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Abstract

Symmetric collinear four-body problem (SC4BP for short) is a special case of the
general Newtonian four-body problem in which the bodies are distributed symmet-
rically about the center of masses on a fixed common line. This is a Hamiltonian
system of two degrees of freedom. We analytically study SC4BP independently of
the values of mass and energy, and numerically study the case of equal-mass and
negative energy. The present work is the first systematic study of SC4BP with the
aid of combination of symbolic dynamics, the McGehee’s method, and surface of
section. It provides rich qualitative features in SC4BP.

Our purpose is to clarify qualitatively the structure of phase space for SC4BP.
Almost all orbits for SC4BP experience an infinity of binary collisions. Orbits are
replaced by symbol sequences if collisions are replaced by symbols. This replacement
enabels us to ignore quantitatively small differences among orbits, but it keeps
their qualitative differences. We define a surface of section ¥ as the set of central
configurations. We can observe all orbits for SC4BP on . Therefore, the study of
the phase space is reduced to examine the distribution of symbol sequences on T
both analytically and numerically.

We express I in the phase space described by McGehee’s coordinates. As a
result, it becomes possible to connect the structure of ¥ with the flow on the total
collision manifold. We analytically obtain that the set of points leading to quadruple
collision forms arcs, which we call QCC. Any arc of QCCs forms boundary between
regions of different symbol sequences. In addition, we analytically obtain escape
criteria by simple two-body consideration. By numerical calculations, we have a
distribution of words on X. The results show that the distribution of words has the
stratified structure in the sea of chaos on ¥ divided by some bunches of QCCs. Using
the time-reversibility of this autonomous system, one can see that certain subsets of
symbol sequences are not realized, and that certain words are possible as periodic
orbits. These are closely related to the winding number of the invariant manifolds

associated with the critical points on the total collision manifold.
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Chapter 1

Introduction

The symmetric collinear four-body problem (hereafter, referred to as SC{BP) is
one of special problems for the general four-body system. In SC4BP, four masses
my(= m,), ms(= m, ), m;, m, are put in this order collinearly with their coordinates
(= —q2), @s(= —q1), @, g2 and velocities §u(= — @), ¢s(= —q1), G, G2, respectively.
Therefore, SC4BP is a Hamiltonian system with two degrees of freedom. Their initial
conditions are given so as to keep the motion symmetric with respect to the origin

and collinear for all time. Configuration of SC4BP is shown in Fig.1.1.

ms My m; My
*—=o } *—e
—q2 —q 0 1 ¢

F1G.1.1: Configuration of SC4BP

Though SC4BP is a simple dynamical system, the behavior is complicated, some-
times chaotic. Over the past few decades, a considerable number of studies have
been conducted on such a simple dynamical systems, for instance, the collinear three-
body problem (hereafter, referred to as C3BP), the isosceles three-body problem,
or some special four-body problems, and so on. Here we review of a brief history of

studies on simple special N-body systems.
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1.1 Studies on some special N-body systems

McGehee[21] described C3BP by introducing a set of new McGehee’s variables.
McGehee blew up the total collision singularity to a 2-dimensionl manifold which
is pasted on the phase space as a boundary. The manifold is called the total colli-
ston manifold. McGehee gave a simple proof for one of Sundman’s theorems that
states impossibility of triple collision in the case of non-zero angular momentum,
and un-regularizability of triple collision in general. Since McGehee, a lot of studies
on special N-body systems appeared, which are C3BP (Meyer et al{24], Mikkola
et al[27, 28, 29],Hietarinta et al[10], Sim4[46]Tanikawa et al[56, 57]), the collinear
four-body problem (Mather et al{20], Saari et al[39], Tanikawa et al[58]), the isosce-
les three-body problem (Devaney([3], Moeckel[31],5im6[49], Zare et al{65], and oth-
ers), the circular-planar restricted three-body problem (Llibre et al[18, 17]), the
rectangular case and SC4BP (Simé et al{47]), the trapezoidal four-body problem
(Lacomba[12]), the rhomboidal four-body problem (Lacomba[l4, 15]), the tetrahe-
dral case (Vidal[59]), the special five-body problem (Xia[63]), etc.

Some of them proved the existence of some special solutions with the aid of Sym-
bolic Dynamics which is the basic tool in the studies on N-body systems. Before
McGehee, the existence of oscillatory solutions was proved by Sitnikov{51] in spa-
tial restricted three-body problem by using symbolic dynamics. McGehee’s tequenic
simlified such a proof. Using McGehee’s tequenic, Saari and Xia[39] proved the exis-
tence of oscillatory solutions in C3BP. In addition, the existence of super-hyperbolic
motions was proved for the collinear four-body problem. Mather and McGehee[20]
gave a proof of the existence of solutions which become unbounded in finite time for
the collinear four-body problem. In their proof, triple collision works effectively in
the process of unbounded motion. It is remarkable that Xia[63] proved the existence
of non-collision singularity in 5-body systems. Also in their works, triple collision
works effectively. The importance of local analyses around the total collision has

been recognized through these studies.

These studies wre based on understandings of geometry around the total collision.
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On the other hand, studies on the geometry itself were conducted extensively ([3, 12,
14, 15, 17, 46, 47, 59]). As a natural subsequence after the proposition that insists
on un-regularizability of triple collision in general, Sim6[46] studied masses which
enable regularization of triple collision by examininig the connection of invariant
manifolds on the total manifold. There are devoted many studies to analyze the
local phase structure around the total collision in each special settings. McGehee’s
tequenic is suitable for such studies because fictitious flow on the total collision

manifold reflects real flow near the total collision.

The first study on SC4BP was made by Simé and Lacomba [47]. They concen-
trated on flow on the total collision manifold, especially, on the invariant manifolds
associated with the critical points. They determined some values of mass ratio
where the invariant manifolds change their behavior qualitatively, as well as be-
havior near the total collision chages qualitatively. Althogh McGehee’s technique
enables to study the local structure, it can not give any information on global be-
haviors in dynamical systems. For comprehension of global behaviors of solutions,
the method of Surface of Section is used well. It bases on numerical analyses in most
cases. Mikkola et al[27, 28, 29] conducted an extensive numerical simulations for
the collinear three-body problem and examined the structure in the surface of sec-
tion. As a result, they clarified the global phase structure. Similarly, Sweatman[55]
carried out a numerous number of numerical simulations for SC4BP and observed
their orbits on the surface of section. They obtained some interesting orbits, and
divided them into three categories according to their qualitative behaviors, which
are quasiperiodic, fast-scattering and chaotic motions. They pointed out similarity
of the surface of section in SC4BP to one in collinear three-body problem. They
insisted that SC4BP is the simplest model for collisions of two pairs of binaries.
Although some generalization is required to study such a process of binary-binary
collision, it is basically neccesary to clarify the process in the simplest model. How-
ever, both of them did not pay attension to any influence from the total collision to

the global phase structure.

On the contrary, Tanikawa et al[56, 57] noticed importance of the total collision
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when they applied symbolic dynamics to the collinear three-body problem. They ob-
tained that a set of initial points to the total collision slices chaotic ares which were
already discovered by Mikkola et al[27, 28, 29]. However, their study was mainly
based on numerical simulations, and contained no strict proof on the stratified struc-
ture becuaue it did not share in the bounty of the total collision analyses. Tanikawa
et al[58] carried out a huge number of numerical simulations of the free-fall colllinear
four-body problem. They obtained a complicated and interesting structure in the
initial value space, which seemed to form fractals. In this case, it is expected to
find a special solution which becomes unbounded within a finite time. Zare et al[65]
applied symbolic dynamics to the isosceles three-body problem, clarified structure
of phase spaée in the system. They found structure in the chaotic regions as well.
Symbolic dynamics work effectively for study of a certain class of dynamical systems
like these.

1.2 OQutline of the present paper

In these previous studies, several analytical tools or extensive numerical simulations
are used independently. In the present paper, we combine two methods of symbolic
dynamics and surface of section with the aid of McGehee’s variables. We intend to
analyze the structure of distribution of symbol sequences on the surface of section,
analytically and numerically. Gooal of the present paper is to comprehend the whole
structure of phase space in SC4BP.

In chapter 2, we formulate SC4BP, introduce variables of McGehee and define the
total collision manifold. The total collision manifold is important, also in SC4BP. We
call it Quadruple Collision Manifold (QCM, for short). Flows on QCM greatly reflect
the global behavior as well as the local behavior of solutions near the quadruple
- collision. When the total energy is negative, orbits are realized in the interior of
QCM. Our surface of section I is defined as a section of QCM with its interior. It is
possible to understand structure of £ in combination with flow on QCM. In SC4BP,

almost all the solutions experience binary collisions. We make a correspondence
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from solutions to a sequence of binary collisions which are denoted by some symbol
sequences. Thus, we can apply symbolic dynamics to SC4BP. We associate to any
point on a surface of section a symbol sequence.

In chapter 3, we describe our analytical results. Flows on the QCM and the
homothetic solution are given. The surface of section X is proved to be global, i.e.,
arbitrary orbits of SCABP have an intersection with X at least. Reversibility of T is
confirmed. Immediate future of solution crossing ¥ is predicted. The set of points
on T leading to quadruple collision is discussed. They form one dimensional curves
on ¥ which we call Quadruple Collision Curves (QCC, for short). Finally, we obtain
the escape criteria by two-body consideration.

In chapter 4, results of numerical calculations are described. The surface of
section is sliced by QCCs into an infinity of stratified areas. We divide ¥ into 12
regions based on the main QCCs. We find some un-realizable sequences of symbols
from numerical calculations directly. We assume one property which is confirmed
by numerical calculations partially. We construct all unrealizable sequences from
the property, which we propose as a conjecture. Studying spatial order of QCCs
yeilds the clear understanding of fractal structure in the area where are an infinity
of QCCs. We find a transition rule among another set of 12 regions. This enables
us to construct some possible periods of periodic points of ¥. Other calculations

display families of periodic points, invariant regions, and escape regions on .






Chapter 2

Methods

Main purposes in this chapter are to define a surface of section, to define the cor-
respondence between orbits and symbol sequences, and to give some terminologies,
which are used both analytically and numerically. First, we describe equations of
motion and their singularities. Second, we give a transformation of variables in order
to remove singularities due to collisions. We blow up singularity due to quadruple
collision. Blow-up technique enables us to analyze the behavior of orbits in the
vicinity of quadruple collision. We regularize binary collisions. Regularization en-
ables us to continue orbits beyond binary collision. New variables are applicable
to analytical studies as well as numerical integrations. We embed the phase space
into the 3-dimensional space using the new variables. Third, we define a surface
of section. Also, we give a coordinate system to the surface of section by the new
variables. Finally, we define an assignment of symbols to physical events as well as
replacement of orbits by symbol sequences. This simplification enables us to neglect
quantitatively small differences among orbits and to concentrate their qualitative

differences.
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2.1 Equations of Motion

From formulation of SC4BP (see Fig.1.1) the Lagrangian function is obtained as
below.

1,.. ..
L=3 ‘Mg + U(q),

where ¢ =* (q1,¢2), M = diag(2m,, 2m,) and the force function

m: m: 2mme  2myms
U(g)= .—— + — + .
(a) 2 2¢2 q+@ @-q

Here we assume the gravitation constant to be unity(G = 1). Momentum p =

(p1,p2) conjugate to g is defined by

pi = g—i =2mig;, (i=1,2).

Then we have Hamiltonian equations of motion, i.e.

oH oH
i = o> ), = — , 1= 1,2), 2.1.1
=g p 24, ( ) (2.1.1)

with Hamiltonian function

H= % ‘pM~'p - U(q).

This dynamical system is defined in the domain(see Fig.2.1)

{{q1,p1, 0,02} € R | 0 < 1 < @} (2.1.2)

2 4 g =q

b

NAANNNRNNAN

qi

F1G.2.1: Configuration Space for SC4BP

Boundaries(¢, = 0, ¢; = ¢2 # 0 and ¢, = ¢, = 0) give rise to different singularities

in the equations of motion(2.1.1). These singularities are named as 1-2-1 binary
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collision (¢ = 0), 2-2 binary collision (g1 = ¢, # 0) and quadruple collision (g =
g2 = 0).

The other singularity occurs in the case(q; — oo or ¢» — 00). This singularity is
named as escape. Physically, there are three types of escapes: 2-2 escape (g = oo
while g, is bounded), 1-2-1 escape (g1 — oo while |g; — ¢| is bounded), and total
escape (|g2 — @] = 00 as @1 = o0). In the case of negative energy, the third case
never occurs.

We can assume m; + m, = 1 without loss of generality. We use a new variable

 instead of masses m; and m,, i.e.,

VM =cosp, /Mg =singp,

where ¢ € (0, g). Then we have a new expression of the force function U(q), i.e.

_ costy N sin ¢ N 2sin’ pcos?p  2sin®pcos?y

U
(@ 2q 2¢2 g1 + ¢ g2 — q

This enables us to describe the elegant expressions of the force function and the

domain as seen in the next section.

2.2 Blow-up and Regularization

First, we remove a singularity due to quadruple collision(g; = ¢ = 0) from the

equations (2.1.1) by the following transformation: blow-up technique.

r= \/Z(q’f cos? ¢ + g5 sin® p), (2.2.1)
cosf = v/2q, cos /T,
sinf = v/2¢, sin p/r,
v={qip + @p2)/ VT,

u = (q1p2 cot ¢ — gpy tan )/ /T,

dr = r =324t
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Thereby, we obtain a new set of equations of motion;

dr
— = 2.2.
I T, (2.2.2)
@ _
dr '

dv 1,

=3¢ +u® - V(8),

du  uv  dV(f)

dr — 2 de

where
1 scos®p sind g sin® 2 cos ¢ sin @
V() = — : 2.2.3
(©) \/i( cos8 T sind sin(# + @) sin(@ — z,o)) (2:23)
Hamiltonian function is rewritten to the following equation:
1 2 2
rh = —(v° +u°) - V(6), (2.2.4)

2

where h is a value of the total energy.
The domain (2.1.2) is translated to

{(r,8,v,u) e R | r > 0,0 <0 < 7/2}.

Boundaries of (2.1.2): ¢; =g =0, ¢ = ¢2 # 0, ¢, = 0 are also translated to r =0,
8 = ¢, § = n/2, respectively. One can extend the domain to its boundary r = 0
because (2.2.2)-(2.2.4) are still regular if r = 0. Therefore, we take a new domain,
ie.,
{(r,0,v,u) eR* | r > 0,90 < 0 < 7/2}. (2.2.5)
These variables enable us to describe the flow in the vicinity of the quadruple col-
lision. On the other hand, binary collisions(f = ¢ and 8 = =/2) still remain as
singularities of the (2.2.2).
Second, we regularize binary collision singularities (§ = ¢ or § = 7/2) by the

following transformation.

W(#) = V(6) cossin{8 — @),

w cos #sin(6 — @)

YW

u, (2.2.6)
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w(9)
- cos @sin(d — )

T.

Thereby, we obtain the equations of motion

dr  cosfsin(f — ¢)

—=rv , 2.2.7
ds \/W(g) ( )
L
ds =~
v? cos sin(@ — )
=W(8)+ (2hr — — ,
?) VW (0)
dw _ 2cosfsin(f — p) —w?dW(0) vwcosfsin(f — )
ds 2W(6) dé 2,/W(8)
_ _aycos8sin(f — )
+ cos(26 qo)(l + (2hr - v%) W) ),
with the energy relation translated from (2.2.4)
2
(hr — ?)(C"SQS‘“(G ""))2 - “”7 — cos@sin(6 — p). (2.2.8)

These are not yet canonical equations. The domain (2.2.5) is translated to
{(r,8,v,w) eR* | r > 0,0 <6 <7/2}.

One can extend this domain to its boundaries § = ¢ and § = #/2 because (2.2.6)-
(2.2.8) are still regular if # = ¢ and # = n/2. Therefore, we have a new domain P,
namely

D={{r6,v,w)eR |r>0,0 <8< 7/2}. (2.2.9)

Thus, the flow beyond the binary collisions is obtained, and singularities due to
collisions are removed.

The domain D is a 3-dimensional subset embedded in 4-dimensional Euclidean
space because the motion is realized on the energy surface defined by (2.2.8). In fact,
values of r can be determined from other variables through (2.2.8) if p < 8 < #/2
and h # 0. Let D’ denote a subset of D from which 8 = ¢ and # = 7/2 are removed.
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We embed D' into the space (8,v,w) if h # 0. If we substitute A = 0 to (2.2.8),

then we have a relation, i.e.,

v? scos@sin(f — )2 w_Q_COS 8
( YO ) + 5 = cosfsin(8 — ). (2.2.10)

The 2-dimensional manifold denoted by (2.2.10)(see Fig.2.2) is named as Cj.

2

v

G

F1G6.2.2: Schematic explanation of the phase space for SC4BP

2-dimensional manifold Cy is homeomorphic to a 2-dimensional sphere with 4 holes.

If h < 0 (resp. h > 0), the phase space is inside (resp. outside) of Cy. When
h = 0, the phase space is a direct product of an interval [0,00) and C,. Cy can be
obtained by substituting r = 0 into (2.2.8) as well. Therefore, we call C; “quadruple

collision manifold”. Namely,

Co={(r,0v,w)eR* |r=0,p <6< n/2}. (2.2.11)

2.3 Surface of Section

We define 6. as the real root of the following equation.

dv(e)
—5 =0

This root §. depends on mass parameter ¢ only (see Appendix A).

Definition 2.3.1 (Surface of Section)

We define a surface of section T as follows.

L={(r,0,v,w)eD |6=20}
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No solution other than the homothetic solution is tangent to £ from uniqueness of
solution in SC4BP. Moreover, all orbits except for the homothetic solution intersect
¥ transversally. The proof is given in the next chapter. Therefore, it is sufficient to
study ¥ instead of whole set of orbits of SC4BP.

Suppose that there exists an orbit intersecting ¥ at least twice. Then we define -

the mapping on ¥ itself.

Definition 2.3.2 (Mapping on X)
When an orbit intersecting ¥ at @y € X intersects ¥ again at @; € I, mapping

T : ¥ — X is defined as

T : &y Ty =T($0)

Let us give coordinates to ¥ in terms of our new variables. If we substitute

6 = 6, into (2.2.8), then we have

2 W (8.) w? W(8.)
5 = + hr. (2.3.1)

v
2 cosd sin?(f. — ¢) 2 cosf.sin(f. — )

Variable r can be uniquely determined from v and w through (2.3.1) if h # 0.
Variables v and w form an ellipse for each values of r if the right-hand side of (2.3.1)

is positive. We can take two coordinates v and w on X.

In the case of negative energy (e.g. h = —1), when range of r is 0 to W (6..)/{cos 8, sin(8.—
©)}, the right-hand side of (2.3.1) is positive or zero. Thus £ forms an elliptic disk
with its axes 2,/2V(6.) and 2\/2 cos §,sin(f, — ¢)(Fig.2.3). One of axes(w = 0)

of the elliptic disk is the homothetic solution itself. The outermost ellipse is an

intersection with Cp(Fig.2.4).
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F1G.2.3: Surface of section F1G.2.4: Quadruple Collision Manifold

Cy and Surface of section ©

2.4 Symbol Sequences

We define three symbols given in the following Table 2.1 and dot(.) to denote an

intersection of orbit with T at the time origin ¢t = 0.

symbols(n;) values of variables physical events

0 f=mn/2 single binary collision
1 r=20 quadruple collision
2 f=¢ simultaneous binary collision

Table 2.1: Assignment of Symbols

A symbol sequence is constructed in such a way that when a certain physical
event listed in Table 2.1 occurs, the corresponding symbol is concatenated rightward.
In general, it is impossible to continue orbits beyond quadruple collision. So, we
regard as 1 continuing endlessly after the first 1 in the future and before the last 1
in the past, if 1 appears in the sequence.

Now, let us express an orbit passing through ®; € ¥ at t = 0 as a sequence of 0,
1 and 2 as follows:

[. NN MNng - - ']3

where n,;, (k € Z) are either 0, 1, or 2. We follow the orbit starting from @, € ¥ at
t = 0 to the future and to the past. Then, ny represents the first collision. Symbols
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ny, Ng,--- represent the second and the latter collisions. Similarly, n_j, n_,,---
represent past collisions.

Symbol sequences consist of an infinity of symbols. If we truncate the symbol
sequences with finite symbols, then we call them words. In the numerical investiga-
tions, we often study the distribution of words on .

Thus, we have a definition of the correspondence between a point on T and a

symbol sequence.

Definition 2.4.1 (Correspondence between £ and Symbol Sequences)
Let ¢(xy) denote an orbit passing through zy € £ at ¢t = 0, Q(T) denote the set
of ¢{x,), and B denote the set of all bi-infinite sequences [- - - n_yn_,.ngn ny - - /]
of three symbols. Then, we can define the mapping S : Q(Z) — B as
S : d(mo) = [---n_gn_.nenmn,---]. Simply, we regard S as a mapping
¥ > B, e,

S(zo) =[--n_an_ .nonyny- -

Let X be a subset of ¥. We have an extension of § as X — B. In other word,
when any point in a certain region X C ¥ has the same symbol sequence S,

we have the other notations S(X) = &, or X = §7!(S)).

The correspondence between £ and words is defined similarly.
The following mapping is usually used for discussion in dynamical system. We

also introduce it here.

Definition 2.4.2 (Shift map on B)
The shift operator ¢ is defined by

0'[- RN _ .My Ng - - ] = [ NN NN Ny - - ]

If an orbit repeats the same binary collisions for ¢ > 0, it escapes to infinity,
otherwise it experiences the other binary collision. If a symbol sequence has an
infinity of 0 rightward, i.e., [- - -n_;.ngn, - - - 0°], then the orbit goes to 1-2-1 escape,
ie.,

limr = oo

?
t—oo

. T
jim 8 = o
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If a symbol sequence has an infinity of 2 rightward, i.e., [---n_;.ngn,; - - - 2°°], then

the orbit goes to 2-2 escape, i.e.,

lim r = o0, lim @ = ¢
t-+o0 t—roc

Thus, we have expressions of escape in terms of symbolic dynamics.

Lemma 2.4.1 (Necessary Condition for Escape in terms of Symbolic Dynamics)
If a symbol sequence ¢ ends up with an infinity of symbols 0 or 2, then its
corresponded orbit goes to infinity.

We apply this condition in our numerical study.




Chapter 3

Analytical Results

Main purpose in this chapter is to display our analytical results. First, we define the
Quadruple Collision Manifold which is one of invariant manifolds under the trans-
formed flow. And we show that the fictitious flow restricted on QCM is gradient-like
with respect to v. This property influences the flow near the quadruple collision.
We give an analytical expression of the homothetic solution which is uniquely de-
termined for SC4BP. The homothetic solution connects two critical points on QCM.
Second, we give a proof that the surface of section T is global, and a proof of re-
versibility of £. We prove that £ can be divided into three subregions: £,, _
and X, according to collision-types orbits undergo after passing each subregion. In
the discussion, we obtain several un-realizable words of symbols. It is shown that
points leading to the quadruple collision form one-dimensional curves. We call them
Quadruple Collision Curves (QCC, for short). QCCs have various geometric fea-
tures. Finally, we obtain escape criteria by simple two-body considerations. We
evaluate them on ¥ directly. The results give two regions on £ where points lead
to escape immediately. Escape criteria can be used in numerical calculations. They
enable us to save time for calculations when the solution satisfies the criteria on
the way of integration. If we summarize our analytical results and apply it to the

surface of section X, then we can expect some stratified structure of .

17
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3.1 Flow on the Quadruple Collision Manifold

If we substitute r = 0 into the first equation of (2.2.7), then we have the following
equation.
dr
ds
Therefore, the manifold obtained by substituting » = 0 into (2.2.8) is an invariant

manifold for SC4BP. This is already obtained as (2.2.10) or Cy(Fig.2.2), i.e.,

2
)2 + w? = cosfsin(d — ¢).

0. (3.1.1)

v_Q(cosﬂsin(B - )
2 W(6)

If we substitute r = 0 into the other equations of (2.2.7), then we have the following

equations.
de
E = w, (312)
2 . _
dv _ W) _ v”cosfsin(f (p)’
ds 2 W (8)
dw _ 2cosfsin(f — ) — w?dW(f) vwcosfsin(f - p)
ds 2W(9) de 2,/W(8)
3 . 2¢c0s8sin(f — o)
+ cos(28 gp)(l v W6) )

The flow on C; defined by these equations is fictitious. This fictitious flow reflects
physical flow in the vicinity of quadruple collision. There are some significant fea-
tures. |

There are two critical points on Cy, i.e.,
(r,8,v,w) = (0,6, £4/2V(4.),0)

We give a name c* for the upper one, and ¢~ for the lower one{see Fig.3.1). These
are saddle points on Cy. Each of them have two pairs of 1-dimensional stable and
unstable manifolds on Cy(see Appendix A). They coil themselves around arms or
body of Cy(Sim6[47]).

In addition, there is another significant feature.

Lemma 3.1.1 : (Gradient-like Flow)
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proof
When the energy relation (2.2.10) is applied to the first equation of (3.1.2),

dv 2 Ww(8)
cos @sin(f — )

> 0,
if p<@<nf2. If @ =¢por8=n/2 the equation is evaluated directly, i.e.,
f=p=— % = W(p) = 2"*sin*? pcos’ p > 0

dv -
b=n/2= - = yW(r/2) =2 ' cos® o > 0

QED.

3.2 The Homothetic Solution and its Invariant
Manifolds
There is the homothetic solution for SC4BP, i.e.,

h(s) = (2x*sech’(sA + a), 6., —2x tanh(sA + a),0), (3.2.1)

where A = \/cos 8.sin(8. — ¢)/2, k = \/V(8.)/2, and a certain real number a. h(s)
connects two critical points on Cp : ¢* and ¢~. It takes an infinitely long time for

departing from ¢* and reaching ¢~ (see Appendix A).

v

Fi1G.3.1 Cy and the Homothetic solution

Let W*(h(s)) denote the stable manifold, and W*(h(s)}) denote the unstable
manifold. The manifolds W*(h(s)) and W*(h(s)) are both 2-dimensional. Let
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W2(c*), W¥(c*), W?*(c™) and W*"{(¢™) denote the invariant manifolds associated
with ¢t and ¢~. Then, we have the following properties by liniearization studies
around the critical points (see Appendix A). W*(c*) and W*(¢™) are 1-dimensional
manifolds. W*(c*) and W*(c™) are 2-dimensional manifolds. Additionally,

W(h(s)) = W*(c™), W*(h(s)) = W*(c*). (3.2.2)

When we pay attention to the phase flow around the critical points except for the
fictitious flow, h(s) itself is included to an unstable manifold of c¢*, and to a stable
manifold of ¢=. These two h(s) coincide with each other if h < 0, and they are
different from each other if A > 0. Let W, be a set of all points (8, w,v) for the

homothetic solution. Then, we have
h<0= W, cW*ct)NnW?*c). (3.2.3)

These relations (3.2.2) and (3.2.3) are important to discuss the structure on . In

the latter sections, we give such a discussion.

3.3 Various features on the surface of section

For proof of the following theorems, we use one of the original equations of motion,

namely,
. 1, q
g =——f(— 3.3.1
&), (3:3.)
where a function
sinfo  cos?yp cos’ @

f&)=——+ arer T ooy (3.3.2)

is defined for £ € [0,1). The other transformed equation is used as well. The

transformation is as follows.

Qi=a cos? P+ g sin @, Qr=q—q. (3.3.3)

Then, we have the equation of motion for @, i.e.,

1

O, = —@-?g(%i), (3.3.4)
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where a function

_costp ( 1 tan? 8tan?

9ln) = =4 (1 —npsin®p)? * (1 + ncos? p)? (2+ncos2<p)2) (3:3.8)

is defined for 7 € [0, 1/ sin® p).

Lemma 3.3.1 (Monotoneity of f(£))
The function f(£) is monotone increasing for § € [0, 1).

proof
It is trivial by a direct calculation.

df () 2, B+

—= =

&€ Prera-¢p
The right-hand side is positive when £ € (0, 1), and zero when £ = 0.

Q.ED.

Lemma 3.3.2 (Monotoneity of g(n))
The function g(n) is monotone increasing for 5 € [0,1/sin” p).

proof
We calculate the derivative of g(n) with respect to n.

dg(n) 3nsin’ 2¢p [ 3 . 2 2 g2 3 .2 2, qu? ]
= 2 3 2 3
dn 16(mm(m + 7)) 7, cos <p{(m+ M)+ n2}+172 sin (p{(qg+ m)2+ ’?1} ,

where 1, = 1 + ncos? ¢ and 7, = 1 — nsin® . The right-hand side is positive

because 7, > 1 and 2 > 0 for 5 € (0,1/sin’ ). If n = 0, then dg(n)/dp = 0.
Q.ED.

Theorem 3.3.1 (Global surface of section)
Any solution of (2.2.7) passes through ¥ at a certain time.

proof
Suppose that the motion stays in 1-2-1 ejection. Then, 1-2-1 binary collisions{g, =
0) occur repeatedly. The equation of motion (3.3.1) is still regular even if ¢,
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becomes zero. From Lemma 3.3.1, the function f({) is monotone increasing.
Then, we have

0 <& < 1= f(0) < f(§).

Here, £(0) is a positive value (1 + 7 cos® ¢)/4. Thereby,

. 1 ., ¢ 1
=—=fH{=)< —=Ff(0) <.
b= HE) < - 0)

Variable ¢, moves in the field of restitutive force. Therefore, ¢; decreases until
a 2-2 binary collision occurs for the future or the past. The phase point passes

through ¥ at a certain time on the way.

Next, suppose that the motion stays in 2-2 ejection. Then, 2-2 binary collisions(Q, =
g2 — @ = 0) occur repeatedly. The equation of motion (3.3.4) is still regular if
Q2 becomes zero. From Lemma 3.3.2, the function g(7) is monotone increas-

ing. Then, we have

12 = g(0) < g(n).

0<n< =
sin” ¢

Here, ¢(0) is a positive value 1/4. Thereby,

1 Q1
%) s T <

Variable ¢}, moves in the field of restitutive force. Therefore, ¢}, decreases

Q=

until a 1-2-1 binary collision occurs for the future or the past. The phase

point passes through ¥ at a certain time on the way.
Q.ED.

We would like to mention the reversibility of the system. This will be proved by
direct calculations.

Lemma 3.3.3 (Reversibility of SC4BP)

Equations of motion (2.2.7) are invariant under the following transformation.

(s,v,w) > (=8, —v,—w)
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This fact implies that distribution of future symbol sequences on ¥ provides distri-
bution of past symbol sequences by its rotation of = about the origin. If we define

an operator R as reversing sequences of symbols, i.e.,
R : [ ..8_98_1.808152.. ] — [ .. 898180.8-18_2.. .],
then we could have another expression of the properties mentioned above.

Lemma 3.3.4 (Reversibility of ¥)
The following relation holds true for (v, w) € Z.

R(S(v, w)) = §(-v, —w)

Thereby, it is sufficient to study the distribution of future sequence for the full survey
of bi-infinite sequences of symbols.

Let £, denote {(r,0.,v,w) € T | w > 0}, E_ denote {(r,8,;,v,w) € £ | w < 0},
and X, denote {(r,8.,v,w) € T | w = 0}. As a set, I, is equal to Wy. Symbols
appeared immediately after leaving £, _, X, can be predicted by the following

theorem.

Theorem 3.3.2
Any solution passing through X, reaches § = x/2 (1-2-1 binary collision)
before returning to £. Any solution passing through X_ reaches # = ¢ (2-
2 binary collision) before returning to £. There exists no solution passing

through X, transversally.

proof
First, by using equations (2.2.2), we shall show that any solution with 8(ry) =
6. and u(ry) > 0 remains ¥ > 0. Suppose that u(r;) = 0 for a certain time
1 > 1o and u(r) > O for any time 7 € [y, 7). Then 6{r;) > 8. because
d@/dr = u. Thereby, du/erzn = dV(6(r,))/d8 > 0. This implies that u
changes from negative to positive at 7 = 7;. This is contradiction. Similarly,

it is shown that any solution with 8(ry) = 8, and u(7) < 0 remains u < 0.
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By transformation (2.2.6), sign of w coincides with one of u. If w > 0, then 8(s)
is monotone increasing by (2.2.7). If w < 0, then 8(s) is monotone decreasing
by (2.2.7). Therefore, orbits leaving X, go to the line # = n/2, and orbits
leaving £_ go to the line .

¥ is the set of phase points of the homothetic solution h(s). Therefore, no

other orbit intersect £, (see Appendix A).

Q.ED.

If we rewrite this property and Theorem 3.3.1 in terms of symbolic dynamics, then

we have the following statement.

corollary 3.3.1

The last one is the homothetic solution itself.
If we apply Lemma 3.3.4 to corollary 3.1, then we have the following two corollaries.

corollary 3.3.2
S(S)=[--20--,

corollary 3.3.3
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Especially, the second corollary shows non-existence of such a symbol sequence as
it contains any of words listed above. We call such a word un-realizable word. Last,

we have the following lemma.

Lemma 3.3.5 (Transversality)
An arbitrary orbit except for h(s) intersects ¥ transversally.

proof
If a certain orbit except for h(s) makes tangent to I, then df/ds = 0 leads to
w = 0 through the second equation of (2.2.7). This is a contradiction because

only h(s) take a value w =0 on .

Q.ED.

3.4 Geometry of Quadruple Collision Curves

Here we consider a set of initial points on ¥ leading to quadruple collision. The set
is denoted as W*(c~) N . Obviously, W*(¢~) N I is a non-empty set, because the
homothetic solution is included in both W*(¢™) and . In addition, we have the

following property.

Theorem 3.4.1 (Quadruple Collision Curves)
The set W*(¢~) N T consists of 1-dimensional curves.

proof
First, ¥y = W) is a 1-dimensional curve on X. As we mentioned above, W?*(c~)

is 2-dimensional manifold. The surface of section ¥, and X_ are transversal
to the flow(see Lemma 3.3.5). Therefore, if (£, UX_) N W*(c™) forms 1-

dimensional curves.
Q.E.D.

The intersections W*(c™)N X are called quadruple collision curves (@QCC, for short).
The symbol sequences on QCC end up with 1 continuing endlessly. The following

lemma gives the other geometric feature of QCC.
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Lemma 3.4.1 (End-Points of QCC)
The end-points of a certain QCC are different points on the boundary of Z,
ie., 8QCC C (Cy N X).

proof
First, any end-point of QCC is not an interior point of £. If the end-point

of QCC is an interior point of (X \ £y), the orbit must be tangent at that
point because of the continuity of W*(¢™). This is contrary to Lemma 3.3.5.
Second, we have W*(¢™) D Z;. On the other hand, I, is also a subset of
W*(ct). Then, we have £y C (W?*(c™) N W*(c*)). Therefore, W*(c”) and
W*(c") are connected with each other. W?*(c*) and W*(c*) are connected
on c¢ct. W*(ct) is 1-dimensional curves on Cy{see Appendix A), and points
on CoNX\ X, Then, W*(c™} and W*(ct) are connected with each other.
Therefore, the QCC must reach Cy N ¥ \ ¥y at two different points.

Q.ED.

Lemma 3.4.2 (QCC as a boundary of different symbol regions)
QCC of symbol sequence [.ngn; ---ng_1---], n; =00r,2(=0,---,k— 1) is
a boundary of two regions whose symbol sequences are [.ngn, - - - nx- ni) and

[.nony - - - ne_yn}] where n;(i € Z),n, # n; are either 0 or 2.

proof
Suppose that S(Z,) = [.non, - - - ne_ 1], and S(E2) = [.nyn, - - - ne_n}]. Here

Nk # N, then n; # ni_y or nj, # nk_;. So, we assume ny # ng_; = nj.

There are orbits starting from py € ¥, and reaching p, € ¥ \ £; after binary
collision n;_, because of n, # n,_; and corollary 3.3.2. On the other hand,
QCC is connected with £,. Then, there is a sequence of points on pg € £, such
that p, comes close in T, as ps comes close in QCC. When p, goes over QCC
and enter in X, the point p, does not leave in £\ X because of transversality

of ¥\ ¥y(Lemma 3.3.5), the orbits return back to binary collision n;_, = n|.

Q.ED.
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Lemma 3.4.3

There is no intersection of QCCs except for thier end-points.

Let us call QCC of Lemma 3.4.2 as QCC of depth k, or W, for convenient of discus-
sion. This is the reason to let W, denote the set of phase points of the homothetic
solution.

There are an infinity of W} on ¥ because the depth k is unbounded. On the
other hand, the end points of QCCs: dW; lie on W*(ct) N Cy N . Namely, the
possible number of 8W, is finite. Therefore, we can expect that an infinite number
of QCCs have some common end points on Cy N I, and that ¥ is sliced by QCCs,
has a stratified structure.

The boundaries of depth k > 0 and the detailed structure of ¥ will be obtained

by numerical integrations.

3.5 Escape Criteria

Using Lemma 3.3.1 and Lemma 3.3.2, we obtain the criteria for escape motion.

Theorem 3.5.1 (Sufficient Condition for 1-2-1 Escape)
(For the future)

28111(p tan
h
v > - sm951n9 (p \/\/_ smB (tanec) when t9c<9<2

(For the past)

251n<p tan ¢ 4
veT smBsm 9 <p \/\/_ smG (ta.nt?c) when ;<8< 2
proof
By Lemma 3.3.1, we have the following inequality.
0<€<E <1l = 0<f(€)< f(E) < +oo. (3.5.1)

Thereby, we have the following inequality from (3.3.1).

0<q <t = 0>¢2> ——f(&) (3.5.2)
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One can regard — f(£')/g as two-body force if ¢’ is a constant. If total energy
is positive under two-body potential f(£')/q., then g, goes to infinity as time
t increases. Hence we have the following sufficient condition for ¢, to escape

while ¢, is bounded.
¢ < @€’ and  qg? > 2f(€). (3.5.3)

Under this condition, lim, ., g2 = oo if ¢ > 0 (escape for the future), and
lim,,_ g, = oo if ¢ < 0 (escape for the past). Using our new coordinates,

we rewrite this condition (3.5.3) to the form as mentioned above.

Q.ED.

Theorem 3.5.2 (Sufficient Condition for 2-2 Escape)

(For the future)

we +\J 4v2 (tan(Bc—-(p)

cos f cos(f — @) cos? (@ — )7 \ sinp cos ) when ¢ <8 <8.

(For the past)

w(o) w — 4v2 (tan(ﬁc — )
cos 8 cos(f — ) cos3(f — go)g sin ¢ cos ¢

V<

) when o <8 <é,

proof

By Lemma 3.3.2 and (3.3.4), we have the following inequality.

= 0>G1 2 — ol (3.5.4)

One can regard —g(n')/Q} as two-body force if % is a constant. If total energy

0< Q<@ < —
sin’ ¢

is positive under two-body potential g(r')/Q, then @, goes to infinity as time
t increases. Hence we have the following sufficient condition for @, to escape

while ()7 is bounded.

Q:< Qi and Q" >2g(n). (3.5.5)

Under this condition, lim,_, ., @, = 0o if Q; > 0 (for the future), lim, , o, Q, =

o0 if @ <0 (for the past). Recall @, to be the center of masses m, and m.,
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and @, to be the distance between m; and ms. Then, 2-2 escape occurs.
Using our new coordinates, we rewrite this condition (3.5.5) to the form as

mentioned above.
Q.E.D.

Inequalities in Theorems 3.5.1-2 in the case of equal-masses are plotted with QCM
in the 3-dimensional (6, w, v)-space (Fig.3.2). Four dark squares indicate boundaries
of the inequalities. Regions above the upper squares (resp. regions below the lower

squares) are escape regions for the future (resp. for the past).

2.0

¥
?,
(o
He7
R

"ﬁ,
A
ey

1.0
0.0
- 101 &

~2.01

(.4

F1G.3.2: Cy and Escape criteria for m; = my

As is seen in Fig.3.2, boundary squares meet at § = 6.. In fact, we can evaluate

both escape criteria at 8 = 6., namely the surface of section X.

corollary 3.5.1 (Escape Criteria on ¥)
When 6 = 6., we have the following criteria for the future.

v > il il )w+1/2V(65), v > VWie) )w+,/2V(6c)

" sinf,sin(f, — ¢ cos B, cos(f. — ¢
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The following inequalities are for the past.

v < — \/— w— J2V(8), v A w— 2V (8,)

sin 6. sin(8, — cosB cos(6, —(p

proof
Using the fact 6. attains zero of dV(#)/d8, direct calculations give the following

equalities.

\/ 2smt,o (tango)z\J 4/2 (tan(ec—go)): )

\/_ sin 9 tané, cos*(6, — (p)g Sin ¢ cos ¢

Inequalities in corollary 3.5.1 in the case of equal-masses are plotted with QCM on
the surface of section ¥ (Fig.3.3). The upper regions (resp. the lower regions) are

escape regions for the future (resp. for the past).

T 2.0

2.0

F1G6.3.3: ¥ and Escape criteria for m|, = my




Chapter 4

Numerical Results

In this chapter, we state results of our numerical experiments in the case of equal-
masses and negative energy. The purpose of numerical experiments is to explore
the fine structure of the surface of section ¥ which is not obtained by the analytical
approach. First, we calculate symbol words up to 32 symbols. Due to Lemma
3.4.2, QCC can be obtained as a boundary of regions with different symbol words.
Accordingly, the depth of QCC : k takes each integer from 0 to 31. Thus we have a
huge number of QCCs which form some bunches. The remaining areas other than
the bunches are voids where no QCC lies. The surface of section ¥ is divided into
bunches of QCCs and voids. Each bunch seems to have an infinity of QCCs. These
areas were pointed out to be chaotic area by Sweatman ([55]). As our numerical
results indicate, these chaotic areas have a stratified structure divided by QCCs.
The number of divided regions is very large but less than 2**!. This fact implies
that some symbol sequences are un-realizable. Already we obtained a few example
of such un-realizable sequences in corollary 3.3.3. Numerical calculations suggest
that there exist a larger number of un-realizable sequences. In order to make sure
the existence, we connect symbol words after and before ¥ using reversibility in
Lemma 3.3.5. From QCCs up to depth.-12, we have a set of un-realizable words with
25 symbols. Using common properties among the un-realizable words above, we
obtain a hypothesis which holds for all un-realizable words. From the hypothesis,

we conjecture that a list of words are un-realizable.

31
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Second, we examine the spatial order of QCCs which is determined by decimal-
izing symbol sequence. Decimalization can be done by regarding a symbol sequence
as the trinary expansion of a certain real number. We plot the decimalized values
versus the distance on £. The graph seems to be fractal, resembles to the famous
devil’s stair-case. In our case the graph is not monotone while the so-called devil’s
stair-case is monotone step function. In the case of collinear three-body problem, it
is known that the order is monotohe(Tanikawa et al[57]).

Third, we calculate orbits starting from voids of £. Orbits starting from central
voids stay in the voids such that any orbits crosses two voids alternately. We cal-
culate symbol words up to 128 of length in the void areas. Distribution of points
which remain in the void after the calculations is shown. The distribution suggests
the more complicated structure of £. Orbits starting from other voids adjacent C;
escape after a few crossing ¥ at most. We obtain the initial points leading to escape
using our escape criteria(Lemma 3.5.1 and 3.5.2). Observing the results, one can
see such initial points almost everywhere in ¥ except for invariant regions around
two points which are representative for Schubart-type periodic orbits.

Finally, we divide ¥ into 12 subsets with based on QCCs, and construct the
transition rule of mapping among the subsets, which give the structure of distri-
bution of symbol sequences systematically. The rule gives possible periodic words.
We directly find some periodic words by numerical survey of £. They coincide with

some of periodic words expected from the transition rule.

4.1 Parameters of numerical calculations

Here, we describe parameters of our numerical experiments. Masses distribute homo-
geneously (m; = my = 1/2 e, ¢ = n/4, 6, ~ 1.2645046604259870, see Appendix
A). Total energy is negative (h = —1). We regard T as the initial value space.
We take 1000 x 1000 points(at least) radially and azimuthally on ¥, and obtain
orbits starting from the points. Each integration was basically performed to the

future until 32 binary collisions occurred at least. This gives past symbol sequences
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with same length immediately, by Lemma 3.3.4. In some special experiments, the
division of £ and length of words are more detailed than above. The extrapolation
method which is well-known as one of the finest numerical integrator is used as the

numerical integrator.

4.2 Quadruple Collision Curves

As mentioned in Lemma 3.4.4, QCCs are obtained as boundaries between regions
of different symbol sequences.

First, we obtain two regions of [.0] and [.2]. Their boundary is the homothetic
solution itself. Due to the section 3.4, we call the boundary “QCC of depth 0” or W,.
We display W, within C;; by the red segment in Fig.4.1. As predicted analytically,
W,y connects ¢* and ¢~

Next, we proceed the calculation for one more symbol. We obtain four regions
of [.00], [.02], [.20], and [.22]. Two new boundaries are added. They are called QCC
of depth 1 or W,. We display them within Cy by the red curves in Fig.4.2. Similarly
to these figures, the latest boundaries W, are drawn by red curves hereafter.

Each curve of W), has two end points on Cj : ¢t and the other one which we
call ¢f if it is in ¥, and ¢i if it is in ©_. The point ¢} as well as ¢] is one of

intersections W?(c*) and I, i.e.,
et EW(cH)NE, cf e W{cH)NE.

Similarly, each QCC has two end points on Cy which are intersections W*(c*) and
.
ct eW(ct)NE, ¢ e W (ch)NE, (i=1,2,-)

In the case of equal-masses, it is known that there are 5 points of W*(c*) N E,,
and 5 points of W*(ct) N X_. We give names “c{, (k =1,2,---,5)” to the points
We(c*) N I, from the upper to the lower. Similarly, we give names “c;, (k =
1,2,.--,5)” to the points on ¥_. We describe a relation of ¢;s or ¢;'s and the

invariant manifolds W*(c*} in Figs 4.9 and 4.10. The invariant manifold W*(c*)
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consists of 2 curves winding itself around Cj while they approach to ¢t. When the
fictitious time s goes to —oo, W*{c,) descends toward below and eventually winds
itself around arms below. Using T as mentioned in Definition 2.3.2, we have the

following relations.

T(c!) =T(e7) = ct, (4.2.1)
T(C?-H) = C‘-_,T(C,»__H) = C?-, (" =1, 233)1 (422)

Next, we continue to calculate the orbits, and obtain the distribution of words
[.000], [.002], [.022], [.020], [.222], [.220], [.200], and [.202]. Four new boundaries are
added(Fig.4.3). They are curves of W;. In Fig.4.3, there are five end points of W,
in Cy n , and CyNE_. They are c*, cf, ¢;, ¢f and ¢;. The surface of section
is divided into 8 regions with QCC of depth 0 to 2. So, we expect that ¥ is divided
into 2%*! regions with ULO W,. However, W3 does not satisfy the expectation. We
display W3 in Fig.4.4. One can see that ¥ is divided into some regions whose
number is 14, is not 2°*!. The words [.0022] and [.2200] are disappeared. They are
examples of unrealized word. There never exists any symbol sequence containing
an unrealized word. Therefore, there never exists any orbits corresponding such a
symbol sequence. A list of unrealized word was confirmed in collinear three-body
problem(57]. It is the first time that unrealized words in SC4BP are discovered. It
is interesting to complete the list of unrealized words. We dedicate the section 4.3
to the systematic composition of unrealized words.

Similarly to the case as above, we obtain Wy, Wy and W as shown in Figs.4.5-7.
We summarize some features about distribution of QCC up to depth of 5. First,
the number of QCCs in both regions £, and X_ is equal. Second, the number of
QCC increases by one as k of W, increases. Third, curves of W, connect 2k + 1

pairs (¢t_i,¢t),(n=1,---,k)and (c;_,,¢c;),(n=1,--- k), ie,

(ci,¢l), (et,ef), -+, (cf_j,ef), for k=1,2,---,5

and

(g er), (e1,¢3), -y {eprCr ) for k=1,2,---,5
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where ¢f = ¢z = ¢j = ¢ = ¢*. Fourth, QCC connecting (cf,c’) or (cg,er)
are added upward. Similarly, QCCs connecting the other pairs are added outward.
Thus, QCCs form bunches connecting two points of cfs. The deepest QCC in any
bunch always faces on surrounding voids.

Observing Wy, (k > 6), we can see more complicated features about distribution
of QCC. As well as the case for k¥ < 5, the same number of QCCs are added in both
sides of ¥ in each depth. However, the increment is no longer one. The number of
QCC of depth 6 connecting (cf,c}) or (cj,c;) increases by three, while the other

QCCs connecting the other pairs increases by one.

change of depth k (¢, ct) (ci',¢f) (c,¢i) (c5,ci) (ei,e3)

01 1 0 0 0 0
152 1 1 0 0 0
253 1 1 1 0 0
34 1 1 1 1 0
455 1 1 1 1 1
95— 6 3 1 1 1 1
6 -7 5 3 1 1 1
78 7 5 3 1 1
829 9 7 5 3 1

Table 4.1: Increments of the number of QCC faced on surrounding voids.

The increments are summarized in Table.4.1. Obviously, a simple rule can be read in
Table.4.1. On the other hand, the spatial order of QCCs in any bunch is not simple,
while the order in collinear tree-body problem is monotone if symbol sequences are
regarded as a binary expansion of a certain real number. Let us observe the spatial
order of QCCs in a bunch (see Fig.4.8 and Table4.2).

We draw a segment PQ normal to the bunch connecting ¢t and ¢ in Fig.4.8
where QCCs of depth up to 7 are appeared. The spatial order of QCCs along the
segment from P to Q is described in Table4.2. As is seen in Table4.2, the spatial
order of QCCs is complicated.
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15

0.5

-0.6 -0.4 02 o w 0.2 04 0.6
F1G6.4.2: Wy U W, within C)

Two red u-shaped curves are W7.

‘-0.5 -0.4 02 0 w 0.2 0.4 086
F1G.4.4: Cy and Up_, Wi

Wj3 is shown by red curves.
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Wy is shown by red curves. W5 is shown by red curves.
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W5 is shown by red curves. W5 is shown by red curves. Words of W} along

a segment PQ is shown in Table.4.2.
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v {et N v
Y W S W
€
cy
Cy 0 >0
> w
Ca w
¢
3 ot
¢y

F1G.4.9 : Points ¢/s and ¢;s and C;  F1G.4.10 : Perspective of W*(c*) and C,

Schematic view of the distribution in the case  Schematic view in the case of equal masses is

of equal masses is given. given. See [47].

k Word k Word
(Q, the upper void) [.22222222] 7 [-22020221]
7 [.22222221] 6 [22020211]
6 [.22222211] 7 [.22020201]
5 [.22222111] 1 [21111111]
4 [.22221111] 7 [.20202001)
3 [22211111) 6 [.20202011]
7 [-22202021] (P, the central void) [.20202020]
2 (-22111111)

Table 4.2: The spatial order of QCCs along the segment PQ in Fig.4.8

It is difficult to find any rule in the spatial order of QCCs. Then, We adopt the
idea of ternary expansion of real numbers. Any real number can be expressed by
three digits in a ternary expansion: 0,1, and 2. A symbol sequence can be regarded
as a ternary expansion of a certain real number. Thereby, we transform the symbol
words obtained numerically to the real numbers. We dedicate the section 4.7 to the

study of the spatial order of QCCs by the method of ternary expansion.
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4.3 Un-realizable Sequences

Using Lemma 3.3.3, we can construct past sequences from future sequences. Namely,
rotation of the distribution of future sequences by 7 gives the distribution of past
sequences. Accordingly, to combine future sequences and past sequences gives bi-

infinite sequences.

We already have the distribution of future words by numerical integrations
(Figs.1-7). Here, we rotate Fig.2 by 7 (Fig.11). Two QCCs of depth 1 are plot-
ted in Fig.2. So past image of them appear

2 T T T T T 2 T 7 T T T
15 4 15} 4

10 . 1+ :
0.5 - 05 1
4 v

o 1 of .
05 1 0.5 R
-1 F B -1+ _
1.5 - 15 - J

2 ; 1 L ; I 2 L I 1 L !

[+X.} 0.4 02 0 w 0.2 04 0.6 08 0.4 0.2 0 w 0.2 04 086
F1G.4.11: Past QCCs up to depth 2 F1G.4.12: Super-imposition of Fig.4.2
and Fig.4.11

First, see Fig.4.2. There are two QCCs of depth 1. We rotate the figure by
n(Fig.4.11). There are four regions of past words: [00.], [02.], {20.] and [22.]. It

is observed in Fig.4.12 that regions of [00.] and [22.] have no intersection with re-




40 CHAPTER 4. NUMERICAL RESULTS

gions of {.00] and [.22]. In other words,
s (j00]) ns~'([-22]) = s7'([22.]) nS~*([.00]) = 0.
Namely, [00.22] and [22.00) are un-realizable words.
§7*([00.22]) = 5~ ([22.00]) = 0.

This means non-existence of any sequence which contains [0022] or [2200].

Similarly, we examine the distribution of symbol words up to depth 13. Then,

we obtain a list of un-realizable words (Table.4.3).

Order Family I  Family II  Family Il  Family III’
0 [0022) [2200]
1 [0(02)00]  [22(02)2]  [00(20)22]  [22(02)00]
2
3 [0(02)%00] {22(02)%2] [00(20)°22] [22(02)00]
4 [0(02)*00] [22(02)*2]
5 [00(20)°22]  [22(02)°00]
6 [0(02)%00] [22(02)%2] [00(20)°22] [22(02)%00]
7
8  [0(02)%00] [22(02)%2] [00(20)°22) [22(02)%00]
9 [0(02)°00] [22(02)%2]
10 [00(20)'°22] [22(02)'°00]
11 [0(02)''00] [22(02)''2] [00(20)''22] [22(02)'100)

Table 4.3: un-realizable words by Numerical Observations

Let us construct rules observed over distribution of QCCs up to 13th in order
to obtain the un-realizable words in general. We aim to give a conjecture on the
un-realizable words under assumption that the rules holds true for distribution of

all QCCs.
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When we add QCC until the depth exceeds 30, we have the follwing result
(Fig.4.13). There is no QCC in some void regions with letters “A” to “L”. QCCs
seem to accumulate toward the boundaries of void regions. According to these ac-

cumulation curves of QCCs, we divide ¥ into 12 regions (Fig.4.14).

2 T T T T T 2 T T T - v

15

1 | 1
-0 -0. 02 04 0B
0.6 04 02 o w

-2 1 1

F16.4.13: QCCs on ¥ F1G.4.14: Division of &
QCC up to 31st are plotted. Letters A to N ex- Region “S” is the stable region in Fig.4.13.
plained in Table 4.7. Each of regions F; includes a bunch of QCCs
and a void.

We regard a void and its neighboring bunch of QCCs as one region. Then, we have
such 10 pairs. In addition, we regard the central two voids “S” as independent
regions. We express them by F;, (i = 1,2,...,10), “S”. Similarly, a division of past
images of ¥ : “P;” can be obtained. We give a list of intersection of pairs (F;, P;).

Regions B,’s are shown in the right of Fig.4.15.
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1.5

i ! 1 I | !
-0.6 -0.4 -0.2 0 0.2 04 0.6
w

F1G.4.15: The division by F;’s and their reverse image

Regions By to By are intersections of F; (1 <1 < 3) and the reverse images R(F;) (6 <2 < 10).
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P P B P Py
Fo 0 @ © B, B
F, 0 @ B, By 0
F; 0 Bg  B; @
F, By By 0 0 9
Fs By @ 9 @ By

Table 4.4: Intersections of F;’s and P;’s

S Neighboring Regions: F;, (i =1,2,...,5)
[.(02)¥0] [.(02)72]  [.(02)¥-'00] [.(02)¥-'2] [.(02)V-200] [.(02)V—%2]
[02)M  [(02)%'00) [(02)"-'2] [(02)-%00] [(02)"-?2] [(02)"-%00]
[-(20)"2] [(20)%0]  [(20)"'22] [(20)"7'0] [.(20)Y7*22] [.(20)"%0]

(20" [(20%7'22] [(200¥'0] [.(20)"-%22) [(20)"~%0] [(20)"~%22]

Table 4.5: Words in the invariant region and the neighboring regions are listed

above.

There are some pairs whose intersection is empty. They give a list of un-realizable
words. Here again let us see QCCs in Figs.4.1-7. A certain number of the highest
order of QCC (in one figure) are pinned to Cy. One of the highest QCC is faced
on the invariant region. It is laid along one of fractal bunches toward the invariant
region. The other highest QCC is embedded in other bunches. The order of five
QCCs faced on the invariant region are different from each other. This suggests that
the orders of QCCs range from N — 4 to N if N is the highest order in one figure.
We have symbol sequences up to 31 depth in Fig.4.13. In the region S, the symbol
sequences are [.(20)'¢]. Then symbol sequences in the neighboring bunches include
[.(20)'%22], [.(20)'°0], [.(20)'422], [.(20)!0] and [.(20)!322]. Thereby, let us give the
following assumption.

Allocation of these words to F}’s changes with period 5, which we display in
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Length N Fl F2 F3 F4 F5 Fﬁ F',r Fg Fg Flg

2N S5k+1 wy wg ws wy w3 VU3 Ug U Uy Uz
2N+1 5k+1 wy, w; w; wy w3 V2 U Vs Us Us
2N Sk+2 wy wy wy wg Ws Vg4 V3 Uy Vg Us
2N +1 5k+2 wy wy wy w, ws Vg4 U3 Uy VY Vs
2N Sk+3 ws ws wy wy Wy Vg Vs Uy Uz Uy
2N+1 5k+3 w, ws wy w3 wy v Us Uy U3 s
2N Sk+4 wy wy we ws ws V3 V2 Vg Vs g
2N +1 5k+4 wy wy wy ws wy vy Uy U Us g
2N 5k+5 ws wy w3 wy W Vs Uy Uy U g

2N +1 S5k+5 wy wy wy wy w, Vs Uy U3 ¥y v

Table 4.6: Allocation of words to F’s (i = 1,2,...,10), where w; = [.{20)V0],
wy = [(20)V7122], wy = [(20)¥710), wy = [-(20)V7222), ws = [.(20)V20], ws =
[-(20)V-322], vy = [.(02)0], vy = [-(02)¥~'22], vy = [.(02)¥~'0], vy = [.(02)¥~222],
vs = [.(02)¥20], and vs = [.(02)"¥~322)

Table.4.6 with an appropriate positive integer k.

Definition 4.4.1 (Winding Number)
Winding number of [0(02)*00] or [22(02)*2] is said to be k. Winding number
of [00(20)%22] or [22(02)%00] is said to be k + 3.

Numerical Conjecture (Un-realizable Sequence)
There never exist symbol sequences containing words whose winding numbers

are

1 1
Sk+3, Sk+1, Sk+1+7 5k+3, 5k+3+%, 5k + 4,

where k > 0 is an integer.
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4.4 Fractals

As seen in Fig.4.13, there is a densely stratified structure of QCCs. As we pointed
out in the section 4.2, the geometrical order of QCCs is not monotonic. In order to
quantify the geometrical order, we decimalize symbols words in the folwoing manner.
For a certain symbol word 8 = (.898152 ... 8,.), decimalized value of 8 is given by
D(s) = D(.5)8182...8,) = kz:‘;sk(%)k.

In decimalization of symbol words, we regard symbol words as the trinary expansion
of real numbers. By decimalization, a certain real number is corresponded to each
point on ¥. We make a 3-D plot of decimalized values of symbol sequences versus
(w,v) € T (see Fig.4.16). The surfaces are of a stepwise function, whose structure
is difficult to understand even if the point of view is changed. As decimlized values
along a QCC is constant, however, it is sufficient to see the surface perpendicularly
to QCCs. As we mentioned in the previous section, subregions F;s resemble each

other. As each region F; has a stratified structure of QCCs, it is sufficient to take a

vertical section of the surface above the subregions Fis

Decimalized Values of Symbal Sequences

F1G.4.16: 3D-plot of Decimalized Values of Symbol Sequences
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F1G.4.17 : A vertical section of Fig.4.16

The top left figure denoted by letter a is the vertical section along PQ. Figures denoted by

letters b to f are enlargements of steps in figures a to d.




4.5. TRANSITION RULE AMONG THE SUBREGIONS 47

So let us deote our attention to one of them: F,. We take a vertical section of
the surface(Fig.4.16) along the segment PQ which is taken on F), shown in Fig.8.
The vertical section is shown in Fig.4.17a. As seen in Fig.4.17a, it is an increasing
and disconnected multi-step function. However, it seems to be decreaing in a step
b. An enlargement of step b is given in Fig.4.17b. In fact, step b is a decreasing
function. Contrary to b, a step d seems to be increasing. An enlargement of d is
given in Fig.4.17d. An enlargement of fin Fig.4.17d is given in Fig.4.17f. As is seen
in the figures, increasing property and decreasing property are observed alternately.

Additionally, self-similarlity is seen in Figs 4.17s. Look at Fig.4.17b, 4.17d and
4.17f, they resemble each other (except for reversal) and have three broad sub-
steps at center and both sides. Enlargements near by the broad steps are shown in
Fig.4.17c and 4.17e. It looks to have an infinity of narrow steps between the broad
steps. Thus, the surface of decimalization looks a fractal: strange devil’s staircase,
which is different from the ordinary devil’s staircase.

4.5 Transition rule among the subregions

In this section, we aim to establish the transition rule by the mapping T' among
regions divided appropriately. We have two wa.ys‘ of partitioning ¥. In the both
ways, X can be divided into 12 regions. As mentioned the detail in the section 4.3,
we divide ¥ by the deeper QCCs. The number of QCCs increases as k increases.
Numerical observation suggests that QCCs accumulate toward the void regions.
Using the boundary to which QCCs accumulate, T can be divided (see Fig.4.13).
We have another idea of partitioning ¥. Here, we divide ¥ by lower depth of
QCCs. There are 9 end points of QCCs on Cy N L. When the depth of QCCs k is
less than 5, only ¢*, ¢} and ¢ are connected by QCCs. All end points are connected
by some QCCs when k > 5. Based on this fact, we divide ¥ into 12 regions which
are denoted by letters I; to Iy (see Fig. 4.18). By T, each region is mapped on the
other region(s) (see Fig.4.19-4.30). The transition rule among I, (k = 1,2,..-,12)
will be given in the form of directed graph (see Fig.4.31). Another way of expression
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for the transition rule is a transition matrix. This gives an easy way to find possible
periods of some periodic points. The following section 4.7 is dedicated to the study

of periodic points.

1.5 -

0.5

| | |
-0.6 -0.4 0.2 0 w 0.2 04 0.6

F1G.4.18: Division of &

¥ is devided into 12 regions by blue curves of QCCs. Each region is denoted by letters “I;” to
“I5". The boundaries beween I} — I or I; — I3 are ;. The boundaries beween I} — I3 or I; — I
are of W5. The boundaries beween Iy — I or I7 — I 9 are of W3. The boundaries beween I — I5 or
I; — I are of Wy. The boundaries beween I} — I or Iy — I}2 are of W5. The boundaries beween

Iﬁ - I]g is of Wo.
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F1G.4.19: Regions I; and T'(I;)
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Region I, is displayed in the left. The image T'(I) is displayed in the right. T(/;) intersects I7
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F1G.4.20: Regions I; and T'(I7)
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Region I; is displayed in the left. The image T(I7) is displayed in the right. T(I7) intersects I
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F1G.4.21: Regions I; and T'([»)

Region > (left) except for the immediate escapers is mapped on I7, I1; and I2. The void region

between the image T'(I3) (right) and Cy denotes the immediate escapers to the past.
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FI1G.4.22: Regions Iy and T(I5)

Region Ig (left) except for the immediate escapers is mapped on I, Is and Is. The void region

between the image T'(Ig) (right) and Cy denotes the immediate escapers to the past.
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Region I3 is displayed in the left. The image T(I3) is displayed in the right. T(I3) is mapped

15

0.5 |

15 F

-2
-0.6

-0.4

-0.2

1 |
0 W 02

F1G.4.24: Regions Iy and T'(Iy)
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Region Iy is displayed in the left. The image T(ly) is displayed in the right. T(ly) is mapped
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F1G.4.25: Regions I; and T'(I4)

Region I is displayed in the left. The image T(I4) is displayed in the right. T(I4) is mapped

onto Iy.
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F1G.4.26: Regions I,y and T(Im)
Region I is displayed in the left. The image T'(I;g) is displayed in the right. T(I;o) is mapped

onto I3.
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F1G.4.27: Regions I; and T'(I5)

Region I5 is displayed in the left. The image T(I5) is displayed in the right. T(I5) is mapped

onto IIO-
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F1G.4.28: Regions I, and T(I“)
Region I, is displayed in the left. The image T(I};) is displayed in the right. T(/};) is mapped

onto Iy.
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F1G.4.29: Regions s and T'(Is)

Region Ig is displayed in the left. The image T(ls) is displayed in the right. T'(Js) is mapped

onto I;;.
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F1G.4.30: Regions I,y and T'(I3)
Region I}, is displayed in the left. The image T'(I}2) is displayed in the right. T(I;) is mapped

onto I5.
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F1G.4.31: Transition Diagram

From Figs.4.19-30, we construct the transition diagram in the form of directed graph
in Fig.4.31. Arrows in the graph denote the mapping. An arrow from I; to I; means
that I, is mapped into I;. If we find a closed loop of one-directed arrows I; —,

Iy =, - =, L1k, then we have a possible period k.
The other way of finding a possible period is a transition matrix which is a matrix
A = (a;;) such that a;; =1 if T(I;) N I; is nonempty and a;; = 0 otherwise. In our

case, the transiotion matrix is

O B
B O

NS
Il

(4.3.1)
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where

Obviously we have
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These mean that possible period of arbitrary periodic points is some even number.
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Then, we have the conclusion that possible period of the periodic points on ¥ is

2, 4, or 10.

4.6 Stable Regions and Escape Regions

Again see Fig.4;13 where we plot QCC up to 31st depth. There are some large voids,

to which we give letters “A” to “N”, as summarized in Table 4.7.

Regions “A” and “H” correspond to the stable regions in Fig.4.34. Therefore, they

are thoght to be invariant under the mapping T'. Orbits starting from “A” immedi-

ately make a 2-2 binary collision {symbol 2), come back to “H”, make a 1-2-1 binary

collision(symbol 0), and return to “A” again. There is a stable periodic orbit, which

is represented in the centers of “A” and “H” by “4” (see Fig.4.34), which we should

call “Schubart orbit”. We carry out further calculations to obtain longer words of
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Region Word Comment
A [(20)'®]  bounded motion

[.0231] delayed escaper
[.020°°]  delayed escaper
[.0202%9]  delayed escaper
[.02020%%] delayed escaper

B [.2%2) immediate escaper (without any other intersection with ¥)
C [.2%] immediate escaper expected from the criterion
D [.20%] delayed escaper(after some intersections with £)
E [.202%0] delayed escaper

F [.2020%%]  delayed escaper

G [.20202%] delayed escaper

H [.(02)!%]  bounded motion

I [.0%%] immediate escaper

J [.0°] immediate escaper expected from the criterion
K

L

M

N

Table 4.7: Symbol sequences in large voids in Fig.4.13.

symbols in regions “A” and “H”, whose length is 128. Area shown in Fig.4.34 is
a set of points whose words are [.(20)%!] and [.(02)%]. These are thought to in-
" clude quasi-periodic points around the Schubart orbit. In fact, we have found some
quasi-periodic points numerically, shown in Fig.4.34. There are appeared some long
narrow antennae growing from the regions shown in Fig.4.34. They are thought
to be stable manifolds of an unstable periodic points which has 16 representative

points on ¥ shown by “x” in Fig.4.34.

Peripheral voids are all escape region where our escape criteria are numerically

confirmed (Figs.4.32-33).
Orbits starting from the voids satisfy the criteria after some steps of numerical
integrations. Regions “B”, “C”, “I” and “J” are immediate escape regions. Espe-

cially, our escape criteria are satisfied in “C” and “J”. They go to positive infinity of
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v along the unstable manifolds on C, associated with ¢t They are winding around
two branches. Regions “D” and “K” are mapped on “IUJ” and “BUC”, respectively
after a binary collision. Therefore, “D” and “K” are also escape regions. The other
voids “E” etc are also escape regions, which are not immediate escaper, but delayed

escaper. We summarize these relations in terms of T'.
A=T(H), H=T(A),
CUB=T(K)=T%E) =T3M) =T*G),
IUJ =T(D)=T*L) =T*F)=T'N).

There are many small voids in bundles of QCCs faced on IUJ and BUC (Fig.4.13).

They are all escape regions as far as we examined.

F1G.4.32: 1-2-1 escape region. F1G.4.33: 2-2 escape region.

Using escape criteria obtained in theorems 3.5.1 and 3.5.2, we make a numerical
survey of initial points on I leading to 1-2-1 escape or 2-2 escape. The results are

shown in Figs.4.32-33. In Fig.4.32, we can see the points leading to 1-2-1 escape. In
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Fig.4.33, we can see the points leading to 2-2 escape. In both Figs, escape points
do not appear in the central two voids. This observation coincides with the search
of stable region (Fig.4.34). The surrounding voids in Fig.4.32 are fulfilled by 2-2
escape points on Fig.4.33. On the contrary, the surrounding voids in Fig.4.33 are
fulfilled by 1-2-1 escape points on Fig.4.32. Compare these figs with Fig.3.3 in the
section 3.5 or Fig.4.13 in the section 4.3.

4.7 Families of Periodic Orbits

We numerically find some families of unstable periodic points. They are listed in
Table 4.8. We give number of two digits to the families. First digit is the power of
(02) or (20). Second digit is the number of 0 or 2 before (02) or (20). These are
aligned perpendicularly to the stratified structure, and seem to accumulate to the

boundary of escape regions.

Then, we have a conjecture about the existence of an infinite sequences of un-

stable periodic orbits and the existence of other families of unstable periodic orbits.

Stable manifolds associated to the unstable periodic points on ¥ are observed to

be extended along the stratified structure.

Order Family 20 Family 22  Family 52 Family 50
1 [0Q20))  [2(02)7]~  [2(02)°]

2 [00(20)= [22(02)2]°  [22(02)5]° [00(20)222(02)%]
3 [222(02)2)> [000(20)222(02)2]*
4 [2222(02)?)

Table 4.8: Families of unstable periodic points
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F1G.4.34: Unstable periodic points around the stable regions
Central green regions indicate the set of points whose word is (20)!?® or (02)'?%. Symbol '+’ in the

center of the green regions indicate the Schubart type periodic points. Dotted curves and broken
curves around '+’ are thought to be quasi-periodic points. Othe symbols indicate unstable periodic
points. The correspondence of symbols to periodic words is as follws. [:[2(02)?], m :[22(02)%], ®
:[222(02)2], ® :[2222(02)2], x :[0(20)?], % :[00(20)?], w:[2(02)%], W :[22(02)%], A:[00(20)322(02)?],

/& :[000(20)222(02)?], &:[22(02)8].



Chapter 5

Summary

The present study is the first systematic work on SC4BP. As far as concerned with
SC4BP, analytical approaches to local structure near by quadruple collision or a nu-
mercal survey of surface of section ,which is not local were independently conducted
in the previous studies. There were no research combining analytical tools and nu-
merical tools largely. Through the both analytical and numerical approaches, we
have the various features in the phase space of SC4BP. In this chapter, we summerize

the present study.

5.1 Combination of the Typical Methods

We apply the method of Symbolic Dynamics. In SC4BP, almost all solutions experi-
ence binary collisions. Then, solutions for SC4BP are replaced by symbol sequences
if binary collisions are replaced by symbols. This replacement emphasizes the qual-
itative differences among orbits while it ignores the quantitative differences. There-
fore, this method is suitable for qualitative study where we pursue the geometrical
structure of the phase space of SC4BP.

One of our analytical results Surface of Section is well-defined such as all solu-
tions pass through the surface ¥ once at least. Therefore, surface of section can be
regarded as projection of the phase space where each orbit is regarded as fibre. Sur-

face of section is a tool for investigation of global structure of the phase space. Thus,
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our purpose is substituted by an exploration for distribution of symbol sequences
over the surface of section .

In order to execute such an exploration, we regularize binary collisions, and
blow up quadruple collision. Regularization enables us to continue orbits beyond
binary collision continuously. Blow-up technique enables us to analyze behavior
of orbits in the vicinity of the quadruple collision. In addition, it is possible to
connect the local phase structure around the quadruple collision and the global phase
structure. Regularization and blow-up are achieved by defining new variables which
are McGehee-llike. New variables are also applicable to numerical integrations. We

embed the phase space into the 3-dimensional space using the new variables.

5.2 Analytical Results

First of our analytical results is the poperty with respect to the Quadruple Colli-
sion Curves: QCC. The set of initial points leading to quadruple collision forms
1-dimensional curves on ¥, which we call QCC. Outline of proof about the geo-
metrical property is based on the fact that quadruple collision corresponds to two
critical points on the McGehee’s total colli#ion manifold, one of which associates
2-dimensional stable manifold. In other word, QCC is intersection of the stable
manifold and .

Second is that X is a global surface of section as we mentioned above. Outline of
its proof is based on the fact that each central force acting on ms or on the center of
masses: m; and m; is montone with respect to ratio of distances. This monotoneity
yeilds the other results: Escape Criteria. Outline of its proof is based on simple two-
body considerations. There are two different escapes: 1-2-1 escape and 2-2 escapes.
We display 3D-plot of the escape criteria with quadruple collision manifold. Also, we
evaluate both escape criteria for these two types on X. Thus, one can comprehend
the geometry of ¥ and escape regions in the phase space. Moreover, escape criteria
can be used in numerical calculations. They enable us to save time for calculations

when the solution satisfies the criteria on the way of integration.
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These two main results are based on the coordinates of McGehee. As many
authors did, we define Quadruple Collision Manifold: QCM, which is one of invariant
manifolds under the transformed flow. QCM is a two-dimensional manifold with 4
holes. The phase space of SC4BP is realized in the interior of the QCM. There are
two critical points on QCM. Any solution begins from or ends up with quadruple
collision is asymptotic to the critical points. Such solutions forms the so-called
stable and unstable manifolds which are associated to the critical points. The stable
and unstable manifolds are two dimensional in the real and physical pahse space
of SC4BP, one dimensional curves on QCM which are winding themselves about
QCM. The winding feature depends on mass-parameter. They are simple-connected
manifolds, and devide the phase space of SC4BP into an infinity of subregions.
Therefore, flows on QCM give a large influence to the global behavior as well as
the local behavior of solutions near the quadruple collision. We show that the
fictitious flow restricted on QCM is gradient-like with respect to v. This property
influences the flow near the quadruple collision. We give an analytical expression of
the homothetic solution which is uniquely determined for SC4BP. The homothetic
solution connects two critical points on QCM.

If we summarize our analytical results and apply it to the surface of section Z,

then we can expect some stratified structure of X.

5.3 Numerical Results

We extensively conduct numerical calculation in the case of equal-masses and neg-
ative energy, which gives us a finer description of the structure in the surface of
section X.

First, we otain QCCs as boundaries of subregions with different symbols. QCCs
form several number of bunches whose end-points correspond to points where the
invariant manifolds intersect the surface ofsection £. The surface of section T is
divided into two subregions: bunches where QCCs exist densely, and voids where

no QCC exists. Bunch regions were pointed out to be chaotic area in the previous
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study. Our results show that the chaotic area has a stratified structure.

Application of reversiblity in Lemma 3.3.3 to the distribution of QCCs yields
un-realizable words. Analytically, we show that [...0.0...], [...2.2. ], [...1.2..]
and [...2.1...] are un-reallizable words. Directly from numerical calculation, we
obatin (...00.22...) etc. as un-realizable words, which are summarized in Table.[?].
We establish a rule which holds true among QCCs up to 13 of depth in order to give
a conjecture that predicts all un-realizable words by assuming that the rule holds
true for the deeper QCCs in general.

Second, the order of Wy perpendicular to Wy is not monotone while the order
in collinear three-body problem is monotone. This observation is achievd by deci-
malization where symbol sequences are regarded as a ternary expansion of a certain
real number. We plot the values versus the distance on X. The graph seems to be
fractal, resembles to the famous devil’s stair-case.

Third, we examine the voids in £. We calculate orbits starting from voids in X.
Orbits starting from central voids stay in the voids for a long time, such that any
orbits crosses two voids alternately. We calculate symbol words up to 128 of length
in the central voids. Finer structure of the cental voids are observed. The results
suggest the existence of some periodic orbits.

Orbits starting from other voids adjacent C; escape after a few crossing ¥ at
most. We obtain the initial points leading to escape using our escape criteria(Lemma
3.5.1 and 3.5.2). Observing the results, one can see such initial points almost every-
where in ¥ except for the central voids.

Finally, we divide ¥ into 12 subsets with based on QCCs, and construct the
transition rule of mapping among the subsets, in order to obtain possible periodic
words. We directly find some periodic words by numerical survey of ¥. They

coincide with some of words expected from the transition rule.




Appendix A

The homothetic solution for

SC4BP

Here we study the homothetic solution for SC4BP and the variational equations
around it. We show the transversal intersection between the invariant manifold
associated with the homothetic solution and the surface of section I.

The homothetic solution is a special solution for SC4BP in which the ratio of
distance between particles is constant: df/ds = 0. Here, we use a set of equations
(2.2.2) in order to obtain the homothetic solution. We require df/dr = 0,ie,u=0
for the equations. This means to attain zeros of dV(8)/d6. As is easily seen, there
is only one value of § where dV(8)/d@ = 0 because d?V'(8)/d6> > 0. We call the
value of 8 8.: dV(8.)/dr = 0. The value 8, is obtained from a root of the folowing

equation.
T" — 2P'T° — P’(17P* + 8)T* + P'T* + 2P (P? —4)T* - P? =0, (A1)

where T = tan#, and P = tan . Therefore, 8. depends on mass parameter ¢ only.
We display the relation in Fig.A.1 and Table.A.1. If ¢ — 0 then . — 0 and if
¢ — w/2 then 8, - w/2, otherwise 8. > . Using 4., we obtain the homothetic

solution for negative energy level(h = —1), i.e.,

(7o, 80, vo, wy) = (2x%sech®(sA + a), 8., —2k tanh(sA + a),0) (A2)
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with k = W, A= \/cos f.sin(f. — v)/2 and a certain real number a. The
solution approaches to the critical points ¢~ : (0,6.,—2x,0) as s — oo and
ct: (0,8,,2k,0) as s = —o0.

Next, we study the variational equations for SC4BP around the homothetic
solution. We define (4:, 8-, 3, d4) as variations of (r, 8, v, w), respectively. We express

the homothetic solution by the suffix 0. The variational equations are obtained as

follows.

dé

T; = Kq('b‘()é] + ‘."'063) + 1"0'005262, (A31)
dds
—= = A3.2
- =6, (A3.2)

%%—1— = —2!\1151 - T05252 ht 90’9163: (A3.3)

dé, 1 d'W(8.)

—_— = —2&31!%2(61 + ’0053) + Kl( dy — U054), (A3.4)

ds

Jywie.)
where k), = cosf.sin(f. — ¢)/\/W(8.) and k; = cos(28, — )/ /W(8.)/2. If we

linearize the energy relation(2.2.8) around the homothetic solution, then we have
01 + vods = 0. (A4)

Applying (A4) to equations (A3)s provides the following equations.
s,

P 04, (A5.1)
% = —%6352 + vpk1d3, (A45.2)
ddy 1 d*w(8.)

d_s = 51(\/W(8C) d92 (52 — 1)06.;). (A53)

In the limiting case of s & Foo, these equations determine the flow in the vicinity
of the critical points c* : (0,8.,+4/2V(6.),0), respectively. The equations (A5)s

as § — Foo become as follows.

dé,
Ts =0 (46.1)
s — £4,/2c036, sin(6, ) 46.2
35 = tdy/2cosfesin(6. — ), (46.2)
ddy _ cos@.sin(f. — ) d*W(8.) :
ds — W (6.) q92 &2 F \/2 cos 8, sin(f. — @)ds. (A6.3)
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All coeflicients are constant. General solutions for (A6)s are characterized by eigen-

values of the coeflicient matrix, i.e.,

0 0 1
0 i\/2 cos 8. sin(8. — ) 0 . (A7)
contsinid.—y) W) 0 F4/2cos B sin(f, — )

The eigenvalues are

" cos 8. sin(f, — @) ( 2 d?W(BC))
= 1 .

A \/ 5 F1l+ 1+W(9c) ) (A8.1)
AF = :i:\/2 cos 8.sin(8. — ), (A8.2)

+ _ [cosésin(f. — ) ( _ 2 dQW(Bc))
Ay = ‘/ 5 F1 1+ Wy de ) (A8.3)

As is easily seen,

AE>0, AF >0, A <0, Af <0, (A9)

Therefore, invariant manifolds associated with ¢*: W3 is 1-dimensional, W} is 2-
dimensional. Invariant manifolds associated with ¢=: W? is 2-dimensional, W* is

1-dimensional. The eigenvectors perpendicular to the homothetic solusion are
2 d2W(d.)
1+ \/1 t* W @
0 for AT, (A10.1)
+ 1/2costin)(9.:—é) d*W (8.)

W (8. 462

2 dzwgac!
1- \/1 + Wi(d.) df?

0 for A%, (A10.2)
ZcosT5inl8.—9) 2w (s,
T el

dg?

Both W3 and W intersect the surface of section X transversally in the vicinity of the
critical points. In general, equations for é, and 44 {(A5.1) and (A5.3)) are separable
from (A5.2). They give normal components to the homothetic solution. From these
egations, we obtain the transversality mentioned above because dé,/ds # 0 when

d2 = 0.
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O.[rad]

1.67

1.4

00 02 04 06 08 10 12 14 16 [(rad]

Fic. A.1: 8. to ¢ curve

my my o (rad) 8. (rad)
0.10 0.90 1.24905 1.51089
0.20 0.80 1.10715 1.45737
0.30 0.70 0.99116 1.40059
0.40 0.60 0.88608 1.33739
0.50 0.50 0.78540 1.26450
0.60 0.40 0.68472 1.17727
0.70 0.30 0.57964 1.06789
0.80 0.20 0.46365 0.92090
0.90 0.10 0.32175 0.69598

Table A.1: Values of ¢ and 6, for masses



Bibliography

[1] Belbruno,E.: 1984, ‘On simultaneous double collision in the collinear four-body
problem’, J. Diff. Fq., 52, 415-431.

[2] Dankowicz,H. and Holmes,P.: 1995, ‘The existence of transverse homoclinic
points in the Sitnikov Problem’, J. Diff. Eq., 116, 468-483.

[3] Devaney,R.L.: 1980, ‘Triple collision in the planar isosceles three-body prob-
lem’, Inventiones Mathematicae, 60, 249-267.

[4] Devaney,R.L.: 1981, ‘Sigularities in classical mechanical systems’, in
A.Katok(ed.), ‘Ergodic theory and dynamical systems I’, Prog. in Math., 10,
211-333, Birkhauser, Basel.

[5] Devaney,R.L.: 1982, ‘Blowing up singularities in classical mechanical systems’,
Amer. Math. Mon., 89, 535-552.

[6] Easton,R.: 1971, ‘Some topology on the 3-body problem’, J. Diff. Eq., 12,
361-384.

(7] Easton,R.: 1972, “The topology of the regularized integral surface of the 3-body
problem’, J. Diff. Eq., 12, 361-384.

[8] Easton,R.: 1984, ‘Parabolic orbits for the planar three-body problem’, J. Diff.
Eq., 52, 116-134.

[9] Ferndndez, J.D.: 1988, ‘Transversal Ejection-collision orbits in Hll’s problem
for ¢ > 1°, Cele. Mech., 44, 299-307.

69




70 BIBLIOGRAPHY

[10] Hietarinta,J. and Mikkola,S.: 1993, ‘Chaos in the one-dimensional gravitational
three-body problem’, CHAOS, 3, 183-203.

[11] Kaplan,S.R.: 1999, ‘Symbolic dynamics of the collinear three-body problem’,
Contemporary Mathematics, 246, 143-162.

[12] Lacomba,E.A.: 1981, ‘Quadruple Collision in the Trapezoidal Four Body Prob-
lem’, in 'Classical Mechanics and Dynamical Systems’, 109-122, Marcel Dekker.

[13] Lacomba,E.A. and Losco,L.: 1981, ‘Triple Collision in the Isosceles 3-Body
Problem’, Bull. Am. Math. Soc., 3, 710-714.

[14] Lacomba,E.A. and Pérez-Chavela,E.: 1992, ‘A Compact Model For the Rhom-
boidal 4-Body Problem’, Celes. Mech. Dyn. Astr., 54, 343-355.

[15] Lacomba,E.A. and Pérez-Chavela,E.: 1993, ‘Motions Close to Escapes in the
Rhomboidal Four Body Problem’, Celes. Mech. Dyn. Astr., 57, 411-437.

[16] Lacomba,E.A. and Simo06,C.: 1992, ‘Regularization of simultaneous binary col-
lisions’, J. Diff. Eq., 98, 241-259.

[17] Llibre,J.: 1982, ‘On the restricted three-body problem when the mass parameter
is small’, Celes. Mech., 28, 83-105.

[18] Llibre,J. and Sim6,C.: 1980, ‘Oscillatory Solutions in the Planar Restricted
Three-Body problem’, Math. Ann., 248, 153-184.

[19] Marchal, C. and Saari, D.G.: 1976, ‘On the final evolution of the n-body prob-
lem’, J. Diff. Eq., 20, 150-186.

[20] Mather,J. and McGehee,R.: 1975, ‘Solutions of the collinear four-body problem
which become unbounded in finite time’, Dynamical systems theory and its

applications, 573-597, Lecture notes in physics, Springer-Verlag.

[21] McGehee,R.: 1974, ‘Triple collision in the collinear three-body problem’, In-
ventiones Mathematicae, 27, 191-227.




BIBLIOGRAPHY 71

[22] McGehee,R.: 1975, ‘Triple collision in Newtonian gravitational systems’, in

J.Mather(ed.), Lecture Notes in Physics, 38, 550-572, Springer-Verlag.

[23] McGehee,R.: 1978, ‘Sigularities in classical mechanics’, Proc. Int. Cong. Math.,
827-834, Helsinki.

[24] Meyer,K.R. and Wang,Q.D.:1995, ‘The collinear three-body problem with neg-
ative energy’, J. Diff. Eq., 119, 284-309.

[25] Mikkola,S.: 1983, ‘Encounters of binaries — I. Equal energies’, M.N.R.A.S.,
203, 1107-1121.

[26] Mikkola,S.: 1984, ‘Encounters of binaries — II. Unequal energies’, M.N.R.A.S.,
204, 115-126.

[27] Mikkola,S. and Hietarinta,J.: 1989, ‘A Numerical investigation of the one-
dimensional Newtonian three-body problem’, Celes. Mech., 46, 1-18.

(28] Mikkola,S. and Hietarinta,J.: 1990, ‘A Numerical investigation of the one-
dimensional Newtonian three-body problem II’, Celes. Mech., 47, 321-331.

[29] Mikkola,S. and Hietarinta,J.: 1991, ‘A Numerical investigation of the one-
dimensional Newtonian three-body problem IID, Celes. Mech., 51, 379-394.

[30] Moeckel,R.: 1981, ‘Orbits of the Three-Body Problem which pass infinitely
close to Triple Collision’, Am. J. Math., 103, 1323-1341.

(31} Moeckel,R.: 1983, ‘Orbits near triple collision in the three-body problem’, In-
diana Univ. Math. Journ., 32, 221-240.

[32] Moeckel,R.: 1984, ‘Heteroclinic Phenomena in the isosceles three-body prob-
lem’, SIAM J. Math. Anal., 15, 857-876.

[33] Moeckel,R.: 1985, ‘Relative Equilibria of the four-body problem’, Erg. Th. Dyn.
Sys., 5, 417-435.




72 BIBLIOGRAPHY

[34] Moeckel,R.: 1989, ‘Chaotic dynamics near triple collision’, Arch. Rational
Mech. Anal., 107, 37-69.

[35] Roy,A.E. and Steves,B.A.: 1998, ‘Some special restricted four-body problems —
II. From Caledonia to Copenhagen’, Planet. Space Sci., 46(11/12), 1475-1486.

[36] Saari, D.G.: 1984, ‘Sigularities and collisions of Newtonian gravitaional sys-
tems’, Arch. Rational Mech. Anal., 49, 311-320.

[37] Saari, D.G.: 1984, ‘The manifold structure for collision and for hyperbolic-
parabolic orbits in the n-body problem’, J. Diff. Eq., 55, 300-329.

[38] Saari, D.G. and Diacu, F.N.: 1994, ‘Superhyperbolic expansion, noncollision
singularities and symmetry cofigurations’, Cele. Mech., 60, 91-98.

[39] Saari,D.G. and Xia,Z.: 1988, ‘The existence of oscillatory and superhyperbolic
Motion in Newtonian Systems’, J. Diff. Eq., 82, 342-355.

[40] Samarov,K.L.: 1977, ‘Regularization of the isosceles three-body problem for a
non-zero area vector’, Soviet Math. Dokl., 18, 245-249.

[41) Samarov,K.L.: 1977, ‘Regularization of the isosceles three-body problem with
zero area vector’, Soviet Math. Dokl., 18, 558-562.

[42] Schubart,J.: 1956, Astron. Nachr., 288, 17.

[43] Sekiguchi,M. and Tanikawaa,K.: 1991, ‘Orbits asymptotic to the outermost
KAM in the restricted three-body problem’,the proceedings of NATO ASI en-
titled "Predictablity, Stability and Chaos in N-Body Dynamics’, eds. A.E.Roy,
493-497, Prenum Press.

[44] Sekiguchi,M. and Tanikawa,K.: 2000, ‘On Escape Orbits in the Symmetric
Collinear Four-Body Problem’, Proceedings of the 32nd Symposium on Celestial
Mechanics, Kanagawa, Japan, 15-17 Mar. 2000, 311-315.

(45] Siegel,C.L. and Moser,J.K.: 1971, ‘Lectures on Celestial Mechanics’, Springer-

Verlag.




BIBLIOGRAPHY 73

[46] Simé,C.: 1978, ‘Masses for which triple collision is regularizable’, Celes. Mech.,
21, 25-36.

[47] Sim¢,C. and Lacomba,E.: 1982, ‘Analysis of some degenerate quadruple colli-
sions’, Celes. Mech., 28, 49-62.

[48] Sim6,C. and Lacomba,E.: 1992, ‘Regularization of simaultaneous binary colli-
sions in the n-body problem’, J. Diff. Eq., 98, 241-259.

[49] Sim6,C. and Martinez,R.: 1988, ‘Qualitative study of the planar isosceles prob-
lem’, Celes. Mech., 41, 179-251.

[50] Simé,C. and Susin,A.: 1991, ‘Connections between invariant manifolds in the
collision manifold of the planar-three-body problem’, in T.Ratiu(ed.), The ge-
ometry of Hamiltonian systems, 497-518, MSRI series, Springer-Verlag.

[51] Sitnikov,K.A.: 1960, ‘Existence of oscillatory motions for the three-body prob-
lem’, Dokl. Akad. Nauk. USSR, 133, 303-306.

[52] Steves,B.A. and Roy,A.E.: 1998, ‘Some special restricted four-body problems
— I. Modeling the Caledonian problem’, Planet. Space Sci., 46(11/12), 1465-
1474.

[53] Sundman, K.: 1909, ‘Nouvelles recherches sur le probleme des trois corps’, Acta
Math., 35, No.9.

[54] Sundman,K.: 1912, ‘Memoire sur le probleme des trois corps’, Acta Math., 36,
105-179

[55] Sweatman,W.: 'The symmetrical one-dimensional Newtonian four-body prob-

lem: A numerical Investigation’, Celes. Mech. Dyn. Astr., to appear.

[56] Tanikawa,K. and Mikkola,S.: 2000, ‘Triple collisions in the one-dimensional
three-body problem’, Celes. Mech. Dyn. Astr., 76, 23-34.

[57] Tanikawa,K. and Mikkola,S.: 2000, ‘One-dimensional three-body problem via
symbolic dynamics’, CHAOS, 10, 649-657.




74 BIBLIOGRAPHY

[58] Tanikawa K. and Mikkola,S.: 2000, ‘Multiple collisions in the one-dimensional
free-fall four-body problem’, Proceedings of the 32nd Symposium on Celestial
Mechanics, Kanagawa, Japan, 15-17 Mar. 2000, 297-310.

[569] Vidal,C.: 1999, ‘The tetrahedral 4-body problem with rotation’, Celes. Mech.
Dyn. Astr., T1, 15-33.

[60] Waldvogel,J.: 1976, ‘The three-body problem near triple collision’, Cele. Mech.,
14, 287-300.

[61] Waldvogel,J.: 1982, ‘Symmetric and regularized coordinates on the plane triple
collision manifold’,
[62] Xia,Z.: 1992, ‘Melnikov method and transversal homoclinic points in the re-

stricted three-body problem’, J. Diff. Eq., 96, 170-184.

[63] Xia,Z.: 1992, ‘The existence of noncollision singularities in newtonian systems’,

Ann. Math., 135, 411-468.

[64] Xia,Z.: 1994, ‘Arnold diffusion and oscillatory solutions in the three-body prob-
lem’, J. Diff. Eq., 110, 289-321.

[65] Zare,K. and Chesley,S.: 1998, ‘Order and chaos in the planar isoceles three-
body problem’, CHAOS, 8, 475-494.




