separation
between the particles in virial equilibrium. Thus, in this definition, the size of the system
during the triple encounter is considered as smaller than the proper size of the length-scale
in virial equilibrium.

Here, we review the derivation of the length-scale d,;; in virial equilibrium. When the
system is in steady state, it is considered that I(¢) = 0. It is known that any gravitational

n-body system satisfies the so-called Lagrange-Jacobi equation:

d‘ﬂ =
S51() = 2U (1) +2h), (2.5)

where h and U denote the total energy and the absolute value of the potential energy,

respectively. The mean harmonic distance d,;, is defined as

dl_ ijm;_- = Z m;Jm,, =T, (2.6)
unit jogk i#k Tk
where m; and r;. denote the mass of the j-th particle and the distance between particles
j and k, respectively. The equality U = —2h is considered to hold in virial equilibrium,
and so

g o ik T Xk TR
e 7] 2|h|

Therefore, d it is described as in eq.(2.4).

(2.7)
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The following definition is developed by Junzo Yoshida (1997) from Definition 2.1.

The moment of inertia is considered again.

Definition 2.3 (J.Yoshida, 1997). The system with negative energy is called to be

om]'

in triple encounter during the time interval t € [t ., tT

mormn?

In Triple-encounter criterion, we unify Definition 2.1, Definition 2.3, and the condition
p(t) < po. Definition 2.1 and Definition 2.3 consider the moment of inertia I(¢) while the
perimeter of the configuration triangle o(t) is used in Definition 2.2.

In Section 4, we will follow the time-evolution of the square root of the moment of
inertia m in order to investigate behavior near triple collision by the blow-up analysis
which is explained later. Thus, if we use the moment of inertia I(t) in the criterion of
triple encounter, it is easy to check results by the blow-up analysis with the criterion.
Therefore, we choose Definition 2.1 and Definition 2.3 while we eliminate Definition 2.2
which does not mention any relation with I{t) directly.

However, if we adopt only Definition 2.1 in the criterion of triple encounter, it is
useless since Definition 2.1 is too week to define the triple encounter. We will explain it in
the next subsection with the numerical results. On the other hand, Definition 2.3 is too
sirong to define the triple encounter. Thus, some triple encounters are not detected under
Definition 2.3 although three particles approach each other widely. We will also confirm
it in the next subsection with the numerical results. In order to define the so-called wide
triple encounter, it is necessary to add some condition to the criterion of triple encounter.
The condition p(t) < pg is considered to be suitable. The reason is described in the next

subsection.

2.2.2 Numerical experiments
Global results under the respective definitions

Let us investigate the initial-value dependence of escape orbits by surveying the
initial-value space numerically. We search for system leading to escape until the n-th triple
encounter by the respective definitions (where n € N). and make four diagrams showing
the initial-value distributions of the n-th escape orbits under the respective definitions of

triple encounter. After that, we compare four diagrams with each other.
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We continue to integrate orbits according to the following flow-chart under each of the
criteria of triple encounter, Definition 2.z (¢ € {1,2,3}) and Triple-encounter criterion.
Let p be the radial component of the time derivative of p, i.e.,

PP
e

The initial-value space is divided into a large amount of small rectangle grids. We inves-

: (2.8)

tigate the time-evolution of the system starting at the vertices of the grids.

The flow-chart of the integration until the n-th triple encounter by Defi-

nition 2.z or by Triple-encounter criterion.

If p > 0, then
if the system satisfies the escape criterion by Yoshida (1972, 1974), then
the final state is determined as escape
and the integration is terminated,
else if p > 20d e, then
the system is considered as the conditional escape
and the integration is terminated,
endif.
Else if p < 0, then
if the system is in the n-th triple encounter due to Definition 2.z
or Triple-encounler criterion, then
the system begins to shrink after surviving the n-th triple encounter
and the integration is lerminated,
endif,
endif.

There are two kinds of the conditional-escape orbits: one is an oribt leading to escape
which does not satisfy the escape criterion for p < 20d,,,;,: the other is an orbit in which
a particle is ejected from a binary by more than 20d ;..

Figure 2.1 shows the numerical result of the initial-value distribution of escape orbits
where the system leads to escape until the third triple encounter (n < 3) under Definition
2.1. We integrated 2 x 10 initial points. For convenience. the structure beyond the cir-
cular boundary is also shown. The size éz of the grid elements in the z direction on the

initial-value space (z,y) is the same as the one in the y direction, and equal to 5 x 1072,
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Similarly, Figures 2.2, 2.3, and 2.4 show the initial-value distributions of escape orbits
until the third triple encounter under Definition 2.2, Definition 2.3, and Triple-encounter
criterion, respectively.

In four figures, initial values of systems leading to escape until the third triple en-
counter are shown as three kinds of marks on the initial-value space. A dark-gray element
of grids stands for the initial value where the system escapes after the first triple encounter.
A light-gray element and a cross (++) represent the initial values leading to escape after
the second and the third triple encounters, respectively. The isosceles curves are shown

in the figures,

Later in the present subsection, we will give detailed descriptions of the reason why
Triple-encounter criterion is more suitable for the definition of triple encounter than the
other previous definitions. Here, we summarize the scenario.

Anosova and Zavalov (1989) surveyed the initial-value space in the free-fall three-
body problem systematically for the first time, and they found a sequence of at least
five band-like regions leading to escape after the first triple encounter by Definition 2.2.
Here, these regions are called S; C D for i = 1,2,---,5. Moreover, they expected that S;
continues to infinity.

We can confirm in Section 2.4 that there is an infinite sequence of the first escape
regions S;, = 1,2,... in the shape of bands which accumulates to the lower-right corner
(0.5,0) on the initial-value space D. Each of the band-like regions extends to the z-axis
and the isosceles curve (z+40.5)*4+y* = 1. Therefore, we consider the following conjecture

as true.

Conjecture 2.1. There exist escape points after the first triple encounter around

the lower-right corner (0.5,0) on the initial-value space.

Despite the coarseness of the grid, we can see that band-like escape regions other
than S; cross the x-axis. Some regions fold back and do not contact with the isosceles
curve. The band containing {(z,y)|r = 0.11,y < 0.1} continues upwards and bends
around y = 0.32. This band will be denoted by A in the present subsection. The folding
band does not accord with any S; since S; includes a part of the isosceles curve. In

fact, A is located in between S; and S,. Note that S; distributes around y-axis. See
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also Fig.2.10. The z-positions of S;, i = 2,3.4 on the z-axis are 0.180, 0.255, 0.295,

respectively. Therefore, we consider the following conjecture as true.

Conjecture 2.2. Systems in the bended band-like region lead to escape after at least

the second triple encounter.

We will confirm this conjecture later in the present section by observing the time-evolution
of the moment of inertia.

See Table 2.1 and notice that only the result in Figure 2.4 which is the simulated
result under Triple-encounter criterion satisfies two conjectures. Definition 2.1, Definition
2.2, and Definition 2.3 are not suitable for the behavior of whole orbits.

We used the TRIPLE code of Aarseth for integration leading to escape. It is composed
by the numerical method with Aarseth-Zare (1974) regularization and Bulirsch-Stoer
(1966) integrator. We adopt the escape criterion of Yoshida (1972, 1974) which is reviewed

in Subsection 1.3.2.

Table 2.1: Definitions satisfying two conjectures.

Conjecture 2.1 Conjecture 2.2

Figure 2.1 (Definition 2.1) false true
Figure 2.2 (Definition 2.2) true false
Figure 2.3 (Definition 2.3) true false
Figure 2.4 (Triple-encounter criterion) true true

Problems in Definition 2.2

There have already been numerical results simulated systematically under Defini-
tion 2.2. Thus, before investigating problems of Definition 2.1. we show the problems of
Definition 2.2.

Anosova and Zavalov (1989) showed orbits starting in the escape regions S;. Accord-
ing to them, the systems in S; experience the i-th close approach of the two particles m,
and m3 during triple encounter.

Tanikawa et al. (1995) found that there are triple-collision points on the isosceles
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curve such that the triple collision occurs at the time of the :-th binary collision between
my and mg for any « € N. Therefore, it is expected that also for i > 6, there are systems
such that the first {riple encounter occurs at the i-th close approach of m; and ms;. We
will make clear in Section 2.4 that each of triple-collision points on the isosceles curve is
included in the first escape region S; for a sufficiently large «. Thus, we conjecture that
the regions 5; form an infinite sequence and accumulate to the lower-right corner of D,
i.e., B(0.3,0).

Anosova and Zavalov (1989) simulated only 5000 initial points. Thus we survey the
initial-value space with a finer grid. The number of the integrated systems is quadruple.
As a result, we show many initial points in the lower-right part of the initial-value space in
Fig.2.2. There are many regions S;, 1 > 6 leading to escape after the first triple encounter
in the lower-right corner, and so Conjecture 2.1 is true.

However, except for S;, ¢ = 1,2,:--, there is an additional band A on {(z,y)|z =
0.11,y < 0.1} where the system leads to escape after the first triple encounter under
Definition 2.2.

The behavior of the system starting on the additional band is shown in Fig.2.5(a).
The upper frame shows the time-dependence of the distances between the respective
particles and the perimeter of the configuration triangle. In the lower frame, the time-
dependence of the moment of inertia is shown. The initial value is (0.11, 0.07), The three
curves in the upper frame stand for the distances between the respective two particles.
The bold curve represents the distance between m, and ms. The lightest and the middle-
gray curves show the distances between my and my, and m; and mg, respectively. The
fine curve stands for the time-dpendence of the perimeter. The horizontal line in the up-
per frame represents the critical value of the perimeter oy. Recall that oy is expressed in
eq.(2.4). In the lower frame, the curve shows the time-evolution of the moment of inertia
I(t). The horizontal line represents the critical value . Recall that I, is described in
eq.(2.2). The time interval indicated by the bold curve between the vertical lines means
the period with positive I(f). We will consider the relation between I(t) and the triple
encounter later in the present subsection.

At the terminal point of the curve (at ¢ = 1.2606), the system satisfies the escape cri-
terion. In the time interval ¢ € [0, 1.2606], it is apparent that the triple encounters occurs
twice. There are two minimal values of I() in the figure. At the times ¢t = 0.4834,1.1823
which are indicated by two arrows, I(t) becomes minimal.

At the first minimal time, the perimeter also becomes small. However, at this time



2.2. TRIPLE-ENCOUNTER CRITERIA 31

the perimeter 1s slightly larger than the critical value op. Thus, the system can not be
called in triple encounter around this time according to Definition 2.2. On the other hand,
the perimeter is less than oy around the time t = 1.1823 denoted by the second arrow.
Therefore, the system is said to experience triple encounter around ¢ = 1.1823 for the first
time, and the system is judged to escape after the first triple encounter although the fact
1s the escape after the second triple encounter.

Moreover, we found another evidence showing that the system in Fig.2.5(a) must be
in triple encounter twice until it escapes. A similar motion as the one in Fig.2.5(a) is
found in Fig.2.5(b) where the system starts at the initial point (0.18,0.30). This result
implies that the initial point (0.18,0.30) is located in the band which is considered as
the continuation of the additional band A. One can confirm it in Fig.2.2. In this case,
however, the system escapes after the second triple encounter according to Definition 2.2.
In fact, the perimeter becomes less than the critical value oy around the time ¢ = 0.5605
denoted by the first arrow. After that, the perimeter becomes minimum at ¢ = 1.3559
and less than op again. As a result, the system (a) starting at (0.11,0.07) must also be

in triple encounter twice until it escapes.

Problems in Definition 2.1

Agekian and Martynova (1973) paid attention to the time-evolution of the moment
of inertia. (See Definition 2.1.) This definition means that the system with negative
energy is called to be in triple encounter during I(t) > 0. According to this definition,
however, the system may be said to be in triple encounter even if I(f) is monotonically
increasing or decreasing without any minimal value. In Fig.2.5(a), there are five time-
intervals with negative I. In these intervals, if I(t) becomes minimal or the system ends
in triple collision during I > 0, it may be suitable that the system is called to be in triple
encounter.

Figure 2.1 shows the initial-value distributions of escape orbits until the third triple
encounter based on Definition 2.1. According to this definition. the system starting on
the additional band A leads to escape after the second triple encounter. It agrees with
the fact. See again the behavior of I(t) in Fig.2.5.

However, I(t) often becomes minimal even if three particles do not approach each
other. We show two examples in Figs.2.6(a) and (b). Notations in the figures are the
same as those in Figs.2.5(a) and (b). We do not draw the time-evolution of the triangle

perimeter.
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In Fig.2.6(a), the system starts at the initial value (0.44,0.12). At the terminal point
of the curve (at ¢ = 0.6457), the system satisfies the escape criterion. In this time interval,
it is intuitively obvious that the triple encounter occurs only once although there are two
minimal values of 7(t) shown by arrows in the figure. The size of the system is still large
at the first minimal time (¢t = 0.0391).

In fact, my is still distant from the other particles around the first minimal. See the
three curves in the upper frame. The three curves stands for the distance of the respective
two particles as the same way in Figs.2.5(a) and (b). After eight close approaches between
ms and m,, the configuration size of the system becomes small. The system begins to
expand, and so mg leads to escape.

In Fig.2.6(b), another example is shown for the the initial value (0.12,0.44). The
notation is the same as in the figure (a). There are three minimal values at times ¢ =
0.5690,1.3447,2.2053. At the terminal point of the curve (at ¢ = 2.389), the system
satisfies the escape criterion. We see intuitively that the triple encounters occur only
twice.

In fact, my is receding from the other particles around the second minimal of I(t).
After three particles are released with zero velocities, the close approach between m; and
my occurs. The configuration size of the system becomes small around the time at the
first minimal. The system begins to expand, and so m3 recedes from the other particles.
After three close approaches between m, and m,, the system shrinks again. As a result

of the triple encounter, the system satisfies the escape criterion where m, leads to escape.

Problems in Definition 2.3

We found in the above numerical experiment that the condition that the curve of
I(t) is concave from below is insufficient to determine triple encounter. Therefore, we
need a suitable critical value of the moment of inertia. J.Yoshida (1997) found that g is
suitable for distinguishing the state of the triple encounter. Recall that [ is described in
eq.(2.2). He proved that the inequality / < Ij is a sufficient condition to satisfy I>o0,
and so defined the triple encounter as in Definition 2.3. We will review the proof in the

end of the present section.

Theorem by J.Yoshida (1997) If I(t) < I;. then I{t) > 0.

Note that the equality I = 0 holds in virial equilibrium. Thus, by the definition of
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triple encounter, the size of the system during triple encounter is smaller than the size in
virial equilibrium,

Figure 2.3 shows the initial-value distributions of escape orbits until the third triple
encounter defined by J.Yoshida (1997). According to Definition 2.3, the systems starting
at (0.44,0.12) and (0.12,0.44) lead to escape after the first and the second triple encoun-
ters, respectively. Both cases agree with the fact. See Figs.2.6(a) and (b).

However, the problem about the additional band A appears again. The behavior
starting on A around {(z,y)|z = 0.11,y < 0.1} is regarded as the escape after the first
triple encounter although the fact is the escape after the second triple encounter. See
Iig.2.5(a) again. In the upper frame of the figure, the curve I(¢) does not crosses the
critical level Iy around the time ¢ = 0.4834 with the first minimal value of I(¢). Thus, the

system is said to be out of triple encounter around this time by J.Yoshida’s definition.

Results under the new definition

We confirmed that some systems do not satisfy Definition 2.3 when three particles
approach each other widely. It is necessary to add some condition of the so-called wide
triple encounter to Definition 2.3.

The definitions of the triple encounter are hitherto related with the virial equilibrium.
In both Definition 2.1 and Definition 2.3, the state of the triple encounter begins and ends
when [(t) = 0. Definition 2.2 regards the triple encounter as the state during the period
when the mean distance between particles is less than the length-scale in virial equilibrium.

The mean harmonic distance between the particles in virial equilibrium is equal to
dunit = pof/2. However, this length-scale po/2 is so small for defining the wide triple
encounter, and another scale which is larger than the virial scale should be required. We
consider pg as the second smallest scale.

This is suggested from the following fact: the distance between the nearest two
particle is bounded from above. Let ryn be the distance between the nearest particles.
It is clear that the inequality rym < po always holds for the negative total energy even if

a pair of the closest particles may change successively. This is because

MMy Motz Maliy MMy — Mgz -+ gy
+ + < .

12 Tag T3 Mmin

Al < (2.9)

The left inequality is derived from the fact (k| < U. Therefore, we consider that the
system is in triple encounter when the distant particle approaches the nearest particle

within py. See Triple-encounter criterion.
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Moreover, the numerical investigation by Agekian and Anosova (1990) shows that the
condition p(t) < pp is suitable for the definition of the triple encounter. They evaluated
minimal values of the time-dependent p(t) for 200 systems. The total energy is fixed at
h=—Y3m;/2. It is found from their results that all cases satisfy min p(t) < 2.0 in the
simulated samples. Notice that h is normalized at h = —3/2 in the equal-mass case, and
SO Tmin = 2. We conjecture that any three-body system satisfies the inequality p(?) < rmin.
and so we consider this inequality as the condition of the triple encounter.

Figure 2.4 shows the initial-value distributions of escape orbits until the third triple
encounter defined by us. It is clear that the system starting in the additional band A
leads to escape after at least the second triple encounter. We confirmed that each of
the systems in Figs.2.5(a) and (b) experiences triple encounters twice until it leads to
escape although a number of triple encounters is counted as one in the systems starting
at the initial values of the figures if Definition 2.2 and Definition 2.3 are adopted. See
also Figs.2.2 and 2.3. Both initial values are located on A. Only in Fig.2.1, the band A
is the region where the system leads to escape after the second triple encounter.

In Fig.2.1, however, systems leading to escapes after the first triple encounters are
rare around the lower-right corner (0.5,0) on the initial-value space. Except this figure,
Figures 2.2, 2.3, and 2.4 show that many initial points around the corner (0.5,0). Recall
that the respective figures follow Definition 2.2, Definition 2.3, and Triple-encounter cri-
terion. Agekian and Anosova (1989) and we conjecture that band-like regions form an
infinite sequence converging to the corner (0.5,0). On these band-like regions, systems
lead to escape after the first triple encounter. We will explain in the next section that
this conjecture about convergence is adequate.

Let us emphasize here that only Figure 2.4 where the triple encounter is defined by
us satisfies two conjectures which are the existence of an infinite-sequence bands and the
non-existence of an additional band where syvstems lead to escape after the first triple

encounter. See Table 2.1 again.

2.2.3 Similarity between Definition 2.2 and Definition 2.3

Finally, we discuss the relations among the previous definitions. Definition 2.1 and Defini-
tion 2.3 consider the moment of inertia. Definition 2.3 is more restrictive than Definition
2.1. On the other hand, Anosova and Zavalov (1989) used the configuration perimeter in

Definition 2.2, and so this definition is not related to the moment of inertia I(t) directly.
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However, the numerical results surveyed on the initial-value space by Definition 2.2
and Definition 2.3 are similar to each other although both methods counting triple en-
counters are wrong in some systems. See Figs.2.2 and 2.3. Definition 2.2 and Definition
2.3 have some relations with the virial theoremm. We expect that both definitions have
some direct relation with each other. In other words, we expect some relations between
Definition 2.2 and the moment of inertia. So we will confirm it.

J.Yoshida (1997) proved that the inequality I < I, is a sufficient condition of / > 0.
We found that Definition 2.2 also satisfies [ = 01f three masses are equal. In other words,
I(t) has at most only one minimal value during the time interval with o < 6. It is a
similar statement as Theorem by J.Yoshida (1997). Therefore, both results in Figs.2.2
and 2.3 must be similar to each other.

According to the next lemma which is proved later, I > 0 while ¢ < g if three

IMNasses are equal.

Lemma 2.1. If 6 < &g, then I > 0, where

9mn'm

Ik (2.10)

t_T[;=

and m', in and /' are the smallest, middle and the largest of the three masses, respectively

(t.e., m' <m <m').

Proof. Since m' < mn < m/,

ORIl Mot m 1 1 1
5 e L SR i ‘2m’ﬁz(——+——+—) (2.11)
12 Ta3 ral T2 Taa T3
Therefore,
5 1 1 | i
ol E m m{Tlg + raz + 7'31) (— + — -+ ——) 2 9m m, (2.12)
12 T2z Ta
and so
9’77
i S e (2.13)
o
From the assumption,
9m'm
didii S TN (2.14)

and so the above two inequalities yield I” > 2|h|. Therefore, i(t) > 0. ]
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Notice that for any mass ratio, the following inequality holds:
gy < o, (2.15)
since
M, =m'm+ (m' + m)m' > 3m'm. (2.16)
With equal masses (m; = 1,7 = 1,2,3), the equality holds as

~ 9
Jg = Gy

0 = m (2.17)

In the final part of the present section, we referred to the proof of Theorem by

J.Yoshida (1997): if I(t) < Iy, then I(t) > 0. Sibahara and Yoshida (1963) derived the

following inequality.
M3
> [== .
(i 3 MI (2.18)

which we will also derive later. With the assumption I(t) < Iy, eq.(2.2) yields

| M?
'm > 2|h.| (2.19}

The above two inequalities result in U > 2|h|, i.e., T > 0.
We review the proof of eq.(2.18). Consider three points P;, 7 = 1,2,3 which are
located at

1
P; = (?‘in T_ki) : (2.20)

on the (z,y)-plane, where (j,k,1) is (1,2,3) or its cyclic permutation. These points are
located on a curve @ = 1/y*. At each point P;, we give a mass mm;. The gravity center

of the weighted points standing at

2
METyTE mery [T MI U
{27,; yc) = : [ = (__'.' ,_) : (221)
. kz;ﬂ' ."Hr,., g _'11 f{.. ."l f)‘ .'1 :r...
lies in the triangle formed by the three points. Hence. x. > 1/y%. and so
LIS (l) (2.22)
M. = \T
Therefore,
P
2> —= (2.23)

- M’
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Figure 2.1: Initial-value distribution of escape orbits until the third triple encounter under
Definition 2.1 (Agekian and Martynova, 1973). Four crosses represent initial values show
that the respective time evolution of the distance between two particles and the moment

of inertia in the succeeding figures.
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Figure 2.2: Initial-value distribution of escape orbits until the third triple encounter under

Definition 2.2 (Anosova and Zavalov, 1989).



2.2. TRIPLE-ENCOUNTER CRITERIA 39

1.8

STTTITT LT

0.5

i
i
i
I
I
i
| B
i
i
i
i
i
i
i

+Hig

LTTLETT

0.0

0.0 4 0.5

Figure 2.3: Initial-value distribution of escape orbits until the third triple encounter under

Definition 2.3 (J.Yoshida, 1997).
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Triple-encounter criterion (Our definition of triple encounter).



2.2. TRIPLE-ENCOUNTER CRITERIA 41

(a) Initial value (0.77, 0.07)

:} 2 ': LIRS B L R B S RN AR R

Bf_?a"

o

g 11

[ia}

+

L . -

o - }___:.

o F
i o
e,
9
iH
5
I
-
ort
<]
=1
(o]
=)
2

1S T
distance Gt

—
e
—

0Ot
v
=
=
[ib ]
. ™ / N\ | %

. \
C l Y 155 o
ST LY & = ) = 5
l-!llllll ||_| |||||| Looliiassy Lill | |.'|"::|I||J.{1Lu. 11y " i O E
0O 02 04 06 08 1 1.2 1.4 g
time ¢

Figure 2.5: Time evolution of the distances between the respective particles and the

moment of inertia. The initial values are located in the additional band A.
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2.3 Global features of escape orbits

2.3.1 Fractal distribution of escape regions

In the present subsection, a detailed survey of the initial-value distribution of escape
orbits is executed, adopting Triple-encounter criterion in the preceding subsection. Finer
structure of the distribution will be shown.

Before showing the numerical results, we will introduce several terms. An initial
point leading to hyperbolic-elliptic escape or parabolic-elliptic escape after the i-th triple
encounter will be called an i-th hyperbolic point or an i-th parabolic point, respectively,
where 7 is a positive integer. Here, a hyperbolic-elliptic (or parabolic-elliptic) escape
means that one particle escapes to infinity with positive (or zero) limiting velocity. From
the continuous dependence of solutions on initial data, orbits in a neighborhood of the
hyperbolic-elliptic escape orbit also result in escape with positive velocity. Hence hyper-
bolic points form an open set in the two-dimensional initial-value space. An open region
formed with the :-th hyperbolic points will be called an :-th hyperbolic region or an i-th
escape region simply. Similarly, an initial point where the system survives an escape until
the i-th triple encounter will be called an 7-th non-escape peoint or an i-th ejection point,
and a region of the i-th non-escape points will be called an i-th non-escape region or an
i-th ejection region.

We follow the flow-chart of the numerical integration until the i-th triple encounter.
It is described in the preceding subsection. We terminate each integration at 7 = 3.

Figure 2.7 shows a more detailed result of the initial-value distribution of escape
orbits where the system leads to escape until the third triple encounter (¢ < 3) defined by
us. See Triple-encounter criterion in Subsection 2.2.1. We survey 5 x 10° initial points on
the extended initial-value space D. The size 6z of the grid elements in the  direction is
the same as the one in the y direction, and equal to 1 x 107, In the present simulation, we
use the same conditions of terminating calculation as the conditions in Fig.2.4. In other

words, the same criteria not only for escape but also for triple encounter are implemented.

43
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The number of simulated samples in this figure is 25 times larger than the one inFig.2.4.

Yellow, orange and green regions represent the first, second and third hyperbolic
regions, respectively. These regions are obtained as the sets of initial points where the
systems satisfy the escape criterion until the integrations are terminated by the other con-
ditions in the flow-chart in the preceding subsection. The escape criterion is a sufficient
condition, and so the true sizes of hyperbolic-elliptic regions are larger by a small amount
than those shown in the figure. Therefore, a blank region represents a third non-escape
region or a zone of the conditional escape.

In the present thesis, only initial values of orbits satisfying the escape criterion by
Yoshida (1972, 1974) are called hyperbolic points.

Solid curves stand for the isosceles curves, I, I; and I3 which are defined in eq.(1.3)

in Subsection 1.3.1.

The most remarkable feature in the figure is a self-similar accumulation of band-
like hyperbolic regions. The previous result by Anosova and Zavalov (1989) showed only
five band-like regions S;, i = 1,2,...,5 where the system escapes after the first triple
encounter. Our result shows a larger number of the first escape regions S;, ¢ > 5 in
Fig.2.7. Moreover, we find that many second hyperbolic regions painted orange form a
sequence and accumulate towards a boundary of each first hyperbolic region colored in
yellow. This phenomenon is apparent in the lower part of each boundary of the hyperbolic
region. Furthermore, we can see a sequence of the third hyperbolic regions accumulating
towards a boundary of each second hyperbolic region.

In Fig.2.7, we have terminated the numerical integration before the fourth triple en-
counter. Nevertheless, we conjecture that for every positive integer number ¢, an infinite
number of band-like escape regions after the (z + 1)-th triple encounter accumulate to-
wards the boundary of each band-like escape region after the i-th triple encounter. The
accumulated distribution was not shown in the three-body scattering system of Boyd and
McMillan (1992).

From this observation, Tanikawa and Umehara (1998) deduced the existence and
the distribution of the oscillatory solutions in the free-fall three-body problem with equal
masses. One kind of the oscillatory solutions is expressed as the behavior where the
particle repeats return and ejection forever, expanding the ejecting distance to infin-
ity. According to previous works, the existence of the oscillatory solution proved in the

cases where masses of particles differ large. There is no proof in the equal-mass system.
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Tanikawa and Umehara (1998) found that the oscillatory behavior occurs at an uncount-
able number of initial points.

In Fig.2.7, a limit curve seems not to coincide with the boundary; however, we are
sure that the band-like escape regions forming the infinite sequence go into the zone of
the conditional escape. If we do not terminate the integrations, the true boundary of the
regions is shown slightly outside. The accumulation curves may coincide with the true

boundary of the escape region.

Let us continue to integrate beyond the third triple encounter. We investigate the
distribution of the value representing final motions on the initial-value space of the free-fall
three-body problem. This value is related to the escape angle of the final motion. Here,
the escape angle is defined as the following: if a particle m; escapes, we draw a vector from
the initial position of the partile m; to the origin (i.e., the gravity center of the system);
this vector is denoted by g;.;,; similarly, gg.. denotes the vector from the origin to the
final position of the escaping particle m;, when the escape criterion is satisfied; we define
the absolute value of the angle between g;,;, and gy, as the escape angle.

It is confirmed that the structure of the distribution is similar to the one in the
three-body scattering problem shown by Boyd and McMillan (1992) and the one in the
scattering problem with the fixed potential shown by Ding et al. (1990). In other words,
we find that in the free-fall three-body problem the distribution of escape angles shows
cantor-sets on the initial-value space.

There is the numerical results of escape angles in Fig.2.8. A gray-scale value is as-
signed to each point of the extended initial value space D). The escape angle is a value in
the interval between 0 to 7. In each figure, escape angle 0 is colored white, while escape
angle 7 is colored black. The gray scale varies linearly with the angle. For convenience of
understanding, we also show the initial-value-dependence bevond D.

In Fig.2.8, several regions of very smooth behavior exist in the initial-value space D).
These regions correspond to the escape regions after the first triple encounter. Systems
starting in these regions have only one opportunity of changing angles.

On the other hand, there are large regions where the escape-angle function is wildly
fluctuated on the initial value space. These regions are composed of initial values where
escape does not take place after the first triple encounter. An ejected particle from the
temporary binary oscillates a large number of times before eventual escape.

If we observe the fluctuated-function region at a finer resolution, an intricately nested
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pattern of smooth-function and fluctuated-function bands is revealed. This pattern may
possess the fractal characteristic of self-similar structure on all scales. In each smooth-
behavior region corresponding a first escape region, the escape angle is less than 7/4 or
more than 7/2. In almost all orbits in first escape regions. an escape particle goes in a
nearly straight line trajectory, whereas an escape particle is strongly distorted in a narrow

region. This region passes through the first escape region.

From the next subsection, we will concentrate our attention to the motions just
after the first triple encounter, and terminate our integrations if the three particles begin
to approach each other again. That is because one of our main purposes is to know the
factor effecting initial-value distribution of escape orbits. Recall the two common purposes
in the various three-body problems described at “Common purposes” in Subsection 1.1.1.
If the integration extends to the time until final motions of all orbits are determined, the
effecting factor might not be found out.

Johnstone and Rucinski (1991) explored the initial-value-dependence of the escape
behavior. They represent initial-value-distribution of the life-time and the final minimal
value of the running size p. Here, a life-time is defined as the time until the system sat-
isfies an escape criterion, and p is defined as the distance of the fastest receding particle
from the gravity center of the three particles. According to them, roughly speaking, the
initial-value with small p leads to escape at an early time. However, the p as a function of
initial values is not continuous on almost all regions of the initial-value space. Johnstone
and Rucinski (1991) continued the integration until all systems starting at surveyed initial
values lead to escape. By their surveying, the fine structures in the initial-value space
were not clarified. Therefore, we will study the escape orbits and non-escape ones after

surviving the first triple encounter.

2.3.2 Slingshot in escape regions

Anosova and Zavalov (1989) described a rough structure of band-like regions S;,
t=1,2,---,5. According to them. each region 5; consists of three sub-bands lying side
by side. Two of them are relatively wide in which m, and m, escape, and m, escapes in
the narrow sub-band between them. Furthermore, they claimed that the center of each
region S; is along a certain circle.

We observe similar features in S;, ¢ € {1,2,--+,19,26,---,30,36,---,40,50}. The
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procedure to determine the number i of S; is shown in the following diagram. Here, r;

denotes the distance between my and m; for (j,k,1) = (1,2,3),(2,3,1), or (3,1,2).

The procedure to determine : of S,.

The following routine is executed as far as ry(t) is less than any other mutual distance.
if r2(t) attains a mazimal value for t, then rq.. = ra(t).
if Prmaz < T3(t) and roee < T1(t), then
if r2(1) attains a minimal value, then © =i+ 1.
Else if ro(t) becomes greater than one of the other mutual distances, then
the subsequent routine is not executed afterward,
and the number i at this stage is defined as i of S;.
endif.

[t is well-known that three particles approaching close to each other tend to result
in escape for one particle. The moment of inertia can be used to characterize triple
encounter. We define the minimal moment of inertia I, as the minimal value of the
moment of inertia with respect to time, when the distance p from the gravity center of
two nearest particles to the other particle is less than pg, where

i = mMyMmy + Mg + Marmy
0 =
|7

(2.24)

Recall that pp has been defined in eq.(2.1) in Subsection 2.2.

After a suitable scaling of variables and time, we can restrict to the energy level
H = h. Recall that g; € R?, j=1,2,3, is the position vectors of particles m; from the
gravity center of the system. The equations of motion in the gravitational three-body
problem are invariant under the following transformations: §; = ag; and t = 3t for
o’/B* = 1. Here, a hat (") represents the normalized value, and a and 3 are units of
length and time, respectively. Thus the same orbit up to the scale change exists for any
energy restricted to the same sign (negative or positive). Then we will scale the initial
values so that the energy of the system becomes k. The normalized minimal moment of

inertia fmm is defined as

2 1
i = mimd? = a*Imin. 2.25
T my + e+ ma Z e, - L&)

The normalizing factor a is calculated only from the initial value. In fact, the system
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starts from zero velocities with equal masses, and so the total energy of the system is
1
h=—), ———. 2.26
by ri(t =0) (2:26)
The scaled energy is transformed as
= LTI 1
h=—- ——— = —h, 2.27
Z T; (1 =0) o { )

Thus the normalizing factor « is evaluated as

T8 N . (2.28)
h  h r;(t = 0)

Figure 2.9 shows the initial-value dependence of the normalized minimal moment of
inertia fyi, with A = —1 during the first triple encounter. The number of initial values in
the figure is 5 x 10°, and the grid size of the numerical survey is 0.001. The lightness is
proportional to the logscale of the value I,. The darkest element shows log, fuin = —5,
and the lightest one represents log,, B = —1.

The topographical map of Iy, shows a sequence of valleys, i.e., dark zones where the
minimal moment of inertia is small. Each first escape region distributes around the valley.
This result shows that the small values of the minimal moment of inertia distributes in
the escape regions.

We comment that the statement by Anosova and Zavalov (1989) is incorrect. Ac-
cording to them, the center of each escape region is along a cirtain circle. Our result
shows that there is not any circle in the valleys corresponding to relatively small values
of fmm

A triple-collision point corresponds to an infinitely deep hole in the topography of
Lyin. Tt is natural that the tri ple-collision point lies in the regions where the minimal mo-
ment of inertia is relatively small. The bottom of the valley forms a curve which connects
infinity deep holes. We found that this bottom is along a binary-collision curve. This

implies the relation between binary collision and escape phenomena.

2.4 Dominant roles of collisions in escape

2.4.1 Near-isosceles slingshot dominating escape phenomena

Let us start to investigate the relation between collisions and escape phenomena
from the present subsection. We will consider both binary and triple collisions. First,

we superpose the map of the hyperbolic regions with the map showing binary-collision
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curves and triple-collision points in Fig.2.10. The adopted grids spread over the extended
initial-value space D. Binary collision-curves and triple-collision points are taken from

Tanikawa et al. (1995) and Tanikawa and Umehara (1998).

We have found the direct relation between escape and triple collision, as follows:
at least one triple-collision point sits in each band-like escape region S;. Therefore, each
set. of escape orbits includes a triple-collision orbit in the phase space.

Tanikawa et al. (1995) positioned triple-collision points (See table IV of them). Let
T; be the triple-collision points on the isosceles curve I, where ¢ is the number of minima
of the smallest distance. We have found that each triple-collision peoint T; is included in
the escape region S; for 1 = 1,2,---,20. Note that Umehara et al. (1995) found it only
fori=1,2.

We have found that each center of band-like regions S; for 1t = 1,2,---,6 is along a
particular type of the binary-collision curve. It is the tvpe 1 called by Tanikawa et al.
(1995). Recall that the number of type corresponds to the number of the particle which
does not participate in binary collision, i.e., the binary collision between m; and my oc-
curs on the binary-collision curve of type 1. The initial values where minimal moments of
inertia are smaller is along the binary-collision curve of type 1. The binary-collision curves
of type 1 do not accord with the circles which Anosova and Zavalov (1989) mentioned.

These circles are formulated as

g+1 %, ¢ )
TR . = N - 2.29
=-smy) +={a%) B2
where
SG=c  +i+2, a=1, for i=2,3,.--. (2.30)

See also Anosova (1991).

A binary-collision orbit of type 1 is shown in Fig.2.11. The particle m; passes through
between m, and ms which are approaching each other. While my and ms collide with
each other and recede from each other, m, is decelerated suddenly and returns, and so m;
passes through again. At this moment. the crossing point on the straight line connecting
mg and mjy is nearly the gravity center of the binary. and the velocity vector of the escaper
is nearly orthogonal to the hine. Furthermore. m,; and m; are receding from each other.
Getting enough energy from the binary. m; escapes maintaining an isosceles configuration
of three particles approximately. All binary collisions of type 1 exhibit similar configura-

tions as the above. We call these collision orbits of type 1 the near-isosceles slingshot.
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The state that one particle passes through a straight line segment connecting the

other particles is called syzygy crossing. Zare and Szebehely (1995) used this term.

On binary-collision curves sufficiently close to a triple-collision point, the orbits lead
to escape without returning. On the other hand, the escape after the first triple encounter
occurs neither at the binary-collision points of type 2 or 3 nor at points far from the triple
collision points. On the binary-collision curves of type 1 in S, there also exist binary-
collision points where three particles return.

All orbits except triple-collision orbits seem to escape on the binary-collision curve
of type 1 in S; for each ¢ > 2. However, 1% is not sure whether there are not really any
non-escape point on these curves or not. It will be verified in Subsection 3.4.3. The
behavior starting on the binary-collision curve of type 1 is nearly isosceles motion, and
so the syzygy crossing may be approximated to the isosceles motion. As a first step, we
will evaluate the conditions of syzygy crossing leading to escape without returning in the
planar isosceles problem by the numerical integrations. After that, it will be shown that
all of one-parameter families which start on the respective binary-collision curves of type 1

in S;, 1= 2,3, - satisfy the evaluated escape condition at the isosceles syzygy crossings.

2.4.2 Motion close to triple collision

In order to clarify that triple collision is not the only mechanism of escape, more
detailed survey is conducted on the initial-value space in the neighborhood of the triple-
collision points.

Figures 2.12(a) and (b) show the numerical result of the survey on the initial-value
space around Ty and T, for 10000 initial points, respectively. It is obvious that the homo-
thetic equilateral point T} is located at (0.+/3/2) as the cross point of the three isasceles
curves on the extended initial-value space D. The other triple-collision point 13 is at
(0.4035896,0.4284000) which is found by Tanikawa et al. (1995). In Fig.2.12(a), the size
of the grid elements in the = direction is §z = 2 x 107°. and the one in the y direction is
Sy =2 x 10~%. In Fig.2.12(b). éx = 8y = 2 x 10~°. The distributions of binary-collision
curves, the triple-collision points, and the first hyperbolic regions are shown. The isosceles
curves are included in Figs.2.12(a) and (b) as the special type of binary-collision curves.
Solid curves stand for the binary-collision curves. In the Figs.2.12(a) and (b), four curves
denoted by I, I3, and I3 are isosceles curves and two curves denoted by type 1 and type

3 are binary-collision curves on which two particles collide with each other asymmetri-
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cally. A dark gray region, a light gray region, and a meshed region represent the first
hyperbolic regions where my,m,, and ms escape, respectively. A blank region is a first
non-escape region. The first hyperbolic points are obtained as the initial values of orbits
satisfying the escape criterion which is a sufficient condition, and so the true sizes of the

hyperbolic-elliptic regions are larger as pointed out earlier.

We find four remarkable features in Fig.2.12. The first result of the numerical survey

shows topology of initial values leading to triple collision.

Observation 2.1. There are no first triple-collision points sufficiently close to the

triple-collision points Ty and T5.

It is not apparent that the triple-collision point is isolated from other triple-collision points
on the initial-value space. According to Waldvogel (1982), a set of triple-collision orbits
approaching equilateral configurations asymptetically forms a smooth three-dimensional
submanifold of the constant energy surface. (This submanifold will be derived in Sec-
tion 4.2.2.) The initial-value space is a two-dimensional section in the five-dimensional
phase space with the constant energy. Without analytical consideration or detailed sur-
veys of numerical integrations, we can not remove the possibility that the intersection
of triple-collision orbits and the initial-value space forms a curve or a region. More-
over, we suspect that this intersection forms a cantor-like set. If the distribution of the
triple-collision points shows a cantor-like set, some triple-collision points may exist in a
sufficiently close to Ty or T3.

In Section 4.2.2, we will consider the distribution of the triple-collision points around
Ti. We will restrict ourselves to the triple-collision points on which the systems end in
collision during the first triple encounter. We will prove that 7 is isolated from the other
triple-collision points during the first triple encounter. Such points do not form a cantor-

like set around T;.

The second result concerns with the structure of the hyperbolic regions and the

triple-collision points.

Observation 2.2. The first-hyperbolic regions seem to converge to Ty and T, re-

spectively. Siz parts of the first-hyperbolic regions exist around each triple-collision point.
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These parts consist of three large and three narrow regions where the particles my, my and

ms escape in the respective regions.

The respective large regions and narrow regions are located around each triple-collision
point alternately. Some notations are introduced in order to explain the escape-region
distribution more precisely. Let L; and N; denote large and narrow regions of m; escap-
ing, respectively. The first-escape regions are arranged as Ly, Ny, Ls, Ny, La, and N3
in a counterclockwise sequence around each triple-collision point. In Fig 2.12 (a), it is
difficult to identify all narrow regions except one which forms a lobe-like region where m,
escapes; however, their existence is assured by the symmetry of initial configurations with
the equal-mass case. In Fig 2.12 (b), we observe one lobe-like hyperbolic region where
my escapes. It exists between the large regions where m,; and iy escapes, respectively.
According to a more detailed survey on the initial-value space between the large regions
where ms and mg escapes, respectively, we observe one narrow region where m, escapes.
Then the existence of the narrow region where mj; escapes is assured by the symmetry of

initial configurations with the equal-mass case.

The third of numerical results is the relation between the first non-escape orbits

and the triple-collision orbits.

Observation 2.3. The first non-escape regions exist between any two hyperbolic

regions. The first non-escape regions also converge lo each triple-collision point.

Although convergence of the non-escape regions is difficult to verify both analytically and
numerically, their existence is easy to prove if the second result is correct in an arbitrarily
small neighborhood of the triple-collision point. We will prove it in Section 4.2.1. The out-
line is the following: Observation 2.2 shows that there is any kind of the first-hyperbolic
regions where each of three particles escapes in an arbitrarily small neighborhood of each
triple collision, and two hyperbolic regions where escape particles are different do not
contact with each other except at the triple-collision point since an escape particle is at

most one in the negative-energy case.

The fourth result concerns with the structure of the hyperbolic regions and the

binary-collision curves.
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Observation 2.4. Fach binary-collision curve of type 7, 1 = 1,2,3 passes through

the first-hyperbolic region where m; escapes.

Any narrow region distributes along the binary collision of type j up to 7. and the
large region where the same particle escapes spreads to the other direction with respect
to Ti. In other words, if the system starts on any binary-collision curve in a sufficiently
small neighborhood of a triple-collision point, a particle which does not experience binary

collision leads to escape.

Observation 2.2 means that the escape orbits are distributed around the triple-
collision orbit. Such a distribution seems obvious since it is expected that orbits passing
near triple-collision singularity tend to escape. According fo Observation 2.3, however,
a mechanism other than the close triple encounter is necessary to explain escape phe-
nomena. For, orbits failing to escape also seem to exist arbitrarily close to triple-collision
singularity.

The existence of factors other than triple collision is clearly seen in Figs.2.13(a) and
(b). These figures show the initial-value dependence of the normalized minimal moment
of inertia as the total energy is —1 around T) and T, respectively. The survey region,
the number of initial values, and the grid size in each figure are the same as those in
Fig.2.12 (a) and (b). The darkness is proportional to the logscale of the value . The
darker element of the grid represents the initial values experiencing the closer triple en-
counter. The interval of this gray scale is —6 < log,, Tmin < —3. Both minimum and
maximum values of this scale are smaller than the ones in Fig.2.9. The range in Fig.2.9
I8 5:< oty Bty £ =0,

From topographical maps. we observe that valleys of the minimal moment of inertia
are along the binary-collision curves of the near-isosceles-slingshot tvpe. The holes are
observed around the triple-collision points 77 and 1;. The remarkable feature is that fmm
on any first non-escape region around each triple-collision point is also small. There is no
difference of the values between escape and non-escape regions.

From Observation 2.4, we expect that escape phenomena are characterized not only
by triple collision but also by binary collision. Later we will verify the importance of
binary collision for escape (see Chapter 4). Around 7j which is the initial value of the
homothetic-equilateral-triple-collision orbit, we could accomplish the proof of Observa-

tion 2.4. See Umehara and Tanikawa (1997) and Section 4.2 in the present paper. Note
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that Umehara and Tanikawa (1997) also proved that Observations 2.1 and 2.2 are correct
around T;. Observation 2.3 is partially proved. The existence of both escape and non-

escape regions after the first triple encounter is proved around ;.

Around T;, there are three large regions and three narrow ones. We find that the
behavior of slingshot starting in the large regions is different from the behavior in the
narrow ones.

Behavior of orbits during triple encounters in the respective first escape regions can
be understood from Fig.2.14(a) and (b). These figures show the initial-value dependence
of the escape angle around T and T5, respectively. Here. the escape angle ¢ is defined as
in Subsection 2.3.1. The darkness is proportional to the value ¢. An escape particle is
deflected strongly during the triple encounter as the grid element of the initial value is
dark. The survey region, the number of initial values, and the grid size in each figure are
the same as in Fig.2.12(a) and (b).

Anosova and Orlov (1992) classified the close triple encounters of slingshot type in

the following two categories:

forward slingshot - an escape particle goes through a temporary binary in a nearly

straight line {rajectory;

backward slingshot - an escape particle is strongly deflected during passing through a

temporary binary.

In each category, a temporary binary becomes harder after an escape particle flies away.
Anosova and Orlov (1992) showed that the forward slingshot constitute 62% of all sling-
shots resulting in escape if a “nearly straight line” is defined as ¢ < 45.

The three narrow regions is darker than the three large escape regions. We find that
the backward slingshot occurs on the narrow regions while the forward slingshot does on
the large regions. Moreover, the near-isosceles slingshot orbit belongs to the category of

the backward slingshot.

2.5 Discovery of exchange escape in the free-fall

problem

We find in Iig.2.10 new escape regions where ms escapes. Anosova and Zavalov

1989) did not mention their existence. Figure 2.15 is the magnification of the lower-right
g g 2
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part of F1g.2.10. The number of initial values in the figure is 10000. The grid size of the
numerical survey is 0.001 which is the same as in Fig.2.9. These regions have tongue-like
shapes. We will call each of them a tongue-like region. Each tongue-like region lies be-

tween S;_; and S; for ¢ = 5,6, -+, so we will denote it E;.

We found that the binary-collision curve of type 2 penetrates each tongue-like re-
gion F;. Notice that the pair of colliding particles is different from the binary formed by
triple encounter. This is in contrast with the binary-collision orbits of type 1 and type
3. The motion of type 2 is different from the ones of type 1 and type 3 where slingshot
encounters occur. Yrom Fig.2.16, we have found that the exchange type of triple en-
counter occurs in this case. Figure 2.16 shows the trajectories of three particles starting
on the binary-collision curve of type 2 in F5;. The orbit of type 2 experiences the binary
collision after the particle m, is decelerated by the syzygy crossing of an approaching
binary. Such a deceleration phenomenon is called the inverse slingshot. It is natural to
conjecture that in this case escape does not occur. However. there exist escape orbits on
the binary-collision curve of type 2.

Just before the i-th approach of the binary m; and ma, the third particle m; ap-
proaches m;. The particle rn; is decelerated by the inverse-slingshot effect. The trajectory
of m, is deflected by the existence of my and collides with ms. Then my is reflected to
the opposite side of m, with respect to my, and so mg escapes to infinity. The particles

m, and my approach each other again and become a binary at last.

There are no triple-collision point in any tongue-like region £,. We will assert it
from the following consideration. We can not find any triple-collision point T}, searched
by Tanikawa et al. (1995) in E; although the regions S; and E; contact with each other
for i = 6,7,---. We will draw a boundary between S; and E; later. In other words, we
will distinguish between slingshot motion and exchange one. As a result, it will be clear
that E; does not converge to a point T}.

Does other triple collision point exist in E,7? Let us consider the initial-value distri-
bution of the normalized minimum moment of inertia fnﬁn (see the definition in Subsection
2.3.2). A gray scale in Fig.2.17 shows that Iy, in E, is larger than the one in 5;. The
lightness is proportional to the logscale of the value Tini T Fig.2.17. we see a sequence of
valleys, i.e., dark zones where the minimal moment of inertia is small. Each 5; distributes

around a valley. On the other hand, [y, on E: is larger than one on 5;. Moreover, this
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numerical result suggests that the topography of Iy, on and around E; is not steep and
does not have any singular hole representing a triple-collision point. Hence, there is no
triple-collision point in any tongue-like region E;.

All escape orbits in tongue-like regions are of exchange type even if they do not
experience binary collision. The continuous dependence of all solutions starting in E,
is established since they avoid triple collision. As a result of the perturbation from the
binary-collision orbit after close approach between m, and m;, a close approach between
my and mg takes place. Under a small perturbation, m; does not form any slingshot

configuration.

For 1 = 6, the regions S; and E; connect with each other near the triple-collision
point T;. We will define a boundary of the connected part between S; and E; in order to
investigate the effects of triple-encounter types upon the evolution of the systems in the
next chapter.

Here, we sumimarize the procedure to determine their boundary by noting the differ-
ence of motion between the slingshot and the exchange. The particle my escapes in F..
The particle mg also escapes in the sub-band of S; neighboring £;. In E;, the distance
hetween m; and ms never become the minimum of the mutual distances. On the other
hand, it becomes the minimum in the part of S; neighboring E;.

Connection between S; and E; suggests that continuous deformation between a
slingshot-escape orbit and an exchange-escape one is possible. However, there are first.
non-escape points like a gap between S; and E; which are far from T:, and so most es-
cape orbits due to slingshot are separated from those due to exchange. For example, in a
segment {(z,y)]|0.420 < z < 0.435,y = 0.19}, there is an interval where the systems fail
in escape after the first triple encounter. We will refer to the behavior on both sides of
the interval and extract a suitable definition of the boundary from the difference between
slingshot and exchange.

Let us observe four orbits starting on the segment {(z,4)[0.420 < = < 0.435.y =
0.19} bridging over the gap region between S5 and E5. The initial values of Fig.2.18(a),
(b), (c) and (d) are (0.420.0.19). (0.423.0.19). {0.430.0.19). and (0.435,0.19). respec-
tively. Orbit (a) is an escape orbit where my escapes. The type of escape is exchange.
Orbit (d) is an escape orbit where mj3 escapes due to slingshot. For each orbit (b) and
(c), ma is ejected without escape. In the case of exchange motion (a), m, approaches m;

and the trajectory of m; is deflected in the opposite direction to the position of ms. Also
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the trajectory of mj is deflected in the opposite direction to the position of m, by the
existence of m; when the i-th close approach between mz and m, happens.
From this observation, we obtain the following feature on the time evolution of mutual

distances between particles:

Observation 2.5. If the system leads to escape after the first triple encounter due
to exchange in the free-fall problem, the distance between m, and mg is not closest among

the distances between the respective particles for all time.

Figure 2.19 shows the time evolution of distances rjx(t), 7 = 1,2,3, k 5 3, where rj; 1s
the distance between particle m; and my. The upper figure (a) shows the evolution of the
exchange type whereas the lower one (d) shows one of the slingshot tyvpe. The respective
initial values are the same as in I'ig.2.18(a) and (d). A bold curve represents ry; and the
other curves are for ry; and r3;. In the exchange case (a), r23(t) > min{ri2(t),ra(t)} for
all time. On the other hand, r;3 becomes less than ry; and ra; around ¢ ~ 0.63 in the
slingshot case (d).

The inverse of Observation 2.5 is not always true, i.e., the closest approach between
ms and ma is a necessary condition of exchange escape. If m3 escapes due to slingshot, mg
is possible to approach m,; when mg passes through between m, and m,. At the syzygy
crossing of mg, r3; = 193 + ra;, and so there exist two cases min{ry;, 73,731} = rpg and
min{rs;, 23,751} = r31. We can not assert that the exchange occurs since ry; does not
experience the minimum value among the mutual distances for all time.

In the regions where ms escapes, we investigate behavior whether m,; and mg ap-
proaches each other or not. Figure 2.20 shows escape regions where mjy leads to escape
after the first triple encounter. A cross (+) stands for the grid element of the initial value
where the system experiences min{ra;, r23, 731} = r23; on the other hand, a filled box (M)
represents the initial-value grid where min{ry. 723,731} # rys for all time. Observation
2.5 shows that the type of triple encounter is slingshot if the orbit starts at the cross point
(4). The band-like region S; contains both elements, i.e.. cross and filled box. It is true
that the two cases exist in slingshot escape. However. in the vicinity of the triple-collision
point T;, cross elements (+) occupy the neighboring side of S; with respect to F;. In
contrast with S;, all grid elements in tongue-like regions E; are occupied by filled boxes.
i.e., mo and m3 do not approach each other. Two types of elements are divided around

the connected part between S; and E;, 1 > 6. Here, the boundary between S; and E;
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appears clearly. A curve which divides crosses and filled boxes are the boundary. We
define E; as a connected region where the system satisfies min{ryy, 723,731} # 723 for all
time starting in a tongue-like region.

From the location of the boundary, it becomes clear that each E; does not include
triple-collision point T;. In this stage, the nonexistence of triple-collision points in E; is

completely verified.
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Figure 2.8: Initial-value dependence of the escape angle which is definded as an absolute
value of angle between a vector from the origin to the position of escapeing particle at
the time of satisfying escape criterion and a vector from the origin to the initial position
of the same particle at the escape. A gray scale varies linearly as the angle from 0 (the

lightest element) to 7 (the darkest element).
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Figure 2.10: Triple-collision points, binary-collision curves, and first escape regions in a
part of the initial-value space and its extension. Curves represent binary collisions. A solid
bold curve shows collision between m; and ms (near-isosceles-slingshot type). A dashed
bold and a solid fine curves are collisions between ms and my. m; and ms, respectively. A

cross X shows the triple-collision point. A gray region represents the first escape region.
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Figure 2.11: A near-isosceles-slingshot orbit. It is defined as the binary-collision orbit
which results escape maintaining isosceles configuration approximately, where a collision

occurs just before the last syzygy crossing of the escape particle.
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Figure 2.15: Escape regions after the first triple encounter, the binary-collision curves,
and triple-collision points in the lower right part of the initial-value space D. A dark
gray, a light gray, and a meshed regions represent escape regions where where my, m, and
mg escape, represently. Bold curves stand for binary-collision curves. The triple-collision

points are obtained as the cross points of respective three binary-collision curves.
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Figure 2.16: A binary-collision orbit which is of tyvpe 2. The particle ms leads to escape
after the binary collision between ms and m;. A type of triple encounter is exchange.

First, my approach mg, and m; collides with ma.
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Figure 2.18: (a) An exchange orbit leading to escape for ms. The initial value is
(0.420,0.19) located in the tongue-like region F;. (b) An exchange orbit failing in es-
cape after the first triple encounter, although ms is ejected at once. The initial value is

(0.425,0.19) located in a blank region between E; and S;.
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Figure 2.18: (¢) An exchange orbit failing in escape after the first triple encounter, al-
though my is ejected at once. The initial value is (0.430.0.19) located in a blank region
between Es and Ss. (d) A slingshot orbit leading to escape for ma. The initial value is

(0.435,0.19) located in the band-like region ;.
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Figure 2.19: The time evolution of mutual distances. A bold curve represents 3, where
rjk 1s the distance between m; and m;. The upper figure denoted as (a) shows the
evolution of exchange-escape motion starting at the initial value (0.420, 0.19). The lower

figure denoted as (d) is the evolution of slingshot-escape motion at (0.433,0.19).
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0.39 0.49

Figure 2.20: Escape regions for mj. A cross (+) stands for the initial value where the
system experience the closest approach between m; and ma. A filled box represents the
initial value where the closest approach between ms and ms does not occur. Distinction
between exchange-escape orbit and slingshot-escape one is possible, since the boundary

between S; and E; appears as a divided curve between crosses and filled boxes.



Chapter 3

Quantitative results

3.1 Introduction

In the present chapter, we analyze binary formation statistically using the free-fall
problem. In Section 2.5, we found exchange-escape orbits after the first triple encounter
in the free-fall problem with equal masses. In the present chapter, slingshot effect is com-
pared with exchange effect in the evolution of systems. The importance of slingshot is
emphasized from the results.

In Section 3.2, escape probabilities due to slingshot and due to exchange are evalu-
ated, and are compared with each other. In Section 3.3, the increments of binding energies
of formed binaries due to the respective encounters are evaluated, and are compared with
each other. In the final section of the present chapter, favorable configurations of the

slingshot encounter leading to escape are investigated statistically.

It is well-known that escape in the three-body problem is one of the important phe-
nomena in the astrophysics. In the system of self-gravitating gas such as a globular
cluster, the process of binary formation has a crucial role in the evolution of the system.
The binaries can be a significant heat source by increasing their binding energy during
encounters with single stars. According to Elson, Hut and Inagaki (1987), even in relaxed
globular clusters the three-body interactions may have a global influence on the evolution
of the whole system. The interaction among three particles is the fundamental process of
binary formation.

The first analytic approximations of energy increments for escape due to exchange
were treated by Heggie (1975). Hut (1983) developed more precise analysis of each type.

On the other hand, slingshot configuration leading to escape was searched by Agekian

75
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and Anosova (1991) numerically. However, the investigation was incomplete. Recently,
Zare and Szebehely (1995) analyzed the mechanism of energy increment for escape due
to slingshot by means of analytical methods. Thus the microscopic mechanism to obtain
kinetic energy from a binary is clarified roughly. However. there is not any study com-

paring energy transition due to slingshot with the one due to exchange.

In the free-fall system, the escape probability can be defined simpler. We use the fact
that the initial-value space is a two-dimensional surface. In Subsection 3.2.1, we define
the escape probability as the ratio of the area of escape region to the area of initial-value
space D (see also Anosova, 1986; Anosova, 1991; Umehara and Tanikawa, 1996). There-
fore, our attention is concentrated on evaluating the area of escape regions.

In general, it is necessary to know high-dimensional volume of flows leading to es-
cape in order to evaluate the probability. It is a difficult work and much approximation
is implemented. The results are not so precise. Keck (1960), Keck and Mansbach (1969)
presented a variational theory and they give a least upper bound to the rate of a chem-
ical reaction. Mansbach (1970) expressed analytically the rate of formation of binaries
in the three-body system with the aid of Keck’s variational theoryv. The regions which
correspond to two particles being gravitationally bound or free are identified in the phase
space. The ratio of binary formation is defined as the inward flux of points across a surface
which separates these regions. In contrast with the general case, the free-fall problem is
easy to derive the probability.

One of our results shows that escape probability due to slingshot relative to total
escape probability is about 90%. This large ratio confirms quantitatively that slingshot
plays the dominant role in escape phenomena.

The total energies are various on the initial-value space D. In Subsection 3.2.2, the
total energies of the systems are normalized for all initial points. The initial-space is
transformed to the surface with constant energy in the phase space. By evaluating area
leading to escape on the constant-energy surface, the escape probability due to slingshot
relative to the escape probability due to exchange is obtained as about 0.4. This small ra-

tio seems to suggests that slingshot does not plays the dominant role in escape phenomena.

Although the slingshot-escape probability is small, it becomes clear that slingshot
effect is large in the evolution of systems. Binding-energy transitions after the first triple

encounter are evaluated in Section 3.3. In the process. it is shown that the slingshot
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encounters can be more energetic that the exchange one. Therefore, slingshot dominates
exchange on the evolution of the system.

In Subsection 3.3.1, we evaluate the increment of binding energies of formed binavries
and compare the dependence on encounter types. In the case of the exchange type, the
binding energy does not increase beyond a certain critical value. On the other hand. in
the case of slingshot, the increment may have a large value. The average values of the
increment of binding energies due to slingshot and due to exchange are compared with
each other. As a result, the ratio of the increment by slingshot escape to the increment
by exchange escape is evaluated as approximately 4.0. Therefore, the ratio of the total
energy change by slingshot escape to the total energy change by exchange escape is nearly
equal to 1.6. Some of slingshot-escape orbits show a large energy change.

Moreover, in Subsection 3.3.2, we search where are initial values of orbits leading to
the energetic escape due to slingshot. It is true that slingshot-escape orbits close to a
triple-collision orbit are energetic. However, the near-isosceles slingshot is not so energetic
in the orbits which are distant from a triple collision orbit. We find that relatively en-
ergetic orbits far from triple-collision orbits distribute around the near-isosceles-slingshot
orbits. This relatively energetic orbits show that m, or mgs escapes while m, escapes in
the near-isosceles-slingshot orbits.

Shebalin and Tippens (1996) investigated the time evolution of binding energies be-
tween the particles m; and m,, m, and ms, and my and m,; in the system with small
angular momentum where the orbit is close to triple collision. In Subsection 3.3.3, we also
observe the time evolution of binding energies between the respective two particles. As
a result, the existence of non-escape orbits can be understood between slingshot-escape
orbits and exchange-escape orbits. We find that the behavior of the time-dependent bind-
ing energies starting in both the slingshot-escape region and the exchange-escape one is
different from the behavior of the binding energy starting on the non-escape region in be-
tween. The particle my escapes in the exchange-escape region. The same particle mjy also
escapes in the sub-band of the slingshot-escape region neighboring the exchange-escape
region. The mechanism is found why ms can not obtain enough energy to escape if the
system starts on the gap. At the syzygy crossing, the configuration and the velocity-vector
directions are not favorable to escape.

Conditions favorable for escape due to slingshot are shown in Section 3.4. The mech-
anism of acceleration is not clearly understood. In the restricted three-body problem,

Sitnikov (1961) shows the mechanism where the massless particle is accelerated by the
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receding binary after the syzygy crossing. If all three particles have positive masses,
energy-transfer process is more complicated. In the planar-isosceles three-body problem,
Zare and Szebehely (1995) suggest a proof that the third particle obtains from the re-
ceding binary after the syzygy crossing in the planar-isosceles problem. It is necessary to
investigate the condition of slingshot leading to escape in the planar or three-dimensional
three-body problem.

In Subsection 3.4.1, we investigate the state at the syzygy crossing of orbits which
start in the slingshot-escape regions in the free-fall three-body system. The conclusion
is the same as the one in previous works, i.e., the system leads to escape if the particle
passes through between two particles when they are receding from each other. However,
we find that the radial velocity of the binary components can not characterize the sling-
shot escape in the planar system. We also find a good measure of the receding. The lower
boundary of the measure leading to escape is determined clearly.

Moreover, relations of slingshot encounter and isosceles motion are investigated in the
same subsection. We compare the deviation of velocity vectors from the axis of symmetry
with the deviation of configuration from the isosceles configuration. The closest SYZygy
crossing in which the velocity vector is perpendicular to the syzygy line turns out to be
more favorable for escape than the crossing which shows the symmetric configuration. If
the velocity vector points to the asymmetric direction at the closest syzygy crossing, the
configuration of the orbit tends to be symmetric.

In Subsection 3.4.2, we consider why most escape orbits distribute around the near-
1sosceles-slingshot orbits, using the slingshot-escape condition obtained in Subsection
3.4.1. We find that there are certainly effects of binary collision expected by Tanikawa
et al.(1995) in the limiting orbits around the near-isosceles-slingshot ones. Other sling-
shots which are favorable to escape are shown near the binarv-collision orbit of the near-
isosceles-slingshot type. When the binary components recede from each other after the
close approach, the slingshot effect works on one of the binary components.

In Subsection 3.4.3, we investigate the planar-isosceles (not necessarily free-fall) prob-
lem with equal masses in order to understand the behavior of the near-isosceles slingshot.
First, escape conditions at the syzygy crossing are evaluated numerically. We take snap
shots of escape orbits on.the Poincaré section. Second, we superpose the phase points
at the syzygy crossing of the near-isosceles-slingshot orbits on the Poincaré section. The
one-parameter families of the near-isosceles-slingshot orbits starting in the escape regions

S; for 1 > 2 are included in the region of the snap shots leading to escape. Therefore,
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in the imtial-value space I) of the free-fall problem, the binary-collision curves of the
near-isosceles-slingshot type in Si, ¢ > 2, consist of only escape points and triple-collision

points. There does not exist any non-escape point.

3.2 Escape probability due to slingshot and exchange

3.2.1 Area of escape regions on the initial-value space

In the present subsection, escape probabilities due to slingshot and due to exchange
are evaluated on the initial-value space D). The initial-value space D is bounded, and so

the escape probability is defined as the ratio of the escape region to the area of D.

Umehara et al. (1995) found the similarity of structures between §; and S;, where
structure means binary-collision curves and escape sub-regions around the respective
triple-collision points in the extended initial-value space D. Also, they suggested that
probability of escape can be computed if there is any scaling law among escaping sub-
regions. Umehara and Tanikawa (1996) confirmed the similarity of S;, 1 = 1,2,---,6, and
that of E;, 7 = 5,6. According to Tanikawa et al. (1993), there is an infinite sequence
of the binary-collision curves of near-isosceles-slingshot type in D and it converges at the
lower-right corner (0.5,0) of . This assures the existence of an infinite sequence of S;
and F; maintaining similarity. We attempt to formulate the areas of escape regions as

functions of 1.

Before showing the numerical result, some notations are introduced. Recall that
it denote the number of close approaches between m; and mgz until the first triple en-
counter. The initial-value space D is divided into sub-regions for i. The grid-element
number of the i-th sub-group of D is denoted by NP. The number of the escape points
after the first triple encounter is denoted by N¥. The samples are also classified into sub-
groups for i, and NF denotes the element number of escape points after the first triple
encounter at the time of the i-th close approach.

The samples of the escape points are also classified into types of triple encounters.
Let N® and N¥ be the numbers of escape points after the first triple encounter due to
slingshot and exchange, respectively. Moreover, ¥ and NF are the escape-point numbers
after the first triple encounter at the i-th close approach due to slingshot and exchange,

respectively.
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Similarly, the samples are classified into identities of escaping particles. The number
of samples where a particle m; escapes after the first triple encounter at the :-th close
approach is denoted by Nl-F{j}+ The sum of N,F{j} for i = 1,2,--- is denoted by NF{/1,

The above definitions give the following relations:

3 e
NF = NF4+NE=Y% NVL (3.1)
i=1
N = YN, (3.2)
=1
(s =)
N = YN, (3.3)
=1
NE = NN (3.4)
=1
3
NF = NS4+ NE=% NFUL (3.5)
#=1

Table 3.1 shows the i-dependence of grid-element numbers of escape points after the
first triple encounter. The first column stands for the number i. The second column rep-
resents the size of grid elements which is denoted by éz. The grid intervals of z-direction
and y-direction are equal, i.e., éz = éy. The size of grid elements is made smaller as 1
increases. The third, fourth and fifth columns stand for NF, N3 and NE, respectively.

The sixth, seventh and eighth columns represent NF{1} NF{2} and NFB} respectively.

The probabilities of escape after the first triple encounter due to slingshot and ex-

change at the i-th close approach of two particles are denoted by P? and PF, respec-

tively. The probability of escape for m; with the i-th close approach is denoted by P,—F{ﬂ.
The total probability of escape after the first triple encounter is denoted by PF, i.e.,

PF = P + PE. These probabilities are expressed as

N¥ . 6x - by

R (3.6)

: U} s 6
P:'F{J} = i‘__j)_m_ﬁ’ (=1,2,3), (3.7)

where X € {T,S,E}, and D = 7/6 — /3/8 is the area of the initial-value space.
The i-dependence of the probabilities P, PF, and Pf are shown in Fig.3.1. An

1 i i

open circle (o) represents P, A filled circle (o) and a cross (x) stand for PF and PF,

respectively. Probabilities P° and PF as functions of i become linear very quickly with

increasing ¢ in the log-log plot. Such linear relations are shown as the bold lines in the
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figure. Each of the lines is evaluated with the least-squares method from the sampled

data between the endpoints of the line. The probabilities as functions of i are given by

PF =0.1765-i"21% for i € [10,50], (3.8)
PP =0.08892 - i~ for ¢ € [3,50], (3.9)

The probability for a larger ¢ can be estimated by extrapolation of the above formulae.
The total probability of escape PF is obtained as
oo 9 9
P* =% PF =i0.1765 {c(z.lza} = Zi—ms} +3 PF, (3.10)
i=1 i=1 i=1
where ( is a zeta function: {(s) = ¥o2,n~* for s > 1. Fori = 1,2,---,9, the rule given
by eq.(3.8) does not fit the evaluated results from the numerical survey, and so the last

term Y°0_, PF is added from the values evaluated numerically. Therefore,

=1
P¥ =0.1765{1.5416 — 1.4710} + 0.1065 = 0.1190, (3.11)

where ((2.125) = 1.5416. Similarly, the probability of escape due to slingshot P*% is
evaluated as

oo 2 2
PS5 =% Pf =0.08892 {c(z.zm) -y a"’“gl} + 3 P =0.1055, (3.12)

1=1 1=1 =1

where ((2.191) = 1.4963. Since P® does not follow any power law, the probability PF of

escape due to exchange is
PR =FPF — P%=0.0135. (3.13)
The relative probability of escape due to slingshot is
PS[PY = 0.8866. (3.14)

This large ratio confirms quantitatively that slingshot plays the dominant role in escape
phenomena.
Next let us discuss the small angular momentum case. The i-dependence of the

relative probability of exchange escape to slingshot escape is evaluated as
(PF — P7)/PF =1 —0.504-n%%, (3.15)

It increases with increasing 2. In the free-fall system with a sufficiently large ¢, regions
of initial values leading to escape after the exchange is larger than that after the sling-

shot. However, according to Anosova (1992) who added small angular momentum to the
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equal-mass system, motion starting from the lower-right part of D is bounded and does
not escape. On the other hand, the behavior in the upper part of D is expected not to
change with addition of small angular momentum. So we can say that slingshot is more
important in the escape phenomena than exchange in small nonzero angular momentum

cases.
The total probabilities PFli} leading to escape for m;, 7 = 2,3 as functions of 7
are given by

PP = 0.04178 528 for i€ [3,50], (3.16)
PP = 0.1328.5729%  for i € [10,50]. (3.17)

respectively.

The probabilities PFU} j = 2.3 are

i 2
P >, P =0.04178 {C (2.228) — Eé‘ms} +3 PF® = 0.07815,(3.18)
n=1 =1 =1
oo 9 9 .
PP - %~ pFBr=0.1328 {C(2.096) — Ez‘-z-“%‘} +3° P = 0.03927, (3.19)
n=1 =1 =1

respectively. Note that ((2.228) = 1.4732 and ((2.096) = 1.5633. The probability of m,

leading to escape is
PF} = pF _ pF(2} _ pFis} — 0.0016. (3.20)
The relative probabilities are
PR PY — 00134, PY®/PY =0.6567, PFEH/PY =0.3300. (3.21)
The relation among PFU}j =12 3 s
PR} ¢ pFE} « PR} (3.22)

Let r; be the initial distance between m; and m;. where (j. %, 1) = (1,2,3) or its cyclic

permutation. On the initial-space D,
ry > Trg > Ty, (323}

i.e., PPU} increases with r; decreasing for j = 1,2.3. There is the largest probability
of escape for the particle which is not located at endpoints of the shortest side in the

initial-configuration triangle of three particles.
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Moreover, let p; denote the distance between m; and the gravity center of m; and

my. The following relation is derived easily:

2ri 4+ 2rf —r?
raj_ 4 *

(3.24)

We have p; > pa > p, since r; < ry3 < 1. The escape phenomenon of m; is more probable
as the initial median line p; is longer. It is concluded that an originally distant particle
tends to escape.

The particle-identity dependence of the probabilities of each m;, 7 = 1,2, 3 leading
to escape are shown in Fig. 3.2. A filled circle (), a plus mark (+), and a open circle (o)

stand for P’,—F{l}, P—F{?}, and P,-F{B}, respectively.

P;F{S} < R}‘-‘{l} < PiF{R} fori=1, (3.25)
P,F{l} & }::—t,F{?} < P;F{a} for 1 > 2. (3.26)

This means that the most probable particle leading to escape after the first triple encounter
is my for a large i. In the lower-right part on the initial-value space D, one of the
components of the original binary tends to escape. The escape phenomenon of mjy is
more probable than the escape phenomenon of the incoming particle m, in the case of

the hierarchical configuration.

3.2.2 Escape probability with constant energy
Derivation of the equi-energy surface

Our numerical survey is executed on the space of initial values where the respective
total energies are different. By a suitable scaling of variables and time, the initial-value
space can be transformed to the space with constant energy. In the present subsection, we
will construct a homeomorphism from the initial-value space D to an equi-energy surface.

Let us introduce the coordinates (r,p,f) in the configuration space of the planar
three-body system. Here, r is the mutual distance between the particles m, and ma, p is
the distance between m, and the gravity center of m; and ma. and 8 is the angle between
the side r and the side p. The canonically conjugate momenta to r, p, and # are denoted
by p:, p,, and pg, respectively. Hereafter the coordinate system (r, p, 8, p;. p,. pg) is called
the polar Jacobi system.

Using the introduced variables, the reduced Hamiltonian of three degrees of freedom
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with the zero-angular-momentum and equal-mass case (m; = 1,7 = 1,2,3) is obtained as

) 2
2 Ps 3 2 Pe 1 1 1
H = 18 s 20 e o S 3.97
{pT+(r)}+4{p‘°+(p)} r ry T3 (3:27)

where

1
ry = ‘j?li —rpcosf + p?, (3.28)

1
rs = \/Zr?-i—rpcos!?+p2. (3.29)

See Appendix A.l for derivation.

The transformation of the initial-value space is decomposed into the following three

procedures:
. Fo
&
U bew | P e | M e | m ] (3.30)
Yo '9!1 90 -
fo

The initial-value space D is described by the Cartesian coordinates denoted by (o, o).
The first procedure is the transformation from the Cartesian system to the polar Jacobi
system. On D, the largest distance between two particles is adjusted to a unit length,
and so the initial value of r is fixed to 1. All initial values of momenta (p,,p,,ps) are
zero. Therefore, only two variables p and # are enough to describe the initial-value
space D by the polar Jacobi coordinates. These initial values are denoted by (po, ).
The vector (po,f) indicates the position of m, in the polar coordinate system. The
composed mapping of the second and the third transformations corresponds to scaling
of the variables in order to adjust the energy constant. The second procedure shows a
similar transformation on the (p,8)-space. The third one is the projection to the equi-
energy surface.

Let us summarize the result of the transformation. The transformation to the surface

with constant energy h = const. < 0 is given by

T:g = a, ﬁu = app. E@ s 90, (331)

Lo
po=rlzg+y5,  coslh=—, (3.32)

Ao

where
1 1 1 .
a(polz0,0), oo, 10)) = —= (14 — + —, (333)
—h ra0 T30
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"0

% 1
M(mo - E) +y¢ = \/E — pocos by + po?, (3.34)

1% 1
Tsp = \/(l‘o + 3) TP = \/E + po cos B + po’. (3.35)

The surface with constant energy is obtained as a function 7 of (pg, ) or (o, yo):

7 = o po(o, yo), fo(zo, Yo))- (3.36)

In order to prove that the transformation is homeomorphic, it is sufficient to confirm
that the Jacobian matrix of the transformation is regular in the domain of definition on D.
The Jacobian determinant of the transformation is denoted by J. It is found that J #£ 0
for (zo,y0) € D. However, J is undefined at the two points (zg,y0) = (0,0),(0,0.5). This

transformation is not available for the two points. The Jacobian determinant is obtained

as
1/2
d aﬁ,)z (aﬁ,)”
J(zo, =— =] +|—] +1 . 3.37
)= =1 (52) + (5 (3.37)
where
d= L3 (1 o L3 (] 8 3.38
'—1+§""20 (5“90605 n)-l-ir;m (§+PUCOS D)a ( . )
ﬂ'l; _ r;é(cosﬂ—Zp)—r‘;u3(cosﬂ+2p}1 (3.39)
dp 2d
or apsinb(rzy —rag )
S = 3.40
a8 2d ( )

J diverges to co at the points (g, yo) = (0,0) and (0.5,0). The transformed surface with
constant energy is homeomorphic to the initial-value space D except at the two points.

See more detailed derivation of the transformation in Appendix A.2.

In order to evaluate the escape probability with constant energy. it is necessary to
evaluate the area of the escape regions on the equi-energy surface. The escape regions are
projected to the equi-energy surface. We will derive the change of the escape area. We
already know the weight function from the area element in the initial-value space D to
the element in the equi-energy surface. At the initial value (x5.¥), the weight function is
equivalent to the Jacobian determinant J(zg.yo) of the transformation. Hence, the area

on the equi-energy surface A is given by

i f f J(z.y)dedy = ¥ Jiz, y)6zby, (3.41)
zJy Py
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where §z8y is the grid element of the initial-value space ) and the summation }°, , runs
over our considering region on D).

The distribution of the Jacobian determinant J(z,y) on the initial-value space D is
shown in Fig.3.3. Here, J is evaluated from eq.(3.37) where energy constant h is fixed
at —1. The darkness in the figure increases with increasing J and is proportional to
log,oJ. A gray scale varies linearly as the logscale of J. If the initial configuration is the
equilateral triangle, J(0,/3/2) is equal to v/7 on the equi-energy surface with h=—1.1f
the initial configuration is the collinear central one, J(0,0) tends to infinity as explained

above. .J(0.5,0) also diverges to infinity.

Evaluation of escape regions on the equi-energy surface

The equi-energy surface transformed from the initial-value space D is not bounded,
and so the escape probability can not be defined as the ratio of the escape region to the
total area of the surface. Thus we will evaluate the relative probability.

Let us consider the area-sequence of conditional escape as well as that of escape
where the escape criterion is satisfied. Recall that the conditional escape is defined as
the ejected particle recedes from a binary to the distance 20d,,; without satisfying the
escape criterion, where d,n;, denotes the mean harmonic separation between particles in
virial equilibrium (see the flow-chart of the integration until the i-th triple encounter in
Section 2.2).

Before showing the numerical result, some notations are necessary. On the equi-
energy surface, AP denotes the area of the region where the triple encounter occurs at
the i-th close approach between m, and ms. Let A denote the area of the escape region
after the first triple encounter at the time of the i-th close approach. The areas of the
escape regions due to slingshot and exchange at the i-th close approach are denoted by
A? and AF, respectively. For X € {5, E, F}, the conditional-escape region after the first

triple encounter at the time of the i-th close approach is denoted by AX. Note that
AP AP A4 AP > AP = AB 4+ AE, A3>48, AP AR, (3.42)

The i-dependences of areas AP, A7, A%, AF, AF AF, .@F are shown in Fig.3.4. The
data-plot sequences on dotted lines stand for the conditional-escape regions AF, A and
AF. Open triangles represent the data plots for A¥ and AY. Filled circles and open circles

show AS, AY and AP, AE. A sequence of open squares stands for AP.
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We find that all area sequences AY, X € {S,5,E, E,F, F,D} decrease with increas-

ing ¢ on the equi-energy surface. Moreover, Figure 3.4 suggests the following analytical

relation
log f(i).-—_pllogi—I-pg—i—%, for  f(i) € {43, 5, AF, AF, AP}, (343
=1

The slingshot-escape areas A7 and A7 follow the power laws, i.e.. the functions of the
areas become linear very quickly in the log-log plot. The areas AF, AF and AP seem
to approach the respective straight lines asymptotically. Thus a linear equation with a
non-linear term which tends to zero as i — oo is used for fitting the evaluated plots.
Bold curves in Fig.3.4 represent the function curves of eq.(3.43) where the parameters
p1, p2 and ps; are evaluated with the least-squares method from the sample data for

i € {19,26,...,30,36,....40,50}. The respective parameters are obtained as follows:

area 21 P2 Pa

AP —0.3184 —0.06113 0.2883
AY —0.3640  0.02528 —0.1600
AY —0.3897  0.05061 —0.2489
A% —0.3380 —0.6026 0.03124
A?  —0.3257 —0.7004 0.07588

(3.44)

Let X € {D,F,F,S,S}. Let pj;;,j =1, 2,3 denote the parameter p; of the function
for the areas AP, AF, A¥, A5 A% respectively. The results in Fig.3.5 assure us the following

relation:
PP o gl (3.45)

Let I = {1,---,19,26,---,30,36, ---,40,50}. We have the data of the area for : € I.
Let p¥(i) denote the parameter p¥ evaluated from the plot data Xy, k € ({#,50] C I) for
i € [5,19]. For example, p}(19) is evaluated from Xy, k = {19,26,---,30,36,---,40,50}.
Figure 3.5 shows the i-dependence of p_f (1), 1 = 1.2,3. The ordinate in the upper figure
is pX(i). The middle and the lower figures represent p} (i) and p}(i), respectively. A
data-plot sequence on a bold line stands for parameters which are evaluated from escape
regions, i.e., p! (1) and p3(z). A data-plot sequence on a dotted line represents a parameter
for conditional-escape regions, i.e., ﬁ?(i) and p3(i). Open triangles show p_l;(?) and ﬁf(a)
Filled circles represent p3(i) and p;(z).

For a linear term, parameters of slingshot-escape p;(i) and p;(i) are nearly equal

to pP(i) although the fluctuations of the data sequences are large. On the other hand,
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total-escape parameters p! (i) and (i) tend to p} asymptotically with increasing . The
sequence gap at i = 15 may be caused by coarse sampling of the grid elements, and so it
is conjectured that the fluctuation of the sequence becomes small if we sample more grid
elements.

From the observed relation (3.45), we can conclude the following:
pr~pd, Xe€{SS,FF} (3.46)
It is noticed that
Al <At <4A?, Xe{SFF} (3.47)

for i > 5. If pf > pP, then AX exceeds AP for a sufficiently large i. It contradicts
eq.(3.42). On the other hand, if p} < p?, then p¥ < pJ. It suggests that A¥ becomes
smaller than A? for a sufficiently large . It also contradicts eq.(3.42).

From the above observation, we fix the linear parameter p; as

i = A ,3-;:(319) +23(09) _ g 308, (3.48)

We will describe a modified function as
log f(i) = p1logi + ¢z + l—g-;—;, py = —0.328, (3.49)

for f(i) € {AS, A3, AF, AF AP} with parameters ¢; and ¢s. In Fig.3.6, the function
curves expressed by eq.(3.43) with p, = —0.328 are fitted to the data-plot sequences AX,
X € {D,F,F,5,S}. Bold curves in Fig.3.6 represent the function curves of eq.(3.49)
where the parameters p;, p; and p; are evaluated with the least-squares method from
the sample data for : € {19,26,---,30,36,---,40,50}. The respective parameters are

obtained as the following:

area 02 gs
AP —0.03263 0.2673
AF —0.08103 —0.08191
AF —0.1317 —0.1150
A —0.6349  0.05491

AS —0.6785  0.05974

It is shown that ¢¥ is not influenced by the choice of sampling data. A parameter

¢¥(i) is defined similarly as p¥(i). Let ¢}(i) denote the parameter ¢, j = 2,3 evaluated
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from the plot data X, k € ([1,50] C I) for ¢ € [5,19]. Figure 3.7 shows the i-dependence
of pi-((i], j = 1,2, 3. The ordinates in the upper figure and in the lower figure are ¢ (i) and
¢X (i), respectively. A data-plot sequence on a bold line stands for parameters evaluated
from escape regions, i.e., ¢t (i) and ¢;(i), j = 2,3. A data-plot sequence on a dotted line
represents a parameter for conditional-escape regions, i.e., ¢; (¢) and (). Open triangles
show ¢! (i) and g7 (i). Filled circles represent ¢i(z) and g(z). From the figure, we find
that the fluctuation of each parameter curve ¢; (i) is almost zero. Moreover, we notice
that each ¢X(i) is almost constant with respect to i.

From the parameters evaluated in the result (3.50), we can derive relative probabili-
ties. For a sufficiently large 7, the escape probability after the first triple encounter at the

i-th close approach of the original binary is evaluated as
A7 a5 —45 -
S~ 10%7% = 0.796. (3.51)

If the system starts on the hierarchical configuration with zero initial velocities, 80% of

the system escapes without shrinking after the first triple encounter. Moreover,
AF F_aD
b — 107 = 0.895. (3.52)

If the conditional escape is considered, 90% of the system escapes after the first triple

encounter. The other relative probabilities are obtained as

A8 .
zfﬁ — 100 -%2) = 0,226, (3.53)
&45 3
i 10(E-2) = 0.250. (3.54)

About a quarter of the orbit experiencing the triple encounter at the :-th close approach
leads to escape due to slingshot after the first encounter for each 1.

About 30% of the escape orbits after the first triple encounter is due to slingshot

since
A3
F 10%-% = 0.284, (3.55)
b
and
A¥ s .F
Z‘F — 1022 = 0.279. (3.56)

The ratio of the slingshot-escape probability to the exchange-escape probability is less
than a half:

A$ A¥ _ e
E:m—v[}ggij (3.0!‘)
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and
Af A?
vl Il (3.58)
The ratio of the complete escape to the conditional escape is considered.
AF F_oF "
ZF 10% 7% = 0.890, (3.59)
It implies that the error of evaluating escape regions on the equi-energy surface is 10%.
Moreover, the ratio of the complete escape to the conditional escape due to shingshot and

exchange are evaluated, respectively, as

L

A 8
L 10%% = 0.904, (3.60)

e i

2

AE  AF _ A5 109 — 109

oo R = 0.884.
AE T AF A5 10 — 108

(3.61)

The ratio due to slingshot is larger than the one due to exchange. It implies that the escape

criterion works on the slingshot-escape orbit better than the exchange-escape orbit.
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Table 3.1: The numbers of grid elements of escape points.

i | grid size NF N? NE Nt-F{]} N{F{z} NF{S} NP

1 [1.0x1072| 18175 18175 0 199 17787 189 | 98894
2 6641 6641 0 157 2881 3603 | 123061
3 2518 2518 0 47 1116 1355 | 34835
4 1318 1318 0 20 581 71T | 15512
5 1209 804 405 11 358 840 | 8608

6 988 539 449 11 234 743 | 5391

7 766 380 386 8 161 597 | 3660
8 604 285 319 8 118 478 | 2633

9 | 5.0x10"*| 1943 884 1059 | 14 391 1538 | 7888

10 1583 705 878 9 325 1249 | 6104

11 |2.0x107*| 8136 3524 4602 | 42 1557 6537 | 29119
12 6847 2929 3918 | 38 1270 5539 | 24434
13 5816 2470 3346 | 39 1054 4723 | 20138
14 4896 1995 2901 | 23 885 3988 | 16426
15 4359 1841 2518 | 22 779 3558 | 14409
16 3816 1600 2216 | 21 685 3110 | 12378
17 3354 1392 1962 | 19 597 2738 | 10696
18 2057 1225 1732 | 14 514 2429 | 9343

19 2635 1077 1558 | 10 465 2160 | 8220

26 | 1.0 x 10~* | 5389 2165 3224 | 25 901 4463 | 15697
27 4936 1982 2954 | 18 829 4089 | 14361
28 4588 1839 2749 | 16 760 3812 | 13187
29 4254 1690 2564 | 18 700 3536 | 12150
30 | 5.0 x 1077 | 15852 6364 9488 | 72 2642 13138 | 44853
36 10720 4318 6402 | 54 1759 8907 | 29535
37 10087 4058 6029 | 46 1634 8407 | 27717
38 9536 3852 5684 | 32 1553 7951 | 26058
39 8979 3596 5383 | 30 1454 7495 | 24542
40 8472 3400 3072 | 33 1384 7055 | 23095
50 | 2.0 x 107% | 32200 12734 19466 | 123 5182 26895 | 84778

2
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Figure 3.1: The i-dependence of the escape probabilities after the first triple encounter
with the i-th close approach. The abscissa is i. The ordinate is the escape probability as a
function of i. The escape probability due to slingshot is denoted by PP and is represented
by open curcles (¢). The exchange-escape probability is denoted by PF and is shown by
filled circles (e). The total-escape probability is denoted by PF and is shown by crosses

(x). Here, it is considered that the escape probability is proportional to the area of escape

region.
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Figure 3.2: The i-dependence of the probabilities of m;, : = 1,2, 3 leading to escape. The

abscissa is 7. The ordinate is the escape probability as a function of 7. A filled circle (e),

a plus mark (+), and a open circle (o) stand for P:-F{I}. P,-F{?}. and P,-F{a}, respectively.
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space 1 o Lhe equicencrgy surfage where the total onergy i equal o =1 Tlie datlness
i divoctly proportional Lo log g, J.
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Figure 3.4: Area of the first escape regions on the equi-energy surface as a function of 2.
The abscissa is # which is the number of close approach between two particles until the
triple encounter. The ordinate is the area of escape sub-regions. A bold curve stands for
the analytic function log f(2) = pylogi + p» + ps/logi which fits the 2-dependence data

of the area. Parameters p;, p;, and ps are obtained with the least-square method.



96 CHAPTER 3. QUANTITATIVE RESULTS

-0.2 L ik 3

IIIII!IIIlIIIIIIIiI

P3

P BT TTTT T

IIFIII1I1|IIIIIIIII

Figure 3.5: The sampling-dependence of the parameters (¢, p;(i)), j = 1,2,3 evaluated
with the least-square method. The function form is log f(i) = pylogi + p, + pa/logi.
Here p;(¢) is a parameter as a result of fitting the data points between ¢ and 50 in the
samples ¢z € {5,...,19,26,---,30,36,---,40,50}.
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logf(i)=0.328logi+p,+ps/logi
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Figure 3.6: Analytic-function curves fitted to the data sequences. A bold curve stands

for the function nlog f(i) = 0.328logi + g + ¢3/logi. where parameters ¢, and g are

obtained with the least-square method.
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Figure 3.7: The sampling-dependence of the parameters (i.¢;(7)). 7 = 2,3 evaluated with
the least-square method. The function form is log f(i) = 0.328log ¢ + ¢, + ga/ logi. Here
g;(7) is a parameter as a result of fitting the data points between 7 and 50 in the samples

i€ {5,---,19,26,27,--,30,36,- - -, 40,50},



3.3 Relative change of binding energy

3.3.1 Energy transfer in slingshot and exchange

In the present subsection, we will compare physical features of slingshot and exchange
encounters. The respective energy transfers between an escaping particle and a binary
due to slingshot and exchange will be evaluated. In the free-fall three-body problem,
we will introduce the change of binding energy defined originally by Heggie (1975) in
the scattering three-body problem. According to Heggie (1975), the relative change of
binding energy is defined as the increase in binding energy normalized by the original
binding energy. Heggie and Hut (1993) formulated the relative change of binding energy
between initial and final binaries systematically with the aid of numerical investigation in
an extensive initial-value space of the scattering problem.

As a first step in the present subsection, we will confirm that this relative change is
also available for the free-fall three-body problem. The binding energy of the binary is the
difference of the kinetic energy of the two components and the potential energy between
them. The relative-coordinate system in the binary components is adopted in order to
define the binding energy. Let r;; denote the mutual distance between the particle m;

and m;. The binding energy =;; between m; and m; is defined as

NI 1 mym,; .
&ij = L3 p2 (3.62)
Tij 2m; +m;

Suppose the scattering three-body problem. Initially. the incoming particle ap-
proaches from a large distance so that the binding energy of the binary may be ap-
proximately constant at a value g5. Moreover, if the third particle recedes to a large
distance after the triple encounter, then the new binding energy of the binary becomes
approximately constant again around a value =;. The relative change of binding energy
A s

(3.63)
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Next we make sure that the above assumptions in the scattering problem are also
available for the free-fall three-body problem. In any case of the free-fall problem, the
inequality ry3 > ry2 > ray 1s satisfied at the initial state. Thus m, is regarded as an
incoming particle, and m,; and my are as components of a binarv. However, the inifial
distance between the incoming particle and the gravity center of the binary is not so large
relative to the separation of the binary. It may imply that the two-body approximation
is useless, and so we expect that both initial binding energy and final binding energy
fluctuate widely.

We investigate how wide the fluctuation of binding energy is. Let us show one orbit
in the escape region S;. The system starting in 5; experiences the triple encounter earlier
than any system in the other regions S;, 7 = 3.4,--- and F;, ¢ = 5,6, --. Thus we expect
that the width of the fluctuation starting in S, is largest in the escape regions except in
S;.

An escape orbit is drawn in Fig.3.8(a). The initial value is (0.291,0.327). A cross
stands for an initial position of a parficle. A bold, a middle-gray and a light-gray curves
represent the respective trajectories of m,, my and ms. A filled circle shows a position
at £ = 0.617007 when the escape criterion by Yoshida (1972, 1974) is satisfied. A close
approach between m; and my occurs before the time is 0.2. The triple encounter occurs
in a period t € (0.5,0.6). After that, the particles ms and m; form a binary and m,
escapes.

The time-dependent binding energies between two particles are shown in Fig.3.8(b).
A bold curve stands for e3/29. A middle-gray and a light-gray curves represent e3; /gq
and 5/, respectively. A vertical line at ¢ = 0.617007 shows the time when the escape
criterion is satisfied.

It is clear that £3; is approximately constant just before the triple encounter, while
the other energies €153 and 233 diverge to negative infinity at the close approach between
my and mg around ¢ ~ 0.2, The third particle m; does not affect the value of the
binding energy of the binary even if m, exists near the binarv. Therefore, ¢, can safely be
considered as the initial potential energv between my and mgz in the free-fall three-body
problem.

Also after the triple encounter, the binding energy of the formed binary converges to
a constant value very quickly. In the case shown in Fig.3.8(a). three particles stay around
a gravity center of the system when the escape criterion is satisfied. However, the binding

energy is already steady.
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Let us define A(t) as (s(t) — =0)/=¢. Table 3.2 shows the systematical result that the
fluctuation of A(t) after the triple encounter can be ignored in any system starting in Ss.
Let ¢, be the time when the escape criterion is satisfied, and t, denotes the time when the
condition of the conditional escape is satisfied, i.e., when an escaping particle is ejected
from a binary to the distance 20d,,;. (see eq.(??) for dyu).

We evalnate the change of A(t) normalized by A(t;),

[A(t2) — Alty)]

o= A

(3.64)

in the system starting on S;. Approximately, § denotes the fluctuation of A(t). The
relative distribution of 6 is shown in Table 3.2. We investigate all initial values in Ss. i.e.,
6641 samples. All samples satisfy é < 0.1. There are not so large fluctuations by as much
as the order of A. More exactly, the maximum value of the fluctuation é in S; is 0.036.
The relative fluctuation é is limited within 3.6%. Note that the system where § becomes
maximum is shown in Fig.3.8(a) and (b). We can directly observe that the fluctuation is
small after the time when the escape criterion is satisfied from Fig.3.8(a) and (b).

The distance between an ejected particle and the gravity center of a formed binary is
denoted by p(t) at a given time ¢. If p(f2) is not so larger than p(t,), the above statistics
does not have any significance. Table 3.3 shows the result that p(t;) is large enough.
The p(t2)/p(t,)-distributions are expressed as a function of p(¢;) in Table 3.3. The lines
classify the ranges of p(t,)/p(f;). The columns identify the ranges of p(t;). We notice
that 67% of the samples satisfy p(t,) > 100p(t,). Moreover, almost all samples (except
0.03% systems) satisfy p(tz) > 10p(t;).

The p(t,)-distribution shows that 98.7% of the samples are judged escape within
p(ty) < 1. This distance is comparable to the initial size since the maximum of initial
distance is equal to 1. An escaping particle is not so distant from a binary at the judgement
of escape. However, the relative fluctuation § is sufficiently small after the judgement,
and so A(t) is almost constant. Thus £, can be regarded as the binding energy of the

binary at the time of satisfaction of the escape criterion.

Observation 3.1. The time-dependent =(1) is not so fluctuating around the initial
time and the time when the escape criterion satisfies although the third particle is not
so far from the formed binary. Therefore. the relative change of binding energy which is
formulated in eq.(3.63) is available for the free-fall three-body problem.
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Let us observe the difference of the relative change of the binding energy in the
respective triple encounters, slingshot and exchange. The numerical result of i-dependence
of A is shown in Table 3.4 and Fig.3.9. Similar to evaluating the escape probabilities in
Subsections 3.2.1 and 3.2.2, the initial-value space D is divided into a grid with elements,
and an orbital integration starting from each vertex of the elements is performed. The grid
sizes are the same as the ones in Table 3.1. Recall that the numbers of grid elements of
initial values after slingshot and exchange will be denoted by N and NZ, respectively, for
each <. A maximum of the relative changes of binding energies for a given 7 is denoted by
max A;. An average and a minimum of A for a given 7 are (A;) and min A\, respectively.
The suffices S and E represent the types of triple encounter, slingshot and exchange,
respectively. For example, max A¥ is the maximum value of A-samples where initial
values lies in the region E;. Recall that there is not any initial value leading to escape
after the first triple encounter of exchange type for i < 4 in the initial-value space D.

Here, the average is weighted by the magnification ratio due to the projection of
the grid elements to the initial-value surface with constant energy. Let A(zX,y¥) be A
of the system starting at the initial point (z,y¥) in the escape region S; or FE;, where
X € {S, E}. The weight function at the initial value (¥, yX) is equivalent to the Jacobian
determinant J(z¥, ) of the transformation in eq.(3.37) in Subsection 3.2.2. The average
is evaluated as
Yoy A,y ) (2, o) Sl by

Yoy J(@X k) SaXoyX

(AX) = X € {S,E}, (3.65)

where the summations 37, , run over all the grid elements sampled in the escape region
S; or E;.

In Fig.3.9, a bold and a dotted lines with filled circles (o) stand for max A and
max AF, respectively. A bold and a dotted lines with open circles (o) represent (A?) and
(AF), respectively. A mark + and a x show min AY and min A, respectively.

The following is found.

Observation 3.2. max AF < 10, i > 5. In other words, there exist no escape orbits
due to the exchange type such that the systems increase an order of magnitude in the

free-fall three-body problem.

This is in contrast with slingshot encounter. In the case of slingshot, max AY > 10,{ > 2.

Note that we did not consider the samples of orbits starting in S;.
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On the other hand, minimum values of A; due to slingshot and exchange are equal

to each other. Moreover,
min AY = min A¥ <1 for each i > 4. (3.66)

It means that the increment of the order of binding-energy increment does not vary in
the case experiencing min &.;[S‘E} . We confirmed that for : = 5,6, 7, 8 initial values where
the systems satisfy min A? are near the boundaries of the escape region. There is a great
variety of values of relative changes in slingshot type. In such a sense, the slingshot is
different from the exchange. For slingshot, (max A¥ — min A¥) is much greater than 1,
whereas (min A¥ — min AF) is less than 1. Slingshot encounter causes A > 100 as well
as A < 1.

The existence of much energetic slingshot is shown in the above result. Here, we
compare total increments of the binding energies due to slingshot and exchange with each
other. It is found that the total influence on the evolution of the system due to slingshot is
comparable to the one due to exchange. The total-energy change of the binding energies
in the escape orbits after the first triple encounter at the :-th binary-close approach are

derived as
Zﬂ- (2,97 ) (¥, y¥) 6aXoy¥, X €{S,E}. (3.67)

Recall that J is the weight function as a result of the transformation to the equi-energy

surface, and that the summations }°,, run over all the grid elements sampled in the

escape region S; or F;. Using eq.(3.65), the ratio of the total-energy change due to
slingshot escape to the one due to exchange escape is given by

=y 828, yf) 7 (:81 )6z 0y7 (A7) A

zwatz, V)T (<F yF)saFeyF ~ (AF) AF

Figure 3.9 shows that average values of the relative changes (A7) and {(AF) for each

(3.68)

i are different from each other by factor 4. More precisely,

(A%) (B%)
(A%) (ak)

See Table 3.4 again. On the other hand, the result in Subsection 3.2.2 shows that the ratio

(A%) ¢
= 4.04, { ;E: = 4.25. (3.69)

= 4.37,
of the escape-region area due to slingshot to the one due to exchange is nearly equal to
0.4 on the equi-energy surface (see in eq.(3.57)). Therefore. the ratio of the total-energy

changes are given by

=16, (3.70)
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The order of the change due to slingshot is the same as the one due to exchange. In terms
of total-energy change, the slingshot escape is more effective than the exchange escape by
a factor.

Finally, we consider the possibility to distinguish the tvpe of escape (i.e., whether
slingshot or exchange). It is shown that we can judge the tvpes by the detected value A
in most cases. Let H; is defined as the ratio for the grid elements of initial values leading
to escape due to slingshot exceeding A over max AF. For each ¢, the excess ratio R; is
derived in the last column in Table 3.4. Although R; decreases with increasing z, we have
a chance of assurance that an escape orbit is due to slingshot with possibility 64.8% only
by referring to the value A,, even if ¢ = 8. Referring to the relative change of binding
energy results in a separating method of slingshot and exchange with large probability.
The most important cause of decreasing the ratio R; with 7 is that max A g increases with
increasing n. Is there any possibility that Ap due to exchange becomes as large as due

to slingshot, in the case of large :7 This problem is still open.

3.3.2 Collisions and binding energy
Triple collision and binding energy

The i-dependence of max A? is not regular in Fig.3.9. At ¢ = 12,16, maxA? is
larger than the maximum values for the other ¢. It is caused by the sampling method of
the initial points. Every vertex of a grid element on the initial space I is located at a
finite distance from triple collision points.

Let us consider only the systems experiencing max AY. We conjecture that the orbit
of the system approaches a triple-collision orbit with increasing max A? of the system.
We observe the normalized minimal moment of inertia fm.n in the svstems experiencing
A = max A? for respective i. Figure 3.10 shows the result. A filled circle stands for
Iin as a function of max A?. A number in a vicinity of each filled circle represents i. In
almost every case, Ioin decreases with increasipg max AT of a system. Thus, if max A? of
the system is large, the orbit of the system approaches a triple-collision orbit. A binary
formation increasing the binding energy strongly is detected from the orbit close to triple
collision.

The inverse is not true. There are slingshot-escape systems where max A? is small
even if fm;“ is small. The samples of slingshot-escape orbits starting in S5, S13, Ssg, and

Sso will be considered. There are the results of the relations between I, and AF for
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i = 5,11,30, and 50 in Fig.3.11(a), (b), (c), and (d), respectively. On a logarithmic-scale
graph, a dot stands for (Lnin, AF)-relation for each sample starting in slingshot-escape
region S;. Each of four figures shows that there is a maximal value of A? for a given
I Let _f(fmjn} be its maximal value. For each i, f is a coniinuous function of L.
In other words, the existence region of the dots (Immé..'s) is bounded from below, and
so the boundary forms a continuous curve of the function AY = f{( f,mn] The function f
decreases monotonically with increasing Loin. I Toim is large. A2 must be small. If |
is small, there is a sample which A? is large. Even if I is small, there is also a sample
which A? is small.

Moreover, we observe that the function f tends to approach the following form for

lower fmin:
Topf= —% log i + const. (3.71)

It means that the samples in lower I, satisfy the enequality,

= N-AfR
AF < Ci(Tmin) (3.72)
where C; is a constant depending on i. From the numerical survey, C5 = —0.952,
Cyp = —1.19, Cap = —1.48, C5 = —1.63. These boundaries are drawn as fine lines

in Fig.3.11.

Next, we consider whether the binding-energy change due to exchange-escape type
has relation to triple collision or not. As a result, max AP bears no relation to triple
collision for each 7. It is different from the slingshot-escape type. Figure 3.12(a), (b),
(c), and (d) show the results of (fmh.,&f}-distributions of all exchange-escape samples
for 1 = 5,11,30, and 50, respectively. The boundary of an existence region of the dots
forms a continuous curve, However, each boundary curve is not monotonically decreasing
in contrast to the slingshot-escape case. The system experiencing max AF is not a min-
imum of Lgn for samples in ;. There is no exchange-escape orbit such that motion is
sufficiently close to triple collision and the system evolves with sufficiently large transition
of binding energy. In other words, it becomes clear that there is no exchange-escape orbit

close to a triple-collision orbit in the free-fall problem with equal masses.

Near-isosceles slingshot and binding energy

Let us consider orbits far from a triple-collision orbit. An orbit whose binding en-

ergy changes strongly also exists far from triple-collision orbits. Where are the initial
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values of these orbits? We find that such initial points lies in the escape sub-bands which
are different from the narrow region including the binary collision curve of near-isosceles-
slingshot type. These initial points distribute close to the near-isosceles-slingshot curve
in the escape sub-bands.

The relative changes of the binding energies are evaluated in the systems starting on
a segment y = 0.4 which is parallel to the z-axis in the slingshot-escape region 5,. The
size of grids in the z-direction is 1 x 10~%. Figure 3.13 shows the result of the survey. A
boundary curve of a gray region stands for the relative change of binding energy A3 (z)
as a function of initial value z. Three lines below the 2-axis show the sections of three
sub-bands of a slingshot-escape region. The identity of an escaping particle is represented
as the level of three lines.

The system experiencing the maximum of the binding-energy change A3 () starts in
the escape region which is different from the region including the binary-collision curve
of the near-isosceles-slingshot type. It is true that the function Aj(z) has an extremum
at the binary-collision curve of the near-isosceles-slingshot type in an interval where
escapes. However, AJ(z) has a maximum in mg-escaping region. More exactly, the max-

imal point is located at the initial value neighboring m-escaping region.

Let us explain how the formed binary obtain the large amount of the binding energy.
The system experiences the maximum of Af at the initial point on the segment y = 0.4
in S, is (0.3590,0.4). The oribt starting at this initial point is shown in Fig.3.14(a). The
time evolution of the binding energies hetween respective two particles during the triple
encounter represents three curves in Fig.3.14(b). Each of three vertical lines stands for the
time of syzygy crossing during the triple encounter. Figures 3.14(c), (d), and (e) show the
configurations and velocity vectors of three particles at the successive syzygy crossings.

The first stage of syzygy crossing during the triple encounter occurs at ¢ = 0.6161.
At this stage, m, and 3 become weakly bound. In Fig.3.14(b), we see that the binding
energy €93 between my and mg decreases. Figure 3.14(c) shows that m; passes through
between m; and ms which are approaching each other. Until the second stage of syzygy
crossing, the trajectory of 7, is deflected to the direction of the m;’s position. After that,
m, passes through between my and m;. Its motion is represented in Fig.3.14(d). The
figure shows that my and m, approach each other at the second syzygy crossing. It results
in decreasing of e3; as we can observe it at the second vertical line in Fig.3.14(b), and so

ma and m, become wider. At this stage. ms is regarded to be weakly bound from both
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my, and mg. After that, ms passes through between m; and m,. Figure 3.14(e) shows
that m, and m, are receding from each other at the third syzygy crossing. The particle
ms obtains the kinetic energy from the other two particles. Since ms gets weakly bound
from both m; and ms, mj is easy to escape. Therefore, it is assured that the binding

between m1; and my becomes strong intensively.

3.3.3 Non-escape orbits between slingshot and exchange orbits

In the present subsection, we will explain a process of failure in escape after the first
triple encounter if the orbit starts in the non-escape region between the band-like region
S; and the tongue-like region E;. Hereafter, this non-escape region will be called a gap
region. A brief summary is here. By the syzygy crossing of m; near the gravity center
between m, and ma, the norms and directions of velocity vectors for my and ms become
nearly equal to each other. Motions of m; and mg are parallel to each other temporarily.
Therefore, m; and m3 become harder during the successive close approach in the exchange
encounter, and so ma fails in getting enough kinetic energy to escape after the exchange
encounter.

The particle mg escapes in both sides of the gap region: the tongue-like region F; and
the sub-band of S; neighboring E,. Four orbits in and around the gap region are already
shown in Fig.2.18 in Subsection 2.5. A typical exchange orbit in Ej is Fig.2.18(a). Orbits
(b) and (c) fail in escape. These initial values lie in the gap region. Orbit (d) represents
the behavior near the boundary of Ds neighboring E;. The successive close approaches
between two particles take place during exchange encounter: first, m; and ms; second,

my and m;.

The particle ms can not obtain enough kinetic energy to escape if the system starts
in the gap region. In Fig.2.18(b) and (c), ma-velocities become slower after the triple
encounter than the other cases (a) and (d). The upper figure of Fig.3.15 shows the time
evolution of the absolute value of the velocity for mg. This value is denoted as vz. The
darkest curve of the four curves stands for vs(#) of Orbit {a}l which leads to escape due
to exchange. The lightest curve is v3(¢} of Orbit 1d) leading to escape due to slingshot.
The other gray curves are ones of (b) and (¢). Surely. after £ > 0.65. the ma-velocities
in (b) and (c) become slower than ones in escape orbits (a) and (d). We observe similar
phenomena in the middle figure of Fig.3.15 which represents the time evolution of v; (the

velocity for m,). During ¢ € (0.64,0.67). peaks of vg-evolutions (a) and (d) are higher
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than ones of (b) and (c).

From the observation of v; and v; evolutions, it becomes clear that the kinetic energies
of the two particles are lost just after the second close approach in exchange encounter.
In each of the four systems, m, experiences a peak speed around t =~ 0.62. After that vs
becomes maximal around ¢ ~ 0.63. The particle m, approaches m, and my successively,
50 v, and vs increase once.

The velocity vs decreases with the initial value z incrcasing until a peak of v2. At

(a) o b
L

t = 0.61, for example, the relation v; [':] < 1;-2 ). where a velocity v, of Orbit (x)

is denoted by v%"]’, x = {a.b.c,d}. Similarly, v3 increases with increasing @ until a pea.k of

{6} O )

vs. In both cases, after the peak of vs, inequality relations change to v; ", v; J v 2

j=2,3.

Why the inequality relations among velocities change around the time of peak speed?
Both m; and mj can not obtain enongh kinetic energy to escape in a non-escape orbit. [t
is expected that the binding energy €33(¢) between m; and mgy becomes large temporarily.
Here, we observe the time evolution of £55(1). The darkness of curves stands for the four
systems (a), (b), (¢) and (d). The four curves are lighter in alphabetical order. It is the
same as the upper and middle figures in Fig.3.15, i.e.. the darkest curve of the four curves
stands for e;3(t) of Orbit (a) and the lightest curve is the one of Orbit (d).

In each of the four systems, £;3(t) becomes maximal during t € (0.62,0.63). This
time interval lies between the peak times of v2 and vs. In other words, m; and m3 become
tight temporarily during the successive close approaches. Moreover, we must notice that
maximal valnes of the systems (b) and (c) are larger than ones of (a) and (d). Inequality
relations of £43 among the four systems change before and after the first close approach
between m, and ms. Let = uga ) denote 23 of the system (y), where x = {a,b.c,d}. Just
before the first close approach, :531 < :é?_} e _{g? ugg) whereas Eat;;).-..q'; < :é‘-’;].-ﬂ just
after the first close approach. Therefore, it is considered that temporary increasing the

binding energy causes failure in escape.

In the final part of the present section, we will explain why m; and ms become harder
during the successive close approaches if the system starting in the gap region between
D, and E,. Let us give attention to the svstem (c¢) whose initial value is (0.430.0.19).
The upper figure of Fig.3.16 shows the time evolutions of binding energies between re-

spective particles. A bold curve stands for za3(¢). The lightest gray and a middle-gray
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curves represent €31 (t) and £15(t), respectively. There is a peak of 2,3(t) around ¢ ~ 0.6204
marked with a vertical line. The configuration and velocities at this stage are shown in
the lower figure of Fig.3.16. Three particles are filled-circle positions at ¢ = 0.6204. Three
arrows represent velocity vectors of the respective particles. A bold curve stands for the
trajectory of m,. The lightest and a middle-gray curves represent ones of m, and .
respectively.

Notice that the velocity vectors of m; and ms are almost parallel. Moreover, the
respective norms of the vectors are comparable. Thus the relative velocity between m,
and mg are almost zero at the time of £53's peak. By the definition of the binding energy,
if the distance between rn; and mg is determined, .5 tends large with the absolute value
of the relative velocity decreasing.

Furthermore, the syzygy crossing of m, just after £ = 0.6204 is also remarkable. At
t = 0.6226, the particle m, passes through the thin line connecting the positions of m,
and mj in the figure. The figure shows that m; passes through near the gravity center of
the mz-rng system. This syzygy-crossing configuration is close to isosceles one. In Sub-
section 2.4.1, we found the near-isosceles motion tends to escape. However, this syzygy
crossing can not result in escape since the velocity vectors are far from isosceles motion
in the velocity-coordinate system.

Conversely, the following is conjectured: when m; passes through near the gravity
center between my and mg, they obtain the comparable kinetic energies and the velocity
vectors of my and mg tend to be parallel. Tt results in increasing phenomenon of the
binding energy between m, and rmnas.

Note that Aarseth et al. (1994) concluded by the numerical works that the isosceles
configuration at the triple encounter is more important for escape than the symmetry of
the velocity-vector directions. However, this case in Fig.3.16 is a counter-example. In
Subsection 3.4.1, it will be clear that the directions of the velocities are more important

for escape than the configurations of the three particles in the free-fall problem.
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Table 3.2: The

A(ty) — A(t1)|/A(t,)-distribution. Here, ¢, denotes the time when the
escape criterion is satisfied, and ¢; is the time when the distance between an escaping
particle and a gravity center of a binary becomes 20d,y.. The mean harmonic separation
between particles in virial equilibrium is denoted by dy . The first column is the range
of |A(t2) — A(#1)|/A(t;). The second column shows the distribution of samples where the

systems satisfy the respective range denoted in the first column.

|A(t2) — A(ty)|/A(¢,)  distribution

[0,107%) 0
[107%,1077) 0.0021
[1075,107%) 0.0128
[107%,107%) 0.1006
[10-3,10-2) 0.6632
[10-2,1071) 0.2212

[1071, 00) 0

Table 3.3: The dependence of p(t2)/p(t;) ratio on p(t,). Here, p(t,) denotes the distance
between the position of an escaping particle and the gravity center of a binary when the
escape criterion by Yoshida (1972, 1974) is satisfied, and p(f;) is the distance when the

distance becomes 20d,,.;,.

p(h)z’p(h)\p(h) [107%,107") [1077,10%) [10°10%)
[102,10%) 0.0002 0.6702  0.0000
[10%,10?) 0.0000 0.3162  0.0131
[10°,10) 0.0000 0.0000  0.0003
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Figure 3.8: (a) The orbit in the band-like escape region S,. The initial value is

(0.291,0.327). Bold, light-gray, and middle-gray curves stand for trajectories of my. my,

and rng, respectively. Three filled circles and the respective arrows show the positions

and velocity vectors of three particles at the time when the escape criterion by Yoshida

(1972, 1974) is satisfied. (b) The time-dependence of binding energies in the system (a).

Bold, light-gray and middle-gray curves represent binding energies between my and mg,

mgz and my, and m; and m;, respectively. A vertical line indicates the time when the

escape criterion is satisfied.
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Table 3.4: The i-dependence of relative change of binding energies As and Ag correspond-

ing to slingshot and exchange escapes, respectively. The number of samples is indicated

as N. The maximum, minirum, and average of the relative changes of binding energies

for each i are indicated as max A,, min A;, and {2\;), respectively. The suffices represent

the type of triple encounter. S and E mean slingshot and exchange, respectively. The

ratio of samples of AS which is more than max A¥ to the all samples of A® are indicated

as R; for the respective 1.

N NP | maxAf max é;-q—’_mjn A7 min AF | (&%) (AF) | R
Sy 6641 163 0.783 2,75
S 2518 122 0.586 2.19
S4 1318 56.2 0.472 2.37
Ss  FEs 304 405 25.8 0.547 0.405 0.417 2.22 0.484 1 0.889
Ss FEg 539 449 172 0.628 0.350 0.368 2.37 0484 | 0.789
S E; 380 386 37.0 0.672 0.321 0.332 2.12 0.483 | 0.739
S 285 319 16.4 0.706 0.290 0.298 1.96 0.478 | 0.648
S¢ Iy 884 1059 42.5 0.737 0.259 0.269 1,96 0471 | 0.646
Sw En T03 878 32.4 0.760 0.245 0.251 2.04  0.467 | 0.631
Sn Eyp | 3534 4602 73.6 0.779 0.229 0.234 1.98  0.462 | 0.615
52 Ejo ) 2929 3918 281 0.796 0.215 0.220 2.08 0.438 | 0.554
Sz Fia | 2470 3346 53.3 0.812 0.203 0.209 1.75  0.432 | 0.525
S1a Fig | 1995 2901 56.8 0.823 0.195 0.196 1.85 0.426 | 0.532
Sis s | 1841 2518 51.6 0.837 0.185 0.188 1.65 0.422 | 0.490
S6 Fig | 1600 2216 T95 0.847 0.178 0.179 1.95 0417 | 0477
Sz Eyr | 1392 1962 30.0 0.856 0.169 0.172 1.69 0.412 | 0.476
Sie e | 1225 1732 47.0 0.863 0.163 0.165 1.64 0.411 | 0.480
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Figure 3.9: The maximum, the average and the minimum of relative changes of binding
energy A; for the respective 7. A filled circle (o) stands for the relative change due to
slingshot: Af. An open circle (o) represents the relative change due to exchange: AF.
A bold line and a dotted line show a maximum and an average of :l:{s.z}! respectively.

Crosses + and X correspond to minimum values of A7 and AF. respectively.



114 CHAPTER 3. QUANTITATIVE RESULTS

1000 = T— T T OITImT 1T T i O LR L R ]
— JB ]
— J2 -
max ﬁs L L]
5 2
-
100 L _
E 1 3
B 215 i
L a71019
o
s 5 A
10 I AT [T A N 1111 DO N A 111 1 W AW A1
107° 10-3
‘Tmin

Figure 3.10: Dependence of max AT on I, A fitled circle stands for Tp-max AF relation
in the system experiencing max A?. A number in a vicinity of each filled circle represents

.
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Figure 3.11: Dependence of A? on I A dot stands for {fmf_".f) distribution of all
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samples of a slingshot-escape region S;. A line represents Af = G; (Imm) / which is

tangent to an existence region of dots, where C; is a constant. Four figures (a), (b), (c)

and (d) represent samples for ¢ = 5,11,30 and 50.
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Figure 3.12: Dependence of AF on Iy A dot stands for (Imm, AF) distribution of all
samples of an exchange-escape region E;. Four figures (a), (b), (¢) and (d) represent

samples for ¢ = 5,11, 30 and 50.
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Figure 3.13: The relative change of binding energyv on the segment y = 0.4 in §;. The
value of the upper edge of a gray region is A at « on y = 0.4. Three lines below the
z-axis show the sections of three escape sub-bands. Escape particles are written outside

the frame.
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Figure 3.14: Behavior starting at (0.359, 0.4) which is the initial value of maximum change
of AS(z) on y = 0.4 in S3. (a) The orbit. The particle mz leads to escape. (b) The time-

dependence of three binding energies. Three vertical lines indicate the times at syzygy

Crossings.
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Figure 3.14: (¢) The orbit until the first syzygy crossing during the triple encounter. The

filled circles are the positions of the particles at the time of the syzygy crossing t = 0.6161

corresponding to the left vertical line in (b). The arrow represents the velocity vectors.

The length of each arrow is reduced to 0.003 times as the scale of the axis. The particle

m, passes through between m, and mj which are approaching each other. (d) The orbit

from the first syzygy crossing to the second crossing at ¢ = 0.6179 corresponding to the

middle vertical line in (b). The particle m, passes through between mj and m; which are

approaching each other. (e) The third svzygy crossing at ¢ = 0.6204 corresponding to the

right vertical line in (b). The particle ms passes through between m; and m, which are

receding to each other.
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Figure 3.15: The time evolutions of the velocity for mgj, one for m; and the binding
energy between m; and mg in the four system (a). (b). (c¢) and (d). The system (a) leads
to escape for my due to exchange. The system (d) leads to escape for mgy due to slingshot.
The systems (b) and (c) fail in escape after the first triple encounter. The initial values
are (0.420,0.19), (0.425,0.19), (0.430,0.19) and (0.435,0.19) in alphabetical order.
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Figure 3.16: The upper figure: the time evolutions of binding energies between the re-

spective particles in the system (c) starting at (0.430,0.19) in the gap region between D;

and Fs. A bold curve stands for 55. The lightest gray and middle gray curves represent

eai(t) and e15(t), respectively. The lower figure: the orbit of the system (c). A bold curve

stands for the trajectory of m,. The lightest and middle gray curves represent ones of m,

and ma, respectively.



3.4 Slingshot-escape conditions

3.4.1 Behavior of syzygy crossing leading to escape

The conditions of syzygy-crossing motion leading to escape are investigated in the
present section which consists of two parts. First, we will investigate the relation between
the configuration and the velocity vectors at the syzygy crossing, and search for the
restricting conditions of the slingshot leading to escape. Second, we will consider the
relation between the isosceles motion and the syzygy-crossing motion, and search for

conditions of slingshot favorable for escape.

Velocity vectors at the syzygy crossing

It is well-known that a triple system tends to escape if the third particle passes
through between components of the binary which are receding from each other. We will
consider the physical meaning of receding binary in the first half part of the present sub-
section. We will define the receding strictly.

Aarseth et al. (1994b) investigated the conditions of triple encounter leading to es-
cape numerically. They evalnated the physical states at the closest triple encounter in
the free-fall system with equal masses. Here, the closest triple encounter is defined as a
state at the time when the system experiences minimum moment of inertia. provided the
perimeter of the triangle spanned by the three particles is smaller than a certain value.
The sampling number of escape orbits was 5000.

One of parameters evaluated by Aarseth et al. (1994b) is the relative velocity of the
radial motion of the binary components, u. According to them, the majority of the es-
cape orbits are due to slingshot. The ratio is about 75%. They conjectured that exchange
escape takes place in the other case (25%).

However, we concluded in Subsection 3.2.1 that escape due to exchange is more
infrequent than exchange escape mentioned by Aarseth et al. (1994b). The relative prob-

ability of escape due to exchange is only about 10% (see eq.(3.14)). We expect that the

123
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slingshot-escape orbits satisfying u < 0 exist. We ask whether the receding phenomena

of the two components at the closest iriple encounter is really a slingshot-escape condition.

We concentrate on the escape orbits starting in the band-like region S,. The sampling
number from our numerical results is 6641. Suppose that a particle leading to escape is
my and the other particles are m; and my. Let uj; be the relative radial velocity of m;
and my. We evaluate u;; at the time of the closest syzygy crossing instead of the time of
the closest triple encounter. Here, the closest syzygy crossing is defined as a state where
my passes through a line connecting m; and m;, just after the closest triple encounter. We
already know that the closest syzygy crossing takes place at the last stage of slingshot
encounters leading to escape (see Subsection 2.4.2). In both cases of forward and back-
ward slingshots, m; leads to escape without passing through between m; and m;. after m;
experiences the closest syzygy crossing.

Figure 3.17(a) is the histogram of u-distribution. The abscissa is u. This bin size
is 0.4. The ordinate is the relative-distribution frequency of w. Here, the distribution
is weighted by the magnification ratio due to the projection of the grid elements to the
initial-value space with constant energy —1. Let the relative distribution frequency of
u satisfying u € [ug),uu41)] be denoted by fi(u) for each integer i. The sequence ug;
composes the arithmetic progression. The bin size means (u(y1) — ug)). So the relative-
distribution frequency with weight is described as

T Ly g(z,y)J(z,y) szdy
f!{u) = Z:;;,y J(:I.‘,y) 5"?353-‘ ]

where g(x,y) = 1 if the system starting at the initial-value element (x,y) leads to syzygy

(3.73)

crossing satisfying u € [u(), u¢i41)), and g(z,y) = 0 otherwise. The weight at the initial
value (z,y) is J(z,y). The explicit expression of .J is shown in eq.(3.37) of Subsection
3.2.2. The summation }_, , runs over all the grid elements sampled in S;. The data points
outside the range of abscisa are summed up in the respective corner entries.

We see that u is less than 0 in 23% systems of the band-like region. It means that
about a quarter of the systems leading to slingshot escape shows the backward slingshot
if the receding binary is defined as u < 0. This result is similar to the result by Aarseth et
al. (1994b). How behave the escape orbits experiencing v < 0 at the closest syzygy cross-
ing? In order to know the initial-value distribution of the orbits with u < 0, the initial-y
dependence of u at the closest syzygy crossing is shown in Fig.3.17(b). The maximum
value of the ordinate 0.4284 is the y-coordinate of the triple-collision point T, (Tanikawa

et al., 1995). A cross (+) stands for u at the syvzygy crossing of rn,. In this case, m, leads
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to escape. A dot ( - ) represents u at the syzygy crossing of m, or mz. In this case, ms
or ma leads to escape. There is a syzygy crossing with u < 0 in the system starting in
y < 0.34 and leading to escape for mj or mg although the closest syzygy crossing of m,

satisfies u > 0 if m; escapes.

An escape orbit showing u < 0 at the closest syzygy crossing is shown in Fig.3.18(a).
The initial value is (0.24,0.25). A bold curve stands for the trajectory of m,. The lightest
and a middle-gray curves represent ones of m, and m,, respectivelv. Three filled circles
and arrows show the positions and velocities at the closest syzygy crossing. The scale
of the arrow is reduced to 0.003 of the configuration scale. The particle rn; comes from
the upper side. It passes through between m, and m3 which are approaching each other,
and so my is decelerated. The trajectory of 1, is deflected. In the meantime, m; passes
through between ma and m,. Just after that, the closest syzvgy crossing of mg takes place
as we see in the figure.

The position and velocity vectors of particles m;, j = 1,2, 3 are denoted by ¢; € R?
and v; € R?, respectively, in the barycentric-coordinate system. Let ;. be g, — q;. The
norm of v; is denoted by v;. Let #; € [0, 7] be the angle between ry; and »;. Similarly,
f; denote the angle between 7,2 and w,.

The relative radial velocity u;x of the binary components is expressed as
;5 = v cos O — v; cos 8. (3.74)

Figure 3.18(b) shows the vectors #y; and v, — v, at the closest syzygy crossing occured
in Fig.3.18(a). It is shown that u;) is negative in this case.
However, the velocity vectors v; and v, spread each other. Therefore, we will define

new parameter ®;; as
(D_?'k = w;th S‘Iﬂ{gj; e 91) (3.75:}

Note that |®;.| is equal to an absolute value of the exterior product of v; and v,. The
meaning of the sign (plus or minus) of |®;¢| is as follows: @;; > 0 if the velocity vectors
of the temporary binary m; and my; spread from each other; on the other hand. ®;. < 0
if the velocity vectors of m; and my face each other. In the case with parallel velocity

vectors, @ = 0. We will call @, a velocity-vector product.

Figure 3.19(a) shows the histogram of the velocity-vector products @ at the clos-

est syzygy crossing. The abscissa is ®. This bin size is 1.0. The ordinate is the relative
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frequency. The distribution is normalized to energy —1 as in Fig.3.17(a). The entries at
both sides include proportion of the systems having values exceeding the lower and upper
bounds. Notations are same as I'ig.3.19(a).

Notice that most of the parameter ® distribute in the positive area. The ratio of
the evaluated distribution with positive ® is 99.86%. At the closest syzygy crossing, the
velocity vectors of the two particles spread from each other.

The initial-y dependence of ® at the closest syzygy crossing is shown in Fig.3.19(b).
Notations are same as Fig.3.17(b). There are the initial values showing negative ® in
y < 0.15, and so it is necessary to investigate such a lower region in further detail. How-
ever, the present thesis does not concentrate on orbits starting around lower y. The detail
observation of these orbits will be done in a future paper.

Tanikawa et al. (1995) found that a sequence of the triple-collision points lies on the
binary-collision curve of type 1 in S; according to Iig.2 of them. A triple-collision point
neighboring 75 on the binary-collision curve of type 1 is located at (0.196978,0.1342).
The vertical line in Fig.3.17(b) represents the initial y of this triple-collision point. It is
expected that various orbits exist around the triple-collision point on lower y. Thus, it
is possible that the system determines escape at another syzygy crossing after the closest
syzygy crossing. The closest syzygy crossing may not correspond to the last stage of triple
encounter.

We have found that the velocity-vector products of samples are larger than a positive
value except several ones in the lower region. Let us magnifv the ordinate of Fig.3.19(b).
The result is shown in Fig.3.20(a). Almost all samples in y € (0.1342,0.4284) which is

the interval between two triple-collision points T and its neighbor satisfy

9;>2, (i) =(1,2).(2,3),(3.1). (3.76)

We found that this inequality is established in other band-like regions S;. Figures 3.20(b),
(c), and (d) show similar results in S5, Sg, and Sy1, respectively. The sample numbers
are 804 in S;, 884 in Sy, and 3534 in S;;. The vertical line in the figure (b) represents
the initial y of the triple-collision point which is the neighbor of 15 (see I'ig.2 of Tanikawa
and Umehara, 1998). In Sy and Sy;, there is no evaluated result of triple collision points
which are neighbor of T;. The meaning of the lower boundary ®;; = 2 will be discussed

in a future paper.
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Deviation from isosceles motion at the syzygy crossing

We will continue to study the syzygy-crossing condition leading to escape. Many
authors consider the slingshot maintaining isosceles configuration as the ideal motion of
the slingshot with the equal-mass case (Anosova, 1986, 1991; Aarseth et al., 1994b; Zare
and Szebehely, 1995; Umehara and Tanikawa, 1997). In Section 2.4, it is found that
the binary collision maintaining isosceles configuration nearly dominate the escape orbits.
Thus, it is natural to consider the relation between isosceles motion and triple encounter
leading to escape.

Recall that a particle leading to escape was denoted by m; and the other particles are
called m; and . Aarseth et al. (1994b) defined the indices representing the deviations

from the isosceles motion as the following values:

(1) the ratio of distance
6 = |rj —rul/(rit+ ru) €[0,1], (3.77)
where r;, is the distance between m; and m,,

(2) the angle 1 € [0, /2] between the velocity vector of the escaper and the syzygy line

connecting with the two other particles.

The phase space can be divided into two subspaces: the configuration subspace and the
velocity subspace. The distance ratio & is equal to zero if the system becomes isosceles
in the configuration subspace. If the velocity become symmetric in the velocity subspace,
costs is also equal to zero. If the motion maintains isosceles configuration for all time,
the two parameters are § = cos = 0.

Aarseth et al. (1994b) concluded that the isosceles configuration at triple encounter is
more important for escape than the direction of velocity vector by observing distributions
of the above indices in the 5000 systems with zero initial velocities and equal masses.
According to their statistical results of escape orbits, § must tend to be zero at the time
of the closest triple encounter whereas distribution of 1 must be somewhat flat.

However, the conclusion by Aarseth et al. (1994b) has a problem with respect to the
procedure of sampling the data. Let us consider the case that m; and my approach closely
each other at the minimum moment of inertia. In this case, ;& and rg are comparable to
cach other inevitably. Thus, even if the configuration is not symmetrical, é is neatly equal
to zero. On the other hand, the fluctuation of v tends to be large since the interaction

between mn; and m; is large and the directions of the velocity vectors change quickly.
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Moreover, ¢ is undefined in the limit case that the binary collision occurs between m;
and m; at the minimum moment of inertia.

Therefore, we will evaluate § and ¢ at the time of the closest syzygy crossing in order
to sample the values when the system does not experience the close approach between
two particles except an escaper. We found a remarkable result. Figures 3.21, 3.22, and
3.23 suggest the opposite conclusion to Aarseth et al. (1994b).

Figure 3.21 shows the distribution of the systems with respect to é and cos, The
sampled systems are as in Fig.3.17. The 6641 initial values belong to S,. Moreover,
Figures 3.22 and 3.23 show the (4, cos ¢)-distributions in the systems whose initial values
belong to S; and Sy, respectively. The sample numbers are 804 in S5 and 3534 in Sy;.
In the gray-scale figure, the darkness of a grid element is directly proportional to the
distribution frequency. The distribution on the darkest element includes ratio more than
0.01. Here, the distribution is normalized to the equi-energy surface. The following is

found from the surveyed (6, cos ¥)-map.

Observation 3.3. On the (6,cosv)-map, most of grid elements of the 20 x 20
mesh where the probability distribution exceeds 1% lies in the lower part cosi < 0.2.
Hence, the symmetric direction of the escape velocily is more important than the symmetric

configuration at the time of the closest syzygy erossing.

According to Aarseth et al. (1994b), the peak showing the large distribution must
tends to the left side. It is true that there is a large distribution in the lower-left part of
Fig.3.21 (cos1 < 0.4 and § < 0.2). However, many samples also exist in the lower-right
part (6 € [0.9,1.0] and cos € [0.0,0.1]). Therefore, the system tends to escape if the
escape-velocity direction is nearly perpendicular to the syzvgy line. Many systems lead
to escape even if the configuration is not close to the isosceles one.

This phenomenon is more evident with large ¢ of S;. See Figs.3.22 and 3.23. In this
region, the escape-velocity directions of most systems are confined to cos» < 0.2 whereas
the distribution of the distance-ratio é spreads in all interval. Although a blank region
exists in {(6,cos )| costb < 0.1 and § € [0.3,0.6]} of S;. such a non-existence region
does not exist in the lower part on the distribution map of S; and S;;. Our results are

summarized as follows.
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Observation 3.4. In cost > 0.2 on the (8, cos ¢)-map, most of grid elements of the
20 % 20 mesh where the probability distribution exceeds 0.4% lie in the region { (8, cos)|6 €
(0.1,0.5],cos € [0.2,0.6]}. Hence, if the escape-velocity direction is not symmetric, the
configurations of many slingshot-escape orbits tend to be symmetric at the time of the

closest syzygy crossing.

There are few orbits satisfying small § and large cosv in the region {(é.cos?)|é €
[0.1,0.5],cos¢» € [0.2,0.6]}. The dark peak of distributed elements shifts to the upper-
right instead of the upper-left corner. If the escape velocity deviates from the symmetric
direction, the configuration of the three particles also tends to deviate from the isosceles
configuration.

In the upper part of the (6, cosip)-map, the distribution probability is found to be

nearly zero.

Observation 3.5. Almost all samples satisfy the following inequality at the closest

SYzyqy €rossing:

costh < 0.9 (] R 30°). (3.78)

The result shows that the system fails to escape if the velocity vector of the crossing
particle is nearly parallel to the syzygy line. It seems that the angle of the escape-velocity
direction seldom becomes close to zero whether the system leads to escape or not. If the
configuration continues oblate before and afier the syzygy crossing, the incoming particle
must approach a particle of the temporary-binary components before the svzygy crossing.
In most cases of such a situation, the orbital path of the incoming particle is bent, and

so the incoming direction tends to be perpendicular to the syzygy line.

The distribution of the lower-right elements (§,cose*) ~ (1,0) is large. The dis-
tribution satisfying & € [0.9,1.0] and cos? € [0.0,0.1] is 9.0%. The initial values in these
elements lies in y € [0,0.15], the lower part of S;. It is expected that the exchange
encounter occurs. Behavior in this part is not well investigated, and so it is discussed
in a future paper. Each binding-energy transfer in the systems corresponding to these

elements is small (A € (0.8,2.7)). Thus the role in the systems of these elements does
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not seem to be crucial to the evolution.

There are several systems in the right parts, for example (8,cos¢) ~ (1,0.5). The
distribution satisfying é € [0.9,1.0] and cosv € [0.5,0.6] is 0.12%. The initial values in
these elements lies in y € [0.14,0.18] which is also the lower part of S;. The binding-
energy transfer in the systems corresponding to these elements are large (A € (15,27)).
We can not ignore these systems since it may be crucial to the evolution.

Therefore, finally let us investigate an orbit which enters in these elements at the
closest syzygy crossing. We have found that the type of these orbits is also slingshot.
See Fig.3.24. In this case, an escaping particle passes through near one of binary com-
ponents at the syzygy crossing. The initial value is (0.209,0.176). The system experi-
ences (6,costp) = (0.901,0.528) at the closest syzygy crossing. Notations are same as
Fig.3.18(a). The scale of an arrow representing a velocity vector is reduced by a factor of
0.002 relative to the configuration scale.

After coming from the upper side, m, passes through between m; and ms approach-
ing each other, and so m; is decelerated. The trajectory of m,; is deflected. In the
meantime, m, is decelerated by the inverse-slingshot effect by m; and mgj. After that,
mgy approaches my, and ms passes through near the position of m; on a line connecting
my and my. This is the closest syzygy crossing leading to escape for mas. In the figure,
filled circles and arrows representing the positions and velocities of three particles show
the state just before the closest syzygy crossing.

Notice that the escaper m, never approaches m, before ms approaches m, at the
syzygy crossing. Thus the type of triple encounter is not exchange. If exchange encounter
occurs in the system, the system experiences the following successive close approaches.
Before the close approach between the escaper and one particle (so-called the intermedi-
ate particle), the close approach occurs between the intermediate particle and the other
particle. Since ms is an escaper in this case, m, must approach m, before m, approaches
ma, provided exchange encounter. However, such a phenomenon is not seen. Hence the

classification of triple encounter in this case is slingshot.

Let us summarize the results in the present subsection. Slingshot escape needs the
state where the escaping particle passes through between other particles receding from
each other. Here, the receding phenomenon is not equivalent to the positive value of

radial velocity between the two particles. We introduced new parameter velocily-vector
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product described by eq.(3.75), and derived the confinement of the parameter for leading
to escape as eq.(3.76). Moreover, relations between slingshot encounter and isosceles mo-
tion are found as Observations 3.3, 3.4, and 3.5. The symmetric direction of the escape
velocity is more important than the symmetric configuration at the time of the closest
syzygy crossing. If the system leading to escape due to slingshot experiences the asym-
metric direction of the escape velocity at the closest syzygy crossing, the configuration of
the orbit tends to symmetric. Finally, the confinement of the velocity direction eq.(3.78)

is obtained.

3.4.2 Behavior close to near-isosceles slingshot

Slingshot-escape regions distribute around a binary-collision curve where the near-
isosceles slingshot occurs. They mainly consist of three sets with respect to the three
components of escape particles. We can understand the reason why most escape orbits
distribute around the near-isosceles slingshot, according to a scenario by the expectation
by Tanikawa et al. (1995) and the numerical results obtained in Subsection 3.4.1.

Tanikawa et al. (1995) expected that slingshot works on one component of the tem-
porary binary for the orbits in the vicinity of the binary collision, and that escape orbits
distribute around the binary-collision orbit. This prediction is suggested from the fol-
lowing behavior. Let m.f,” and mEJ]' be the particles experiencing the binary collision.
There is a system in a neighborhood of the initial value of the binary-collision orbit such
that mi'} passes through the syzygy between mff} and the third particle (say m;,) in the
system. At the time of the syzygy crossing, m{f} and m;, are receding from each other.
Furthermore, they expected as the above result that the binary-collision curve divides two
sets of initial values corresponding to the escapes of mi" and 1n{,2), respectively, in the
initial-value space.

We have found that in the initial-value space the binary-collision curve due to near-
isosceles slingshot divide the escape regions for my and mg. It suggests that the expec-
tation by Tanikawa et al. (1995) is correct. Around the near-isosceles slingshot orbits.
however, there is a phenomenon which is not mentioned by them. In S; for ¢ > 2, the
near-isosceles-slingshot orbits themselves lead to escape for my, and the escape orbits for
mq exist in the initial points close to the near-isosceles slingshot orbits.

The following is the reason why Tanikawa et al. (1995) did not expect the existence

of the escape region on and around the binary-collision curve. They assumed that the

third particle is far away from the colliding particles and moving slowly. In the case with
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near-isosceles slingshot, however, the third particle is approaching the colliding particles
and leads to escape passing through the gravity center of the other particles.

According to our results of numerical survey, there is a straight segment parallel to
z-axis in the escape region S, such that one endpoint is located on the binary-collision
curve of type 1 and the other endpoint is included in the sub-region where m escapes.
The segment is composed from the following three intervals: the right interval where m,
escapes, the intermediate interval where the system shrinks again, and the left interval
where mg escapes. Let us observe the orbits starting on the three intervals. The results
are shown in Figs.3.25(a), (b), (c), and (d). Figures (a) and (b) show the orbits starting
on the right interval where m, escapes. Figure (a) corresponds to the binary-collision
orbit of the near-isosceles-slingshot type. Figure (c) and (d) represent the orbits starting
on the intermediate interval and the left interval, respectively. Each figure consists of
two views. The time shifts from the upper view to the lower one. Three filled circles (o)
and arrows represent the positions and the velocity vectors of the particles at a certain
time. The scale of velocity vector is reduced by a factor of 0.002 relative to the scale of
configuration.

Let (Zcol, Yeo) be the initial value experiencing the near-isosceles slingshot which starts
from the binary-collision curve of type 1. We choose z., = 0.2702483 and y., = 0.3 from
the table Ila of Tanikawa et al. (1995). Figure 3.25(a) illustrates a binary collision be-
tween my and mz from the above initial value. The motion in Fig.3.25(a) corresponds
to the one in Fig.3.26(b) illustrated schematically. The final motions in Fig.3.26(b) is
the escape of m;. We can see that the particle m, passes through the close-approaching
particles which are receding from each other immediately after the binary collision.

We observe the change of behavior as a result of small perturbation for the binary
collision in the left direction. We shift the initial point of m, to the left direction from the
one experiencing the near-isosceles slingshot. In Fig.3.25(b), the initial point is located
at (Ty,¥Yeot); Ty = 0.2701 < &eq. The final motion in Fig.3.25(b) is the escape of m; as in
Fig.3.25(a). The third particle m, approaches the other particles during binary encounter
occurs. Therefore, the third particle and one component m, can not form a receding
binary when the other particle mj passes through between them. This phenomenon is
beyond the expectation by Tanikawa et al. (1995). The approaching m; passes through
close to the gravity center of the other particles which are receding from each other after
the binary encounter. As a result, m,; leads to escape.

Let the initial values be shifted further left on the initial-value space. Figures
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3.25(c) and (d) show results of a larger perturbation for the binary-collision orbit. In
Fig.3.25(c) and (d), the initial values are set at (z., ¥eo1) and (24, yea), respectively, where
g = 0.2694 < 2. = 0.2698 < z;,. We can observe from the respective figures that the
position of m; at the syzygy crossing between m, and my tends to shift to the left position
of my as m, is initially located at the left position of the initial value leading to near-
isosceles slingshot. These phenomena occur as a result of a perturbation to the head-on
collision.

Since the particle m, approaches mj passing the upper side of m,, the orbital path
of my is bent downward. As the initial position of m, shifts to the further left, the bend-
ing of my tends to be large. In the respective lower figures of (a), (b), (c), and (d), the
following phenomena are observed: m, can not approach my after m; passes through
downwards the syzygy between my and ms because of bending by m,, and my does not
turn around m; sharply Thus, ms passes through closer to the mid-point of the syzygy
between m; and m; than the case (b) (see the lower figure of Fig.3.25(c)). However, ms
fails to escape since the lower figure shows that mgs passes through the syzygy when the
other components are approaching. It does not satisfy eq.(3.76) obtained by the statistical
observation.

Does m, escape in this case? The particle m, can not pass through near the mid-
point of the syzygy between m, and ms since my is attracted by m; more strongly than
the case (b) and the orbital path of m, is bent to the position of mgs. As a result, m,
can not escape. No particles do not escape after the first triple encounter and the system
shrinks again.

Figure 3.25(d) shows that the larger perturbation results in escape of mgs. The tra-
jectory of mjs becomes straight since m, can not approach ms; due to the existence of
m1. As a result, the velocity vector of the escaping particle at the syvzygy crossing is not
perpendicular to the syzygy line, and my passes through near the mid-point between m,
and m, which are receding each other. According to Observation 3.4 in Subsection 3.4.1,
if the escape-velocity vector deviates from the perpendicular direction, a slingshot-escape
orbit tends to symmetric configuration at the syzygy crossing. For many escape orbits,
the escaping particle passes through near the mid-point of the other two particles. Thus
my leads to escape.

We have found that the behavior in Fig.3.25(d) is the same as the schematical one in
Fig.3.26(b). In the vicinity of the binary-collision orbit, the slingshot effect works on one

component of the receding binary. We have verified that the expectation by Tanikawa et



134 CHAPTER 3. QUANTITATIVE RESULTS

al. (1995) is correct in the neighborhood of the binary-collision orbit due to near-isosceles
slingshot.

We could understand that the escape region for m; is distributed around the binary-
collision curve due to near-isosceles slingshot, and that the escape region for ms is located
on the left side of binary-collision curve of near-isosceles slingshot. By right shifting of
the initial values, we can also understand the existence of an escape region for mg similar

to the left shifting case.

In the collisional case except near-isosceles slingshot, the expectation by Tanikawa
et al. (1995) is not realized. There does not exist any escape orbit around the orbits on
the binary-collision curve of type 3 which is far from the triple-collision point. Escape
regions exist on the right side of the binary-collision curve of type 3. We can describe
such phenomena as follows.

Fig.3.27(a) shows the binary-collision orbits of type 3 where escape does not occur.
Arrows represent the velocity vectors reduced by a factor of 0.05 with respect to the scale
of position. Other notations are the same as Fig.3.25. Let (2, Yeol) be the initial value
experiencing binary collision of type 3. We choose z.,; = 0.2451897 and ycq = 0.3 from
the table IIb of Tanikawa et al. (1995). The main difference between type 1 and type 3 is
the direction of incoming particles at the time of binary collision. The velocity vector of
m3 is not perpendicular to the direction of each velocity of the colliding particles. As a
result of the asymmetrical repulsion, the distance between m, and ms is shorter than the
distance between m; and ms. Thus m3 passes through the point away from the mid-point
on the syzygy line connecting m, and m,. Moreover, escape-velocity direction of mj is
not perpendicular to the syzygy line at the closest syzygy crossing. In such a case, escape
hardly occurs according to the results in Subsection 3.4.1.

Figure 3.27(b) shows the case that the initial value is shifted to the right direction.
As a result of a perturbation for the binary collision, m, is turned clockwise and tends
to approach mg compared to the collisional case of tvpe 3. Thus my passes through near
the mid-point of the line connecting the other particles. Such a case is easy to lead to
escape, according to the results in Subsection 3.4.1. Note that closer triple encounter in

this case can be realized than the one in the case {a). It is also the reason of escape.

With respect to type 2, there are no escape orbits for ¢ < 4; on the other hand,

tongue-like regions where my escapes exist for > 5. However, there is only one escape
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region and the binary-collision curve of type 2 does not divide two sets.

3.4.3 Slingshot escape in the planar isosceles subsystem

In the present subsection, the behavior of slingshot in the planar-isosceles problem
is considered in order to understand the behavior of the system starting on the near-
isosceles-slingshot orbits in the free-fall problem.

According to 2.4.1, the narrow region around the near-isosceles-slingshot curve be-
longing to the escape region S; for : = 2,3, ..., seems not terminated. The convergence
point in the upper direction is the triple collision 7;. The lower-convergence point seems
another triple-collision point. It is in contrast to the escape region S;. There exists an
interval on the y-axis where m; returns after the first triple encounter although the syzygy
crossing occurs between the receding components of binary. The y-axis corresponts to the
isosceles curve running the center of the narrow escape region. As a result, the narrow
region around the near-isosceles-slingshot curve belonging to the escape region S, is ter-
minated.

In order to answer the above question, we will make clear the condition of escape
by slingshot after the syzygy crossing of a receding binary in the planar isosceles subsys-
tem. This subsystem has two degrees of freedom, and so the structure of the phase space
is easy to comprehend. Because of the energy integral, the motion is restricted to the
three-dimensional equi-energy subspace. Hence, we can define a two-dimensional surface

of section where a flux consisting of phase trajectories crosses transversally.

We will evaluate the condition of escape by slingshot numerically. Although we
will restrict the system to the case of equal masses (i.e., m; = m3 = 1), the initial values
are not restricted to the system with zero velocities. Let us study the case where the total
energy is negative. After a suitable scaling of variables and time, we restrict ourselves to
the energy level h = —1, We will start at the svzygy crossing with a receding binary, i.e.,
y(0) = 0 and #(0) > 0. By the symmetry of motion, we investigate only the case with
y(0) > 0. By the existence of the invariance h = —1, one value z(t) is determined from
the other variables. Then the initial-value space is (2(0).3(0)).

In Fig.3.28(a), the initial points resulting in escape without any return are repre-
sented by dots (-). The other points represent initial points where the third particle
returns after the ejection. The ordinate is the logscale of 2(0) and the abscissa is the

logscale of (0). There is one curve which runs along the boundary of the set of initial
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values leading to escape. There is a curve of the initial values where each motion returns
until one hundred times of binary collision. Thus, the initial values leading the parabolic-
elliptic escape should exist between the boundary and this curve.

Figure 3.28(b) shows the initial values of 2(0) at the respective initial points. Ac-
cording to this figure, x(0) is smaller on the upper and right parts in the initial-value
space than the lower-left part.

Three bold curves in the Fig.3.28(a) represent the sets of cross points where the
near-isosceles slingshot of the free-fall system starting in 5,5, and S; passes through
the surface of section. The orbits of the near-isosceles slingshot in S; for i = 2,3,---
does not maintain isosceles configuration exactly; however, we approximate the motion
as the isosceles. In the three U-shape curves, the outside one is the section of trajectories
starting in S;, and the inside one is in S;. The result shows that the respective binary-
collision orbits form a sequence of one-parameter families since the shapes of the section
are similar. We conjecture that the U-shape tends to narrow as the i of S; increases.

Furthermore, the results give us information of a near-isosceles slingshot condition.
Only the section belonging to S; goes out of the escape region on the surface. It verifies
the existence of the initial-value interval where the system does not escape immediately

after the syzygy crossing of a receding binary.
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Figure 3.17: Relative velocity of the radial motion of the binary components u;; at the
closest syzygy crossing. (a) Distribution of u;; with weight by the magnification ratio
due to projection of the initial-value elements to the space with constant energy. (b)

Initial-value dependence of .
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Figure 3.18: A slingshot-escape orbit showing u;; < 0 at the closest syzygy crossing

although the velocity vectors v, and v, spread each other.
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Figure 3.19: Velocity-vector product of the radial motion of the binary components @,
at the closest syzygy crossing. (a) Distribution of ® ;. with weight by the magnification
ratio due to projection of the initial-value elements to the space with constant energy. (b)

Initial-value dependence of @ ;.
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Figure 3.20: Distribution of velocity-vector product ®;; at the closest syzygy crossing
with weight by the magnification ratio due to projection of the initial-value elements to
the space with constant energy in the four slingshot-escape regions. (a) in S, (b) in S5,
(¢) in Sy and (d) in Syy.
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Figure 3.24: A strange slingshot-escape. The escaping particle passes near one of the

other components, i.e., away from the isosceles configuration.
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Figure 3.25: The slingshot orbits close to the near-isosceles slingshot. (a) The orbit of the
near-isosceles slingshot on the binaryv-collision curve of type 1. The particle m; escapes.

The initial value is (0.2702483, 0.3).
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e o

Figure 3.25: (b) The result of the small deviation from the near-isosceles slingshot. The

particle m; escapes. The initial value 1s (0.2701,0.3).
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Figure 3.25: (c) The result of the further deviation. The particle m; can not escape
after the first triple encounter since the syzygy crossing occurs when binary components

approach each other. Also mg can not escape. The initial value is (0.2698,0.3).
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Figure 3.25: (d) The result of the largest deviation of the four figures. The particle mj

passes through the syzygy of the receding binary. The initial value is (0.2694,0.3).
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Figure 3.26: Schematical figures representing the relation between a binary collision and
slingshots. The middle figure (b) illustrates the binary-collision orbit of the near-isosceles-
slingshot type. The figures (a) and (¢) correspond to the results of two opposite pertur-

bations to the near-isosceles slingshot.



150 CHAPTER 3. QUANTITATIVE RESULTS

Figure 3.27: (a) The slingshot-escape orbit starting on the binary-collision curve of type 3.

At the present initial point, the system results in escape after the first iriple encounter.
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Figure 3.27: (b) The slingshot orbits near the binary collision of tvpe 3. It is the result
of perturbation in the right direction from the binary-collision orbit. The particle mg

escapes.
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Figure 3.28: (a) The slingshot condition in the planar isosceles system. The dotted region

shows the initial values of the syzygy crossing leading to escape without returning.
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Figure 3.28: (b) The initial value of = in the svstem with the total energy being —1.



Chapter 4

Analytical and geometrical results

4.1 Introduction

Collision singularities are crucial to the evolution of the three-body systems. In
particular, the singularity of triple collision is considered as the origin of chaos in the
theory of the three-body problem. In the collinear three-body problem, McGehee (1974 )
developed a method which blows up the triple-collision singularity to the two-dimensional
invariant manifold, known as the triple-collision manifold, in the three-dimensional phase
space. There are equilibrium points on the invariant manifold, and the sets of triple col-
lision and triple-expansion orbits are interpreted as the stable and unstable manifolds of
the equilibrium points, respectively.

In 1980s, the analysis of triple collision has been progressed in the isosceles problem
by McGehee's blow-up method (Devaney, 1980; Simé, 1980; Simé and Martinez, 1988).
One of their remarkable results in the collinear and the isosceles problems is that one
particle may get an arbitrarily large velocity as an orbit approaches triple-collision singu-
larity. This suggests a close relation between triple collision and escape.

Investigations of the planar problem by the blow-up method also started in 1980s
(Waldvogel, 1982; Moeckel, 1983; Simé and Susin. 1989: Susin and Simé, 1991). Waldvo-
gel (1982) introduced another type of blow-up variables in the planar problem. Moeckel
(1983) investigated the existence of the connection of the stable and unstable manifolds
among various equilibrium points, and made a list of possible motions passing near triple
collision. There are escape phenomena for the respective three particles after the close
triple encounter in the list.

In the above theoretical works, however. it is not well-known how escape orbits dis-

tribute around a triple-collision orbit in the planar problem. It is also uncertain whether
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non-escape orbits exist in an arbitrary neighborhood of a triple-collision orbit. Numerical
works show the initial-value distribution of escape orbits in the free-fall three-body prob-
lem which is the special planar case with zero initial velocities (Agekyan and Anosova,
1968; Anosova and Zavalov, 1989; Tanikawa et al., 1995; Umehara et al., 1995; Zare and
Szebehely, 1995; Broucke, 1995; Umehara and Tanikawa, 1996). Tanikawa et al. (1995)
found many triple-collision orbits of Lagrange type in the free-fall system with equal
masses. Umehara et al. (1995), and Umehara and Tanikawa (1996) numerically showed
that escape orbits and non-escape orbits are distributed around triple-collision orbits.
However, one can not see the orbital distribution arbitrarily close to the triple-collision
orbit from numerical works since the precision in numerical integration is limited.

The purpose of the present chapter is to clarify the orbital distribution in an arbitrary
small neighborhood of triple-collision orbits in the planar problem with equal masses. In
Section 4.2 and 4.3, we consider distributions of orbits around the triple-collision points
Ty and T3, respectively. Around T3, taking the previous numerical results into account,
we will analytically verify such distribution beyond the limit of numerical integrations.
Around T, the similar distribution as around T3 is shown with the aid of numerical results

investigated by the blow-up variables.

Before detailed proofs, in Subsection 4.2.1, we summarize the procedure to ver-
ify the existence of both escape and non-escape orbits in an arbitrary neighborhood of
Ty(0,/3/2), i.e., the homothetic equilateral collision orbit. Here, we assume two lemmas
which will be proved in the subsequent subsections.

There are three planar-isosceles subsystems in a neighborhood of the homothetic
equilateral solution. The distribution of escape orbits in the free-fall three-body problem
is determined from the disposition of the three isosceles subspaces in the phase space and
orbital behavior in the planar-isosceles subsystem. These results imply that non-escape
orbits also exist in an arbitrary neighborhood of the triple-collision orbit. It turns out
that the isosceles subsystem has an important role on escape phenomena as the triple
collision has.

In Subsection 4.2.2, we first prove one lemma, i.e.. the isolation of the homothetic
equilateral triple-collision orbit from other triple-collision orbits in the free-fall three-body
problem with equal masses. We will prove that no other triple-collision orbit exists in a
sufficiently small neighborhood of the homothetic equilateral orbit in this case as far as

the triple collision at the first triple encounter concerns.
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In Subsection 4.2.3, we analyze the case of the planar-isosceles problem. Here, we
prove the other lemma, i.e., an orbit passing sufficiently close to triple-collision singularity
results in escape. If a particle experiencing syzvgy crossing gets high kinetic energy by
passing close to triple-collision singularity, the other two particles also obtain kinetic en-
ergy. Thus it is not apparent that the syzygy-crossing particle always leads to escape. We
will adapt the derivation of the escape criterion of Yoshida (1972) to the planar-isosceles
case and translate it to the words of blow-up variables.

In Section 4.3, we investigate numerically the behavior another triple-collision orbit
starting at T, with the aid of the blow-up analysis. The numerical work by Tanikawa and
Umehara (1998) shows various triple-collision orbits in the free-fall three-body problem.
If orbits are restricted to the free-fall case, there are not all three kinds of isosceles orbits
around the individual orbits ending in triple collision except the homothetic equilateral
orbit. According to numerical results by Umehara et al.(1995) showing the similarity
of orbital distributions around triple-collision orbits, binary-collision orbits instead of
isosceles orbits dominate escape orbits. Escape orbits seem to be distributed around a
one-parameter family of binary-collision orbits. The proofs of orbital distributions around
other triple-collision orbits may be based on the lemmas in the present paper. These proofs

will be given in a future paper.

4.2 motions arbitrarily close to triple collision

4.2.1 Geometric analysis of orbital distributions

In the present section, our attention is concentrated to the initial-value dependence
of solutions in a neighborhood of the initial value T}(0,v/3/2) corresponding to the equi-
lateral configuration. Hereafter, this homothetic equilateral triple-collision point T} will

be called a homothetic equilateral point.

Theorem 4.1. Arbitrarily close to Ty(0,v/3/2), at least six first-hyperbolic regions
exist and the siz first-hyperbolic regions are located around the respective isosceles curves
on the initial-value space D of the free-fall three-body problem with equal masses. The

non-escape points after the triple encounter also exist arbitrarily close to T.

Recall that the initial-value space D) and the isosceles curve are defined in Subsection
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1.3.1, and that the first-hyperbolic region and the first-non-escape point are defined in
Subsection 2.3.1.

The triple encounter is defined by Triple-encounter criterion in Subsection 2.2. The
formulation of this definition is complicated since it is improved to be applied even in
the case of triple encounter with wide configuration. However, in the present section we
will consider only orbits close to triple collision, and so another definition reviewed in
Subsection 2.2 is suitable for these orbits. One of blow-up variables is related with the
moment of inertia as we will introduce them later. Thus it is favorable for the blow-
up analysis that the triple-encounter criterion is defined using the moment of inertia.

Therefore, we adopt Definition 2.3 developed by J.Yoshida, 1997. See also the following.

Triple-encounter criterion (J.Yoshida, 1997) The near-triple-collision orbit with
negative energy is called to be in triple encounter if I < Iy, where

M3

= (4.1)

and M = my +ma + mz and M, = myma + mams +mam,. When I(t) is equal to Iy with

increasing, the system is called to survive the triple encounter.
The following two lemmas are necessary in order to verify the above theorem.

Lemma 4.1 There is no tnitial point ending in triple collision during the first triple
encounter in a sufficiently small neighborhood of T\ on the initial-value space D excepl

Ti.

Lemma 4.2 On the isosceles curves of the initial-value space, all initial points in a

sufficiently small neighborhood of Ty except Ty are the first hyperbolic-elliption points.

In the final part of the present subsection, we will prove Theorem 4.1 assuming the

above two lemmas. The statement of the first half of Theorem 4.1 is that

at least six first-hyperbolic regions exist in an arbitrarily close to T and the

six first-hyperbolic regions are located around the respective isosceles curves.

Proof of the first half of Theorem 4.1. By the continuous dependence of solutions on

the initial values except at triple-collision points, there is a hyperbolic region around
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a hyperbolic point. ¥From Lemma 4.2, there are hyperbolic points not only on the six
isosceles curves but also around the curves in a sufficiently small neighborhood of T} ex-

cept Ty, and so these hyperbolic points compose aopen regions on the initial-value space. O

The second half of Theorem 4.1 is proved as the following. The statement is that

there is also a non-escape point after the first triple encounter in an arbitrarily

close to Tj.

Proof of the second half of Theorem j.1. Suppose the contrary. From Lemma 4.1, there
is no triple-collision point during the first triple encounter in this neighborhood of Ty
except Ty. Thus, all initial points in a sufficiently small neighborhood of Ty except T, are
hyperbolic or parabolic points after the first triple encounter. According to Lemma 4.2,
however, three kinds of escape points exist where the escaping particles are m,, my, and
ma, respectively, in a sufficiently small neighborhood of Tj. Therefore, there is a common
point of the first escape points for m; and my, j # k, even if the closure of the escape
region for m; contacts with the region for m;. At the common point, both m; and m,
leads to parabolic or hyperbolic scape after the first triple encounter. This contradicts
the fact that the number of escaping particle is at most one in the system with negative
energy. Hence, a non-escape point after the first triple encounter exists arbitrarily close

to 13. O

The above proof shows the existence of at least six escape regions. We can not prove
that each escape region form a wedge at the triple-collision point T} as the numerical
result shows in Fig.2.12(a). We can not also assert the non-existence of escape regions
other than the six considered in the above. If such a region exists, a region consisting of
non-escape points does not form a wedge. According to the numerical result, however,
each non-escape region seems to form a wedge at 7.

Theorem 4.1 implies a remarkable distribution of orbits close to the homothetic equi-

lateral triple-collision singularity.

Corollary 4.2. In any small neighborhood of the triple-collision orbit corresponding
to the homothetic equilateral solution. all types of orbits exist such that the system leads
to hyperbolic-elliptic escape, parabolic-elliptic escape. and non-escape, respectively, after

the first triple encounter.
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In Sections 4.2.2 and 4.2.3, we will prove Lemma 4.1 and Lemma 4.2, respectively.

4.2.2 Initial-value distribution ending in triple collision
Outline of the proof

In the present section, we will prove Lemma 4.1 using the blow-up variables devel-
oped by Waldvogel (1982). There are equilibrium points corresponding to triple collision
in the blow-up phase space, and a set of triple collision orbits is transformed into a stable
manifold of an equilibrium point. Thus an intersection of the stable manifold and the
initial-value space with zero-initial velocities is a set of initial values leading to triple
collision in the free-fall three-body problem.

The phase space of the planar three-body problem with a given energy is a five-
dimensional manifold. The equilibrium point corresponding to triple collision of the
equilateral-triangle type has a three-dimensional stable manifold. The initial-value space
with zero-initial velocities is a two-dimensional manifold. Therefore. the intersection is a
zero-dimensional manifold, i.e., points, if the stable manifold and the initial-value space
are transversal. However, it is difficult to prove the transversality. It is also hard to
distinguish whether initial values leading to triple collision are isolated points or not. The
results of Tanikawa and Umehara (1998) investigating the initial-value instability until
the third triple encounter suggest a fractal distribution of initial values leading to triple
collision in the initial-value space.

Nevertheless, if we restrict ourselves to the behavior of orbits up to and including
the first triple encounter, we can prove the isolation of the initial values leading to triple
collision. In order to avoid the difficulty of proving transversality, we will consider the
position of a phase point released with zero-initial velocities with respect to the stable
manifold of the equilibrinm point when the phase point approaches the equilibrinm point.
Further, we only consider the case of the homothetic equilateral solution.

First, we introduce blow-up variables, and derive tools necessary for the proof: a
tangent space of an equilibrium point corresponding to triple collision. the homothetic
equilateral solution, and the variation of the homothetic equilateral solution. After that,
a necessary condition for a solution approaching the equilibrium point to be included in
the local stable manifold of the equilibrium point is established in Lemma 4.3.

Second, we will set up two lemmas. In Lemma 4.4, we will prove that any solution

curve starting sufficiently close to the initial point of the homothetic equilateral solution
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on the initial-value space is not included in the local stable manifold of the equilibrium
point when the solution curve passes close to the equilibrium point for the first time. In
Lemma 4.5, we will show that if such a near-homothetic-equilateral solution is included
in a global stable manifold of a certain equilibrium point, it ends in triple collision after

surviving the first triple encounter. From this result, it is easy o prove Lemma 4.1.

blow-up variables by Waldvogel

Let us introduce blow-up variables in the planar three-body problem. In the present
paper, we consider only the case of zero angular momentum. Let ¢; € C, j = 1,2,3
be the complex Cartesian coordinates of the mass m; in the center-of-mass system. The
canonically conjugate momenta are p; = m; - dg;/dt € C where t is the time. Let

a; € [0,00) and ¢; € [0,27], 7 = 1,2,3 be defined as follows:

@ — g = a;e', (4.2)
where (7, k, 1) is (1,2,3) or its cyclic permutation. Let b; € R, j = 1,2,3 be defined as
P = bke'-""‘ = b;e"d". [4.3:]

Note that g; is the mutual distance between particles m; and ;. We consider the equal-
mass case: m; = 1, j = 1,2,3. According to van Kampen and Wintner (1937), the

Hamiltonian of the system with zero angular momentum is written by a; and b; as

1 ; ai + af — a? |
H== (62 + b + brby —i’#) -y —. (4.4)
2_1% SR agdy E a;
The equations of motion are
da; OH  db; IH

= _— = = ) =1.2.3. =
it 05 & day - h&d (4.5)

The system is of three degrees of freedom and admits the energy integral
H = h = const. (4.6)

There are two kinds of singularities in the phase space: a; = 0 for each of j = 1,2.3
corresponding to binary collisions, and a; = a; = a3 = 0 corresponding to triple collision.
Let us introduce blow-up variables &; which also regularize the binary collision sin-

gularity. These are related to the mutual distances a: as follows:

a; = ai+al, (4.7)
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with
a; = I"{"-I.j, (‘i‘g)
where 7 is defined by the square root of the moment of inertia:

r= |23 dl (4.9)

The variables 3, are introduced by

B: = 2r3ay(by + by). (4.10)
Scaling the time by
&L = s, (4.11)

we get the following seven equations from eqs.(4.5):

P = Tama

reill L

da; liorza = 23 szanz 5 s o B R R :
? = Z{z(ﬂj + a;q; — ooy ),33 — a;aja-k,ﬂk —_ akajagﬁ; - a;agaava}'}. (4.12)
db;

el —5{a;&8; + a;(2a5 +a;)(BF + B} + %{(2&? + @) af + (282 + ap)ap)
+ 2&;(2a; + ax + @) + 2hra;a; (@ + @),

for j = 1,2, 3, where
3 -~
o=Y &p; (4.13)
3
They admit the following invariant relations:

loese e 2 i N o % 2
gzaj[[: -f -+ Cu'g - a';)ﬁf + (ﬂ'kﬁ; — a;ﬁkjlz} -— Zakm —_ h?‘ﬂlaza:g = U, [4,14)
Jkl ikl

and
3 2
J

These invariant relations correspond to the energy conservation and scale normalization,
respectively.
Let M (h) and M, denote a blow-up phase space with a given energy h and its sub-

set satisfying r = 0, rvespectively. Both subsets constitute invariant submanifolds for the
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vectorfield (4.12). These have dimensions five and four, respectively. The orbits in M,
have no direct physical meaning. Their behavior, however, reflects the behavior of orbits

in M(h)\ Mo while these are close to triple collision.

The initial-value space in the blow-up coordinate system will be considered instead of
the initial-value space [ defined in the precedin g section. In the free-fall problem, mitial
values of b; are equal to zero for j = 1,2,3, and so ﬁj((]) = 0. The initial-value space
with zero-initial velocities in M(k) can be defined as (&, &;, &;) where eq.(4.15) holds.
Therefore, any of the two-dimensional surfaces (a;,6;), 1 < < j <3 can be used as an
initial value space. Let us denote them by S;;.

Let Hy be the initial point on Sy, corresponding to T3(0,v/3/2) on ). Surfaces Sy
around Hy and D around Ty are topologically equivalent. Indeed the Jacobian determi-
nant of the transformation (x,y) — (&, &) is —ya,(a, + a;)/(24r* &, é2a2a3) and the
variables y, @;, &, and &, are positive around Hy, and so the Jacobian determinant keeps

negative. This property holds in the other S;;.

The homothetic equilateral solution

Let us describe the homothetic equilateral solution which starts at the initial point
Hg with zero-initial velocities. The configuration of this solution maintains equilateral
triangle, and so the equalities & () = ay(7) = as(r) = a(r) and Bi(7) = B(r) =
Ba(7) = B(r) always hold with appropriate functions &(r) and 3(v). Thus the solution

has the form

Vpomo(T) = (1(7), &(7)e, B(7)e)”, (4.16)

where e = (1,1,1), and a(7), ,@{T} and r(7) are described explicitly as

a(r) = 5y

’V’E,

4 1 — exp(\/67)

Plr) = V3 1+ exp(vEr)

(4.17)

o} = By exp(vBr)

16 {1 + exp(V/67))?
The fact that &(7) is constant is obtained from the invariance (4.13). The variable 3(r)
is obtained from the following differential equation:

@__E g2 _ 16 2./2 _3 -?('E_E) y
dr 4‘/5(’3 ?)jL”‘EthB"C ) (4:18)
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This equation is derived using the third equation of the system (4.12). The latter equality

is derived from the energy integral (4.14). Note that h = —3 in this case.

Next let us derive the variational equations along %y .. We introduce a variation

8t homo 11 the tangent space to R™. Let a 3 x 3 matrix Jlz,y] be

T Yy
y = y |- (4.19)
y y =z
Then
, | A0 F(1-%P0)e F5(1-%FM)e || or(r)
== ba(7) | = ol Jaa s 8&(r) |(#:20)
§8(7) —6v/2e” o I35 §B(7)

where 0 = (0,0, 0),

& = (&1:&23&3)T$ ré o (ﬁhé‘z:BS}T: (4'21)
and
L i C YR e RN
Jia=J [3F(r)—12, BB (r) 12|, J35=17[0, —53%B(7)] .
The conditions so that the variations belong to M(h) are
3 1 - 3
Zé&j(f} =0, or(r) = —g,ﬁ‘('r} Z 86;(7). (4.23)
E i

Local stable manifold of Lagrangian equilibrium point

In the blow-up phase space, a solution ending in triple collision approaches asymp-
totically an equilibriuin point. We will derive a position of the equilibrium point and
vectors spanning the stable manifold of the equilibrium point. Let F) be the equilibrium
point which %y,,.(7) tends to approach as 7 — oo. The local stable manifold of Ej
in an e-neighborhood of Ej is denoted by Wi _(E}) where = is a small positive number.
Similarly, Wit (E;) denotes the local unstable manifold of E;. The tangent space to a
manifold M at a point P is denoted by Tp M.

The position of Ej in the phase space is

(ree, &% "N = {(r,ae,3e)T|r=0.a=

3
%



4.2. MOTIONS ARBITRARILY CLOSE TO TRIPLE COLLISION 165

since r and /3 tend 0 and -4/ V'3, respectively, as 7 — oco. Therefore, variational equations
at Fj are obtained by substituting g = —4/+/3 in eq.(4.20).

We obtain T, Wi (E})) as the following three-dimensional subspace:

[ grea ] (1 0 0
ba;7? 0 1 0
565 0 0 1
bagt =G| 0 [+G| -1 |+G| -1 |, (4.25)
55';’“ % K 0
55;“ ;,2;5 0 K
LSB;“_ _\—f,-;_ | ~K_ | —K_

for any real numbers (y, {; and (3, where

VB(5 + 1/13)

e —, 26
K 5 (4.26)

See Appendix for the derivation. From the above expression, we can derive the following

lemma.

Lemma 4.3. If a variation at Ey, is included in Ty, Wi (E)), then
8B — 63 = w_ (8657 - 665%) (4.27)

where (1,7) = (1,2),(2,3) and (3,1).

Variation with zero initial velocities

In order to prove Lemma 4.4 that follows, we transform the variational equations
(4.20) and examine the behavior of solutions. Although this system is five dimensional,

we can independently solve the two-dimensional subsystem (¢(7), p(7)) definded by
q(7) = 6ay () — 8&a(7), p(r) = 83(7) — 83(7). (4.28)

From eq.(4.20) we obtain

¢(r) = —325B8(r)e(7) + Ip(7) (4.29)
P(r) = —587)e(7) + 553(7)p(7),
and so
¢ = =3 - 0 ”

o {ﬂﬁﬁ'(r]zi + (% - %32(?)) z— 1%53(.*]} p cos®(arctan z),
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where a prime ( ' ) means differentiation with respect to v, and

o = T (431

z = g (it p # 0). (4.32)

Let (7) be a solution z(7) with the initial value z(0) = 0 corresponding to zero velocities
in the first equation of the system (4.30). We assume p(0) > 0. The origin is the
fixed point showing isosceles motion including the homothetic equilateral solution. Thus
p(7) # 0 for 7 > 0, and so (1) is well-defined.

We will investigate the behavior of ¢o(7). On the (7, z)-plane, there are two boundaries

satisfying 2'(7) = 0 represented as

z= {{i(r) (4.33)

(x = %5(7 )} :
Note that (,(7) < ¢(_(7) < 0. The equality holds if and only if + = 0. We have 2z’ > 0
if (4(7) < 2(7) < (_(7), and 2’ < 0 if 2(7) < {;(7) or 2(7) > {_(7). The solution ¢(7)
stays in the region {z|z > (_}. Indeed ©(A) > (_(A) for a sufficiently small A > 0, and
if there is a 7 > A such that ¢(7) reaches the boundary z = (_(7), then ¢/(7) becomes 0.
Since the boundary z = {_(7) is monotone decreasing with respect to 7, ¢3(7) returns to
the region {z(7)|z > (_(7)}. As a result, the relations o(7) = (_(7) and ¢'(7) < 0 hold

for + > 0. Hence, for 75 € [0,00)

w(70) > lim o(7) = k_ + E_\;E_ (4.34)

With respect to 7, p(7) along ¢(7) is monotone increasing. For, the second equation
of (4.30) shows that on the (7, z)-plane there are two boundaries satisfying p/(7) = 0

represented as

=4

(4.35)

il g i _3F(r) -2+ \/934{-;-} + 368%(7) + 4
z—{w:r.(‘) = -'1'\/55’[:1‘) }

We have p’ > 0 for any 7 > 0 since w (1) < (1) < =_(7).

In the above, we assumed p(0) > 0. If p(0) = 0. we will define ¢ = da, — 845 and
p = 883, — 63, instead of the above. Then we again obtain the relation (4.34) for p(0) # 0.
661 (0) # 0. It is not necessary to consider the case é&;(0) = 6a2(0) = 0 since this solution

18 Wyomo 1tself.

Finally, let us estimate the direction of 1173 (E}) on the (g, p)-plane at H(7y). From

loc
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eq.(4.25), Wi (Ex) has dimension three in M(h). According to Devaney (1980) an in-
tersection between Wy’ (FE}) and the isosceles subspace has dimension two. Isosceles
orbits are degenerated at the origin on the (g, p)-plane. Therefore, T~ Wi (Ep) has
at most one-dimensional direction ¢ on the (g, p)-plane. From Lemma 4.3, a direction
of Thr)Wiio(Ep) formally tends z — k_ as 7y — oc. Since W (E;) is a real analytic
manifold, for an any y > 0 there is a sufficiently small € > 0 (i.e.. a sufficiently large 7o)

such that the direction of Ty () Wil (Ex) is limited to
k.—Xx<o<&.+X (4.36)

Now we can establish the following lemma. Let Ny(P) denote a d-neighborhood
of a point P. Let (r,%,) be a solution starting at the initial value 4, € M(h) in the

system (4.20). 7 is the time 7 when ¥y,,,,(7) enters N.(E,) for the first time.

Lemma 4.4. No solution % starting in a sufficiently small neighborhood of Hy
on the initial-value space Si2 except Hy itself belongs to Wi (E) when ¥ enters an z-
neighborhood of Ey, for the first time.

Proof. Suppose the contrary. Then, there is an infinite sequence of points P, € S;; con-
verging to Hy such that the direction of {1(7, P.) — ¥pome(T0)} on the (g, p)-plane tends
to o of eq.(4.36) as n — co. However, it contradicts eq.(4.34). Hence, there is a d > 0
such that (7o, {Na(Ho) N S12\ Ho}) & Wi (E4). D

In this stage, the following transversality is shown easily:

Corollary 4.2. The stable manifold of Ey intersect the initial-value space transver-

sally at Ty.

In fact, any solution curve crossing the initial-value space is perpendicular to the
initial-value space. Lemma 4.4 says that all solutions starting sufficiently close to T
except Ty are not included in the local stable manifold of £;. The stable manifold and
the initial-value space are three- and two-dimensional manifolds, respectively, in the five-

dimensional phase space.
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Behavior of near-collision solutions after bypassing the equilibrium point

Once ¥ (7, { Na(Ho)N S12\ Ho}) leaves the equilibrium point Ej,, variational equations
are invalid. Let E; be any equilibrium point corresponding to triple collision including E.
It is possible that the solution enters the stable manifold of £, eventually. If it happens,
there is an initial point leading to triple collision in a sufficiently small neighborhood of
the point Hp. In this case, however, we can prove that such a solution survives the first
triple encounter.

In order to prove it, it is sufficient to show that the system experience a minimal value
of the moment of inertia I(t) at least once even if the system starting near 7} ends in
triple collision. If J(t) becomes minimal, I(t) continues to be concave during I{t) < e,
where I, is introduced in eq.(2.2). In this time interval, I(t) does not have any other
minimal value. From the definition of triple encounter, it implies that the system survives
the first triple encounter.

The global stable and unstable manifolds of E} are defined by

We(EY) = U Y(r Wi (E)), (4.37)
T<0

WYEY) = | Y, We(Ew)), (4.38)
720

respectively. From Lemma 4.4, 9(7, {Ns(Ho) N S12 \ Hp}) flows away from Ej along
W¥(E}) since the equilibrium point E}, is of a hyperbolic type.

Lemma 4.5. If a solution starting in any small neighborhood of Hy on S,y except

Hy itself is included in W*(E,), then the system survives the first triple encounter.

Proof. 1t will be shown that for any small d > 0, (7, { Na(Ho) N S12 \ Hp}) experiences
the minimal value of the moment of inertia. It means that the system survives the first
triple encounter by the definition of triple encounter.

From the equations of motion (4.12), we have r’ < 0if # < 0, and v > 0 if & > 0.
Recall that r*(7) is the moment of inertia of the system. According to Waldvogel (1982),
motions in M, are gradient-like with respect to ©. Since W*(LE}) lies in My, © increases
along any non-stationary solution curves in W*(E. ).

First consider a solution curve which lies in W*({E}). There is a 71 > 0 such that
v(m1) = 0 and %(7) > 0 during 7 € (7. ) along every ¥(r. W (E;)) since there is no

equilibrium point between Ej and a section ¥ = 0 in M. Any equilibrium point E,
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corresponding to triple collision satisfies ©# < 0. All the equilibrium configurations are
classified in only two types: the collinear central configuration and the equilateral tri-
angle one. Let 6° and #7 be values of © at the equilibrium points of the collinear type
and the equilateral-triangle type, respectively. Then € < @7 < 0. Thus, W*(E,) is not
connected to any E.,.

Next consider a solution curve ¥(7, {Ny4(Ho) N S12\ Ho}). Since ¥ ¢ W (Ey) when
1 passes close to £y from Lemma 4.4, ¢ follows W*(Ej;). Thus ¢ passes through the
section © = 0 around 7;. The non-decreasing value #(7) of % changes sign from negative
to positive for the first time. The moment of inertia of 1) begins to increase. It survives

the first triple encounter by the definition. O

From the above lemma, the system survives the first triple encounter if there is
an initial point leading to triple collision in a sufficiently small neighborhood of the point
Hgy on Sia. The initial-value space Sz is topologically equivalent to the initial-value space

D. Therefore, Lemma 4.1 follows at once.

4.2.3 Escape in the planar isosceles subsystem

In the present section, we will prove Lemma 4.2 using the blow-up variables developed
by Devaney (1980). Here, the planar isosceles three-body problem is considered in order
to investigate the distribution of escape orbits which start on the isosceles curves [;,

7 =1,2,3. We will prove the following theorem.

Theorem 4.2. [n the planar isosceles problem with sufficiently equal masses (e = 1),
all systems of initial points sufficiently close to the initial point where the system ends in

triple collision of equilateral type lead to escape of hyperbolic-elliptic type.

Notice that an initial point in the above theorem is not restricted in the initial-value
of the free-fall problem. This theorem is established at any initial point in the phase space
in the planar isosceles problem. Moreover, triple-collision syvstems means the cases that
each configuration tends to be equilateral triangle.

After the above theorem is proved. it is easy to understand that the distribution of
escape regions around the triple-collision point in the initial-value space of the free-fall
problem. In other words, the proof of Lemma 4.2 is easy. It is enough to reduce the phase

space applicable in the theorem to the space with zero velocities. In order to prove that
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an orbit leads to escape if it passes sufficiently close to triple collision singularity, we will
first formulate an escape criterion in the planar isosceles problem and confirm that the
large ejection velocity satisfies the escape criterion.

Let us consider the isosceles configuration with a, = as. i.e., with base m,mg. This
assumption can be done without any loss of generality since other isosceles cases with base
mym, and mam,; will be considered similarly. Recall that we defined a; as the mutual
distance between particles my and m;. We assume m; = ma = 1 and my; = €. Let
x, denote a,, i.e., the distance between the particles m, and mz. and x; be the signed
distance of the particle m, and the gravity center of the binary m; and ms. The gravity
center of all masses is fixed at the origin in the configuration space, and the suitable
velocities of three particles are taken in order to maintain the isosceles configuration. The
Hamiltonian of the system is given by the following function:

-2
o € ., 1 de
= 4 —|—2+sz z1 (2 + 4a22)/?’

(4.39)

where a dot ( * ) denotes the differentiation with respect to time . The system is of two

degrees of freedom and admits the energy integral
H = h = const. (4.40)

Let us introduce the following quantity before formulating the criterion in the planar

1sosceles problem.

Definition 4.2. The energy of the two-body approximation is defined as

) 1 2
M) = ) - Im:[ri;i. (4.41)

We consider the case of upward escape, i.e., z; > 0 and &, > 0. The downward case
(z2 < 0 and #; < 0) can be treated similarly. The following lemma is the simplified
version of Yoshida’s criterion (1972) which is adapted to the planar isosceles case. See

Appendix for the proof.

Lemma 4.6. Let h < 0. If the following inequalities are satisfied at time t = to:

29(to) #0 and h(tg) >0 (4.42)
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then &5(t) > 0 for any t > ty, i.e., the orbit leads to hyperbolic-elliptic escape as t — oo.

The escape criterion can be applied to any orbit except at syzygy crossing, even when
it stays close to triple collision singularity. This feature is advantageous to the analysis of
the planar isosceles problem. Usual criteria in the general three-body problem can be only
effective after a particle is ejected beyond a certain distance (Standish, 1971; Yoshida,
1972, Laskar and Marchal, 1984).

In order to consider whether an orbit arbitrarily close to triple collision leads to
escape or not, we describe the escape criterion by the blow-up variables in the planar
isosceles problem developed by Devaney (1980). In the isosceles problem, the blow-up
variables by Devaney (1980) are more suitable for the proof than the ones by Waldvogel
(1982) since we know many results obtained with Devaney’s variables (Devaney, 1980;
Simé and Martinez, 1988).

Let us introduce some notations: @ = (zy,72)7, 4 = diag(1/2,2¢/(2 + €)). New

variables r, 8, v, u,f, u,w are defined by

r = (2T Az)'/?,
s=r"12 = A~ Y*(cos 0,sin §)7, 0 e [-%, %] :
v = ri/?(sT Ax), (4.43)

w=1r"%g —vs = uA~Y?(—sin b, cos 0)7,

w = ucosb//W(8),

where

. 4¢€*/?
V2cosd  (2¢+ 4sin® §)1/2’

V() = W(0) = — cos - V(0). (4.44)

Scaling the time by dt/dr = r¥? cos 0 /W (), we have the equations of motion as

' cos b

r= TUV_W{C'}‘

' cos A{1? —4rk)
8 =w,
w' = sin (41 + Eﬂ_—z_"ﬁl) _ pup—Sost (cos . i_") Wi

W(a) s T 7)) W

where a prime (' ) denotes the differentiation with respect to 7, except in W'(#) which

represents dW/dfl. The energy integral becomes

2 2 2
L = cosd + CO g (rh - b—) . (4.46)
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The energy of the two-body approximation h which depends on z, and #, is related
to x; and &, via the binding energy between the base particles m, and ma. Let hy denote

the binding energy, i.e.,

h.:_, = E - E."i!l. (4.4?)
Then
1. 24 ¢ 24€
o S = 1 ;
h < 52 I e (h+ hs) (4.48)

The last quantity of eq.(4.48) corresponds to the energy function for m; (Zare and Sze-
behely, 1995). The equality holds if and only if ; =0, i.e., § = £7/2.
From eq.(4.48), the escape criterion in the blow-up coordinate system can be de-

scribed as follows.

Lemma 4.7. Let h < 0. If the following inequalities are satisfied at time 7 =
when § = +7:

8632
B T
v/2(2 +¢€)

then the orbit leads to hyperbolic-elliptic escape as T — oo.

(4.49)

Proof. Simé and Martinez (1988) described the binding energy hy at the time of binary
collision (i.e., # = &7 /2) by the blow-up variables. According to Lemma 5.1 of Simé and
Martinez (1988),

AT | ..ol T (4.50)
b ﬂ=:|:-,2— —_ ¢ 2 2(2+6) . .

Note that the fact w =0 at # = £7/2 is used from eq.(4.46). From eq.(4.48) we obtain

- 2+¢ 2+¢€ [ v 4e%/2
hlo=2z = ——(h = —_———_—| . 4.5
lomsg = S (h+h) =52 (2 NS o

If A is positive at the time of the binary collision. the escape criterion is satisfied. Hence if
v? > 86%/2[,/2(2 + €) holds at the same time, then the system leads to hyperbolic-elliptic

escape. O

From the above lemma, escape can be judged only by monitoring the behavior of
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v at the time of binary collision. Now we can prove Theorem 4.2. We will keep nota-
tions M(h), Mo, Ho, Ex, Wi (Ey), and W¥(E};) defined in the planar system (see Section
4.2.2). In the planar isosceles problem, blow-up phase space f)’(h} with a given energy h

and its subset M, satisfying » = 0 have dimensions three and two. respectively.

Proof of Theorem 4.2. Let T denote an initial value of the orbit ending in triple col-
lision of equilateral type. The equilibrium point corresponding to the equilateral triple
collision is represented by . Let v be a solution of the system (4.45) starting in Ny(T)\T
for a sufficiently small d > 0. From the continuous dependence of solutions, there is a
sufficiently small d > 0 such that 9 enters in N.(F) for any = > 0.

According to Devaney (1980), motions in M, are gradient-like with respect to v. Since
W*(E;) lies in My, v increases along any non-stationary solution curves on W*(£,). Ac-
cording to Simé and Susin (1989), W¥(E),) stretches towards v — oo with nealy equal
masses, i.e., mj; = my = ma = 1. Therefore, there is a § > 0 such that v of 4 starting in
Ns(E) \ E becomes larger than the critical value satisfying the escape criterion at a time
when # = +x /2. It results in hyperbolic-elliptic escape.

We can choose a sufficiently small d such that the inequality £ < & holds for positive

numbers d, £, and & which satisfy the above conditions. a

In this stage, Lemma 4.2 is easily proved. Let the initial value of ¥ be located
in Ny(Ho) N I; \ Ho, j = 1,2,3. Recall that I; denotes the isosceles curve which means a
set of initial points in the planar isosceles problem with zero initial velocities. A suitable
d > 0 satisfying the above lemma is found. In fact, from Lemma 4.4, ¥ is not included
in Wi (E,) when 1 enters in N.(E,). In other words, % lies in N.(E,) \ E} for a time
interval. Thus 9 passing close to Ej, follows W*(E}), and so the system of 1 satisfies the

escape criterion,

Lemma 4.2 is established on both segments on I; with respect to T;. The respective
phase trajectories starting on both segments run away along respective branches of the
one-dimensional W*(Ej;) on My in opposite directions each other. After passing close
to E,, the trajectory moves away towards each side of M, along the W*(E,). If the
near-homothetic trajectory ¥ exists around one branch of W¥(FE}). my escapes forward
with respect to the incoming direction. We will call such a branch the branch B,. On the

other hand, m; escapes backward if the trajectory exists around the other branch, which
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we will call ihe branch B_.

Dynamically, the branches of W*(Ejy) can be interpreted in the following way. A
triple collision can be regarded to occur when where m; crosses the syzygy of the base m,
and mg at the time of binary collision between m, and m;. The one branch B, of W*(E})
corresponds to the limit orbit of what the syzvgy crossing occurs just after the binary
collision. The particle m; passes through the syzygv of the binary when the components
are receding from each other and is accelerated by the gravity of the binary. On the other
branch B_, the syzygy crossing occurs just before the binary collision. The particle m,
passes through the approaching binary and is decelerated sirongly. Immediately after
that, m; returns and crosses the syzygy again, while the binary collision occurs and the
components of the binary repel from each other. As a result, m; is accelerated by the

gravity of the receding binary at the second syzygy crossing.

4.3 Motions close to asymmetrical triple collisions

The purpose of the present section is to verify that escape regions exist arbitrarily
close to triple collision point T, as well as close to T} although we will use the numerical
integrations. We will show that such escape regions contain binary-collision curves around
15 as well as around 7.

In order to do this, it is necessary to show that on the binary-collision curves, all
initial points close to T}, are escape points. If a binary-collision curve is equivalent to one
of the isosceles curves, it is already clear that this statement is correct from Lemma 4.2.
Such a binary-collision curve crossing T; is only the curve which is of type 2. On the
curves of type 1 and type 3, the motion does not maintain isosceles configurations.

Let us concentrate our attention to the binary-collision orbits of type 1 and type 3 in
the present section. With the aid of the numerical computations. we will show that the
orbit experiencing binary collision tends to maintain the isosceles configuration approx-
imately as the orbit passes close to the equiliblium point corresponding triple collision.
Such a statement is summarized in Observation 4.1. [If it is assured. the proof of the
existence of non-escape points around T, on the binarv-collision curves is easy. So we will
prove it assuming Observation 4.1.

Moreover, the existence of non-escape points arbitrarily close 10 T can be proved as

well as the existence around 7). In this stage. it is clear the similar structures of escape
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regions around the respective triple collision points. These existence and similarity are
shown in 4.3.2.
In Subsection 4.3.3, we will compare the behavior of non-escape orbits after the first

triple encounter with one of escape orbits starting on the binary-collision curves.

4.3.1 Behavior of binary collision orbits

Since we consider the case that three masses are equal, we have three combinations
of (k,1) such that the equality ax = a; holds forever, where @; is the mutual distance
between the particle m; and my. Recall that (7, k,1) = (1,2,3),(2,3,1), or (3,1,2). If the

equality ap = a; maintains forever, then
|ae] = ||  and  |B| = |8l (4.52)

In the phase space of the blow-up coordinate system (r,a;, éy, &, ﬁj,ﬁk, ,C:L-}, the above
equalities represent isosceles subspace with a; = ay.

We chose a phase point P and consider the distance from P to the isosceles sub-
space. We restrict attention to the five-dimensional subspace which is defined by the two
invariances of eqs.(4.14) and (4.15) in the seven-dimensional phase space. From the two
invariances, the two variables &; and B; for j = 1,2 or 3 can be eliminated. The five-
dimensional subspace (r, é, &, Bx, Bi) will be called the phase space simply from here. We
assurmne that the five variables are orthogonal. We project the point P and the isosceles
subspace to the configuration subspace (éx, &) which is embedded in the phase space.
Let a point P’ be the projected point of the phase point P. The length of the shortest
perpendicular segment is ||£sk] - |&g|l,’v/§. Let a point @' be the foot of a perpendic-
ular. Similarly we consider the complementary subspace (r. 3, 3;) to the configuration
subspace. Let a point P” and @"” be the projected point of the phase point P and the
shortest foot of a perpendicular from P” to the isosceles subspace, respectively. The
length of the perpendicular segment is P"Q” = “EM — |5’-”;’\/§ Notice that the isosceles
subspace is independent of the component r. Therefore. we can measure the distance

from the phase point to the isosceles subspace as follows:

- al — |a;])? 3l — 181])?
d; = \/;-‘Q-‘ + PrQ" = \/(iﬂi. > it F (A 2 %) ' (4.53)

=

First, we observe the trajectories experiencing the binary collision axsof type 1. we
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measure the distances to the isosceles subspace d; at the following four instances: (1) ap-
proaching an equilateral triangle, (2) the first syzygy crossing, (3) becoming the minimal
moment of inertia, and (4) the second syzygy crossing.

In general, any triple-collision orbit tends to either a collinear or an equilateral tri-
angle central configuration. At the triple-collision point T3 the configuration approaches
an equilateral one. Thus all the configurations in the vicinity of the triple-collision point
becomes close to an equilateral triangle when three particles approach each other. See Ap-
pendix A.5, where several time-evolutions of triple and binary collision orbits are shown
in the blow-up-coordinate system.

We briefly explain how to know the time of approaching an equilateral triangle. The
equilateral triangle has the largest area, provided that a perimeter of the triangle is con-

stant. Let S be the area of the triangle. Then

§ = \/a*(a? — @) (& — &)(&8 — as) = &b God, (4.54)

where &* = &} + &3 + a3 = (@1 + Gz + as)/2, which is a half of a perimeter of the triangle.
We scale the length by & and so the normalized area is S/&'. The time when S/a* is
maximal means the time of approaching an equilateral triangle.

In Fig.4.1, numerical results of the minimum distance to the isosceles subspace are
shown. We have measured only d;, the distance to the isosceles subspace with a; = aa,
since eventually m, escapes and so &; and &; are nearly equal. The abscissa is the z com-
ponent of the initial value on the binary-collision curve of type 1, and the ordinate is the
logscale of the distance d,. The position of the triple-collision point T> is © = 0.4035896
taken from Tanikawa et al. (1995). An important result is that at all four instances the
distance d; decreases as the binary-collision point approaches T,. This means that the
motion tends to be close to the isosceles one with decreasing the initial distance to the
triple-collision point during triple encounter. The distance during the period of approach
to an equilateral triangle is rather longer than those at the time of the other events. This
is because the initial points around T} are distributed close to isosceles configuration with
a; = ds.

Second, we investigate a binary-collision orbit of type 3 around the triple-collision
orbit. Since the syzygy crossing occurs once, we have measured d5 at the following three
instances: (1) approaching an equilateral triangle. (2) becoming the minimal moment of
inertia, and (3) the syzygy crossing. In Fig.4.2. numerical results of type 3 are shown
similarly as type 1. The notations are the same as Fig.4.1. At the all three instances,

the distance dy decreases as the binary-collision point approaches T5. This means that
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the motion tends close to the isosceles one with decreasing the initial distance to the

triple-collision point.

The above results are restricted during the triple encounter, and so there is no result
after the triple encounter. From the above observation. we can not understand whether
the phase trajectory corresponding binary collision continues to wander in an neighbor-
hood of the isosceles subspaces. Now we will observe the several phase trajectories which
experiences binary collision of type 1 where the phase space is projected to the G;-éa
space and the 5-Ps space. In order to translate the isosceles subspaces in the horizontal
and vertical directions, the axes are rotated with 45 degrees. Thus on the rotated d-cs
space the abscissa is (dy — &3)11\/5 and the ordinate is (a2 + &3],"\/5, and on the rotated
Ba-Bs space the abscissa is (8, — B3)/v/2 and the ordinate is (3 + E;}fﬁ Note that
the origin of the former space represent the binary collision between m, and m3. The
equilibrium points are located at (—1,0),(1,0),(0,—1).(0,1) on the rotated &;-a3 space,
and (—41/6/3,0), (4v6/3,0), (0, —46/3), (0,4v/6/3) on the rotated ,- B3 space.

Figs.4.3(a), (b) and (c¢) show three phase trajectories which start at the points along
the binary-collision curve, on the rotated &;-cs space. We set the initial value of each
figure tending to approach triple-collision point in alphabetical order. Each trajectory
enters the frame of the graph from the upper side, when it begins to flow apart from
the equilibrium point. After the first syzygyv crossing, the trajectory passes through the
origin corresponding binary collision. After the second syzygy crossing, the trajectory
runs away from the isosceles subspace downwards for a moment, and spirals to a certain
simple closed curve encircling the origin. The spiraling phenomenon corresponds to bi-
nary formation, since it means that the distance @, = a2+ a2 between binary components
oscillate around a small value.

A remarkable result is that the three trajectories have the same form. However, one
must notice that the scale length of the ordinate tends small with decreasing the distance
between the initial point and the triple-collision point. The scales of the abscissas are
equal to each other. As far as we see the subspace corresponding to the configuration &;,
the motion of the binary-collision orbit tends to the isosceles approximately as the initial
point on the binary-collision curve approaches the triple-collision point.

With respect to the subspace corresponding to the velocity 5’_,—, the same result are
obtained, which shows in Figs.4.4(a), (b). and (c). As the same manner as Figs.4.3(a),

(b), and (¢), we put initial value of each figure tending to approach triple-collision point in
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alphabetical order. We have also found that the forms of the three trajectories agree with
each other if the scales of the abscissas are normalized appropriately. Each trajectory
enters the frame of the graph from the lower side. The first syzvgy crossing, minimum
moment of inertia, and the second syzygy crossing occur successively. Eventually the tra-
jectory revolve around the origin. Notice that the revolution tends oblate, as the initial
point approaches the triple-collision point. Also in the subspace corresponding to 5_;., the
motion of the binary-collision orbit tends isosceles approximately as the initial point on
the binary-collision curve approach the triple-collision point.

The above is the result on the binary-collision curve of type 1. Figures.4.5 and 4.6 are
the result on type 3, which we have obtained the same as type 1. Now we can summarize

the numerical observation.

Observation 4.1. If an initial point on a binary-collision curve which does not
accord with any isosceles line is located sufficiently close to the triple-collision point, the
phase trajectory wanders in an arbitrary neighborhood of the isosceles subspace forever

during and after the triple encounter.

How does the trajectory behave if the binary-collision point approaches the triple-
collision point furthermore? It seems that, if the ordinates are normalized in an appropri-
ate manner, the form of trajectories on this binaryv-collision curve tends to some definite
one as the scale of the abscissa tends to zero. We can conjecture that the limit trajectory
corresponds to the isosceles motion on the triple-collision manifold M,. The phase tra-
jectory experiencing binary collision which is close to triple collision may flow along the

invariant manifold of the unstable manifold of the equilibrium point on M.

4.3.2 Similar structure of escapes and collisions

In the present subsection, it will be shown that the structures of triple-collision
points, binary-collision curves, escape regions are similar around the respective triple-
collision points 7}, i = 1,2. Recall that T; denotes the triple-collision point on the isosceles
line (z+0.5)° + y* = 1 where triple collision occurs at the i-th close approach between m,
and m3. The structures around 7} is analyzed strictly with the proofs in Section 4.2. We
will establish the successive conjectures in the present subsection which shows the similar

structures between S; and S; around 7 and T, respectively.
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Let as verify Observation 2.1 in Subsection 2.4.2 as follows. In M(h), the stable
manifold of the equilibrium point which is of Lagrange type has three dimension. This
stable manifold corresponds the set of triple-collision orbits in the original phase space.
The zero velocities means ,3_?- = 0 for j = 1,2.3, and initial values of r and one of &; is
determined from the others a; and & by eqs.(4.14). (4.15). Thus, the initial-value space
in the free-fall problem has two dimension. The phase space .f'l?l:h) is the five-dimensional
manifold. Thus, in general, the dimension of the intersection of the three-dimensional
stable manifold and the two-dimensional initial-value space is 0 if the transversality of

the stable manifold and the initial-value space is proved.

Conjecture 4.1. In the free-fall three-body problem, the initial point leading to triple

collision of Lagrange type is a point in the initial-value space.

The proof of the transversality is one of the future works.

Let us accept the assumption without rigorous proofs that the set of binary-collision
points forms a Jordan arc on the initial-value space, and that the set of triple-collision
points is a point of which dimension is zero. They are the results obtained by Tanikawa
et al. (1995). Furthermore, Tanikawa et al. (1995) observed that at least three binary-
collision curves of different types meet at a triple-collision point. It is also assumed.
Although we have no rigorous proof of such observations, we assume them and will clarify
the behavior of binary-collision orbits close to triple collision. Morever, we also assume

the following.

Assumption 4.1. Three binary-collision curves meet at a triple-collision point. For
any amll € > 0, there exists a cirele with radius € of which center is the triple-collision
point such that the circle crosses the binary-collision curves in the following order: type

1, type 2, type 3, type I, type 2, type 3.

This connection has not been proved; however, we use this observation as an assumption
without proofs. In the verification of Conjecture 4.3. we will use such a connection of

binaryv-collision curves at a triple-collision point.

How escape regions distribute around a triple-collision point? To answer this ques-

tion, at the beginning we confirm that the an escape point on the binary-collision curve
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exists arbitrarily close to triple-collision point.

We now turn our attention to the behavior of binary-collision orbits close to triple
collision of which does not maintain the isosceles configuration. [n Observation 4.1 in Sub-
section 4.3.1, we showed numerically that the orbit experiencing binary-collision tends to
maintain the isosceles configuration approximately as the orbit passes close to the equi-
librium point corresponding to triple collision. In other words, the orbit experiencing
binary-collision tends to maintain the isosceles configuration approximately as the orbit
passes close to the equilibrium point corresponding to triple collision. The following state-
ment will be utilized for convergence of an escape region to a triple-collision point along

a binary-collision curve.

Conjecture 4.2. On an binary-collision curve, all initial points in a sufficiently
small neighborhood of the triple-collision point T; exzcept T; ilself are hyperbolic-elliptic
points fori=1,2.

This conjecture i1s correct around T3 since binary-collision curves accord with isosceles
curves. See Lemma 4.2 in Section 4.2.3.

We suggest the proof around T;, ¢ # 1. Let B be the flow experiencing binary-collision
which passes sufficiently close to the equilibrium point corresponding to triple collision.
From Observation 4.1 in Subsection 4.3.1, as the flow B passes close to the equilibrium
point, B tends to approaches a flow which maintains isosceles configuration exactly. We
call this isosceles flow the flow I. If B does not maintain the isosceles configuration, the
isosceles flow I does not pass through the zero-velocities surface.

Since the flow B passes close to the equilibrium point, the flow I also passes close
to the equilibrium point. The flow I runs away along the unstable manifold for an ar-
bitrarily long time. This phenomenon corresponds to escape of one particle. Since the
continuous dependence of the solution on initial values is established in the blow-up co-

ordinate system, the flow B which lies arbitrarily close to the flow [ also leads to escape. O
In the sequel, the orbit which starts on a binarv-collision curve arbitrarily close
to a triple-collision point runs along the isosceles unstable manifold during an arbitrarily

long period, after passing near the equilibrium point.

In this stage, we will consider the initial points around the binary-collision curves



4.3. MOTIONS CLOSE TO ASYMMETRICAL TRIPLE COLLISIONS 181

near the triple-collision points. The next conjecture indicates the existence of escape
regions including a binary-collision curve in any close to triple-collision point. On the
respective binary-collision curve, there is an escape point arbitrarily close to the triple-
collision point. Moreover, the remarkable distribution of non-escape orbits after the first
triple encounter has been evident. The existence of the non-escape region arbitrarily close

to the triple-collision point have been verified.

Conjecture 4.3. Fach of siz escape regions which is located around the respective
binary-collision curve close to T; forms a wedge at T:. @« = 1.2..--. Moreover, for any
small € > 0, non-escape points after the first triple encounter exist in an =-neighborhood
of ;8 =12,

This conjecture shows the topological similarities of escape regions around 7' and around
T5. The above conjecture implies the following distribution of orbits close to the equilateral

triple-collision singularity which is Lagrange type:

Corollary 4.2, Arbitrarily close to the triple-collision orbits of Lagrange type, all
types of orbits exist such that the system leads to hyperbolic-elliptic escape, parabolic-

elliptic escape, and non-escape, respectively, after the first triple encounter.

Hitherto, the question remained how escape orbits distribute around a triple-collision
orbit although the following blow-up analysis explored. Moeckel (1983) investigated the
connection of flows between equilibrium point on the triple-collision manifold M. and
made a list of the existence of a topologically transverse intersection of an unstable man-
ifold and a stable manifold of equilibrium points with the aid of topological technique.
As a result, possible behavior after the close triple encounters had been clarified. respec-
tively. In advance of his classification, Simé (1980) shown that in the case of equal masses
the unstable manifold of an equilibrium point corresponding to Lagrange type extends
three types of w-limit points where two particles coincide together, numerically. The
combinations of two particles are all of three. The proof by Moeckel (1983) verifving
the possibilities of respective escape phenomena for three particles around triple-collision

orbits is based on the numerical work by Simé (1980).
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4.3.3 Behavior of the ejection orbits close to triple collision

In the previous section, we have conjectured that a returning region without escape
after the first triple encounter exists in an any neighborhood of the triple collision point.
In the present section, we will show how the returning orbit tends to behave as it approach
triple collision singularity.

We draw an artificial line on the initial-value space such that its directional vector
1s (0.4020 — z,,0.4299 — ), where (z¢,y;) 1s the position of the triple collision point T,
i.e., z; = 0.4035896 and y, = 0.4284000. This line is out of the escape regions after the
first triple encounter. It lies between the small escape region for m, and large escape
region for ms. Typical behavior of the orbits starting on the artificial line is the following.
After the close approach between m, and ms, the configuration tends equilateral as three
particles approach each other. At the beginning of the triple encounter, the particle m,
passes through the syzygy between mj and m, which are approaching each other. While
mg and m, are turning around the center of two masses and receding from each other,
m, is decelerated suddenly and returns, and passes through the syzygy again. At the
second syzygy crossing, the particles m; and m; are receding from each other; however,
the particle my returns without escape. In this case m, can not obtain enough energy
from the binary to escape.

We will measure the deviation of these trajectories from the isosceles subspace as the
deviation of binary-collision trajectories are measured in the preceding section. Since the
syzygy crossing occur twice during the triple encounter, the distances at the four instances
will be measured: (1) approaching an equilateral triangle, (2) the first syzygy crossing,
(3) becoming the minimal moment of inertia, and (4) the second syzygy crossing. We will
attention to only d; which is the distance to the isosceles subspace with @3 = a,, since
this artificial line lies near the isosceles line where a; = @ and the configuration is closer
to the isosceles triangle with @ = @, than the other isosceles ones apparently.

In Fig.4.8, numerical results of the distance d; are shown. The abscissa is the z-
component of the initial value on the artificial line. and the ordinate is the logscale of the
distance ds.

During a period approaching the equilateral triangle configuration, the distance d,
decreases with decreasing the distance between an initial point and the triple-collision
point T3 on the initial-value space. It means that at first the svstem tends to be the
isosceles configuration as the initial point are located in an arbitrarily small neighborhood

of the triple collision point. On each initial point. d; at the remaining three instances is
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larger than d; at the staying the equilateral triangle. This shows that all trajectories begin
to recede from the isosceles subspace as the configuration recedes from the equilateral
triangle. The different behavior from that of the binarv collision orbit has been shown at
the remaining instances: at the syzygy crossings and at the minimal moment of inertia.
The distance d; increases at each three instance with decreasing the initial distance to
T3, unlike on the binary collision curves. The phase trajectory tends to recede from the
isosceles subspace in the phase space M(h), as the initial point approaches the triple
collision point.

We could detect the difference between the escape and the return motions. The
isosceles motion has an important role on the escape phenomena in near-triple-collision

orbits.
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Figure 4.1: On the typel of the binary collision curve, the initial-value dependence of the

distance to the isosceles subspaces with base my-mg which is denoted by dy. The ordinate
1s the logscale of the distance d;. The abscissa is the 2 component of the initial value
on the binary-collision curve of typel. The distances are measured at the following four
steps: (1) approaching an equilateral triangle represented as a diamond square (<€), (2)
the first syzygy crossing as a plus-type cross (+). (3} becoming the minimal moment of
inertia as a square (00), and (4) the second syzygy crossing as a cross (x). The z position

at a vertical line shows an initial value ending in triple collision.
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Figure 4.2: On the type3 of the binary collision curve. the initial-value dependence of

the distance to the isosceles subspaces. with base m;-m, which is denoted by ds. The

distances are measured at the following three steps: (1) approaching an equilateral triangle

represented as a diamond square (<), (2) becoming the minimal moment of inertia as a

square (O), and (3) the second syzygy crossing as a cross ( x). The z position at a vertical

line shows an initial value ending in triple collision.
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Figure 4.3: The projection of the phase trajectorys to the (&, aa) plane starting on the

binary collision curve of typel.
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Figure 4.4: The projection of the phase trajectorys to the (3. 3;) plane starting on the
binary collision curve of typel.
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Figure 4.5: The projection of the phase trajectorys to the (&, a2) plane starting on the

binary collision curve of type3.
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Figure 4.6: The projection of the phase trajectorys to the (5’1,.32.] plane starting on the

binary collision curve of type3.



190 CHAPTER 4. ANALYTICAL AND GEOMETRICAL RESULTS

(a) (0.4034,0.42857B91298)

0.01 -
Yy

0.0 L |
-0.01

-0.01 0.01
0.02 (b) ( 0.40210.0.4299 )
Y

0.0 | ]
—0.02 ;

-0.02 x 0.0 0.02

Figure 4.7: The returning orbits without escape after the first triple encounter starting
on the artificial line passing throught the triple collision point 75. The initial point of the

case (a) is closer to T, than the case (b).
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Figure 4.8: The distance from the phase point on the artificial line in the returning region

to the isosceles subspace with base mg-m; which is denoted by d;. The ordinate is the
logscale of the distance d;. The abscissa is the # component of the initial value on the
artificial line. The distances are measured at the following four steps: (1) approaching an
equilateral triangle represented as a diamond square (<), (2) the first syzygy crossing as
a plus-type cross (+), (3) becoming the minimal moment of inertia as a square (O), and
(4) the second syzygy crossing as a cross (x). The x position at a vertical line shows an

initial value ending in triple collision.



Chapter 5

Discussion

The extension of such a systematical observation and analysis to the other three-
body systems. for example non-zero angular momentum system, 1s our future work. We
predict that most of binary collision orbits do not disappear even if we add small angular
momentum on the equal-mass system, although triple collision orbits vanish. Close en-
counter of stars may be not rare and give a large probability to the formation of a binary

or a multiplet.

We also should find out that the relation between escape and collision in the sys-
tem with unequal masses. There are the planar-isosceles subspaces which are invariant in
the phase space of the free-fall problem with equal masses. In the several proofs of the
present thesis, we found that the binary-collision motions which are dominant to escape
phenomena are close to the planar-isosceles motions, and so we used the fact to verify
the impartance of binary collision to escape phenomena. Therefore, we expect that the
planar-isosceles subsystem is also crucial to escape phenomena.

In order to clarify that the binary-collision orbits dominate the planar-isosceles sub-
systenl, it is necessary to investigate the free-fall systenr where three masses are different
from each other. In this system, the planar-isosceles subspace do not exist in the phase
space. In the free-fall system with unequal-mass case, Broucke (1995) investigated the
initial-value distribution of escape after the first triple encounter. Note that the mass-
ratio is 3 : 4 : 5. In the figures of the results by Broucke, we can recognize that several
escape regions converge to a point in the initial-value space, and that non-escape regions
after the first triple encounter also converge to the point. We conjecture that this point is
a triple-collision point. Mareover. we expect that the respective escape regions include the

binary-collision curve since binary-collision orbits exist even in the unequal-mass system.
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Appendix A

Derivations

A.1 Canonical reduction to the Jacobi coordinate

Let (g1,q2), (g3,94) be the Jacobi coordinates, where (q1,¢2) is a vector from m, to

ma, and (gs, q4) from the center of mass of m; and m; to ms. Let py for k=1,2,3,4 be

the conjugate momentum of the Jacobi coordinates, g for £ = 1,2,3, 4. The Hamiltonian

is the following;:

1 1 1 1 1
2 \my +mg (" +P27) + 2 \imy +mg
11 Ty TTa

1
+ ) (pa® + ps’)
T

(01? + ¢27)7 {(
my+ma

M3

oo st ]

2
G+ 72mn) + (6t =5

(A1)

Let the original Hamiltonian system be transformed from (gi,py) for k = 1,2,3,4 to

(r,pr), (P 2o)s (8, p8), (¢, ps) by the contact-transformation

aW JW
- — k= 4 . = —_—
ik apk for 11233: ) P o’

where

W ¥ rcosé-p, +rsing-py+ pcos(d + ¢) - pa + psin(f + @) - pa.
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(A.3)
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The relation of variables are the following:

@ = ricosfy (a),
gz = mpsinfy (b),
qs = racos(ly +0) (C)’
gs = rosin(fy +6;) (d),
pr, = cosby-p +sinby- p;’ (e), (A.4)
pr, = cos(fy + 6;) - ps' +sin(fy + 0,) - py’ (f),
ps, = —rysin(f; +0,) - ps’ + rocos(fy + 05) - py (g),
po, = —risinfy-py’ +ricosb; - po

—rgsin(6; + 03) - pa’ + rp cos(fy + 62) - pa’ (h),
Using eqs.(A.4 g),(A.4 h)
po, — Po, = —r18inby - py/ +rycosly - pr’ —(A41).
The respect both sides of eqs.(A.4 ¢) and (A.4 i) is transformed by [(e)® + {(i)/r1}?] to

2
82 — V8 I
1

Similarly, respect both sides of eqs.(A.4 ) and (A.4 g) is transformed by [(f)* + {(g)/72}?]
fo

po; \? 2
pr32+(r—;) = pa" + pa”. (A.6)

On substitution in H of the new variables for the old, ¢ does not occur in H; therefore
ps = c is the integral, where ¢ is a constant. This corresponds fo the angular momentum

of the system. The Hamiltonian for the new variables is given by

, 2
VTR SO WV S ) AP
0= 2(m1+m2){pr + r +2 ml—t—mg_!_ma pp ¥ p

LR myms
= = 1
r 2 7
M 2 2m 2
{(W—L|+m2) b el e oy g L 6, 4+ 7 }
Mgy

2 z
. 2 . _3mi_ : 2
{(m]_}m) r? — ey cos by + 1o }

A.2 Transformation to the equi-energy surface

Let us derive the equations of the transformation and the Jacobian determinant for

each of successive transformations (3.30). The Jacobian determinants of the first, second
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and third transformations are denoted by Jy, J,, and J3, respectively. We have
J = J]_J;J_'}. (AS)

The first mapping is the transformation from the Cartesian coordinates to the polar

coordinates given by
To = po cos by, Yo = po sin fy. (A.9)
The domain of definition on D is expressed by the inequalities:
BNY %
2020, w20, (wm+z) +B<L (A.10)

Thus the range of the function {po(zo,yo), fo(zo, yo)) satisfies

, 3
0<0<Z, w20,  p’+pocosf< . (A.11)
The Jacobian determinant of the transformation (2o, ¥o) — (po, o) is
P (A.12)
1 po'.l s

and so the Jacobian matrix of the transformation is not defined for ps = 0. The range of
the function includes py = 0. Therefore, we must exclude po = 0 which is equivalent to
To = Yo = 0.

Next let us consider the second mapping corresponding to the scaling. The above
canonical variables and the time are scaled by the factor a. The equations of motion is

invariant under the following transformations:

(?‘,P,H,Pnpp,m) =k (Aa -ﬁlﬂ'ﬂﬁfﬁﬁﬂﬂﬁﬂ)i (A'IS)

where
f=ar, jp=ap, 0=0, (A14)
ﬁr = G_”zpn ﬁp = ahlfzpp: ﬁﬂ = CTUEP9+ (A.lﬁ)

These transformations result in the shift of the energy constant from & to h. The Hamil-
tonian H(%, p,0, pr, pp, pa) of the scaled system is equal to a constant energy h. Using the

scaling relations (A.14), we obtain

H(f‘\ Ia:-é: ﬁrrﬁmﬁ-‘?) = a_lH(Ti P g;pr:pp:pﬁ): i.E., E - a_lh'- (Alﬁ)
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Since the system starts from the zero-initial velocities with equal masses, the total energy
of the system is
3
1 1 1 1
h=— —-—=-—(—+—+—-). AT
jgl ?‘J(t = 0] v i Tan Tan ( )

From Eqs.(A.16) and (A.17), & is obtained as in eq.(3.33).
The scaling equations (A.14) show that p is a function of p and € whereas 0 is a

function only of §. Hence,

dp = (g—ﬁ) dp + (g—’;) do,  di = db, (A.18)

and so the Jacobian determinant of the transformation (pg, o) + (o, fo) is
950 _ d(po,00)

Jo = A19
27 dpo —h ( )
On the domain of the definition (A.11),

1

1 — Dn COSED -+ pg "‘_: 1l - 2,9(] 60590. (AZU)
Hence,

d( e)>1+3—3(1+ 9)+5 : >0 (A.21)
iter = S gy e Al — pgcosla. ‘

The Jacobian determinant of the transformation is not zero in the domain of the definition

(A.11). However, this determinant is not defined for p satisfying
1
7~ Pocos Bo + p2 = 0. (A.22)

The region where the above equation is satisfied is a point (po,fo) = (0.5,0) in the domain
of the definition (A.11). We must exclude this point which is equivalent zo = 0.5, yo = 0.

Finally let us consider the third transformation. It corresponds to the projection to
an equi-energy surface. The equation of the projection is derived easily as eq.(3.36) with
q.(3.33). It is also proved easily that this projection is a homeomorphism. The Jacobian
determinant of the projection is equivalent to \/det[Tj), t.j = 1,2, where g;; is a metric

of the equi-energy surface 7 = #(p,0). The matrix form [g;;] of the metric is given by

@) 2z o
bl =) )| )

Therefore, the Jacobian determinant J; is obtained as

1/2
o\’ (a&,)?
Je = —_ — ] +1 : A.24
’ {(3ﬁ) "\ ey
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The Jacobian determinant of the transformation is not zero in the domain of the definition
(A.11). However, this determinant is not defined for the point (p,8) = (0.5,0).
In order to derive the above differentials, the implicit-function theorem is used. Let

a function f is defined as
f(#, 5,0) = {H(#, $,0, brr oy o) — b | Br = Pp = Po = 0}. (A.25)

There is a (7o, fo, o) € (7. p, 9) such that the function f sasisfies f(?u,ﬁg,éa) = ( and
f+(#o, pos o) # 0 except at (p,#) = (0.5,0), where f; = df /7. Note that the explicit

expression of f; is

of __d(p,0)

ar o

(A.26)

The function d is not defined at (0,5,0), and so f; is also not defined at the point. Hence,

the implicit-function theorem is available except the point (0.5,0). It results in
a7
2 s=— = 0, 3
fo+ f a7 : (A.27)
or
s+ fors = 0, A28
BthZ = o, (A28)

where f ; = 3f/dpand f; = Bfﬁaé. The differentials f; and f; are described in eqgs.(3.39)
and (3.40).

A.3 Escape criterion in the planar isosceles problem

We rewrite Lemma 4.6 which is the escape criterion in the planar isoscles three-
body problem. The escape criterion in the general three-dimensional three-body problem
developed by Yoshida (1972) is adapted to the following lemma. We consider the case of
upward escape, i.e., 7, > 0 and 2, > 0. The downward case (z; < 0 and #; < 0) can be

treated similarly.

Lemma 4.6. Let h < 0. If the following inequalities are satisfied at time t = 15:

then @9(t) > 0 for any t > 1y, i.e., the orbit leads to hyperbolic-elliptic escape as t — oo,
where

2+¢

P _ 1.5 2t€
) = 5@ -

= (A.30)
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Proof. As long as z; # 0, the only possible collision is the binary collision between m
and ms. Since the binary collision can always be prolonged analytically, z,(t) is a smooth
function and ,(t) is a continuous function of £. So from the assumption eq.(A.29), there

is a ty (1 > to) such that for any ¢ € [to, 1]
z2(t) >0 and (1) > 0. (A.31)
Suppose that the following 7 is a finite value:
T =sup{t | z2(t) >0 and 2,(t) > 0}. (A.32)
Then at the time ¢ = 7, the following equality holds:
z2(7) =0 or @(t)=0. (A.33)

The equation of motion about z; are transformed as

iy = e > ——
R e

(A.34)

Here, @,(t) is greater than or equal to 0 for t € [to, 7]. Multiplying the above inequality
by #2(t) and integrating the product from tp to ¢ (< 7), we have

M M

23(t) z3(to)”

Therefore, the following inequality is derived:

I 1. 5
5 23(t) — 585(t) 2 (A.35)

; Ligsn M M 1oy M
5(t) > ﬁd (E%(f,n) xzw) + kg Jz (2 2(to) mg(to}) >0. (A.36)

In other words, &(t) and «,(t) are positive for ¢t € [ty,7], and so @,(7) > 0 and
z3(7) > 0. It contradicts eq.(A.33). Hence the inequalities z3(f) > 0 and @5(t) > 0
hold for t € [tg, o).

Finally, the feature of hyperbolic-elliptic escape, z;(t) = O(t), is derived by integrat-
ing the inequality (A.36) with ¢ from #; to . We have

(1) > N 2 ( %ig{fl}) = —U—)} t+ 25(to), (A.37)

ﬂe‘szul

for any t > ;. O
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A.4 Tangent space to the blow-up stable manifold

The tangent space to the stable manifold of the equilibrium point T, W} (E}) will
be evaluated as follows. Recall that the variational equations at [, are obtained by
substituting 8 = —4/v/3 in eq.(4.20). The vector

(6r,6é,68)" = (1,0, ie)T, (A.38)
V3

is an eigenvector of the Jacobian matrix defined in these equations for the eigenvalue
—+/6. This eigenvector is perpendicular to the tangent space to My, since from eq.(4.23)

the tangent space to My satisfies
r=0, Y. é&=0, S 83=0. (A.39)
J

Following Devaney (1979) and Moeckel (1983), we will compute the remaining eigen-
spaces. Since the dimension of the tangent space to My, is reduced by one, the remaining
eigenvectors lie in the tangent space to My at the equilibrium point. Thus we can restrict

attention to the lower right 6 x 6 submatrix:

‘}’l’l o JO’
K [0

- (A.40)
Jsa Jpg

where 3 x 3 matrices Jy o, Ja,8, J3,o and Jg g are described in eq.(4.22) with B = —4/\/3.
Let i be the eigenvalues of X, and A, ., Aag, Ape and Ags be the eigenvalues of the
respective 3 x 3 submatrices J, o, Jag, Jso and Jgg. The respective eigenvectors are
obtained as e’ and u,(1,0, —=1)* 4+ u3(0,1,—1)7 for any uy,u; € R, since y is not equal to
0 in the form J[z,y|. Note that respective eigenvalues are (z + 2y) and (2 — y). Suppose
that é& € R® is an eigenvector of the four matrices Ju o, Jog, Jpo and Jgg. Then

(6éx, kéa)” € RP is an eigenvector of X, provided

)‘a a+ A == 3
1 ﬂ.ﬁﬁ: P: (A.‘j'].)
Asa+ Ak = Ep.
These equations are derived from
Jou s ba S
o vep = , (A.42)
Jpo Jpg ko kbar

The vector (e, xe)T is perpendicular to the tangent space to My (eq.(A.39)) and so it does

not lie in the tangent space to My. The eigenvalues of the 3 x 3 matrices corresponding
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to the eigenvector uy(1,0,—1)7 + uy(0, 1, ~1)7 are computed as follows:

3 3
Ao = 5\/5, Ap =7, ABa=-6, Agp= ~6.

Therefore, from eq.(A.41) the eigenvalues of X are evaluated as

_ V61— v13) . VB(1 +/13)

dpy =———

4 4

.

Their corresponding eigenvectors are evaluated from eq.(A.41) as follows:

661(1,0,—1,k-,0,—x_)¥ + 6&,(0,1,-1,0,5_,—x_)7,
and
6&1(13 07 —1, N+]0,_K+JT + 6‘&2(01 L,—1, U:L"":-i-': _K‘+)Ts

where

__VBGE+VIE) L V6(5 — +/13)
e e Lt

From eqs.(A.38),(A.45), Ty, Wi (Ey) is

Oreq. 1 0 0
&S 0 1 0
&5 0 0 |
b | =G| 0 | +C| -1 [+&G| -1 |,
s3 % K_ 0
8§35 = 0 K

| 655 | i 725 | —K_ | —K-

for any real numbers (y, {; and (.

A.5 Collisional solutions in the blow-up space

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

We will show several solutions in the blow-up-coordinate system. First of all, the two

solutions leading to triple collision which start at the triple-collision points 1} and T, are

observed, respectively. We derived the expression for the solution starting at 73 explicitly.

See eq.(4.17). In Fig.A.1, the time-dependence of respective variables are shown. In the

two figures, the upper ordinate represents &;. and the lower ordinate shows r and ,@J— for

7 =1,2,3. The absissas of both figures are the regularized time 7.
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A bold curve in the upper figure shows the time-dependent &;(t), j = 1,2,3. A bold
curve in the lower figure shows the time-dependent Bj(t), j = 1,2,3. A broken curve

in the lower figure represents r(t). Here, we observe the homothetic equilateral solution.

Thus

@;(t) = const. , & = Gy = as, (A.49)

Bi(t) = const. , By =py=p. (A.50)

Dotted horizontal straight lines stand for the equilibrium values:

s 1 e 4 &
{xj-q = :t"""_' }3jq - :I:— r 4

\/‘3‘1

This figure shows that all values approach the equilibrium values asymptotically.

Il
=

(A.51)

Next, we will show the time evolution which starts at the triple-collision T in the
Fig.A.2. In this case, the solution curves of 7 = 1 and j = 3 always accord with each other.
Two dark-bold curves in the upper figure and in the lower one stand for é;(¢) = @s(t) and
Bi(t) = Ba(t), respectively. Two light-bold curves represent & (t) and [3,(t), respectively.
A broken curve in the lower figure represents ().

At 7 = 0.807, the curve representing the time evolution of &; and as crosses T-axis,
which corresponds to a binary collision between my and mg. This figure also shows that

all values approaches the equilibrium values asymptotically.

Next, we will show the numerical solutions of the planar isosceles problem. In the
general planar three-body problem, if at least two masses of the particles are equal, there
is an invariant subset of the system consisting of solutions whose configuration is always an
isosceles triangle. One isosceles curve includes the triple collision point 7), forn =1,2,---.
In this case, &; = &z always holds. We will observe two of isosceles solutions where the
initial points are located around the triple collision point 75. One is the initial value of
which the configuration starts a thinner triangle than a triangle spanned by the initial
value of T3, and the other is the fatter configuration. The time evolutions of the thinner
and the fatter triangle are shown in Fig.A.3 and Fig.A .4, respectively. Notations in the
respective figures are the same as in Fig.A.2.

In the case of the thinner triangle, the syzygy crossing occurs only once during the
triple encounter. After a binary collision at 7 = 0.806, the solution approaches the equi-
librium point. The solution stays close to the equilibrium point during a period 2 < 7 < 4,

and begins to recede. Immediately after that, at 7 = 4.512 the second binary collision
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occurs, and the syzygy crossing of m; occurs at 7 = 5.529. The particle passes through
the gravity center of the remnant particles. The particle m, undergoes the effect of sling-
shot, and so escape to infinity. See the moment of inertia increasing monotonically after
the triple encounter.

In the case of the fatter triangle, the syzygy crossing occurs twice during the triple
encounter. The time evolution until staying the equilibrium point is similar as the thin-
ner triangle, although the binary collision occurs at 7 = 0.807. In the case, however, the
syzygy crossing occurs before the second binary collision. See the light bold curve crosses
before the dark curve crosses again. At the respective times 7 = 4.492 and at T = 5.645,
the syzygy crossing and the binary collision occur. The second syzygy crossing occurs at
7 = 6.775. After that, the particle m, escapes.

The above two solutions corresponds to motions along both sides of the unstable man-
ifold on the triple collision manifold. Unlike the blow-up variables by Devaney (1980), we
can not distinguish whether the binary is receding or approaching at the syzygy crossing
in the coordinate system by Waldvogel (1982).

Finally, we will show the solutions experiencing binary collision which does not main-
tain isosceles configuration, i.e., type 1 and type 3. Typical behavior of binary collision
orbit which is of type 1 in the escape region D, are following. The three particles start at
the initial value with zero velocities. After binary encounter between the particle m, and
mg occurs once, the configuration of the three particles tends to equilateral triangle as
three particles approach each other. During the triple encounter, the particle m, crosses
the syzygy between m, and mys. The my ejecting downwards shortly returns and crosses
the syzygy again. In that period, binary collision occurs and the moment of inertia be-
comes to be minimum. As a result, m; escapes upwards and m, and ms form a binary.

The time evolution of the solution of type 1 is shown in Fig.A.5. In the upper figure,
a dark-bold curve, a light-bold curve and a fine curve stand for the time evolutions of &,
dr; and Gy, respectively. In the lower figure, the same kinds of curves stand for 3, 3, and
s, respectively, and a broken curve represents r.

In the case of the binary collision of type 1, the particle m, passes through the syzygy
between my and mg before collision. It means that the flow in M (%) passes through the
&-axis (l.e., @; = Gz = 0) after crossing the plane where &; = 0. Since the flow which
starts on an neighborhood of the triple collision T: approaches the equilibrium point at

@eq = 5(—1,1,—1)", the flow crosses the plane a; = 0 in a positive direction from the
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region of &; < 0. Thus the flow passes through the &;-axis where &, > 0 at the successive
binary collision.

Typical behavior of binary collision orbit which is of ivpe 3 in the escape region Dj is
following. After close approach between the particle m; and mg occurs once, the configu-
ration of the three particles tends to equilateral triangle as three particles approach each
other. During the triple encounter, the moment of inertia becomes to be minimum and
the particle mg crosses the syzvgy between m; and m,. As a result, m3 escapes without
returning and m; and my form a binary.

The time evolution of the solution of type 3 is shown in Fig.A.6. The notations in
the present figure are the same as in Fig.A.5. In the case of the binary collision of type
3, the syzygy crossing of the particle mz does not occur from the beginning of the triple
encounter until the binary collision. Thus the binary collision of type 3 corresponds to

crossing the é&s-axis where éa < 0.
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Figure A.1: In the blow-up coordinate system the time evolution of the solution leading

to triple collision which starts at T3.
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Figure A.2: In the blow-up coordinate system the time evolution of the solution leading

to triple collision which starts at 7%.
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Figure A.3: In the blow-up coordinate system the time evolution of the solution on the

1sosceles line: the thinner triangle near Ts.
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Figure A.4: In the blow-up coordinate system the time evolution of the solution on the

isosceles line: the fatter triangle near T5.



APPENDIX A. DERIVATIONS

15

1 1 1 1 i L 1 L L L 1 1 1
3 T T T T T T T T T T T T T T
.h e e
f ANRNRLS
- YRYATAREIR i af:
- ~ . | 1 i 1 o 12 8 1§
b g ﬁ i 'l E TEY N :
s" 0 T D v i, T AT, e S — . (B, Z E .I = .
% ' 5
| i i i A S
% 1 § 3 ! - 3
. : : ¥ TRAVRTAIRT
L P F, v VY i
- % *';!_ . 3 g :_,;"“ -
"""" ‘h"'—“‘ra.«..'_\h;t; j’ﬂ«*=\;""""""“""
_3 £ 1 1 1 1 1 1 1 1 1 1 1 1

Figure A.5: In the blow-up coordinate system the time evolution of the solution which
starts on the binary collision curve of tvpel in Ds5.
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Figure A.6: In the blow-up coordinate system the time evolution of the solution which

starts on the binary collision curve of type3 in Dj.
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