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Abstract

The problefn of obtaining accurate ephemerides for the second Neptunian satellite Nercid
has intrigued many astronomers since its discovery by Kuiper in 1949. That is because
of its bizarre orbit. The satellite’s orbit has unusually large eccentricity (e ~ 0.75) which
‘s considered as the most eccentric known natural satellite in the solar system. This very
clongated orbit renders the usage of the classical methods for expanding the disturbing
function in terms of the eccentricity, that is because of the slow convergence of the power

series solutions especially at higher orders.

In this work we aim to study the dynamical motion of the second Neptumian satellite
Nereid using both analytical and numerical methods. We construct an analytical theory
of the motion of a highly eccentric Nereid which accurately represents a real satellite sys-
tem, then we pose emphasis upon comparison with numerical integration of the equations
of motion. The theory is elaborated by the use of Lie transformation approach advanced by
Hori’s device. This method enables us Lo express the relations between the osculating and
the mean elements in an explicit form instead of Lile implicit form avised by Poincare’-von
Zeipel’s approach. By the virtue of Hori’s perturbations method, we can also get the inverse
transformations easily. The main perturbing forces on Nereid which come from the solar

v
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influence are only taken into account through the present theory. The disturbing function
is developed in powers of the 1‘;1,1,3;) of the semimajor axes of the satellite and the Sun. To
avoid the slow convergence ol the power series solution, the disturbing function is pul in
a closed form with respect to the eccentricity of Nereid. In addition, replacing functions
of the true anomaly by expressions involving the mean anomaly is also avoided, and the
eccentric anomaly of Nereid has been adopted as independent variable. The present theory
includes secular perturbations up to the fourth order, short and long period perturbations
up to the third order and small parameter € (which defines the ratio between the orbital
period of Nereid and that of Neptune) ~ 6 x 1073, The results of the present theory satisfy
the required accuracy for future observations. We intend to develop this theory to be applied
on the retrograde satellites of the major planets. The dissertation is organized as following:
In chapter 1 we give a general introduction which includes the advantages of the use of the
analytical techniques and their expected outcome. A review on Nereid, the second Neptu-
nian sa‘tellite, and its enigmatic according to different sources are summarized. Chapter one
contains also a section aboul the classification of natural satellites according to their orbits
and perturbing forces. Then we pose the motivation and aim of this study.

Chapter 2 contains the metliod that we have used, equations of motion and the disturbing
function. Hori’s perturbation method is introduced briefly, and some of the merits and de-
merits of canonical methods in celestial mechanics have been shown. This chapter includes
also procedures for obtaining the osculating orbital elements starting from the mean clements
and conversely. We implement. each procedure for digital computations by constructing a
computational algorithm described by its purpose, input and its computational sequence.

In chapter 3 we dealt with the circular planar restricted three-body problem. In this case,



CONTENTS vii
the inclination of Nereid to the orbital plane of Neptune is zero. The osculating orbital
clements of the fictitious Nereid are evaluated and given in figures. The results are com-
pared with {hose computed by the numerical integration of the equations of motion. The
residuals are tabulated and showed also by figures. At the end of this chapter we give a short
hote about d’Alembert characteristics which permit the validity of the analytical expressions
based on Lie transform approach.

Chapter 4 is devoled to the circular nonplanar restricted three-body problem. In this case
we Lake the inclination of Nereid into account and deal with the nonplanar solution for a real
Nereid. The analytical expressions of the short, intermediate and long periodic perturba-
tions are evaluated. After elimination of the short and intermediate terms, the Hamiltonian
system cquations are solved in e, [ and w using Jacobi’s elliptic function (Kinoshita and
Nakai, 1999), whereas the longitude of ascending node and the mean anomaly are expressed
in Fourier series expansion. By this solution we got the mean elemenis which are used for
evaluating the osculating orbital elements and eplhemerides of Nereid. All these processes are
summarized in a computational algorithm and carried out by the powerful MATHEMAT-
1CA software package. Moreover, the analytical expressions are trausformed into FORT RAN
formatl and programmed to be easy to handle.

We compared the analytical results with those computed by the direct numerical integration
of the equations of motion for short and long periodic perturbations. As a result of this
comparison, the global internal accuracy of the present theory reached 0.3 km in the semi-
major axis, 1077 in the cccentricity and 1075 degree in the angular variables over a period
of several hundred years. The behaviour of the orbital motion of the satellite is exhibited

in analytical expressions, tables and figures. The way of comparison is discussed briefly.
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Finally, we close this rescarch by discussion and conclusions. By this end we provide to the

observers an efficient analytical theory, capable ol generating accurate ephemerides for the

motion prediction of highly eccentric Nereid.




Chapter 1

Introduction

This chapter gives a global view on the subject of the present thesis. The calegorics of the

naturael satellites according to the perturbing forces and their orbits are summerized. A review

on Neptune system is also included. Then the motivation and aim of this study.



2 CHAPTER | INTRODUCTION

1.1 Analytical and numerical techniques

There are two basic techniques for motion prediction of celestial objects, these are: An-
alytical techniques and numerical techniques. In fact, it is difficult io obtain analytical
solutions of the motion in a complex force model. In contrast, the numerical techniques
usually, provide us with the solutions for any number and types of perturbing forces what-
ever simple or complex but do not allow a global view of the ensemble of solutions and the
more information we need to know, the more numerical analysis tools must be used (Breiter,
1997). However, analytical solutions though difficult to obtain for complex force models and
limited to relatively simple models, represent a manifold of solutions for a large domain of
initial conditions and parameters and find indispensable application to mission planning and

qualitative analysis of the motion.

Many advantages of the analytical theories (Chapront 1982, Vakhidov and Vasiliev 1996),
they provide a complete sct of solutions among which the real solution can be determined by
comparison with observations, enable us to understand the character of a system’s behaviour
and allow a global view of the ensemble solutions. In case of the motion of the satellites
with large eccentricitics, for instance, the computing time does not depend on the time -
terval if we use the analytical methods in motion prediction. Therefore at present i many
observatories the analytical and semianalytical theories are preferable, especially in the case
of satellites with high eccentric orbits. However, if full analytical solutions formulac are
utilized with nowadays existing symbols used for manipulating digital computer programns,
they definitely invaluable for obtaining solutions with any desired accuracy. Brumberg (1995)

answered the question raised what kind of technique -numerical or analytical should be pre-
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ferred. This controversy means very little, one should combine both kinds of techniques,
according lo a specific problem and the aim of the research (a particular or general solu-
tion, the interval of validity of the solution, accuracy considerations, ctc.). In fact celestial
mechanics has created in the domain of analylical techniques and applying the numetrical
techniques to it have no important peculiarities compared with the general techniques of

applied mathematics.

1.2 Enigmatic Nereid

Neptune has two known satellites: Triton and Nereid. The innermost satellite Triton has a
highly inclined circular retrograde orbit and a mean distance of 354759 km, while the outer
satellite, Nereid, has a bizarre orbit. The second Neptunian satellite Nereid was discovered
in 1949 by Kuiper at the MacDonald observatory (Kuiper 1949). The satellite’s orbit has
unusually large eccentricity (e ~ 0.75) which is considered as the mosi eccentric known
natural satellite. Because of its high eccentricity, faintness and generally large separation
from the host planet Neptune (1.4 ~ 9.7 million km), little is known about its orbital motion
and physical properties. Its pericenter distance is about four times the distance of Triton
(see Fig. 1.1). The main perturbing forces on Nereid are due to the solar infleunce, while
the perturbations of Triton and the oblateness of Neptune are very small regarding the Sun
perturbations. The velocity of Nereid at the pericenter, 3 km/sec, is just 0.2 km/sec short
of escape velocity. Nereid orbits Neptune at a semimajor axis = 5,515,000 kim with a period
of 360 days and inclination of ~ 10 to the orbital plane of Neptune (Mignard 1975, 1981,

Veillet 1982). In his analytic theory, Mignard (1975) showed that the inclination of Nereid
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may vary by £3°, while the eccentricity has a long-period variation between ~ 0.733 and

~ 0.752.

Nereid has been studied photometrically using two groups of observations: the Barth-
. based observations (M. Schacfer and B. Schaefer 1988, 1995, William et al 1991, Buratti et
al ]997).and Voyager 2 images (Tomas et al 1991). The Voyager 2 path through the Neptune
system is shown in Figure 1.2. Schaefer and Schaefer (1988) collected photometric (UBVRI)
and astrometric data on Nereid using 0.9 m telescope and CCD camera at Cerro Tololo Inter-
American Obs. (CTIAQ). Analysing these data, they found an unusual reflectance spectrum
for Nereid. Variability of Nereid was observed in all band passes, with an amplitude of greater
than 1.5 mg. The variations are likely lo be due 1o rotation eflects, with a rotation period
between 8 ~ 24 hours. They explained the unusual orbit of Nercid that it must be have
suffered some drastic change in the past. In (1991) William et al, obtained observations of
Nereid using CCD camera on 1-m Jacobus Kapteyn telescope, the purpose was to improve
the orbital elements of Nereid on La Palma during the period (July 10 ~ 18 1990), however,
they studied the relative magnitude for Nereid. They confirmed the brightness variations
of Nereid which is proved previously by the Schaefers (1988). The amplitude of the light
curve to be about 1.3 0.2 mag, and the period about 13.6 £0.] hours. Tomas et al (1991),
have analyzed obscrvations of Nereid obtained by Voyager 2 over 12-days interval at solar
phase angles of 25 ~ 96°. From these observations they found that the radius of Nereid
is about 170 £ 25 km, and there is no evidence of a rotation light curve greater than 15%.
They concluded that, Nereid is different from the other small Neptune’s satellites and 1t is
difficult to reconcile the Voyager data with some ground-based results. The Barih-based

observations of Nereid’s light curve were obtained at small phase angles Jess than 27, while
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those from Voyager are at greater than 257

Later, Schaefer and Schaefer (1995) have continued their analysis using new observations
for Nereid and got short-term variability with an amplitude roughly 0.2 mag and secular
brightning about 0.3 mag over the period from mid-March to carly July, 1995. This time
they introduced {wo main reasons for this variability.

1) Nereid’s variability is caused by a combination of albedo variations on its surface, an
irregular shape and chaotic rotation (this not proved by Voyager data)

2) Nereid is a captured object from the kuiper bell and that its variability 1s in part
caused by outbursts of gases from its surface.
Recently, Buratti et al (1997) have obtained 3 continuous nights of photometric observations
of the light curve of Nereid with COSMIC CCD at the Palomar 200-inch telescope. Their
preliminary analysis of the data does not show the large amplitude (only 10% mag in a single
night) which is reported by the previous authors. Now, there are two groups have different
explainations of Nereid’s situation:
1- Earth based photometry indicates large brighiness variations, however, different observers
reported very different light curve amplitudes.
2- Voyager 2 images spanning 12-days show no evidences of variation greater than 10%. In
addition, they suggest that either Nereid is nearly spherical or is rotating slowly. We note
that Voyager 2 observations did not reveal Nereid’s shape nor distinguished whether Nereid
is a captured object or not. Since there is no evident agreement between spacecraft and
Earth-based observations the problem of Nercid’s rotation is still controversial (Buratti et al
1997, Tomas et al 1996). According to Dobrovolskis (1995}, if the rotation period of Nereid

is over than two weeks, then its high eccentricity will make it in a chaotic spin rate.
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The photometric and astrometric observations of Nereid made by Schaefer and Schaefer
(1988, 1995), revealed that Nereid is just as puzzling as its larger sibling. Nereid’s reddish
color is unlike that of any other moon or asteroid, and its brightness varied by at least 1.5
magnitudes during the observing run. It has long been suggested that Nereid may be a
captured body (Cruikshank and Brown 1986, Dobrovolskis 1995). An interesting proposal
about the case of Nereid is introduced by Farinella et al (1989). In addition to the previous
suggestions by many authores, Farinella et al (1989) suggested that Nereid is a quasi-contact
synchronized binary system, made of a couple of nearly equal mass, tidally distorted, roughly
ellipsoidal components whose shapes would approximately fit equipotential surfaces. In a

very recent paper by Brown et al (1998}, the origin of Nereid is still mysterious.

1.3 Classification of motion of natural satellites

1.3.1 Classification based on the orbits

The natural satellites may be classified into three categories according to their orbits (New-
burn and Gulkis 1973, Burns 1986}.
Category 1: Regular salelliles

The regular satellites move prograde in nearly circular orbits in the equatorial plane of
the mother planet. This sector of satellites represents the four Galilian satellites of Jupiter,
the eight classical satellites of Saturn (from Mimas to lapetus), and all five known Uranian
satellites.
Category 2: Irreqular satcllites

The satellites of this category are moving either prograde or retrograde, and have clongate
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and highly inclined orbits. Often they lie in the outer region of their parent body. Their
orbits are strongly aflected by the solar attraction. This is the case for {i) the outer cight
satellites of Jupiter (from VI to X111), {ii) the Saturnian salellite Phoebe, (iii) the two newly
discovered satellites of Uranus $1/1997 Ul and $2/1997 U2, and (iv) the two Neptunian
satellites Triton and Nereid.
Calegory 3: Collisional debris

The collisional shards are most always found near the mother planet and mixed with the
regular satellites. It has been long thought that these debris are the remnants of the larger
satellites. The coorbital pair ..]a‘nus-Epimetheus, the F ring sheplerds, and the Lagrangian
satellites of Tethys and Dione are examples within the Saturnian systemn. While, Adrastea,
Thebe and Metis are located in the system of Jupiter. Figure 1.3 shows that the Jovian

system is the most convenient representative for the present classification.

1.3.2 Classification according to the perturbing forces

Kovalevsky and Sagnier (1977) classified the satellites according to those for which solar per-
turbations are most important, those for which higher order planetary terms dominate and
those for which satellite interactions control. One can distinguish three classes of problems:
Class 1: Close safellites

For the nearest satellites, especially for those which revolve around very oblate planets,
the gravitational potential of the planet is dominant. The theory of motion is the same to
those derived for artificial satellites of the Earth. This is the case for (i) Mars’ satellites
Phobos and Deimos, (i1) the fifth satellite of Jupiter, (iii) Janus, the satellite of Saturn, (iv)

all five satellites of Uranus, and (v) Neptune’s satellite Triton.
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Class 2: Satellites mainly distwrbed by the Sun

In this class, the motions of the satcllites are mainly governed by the solar influence
whatever the planetary effects are negligible or not. This case has two subclasses.

Class 2a. The perturbing force of the Sun is not Jarger than 1% of the main central {orce.
Perturbations are large, but the general behavior of the motion is elliptic. The typical case
is the lunar theory. Other satellites in this class are (i) the Jupiter’s satellites VI, VII, X,
XIII, and (ii) the satellites of Saturn Titan, Rhea and Japetus.

Class 2b. Solar perturbations are very strong. In this case the satellite’s orbits are morc
clongated compared with the keplerian ellipses (Grosch 1948, Van Biesbrock 1951). These
satellites are (1) the Jovian éatellites VIII, IX, X1 and X11, (ii) the satellite of Saturn Phoebe,
and (i1) the second Neptunian satellitc Nereid (see Fig. 1.4 and Iig. 1.5).

Class 3: Satellites disturbed by another saiellite

In this case the disturbing function due to the satellite is superior. The theory of motion
is similar to that for a planet. However, a few hundred years which are the maximum of
planetary span observations must correspond to tens of thousands revolutions in satcllite
theory. This will cause some difficulitics in the satellitc theory more than the planetary
motion. Such cases of class 3 can be found in: (i) the Galilian satellites (I, H, IIT, 1V), (ii)
the Saturnian pairs, Mimas-Enceladus and Tethys Dione, and (iii) Hyperion as disturbed by

Titan.

2
1.3.3 Classification based on the ratios (K) and .J,/a’
n

2
. . , . v )
Anotler classification has been done by Kozai (1981) based on the ratios (—) and Jy/a?,
n

where, » and n describe the mean motions of the Sun and the satellite, J; and « deline
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the second zonal harmonic of the planet and the semimajor axis of the satellite respectively.
According to the values of these ratios, the satellites can be divided into three groups.
. : AN
(a) Inner satellites, where the solar tidal factor (—) is much smaller than the oblateness
n
factor of the mother planet Ja/ a?. Most of the resonant satellites can be found among this

group, where the mean motions are commensurable to each other.

(b) For the outer satellites group (E)z is much larger than J,/a® and hence the solar
influence is superior.

(c) Intermediary satellites, where the ratios (%)2 and J,/a? are nearly balanced.
Consequently, from the above classifications we can detect that our object study Nereid
may be classified as an irregular satellite (but prograde, classification 1.3.1, category 2),
affected by strong solar perturbations (classification 1.3.2, class 2b) and the ratio (%)2 is
much larger than Jp/a? for it (classification 1.3.3, b). A most useful review of the origin,

dynamical evolution and physical properties of the natural satellites has been published by -

Morrison and Cruikshank (1974) and very recently by Peale {1999).

1.4 Motivation of this study

The purpose of studying the dynamics of the natural satellites is threefold

a) Evaluating the orbital elements of the satellites with high accuracy.

b) Determination of the mass and the gravitational moments of the central body from the
observed orbital elements.

¢) Deterniining the satellite masses from observalion of those orbital parameters which are
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modified by the gravitational interactions ol the individual sateliites.

All these studies are almost certainly coniribution of understanding the origin of the solar
system. Such information on the planctary satellites will provide at lcast some critical clues
to our understanding of the solar system, because the satellites are such diverse bodies,
existing in so many different environments, and because most of them are so much less
processed than their parents, the planets.

Nereid is one among a few satellites which has inaccurate ephemerides because of its
bizarre orbit. This was one of the motivations which make us study the dynamics of the
motion of Nereid and its physical properties. From the above discussion and illustration
the case of the second Neptunian satellite Nereid (mainly section 1.2), we find that there
are many arguments and different opinions about the reliability of Nereid and its orbital
motion. We saw also some authors proposed that Nereid may be a binary system. We
considered this another motivation to construct our analytic theory. The cornerstone in
this study is to construct an efficient analytical theory on the motion of highly cccentric
orbits which includes the short, intermediate and long periodic perturbations. Only we
considered the solar perturbations effects, since it is the dominant for the outer satellites
in general and for Nercid in particular. The theory is applied success{ully on the inotion of
Nereid and compared with our numerical work. The perturbations produced by Triton and
the oblateness of Neptune have a very small contribution regarding the solar perturbations
(Mignard 1979, Veiga et al, 1996 and rclerences therein).

Moreover, the analytical theory by Mignard (1975, 1981) of Nereid is based on the Von
Zeipel’s method (1916) which introduces implicit solutions. The secular and long periodic

perturbations of Mignard’s theory are to m?, where m defines the ratio of the mean motions
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of the sun and that of the satellite, and the inclination is restricted to take small values.
However, the present theory is based on Lie approach advanced by Hori (1966) which gives
solutions in an explicit form. The sccular and long periodic perturbations are up to the
fourth order. Besides, the disturbing function is developed in the ratio of the semimajor
axes of the satellic and the Sun and put in a closed form. This means that there are no any
expanssions in eccentricity nor in inclination in contrast to the classical satellite theories.
In the present theory, eccentricity and inclination, can lake any values. All the analytical
expressions of the Hamiltonian equations and the determining functions satisfy d’Alembert
characteristics which assures the validity of these formulac. This will add another main

advantage to the theory beside the numerical verifications.

1.5 Aim of this study

The main goals of this dissertation can be outlined in the following items

o Constructing an analytical theory on the motion of a satellite with highly eccentric

orbit, taking into account the solar atiraclions.
e Evaluating the osculating orbital elements and ephemerides for Nereid’s motion.

o To check the reliability and accuracy of the suggested analytical model, a comparison

with the numerical integration of the equations of motion is considered.

o put all the analytical expressions in a way such that they could be applied and utilized

casily on a disk digital computers and oblain numerical values.
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By these we aimed to establish a symbolic computing package for the perturbations theory
of large eccentric orbits in general, and for Nereid in particular. We provide Lo the observers

a computational tool, capable of generating ephemerides for prediclions, easy to handle.



Figure Captions

Fig. 1.1. The small circle shows the orbit of Triton, while the dot at its center indicates
Neptune. For comparison, the dotted circle represents the semi-major axis s of Nereid’s
orbit, while the dashed ellipse displays its actual shape. Points were plotted at each whole
degree of mean anomaly, and connected in alternating pairs. Since Nereid’s orbital period
is 360 days, each dash (or gap between dashes) is equivalent to a time interval of one day.
Note that Nereid spends a fraction 1/2 — /7 ~ 26% of its time (~ 94 days per orbit) inside
the dotted circle (Dobrovolskis 1995).

Fig. 1.2. The Voyager 2 path through the Neptune system is shown in the plane of the
spacecraft trajectory. (A) the projected orbits of Triton and Nereid are shown, together with
the positions of these satellites at the time of Voyager 2’s closest approach to Neptune. Tick
marks along the trajectory indicate Voyager's position at 1-day intervals.- (B) An enlarged
view covers a 10-hour period that includes closest approaches to Neptune and Triton and
passage through Earth and solar shadows (occultation zones) of each. Tick marks along the
{rajectory are at 1-hour intervals (Stone and Miner 1989).

Fig. 1.3. A sketch of the Jovian system which best illustrates the orbital character of
regular satellites, irregular satellites and collisional debris. Orbits are positioned according

13



14 CHAPTER 1. INTRODUCTION
to inclination; Orbital eccentricities are indicated by showing apocenter and pericenter dis-
tances. Orbital radii for the ouler satellites are plotted at 25% of the scale used for the other
satellites (Burns 1986).

Fig. 1.4. The orbit of the second Neptunian satellite Nereid as given by Bieshroeck (1951).
Fig. 1.5. The orbit of the eighth satellite of Jupiter pasiphae, upper diagram, projection

upon xz plane, lower diagram, projection upon zy plane (Grosch 1948).
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Chapter 2

Methodology

In the previous chapter we gave a general introduction to the present thesis. In this chapter,
we miroduce foundations and tools which are necessary for accomplishing this work. FEqua-
tions of motion and disturbing functions will be given in detail. Procedures for obtarming
the osculating elemenis and ephemerids of Nereid are discussed. Each procedure we used s
implemented for digital compulations by constructing a computational algorithm lo be easy

to handle.
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2.1 Canonical methods in celestial mechanics

2.1.1 Canonical transformation

The aim of the transformations is to introduce changes of the variables to convert the system
of differential equalions into a simpler form. We adopt the canonical approach in dealing with
our problem, because it provides more understanding of the given problem and il has the
possibility of establishing general rules governing transformations from one set of variables
o another set. Under these rules the canonical form of the equations is preserved. Briefly, it
aimed to eliminate the short-periodic and long-periodic terms from the Hamiltonian systemn,

and the remaining Hamillonian after the last stage determines the secular perturbations.

2.1.2 Merits and demerits of the canonical methods

As far as we know there are three known canonical methods in celestial mechanics which are
used for describing the motion of the celestial objects: Von Zeipel’s (1916), Hori’s (1966)
and Deprit’s (1969) method. Von Zeipel's method is based on the principle of separating
fast and slow changing variables and it is designated for the canonical systems of differential
equations. It reduces to the determination of the two scalar functions: (i) the generating
functions and (ii) the new Hamiltonian. However, the determining function depends on the
new momenta and the old coordinates. Therefore, the theory will be developed in terms of
these mixed variables and this is considered a drawback in the theory (Hori 1966, Brumberg
1995).

On the other hand, Hori’s and Deprit’s method are claborated by what is called Poisson
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brackets which have several advantages over the usual Von Zeipel's approach. The deter-
mining function is not a mixed function of old and new coordinates. The two theories are
canonically invariant (because this is the merit of Poisson brackets) and give a direct ex-
pression of any function of old variables in terms of the new variables. However, Deprit’s
equations in particular, involve extra terms containing partial derivatives with respect to the
small parameter ¢ and thus have greater complexity (Campbell and Jefferys 1970). By an
explicit calculation, Campbell and Jefferys (1970) proved that the two theories (of Hor and
Deprit) are equivalent through the sixth order in € and should be equivalent to all orders.
Avoiding the implicit relations in Zeipel’s approach and the complexity in Deprit’s pro-

cedure, we adopted Hori’s device in constructing the present analytical theory.

2.1.3 Hori’s perturbation method

In this section we introduce briefly Hori’s perturbation method(1966). The method is mainly
based on a theorem by Lie (a convergence power series) and an auxiliary equation for the
unperturbed motion in order to get the new Hamiltonian and determining function.
Theorem:

A set of 2n variables &; and y; defined by the equation

flz,y) = i Dsf(2',y'), (2.1)

n=0
is canonical if the series in the right-hand side of the above equation converges, where ¢ 1s
a small parameter independent of the new variables o’ and #', the operators D% are defined

by
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o]
S}

DYf = f, D& = 1,5}, s D& = DD ). n = 2,
the braces stand for Poisson brackets and [ and § are arbitrary functions of 2’ and y'.

To solve such a dynamical system Equations

dz; OF dy; ar
_ __oFr 2.2
dt  9y;" dt dz;’ (22)

with the Hamiltonian

Pz, y) = Fo(wvy) + ; Fk(may)a (2'3)

and F, has a factor ¢* and independent of time, we consider the canonical transformation
’ o,
Ti Y — T;HY0 = 1,2, (2.4)

Then the perturbations of any quantity z; and y; can be given by the convergence series
e = &)+ {5} + 5 {5}, 5} + 5 {{{e5) .8} 8} + - (2.5)
) ' 1 ) 1 )
=y — {yj,S} ~ 5 {{yj,S},S} T {{{yj,S} ,S} ,S} - (2.6)

where,

S(x;.9;) Z ;5 9;), (2.7)

is the determining function of the new variables and S has a factor ¢*. Since the Hamiltonian

F is free from the time, we have the energy integral:

Y File,y) = Y Fi(y). (2.8)
k=0 k=0

where F* is the new Hamiltonian.
In order to obtain the determining function S; and the new Hamiltonian F}, a new
parameler i* is introduced to get what is called an auxiliary equation

I, ok, d, __oF,
di* ay.;- Tt ax’

N

(2.9)
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Then we have

(l IS‘ &

Fy, Sl = — .
{ s k} i

(2.10)

The averaging with respect to the parameter {* eliminates this parameter from the new

Hamiltonian F*. The new equations of motion are given by

dz; oF* dy,  OF

_ T —:-———;—7 (211)
dt dy;  di Ox;
which have a first integral
Fy(z',y') = const., (2.12)
in addition to the energy integral
F*(z',y") = const. (2.13)

Apply the expansion formula (2.1) to the left-hand side of equation (2.8) and equate the
terms of equal powers of € in both sides. Then use the results with the help of equation
(2.10} to get the following algorithm of the new Hamiltonian and determining function.

Zeroth-order

o = o, (2.14)
IFirst-order
Fy = F,, (2.15)
S = f Fydt, (2.16)
Second-order
= 1"‘25+%{F1 + TS, (2.17)

! _
5= (Fz,, Fo{F+ F,*,b’,}p) d, (2.18)
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Third-order

I I e o L e o _
Fy=TFaut o {Fps 51}, S0}, + 5 1R+ F7, 50, + 5 (I + I}, 5.0, (2.19)

Sy = / ( s + 11_2 {({Fy,, 51} ,,9,}P + % {Fy+ Fy, .S',}p + % {7+ FY, .S'Z}p) di*.  (2.20)
and so on.
The subscripts s and p stand for the secular and periodic parts respectively. This process
can be repealed to another set of variables x;, y;‘ with introducing a new parameter ™.
The new determining function S} and the new Hamiltonian F;* can be obtained using the
algorithm

Zeroth-order

Fr=F, (2.21)

First-order
KT =17, (2.22)

_ Second-order

I3 = Fa, (2.23)
St = /F;pdt**, (2.24)

Third-order
Fre=Fp+ é {F} + F;, ST}, (2.25)
.;:]@@+%wq+mnxhymn (2.26)

Fourth-order

AL L mtl l Tha * Tk 1 Tk Tk L l 1% Tk "tk 0 Lrd
P4=F%+ﬁ{“wﬁ&wmh+iub+h,&L+EUQ+M,mh, (2.27)
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and so on.
Eliminating the parameters {* and t** from the new Hamiltonian equivalent to eliminating
the short and long periodic terms respectively. The remaining Hamiltonian describes the

secular perturbations and the new equations of motion will be given by

"

dx_ BF:H« d "' aF**
g N - R (2.29)
these equations lead to two first integrals
F*(z",y") = const., (2.30)
Fy{(z",y") = const. (2.31)
in addition to the energy inlegral
F*(z",y") = const. (2.32)

As we already mentioned these procedures can be repeated as many times as necessary.

2.2 Equations of motion and disturbing function

We consider the motion of Nereid around Neptune under the perturbations of the Sun, which
is moving in a Keplerian orbit. The origin of coordinates is located at Neptune (I'ig. 2.1).

The equations of motiou of the satellite are given in Delaunay’s elements as follows

d(L,G,H,K) ar e
S : (2.33)
di A, g, k)
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d(l, g, k) ar (2.34)
di - AL, G, H K’ o
with the Hamiltonian
Pl kiR (2.35)
E ; .

where g = n%a® (n and a describe the mean motion and the semimajor-axis of the satellite

respectively), v is the mean motion of the sun, k (the mean longitude of the sun) is given by

k = ut + const., (2.36)

K is a conjugate momentum of k whicl is introduced for the Hamiltonian to be independent

of time (Brouwer and Clemence, 1961), and R is the disturbing function due to the sun

R= R, +Ry+.. (2.37)

Delaunay’s eleinents are given by

L = \/pa, I=mean anomaly of the satellite,

G = Lv/1 — €2, g=argument of pericenter of the satellite,

H = G cos(1), h=longitude of ascending node of the saiellite,

7 and e define the inclination and eccentricity of the satellite respectively.

Since we deal with the motion of a celestial object with highly eccentric orbit, the conven-
tional techniques in celestial mecanics can not be applied here. So, the disturbing function
has to be developed in a power series of the ratio of the semimajor axes of the disturbed body
and the Sun (Kozai 1962). However, the convergence of the power series may be slow for
some of the outer satellites, for example, the outer Jovian satellites have ratios m between
0.145 and 0.175 {Saha and Tremaine 1993, Solovaya 1995). The case of Nereid represents

advantage, the ratio m ~ 0.006, and the power series of the perturbing function is conver-
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gent. Neglecting the mass of Nercid compared with the Sun, the disturbing function has the

{orm

1 zz’ "+ zz
rz' + yy' + } (2.38)

2
R: ]l J‘J@{Z— 1"3

where My is the mass of the Sun, k% is the gravitational consiant, r and r’ describe the
radius vectors Neptune-Nereid and Neptune-Sun respectively and A is the distance of the

Sun from Nereid

A = (z-a2) '+ -y +H (-2

= r?++% —2rr'cos S, (2.39)

S is the angle at Neptune between r and »’

zx' +yy' + 22’

)
rr!

cos § =

(2.40)

z,y,z and z',y', 2" are the rectangular coordinates of the satellite and the Sun respectively.
Let the orbit of Neptune around the Sun is fixed in a plane, zy, so that 2’ = 0.

é- = 1’ f: ({—,)nPn(cos S) (2.41)

r n=0
using equations (2.40) and (2.41) in equation (2.38) we can get

2 3 !

r r r rr
R= % + u ;Epl(cos S)+ 173]32((:08 S)+ TjP\g(COS S)+...— —cosS (2.42)

TJ3
Since r' does not depend on the coordinates of Nereid, the first term g/r’ will be neglected,
while the second and the last terms cancel with each other hecause of the Legendre polyno-
mial property P;(cos S) = cos S. Then the disturbing function is developed in the ratio of

the semimajor axes of the satellite and Sun by the following series

o o /N2 (A ¥ ran® , N3 (a\" a\! .
R = v (—) — (#) Py(cos S) + (—) — (—) Pa(cos S
« ! a « r’ !
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(7)) e

where the primnes refer to the Sun. In the present problem, the Hamiltonian of the system,
is truncated after the second order term.

Now, we develop the disturbing function in terms of the elliptic elements, by using the cosine

formula of the sperical trigonometry
cos S = cos(w + f)cos(w' + f) + sin(w + f)sin{w’ + [') cost, (2.44)

where, w, w',f and f' are the argument of pericenter and the true anomaly of Nereid and
the Sun respectively. With some mathematical operations using the trigonometric relations,

we can easily obtain

cos S = cos’ %cos(u +f-w =+ Sinz-%cos(w +f+u 4+, (2.45)
cos’ S = l((:c.sgz'-kl)—i-lcos"fi~(:os(2u.:-|-2f—2@1"—2)”)-l—lsin"i=k
' 4 27 2 ‘ T2t 2

cos(2w + 2f + 2 +2f") + i sin? i [cos(2w + 2f) + cos(2w’ + 27}, (2.46)

consequently,
. 1 5. 3 4t , ,
Py(cosS) = §(3cos i— 1)+ 7 <08 Ecos(Qw +2f — 2w —2f)
3 ﬁ
+Z sin % cos(2w + 2f + 2w’ + 2f")
., |
+§ sin? ¢ [cos(2w + 2f) + cos(2w’ + 217)], (2.47)
3 .15 ' ' 15
Ps(cos S) = (~§sin2 ?2 + T)ms %‘31112 % + gosill E)CO‘S(W + [+ + 1)
3 i 15 40 4i 15 g1 o
—|—(—§(,Ob 2 + — 7 cos Eqm ——q——(:()s §)cos(w-|~f‘w -
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5

! 7 5 7
+—sin® -;- cos(3w + 3f + 3" +3f') + 3 cos" i) *

oG

L
I

i ]
cos(3w +3f ~ 3w’ — 3 + go cos? % sin* -;— [cos(w + f + 3w + 3f")

7

5 sin’ % [cos(w + f — 3w —3f')

15
+ cos(Bw +3f +w' + f1)] + 5 cos”

+ cos(3w + 3f —w' — f1)]. (2.48)

When we consider the eflects of P, only, the disturbing function R, can be expressed in

Delaunay’s variables as follows

ANE:S 2
I YCAN A B P 3+ 5) _ap
R = va (a) (r') {8 (3(}'2 1 +16 1+G cos(2f — 2f" + 2g + 2h)

+ 3 (1 H?) [cos(2f + 2g) + cos(2f — 2R)]

8\" G
+ 5 (l H>2cos(2f+2f'—|—2 — 2h) (2.49)
16 G g '
where, H/G = cosi and h = —w' describes the longitude of ascending node of the satellite

minus the longitude of perigee of the Sun, the latter being a constant under the assumption

of a keplerian motion for the Sun.

2.3 Osculating and mean elements

2.3.1 Procedure for obtaining the osculating elements

Definition

The osculating orbital elements are a combination of secular, long-periodic and short-periodic
variations in elements. They are also called instantaneous elements. General speaking ,
the six orbital elements at any given instant can be computed from the six data for the

coordinates and the momenta at that instant. If the actual motion is rigorously Iieplerian,
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then the six orbital clements thus computed are all constant. If it is not Keplerian, then
the values of these orbital elements vary from time to time. Such orbital elements arc called
osculating elements.

To reach our goal we applied a succession of canonical transformations on the Hamil-
tonian equations. At first we intended eliminating the short-periodic term by using the
transformation

(L, G H;l,g,h,Ag) — (L™, G™, H* 1", ¢", 1*, X)) , (2.50)

where, Ay defines the longitude of the Sun. In the present study, the short-period is 360
days, the orbital revolution of Nereid around Neptune. The new Hamiltonian F* will be free

from the mean anomaly as follows
F(L,G,H;lg,h,Ae) — F~(L",G*  H*;—,g", ", Ag), (2.51)

and the set of elements can be given by

L=L"+F(L",G*"H*;—,¢", h", Xg).,
G =G+ F5 (LG H = " h* ho),
H=H"+ F5(L*,G*,H*; —, ¢, h*, Ag),
(2.52)
=1~ F}* (L*,G*,H*;—,g‘,h-*,A@),
g — g‘ - F; (_L*,G*,I{*;_,g*,h*,/\Q),

h = h* — F]: (L*,G*,H*; —,g*,h*, /\@) .

The second slep is to eliminate the intermediate terms related the motion of the Sun Ag,

this requires the transformation

(L, G HY U g™ 0 Ae) — (L7, G HY 0,97 077, Aa ) (2.53)
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and the new Hamiltonian F** will be [ree form 1, Ag and & (since the disturbing potential

becomes axial symmetric) as follows

F* (]J»:’ ,I“K’]{*;“*’g*’h*’)\@) N F** (Lw«’Gxt‘]]]x*; _’gmk’_’ _)’ (

o
on
—
—

and the set of elements can be expressed in the new form

L*=1rL* + FE* (LwaGna H**; _:g“a ) _) )
G* = G™ + F (L™, G*™ H™; —, g™, —,—),
H-« — H** + F}? (L**,G“,f{**;—-,g**,*,*),
(2.55)
l: — I** _ F}m& (L“,G**,H**; _,gm«, A’__)’
g* — gmt _ F;* (Lsu-’ G**’H**; _,g-nx’ -, _)’

h* = b — F (LG H™ — g™ —, ),

A

The intermediate period Ay is about 165 years which describe the orbital revolution of
Neptune around the Sun. Since the Hamiltonian does not include { and %, then the angular

momenta L and H are constants and the final equations system 1s

dG** B 6Fn= dgsus B _aFaw
dt  9g dt | aGe’ (2.56)
di** oF™ dh** aF**

dt 9L dt | AH*

In order to eliminate the angnlar variable g (¢ ~ 13000 years), we have two choices, the first

one is to apply another transformation

(L**’G**7 ]_]nuc; lm*,g**, h**, A@) - (L.***’ Gannx’ ]]lwnt; lt*i,g***, h-uut, Ao) (257)

hence,

I;u* (IJ**’ C'm’ ‘”**; _’g**’_, _) . Fx:kt (L***, }nur*’];{*xx; - =, = 7} (2

. |
.
~——
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and the final results give what are called the mean clements
L** — Lu:t _+_ FL*** (L**, G**,Hmﬂ:; - =, _) ,
G** — G*** _I_ Fé** (L***,G*mx’ I{nut; - =, —, _) ,
] L — Haum + F;}n:* (L***, G:uut’ Hnuu; -, -, _) ,
! (2.59)
I** — lmur _ F’wmw (L***,Gttt’ Hmtt; —_ =, _) ,
g:* — guuk _ F;t* (Lt**, G***, H*:luk; — =, _) ,

» xk *kk L 1 3 ok
Rt = W — Fpr (L, G™ ™ — —, —, =),

s

The second method (which we have actually used) for eliminating the element ¢ is to solve
the system of differential equations (2.56). Kinoshita and Nakai (1999) gave an analytical
solution of the eccentricity, inclination and the argument of pericenter using the Jacobian
elliptic functions, while the mean anomaly and the longitude of ascending node are expressed
in Fourier series expansion. In chapter four, we will introduce these solutions with some
details.

In order to get the osculating orbital elements, and hence, evaluate ephemerides for
Nereid, we have started with the mean elements. We substituted reversely, from equations
(2.59) in equations (2.55), then in equations (2.52). The sel of equations (2.52) represents
the short periodic variations of the orbital elements, equations (2.55) give the intermediate

terms, while equations (2.59) give the mean elements.

2.3.2 Computational Algorithm

In what follows, the implementation of the above symbolic {formulations for digital compu-
tations will be given through the following algorithm described by its purpose, input and its

computalional sequence:
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Purposc: To compute ey Cosen doser Woser Sose and /.. the osculating orbital elements

of Nereid moving around Neptune and perturbed by the solar altraction at any time.

Input: the initial values ao, €, lo, S0, lo, to, tends and Tol (specified tolerance).

e Units measurements: Masses are given in solar unit, distances are in AU, time in dayes

while the angles are given in radian.

Computationel Sequence:

(1) Compute the mean elements €nean; fmean, Wnean (equations (2.59)) by solving the system
of diflerential equations (2.56) using Jacobian elliptic functions.

(2) Compute the mean elements 2.cqy and lc.n (equations (2.59)) using Fouries series ex-
pansion.

(3) Evaluate the analytical expressions for the short-periodic variations of the orbital ele-
ments (equations (2.52)) with the usage of convenient software packages (e.g. Mathematica).
(4) Evaluate the analytical expressions for the long-periodic variations of the orbital elements
(equations (2.55)) using any convenient software packages (¢.g. Mathematica).

(5) Transform all the analytical formulae derived in steps (3} and (4) into a Fortran format
to be ready in the usage of any Fortran Code.

(6) Compute the long-periodic terms €y, Dongs Wiongs Siong and L,y in step (4) by inserling

both step (1) and step (2) as follows
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(a) The variations &€y, 6iong, &iongs 6ong and dli.,

6elong = 61 Clong + é‘Zelo'n_q + 636101191
6]10119 = 61-{long + 6‘2110119' + 631107191
6wlony = 6] Wiong + 62wlong + 63‘-‘-’10119, (260)

6Qi'ong = 6191011_:; + 62910719' + 639101191

6llong = 61 [long + 62llong + 6311!01195

(b) The long-periodic terms

Call mean elements

€long = €mean + 6elong1
Ilong = J’r'mezm. + 61{0719'3
Wiony = Wmean + 6wlong, ( (261)
Qlong = Qmean + 691071.91

lfcmg = lmean + 6110719-

where &,, §; and &5 refer to the first, second and third order long-periodic perturbations of
{he orbital elements respectively.

(7) Compute the short-periodic variations Aagpe, Ao, Aoy Dwipo, AQgne and Alyp, 1n
step (3), depending on the results of step (6) and the solution of Kepler equation in eccentric

anomaly
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Call Kepler
Adgpo = Al“s!w + A?“sha + A:s“shm
Ae.sl‘m = Alcs}m + A2ﬁsn‘m + Afﬂcshm
A-Isho = A1 I.sho + AZIsho + ABIshm
(2.62)
AWsho = AIWsho + A2"-"):1110 + ASL‘-"shm

AQsho = Alnsho + AZQsho + ASQshm

AI.sho = All‘.sho + A2lsho + ABI.shoy

/

where A;, A, and Aj describe the first, second and third order short-periodic perturbations
in the orbital elements respectively.
(8) Calculate the osculating orbital elements @ose, €oscs foses Woses Slose and s according to
steps (6) and (7) as follows
Gose = Qo + Adspe,
€osc = Clong T NEypo,
Tose = Tiong + 61510,
(2.63)

Wose = Wiong + 6ws!¢m

Qa:u.sc = Qi’ong + 6Qshoa

Lose = ligng + 6lspo.
(9) The algorithm is completed.
The above algorithm including the analytical expressions has been implemented in FOR-
TRAN CODE. The program permits the calculation of all the secular, short-periodic and
long-periodic perturbations, then the osculating elements at any time. One may raise a
question, can we get the inverse solution by this theory (inean elements)?. According to the

concepl. of the osculating elements in this Section we can simply say that, the mean elements
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are osculating elements from which the short-periodic and long-periodic perturbations have
been omitted. In fact Hori’s perturbations method has the merit of getting the reverse so-
lution by changing the sign of the determining function S to —5. However doing this using

Von Zeipel’s method is complicated since the determining function includes mixed variables.
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Fig. 2.1. Geometry of the problem of satellite motion
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Chapter 3

Planar Motion Solution

In chapter 2 the methods of solution are illustrated. In this chapter, we deal with the motion
of Nereid in the frame work of circular planar restricied three-body problem. Although this
case of study is constrained to fictitious objects (where inclination equals zero), it 1s very
useful in checking the validity of the non-planar case. The resulls of comparison between

analytical and numerical work are tabulated and shown by figures.
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3.1 Introduction

Many instances of high eccentric orbits occur in the solar system, especially among some of
minor planets. The second Neptunian satellite Nereid has the most eccentric orbit in all the
solar system. Its high eccentricity, renders the usage of the classical analytical methods for
expanding the disturbing function in terms of the eccentricity, that is because of the slow
convergence of the power series solutions especially at higher orders. This motivated us to
construct an efficient analytical theory which can predict the motion of the large eccentric

orbits with a high accuracy.

In this chapter we consider the motion of a fictitious Nereid around Neptune under the
perturbations of the Sun (Saad & Kinoshita 1999), which is moving in a Keplerian orbit. The
origin of coordinates is located at Neptune. We deal with the planar motion solution, where
all the three bodies lie in the same orbital plane. We did not make any expansion of the
desturbing function in eccentricity or inclination. The use of Lie-Hori device (1966) enables
us Lo express the relations between the osculating and the mean clements in an explicit
form instead of the implicit {form arised by Poincare’-von Zeipel's approach. The ephemeris
which will be obtained by numerical evaluation of both short and long periodic terms from
Si and S7(: = 1,2,...4) will be compared with those computed by numerical integration of
the equations of motion. In the following Section we give the equations of motion and the
disturbing function, while Sections 3.3, 3.4 and 3.5 are devoted to the analytic evaluations of
the short-period, long-period and secular perturbations respectively, In Section 3.6 we give
the analytical expressions of the osculating orbital clements. At the end of this chapter we

sunmnarize the conclusion of the planar motion solution.
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3.2 Formulations

According 1o the assumptions mentioned above, the disturbing function Ry which is given

by equation (2.49) will be reduced to the following form

2 2

1 5 5|7 r
Rlzzya [§+3$cos(2f—|—2g+2h—2k)]. (3.1)

Here, R; is neglecled by considering the ratio a/a’ equal to zero, and the Hamiltonian
equation will take the form

? 1, 5, |r? r? .
F=ﬁ—:/](+aua §+3;cos(2f+2g+zh—2k). (3.2)

Following Hori’s approach(1963), we consider the canonical transformation of the variables

Ty, T2, T3, Y45 Y1, Y2, Y3, Va (3.3)
where,
ri=Lzs=G,e3=H-G,24s=K +G, {3.4)
and
=Ly =g+h—kuys=huys=k (3.5)

The new Hamiltonian does not depend on yz or ya4, consequently r3 and x4 are constants.

The canonical system equations (2.33) and (2.34) become

d(."ﬂ],.’l’fg) _ OF

- , 3.6
di a(ylsyZ) ( )
d{y, aF
(yl y2) - _ ’ (37)
di daq,22)
with the associated Hamiltonian
2 1, 2 g o
= YE +U.’l‘-2+‘i!/ « ?4-3“—_2 cos(2f 4+ 2y2)| - (3.8)
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F=Jlyg+F+I+.. (3.9)
where
"
Fo = lez’Fl = VIgq, (310)
1% 1,, r? r?
2 = Zl‘/ a ;—2 +- 3-(1—2' COS(2f + 2y2) . (311)

3.3 Short periodic perturbations

To remove the short periodic terms(y, }, we average on the mean anomaly I = g by consid-

ering the canonical transformation

($Ia$27ylvy2) - ($11m;1y;:y;) _ (312)

Then, F' will be

Fla1, T2, 91, 92) — F* (2, 23, —, ¥2) (3.13)

with the determining function S = S(z, T3, Yy, Yo), where the new Hamiltonian and the

determining function are given by

5 4
Fr=) F,5=)_5; (3.14)
=0

J=0
The normalization is performed such that the new Hamiltonian F* does not include y,. We

have the following notations
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Applying the algorithm of short-periodic terms of Hori (1966), we get new forms ol the

Hamiltonian and the determining function

2
o= (3.16)
2z,
. + 2
F{ =wvz,, (3.17)
1 3 15 ;
Fz* — Eyliafz (1 _l_ 58’2 + __2_6"2 Cos(zyz)) R (3.18)

S, = 0, since the canonical equations (3.6} and (3.7) are integrable and then, the determining
function has the jdentical transformation. It is convenient to express the formulae in terms

of the eccentric anomaly u instead of the mean anomaly I'(= ¥))
' = u' — € sin{u). , (3.19)

Thus, the following notations are useful

r

(——) =1—-ecosu, (i) cos f = cosu — e, (1—) sin f = psinu, (3.20)
a a

o

where, 7 = /1 — €2. The dashed orbital elements a,e',n’, and i’ obtained after the elimi-

nation of short periodic terms are computed from
2 Py 2 2 !
x ah o T
o =L =|1-[- ,n’:—ﬁ,r’:——?. (3.21)
l’l:l 3: "

Hereafter in Lhis section for simplicity the superscript dash attached to a, e, 2, 7, u and y,

arc omitted, which will not cause confusion.

1 via?
S, =~ P Fr =0, 3.22
T4 on 3 ( )
. 1176 . y
Sy = = (—2B;sin(2y,) + 2C; cos(2y2}), (3.23)

4 n?
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where,

1’ = Ay + By cos(2y,) + € sin(2y2),

3 ... 3, P
A = (=2c+ 4—63) sin(u) + e’ sin(2u) - T3¢ sin(3u),

15 15 4 33, . 11
B = ( 5 e+ i Ysin(u) + (.2 + 1° Ysin(2u) + ( 26+ e ) sin{3u),

15 15 3 3 1
C,=n (_—4—:22 - cos(u) + (5 + 562) cos(2u) — ¢ cos(3u)) ,

27 3 9
By, = —e*— =+ (—e— -—8—-63) cos(u) + (—Z — %ez + e*) cos(2u)

1 1 1
+(—e+ :2-4—63) cos(3u} + (—-lge2 + 3—2-6") cos{4u),

B 33 Ny 3 11, . 151 4 .
C, = 1 [( Vi + 3¢€°) sinfu) + (4 + 7€ Ysin(2u) + (-—1—56 -3¢ Ysin(3u)

1
+ Ecg sin(4u)] .

Using the relation

{Fo, Sa} + {F+ F;;&} + 15 =F;

and S; = 0, we can get

Iy 85
Py = _6__08_3

8.’131 ay}

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

where, the subscript p stands for the periodic part. After various mathematical operations,

ihe Poisson bracket {F,, Sz} can be simplified to the form

1ol

2
J Moy o
T {(41) + ?D&) D = LD (28) + Dy, P.

Tk
—{TP+ =P Dy ¢,
L&

{ Fg,,, S‘Z }

(3.32)
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where,

D = A+ Bceos(2y,) + Csin{2y,),

D, = A, + B, cos(2yz) + Cesin{2ya),

E = — By sin(2y2) + Cy cos(2y2),

D,, = —2Bsin(2y,) + 2C cos(2y,),

Yz

P. = Ay, + By, cos(2ys) + Cresin(2y,),

Dy, = Ay + By cos(2y2) + Cyy 5in(2y2),

A= —¢’ — 2ecosu + 3e’ cos(2u),

B = —3e? — Gecosu + (3 — 2e?) cos(2u),

C = n(6esinu — 3sin(2u),

L ' (3.33)

.

)

(3.34)

the subscripts ¢ and y; describe the partial derivatives. The following notations should be

followed carefully

8(A, B,C) 9(A, B,C) oA, B,C)
de - ( de ) t Ou

(A, B,C) A, B,C) (a
al Ju (T)

du a

5; = (F) S,

Ju a

ar= ()

d {a® 7

éf(ﬁ =

a {a* 10

7L (‘) =5

d [a® 13

Al (FE) Tt

a , 4

aL" T

It l 1 "
}"4 = 'j {F'ZTJa’—L’Z}51

(a) . W
— | sinu,
P

(3.35)

(3.36)
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where the subscript s defines the secular part resulting from the normalization, then the

Hamiltonian I} is

1 wta? 49 873 4347 333 237
o= {__ 2 _ 2990 4 999 o 29 4
4 Tl Tt T e e we)
615
* cos(2y2) + —52—64 cos(flyg)} , (3.37)

and the determining function up to the fourth order has the form

1 viad? .
S T {[Salo + [Saly, cos(2y2) + [Saly, sin(2yz2)

+ [Salye cos(dyn) + (Saly, sin(4y2)} (3.38)

where,

427 , 7739

127 857 8383 )
[94]0 = ('——4—'6 - —4—63 + '—96—65) sm(u) + (—‘1—6"6 +- 9% 64) sin(Zu)
19 547 7 1
+(—§Ze3 - 56—65) sin(3u) — 5{%264 sin(4u) + aef’ sin{5u}), (3.39)
143 ) 21 209 . 7 5
[Sa),, = (—6le—87c"+ —Ze8) sim(u) + (4 + =€ + —¢')sin(2u) + (5e — ~e?
¢ 4 8 8 2 2
21 21 25 1 1
__—8-65) sin(3u) + (-~Ee2 + 52-64)si11(4u) -+ (—2—063 - Eaes)sin(Su), (3.40)
61 35 35 37 37
[Sa;, = -7 {?ez + Te" + (6le + —2'—63) cos(t) + (—4 - —8—62 - 71_64) cos{2u)
7 3 21 1 1
+ (—:—Ze + 163) cos(3u) + (1—682 — geq) cos(4u) — %63 cos(5u)} , (3.41)
99 ., 675 ) - 219 459 8 14
[Saly, = (ﬁ‘z_f:5 + —?;2—85) sin(u) + (—TG—-62 + ?‘;-e")sin(Zu) + (Ige - 8763
45 . 9 69 369 _
+3—;~¢) sin{3u) + (I(; - 1—6-62 + __12)8 e’} sin(4u), (3.42)
99 , 99 219 , 15 83
e = —n{ 2t 4 B conta) + (g et - et con(2u) 4 (e +867)
9 129 15
* cos(3u) — (1_6 + —3?&2 - %eﬂcos('lu)} : (3.43)
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T

Following the same procedure has been done m derivition of F77, the fifth order Hamiltonian

F? results n

=

{FQM SS}_.; 3 (3.44)

B

™~

where, the Poisson bracket {Fy,, 53} is reduced to the form

via? n? n n
{Fs,, S5} e {(41) + -e—Dc) (2FE) — EDBQ + gDsze
7
~ |1OM + —M,. | D, ¢, (3.45)
e
where
Q = —4B, cos(2y,) — 4C, sin(2y,),
M = —2B,sin(2ys) + 2C; cos(2y2), | (3.46)
M, = %’L—{ + (2F)sin u. J
thus

g

1 via?® 97 2335 1545

=3 n[,_2_+ 1 et — 3 e* + ¢*(101 -]762)c05(2y2)]. (3.47)
The expressions up to S and F are identical to those derived from the von Zeipel’s method
(Hori 1963}, while the expressions S and Fy in this theory are differemt. from their corre-

spondents due to the different methods. 1t is shown, however, that they are mathematically

equivalent to the relationships which are given in Horj(1970) and Yuasa(1970).

3.4 Long periodic perturbations

Removal of long periodic terms(y, = 165 years) from the Hamiltonian I requires another

canonical transformation

1] ! ’ r n

(1) 1
(‘?’1:3"23 Yir¥z) — (@r, 20, ¥

I

V) (3.48)
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and the new Hamiltonian will be free [rom 3y and i, as follows

F*(.’IT;, m;, — 1) — F“(;I?;’, :r';, - (3.49)
where
5 4
= Z F5,5 = ZSI (3.50)
k=0 k=0

In this Section the orbital elements a”, ¢”, 0, and " after elimination of the long periodic
s €y ! !

term are computed as

He i
no__ 1 "o 2o M i N/ ]
a' = =" = [l — ()0 = —z,0 = = (3.51)
H 3 1 Ty

As in the previous Subsection, for simplicity we omit the double primes " from the orbital

elements a, e, n, 7 and ys.

Following the second algorithm in chapter 2 which concerned the long periodic terms, we

can get the new Hamiltonian and the determining function in the following forms

. p?
f =02 ™ fy, (3.52)
7 = vy = I7, (3.53)
RLLs 1 2.2 3 2
o= -via® (1 4 z¢), (3.54)
4 Vi
15
5% = —Euzazez sin( 23 ), {3.55)
. 225 13 2
= 2“9, 3.56
3 61 ™ €1, (3.56]
i 45 12 a? 9 '
'b' * —_ — — - .-" a” ) D -'r"’-
9 o1 e sin( 2y, ), (3.57)

1 via? q 4167 , 12069
4 = — | =Y ¢ — ¢,
128 n? 2 ]

R
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1 2a? L A119 , 1605 _
Sy = *ﬁ,gﬂq.;; [_963(-«2+ 5 e*']sm(zyz)A 2)5‘%(4 y2), (3.59)
- % [ 07T 288085 5 872625 1] (3.60)
[ —_ ? —_—— % b,
5 1732 T Tq006 ¢ 16384 ’
ia? A 2 82G975H 4 292185
S = —— 20} — Asin(4 ] 3.61
= [( 2048 16384 © )Sm( v2) ~ Gagag © ) (3.61)

3.5 Secular perturbations

The Hamiltonian remaining after the second transformation determines the secular terms.

The equations of motion have the form

dry 9F™ dy,  OF™

doy _9rT an _ _9f 3.62
dz. 9F* d oF™
@ 0 dy, _ _Ir (3.63)
dt Ay, dt Oz,
where
2 3 42
o it 1 2 1l 3 2 225 v a” nz n 1 va
d T 2 "2 +12‘2 + 4V a1+ 56 ) a n' * 1—2§ n' [_98
4167 12069 ,,4] S [ 97 288085 ,, 872625 ,,
A0 g 22 il At 64
7 ¢ g ¢ 25 T 732" Ta006 ¢ 16384 ¢ ] (3:64)
or 12 o2 225 v> - 1 A 21267 ,,
_E’{_ = n" - EF(’T ) — 52 ”2 n"(1 + 2e") — 98 "3(3187 + —¢
36207 ,. 1 v, (213589 2008225 ,, 872625 ,,
Dy 2, e _ 210020 3.65
7 ¢ ) T T \T2 YT 2 ° ) (365)
ar 3v? 225 4° 3 e 1 ! 12069 ,,
 Oxh o= e * 32 uz(l T 3° )+F?_§_T':” (416?_ 7 ¢ )
1 % /294293 4363125
S — 434220 4 ——= J’“) . 3.66
1024 n" ( 2 T (3.66)

Lquations (3.65) and (3.66) describe tlie mean motions of the mean anomaly and the lougi-

. . . - . " H H "
fude of perigee respectively. Since #7** is free from y; and 1, then 2y and 2, are constants,
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and we have the mean elements

1\" I
" =1+ ((Ei) g+ ) ={g+h)o+ :j—t(g + k)" (3.67)

where (%)" and (g + h)" are given by Equations (3.65) and (3.66) respectively and ly and
(g + h)o are mean elements at the epoch(t = 0). Table I gives the secular perturbations in

the mean anomaly and the longitude of perigee using the mean elements im Table II.

TABLE I

Secular perturbations are given in radians per day

O(%)  Mean an. Peri.

2 -7.7364E-005 1.7623E-005
3 -2.0983E-006  2.2930F-007
4 -6.2423E-008  4.9778E-009

3 -1.2242E-009  -8.1582E-11

3.6 Analytical expressions of osculating elements

In the previous Sections we got the Hamiltonian and the determining functions for hoth the
short-periodic and long-periodic terms, then the secular perturbations. In this Seclion we
evaluate the osculating orbital elements for the planar problem. The following notations

are useful in evaluating the partial derivatives of the determining functions 5 and 5™ with

respect to L and &

d d TR
_ = | = — 3.68
aL (BL) T ac (3.68)

ena? de

3 ' 9
= = (,‘d ) _Jr 2 (3.69)
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The partial derivatives of the determining function Sy with respect to ay, @,y can be

simplified in the forms

2S5, 1 2 :
(._2 = _ (K) {?I—’ + 2—Pc + ) sm u}.
dr, 4 \n e ’
a5, 1 7Ny .
2=l =) = {P. 4+ Dsmn
Oxg 4 (n) e {Fet sinu},
25, 11/2a?
dy 4 n
2,2
95 _1vaiyp
Ay, 4 n

where the symbols P, P., I? and E have their own definitions in Section 3.3, The derivatives

of S, are delivered by the set of equations

953
dz,
35,
B,
as;
o
a5
Dy

1 3 2
- (5> {mM + ﬁ—m},
4 \n e

(3.71)

For simplicity, we refer to [Sg)o, [S4)2c, [Saldcs (Salas and [Sqlss by the symbols g1, g2, g,

gs and ¢s respectively. The derivatives of the fourth order determining function 5, will be

written in the following forms

where

654 ] I 4 ]2
—_— = == 138, + —=
dr, 16 (n) { st e |’
a5y 1 (u)“ N~
S, 16 \n ¢’ (3.72)
Sy \r/ Ou’
354 1 wia?
—— = 5 (Ba)w,
dy, 16 n
By = ¢ + g2008(2u2) + qacos{dyz) 4 gasin(2y2) + g5 3in(4y2), (3.73)
Z=x1+ X2 T At X+ s (3.74)
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g Dy faN
\i = —1'— 4 —1'— (—) siny i, (3.7
de  du \r

fn )

)

for1=1,2,3,4,5.

The above partial derivatives of S;, S; and S; contribute in obtaining the short-periodic
variations of the orbital elements, while that of 57, S3, S and S} have the coniribution of
getting the long periodic variations. We may notice that, when we evaluate the perturbations
in y; and y,, e appears as a small divisor. However, this small divisor will be disappeared

when we compute the perturbations in y; + y2(= £ + g + 1), that is because

A A — (3.76)

Now, we suminarize the results of the partial derivatives of 57 with respect to z;, 22 and y,

as follows

88: 15 (v _ ’
55— () (1)
as; 15 (v .
Bor = 5 () 7oin(2ua) .
5 :
by 1
gi‘ = —gmze? cos(2y,),
, _
for 57 we have
a5% 45 f1\? 2N . ]
8?2 =-3 (;) 7 (1 + 262) sin{2y, ),
T < -
355 45 : : g7
E)T—Q = 6—: (%) (2 — 362) sin(2y,), [ (3.78)
T2 -
as; 45 112 a?
01}2 = FETGQU cos(2yz),
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for S% we can write

85:  [wN\P[( 963 3585 , 12357 ,,) , ]
- AL : Y sin(2
Dy ( ) {( 25 T ¢ ) pnCne)
UOJ 5715
( 021 2018 4) ““(4““)}
as: 963 4119 ,
()2 )
T2 o (3.79)
10246 sin(4y2)},
88y 1Pd® {( 963 4119 )
— 2
FY 7% T o6 ¢ ) o)
1905
10246 Cos(4y2)} |
while for 5] we get
8S; (,,)4 {( 20975 905025 , 772975 4) n(292) ]
= — ——— e € S111
95,  \n 956 4096 2048 ey
202185 , 292185 ,\
+ ( 16382 © 8192 © ) 51”(4?”2)}’
0; (1/)4{(20975 1276375 , , 3864875 ) 20:)
= | — — € -
9z, \n 256 4096 Tgasa ¢ ) oA (3.80)
.\ (292185 1460925 ) " }
16384 o536 ¢ ) SUwa) s
9s; e 20975 , 772975
dy,  n "{(_ 256 8192 )Cos(zyz)
292185 ,
_ 4y,) b
To381 ¢ yz)} )

For practical calculations, we refer to the partial derivatives of S; (j = 2, 3,4) with respect
to 71, &2, Y1, Y2 by P (2 = 1,2,..,12) and for the derivatives of S (s = 1,2,3,4) with
respect to @y, T2, Yz DY ki respectively. In what follows, we implement the above analytical
expressions for digital computations by constructing the following algorithm described by

its purpose, input and its computational sequence:

3.6.1 Computational algorithm

o Purposc: To compute the osculating elements a, ¢, ¥y, y2 of Nereid in the planar

motion. Nereid is moving around Neptune and perturbed by ihe solar atiraction.
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o Inpui: the initial values ag, g, Y, Yo 10y Lenay and Tol (specified tolerance).

e Unils measurcments: Masses are given in solar unit, distances are in AU, time in days

while the angles are given in radians.

o Computational Sequence:

(1) Compute the secular perturbations, then find 7 and y; from the relations

Yl = ylo s ¥z =Yoo+ gk (3.81)

(2) Compute the long-periodic variations from the following sequence

(a) for eccentricity:

3
v, = — il 21.".3 = & e,
ena
7
lI"Z = - '_'I 2"161
ena
— Ui oy, o,
s = " ena? ( de hs = Az ka |
N
\114:l112+73_—__526’
7
s = - en]a2 ko,
W, — n @{}_k av, . (3.82)
6= Tna2 \ de T By )
— Ki 3\1’2 5 aqu ’
o =  enal? ( de ks — Dy k2 |,
_ 7) B\DB 2 8‘1!'3 3
Ve = T ena? ( de kg = (Tyr;kg !
l]J 3 ‘1"7 l]»’ .
Vg = v + —%_ + —6§ = d3e,
E:';cmg = (:g + é‘lﬁf + 620’ + 63(:‘.’,
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b for the argument of pericenter o' in the above equalions put
g ¥as ] ]

1

q"] = —kg,

v, = —ks, L (3.83)
\115 == -"k'g,

then apply all the steps mentioned in eccentricity case to get

Yhtong = Yao + 6192 + 6213 + 8392, (3.84)

(c) in case of the mean anomaly y; put

3
‘Ijl == —kl,
U, = —kq, ( (3.85)
‘1'5 = ‘_k'f,

then apply all the steps mentioned in the case of eccentricity and the argument of pericenter

to get
Viiomg = Yro + 6191 + 6231 + bavi.- (3.86)
(3) Compute the short-periodic variations as follows

Call Kepler

(a) semi-major axis:

2
62(£ = ‘—Pg,
na
2 a9
63(!. = —“P'y, (357)
nao
$a . = 02t + 3¢,
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(h) eccentricity:

2 3
1 1
(526 = 2 P3 - 2 Pq,
ena enda
. n? 9
636—_— 72P7— ]2P8, L
ena ena
685)10 = 628 + 636,
(¢) Argument of pericenter:
bayo = — P, W
53!/2 = _PB'I k
§y2sho = b2y2 + O3y2 )

(d) in case of the mean anomaly

by = — P, W

63y1 = _P51 L

S1sho = 02t + d3y1- J

(4) Compute the osculaling elements from the equations

W

i
Qose = Qg + 6asho,
- ’
605C - e]’ang + 663’107

'
Y20s¢ = Yaiong + 6y25h07

o
Y1ose =— yuaﬂg + 6ylsho-
P

(3.88)

(3.89)

(3.90)

(3.91)

(5) The algorithm is completed up to third order. We can continue analogously up to the

{fourth order.
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[
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3.7 Comparison of the analytical solution

We compare the analytical solution obtained in this paper with the numerical integration
by applying the analytical solution to a fictitious Nereid(ihe second satellite of Neptune)
with zero inclination. The mean elements of the fictitious Nereid are given in the second
column of the Table 1. The orbital elements of the sun used in this integration are ag =
30.1104AU, ey, = 0.0, k(1 = 0) = 10°.0. The small parameter in the theory, the ratio of
ihe mean motions of the sun and the fictitious Nereid is vin = 598 x 107%. The osculating
clements that are the initial conditions for the numerical integration are computed from the
analytical solution(Section 3.6) are given in the third column of Table II. We used for the
numerical integration the extrapolation method, which has a capability of highly accurate

orbital computation.

TABLE 11

Mean and osculating elements

orbital elements mean elements osculating elements
semi-major axis(km) 5513413.256 5513226.872
eccentricity 0.751201525 0.751270690
long. of pericenter(deg)  254.809177 254.385293
mean anomaly(deg) 359.34112 0.362199662

Figures 3.1 and 3.2 show the osculating orbital elements of the fictitious Nereid over 5
years and 500 years, respectively, which are obtained from the analytical solution. IFigures
3.1.3 and 3.2.3 show the periodic variation of the mean anomaly, which is obtained by

subtracting the secular part of the osculating mean anomaly. Figures 3.3 and 3.4 show the
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differences of the osculating elements between the analytical solution and the orbit obtained
by the numerical integration. The secular error in the mean anomaly is —1°.6 X 107 /year.
Figure 3.3.5 and 3.4.5 show the periodic residuals aller taking away the secular error. This
secular error is removed by the orbital adjustment which increases the semi-major axis by
160m. From this comparison the present theory has the accuracy of the level of 300 m for the
semi-major axis, 3 x 107® for the eccentricily, and about 0.004 arc second for angle variable.
The relative accuracy of them is about 4 x 10-8, which is between (v/n)* and (v/n)* . Now
we can say that the present theory will zero inclination has an accuracy to the fourth order,

(v/n)*, in periodic perturbations.

3.8 d’Alembert characteristics

The d’Alembertian characteristic is one of the most important properties of a series which
describes the behavior of the coordinates and Hamiltonians in planetary problems in celes-
tial mechanics. A precise definition of that property with respect to the eccentricity is given
by Brouwer and Clemence (1961), when they developed the four functions u, (2), f and
In (TE) in Fourier series with multiples of { as arguments and power series of e as coeflicients.
In these expressions, the lowest power of e occuring in the coefficient of a sine or cosine term
equals the nultiple of ! in the argument. Moreover, in a coefficient of a term, for an odd
argument only odd powers of e occur, and with an even argument only even powers of e
occur. This property is called d’Alembert chavacierisiics.

Consider the motion of a small object (e.g. a minor planet, satellite,... ) under the gravita-

tional atiraction of the Sun, then the disturbing function R has been developed in a series
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of cosine terms of the form
—_ M Y . o L 4 - 2 (
= Ch st st (6 e, I, e 1) cos O, (3.92)

where the elements ¢, e, I, A, @, 2 have the usual definitions for the disturbed body, while the

corresponding primed elements are for the Sun. © is a combination of two sets of elements

When the elements e, ¢',1, I' are small, the coefficients C can be developed in the following

series
o = ko Tk pha kL ovx '
CJJ.JQ..ia.J;.Jé‘Jé - Ze e 211 SCkg,k’z,kg,k_.'j(a}a ) (3'94)
Since the function R does not change by a rotation of the coordinate systemn about the 2

axis, and since the angles appearing in the arguments of the cosines are reckoned from a

common origin, the coeflicients j, 4" and k, &' salisfy the relations

1t jat sty +itiz=0, (3.95)

)
ky =| 72 | +(even),

Ky = g | +{even),

(3.96)
kg :| j3 I +(even),
i, =1 74 | +(even).
jat 74 = (even), (397)
min(ky + k + ks + k) 2 i+ |- (3.98)

Our analytic formulae satisfy the above relations which indicate the correction way we have

done in dealing with the present problem although their derivations were laborious. Il two
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guantities A and B that are functions of orbital elements satisfy the d’Alembert character-
istics, the Poisson brackel {A, B} keeps the d’Alembert characteristics. The original Hamil-
tonian I (3.2) satisfies d’Alembert characteristics and the operation appeared in Hori’s
algorithm is only the Poisson bracket. Thus, tile Hamiltonjan and the determining func-
tions in Hori’s method (1966) satisfy d’Alembert characteristics in contrast to Poincare’-von
Zeipel’s algorithm. In the present theory, the transformed Hamiltonians I™* and the deter-
mining functions S, 5%, therefore, should satisfy the d’Alembert characteristics. In fact this
is easily verified after F*, 5, 5" are changed in the form of the argument iu + jyh, where 1

and j take any numbers.
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3.9 Conclusions

In concluding the present chapter, an analytical theory on the motion of a salellite with
large eccentricity and zero inclination is constructed. The theory is applied to a fictitious
Neptune’s satellite Nereid. The secular and periodic perturbations are obtained up to the
ffth and fourth order respectively. A comparison to the numerical integration indicates the
accuracy 300 m, 3 x 10~%, and 0.004 arc second for the semi-major axis, eccentricity and the
angular variables respectively. Tables 111 and IV show the amplitudes and the accuracy in

the osculating orbital elements for both short and long periodic perturbations respectively.

TABLE I11

Amplitudes of the osculating elements

Elements Short-period Long-period

semi-major axis  897.587 1047.19

eccentricity 0.00025 0.011

arg. of pericenter 0.01 1.25

mean anomaly 0.0325 0.05
TABLE IV

Accuracy of the osculating elements

FElements Short-period  Long-period
semi-major axis  0.23 0.3
eccentricity 2x 1078 3x1078

arg. of pericenter 4x107¢ 5x107°

mean anomaly 1x1077 1.6x107°
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where the semi-major axis is given in k. ccentricity in radian, and the argnment of pen-
center and the mean anomaly are given in degree. In the next chapler we'll investigate the

solution of the non-planar case.




Figure Captions

Fig. 3.1. The osculating orbital elements of Nereid over 5 years:
(1) eccentricity,
(2) semi-major axis,
(3) periodic part of mean anomaly,

(4) argument of pericenter.

Fig. 3.2. The osculating orbital elements of Nereid over 500 years:
(1) eccentricity,
(2) semi-major axis,
(3) periodic partl of mean anomaly,

(4) argument of pericenter.

Fig. 3.3. Difference between analytical and numerical results for the osculating orbital

elements of Nereid during 5 years:
(1) eccentricity,
(2) semi-major axis,
(3) mean anomaly,

(4) argument of pericenter,

G3
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(5) periodic part of the residuals in the mean anomaly.
Fig. 3.4. Difference between analylical and numerical resulls for the osculating orbital
elements of Nereid during 500 years:

(1) eccentricity,

(2) argument of pericenter,

(3) semi-major axis,

(4) mean anomaly.
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Chapter 4

Non-planar Motion Solution

In chapter 3, we dealt wilh the motion of fictitious Nereid. In the present chapter, we in-
vestigale the motion of Nereid in the frame work of circular non-planar restricted three-body
problem. The solution includes short, intermediate and long periodic perturbations. All
the analytical expressions are implemented for digital computations by constructing compu-
tational algorithms. Evaluating the analytical expressions have been done by the powerful
packages of Mathematica. The Nereid’s motion is also studied numerically and compared
with analytical results. The behaviour of the motion and the accuracy of the present theory

are exhibited by figures and tables.
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4.1 Introduction

In the previuos chapter, we considered the circular, planar, restricted three-hody problem
of Sun-Neptune-Nereid system. In this chapter we take the frame work of the circular, non-
planar, restricted three body problem (Saad & Kinoshita 2000). The requirement of circular
mot..ion of Neptune-Sun is satisfied, since the eccentricity of the Neptune’s orbit is only 0.009.
While the requirement of the nonplanar motion is satisfied in the inclination of Nereid (i

~ 10°) to the orbital plane of Neptune.

The restricted three-body problem is called circular or elliptical according to the nature of
the primaries’ orbits as they execute their Keplerian motion. Similarly, the problem is called
planar or nonplanar depending on whether the third body is assumed Lo move in the plane
containing the primaries’ orbits. The planar, circular restricted th ree-body problem consists
of two point masses m; and my called the primaries moving in circular orbits around their
common center of mass. In the plane of their motion moves a third body with infinitesimal
mass ma, not affecting the motion of the primaries, while in the nonplanar case the third
body deviates about the orbital plane of the primaries. As a practical matier, the restricted
three-body problem provides quite reasonable short-term approximations in situations where
one mass is negligible compared with the other two masses. In this case the two primaries

are nol affected by the attractions of the small body.

By virtue of Voyager 2 encounter, Neptune’s known satellite system consisted of one large
retrograde highly inclined satellite, Triton, a smaller satellite, Nereid, in a prograde highly
eccentric orbit, and six newly discovered salellites in the vicinity of their mother planet

Neptune. Triton was discovered by Lassel in 1846, Nereid was discovered by Kuiper in 1949,
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while the other 6 satellites were discovered in 1989 during the Voyager 2 encounter with the
Neptunian system (Stone and Miner 1989). Its highly elliptical orbit and faininess make the
motion prediction of Nereid inaccurate by the usage of the classical models. Many authors
have dealt with the orbital determinations of Nereid (Rose 1974; Mignard 1975, 1981; Veillet
1982, 1988: Oberti 1990; Jacobson 1990, 1991; Segerman and Richardson 1997). Rose fit van
Biesbroeck’s (1951, 1957) observations, while Veillet used the theory of Mignard (1975, 1981)
which is based on Von Zeipel’s method. Jacobson fit the numerically integrated Neptunian
satellite orbits (Nereid and Triton) to Earth-based astrometric observations and Voyager
spacecraft observations. The second order analytic theory by Oberti gives discripancies about
a hundred of kilometers, while in the theory of Segerman and Richardson the disturbing
function is expanded in eccentricity. However, most of the analytical theories which are
expanded in eccentricity or/and inclination not very accurate for the case of highly eccentric
orbits. That is because of the slow convergence of the power series of the disturbing function.
In this paper we construct a third order analytical theory on the motion of Nereid which
is chiefly perturbed by the Sun. The theory is based on Lie transform approach advanced
by Hori(1966). The small parameter is the ratio of the mean motion of the Sun and Nereid
~ 6% 10~3. The ephemerides evaluated by the analylic expressions of the preseni theory are
compared with those computed by the numerical integrations of the equations of motion.
The accuracy and the amplitudes of the osculating orbital clements of Nereid are shown by
tables and figures in the last Section of this chapter. Seclions 4.3, 4.4 and 4.5 are devoted

for the short-period, long-period and secular perturbations respectively.
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4.2 Hamiltonian of the motion

The Hamiltonian equation of the nonplanar case is given by

;?

F=5r

+ I/G + f’ﬂz,

where

i it
1{0: éﬁaFl = I’Ga

Fy = Foy + Foa + Faa,

3

o = vtd? (f)z {(_l + §92) + 3(l + 0)% cos(2f + 2y2)}
a g8 85 16 ’
N2 3
Fyp = 12d” (%) {g(l — 0% [cos(2f + 2¢g) + cos(2g — 2y2)]}, (
N2 (3
Fpy = 12d? (?E) {~1—6(] — ) cos(2f + 49 — 2y2)}. J

I'he normalization of F; with respect to the mean anomaly of Nereid results n
Fos = Faro + Foos + Faas,

where
3 1 3 15
Fyp, = v {(1 3 (g + 30+ e+ 0) cos(2y2)},
15

3 3
Foye = vid® {Eez(l — %) cos(2¢) + g(l + 562)(] — 0%} cos(2g — 23;2)},

15
Fysy = v%a? {ﬁez(l — 0)% cos(4g — 2y2)}.

Whence, the periodic part Fy, provides
F2p = ];‘2]}) + F22p + F‘ZS;J)

wlere

1, = 12at {An + By cos(2y2) + Cn sin{2y2)}

Fyg, = v a? { Ay + Bay cos(2y2) + Cia sin(2y2)} ,

Fhsy, = v2a* { By cos(2y2) + Caa sin{2y,)} .
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(4.1)

(4.2)

(4.3)

(4.6)

(4.7)
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The high eccentyric orbit of Nereid precludes replacing functions of the true anomaly by
expansions involving the mean anomaly. So, it is convenient o take the eccentric anomaly
of Nereid u as independent variable (Hori 1963). In this regard, the expressions ol 4;; and

B;; ahove yield

1 3
An = (—‘ + —92> A,

8 8
By = ! 14+ 0B
21 — 'i-é( + ) 3
1
Coy = —(1 4 0)*
21 16( + ) Cv
1
Agz = —(1 — %) { B cos(2g) + Csin(2g)},
g (4.9)

By ==(1— 02)/1 cos(2g),

8
3
Cyy = §( — 6%)Asin(2g),
1
B =—(1- 8)? { B cos(4g) + Csin(4g)},

. - 1 )
Coz = Ig(l — 0)* {Bsin(4g) — C cos(4g)},
where A, B and C are already defined in the previous chapter. Notable, all the analytlical
expressions in this case are put in a way such that anyone can easily get their correspondents

in the planar case.

4.3 Short periodic perturbations

Elimination of the short periodic terms will be satisfied by finding a canonical transformation
(LG, H; 1,9, hA\g) — (L7, G™, H 17,9707, Ag), (4.10)

where, Ag = k defines the longitude of the Sun. In order that:

FLG H g by de) — F* (LG 0 =, 07 0", he), (4.11)
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and the determining function S only includes the new variables L*, =, H™; U, g7, 17, A, Al
ter ehminating the short-periodic terms, the orbital elements ¢*, ¢*, n* and 5* are copmuted

from

. L, GN: . opt . Gr
a = ,€ = 1—(1)*) , 1t :'J-L'S,T] = L“ (412)

In this Section for simplicity, the superscript * will be omitted from the orbital elements.
Following the algorithm concerned the short-period terms, the new Hamiltonian and deter-

mining functions deliver

Lalgy, el (4.13)

o= v { (1 + §62) (—1 + §02) + 35201 _ 62) cos(29)

2 8 8 16
+ z (1 + 7€ ) (1 — 6%) cos(2k — 2h)
+ — ¢ e2(1 4 0)? cos(2k — 2g — 2h)
15 , ,
+ 31— 0) c03(2k+2g—2h)}, (4.14)

Sy = 0 since the determining function has the identical transformation, consequently the

Hamiltonian /7 = 0. The determining function 5; is given by

Sy = Sy + S0 + Sas, (4.15)
where

1 %a? , ‘
S = {45 + BY cos(2in) + € sin(20)},

4 n

1 L
S = ¢ v {48 + BY cos(20) + €1 sin(2y2)}, ¢ (4.16)

1w ”2
Saz = 1 n {BZJ “)“(‘)7}2) + 023 ““'()?!2)}1
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the symbols above /-\E,_L), BS,-) and Cé;-) lave the expressions
1 2x A
A = — | Ayl
23 27T 0 12_?( 3
BY = L [T By (4.17)
2y T on f, CHY )
ay 1 2m
) =5 [, |

for j = 1,2,3, and Ay = 0. Here, we put dl = (1 — ecosu)du and consider the average

relations

1

1
(cosu} = —36

{cos ju) = 0, {4.18)

{sinju) = 0,

for 7 > 2. Thus, we obtlain

Sy = - ——e(—2 4 *)(1 + 0)?sin(2k — 29 — 2h — 3u)

1 1%a? { 1
4 n 32

3
- 5(2 + 2)(1 + 0)*sin(2k — 2g — 2h — 2u)

15
- ﬁe(—2 + )1 + 8)?sin(2k — 2¢ — 2h — u)

1
+ gc(—B + 3¢3)(—1 + 36%) sin(u)

3 1 .

+ gez(—l + 36%) sin(2u) + —2—463(1 — 30%) sin(3u)
15 . .

+ ﬁe(—Z—i— e*}(1 4 0) sin(2k — 2¢g — 2h + u)

3
+ 5(2 + ¢®)(1 + 0)*sin(2k — 29 — 2h + 2u)

1
ﬁe(—2 + e*)(1 + 6)?sin(2k — 2¢ — 2/ + 3u)

1[’
+ 1 (%‘32(1 +0)*sin(2k — 29 — 2h)

1
+ Ee(l + 6)? sin(2k — 29 — 20 — 3u)

3 _ ,
- E(l + e?)(I + 0)*sin(2k — 2¢ — 2h — 2u)

'll"
—\),c(] + 0y sin(2k — 29 — 2h — )

t 16
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15 .
+ j—()ie(l +6) sin(2k — 29 — 20 + u)

3 ,
- E(I + )1 4 0)%sin(2k — 29 — 2h + 2u)

+ 1]—60(1 + 0)%sin(2k — 29 — 2h + 37:))} , (4.19)
1026 (1 1
7 V?f {Ee(——Q + e*)(—1 + §%) sin(2g — 3u) — Eez’(—l + 0%)

3

* sin(2k — 2h — 3u) + 1—6(2 + e?)(=1 + 0%)sin(2g — 2u)

9 9 2y o 15 2 2
+ T6¢ (—1+ 6%)sin(2k — 2h — 2u) + TE(:(—Q +e?)(—1 4 6%)

3

* sin(2¢ — u) + IE&(—S + 3e?)(—1 + %) sin(2k — 2h — u)

15 2 2y 3 2 2
— Ec(—2+ e?) (=1 + 0°)sin(2g + u) — FG(_S +3e*)(—1 + 6%)

)
3
* sin(2k — 2h 4+ u) — E(Z + €?)(—~1 + 0%) sin(2¢ + 2u)
— %62(—1 + 0%} sin(2k — 2h + 2u) — 11—66(—2 +e2) (1 + 6?)
* sin(2g + 3u) + %63(ﬁ1 + 02) sin(2k — 2 + 3u)
1

+ 7 (%62(—2 + e*)(—1 + 6%)sin(2g) + ge(—l + 0%} sin(2g — 3u)

3 9 P 15 a1
- g(l +e?)(—1 + 0%)sin(2¢ — 2u) + ge(—l + 8%)sin(2g — u)

15 3
+ —g)e(“l + 0%)sin(2g + u) — g(l + (=14 %) sin(2¢ + 2u)

+ ée(ml + 6%)sin(2g + 3u))} , (4.20)

finally Sa3 is given by

2 1
= - {——c(—? + €3 (=1 4 6)*sin(2k + 2¢g — 2h — 3u)
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3 . .
+ ;5(2 + {1+ 0)?sin(2k + 2¢ — 20 + 2u)

| ;
+ ﬁe(vZ + c:z)(—l + 0)2 sin(2k + 2¢ — 2h 4 3u)

IF
4+ (_l_gez(—l + 0)*sin(2k + 2¢ — 2h)

1

— Ee(—l + 0)? sin(2k + 2¢ — 2h — 3u)
3

+ T-é(l + e2)(—1 4 0)*sin(2k + 2¢ - 2h — 2u)
15 )

— Ee(—l + 0) sin(2k + 29 — 2h — u)

15
- Ee(—l + 9)2 sin(2k + 2g — 2h + u)
3
+ 1—6(1 + e2)(—1 + 0)*sin(2k + 29 — 21 + 2u)
- %e(—1+9)2 sin(2k+2g—2h+3u))}. (4.21)

We intended removing any secular terms from the determining function by applying the

mathematical operations

AL = AD) — (A])),

By = By = (B, | (4.22)

Cy) = Cif) = (C3)) |
for y =1,2,3.

Substituting from equations (4.19), (4.20) and (4.21) in equation (4.15) we get the an-
alytical expression of the determining function 5;. Here, A%), Bg-) and Cg-) are free from
any angular variables, however they are factorized by (1 - %) = sin+. The small parameter
in this theory is roughly of the order of 1072, this means that if the inclination of Nereid is

~ 10°, then sin?i ~ /¢ (semi order). Now we are going to the derivation of the fourth order

Hamiltonian F;. 1t can be given by the simple expression

Fif=Fy 4+ 15+ g, (4.23)
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where
Iy = é ({Farps S}, + {Farps S22}, + {170, S2},);
Py = 5 (P S}, + 1o Sz}, +{Paa S0}, ), (1.2)
Fg= % ({F23p1‘921}s + { Fasp, S22}, + {anp,sm}s), )

the subscripts s and p define the secular and periodic parts respectively, Fyj, and S,; for j =
1,2,3 are given by equations (4.8) and (4.16). Proceeding various mathematical derivations,

the Poisson bracket {Fy,, S2} can be reduced to the form

via?

o8 il
{Fap, 52} 1602

2
{(w + %De) D 1p.26) + 1D, P,
c c
2
- (713 + %P) Dy + L(26Dg — D, Pg)

— L (pH'Dh - ’PhDH)} s (4.25)

where

D =D, + D, + Ds, (4.26)

Dy = Ay + By cos(2y2) + Cor sin(2y), W
Dz = Agg + B22 COS(2y2) + 022 Si11(2y2), (427)

D3 = Bys cos(2ys) + Caa sin{2y2),

E = gl + 52 + 53, (428)

N

£ = —Béll) sin{2yq) + Cg) cos(2y,),
£, = —BY sin(2y,) + CFF cos(2y), (4.29)

Ey = —Bg) sin(2yz) + C'g) cos(2y2),

/

similarly, P can be defined by the following form

P =P, + P, + Ps, (4.30)
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where

Py = AD 4 B cos(2yy) + € sin(2y),
P, = Azz + Bzz cos(2yz) + C%) sin(2y,), (4.31)

Py = B23 cos(2y,) + (/'23 sin(2y,).

Since D and P are {unctions of the eccentric anomaly u, then their partial derivatives D,

and P, with respecl to ¢ deliver

a(D,P) (D, P) a(D,P) ou
= — 4.32
de ( Jde + du  Je’ ( )
It should be to follow the rules of the partial derivatives in the set of equations (3.35). Taking
the secular part of the Poisson brackel {3, S2}, the analytical form of Fy arises
}:“; = F‘;s + F:pa (433)
where
Fy = Eiﬂi{——1——-(-—8(47+28292+6394)--6362(239+17092+14394)
as n? 14096

+—7262(377+-19092ﬁ-20904))4—1555(362(—1-f02)(—43(83~k19592)

B . 1845 \
+ ¢ (131 + 5550 ))) cos(2g) + 1096° ' (~1+6 ) (Tm(4g)}, (4.34)
and the periodic part has the form
AL . 1672¢2 1) (=1 + 609)" cos(ak — 4
Fi, = 2 {44096 (56 — 2¢” 4+ 1001e ) (Al + ) cos(4k — 4h)
615 ¢t (1 4 6)" cos(4k — 4g — 4h) + (—78+3762) (=140)
8192 R 2048

=

. : 15
* (1 + 9)3(‘.()5(4.3« —2¢ —4h) + 5018

¢ (~78437€") (~140)* (1 +0)

615 3
« cos(4k +2¢9 — 4h) + 1)1(;; (—140) cos(4l.+4j—f1h)+-l—0-2—4(—l+02)

*(2164—5602—-15262(134+1102)—FTC“(199—+14302))00ﬂ2k-—2h)
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Gl5 . 3
_20;8@4 (=1 +0) (14 0)° cos(2k = 4g = 2h) = =

2 (1 4 0)°

et

+ (=222 + 3900 — 3900 + ¢* (79 — 1850 + 18507} ) cos(2k — 29 — 2h)

3 2 2 i r 2 .2 ar S )2
T (—1+8) (—-G (37 + G50 + 656 ) +e (79 + 1850 + 1856 ))
615 ,
* cos(2k + 2g — 2I) — 5018° (=14 8)" cos(2k + 49 — 2]1)} , (4.35)

where ¢ = @ — Q. By the virtue of the powerful Mathematica software, we could evaluate
and simplify the analytic formulae of both the Hamiltonian and the determining function of

the present theory although their derivations were laborious. We give S3 as follows

Sy = Say + Sug + Saa, (4.36)
where 3 9 \
Sa1 = %Vn? My,
5., = %Vi(;z . (4.37)
3 2
S33 = iynj 3
M, = —QBg) sin('2y2) + QC'éf) cos( 2y, ), \
M; = ~2B) sin(2y) + 2CL cos(2y,), (4.38)
M; = —2B sin(2y,) + 2C%) cos(2y2),
and

1 2w
B = — [ B
7o 2mdo (4.39)
.2 1 2

for § = 1,2,3. For the purpose of removing any secular term from the determining function,

we subtracted the averages {rom the original expressions as {ollows

2 2
B} = By —(By). o
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Then, the final form of Sy is represented by its three parts Sa, S3z and Sy

SS2

li‘/-’jt’y2 9 2 3 2 F: 2y 21 o 9 1 5 . 5
4 n? (1+6) {_:3_26 (=22 + 9¢°) sin(2k — 29 — 20) + 128° (—24¢7)

1
* sin(2k — 2g — 2h — 4u) + %6(10 + ¢} sin(2k — 2¢ - 2h — 3u)

1 3
+ -3—:5(—6 — 19¢% + 8¢") sin(2k — 29 — 2h — 2u) — ﬁe(—ﬂ + 9¢%)

3
sin(2k — 29 — 2h — u) — 3—2-6(—22 + 9¢*) sin(2k — 2¢ — 2h + u)

1
(—6 — 19€* + 8¢} sin(2k —~ 2¢ — 2h + 2u)

* 33

] ) 1
—e A — 9} T L2f 2
+ 96((10+e Ysin(2k — 29 — 2h + 3u) + 1286( 2+ &)

‘ 1
* sin(2k — 2g — 2h + 4u) + 9 (—aez sin(2k — 29 — 2h — 4u)

1 1
+ Ee(l’) + 3e*) sin(2k — 29 — 2h — 3u) — E(B + 11€?)

3
* sin(2k — 2g — 2h — 2u) — Tge(—ll + 4e?)sin(2k — 2g — 2h — u)
3 2y 1 2
+ Ee(—ll + 4e)sin(2k — 29 — 2h +u) + E(3 + 11e*)

1
* sin{2k — 2¢ — 2h + 2u) — Ee(S + 3e*) sin(2k — 29 — 2h + 3u)

] .
+ aez sin(2k — 29 — 2h + 4u)) } , (4.41)

113a?

3 1
_ 2 o2y 6 2 P L — ‘ _ 4.‘ L _
3 (-1+8 ){166 (—16 + 3e*)sin(2k — 2h) + e sin{2k — 2h — 4u)

11 1
- des sin(2k — 2h — 3u) — 1—662(—21 + 4€*)sin(2k — 20 — 2u)

3 : 3
+ Ee(—lﬁ + 3e*)sin(2k — 2h —u) + EC(_IG + 3e*) sin(2k — 2/ + u)

1 11
- EGZ(—QI + 4€*)sin(2k — 2% + 2u) — des sin(2k — 2h + 3u)

1
+ @c‘q sin(2k — 2h 4 411,)} , (4.42)

and Si3 1s given by

;533

1 1302

1 n2

3 }
_ 2) Y 2 02y ol (D] _ .
(=14 0) { 35" (=22 + 9¢*) sin(2k 4+ 29 — 2h) + 95"
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1
* sin(2k + 29 — 20 — Au) + aac(](] + ¢*)sin(2k + 29 — 2h — 3u)

1 3
+ ﬁ(_ﬁ —19¢? + 8c") sin(2k + 2¢9 — 2h — 2u) — 5(‘(—22 + 9e?)

(3

3
sin(2k 4+ 29 — 2h —u) — 5-2-e(~22 + 9e?)sin(2k + 29 — 2h + u)

1
+ i(—6 — 19€% + 8¢*) sin(2k + 29 — 2h + 2u)

1 : 1
+ %e(lo + %) sin(2k + 29 — 2h + 3u) + 1—2—862(4 + €%)

1 .
* sin(2k + 2g — 2h + 4u) + 7 (—aez sin(2k + 2g — 2h — 4u)

1 1
+ 56(5 + 3e?) sin{2k + 2g — 2h — 3u) — 1_6(3 + 11€%)

3
* sin(2k + 29 — 2h — 2u) + 1—66(—11 + 4¢e*)sin(2k — 29 — 2h — u)

3 1
— ]—6e(—11 + 4€%) sin(2k + 29 — 2h 4+ u) — E(3 + 11€%)

1
* sin(2k + 29 — 2h + 2u) + de(5 + 3e?)sin(2k + 29 — 2h + 3u)

- -61—462 sin(2k +2¢g — 2h + 4u))} ; (4.43)

where u = k£ — .

4.4 Long periodic perturbations

In this Section, we remove the long (intermediale) periodic terms which are related to the

motion of the Sun. This will be achieved by building the canonical transformation

(L, G* H P g B ) — (L7677 75517 g7 kA (4.44)

In order that:

Fr (LG S go b he) — B2 (L G 7 = g™, =, =) (4.15)
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and the determining function S only includes the new variables L, G H5 1 g™, b Ag.
The new Hamiltonian F** will be also free from h, since the disturbing potential becomes
axial symmetric. After eliminating the long (intermediate) terms, the orbital elements a*,

e™, n** and 7™ are copmutled from

ook L**Q >k G** 2 *x i'tz " G**
a™ = p € :\}1—(57) = T = T (4.46)

In this Section right now, the superscript ™ will be omitted from the orbital elements.

We follow the algorithm concerned the long-period terms to get the new Hamiltonian and

determining functions as follows

2

F* = o F* = vG, (4.47)
Fp* = v’ {(1 + %ez) + (_?1 + %92) + %ez(l — 8% Cos(Qg)} , (4.48)
si = vat{ (14 56?) (1 - 0)sin(2k —20) + S+ oy
x sin(2k — 2g — 2h) + %%62(1 — 8)*sin(2k + 2g — 2h)} , (4.49)
Fr = ?j—zvy {Tg—SG(Z —20% 4+ €*(33 4+ 176%)) + %820(1 - 0?) cos(2g)} : (4.50)

2,2

. via
5 = 77{

1

9 2 2\ i (D]
128(——2 +17e5)0(1 — 6%} sin(2k — 2h)

45

4+ ——e*(1+0)*(—2+ 30)sin(2k — 29 — 2h)
256
45

+ 2—%82(1 — 0)%(2 + 30) sin(2k + 2¢ —2h)}, (4.51)

!

ia? 1 2 1 2 2 1
mro= {8192(8(-—67— 72662 + 90%) + 144¢2(329 + 25307 + 3440")
T

2¢ FAYS aArnhA2
e~ (F)(—12(68 + 3150°)

el(—1 4 0%)° Cos(4g)} , (4.52)

— 9e1(2527 + 279407 4 54076%)) +

315
8192

+ ¢*(307 4 40350%)) cos(2¢) +
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while 57 has the analytical expression

13 a? 69 3 123
Sro= —1 4 6%)? (,;__;__ ~ ¢t ) 4k — 4}
3 n? {( + 00 (o7 ¥ 79 F mreg’ )k 4

1905 4 . o
0 k—4g —4h
+ Te3m1° (14 0)*sin(4k — 4g — 4h)
315 645
— 3 — 2 — 4 M I — —_—
+ (-1+6)(1+96) ( 034 ¢ 40966)5111(4L 2g — 4h)

315 645
- a1 + 6)® (—__ 2 _ 4) o : B
+(-1+ (a+ ) 1024_6 40966 sin(4k + 2g 4h)
1905 e 2
+ 16384 e'(1 4 0)* sin{4k + 1g 4h) + (=1 + 0%)
171 39 3
— - - 2(215 + 9046? 4 ) )
(256 256!~ ame’ 21t )+ ——e*(1355 4 81310°)

* sin{2k — 2h) + ef(—1 4 0)(1 +0)*sin(2k —4g — 2h) + (1 + 0)*

4096
9 2 3 4 2
" (gTie(79-—1759473109)-— (563——131084—21250))

9
* sin(2k — 2g — 2h) +(—1+ 9)2 (gﬁez(ﬂ) + 1756 + 3106%)

- = ﬂm&umw+mwm%m%+%—%)

795

1096 e (=1 4 0)°(1 + 0)sin(2k + 49 — 2}1)} (4.53)

Notice that all the above analytical expressions satisfy d’Alembert characteristics mentioned
in the precedent chapter. This may prove the validity of these cxpressions from the analytical
point of view. Up to this stage, the Hamiltonian system is still include the long terms g.
Omitting these terms can be done by two ways, the first one {which is analogue to the

previous procedures) is o build a new canonical transformation
(L**.’,G**,I]’**; [*t’gtm, h.**, A@) — (L**t“ Gtx*’ ]{*tt; I*xn:’g*l«r’ ht*m’ A@) (4.54)
in order that:

]'l** (] *#1 j‘t, ];]*K;'i’g**’_i’_) — F*** (L***,(_',r**lk’li***; _1 _,_’_) (4"

-t
o
~—
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and the final results give the mean elements. Tl

,.
&
fs |

1e second way is to use the Jacobian elliptic

functions (Kinoshita and Nakai 1991, 1999) in solving the Hamillonian equalions systen

dr or=+ )

L™ = const., — = ———
NS T oL

dGr  oF+ dgt _ 9F*

dt B¢~ dt  8G*
dh™ OF*

o o, o = ———
H const., — B

and the

remove g from the new Hamiltonian system.

(4.56)

final results are also mean elements. In this theory we adopt the latter’s method to
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4.5 Secular perturbations

4.5.1 Solution for the elements e, I and g

The Hamiltonian equations system (4.56) delivers the following {orms

dG** 15 135 1%a*
— = 3 22 tae (- 1+92)Si1‘n(29)+av?? ne?f(—1+ %)
* sin(2g) + "'4“2{ : (3e2( 14 02)(—12(68 + 3456%)
5111 e - -
I+ U o ?
, sy . 315 N
+ €*(307 + 40350 ))) sin(2g) — Y (=1 +0%) sm(4g)}, (4.57)
and
dg*” 3121
= 2 21— —50%+5(-1 9* 2
dit 8?17){ +5(= e )}COS( 9)
27 1/° v 2 2 g\ .
’EIE'H{ ll—i—llc 502 4+ 5(—1 + ¢ + 0%)} cos(2g)
3 1
= 7 2 [7896 — 15477¢* + 7581 046* 292
+oE v:r{ e? + 7581 + 510407 — 8382¢%0

1 4191€%67 + 828007 — 7965¢20" + 4(408 + 16620” — 20706
+ ¢*(307 + 18646%) + *(—T15 — 37280" + 19656*)) cos(2g)
+105¢X(—1 4 8%)(—1 + € + 6%) cos(1g) } (4.58)

We introduce the analytical solution of the elements e, I, ¢ where the circulation case of the
argument of pericenter (see Kinoshita and Nakai 1999, for further details). For simplicity,
the two differential equations above will be truncated up to the second order and can be

rewritten in the following forms

dp 15
-

e?(—1 + 0°)sin(2g), (4.59}

and

! 31 |
A9 _ 210 2 502 4 5(—1 4 2+ %)} cos(2g), 4.60)
g




1.5. SECULAR PERTURBATIONS 87

where
t* *1 * "'n-@ (1 2 )—3/'2”2 (4 61)
= .l = - C 0 - *
TR Ma + Maep ® n’
Mg

note that in the previous analytical expressions the ratio = 1. The encrgy inte-

Mg + Moy

gral of the second order takes the form
C = (5-3z)(3h/z— 1) +15(1 — z)(1 — h/zx)cos(2g), (4.62)

where £ = 7%, and ncosl = vk = const. Considering the initial conditions / = I and
= 70 at g = 0, then we have
C =10 — 120 + 6h. (4.63)

Then we can easily write

cos(2g) = 501 _];():E:l myat (4.64)

where

F(z) = —2* + 2(5(1 + k) — 4xo) — Sh. (4.65)
With the helping of the trigonometric relations

1
sing = 5(1 — cos(2g)),

| (4.66)
cos’ g = S+ cos(2g)),
we can deduce
2 -
sin’g = 2(20 — 2) ,
5(1 —xz)(e — h) (4.67)
sin’ ¢ = Y ,
5(1 —z)(xz — h)
where
y = —3x? + a(5 + 5h — 2xp) — Bh. (4.68)
Since @ = n?, then da/dt* = 2ndy [di*, consequently
de 15 9y . . ‘
= —qc*(—1 + 0%)sin(2¢). {4.69)

di* 4
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Using the notations

e = (1 - x),
h
275 _
cos“ [ = "1_2,
x— 1
sin? I = (Tnz L), (4.70)

(=14 0%) = —sin’ I,

sin(2g) = 2singcosg, |
{ogether with equations (4.67) and (4.68) in equation (4.69), then the equation of motion of

z reduces to the form

dr 3
o = ~3V2(z0 — 2y (4.71)

The quadratic equation y = 0 has the solution

1
21,07 = (5 +5h —200% /=60 + (=5 — 5k + 270)%, (4.72)

in order that:
1
T+ 2y = 5(5 + 5h — 2x0),

5
I1&e = gh

(4.73)

Thus, the equation of « delivers

dz 36
i “T\/@ — z1)(z — 22)(w0 — T). (4.74)

The solution of the above equation will be expressed in terms of the Jacobian elliptic function

as follows
x = 10 + (21 — o) cos’ Z, (4.75)
where
Z= %(g" + %), (1.76)
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*k

g = ngyd, (4.77)

3v6r : -
T VT, — a1y (4.78)

The symbol K defines the complete elliptic integral of the first kind, whereas n7” is the mean

motion of the angular variable g**. I{ we chose x1 < 2, the maximum eccentricily arises as
s
*
emar = V1 — 21, forg™ = 5 (4.79)
and the corresponding inclination takes the form

Iin=cos ' {/h/(1 —€2,.),forly < —2— (4.80)

4.5.2 Solution for the elements h and 1

In this Subsection, we address briefly the solution for the longitude of ascending node and the
mean anomaly, by the usage of the Fourier series expansions. The fourth order differential

equations of both 2** and I** are given sequently as follows

dh* 3121 s .2
. g;;e{-ﬂ——i}e + be cos(Qg)}
2 4+ 60% — 3e2(11 +176%) + 1 302
128112{ + e"(11 + )+ ae ( 14 30 )COS(?g)}
3 vl
~ =T g {968 + 6072¢" — 4191€” +24 2 | 1a1ro.2g?
2048 n® 7 {968 + 6072¢” — 4191 " + 2467 +16152¢°¢

_ 162216 4 4¢2(1662 — 414067 - ¢*(—1864 + 40350°))

¢ cos(2g) + 105¢*(— 1 + 6%) cos(4g) } , (4.81)
dr* B 11/ 2 2 - g - 2y e
" T & (=7 = 3e*) (=1 4+ 30%) + 15(1 + " )(—1 + 7 )(,os(z‘q)}
9y 9 ;
+@’"9{ 39 — 1107 — 2e2(33 + 170%) + 15(1 + 2¢*)(—1 + 07) cos(2g 2g)}
n

Y 144696 + 144018¢% — 68229¢* + 739207 + 05436e20% — 75438107
40()() 1?3
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1 498966" + 100818¢%0% — 145989¢10" + 12(—1 + 0%){—12(68 + 34567)
— 10e%(265 + 8496%) + 3¢°(307 + 10350%)) cos(2¢g)

+ 315¢2(2 + 3¢)(—1 + 6%)2 cos(4g) } - (4.82)

As in the case of the elements e, I and g, we truncate the above differential equations after
the second order (since the solution up to the fourth order, expressed in Jacobian elliptic

functions is cumbersome) and rewrite them in terms of z, then we have

dh 3 ,Vh F(z)

di 11 F(zx)
NN _10)(3h — z) + 3(z — .
R (LR R )7L (1.8)
where F(z), v* and {* are already defined in the previous Subsection. Considering the

circulation case of the argument of pericenter, the equations (4.83) and (4.84) yield

dh 3 *\ﬁ;(m + h — 2x0)

at Z’Y z—h ’ (4.85)

and

dl 1 1
e— = — ¥ ; 3]_._ ..: . T — o ‘ P
na 1-=x {x(4 + 3h — 6xp) 4 1220 — 3h — 10} (4.86)

In what follows we just give the basic equations of h and I, expressed in Fourier serics

expansion, while their derivation is given in (Kinoshita and Nakai 1999). At first. we write
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the analytical expressions of h:

ho=h* 4+ 3%, by sin(2mg”),
h* = nyd + Iy,

= —-i(—_—q-)—— sinh mE,

m(1 — ¢*™) K
¢ = F(EF), (4.87)
. _ Ty — Iy
sinf = .
E =1 - k2,
k?' _ g — X
Ty — Iy ’ J

where b, defines the amplitude of periodic terms, F(&, k') is the normal elliptic integral of
the second kind, q refers to Jacobi’s nome and k% describes the modulus of the complete
elliptic integral of the first kind X. While the mean motion of the longitude of the ascending
node has the form

—h
- h) — Ao(€, k)nge,
%2 (4.88)

Molt, ) = 2 {EF(&,K) + KE(&, F) =~ KF(E,K)),

To

3
Nps = —Z\/H’Y*(—l +2

where Aq(€, k) is Heuman's Lambda functions and E is the complete elliptic integral of the
| p g

sccond kind. Similarly, the correspondence basic equations of the mean anomaly deliver

3

=4+ 50 1 [n sin(2mg*),

I =npt+ L,

A8 /

2q T

sinh m-—, (4.89)

fm = ~m(1 —¢*™) K

&= FCK),
S = J (xg — 1)(1 — 20)

(1 —ar )z — xo)’
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and the secular perturbations in / is given by
b .
?11. = Z’Y (‘_4 + 6.7:0 - 3]1) - AO(C.} k)ﬂ.g‘, (4.90)

All the formulae in ihis Subsection and the previous one were for the purpose of evaluating

the mean orbital clements which are used in computing the osculating elements.

4.6 The osculating orbital elements

In Sections 4.3, 4.4 and 4.5 we discussed the analytical expressions of the short-period, long
(intermediate)-period and the secular perturbations respectively. This Section is devoted for
evaluating the osculating orbital elements of the nonplanar problem. For this purpose, we
first find the partial derivatives of the determining functions with respect to the Delaunay’s

clements. The derivatives of Sy can be simplified to

as, 12 n? )
3L " am (”’*z )

Sy _ l:ﬂaz apP luz g
G 4 n \OG 4nZe ©
95,100,

6H 4 n L (4.91)
352 . 1 V2(12D

al 4 n

a5, 11/2(127)

8 4 n 7

as, 11%d*

4 n J

where D and P are given by equations (4.26) and (4.30) respectively. While P, is defined in

equation (4.32). The partial derivatives of the determining function Sy arise from the set of
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cquations

where

THE OSCULATING ORBITAL ELEMENTS

a5y | e 1]2
= - ) — e I
aL An? (MM_I_ cM'
a53 1 rat { OM 157y
oG 4 n? oG Ande” 7
853 1 1‘/36!2
9 - 20T My,
o~ 1wz "
asSy,  1v°d?
ol 4 n? (2€),
dSs 1 12a?
dg 4 n2 Y
a53 1 12a?
oh 4 nt o
M = M] + M2 + MS»
OM
M, = (——) + (2&) sinu,
de

93

(1.92)

(4.93)

(4.94)

£ is defined by cquation (4.28), whereas My, My and M3 are given by the set of equations

(4.38). The partial derivatives of the disturbing functions S;(i = 1,2,3,4) are simplified to

take the following configurations

8;
aL

as;
oG

= D )1 4 ) sin(2k —20) + 04 ) + 0y
1 16 32
15
* sin(2k — 2¢g — 2h) + ﬁ(l + e (=1 + 0)*sin(2k + 29 — 211.)},
113 15 .
= Y2 {—(—3 4 3 + 50%)sin(2k — 2h) + — (-1 + ¢t —0)(1+90)
nny L16 32
1!"
* sin(2k — 29 — 2h) — é(—l +0) (=1 + €+ 0)sin{2k + 2g — 2h)
: 15
= vl {fi(Q + 3e*)8sin(2k — 2h) + (1 + 0)sin(2k — 2g — 2h)
1 16 32
15
b e+ 0)sin(2k + 20 - 2m)},

LS '

32

3 . 15 . ‘
= va { (2 + 3cH)(—~1 + 07) cos(2k — 2h) — '{—jcl(l + 0)*

[y

16
¥ cos(2h — 29 — 20) — %f:z(—l + 0)% cos(2k + 29 — 'Zh)},

b

15 . .
(1 + 0)% cos(2k — 29 — 2h) + 7;;(:2(1 + 0Y cos(2k +2¢ — Zh)},

(1.95)
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where the superscript * is omitled from the orbital elements, Tor simplicity. As we already
mentioned in chapter 3 the determining functions S* have contributions in the long period,
whereas S for short periodic perturbations. T he partial derivatives of 57 are evaluated and

given by the group equations

* )
%if n—zn {——(11 + 34€?)0(—1 + 6*) sin(2k — 24)
45
+ ]—25(1 +26%)(1 + 0)*(—2 + 36) sin(2k — 29 — 21
428(1 4 2¢2)(—1+ 0)(2 + 36) sin(2k + 29 — zh.)},
as; (9 2 2t .
= — 4{ — —_ 7 v — I
- nz{ﬁqo( 17 4 17¢* + 156%) sin(2k — 2h)
45
128(1 +0)(—2+€(3-20)+0+ 30%)sin(2k — 2¢g — 2h)
— 14208(#1 +0)(—2 - 0+30%+ e?(3 + 20)) sin(2k + 29 — 2.’1)},
as; »? { 9 2y -
=Ll (24 17eH)(—1 4 36%)sin(2k — 2h)
—e*(— 8 2) g L —- —2h
+ oest (=1 4 80 + 96%) sin(2k — 29 — 24)
+ 215%62(—1 — 80 + 90%)sin(2k + 29 — 211.)},
as;  v'a? 45
8; = y: N {—1—2—862(1 + 0)*(-2 + 38) cos(2k — 29 — 2h)
+ %)ée (—1 4+ 0)*(2 4 30) cos(2k + 2¢ — 2.’1)},
as;  via® 9 9
o1 7;{64( 2+ 17¢2)0(—1 + 6%) cos(2k — 2h)
4!"
1208 (1 + 8)*(—2 + 30) cos(2k — 29 — 2h)
45 , 2
~ 1ox¢ (=14 8)*(2 4 30) cos(2k + 29 — Qh)},

Finally, we give ilie derivatives of the third order S5 in spite of their bit little Jong forms.
However, by the knowledge of these derivatives and those of the Hamiltonian, we can evaluate

the Poisson brackets with the help of MATHEMATICA package {(Wollram 199G). The
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derivatives deliver

5%

dlL

8S;
3G

as;
oH

05;

053
ah

where the coefficients L;, Gj, H;, ¢,

Appendix.

3
u_3 {Lysin(4k — 4h) + Lysin(4k — 49 — 4h) + Lasin(4k — 2¢ — 1)
n
+ Lysin(4k + 2¢ — 4h) + Lssin(4k + 49 — 4h) + Lgsin(2k — 2h)
+ Lysin(2k — 4g — 2h) + Lgsin(2k — 29 — 2h)

+ Lgsin{2k + 29 — 2h) + Lo sin(2k +4g — 2h)},

,‘;—2% (G sin(1k — 4h) + Gy sin(4k — 4g — 4h) + Gz sin(1k — 29 — 4h)
4 Gysin(dk +2g — 4h) + Gs sin(dk + g — 4h) + G sin(2k — 2h)
4 Gosin(2k — 4g — 2h) + Ggsin(2k — 29 — 21)

+ Ggsin(2k + 2g — 2h) + Gosin(2k +4g — 2h)},
3
:_15% {Hysin(4k — 4h) + H,sin(4k — 49 — 4h) + Hysin{4k — 2g — 41)

+ Hysin(4k 4 2g — 4h) + Hysin(4k +4g — 4h) + He sin(2k — 2h)
+ Hysin(2k — 4g ~ 2h) + Hysin(2k — 2g — 2h)

+ Hgsin(2k + 2g — 2h) + Hyosin(2k + 49 — 2h)},

via?

{g, cos(4k — 4g — 4h) + gy cos(4k — 2g — 4h)

n?

+ g3 cos(ak + 2g — 4h) + g4 cos{4k + 4g — 4h)
+ g cos(2k — 4g — 2h) + ge cos(2k — 2g — 2h)

+ g7 cos(2k + 2g — 2h) + gs cos(2k + 49 — 2R} },

1/3(L2

— {hy cos(4k — 4h) + hg cos(4k — 49 — 4h) + hycos(4k — 2g — 4h)
+ hycos(4k + 2g — 4h) + hs cos(4k + 4g — 4h) + heg cos(2k — 21)
+ hqcos(2k — 4g — 2h) + hg cos(2k — 2g — 2h)

+ hocos(2k + 29 — 2h) + hyo cos(2k + 49 — 2h)},

(4.97)

hy (7 =1,2,..,10 and 7 = 1,2,...,8) are given in
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Tn order to get the osculating orbital elements we consider for simplicity that, the partial
derivatives of S; (j = 2,3) with respect to L', G H U, ¢ B orefer to Py (2= 1,2,...,12)
and the derivatives of S7 (£ = 1,2,3) with respect to L', G", H", ¢", " are given by K
(s = 1,2,..,15). In what follows, we implement the above analytical expressions for digital
computations by constructing the following algorithm described by its purpose, input and

its computational sequence:

4.6.1 Computational algorithm

e Purpose: To compute the osculating orbital elements a, ¢, I, w, Q, [ of Nereid for the
nonplanar case. Nereid is inclined to the orbital plane of Neptune and perturbed by

the solar effects.

e Inpuf: the initial values ag, el I, Qf, 16, to, tena, and tol (specified tolerance).

e Units measurement: Masses are given in solar unit, distances are in AU, time in days

while the angles are given in radians.

o Computational Sequence:

(1) Compute the mean clements e I, W', Q") 1, from equations (4.75), (4.76), (4.77),
(4.78), (4.87) and (4.89).

(2) Compute the long (intermediate}-periodic variations {rom the following sequence
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{a) As for the cccentricity:

‘-1)] = — 2](,4 E(S](i,
chd
n
q)Z == 2’(:91
ena

8(1)1 n (9(1)1 O‘I)] 8(1)] - 3(1)1
_ - ALIOR I ok PRt
®2 (( 3G ena® e ) M=% 2) * (OH Rs =5 %)

d
@4:@2+73E(526,

1
s = _e'.n}a2 Fa, L
o (9% m 09, 9%\ (00 aq»lA (4.98)
6= \\BC  ena? e/ © g oH "’
8‘1’2 n (9‘1)2 8‘1)2 3432 3(1)2
= - ky — —k - —
b (( 0G  end® Jde ) o ag 2) + (3])’ N ka
Bd’\’; i 8‘1’3 8@3 3‘13‘3 8@3
= — ky - —Fk
D (( 0G  ena? Oe ) Y g 2) + (3H )
b+ ¢ ¢
¢9:¢)5+(_.(i_7)+__563(1,
2 G
€long = e’ + b€ + bz¢’ + ba€’,

P,

(b) Inclination: in this case we use the notation I = arccos (H/G) as follows

(bl) to get the angular momentum G’ make the following changes in item (a)

¢, =Ky, 1
¢)2 = K:g, (4'99)
bs = Kig, |
then apply all the steps in (a) to get
Glong = G" +6G" + &G + 836 (4.100)

(b2) to get the angular momentum H' make the following changes in item (a)
q)], = K::;,

d, = K10, (4.101)
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then apply all the steps in (a) to get
H, = H"+6H 4 861" +6&H"

long

(b3) then we can get If,,, using the definition

{}ong = aTCCOS (H,'ang/G' ) .

long

(c) for the argument of pericenter ', in the above equations put

(I)l = '_KQ, W
¢'2 = _KT,
q’s = _’C121 ]

then apply all the steps mentioned in eccentricity case to get
Wiong = @ + 81w + 6o’ + 30",

(d) for the longitude of ascending node V', change

(I)] = —K3,
¢, = _’C& L
¢5 = _K:13: J

then apply all the steps mentioned in item (a) to get

' = QH + 61Q’ + (‘)_QQ’ + 63Q’.

long

(e} in case of the mean anomaly I' put
q)l = "LK‘:]’
q’g = —K-,(‘,,

b5 = —Ki1,

(1.102)

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)

(4.108)
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then apply all the steps mentioned in the case (a) lo get:

long = I+ 631" + 81 + 85" (4.109)

(3) Compute the short-periodic variations as follows

Call Kepler (solve Kepler cquation at every time 1 and substitute in the items below)

(a) semi-major axis:

62(1 = _._'P4,
1

2
S0 = 2P0, (4.110)
na

bagh, = b0 + bsa,

(b) eccentricity:

2 w
i i
bre = —
27 ena? enazps’
2
fae = - Pro— ——Pu, (4.111)
ena? ena®
6esho = 625 + 636,
(c) Inclination: in this case we use also the notation I = arccos (H/G)
(c1) to get the angular momentum G
)
6,G = Ps,
63G:’P11’ (4]]2)
6G5ho == 62G + 5‘3(;'
(c2) to get the angular momentum H
\
(SZH = P(;.,
65})( :7)]2, (4]J'5)
6]15]“—, = 62 .HI + (SJIII
J/




100 CHAPTER 4. NON-PLANAR MOTION SOLUTION
(d) Argument of pericenter:

62‘-") = _’P21

63w = —Ps, (4.114)

6wsho - 62&) + 63‘-*)
(e) Longitude of ascending node:

(S‘ZS'1 = _—’P31

6,00 = —Pa, (4.115)

8Qsno = 6252 + 6302

(I) in case of the mean anomaly

6‘2I = _Pla

631 = _P'Tv (4.116)

615}10 = 621 + 63l

L,

(4) Compute the osculating orbital clements from the equations

b

Qose = g + 8@sho,

€osc = e;ong + b€sho,
Gasc = G;ong + 66‘5"0’
Hope = Hjppy + 6H o,

(4.117)

Iosc = arccos (]{osc/Gnsr) )
— f
Wose = w!ong + 6wshm

Qnsc = + 69’51@01

long

lnsc = l;(my + 61.9.':0-

(5) The algorithm is completed up to the third order.




47 COMPARISON WITH NUMERICAL INTEGRATION 01

4.7 Comparison with Numerical Integration

In this Section we give in more details the way of comparison between the analytical and
pumerical experiments. The residuals and the amplitudes of the osculating orbital elements
of real Nereid arc shown by figures and tables. To check the present theory, we adopted
Bulirsch-Stoer extrapolation method because it has a capability of highly accurate orbital

computation.

4.7.1 'The way of comparison

In order to compare the analytical solution with the numerical integration of the equations

of motion we performed the following steps

e Analytical evaluation of the osculating elements by inserting the initial mean clements
coming from Jacobson (1990, 1991) in the analytical program:
ag** = 0.036854 = a (au)
ez = 0.751201525 (rad)
Iz = 7.23242919 (deg)
Wi = 0.0
Q3™ = 333.979128 (deg)

[+ = 359.341112 (deg)

e Numerical computation of the osculating elements by inserting the initial conditions

Iy, v, coming from the osculating elements of the above analytical solution
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Ugse a

Case Yo

]osc 0

Wosc Lo

Q'g:wsc Yo

[osc <p
\

e Then get the direct difference (O — C') between analytical and numerical results (e.g.
see figure 4.5). In case of nonzero inclination, we make some corrections to improve

the accuracy.

e Remove the linear part from the elements in figure 4.5 namely the mean anomaly, the
argument of pericenter and the longitude of the ascending node, then the results are

shown in figure 4.6.

e The corrections in the mean motions of {, g and h have the values
dn, = —3.78855 x 1078 (rad/day)
én, = 1.11885 x 107% (rad/day)

§ny, = —T7.17298 x 1077 (rad/day)

e Put the new corrections

¢ e+ ong
ng n, + dn,
gt Ny + 6”!1

in the analytical program and recalculate the osculating clements.




4.7, COMPARISON WITH NUMERICAL INTEGRATION 103

o Compute the residuals in the elements (0* = C), which can be seen 1 figure 4.7.

e Use the least square filting Lo remove the sccular part from figure 4.7 and the final

results are expressed by figure 4.8,

e The comparison is completed.

Tables V and VI show the actual amplitudes and the accuracy in the osculating orbital
clements of the nonplanar case, for both short and long periodic perturbations respectively.

The osculating elements are listed in table VIL.

TABLE V

Amplitudes of the osculating elements (non-planar case)

Elements Short-period  Long-period
semi-major axis 747.989 1196.78
cceentricity 0.0004 0.0115

arg. of pericenter  0.006 0.7
inclination 0.0025 0.16

long. of asc. node (.01 0.17

mean anomaly 0.0325 2.0
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TABLE VI

Accuracy of the osculating elements (non-planar case)

Flements Short-period  Long-period
semmi-major axis 0.3 0.3
eccentricity 3x 1078 1%x10°7

arg. of pericenter  3x107° 7x107*
inclination 1.5x107° 1x1071
long. of asc. node 3% 1078 7x10™*
mean anomaly 2.5%x107° 6x107°

where the semi-major axis is given in km, eccentricity in radian, and the argument of peri-
center, longitude of ascending node and the mean anomaly are given in degree. The results

of the present theory satisfy the required accuracy for the observations.
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TABLE VII

)

Osculating elements of the orbit of Nereid at Julian ephemerides date 2433680.5 referred to

the mean orbital plane of Neptune

Elements

Value

Units

semi-major axis

eccentiricity

arg. of pericenter

inclination

long. of asc. node

mean anomaly

mean motion

orbital period of Nereid
orbital period of Neptune

period of arg. of pericenter

period of node

mean motion of arg. of pericenter

mean motion of node

5513376.2332
0.749139307372
0.3205009745
7.2023147577
334.0527164964
358.3922274885
0.999825034
360.0629988
165.223494
13606.468483
-17901.900839
7.24381x107°

-5.505707x107°

(km)
(rad)
(deg)
(deg)
(deg)
(deg)
(deg/day)
(day)
(year)
(year)
(year)
(deg/day)

(deg/day)

Perturbed mean motion of mean anomaly (ny«) =-7.691307x107° (deg/day),

Disturbed mean motion of mean anomaly (ny+nye-) =1.744889x 1072 (rad/day),

The abo

Jifferent, initial conditions, of course the results of the above table will be changed.

=0.999748121 (deg/day).

ve results arised according to inserting certain initial mean elements. So, if we use

d
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4.8 Summary and conclusions

We have constructed an analytical theory for the motion of the second Neptunian satellite
Nereid in the frame work of the circular non-planar restricted three body problem using Lie
transforms approach. The main perturbing forces due to the solar effects are only taken
into account. The disturbing function is developed in powers of the ratio of the semimajor
axes of the satellite and the sun and put in a closed form with respect to the eccentricily.
In the present chapter we offered a complete theory which includes the short, intermediate
and long periodic perturbations. The osculating orbital elements which describe the orbital
motion of Nereid are evaluated analytically and got ephemerides of Nereid. The comparison
with the numerical integration of the equations of motion gives an accuracy on the level of
0.3 km in the semi-major axis, 3 x 1077 in the eccentricity and 107° degree in the angular
variables over several hundred years.

Figures 4.1 and 4.2 show the behaviour of the osculating clements of Nereid over 5 and
300 years respectively. The direct difference between the analytical and numerical results
for short period interval is given by figure 4.3, while figure 4.4 exhibits the residuals in the
elements using least square fitting. The check of the reliability and accuracy of the theory for
a relatively long interval is given in figures 4.5 and 4.6. Pigure 4.7 represents the accuracy in
the elements after making corrections in the mean motions of {, g and h. These corrections
are coming from the linear part of figure 4.5. Finally, the residuals in the osculating clements

are adjusted and exhibited in figure 4.8.




Figure Captions

Fig. 4.1. The osculating orbital elements of Nereid for the nonplanar case over 5 years:
(1) semi-major axis,
(2) eccentricity,
(3) argument of pericenter,
(4) inclination,
(5) longitude of ascending node,

(6) periodic parl of the mean anomaly.

Fig. 4.2. The osculating orbital elements of Nereid for the nonplanar case over 300 years:
(1) semi-major axis,
(2) eccentricity,
(3) periodic part of the argument of pericenter,
(4) inclination,
(5) periodic part of the longitude of ascending node,
(6) periodic part of the mean anomaly.
Fig. 4.3. Difference between analytical and numerical results of the orbital elements of
Nereid during 5 years:

107
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(1) semi-major axis (in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4) inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
Fig. 4.4. Residuals in the orbital elements of Nereid during 5 years by using least-square
fitting :

(1) semi-major axis (in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree},

(4) inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
Fig. 4.5. Difference between analytical and numerical results of the orbital elements of
Nereid over 300 years:

(1) semi-major axis {in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4) inclination {in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).

Fig. 4.6. Residuals in the orbital elements of Nercid over 300 years by using least-square
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fitting :

(1) semi-major axis (in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4 inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
Fig. 4.7. Difference between analytical and numerical results of the orbital elements of
Nereid over 300 years after making corrections in the mean motions of £, g and h:

(1) semi-major axis (in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4) inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
Fig. 4.8. Residuals in the osculating orbital elements of Nereid over 300 years by using
least-squares fitting, and after making corrections in the mean motions of £, g and A:

(1) semi-major axis (in km),

(2) eccentricity (in radians),

(3) argument of pericenter (in degree),

(4) inclination (in degree),

(5) longitude of ascending node (in degree),

(6) the mean anomaly (in degree).
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Chapter 5

Discussion and Conclusions

Planetary satellites display a rich variety of orbital configurations and surface character-
istics that have fascinated astronomers over several centuries. Dynamical studies of these
satellites are almost certainly contribution of understanding the origin of the solar system.
Such information on the planetary satellites will provide at least some critical clues to our
understanding of the solar system, because the satellites are such diverse bodies, existing in
so many different environments of their parent planets.

In this research, an analytical theory of the motion of the second Neptunian satellite
Nereid is constructed using Lie transformation approach. The main perturbing forces which
come from the solar influence are only taken into account. The disturbing function is de-
veloped in powers of the ratio of the semimajor axes of the satellite and the Sun and put
1 a closed form with respect to the eccentricity. The convergence of the power serics may
he slow for some of the outer satellites, for example, the outer Jovian salellites have ratios
m between 0.145 and 0.175 (Saha and Tremaine 1993, Solovaya 1995). The case of Nereid
represents advantage, the ratio m ~ 0.006, and the power series of the perturbing function

119
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is convergent. The theory includes secular perturbations up to the fourth order, short, mter-
mediate and long period perturbations up to the third order. In the planar case, the periodic
terms are performed to the fourth order while the secular terms arc to the fifth order. The
osculating orbital elements which describe the orbital motion of Nereid are evaluated ana-
lytically. Since the high cccentric orbit of Nereid precludes replacing functions of the true
anomaly by expansions involving ihe mean anomaly, it is convenient to take {he eccentric
anomaly of Nereid u as an independent variable.

The global internal accuracy of the theory is obtained by direct comparison with the
numerical integration of the equations of motion of the satellite. The maximum discrepancies
reached 0.3 km in the semimajor axis, 10-7 in the eccentricity and 107 degree in the angular
variables over a period of several hundred years. Looking to figures 4.1 and 4.2, we see that
the amplitudes of the osculating elements of Nereid are increasing with time. This means
that, studying the motion of Nereid for short-period interval (£ = 360 days) is not enough.
We extended our analytical study for several hundred years and got ephemerides of Nereid.
The direct difference between the analytical and numerical results for short period interval is
given by figure 4.3, while figure 4.4 cxhibits the residuals in the clements using least square
fitting. The test of the reliability and accuracy of the theory for a relatively long interval 1s
given in figures 4.5 and 4.6. Figure 4.7 represents the accuracy in the elements after making
corrections in the mean motions of £, g and h. These corrections are coming from the linear
part. of figure 4.5.

General spaeking, correction is made to overcome secular error which grows linearly with
time (Kinoshita 1968, Kinoshita & Nakai 1992) during calculations and to reach the true

orbit as possible. 1f after a correction has heen made, the resulting deviations fvom the true
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orbit are small, then the caleulated orbit will always closely follow the true orbit. However,
if the resulting deviations are systematic, then the calculated orbit will eventually diverge
[rom the true orbit. 1 would like to refer the fact that, the corrections are exceedingly small

- so that, even over the course of a long integration, the difference between the calculated
orbit and the true one is negligible. This what happened when we added the correciions of
{he mean motions of £, g and h. The corrections values were —3.78774 x 1078,1.1188 x 1073
and —7.173324 x 1079 degree per day in £, g and h respectively. However, when I tried to
make another corrections in these mean motions, I got values much smaller than that in the
previous correclion. Consequently, their contribution in improving the osculating elements
this time is insignificant. Although the present theory satisfies the required accuracy for
fulure observations {rom space, further improvement can be made to increase this accuracy
for very long period, if the corrections ‘5 the other three elements are included. Finally, the
residuals in the osculating elements are adjusted and exhibited in figure 4.8. The amplitudes
and accuracy both for short and long period are given in tables V and VI respectively. In
case of zero inclination, however, the residuals in the elements of a fictitious Nereid for 5
and 500 years are shown in figures 3.3 and 3.4 respectively. The amplitudes and accuracy
magnitude are given in tables 1 and 1V respectively. The accuracy in seIni-INajor axis
does not exceed 230 and 300 meter over 5 and 500 years respectively. Although the zero
inclination case h.as meaningless for a real Nereid, it was informative and a good test for the
NON-Zero case.

Different values of Nereid’s inclination are found in text-hooks and published papers. One
may tead 1 = 27°.5, 1 = 107,71 = 67, and 7 = 7°.23. 'l give interpretation of the mentioned

values to avoid the reader any confusion. The value 1 = 27¢.5 (or 1 = 28°) used by Mignard
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(1981) and veillet (1982} 15 an osculating clement referred to the arth mean equator and
equinox of 1950.0, epoch 1981.0. As for the value i = 10, it is a mean element referred
to the mean orbital plane of Neptune (sce also Mignard 1981 and Veillet 1982, 1988). The
osculating element ¢ = 6°.7 is evaluated by Rose (1974), Veillet (1988) and Jacobson (1990).
Tt is also called Nereid barycentric mean element at Julian ephemerides date 2433680.5,
referred to the mean orbital plane of Neptune (Jacobson 1990). However, Jacobson (1991)
improved the orbit of Nereid (numerically) using spacecraft and Farth-based observations.
According to this improvement the inclination of Nereid became 7 = 7°.23, referred to Nereid
invariable plane and the orbit is changed about 65 km. Here the invariable plane of Nereid
is that plane on which the orbit of Nereid precesses almost uniformaly. In fact the previous
orbit predicted by jacobson (1990) has error about 200,000 km. This error was due to the
limited accuracy of the observations used in the orbit determination and the poorly known
physical constants used in the orbital motion model. The model proposed by Jacobson is
fit the numerically integrated Neptunian satellite orbits (Nercid and Triton) to Earth-based

astrometric observations and Voyager spacecraft observations.

The present theory has not been fitted Lo the observations. We intend to do that after
including the perturbations of Triton and the oblateness of Neptune although the effects of
the latter is very small. Then the integrations constants of the theory can have a real mean-
ing. However, the comparison with the numerical integration of the equations of motion
gives a greal accuracy whicl is much consistent with the observations. The pcrturbal.ion
potentials magnitudes of Sun, Triton and Neptune relative to the two-body potential are
given by Ve = 7.6 X 107, Vipp = 5.3 x 1077 and V), = 4.3 X 1078 respectively. It 1s casy to

know roughly both the perturbation of Triton and the oblateness of Neptune compared to
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{he solar effects. We can write Vyg/Vey ~ 6.9 X 1073 and Vyy/Vey ~ 5.6 X 1071, The effect
of the third harmonic of the Sun Viz = 1.2 % 10~7 is nearly has the same order of the second
harmonic of Triton. So, one may develop this theory by including both Vss and Vi, for
further motion prediction of Nereid. Since our theory is pure analytical, a direct comparison
with observations using real data should determine the integration constants accurately and
hence, provide their real meaning. Nereid was discovered by Kuiper in 1949. This means
that the observations period for Nereid does not exceed 50 years. The present theory has
been elaborated to predict the motion of Nereid over several hundered years.
By this end we provide to the observers a computational tool, capable of generating ephemerides

for predictions, easy to handle.
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