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Abstract

We study relationships between gravitational theories and hydrodynamic systems with

several approaches. There are at least three approaches which realize this idea: the mem-

brane paradigm, the AdS/CFT duality, the BKLS approach. In this thesis, we focus on

each the AdS/CFT duality and the BKLS approach individually.

First, we examine the AdS/CFT duality and the universality of the shear viscosity

to the entropy density ratio η/s for various holographic superfluids. In the study of the

AdS/CFT duality, fluids corresponding to a large class of geometries ensure the universality

η/s = 1/(4π). The universality has been extensively studied, and this holds for all known

examples which have been studied. We study three types of the holographic superfluids

as yet another example of the universality: s-wave, p-eave and (p + ip)-wave holographic

superfluids. For the s-wave case, the ratio has the universal value 1/(4π) as in various

holographic models. For the p-wave case, there are two shear viscosity coefficients because

of the anisotropic boundary spacetime, and one coefficient has the universal value. For

the other viscosity coefficient, the existing technique is not applicable since there is no

tensor mode of metric perturbations which decouples from Yang-Mills perturbations. For

the (p + ip)-wave case, the situation is the same as the case of the latter component in the

p-wave. These results imply that p-wave and (p+ ip)-wave holographic superfluids may not

have the universality, and in fact, they are the first examples of the non-universal shear

viscosity to the entropy density ratio.

Second, we study another realization, the BKLS approach. The BKLS approach is

proposed by Bredberg et al. (1006.1902), where the fluid is defined by the Brown-York

tensor on a timelike surface at r = rc in black hole backgrounds. We consider both Rindler

space and the Schwarzschild-AdS (SAdS) black hole. The former describes an incompressible

fluid, whereas the latter describes the vanishing bulk viscosity at arbitrary rc, but these two

results do not contradict with each other. We also find an interesting “coincidence” with

the black hole membrane paradigm which gives a negative bulk viscosity. In order to show

these results, we rewrite the hydrodynamic stress tensor via metric perturbations using the

conservation equation. The resulting expressions are suitable to compare with the Brown-

York tensor.
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Introduction

In theoretical physics, there are a large number of dualities which relate a theory to

another theory. The dualities can often transform a difficult problem to an easy problem.

One example of the dualities is a correspondence between (d + 1)-dimensional gravitational

theories and d-dimensional hydrodynamics. There are at least three approaches which

realize this duality: (i) the membrane paradigm, (ii) the AdS/CFT duality, (iii) the BKLS

approach. They have been studied in different contexts. Let us explain the history of these

approaches.

The oldest realization is (i) the membrane paradigm [1, 2], which has been studied in

the context of the black hole physics. They tried to map the dynamics of the black hole to

hydrodynamics and focused on the black hole’s event horizon. Once an object passes through

the black hole’s event horizon, the object cannot affect an outside observer. In other words,

the observer cannot see the inside of the black hole but can see the surface of the black hole.

Therefore, the black hole dynamics should be effectively described by a dynamical membrane

on the stretched horizon, a timelike surface located slightly outside the true horizon. The

membrane dynamics is described by the Einstein equation on the stretched horizon and

the equation is the same as the Navier-Stokes equations, mathematically. However, the

membrane paradigm has the unpleasant features as a fluid such as a negative bulk viscosity.

In addition, the microscopic realization of the membrane paradigm is not clear.

On the other hand, (ii) the AdS/CFT duality [3, 4, 5, 6], based on string theory, provides

several explicit realizations of microscopic understandings of the corresponding hydrody-

namics since the D-branes[7] provide both the asymptotic AdS black brane geometries and

the corresponding strongly coupled field theories, which live on the boundary of the AdS

geometries. For example, the D3-branes provides the AdS5×S5 geometry and the strongly

coupled N = 4 Super Yang-Mills theory in the large-Nc limit. One of the most important

features of the AdS/CFT duality is that exact correlation functions of the strongly coupled

field theories can be derived from the classical gravity, which is easy to calculate.

Therefore, the AdS/CFT duality has been applied to real-world physics e.g., the quark-

3



gluon plasma. The quark-gluon plasma can be described as a strongly coupled viscous fluid

according to the heavy-ion collision at RHIC. Using the AdS/CFT duality, it turned out

that the strongly coupled N = 4 Super Yang-Mills theory and the quark-gluon plasma have

almost same value of the shear viscosity to the entropy density ratio η/s. It may sound

strange at the first glance since they are quite different field theories. But the agreement

of the η/s would be because of the universality of the strong coupled field theories. (See

the next section for more detail on the universality.) Therefore, it is important to find such

robust and universal features to apply the AdS/CFT duality to real-world physics. More

recently, the AdS/CFT duality has been applied to the condensed matter physics. The

condensed matter physics is a low energy effective theory, so it is important to find the IR

fixed point. This idea is realized by the holographic renormalization group that the field

theory lives on arbitrary timelike surface, and the position of the surface corresponds to the

energy scale of the field theory. The boundary and the horizon of the geometry correspond

to the UV limit and the IR limit of the field theory, respectively. Therefore, the dependence

on the position of the timelike surface is interpreted as the Wilsonian renormalization group

flow of the field theory.

The UV limit of the field theory should be a conformal field theory as long as the cor-

responding geometry is asymptotic AdS. However, real world materials are not confromally

invariant in the UV limit. In the context of the Wilsonian renormalization group, the renor-

malized field theory doesn’t depend on the physics above the cutoff scale. So, (iii) Bredberg,

Keeler, Lysov, and Strominger proposed an approach which doesn’t depend on the asymp-

totics of the geometry [27, 28]. They introduced a timelike surface at arbitrary position for

the “boundary” where the fluid lives. This approach doesn’t provide microscopic under-

standing of the fluid but should describe robust features of the correspondence between the

gravity and hydrodynamics, instead.

In this thesis, we focus on each (ii) the AdS/CFT duality and (iii) the BKLS approach,

and study the relationship between them.

The AdS/CFT duality (Chapter 2)

In the context of the relationship between gravitational theories and hydrodynamics,

the shear viscosity, one of the transport coefficient, has been extensively studied. This is

because η/s, the ratio of the shear viscosity to the entropy density, is universal, i.e.,

η

s
=

1

4π
,
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according to the AdS/CFT duality, the membrane paradigm and the BKLS approach. Es-

pecially, in the context of AdS/CFT, the universality has been extensively studied, and this

holds for all known examples which have been studied (See, e.g., Ref. [8, 9]).

The shear viscosity to the entropy density ratio η/s was first derived for the D3-brane

[10], which is the dual of N = 4 SYM. Then the same results were obtained for the M2-

and M5-branes [11]. These three branes are the duals of conformal theories. Moreover,

the universality holds even if theories are non-conformal, e.g., Dp-branes for p 6= 3, the

Klebanov-Tseytlin geometry, the Maldacena-Nunez geometry, and the N = 2∗ system [12,

13, 14, 15, 16]. For the application to real QCD, each the finite density theories [17, 18, 19,

20] and the theories with fundamental fermions has been studied [21]. They are the duals of

the charged black holes and the D3-D7 system, respectively. They ensure the universality.

Even for a time-depending systems, the universality is held [22]. For the application to

condensed matter physics, the Lifshitz-like geometry have the universality [23] Although

there exists several arguments to generally support the universality [24, 25], it is still unclear

why the universality holds microscopically and how generic the universality is.

In this Thesis, first, we study the holographic superfluids, which provide yet another

example of the universality. The holographic superfluids exhibit a second-order phase tran-

sition. We study three types of the holographic superfluids, s-wave, p-wave, and (p + ip)-

wave. They are characterized by the order parameter of the phase transition, i.e., in the

bulk gravitational theories, the order parameter of the s-wave holographic superfluids is a

scalar field, and the one of both p-wave and (p+ ip)-wave holographic superfluids is a SU(2)

gauge field. (The difference between the p-wave and (p + ip)-wave is condensing compo-

nents of the gauge field.) We found following results: (i) the s-wave holographic superfluids

holds the universality of η/s, (ii) the p-wave and (p + ip)-wave holographic superfluids may

have non-universal η/s because of the spacial anisotropy coming from the gauge field. (We

will discuss the relationship between the universality violation and the spacial anisotropy

in Sec. 2.2.) These are the first examples of the non-universal system. Actually, our work

triggered detailed studies of the non-universal shear viscosity [86, 87, 88, 89].

The BKLS approach (Chapter 3)

Let us summarize the three approaches again in order to realize the feature of the BKLS

approach.

1. Historically, the membrane paradigm [1, 2] is the oldest one. In this case, the fluid lives

on the stretched horizon r → r0. However, the membrane paradigm has the unpleasant

features as a fluid such as a negative bulk viscosity. The membrane paradigm originally
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focuses on the (3 + 1)-dimensional asymptotically flat black holes, but asymptotics

should not matter much since it focuses on the near-horizon limit.

2. In the AdS/CFT duality, the dual fluid “lives” at the AdS boundary r → ∞. The

advantage of the AdS/CFT duality is a clear microscopic interpretation for the dual

fluid. The AdS/CFT results are widely used for real-world applications such as the

quark-gluon plasma. (See, e.g., Refs. [8, 9, 26] for reviews.)

3. More recently, Bredberg, Keeler, Lysov, and Strominger (BKLS) [27, 28] proposed

the timelike surface at arbitrary position r = rc for the “boundary” where the fluid

lives (See also, e.g., Refs. [29, 30]). The BKLS approach is analogous to the holo-

graphic renormalization. In the near-horizon limit, the BKLS approach describes an

incompressible fluid.

Another closely related idea is a “black hole in a cavity” [31]. This idea was proposed to

obtain a well-defined thermal equilibrium for asymptotically flat black holes such as the

Schwarzschild black hole. The Schwarzschild black hole has a negative heat capacity, so it

is unstable by the Hawking radiation. However, if the black hole is surrounded by a finite-

temperature cavity, and if the cavity is close enough to the horizon, a thermal equilibrium

is achieved. In a sense, the BKLS approach is an AdS black hole in a cavity.

While each approach has a different motivation and physical interpretation, one thing is

common: they all employ the Brown-York tensor [32] as the fluid stress tensor. Thus, they

are somehow related to each other.

Both in the membrane paradigm and in the BKLS approach (in particular in Ref. [28]),

one often starts to identify the velocity field of the fluid in the bulk spacetime. This has its

own advantage that the relationship between the Einstein equation and the Navier-Stokes

equation is direct and transparent. On the other hand, this brings us an immediate problem

why a particular vector field should be regarded as the velocity field. So, we do not take

such a path.

• Instead, we consider metric perturbations and study the (linear) response of the

Brown-York tensor by the perturbations à la AdS/CFT duality.

• In hydrodynamics, the velocity field is determined from the metric perturbations

(Sec. 3.1). Then, one can eliminate the velocity field completely in the hydrodynamic

stress tensor. The resulting expression contains metric perturbations only, which is

suitable to compare with the Brown-York tensor. In our approach, the velocity field

is a consequence of metric perturbations.
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One purpose of this chapter is to reexamine the BKLS approach using the above formulation.

In particular, we study the issue of the bulk viscosity ζ, which is non-negative in the

AdS/CFT duality, negative in the membrane paradigm, and is irrelevant in the BKLS

approach (because of an incompressible fluid). For that purpose, we consider the sound

mode perturbations whose analysis was somewhat incomplete in Ref. [27]. We study Rindler

space, which is the near-horizon limit of black holes with nondegenerate horizon, and the

five-dimensional Schwarzschild-AdS black hole (SAdS5)
1. Our results are summarized as

follows:

1. For Rindler space, the Brown-York tensor gives an incompressible fluid in accordance

with the BKLS result (Sec. 3.2).

2. For the SAdS5 black hole, the Brown-York tensor always gives the vanishing bulk

viscosity irrespective of the boundary position rc (Sec. 3.3).

3. There are no contradictions between two results since the hydrodynamic regime used

for the SAdS black hole “differs” from the hydrodynamic regime used for Rindler space

(when expressed in terms of the SAdS variables) (Sec. 3.4).

In addition, we obtain one of the second-order hydrodynamic transport coefficient τπ for

the SAdS5 black hole in the BKLS approach.

The framework of this thesis

This thesis is organized as follows. In Chapter 1 we shall give a short review of the linear

response theory, which provides the response of an operator induced by small perturbations

on the thermal equilibrium. It is necessary in order to obtain the transport coefficients

from perturbations. We shall review the basics of the hydrodynamics, which include the

isotropic first order hydrodynamics and the second order hydrodynamics.The anisotropic

fluid is dual to the p-wave and (p + ip)-wave holographic superfluids. In the context of

the AdS/CFT duality, the corresponding fluid usually has the conformal symmetry. The

SAdS black hole with a finite cutoff, however, might not have conformal symmetry. So the

non-conformal second order fluid should be considered. Using the linear response theory

and the hydrodynamic constitutive equation, we will find the response of the hydrodynamic

stress tensor induced by the gravitational perturbations, and the viscosities finally.

1While our work was in progress, there appeared preprints which study Rindler hydrodynamics [33, 34,
35].
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Chapter 2 contains a brief review of AdS/CFT and the study of the ratio η/s of the holo-

graphic superfluid, simultaneously. First, we shall show the s-wave holographic superfluids

have a universal shear viscosity. This proof includes a large class of geometries and is the

most general theorem of the universality at present. Then we discuss anisotropic viscosities

of the p-wave and (p + ip)-wave holographic superfluids and they can have non-universal

value. The study is based on our paper [36].

In Chapter 3, which is based on our research [37], we shall present another realization,

the BKLS approach. We define the approach in terms of the Brown-York tensor and metric

perturbations. First, we write down the linear response of the hydrodynamic stress tensor

in terms of the metric perturbations. Then we show the linear perturbation of the Brown-

York tensor in the Rindler space. Comparing the Brown-York tensor and the hydrodynamics

stress tensor, we shall reproduce the results of the BKLS approach. In order to compare

with the SAdS5 black hole, we shall derive the viscosities, especially the bulk viscosity, of

SAdS5 with arbitrary rc and show that the bulk viscosity vanishes even for arbitrary rc. We

shall discuss how they can be compatible. We also compute a second-order hydrodynamic

coefficient τπ for arbitrary rc.
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Chapter 1

Hydrodynamics and Linear Response

Theory

Here, the minimal formalism of hydrodynamics and the linear response theory are ex-

plained.

1.1 Linear Response Theory

Linear response theory is based on the following conditions:

• Hamiltonian in the system can be decomposed into the time independent part and

the time depending part.

• The time depending part is made of a small fluctuation which is perturbed from the

outside of the system.

• The system was thermal equilibrium in the past.

The time depending density of state ρ(t) and time depending Hamiltonian H(t) satisfies

the von-Neumann equation

i
∂

∂t
ρ(t) = [H(t), ρ(t)] . (1.1.1)

This means the time evolution of the density of state is

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0) . (1.1.2)
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Even if the system depends on time, the expectation value of an arbitrary observable B at

time t can be represented by

〈B〉t = Trρ(t)B . (1.1.3)

It is, however, difficult to calculate the time depending expectation value exactly. So we take

the most simple assumption that the system was in thermal equilibrium and then perturbed

linearly.

First, we take Schrödinger picture. Assume that H(t) can be decomposed into the time

independent part H0 and the time dependent part δH(t), and the time dependent part is

made of the time independent operator OA(x) and its time dependent source φA(t, x):

H(t) = H0 + δH(t), δH(t) = −
∫

dxd−1φA(t, x)OA(x) . (1.1.4)

The time evolution operator from t0 to t satisfies the following differential equation.

i
∂

∂t
U(t, t0) = H(t)U(t, t0), U(t0, t0) = 1 . (1.1.5)

The solution is

U(t, t0) = T

[
exp

(
−i

∫ t

t0

dsH(s)

)]
. (1.1.6)

This time evolution operator also should be decomposed into the H0 part and the δH(t)

part. First, the H0 part can be clearly defined as

U0(t, t0) = exp (−i(t− t0)H0) . (1.1.7)

Then we naively define the δH(t) part as1

U(t, t0) = U0(t, t0)Ui(t) . (1.1.8)

This definition and the time evolution equation for the full Hamiltonian lead the time

evolution equation for δH(t) .

i
d

dt
Ui(t) = U †

0(t, t0)δH(t)U0(t, t0)Ui(t)

= δHI(t)Ui(t) .
(1.1.9)

1The subscript “i” in Ui means “Interaction part”. Don’t confuse this with the subscript “I”, which
means “Interaction pictuer”.
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Here, the time dependent part of the Hamiltonian in the interaction picture is defiened as

δHI(t) := U †
0(t, t0)δH(t)U0(t, t0) . (1.1.10)

Note that the time evolution of states is under Ui and of operators is under U0 in the

interaction picture. The solution of Ui(t) is

Ui(t) = T

[
exp

(
−i

∫ t

t0

dsδHI(s)

)]
. (1.1.11)

So the naive definition reads the proper expression eventually.

Now using the expansion of the full time evolution operator

U(t, t0) = U0(t, t0)

(
1− i

∫ t

t0

dsδHI(s) +O(δH2
I )

)
, (1.1.12)

one can derive the first order approximation of the expectation value of the arbitrary ob-

servable B

〈B〉t = TrU(t, t0)ρ(t0)U
†(t, t0)B

= Trρ(t0)BI(t, t0) + i

∫ t

t0

dt1Trρ(t0)[δHI(t1), BI(t, t0)] +O(δH2
I ) .

(1.1.13)

Let the system be thermal equilibrium at t0 so δHI(t0) = 0 and the density of state becomes

ρ(t0) =
e−βH0

Tre−βH0
=: ρ0 . (1.1.14)

Therefore, the state density commute with U0(t, t0) and so Trρ(t0)BI(t, t0) = Trρ0B. The

first order approximation become

〈B〉t = Trρ0B + i

∫ t

t0

dt1Trρ0[δHI(t1), BI(t, t0)] +O(δH2
I ) . (1.1.15)

If we take the arbitrary observable B = OA(x), the response of the expectation value

can be written as

δ〈OA〉(t, x) = i

∫ t

t0

dt1

∫
dd−1x′Trρ0[OI

A(t, x),OI
B(t′, x′)]φB(t′x′)

= i

∫ ∞

−∞
dt′

∫
dd−1x′θ(t− t′)〈[OI

A(t, x),OI
B(t′, x′)]〉φB(t′x′) ,

(1.1.16)

11



Using
∫

dd−1xdteiωt−ikx to transform it into the Fourier space expression,

δ〈ÕA〉(ω, k) = −GR
AB(ω, k)φ̃B(ω, k) , (1.1.17)

where we defined the Retarded Green’s function

GR
AB(ω, k) = −i

∫ ∞

−∞
ddxeiωt−ikxθ(t)〈[OA(t, x),OB(0, 0)]〉 . (1.1.18)

This expression means that even if the system depends on time, the first order approximation

in the fluctuation can be understood in terms of the information of thermal equilibrium

quantities.

1.2 Hydrodynamics

The hydrodynamics is an effective theory under long wave length limit, i.e., the derivative

expansion. The referential scale in the hydrodynamics is the mean free path `. Therefore,

the validity of the hydrodynamic approximation is controlled by the combination of the

characteristic momentum scale and the mean free path (k · `).
One of the most distinctive features of hydrodynamics is that it is based on the con-

servation equations and the constitutive equation for the hydrodynamic stress tensor, not

certain Lagrangian. The reason why the constitutive equation should be introduced is that

the differential equations from the conservation equations is not closed themselves. The

constitutive equation for the hydrodynamic stress tensor reduces the degrees of freedom

and then the differential equations can be closed.

The constitutive equation is constructed by the derivative expansion. So the hydrody-

namic stress tensor of the perfect fluid does not include any derivatives.

T µν = T µν
perfect +O(∂1) . (1.2.1)

If (k · `) is small enough to be neglected, the system can be described by the perfect fluid.

Since the hydrodynamics is an effective theory, each fluid is characterized by several

coefficients, which is called transport coefficients. The number of the transport coefficients

can be determined by the symmetry of each system. For example, the isotropic fluid has the

two first order transport coefficients η and ζ. This is because the symmetric rank two tensor

transforming under SO(d− 1) can be decomposed into the two irreducible representations,

which are the symmetric traceless part and the trace part. Therefore, to fix the transport
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coefficient in a hydrodynamic system is to fix the equation of motion in the hydrodynamic

system.

In this section, we construct the constitutive equations for several fluids, derive Kubo

formula for the first order transport coefficients and find the dispersion relations using the

equation of motions in an arbitrary curved background. Following discussion is based on

[38] and [9] for the first order fluids, and [39] for the second order fluids. (See [40, 41, 42, 43]

for more detail on the second order hydrodynamics.) Note that the readers should mind

that, in this section, we discuss the boundary theory from the point of view of AdS/CFT

although we discuss the fluid on the curved spacetime.

1.2.1 Perfect Fluid

The equation of motion of the hydrodynamics is based on the conservation equation.

∇µT
µν = 0 , (1.2.2)

where T µν is the hydrodynamic stress tensor of the fluid. Here, we impose that the system is

locally equilibrium: the system is thermal equilibrium in the neighborhood of an arbitrary

position x. So the thermodynamic quantities can be defined there and the state of the

neighborhood can be specified by the thermodynamic quantities and the fluid velocity uµ,

which is normalized as uµu
µ = −1. This means that the constitutive equation is T µν =

T µν(uµ, P, · · · ), where P is the pressure of the system. They are locally defined.

Now we derive the constitutive equation of the perfect fluid. Let the dimension of the

spacetime d-dimension. Consider an infinitesimal volume element and its surface element

dΣµ. The momentum flux through the µ surface is

dqi = T iνdΣν . (1.2.3)

Especially in the rest flame, the volume element doesn’t carry total momentum, so T i0 = 0

and the pressure against each surface is same and perpendicular since the volume element

doesn’t move. In addition, this volume element is not affected by the next volume element

since the dissipative momentum transfer is not exist. Therefore,

T ij = Pδij . (1.2.4)

The energy density in the volume element is T 00 = ε, so the generally covariant form of the
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hydrodynamic stress tensor is

T µν = εuµuν + P µνP , (1.2.5)

where P µν is the projection operator defined by

P µν = uµuν + gµν . (1.2.6)

One can show that the fluid described by (1.2.5) doesn’t have dissipation, using the

thermodynamic relations. Projecting the divergence of the hydrodynamic stress tensor

along uµ

0 = uν∇µ (wuµuν + Pgµν)

= −T∇µ (σuµ) ,
(1.2.7)

where we introduced the enthalpy w = ε + P and the entropy density σ, and we used the

thermodynamic equation dw = Tdσ + dp and ε + P = Tσ. The entropy flux is conserved.

∇µ(σuµ) = 0 . (1.2.8)

This means the system represented by the hydrodynamic stress tensor (1.2.5) does not have

any dissipation.

1.2.2 First Order Hydrodynamics

In order to pick up the effect of the dissipation, we examine the derivative term τµν .

T µν = (ε + P )uµuν + Pgµν − τµν . (1.2.9)

Let us consider τµν up to the first derivative in the isotropic system. This approximation

is valid when (k · `)2 ¿ 1. Now we should reconsider the definition of the fluid velocity.

We define the velocity in the condition that, in the rest flame of any given volume element,

the momentum of the volume element is zero and its energy is expressed in terms of the

same formulae as when dissipative processes are absent. This means that τµνuν = 0 and, in

the rest flame, the spatial direction of the fluid velocity is absent ui = 0. Therefore, in the

proper coordinate only τij should be exist.

14



Decomposing τij into the irreducible representations of SO(d− 1),

τij = η

(
∂iuj + ∂jui − 2

p
δij∂ku

k

)
+ ζδij∂ku

k , (1.2.10)

where ζ is the bulk viscosity and η is the shear viscosity, and p denotes the spatial dimension

d−1. Since the bulk viscosity is the trace part of the hydrodynamic stress tensor, it provides

the force which change the volume of the element. In the conformal fluid, the bulk viscosity

is absent since its hydrodynamic stress tensor is traceless. On the other hand, the shear

viscosity provides the force which change the shape of the volume element without its volume

unchanging. In the general covariant form,

τµν = P µαP νβ

[
η

(
∇αuβ +∇βuα − 2

p
gαβ∇γu

γ

)
+ ζgαβ∂γu

γ

]
. (1.2.11)

Note that the projection operator is introduced in order to preserve the condition τµνuν=0.

The positivity of the entropy production restricts the transport coefficients. As the

perfect fluid, the time component of the conservation equation in the proper coordinate

(∇µT
µν)uν = 0 leads

∇µ(σuµ) =
1

T

(
τ<µν>u<µν> +

1

p
PαβταβP µνuµν

)
. (1.2.12)

Here, the spacially projected symmetric traceless symbol

A<µν> :=
1

2
P µαP νβ(Aαβ + Aβα)− 1

p
P µνPαβAαβ , (1.2.13)

and the symmetrized first derivative of fluid velocity

uµν :=
1

2
(∇µuν +∇νuµ) , (1.2.14)

are defined. Eq. (1.2.12) means that, in order to keep the entropy production positive

for any given velocity, the symmetric traceless part of the viscous tensor τ<µν> and trace

part of that Pµντ
µν must proportional to u<µν> and P µνuµν , respectively. In addition, the

coefficient of each term must positive. Therefore, the transport coefficients η and ζ should

be positive.

Since the equation of motion is closed, one can derive the poles of the linearized hydro-

dynamics. We derive them in Sec. 3.1.
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1.2.3 Second Order Hydrodynamics

We proceed the derivative expansion of the hydrodynamic stress tensor up to second

order. Therefore, the viscous tensor τµν in eqviscousstresstensor must include all possible

second-order terms 2.

Basically, the second order hydrodynamics should be introduced when the characteristic

momentum scale of the system compared with the mean free path, i.e., (k · `)2, cannot

be neglected. There is another understanding to introduce the second order term. In the

first order “relativistic” hydrodynamics, the speed of propagation for heat and viscosity are

infinite since the EOMs for the propagation obey parabolic differential equation, which is the

same as the traditional thermal diffusion equation. Eventually, the first order “relativistic”

hydrodynamics is only applicable to the system slowly varying on space and time scales

characterized by the mean free path ` and the momentum k. Israel introduced the second

order derivative terms because of the latter motivation [40], and then he generalized the

theory in the curved background [41]. (See appendix of Ref.[42] for review.)

From the AdS/CFT duality’s point of view, conformal symmetry is so important, so the

second order hydrodynamics with conformal invariance is required. Baier et al. constructed

the theory and found additional terms [39] which were neglected in Refs.[40, 41] 3. Then the

most general isotropic second order hydrodynamics without charges are constructed [43].

In this thesis, we don’t need the non-linear terms. So we introduce a non-conformal

viscous tensor:

τµν =− ησµν − ζ(∇ · u)P µν

+ ητπ
<∇uσ

µν> + ζτΠ∇u(∇ · u)P µν

+ κ1R
α<µν>βuαuβ + κ2R

<µν> +
(
κ3R

αβuαuβ + κ4R
)
P µν ,

(1.2.15)

where the antisymmetric traceless tensor σµν is defined by σµν := 2<∇µuν>. We have

introduced six second order coefficients, i.e., τπ, τΠ, κ1, κ2, κ3, κ4. Note that, for the

conformal fluids, τΠ, κ3 and κ4 are absent, and κ1 = −(d− 2)κ2. (cf. Ref.[39].)

2In this thesis, we consider only the isotropic second order hydrodynamics.
3There are two types of the additional terms. First, Baier et al. found the terms made of Riemann

tensor and Ricci tensor. Second, in order to preserve conformal invariance, additional non-linear terms are
required.
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1.2.4 Kubo Relations for the Viscosity Coefficients

The viscosity coefficients represent the dissipation of the fluid, so they can be obtained

by linear response theory. Linear response theory is based on the operator of interest and

its corresponding source. Since we are now interested in the response of the hydrodynamic

stress tensor T µν , the appropriate source is the metric gµν .

In order to apply linear response theory to the viscous hydrodynamics, the state where

the spacial component of the velocity is absent uµ = (1, 0, 0, · · · , 0) and the spacetime is

perturbed by the spatially homogeneous metric perturbation around the flat spacetime ηµν
4,

gij = δij + hij(t), hij ¿ 1, hii = 0 (1.2.16)

g00 = −1, g0i(t, x) = 0 . (1.2.17)

The response of the velocity δuµ from the metric perturbation is absent since the homoge-

neous perturbation preserve the spatial rotational isometry and one can show the normal-

ization uµu
µ = −1 preserve δu0 = 0.

The response of the energy momentum tensor is

δTij = Phij + η∂0hij, (i 6= j) . (1.2.18)

Using (1.1.17), one can find the Green’s function of the off-diagonal hydrodynamic stress

tensor,

G12,12
R (ω, 0) = −i

∫ ∞

−∞
ddxeiωtθ(t)〈[T 12(t, x), T 12(0, 0)]〉 = −iηω +O(ω2) . (1.2.19)

Here, we took i = 1, j = 2 without loss of generality because of the SO(p) spatial isometry.

The first term is called contact term, which is independent of the frequency. Removing the

contact term by hand, one can obtain the shear viscosity from the Green’s function.

η = − lim
ω→0

1

ω
ImG12,12

R (ω, 0) . (1.2.20)

This is the Kubo relation for the shear viscosity.

We use Eq. (1.2.20) in Chapter 2. Although there are several Kubo relations for the

other viscosities, we don’t discuss them here. We discuss the response of the hydrodynamic

4The homogeneous perturbation correspond to the long wave length limit k → 0. In general, we should
take care of the order of the limit. Sometimes, the limit and another limit are non-commutative.
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stress tensor from the sound mode metric perturbation in Sec. 3.1.
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Chapter 2

AdS/CFT and Hydrodynamics

Historically, AdS/CFT is proposed by Maldacena[3] in 1997. He proposed that the

strong coupling and the large Nc-limit of the N = 4 super Yang-Mills theory, which is the

low energy effective theory of D3-brane, corresponds to the near horizon limit of the black

D3-brane solution. And then Gubser, Klebanov, and Polyakov[6], and Witten[4] proposed

the prescription for obtaining the correlation function of operators in the field field theory

from the calculus in the corresponding bulk gravitational theory. The prescription is called

GKP-Witten relation.

Although they formulate the relation in Euclidean signature, in order to find time depen-

dent dynamics, especially dynamics with dissipation, the real time formalism is needed. Son

and Starinets found the prescription to obtain Retarded Green’s functions exactly in real

time Lorentzian signature[44], and they derived the shear viscosity to the entropy density

ratio for N = 4 super Yang-Mills (SYM) plasma[10, 45]. The ratio has been studied widely

in order to understand real quark gluon plasma (QGP).

The prescription enables us to find the dissipative dynamics in the boundary theory

through retarded Green’s functions. It is interesting to study the dissipative dynamics

in not only QGP but condensed matter physics as well. In this thesis, we focus on the

holographic superfluids, which exhibit the second order phase transition and superfluid-like

behaviors.

In the studies of holographic superfluids [47, 48, 49, 50, 51, 52, 53] (See, e.g., Refs. [54,

55, 56] for reviews), one often uses numerical computations or some approximations. This is

because the holographic superfluids are Einstein-matter systems and it is in general difficult

to solve such systems. One approximation often employed is the “probe approximation,”

where the backreaction of matter fields onto the geometry can be ignored. While the

approximation is enough to see the phase transition and to compute properties such as
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the conductivity, gravitational properties of these systems, in particular analytic results are

largely intact. It is desirable to obtain gravitational properties of these systems analytically.

We investigate this issue in this thesis. We study η/s, the ratio of the shear viscosity to the

entropy density for holographic superfluids.

Technically, the universality largely depends on the following two properties of the bulk

theory:

1. One can use the Kubo formula to compute η and carry out the tensor mode compu-

tation of gravitational perturbations. There are no other fields which transform as a

tensor even if matter fields are present.

2. The entropy density is given by the Bekenstein-Hawking formula as long as the grav-

itational action takes the Einstein-Hilbert form.

In this thesis, we consider three class of holographic superfluids, the s-wave, p-wave, and

(p+ ip)-wave holographic superfluids in (d+1)-dimensional bulk spacetime. Our results are

summarized as follows:

(i) The s-wave holographic superfluids are described by Einstein-Maxwell-complex scalar

systems [47, 48, 51]. In this case, the universality holds with a modification of the

technique in Ref. [25].

(ii) The p-wave holographic superfluids are described by Einstein-Yang-Mills systems [49].

In this case, the Yang-Mills field breaks the SO(d − 1) rotational invariance on the

boundary theory, which has two implications. First, the hydrodynamic limit is not

described by a single shear viscosity.1 Second, for d = 3, one does not have a tensor

mode which decouples from the Yang-Mills field. (Namely, item 1 of the above list

fails.) As a result, the existing technique is not applicable. However, for d ≥ 4, one

has the SO(d− 2) invariance. In this case, a tensor mode exists, and the universality

holds for the shear viscosity associated with the tensor mode.

(iii) The (p+ip)-wave holographic superfluid is described by the same system as the p-wave

holographic superfluid (with d = 3), but the symmetry breaking pattern is different

[50]. Although the metric keeps the SO(2) invariance, the Yang-Mills field breaks the

SO(2) invariance. As a result, there does not exist the tensor mode which decouples

from Yang-Mills perturbations and the existing technique is not applicable.

1In the context of the AdS/CFT duality, anisotropic shear viscosities have been computed for the non-
commutative N = 4 plasma [57].
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Our results indicate that the shear viscosity has no singular behavior across the phase

transition for holographic superfluids (See Sec. 2.3.2).

The plan of this chapter is as follows. In Sec. 2.1, we consider η/s for the s-wave

holographic superfluids, explaining basic prescriptions of AdS/CFT. In Sec. 2.2, we consider

anisotropic holographic superfluids, the p-wave and (p + ip)-wave holographic superfluids.

For the (p + ip)-wave case, we identify the Yang-Mills perturbations which couple to the

would-be tensor mode of metric perturbations.

2.1 The s-wave Superfluids

2.1.1 Background

The s-wave holographic superfluids are described by Einstein-Maxwell-complex scalar

system:

Ss =
1

16πGd+1

∫
dd+1x

√−g

{
R− 2Λ− 1

4
K1

(|Ψ|2) FMNFMN

−K2

(|Ψ|2) |∇MΨ− iqAMΨ|2 − V
(|Ψ|2)

} (2.1.1)

with the ansatz

ds2
d+1 = −gtt(r)dt2 + gxx(r)

d−1∑
i=1

dx2
i + grr(r)dr2 , (2.1.2)

A = At(r)dt , (2.1.3)

Ψ = Ψ(r) . (2.1.4)

Here, capital Latin indices M,N, . . . run through bulk spacetime coordinates (t, xi, r), where

(t, xi) are the boundary coordinates and r is the AdS radial coordinate. Greek indices

µ, ν, . . . run though only the boundary coordinates. K1, K2 and V are arbitrary real func-

tions of the scalar field. This action includes not only the conventional s-wave holographic

superfluids [47, 48] but also generalized models [58, 59, 60]. We impose the regularity

condition on the metric at the horizon r = rh:

gtt → ct(r − rh) , gxx → cx , grr → cr(r − rh)
−1 . (2.1.5)
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These conditions fix the Hawking temperature and the entropy density of the bulk geometry:

T =
1

4π

√
ct

cr

, s =
c
(d−1)/2
x

4Gd+1

. (2.1.6)

The model exhibits a second-order phase transition. At high temperatures, the scalar field

Ψ vanishes and one obtains the standard Reissner-Nordström-AdS black hole. But at low

temperatures, the Reissner-Nordström-AdS black hole becomes unstable and is replaced by

a charged black hole with a scalar “hair.”

This system is supposed to be dual to some kind of superconductors/superfluids. In fact,

the low temperature phase shows the expected behavior for superconductors/superfluids.

As superconductors, one can see the divergence of the DC conductivity, an energy gap

proportional to the size of the condensate, and the holographic London equation [48, 51,

61, 62]. As superfluids, one can see the existence of the second and fourth sounds [63, 64].

Also, vortex solutions have been constructed [65, 66, 67, 68, 69].

2.1.2 η/s

Since we are interested in the viscosity, the main object to study is the boundary energy-

momentum tensor. According to the standard AdS/CFT dictionary [3, 4, 5, 6], the bulk

gravitational perturbations act as the source for the boundary energy-momentum tensor.

Thus, our task amounts to solve the bulk gravitational perturbations.

Consider the fluctuations of the energy-momentum tensor Tµν which behaves as e−iωt.

The fluctuations are decomposed by the little group SO(d−1) acting on xi (i = 1, · · · , d−1).

The fluctuations are decomposed as the tensor mode, the vector mode (“shear mode”), and

the scalar mode (“sound mode”).

One can use various methods to compute the shear viscosity. Among them, the most

powerful one is the Kubo formula method , which uses the tensor mode (1.2.20) :

η = − lim
ω→0

1

ω
Im G1212

R (ω,~0) , (2.1.7)

where G1212
R (ω,~0) is the retarded Green function for the tensor mode T 12 at zero spatial

momentum (1.2.19):

G1212
R (ω,~0) = −i

∫ ∞

−∞
ddx eiωtθ(t)

〈
[T 12(t, ~x), T 12(0,~0)]

〉
. (2.1.8)

To obtain the retarded Green function, we consider homogeneous gravitational pertur-
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bations which take the form

gMN = ḡMN + hMN , (2.1.9)

where ḡMN is the background metric (2.1.2). In the Lorentzian prescription of the AdS/CFT

duality [44], the retarded Green function (2.1.8) can be calculated from the tensor mode

h12. We expand the action in terms of φ(t, r) := h1
2(t, r) up to quadratic order and use the

Fourier transformation

φ(t, r) =

∫
ddk

(2π)d
e−iωt+i~k·~xfk(r)φ̃0(k). (2.1.10)

The retarded Green function is obtained as follows:

1. Solve the classical equation of motion for the field fk(r) with the ingoing-wave bound-

ary condition at the horizon and fk(r) → 1 at the boundary.

2. Substitute the classical solution into the action and represent the action in terms of

the boundary value φ̃0. Only surface terms remain, and drop the contribution from

the horizon.

3. The retarded Green’s function is given by the kernel of the on-shell action:

Son-shell = −1

2

∫
ddk

(2π)d
φ̃0(−k)GR(k)φ̃0(k) (2.1.11)

where the on-shell action is defined as Son-shell = (S + SGH + Sc.t.)|on-shell. SGH is the

Gibbons-Hawking term to provide a correct variational problem for the background

geometry. Sc.t. is the counterterm to renormalize divergences in the classical action.

Thus, the problem is to solve the equation of motion for the field φ under the appropriate

boundary conditions.

From Eq. (2.1.1), the action which is quadratic in φ is

(2)Ss =
1

16πGd+1

∫
dd+1x

[
− 1

2

√
ḡ(∇Mφ)2

+ ∂r

{√
ḡ

(
2grrφ∂rφ +

1

2

g′xx

gxx

grrφ2

)} ]
,

(2.1.12)

with the help of background equation of motions (See Appendix A.2). Because of the little

group SO(d− 1) acting on xi, the tensor mode of the metric perturbations decouples from
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the rest of perturbations: the other modes of the metric perturbations hMN , the gauge field

perturbations δAM and the scalar field perturbation δΨ. Thus, they can be set to zero

consistently. Since the background geometry must satisfy the stationary condition, we add

the Gibbons-Hawking term

SGH =
1

16πGd+1

∫

r→∞
ddx

√−γ2K , (2.1.13)

where γµν is the boundary induced metric, nM is the normal vector to the boundary and

K = γµν∇µnν is the trace of the extrinsic curvature of the boundary. This provides surface

terms

(2)SGH =
1

16πGd+1

∫

r→∞
ddx

(
−2
√

ḡgrrφ∂rφ− 1√
grr

∂r

(√−γ̄
)
φ2

)
. (2.1.14)

Therefore, the bare action is

(2)(Ss + SGH) =
1

16πGd+1

∫
dd+1x

√
ḡ

[
−1

2
(∇Mφ)2

]

+
1

16πGd+1

∫

r→∞
ddx

(
g′xx

2gxx

√−γ̄√
grr

− 1√
grr

∂r

(√−γ̄
))

φ2 .

(2.1.15)

The action diverges as r → ∞, so the counterterms at the boundary must be added. We

need only the gravitational counterterm in order to evaluate the retarded Green’s function

for the energy-momentum tensor. According to the holographic renormalization procedure,

the counterterm is

Sc.t. = − 1

16πGd+1

∫

r→∞
ddx

√−γ

[
2(d− 1)

L
+

L

d− 2
R[γ]

+
L3

(d− 4)(d− 2)2

(
Rµν [γ]Rµν [γ]− d

4(d− 1)
R[γ]2

)
+ · · ·

]
,

(2.1.16)

where L is the AdS radius and Rµν [γ] is the Ricci tensor made from the induced metric γµν .

These terms largely depend on the spacetime dimensions2. However, in order to evaluate

the shear viscosity, we need boundary terms only up to first order in ω: O(ω2) terms in the

action do not contribute to the Kubo formula because of the ω → 0 limit. So, only the first

2One has to be careful when the number of the boundary spacetime dimensions d is an even number.
See Ref. [70] for details.
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term in Eq. (2.1.16) is important and it becomes

(2)Sc.t. =
1

16πGd+1

∫

r→∞
ddx

√−γ̄(d− 1)φ2 , (2.1.17)

for the tensor mode perturbation. This term removes the divergences from the second term

of Eq. (2.1.15). As a result, the renormalized action is

16πGd+1
(2)(Ss + SGH + Sc.t.)

=

∫
ddk

(2π)d
φ̃0(−k)

(
−1

2

√
ḡ

grr

f−k(r)∂rfk(r)

)
φ̃0(k)

∣∣∣∣∣
r→∞

+ (terms which are proportional to the EOM)

+ (contact terms) ,

(2.1.18)

with (2.1.10). Here, we neglected the second derivative respect to t because it provide only

O (ω2) terms. “(contact terms)” provide contact terms in the Green function and have the

form f−kfk. They will not affect the shear viscosity since they do not give an imaginary

part of retarded Green’s function. The terms which give the imaginary part take the form

like f−k∂rfk
3. We will see this at the end of this section.

In order to find the on-shell action, we need to solve the equation of motion for fk(r):

f ′′k +
grr

gtt

ω2fk +
(grr√ḡ)

′

grr
√

ḡ
f ′k = 0 , (2.1.19)

where the long wavelength limit ~k → 0 is taken since O(|~k|) terms in the action don’t con-

tribute to the Kubo formula. The equations of motion can be solved as follows. First, solve

this equation of motion near the horizon and impose the ingoing-wave boundary condition.

Second, find the solution over the whole region in the bulk up to first order in w. Finally,

match these solutions.

First, consider the near-horizon limit of Eq. (2.1.19). With asymptotics of the metric

(2.1.5)

fk(r) ∼ (r/rh − 1)±iw = exp
[
± iw ln [r/rH − 1]

]
. (2.1.20)

where w := ω/4πT is the rescaled dimensionless frequency. The ingoing-wave solution is

given by fk(r) = exp [−iw ln (r/rh − 1)]. We expand this solution in terms of w ln (r/rh − 1)

3So, the second term of Eq. (2.1.15) and the counterterm (2.1.17) do not affect the shear viscosity.
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near the horizon since we take the w → 0 limit at the end of the analysis. So,

fk(r) ∼ 1− iw ln [r/rh − 1] . (2.1.21)

is the boundary condition as r → rh. The overall factor will be determined by the boundary

condition at r →∞.

Next, get the solution of Eq. (2.1.19) for all r. In order to evaluate the Kubo formula,

it is enough to obtain fk(r) up to first order in w. Thus, expand fk(r) in power of w:

fk(r) = f (0)(r) + wf (1)(r) +O(w2) . (2.1.22)

Inserting this into the equation of motion, f (0) and f (1) satisfy

f (i)′′ +
(grr√ḡ)

′

grr
√

ḡ
f (i)′ = 0 , (2.1.23)

where i runs i = 0, 1. Solutions are given by

f (i)(r) = C
(i)
1 + C

(i)
2

∫ ∞

r

dr′
grr(r

′)√
−ḡ(r′)

, (2.1.24)

where C
(i)
j ’s are integration constants. From the boundary condition at r →∞,

C
(0)
1 = 1 , C

(1)
1 = 0 . (2.1.25)

The rest of constants are determined by the boundary condition at the horizon. Since the

integrand in Eq. (2.1.24) has a simple pole at the horizon,

∫ ∞

r∼rh

dr′
grr(r

′)√
−ḡ(r′)

∼
√

cr

ctcd−1
x

∫ ∞

r/rh∼1

d(r′/rh)

(r′/rh − 1)
= − 1

16πGd+1sT
ln [r/rh − 1] . (2.1.26)

Comparing this with the boundary condition (2.1.21), one gets

C
(0)
2 = 0, wC

(1)
2 = 4Gd+1 · iωs . (2.1.27)

Therefore, the solution of Eq. (2.1.19) with the appropriate boundary conditions is

fk(r) =

(
1 + 4Gd+1 · iωs

∫ ∞

r

dr′
grr(r

′)√
−ḡ(r′)

+O (
w2

)
)

, (2.1.28)
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which becomes

fk(r) → 1, ∂rfk(r) → −4Gd+1 · iωs
grr(r)√
−ḡ(r)

, (2.1.29)

as r → ∞. Thus, the terms f−kfk and f−k∂rfk in the action provide real and imaginary

parts, respectively. So, the contact terms, which have the form f−kfk, do not contribute to

the shear viscosity.

Now, we are ready to extract the Green function from the on-shell action. Substituting

the solution (2.1.28) into the on-shell action, one gets

Son-shell =
1

16πGd+1

∫
ddk

(2π)d
φ̃0(−k)

(
−1

2

√
ḡ

grr

f−k(r)∂rfk(r)

)
φ̃0(k)

∣∣∣∣∣
r→∞

= −1

2

∫
ddk

(2π)d
φ̃0(−k)

(
−iωs

4π

)
φ̃0(k)

(2.1.30)

This leads to the retarded Green’s function

G1212
R (ω, 0) = −iωs

4π
+O (

(ω/T )2) , (2.1.31)

from the prescription (2.1.11). Finally, the Kubo formula (2.1.7) derives the shear viscosity,

η = − lim
ω→0

1

ω
G1212

R (ω,~0) =
s

4π
. (2.1.32)

Thus, the ratio of the shear viscosity to the entropy density is

η

s
=

1

4π
. (2.1.33)

Therefore, the universality of η/s holds in this system irrespective of whether the complex

scalar condenses or not.

2.2 Anisotropic superfluids

The p-wave or the (p + ip)-wave holographic superfluids are described by the Einstein-

Yang-Mills system:

SEYM =
1

16πGd+1

∫
dd+1x

√−g

{
R− 2Λ− 1

4
(F a

MN)2

}
, (2.2.1)
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where F a
MN = ∂MAa

N−∂NAa
M +gYMεabcAb

MAc
N is the field strength of SU(2) gauge fields, gYM

is the Yang-Mills gauge coupling and εabc is the totally antisymmetric tensor with ε123 = 1.

The gauge field is written as a matrix-valued form:

A = Aa
MτadxM , (2.2.2)

where τa = σa/(2i) using the Pauli matrices, so [τa, τ b] = εabcτ c.

2.2.1 The p-wave superfluids

The p-wave case is described by the ansatz

ds2
d+1 = −gtt(r)dt2 + gx1x1(r)dx2

1 + gx2x2(r)
d−1∑
i=2

dx2
i + grr(r)dr2 , (2.2.3)

A = Φ(r)τ 3dt + w(r)τ 1dx1 . (2.2.4)

The function Φ(r) gives the background static electric potential whereas the function w(r)

represents the condensate. We impose the regularity condition at the horizon r = rh:

gtt → ct(r − rh) , gx1x1 → cx1 , gx2x2 → cx2 , grr → cr(r − rh)
−1 . (2.2.5)

Then, the temperature and the entropy density are given by

T =
1

4π

√
ct

cr

, s =

√
cx1c

d−2
x2

4Gd+1

, (2.2.6)

respectively.

As is clear from the metric (2.2.3), the boundary spacetime is anisotropic. In such a

case, the shear viscosity is no longer given by a single coefficient η. Rather, one is interested

in

ηijkl = − lim
ω→0

1

ω
Im Gijkl

R (ω,~0) , (2.2.7)

Gijkl
R (ω,~0) = −i

∫ ∞

−∞
ddx eiωtθ(t)

〈
[T ij(t, ~x), T kl(0,~0)]

〉
. (2.2.8)

From the symmetric nature of the metric and the SO(d−2) invariance acting on x2, · · · , xd−1,

there are only two nontrivial independent coefficients, e.g., η1212 and η2323. We will examine

these coefficients below.
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The shear viscosities of anisotropic fluids have been widely discussed in the context of

liquid crystal [75]. There are various parametrizations known in the literature. Among

them, the most well-studied parametrization is the Miesowicz viscosity coefficients. The

coefficients η1212 and η2323 are related to the Miesowicz coefficients [76]. However, various

conventions are found in the literature for the Miesowicz coefficients. To avoid the confusion,

we keep using ηijkl.

η2323 (for d ≥ 4)

First, let us consider η2323. The coefficient exists for d ≥ 4, and the metric has the

SO(d − 2) invariance, so the perturbation h23 transforms as a tensor mode. Then, the

discussion is similar to the s-wave superfluid case.

The action (2.2.1) with appropriate boundary terms reduces to (h2
3 =: φ(r, t) =

∫
ddk

(2π)d eikxfk(r)φ̃0(k))

16πGd+1
(2)(Sp + SGH + Sc.t.)

=

∫
ddk

(2π)d
φ̃0(−k)

(
−1

2

√
ḡ

grr

f−k(r)∂rfk(r)

)
φ̃0(k)

∣∣∣∣∣
r→∞

+ (terms which are proportional to the EOM)

+ (contact terms) ,

(2.2.9)

using the ansatz (2.2.3) and the equation of motion for the background geometry (See

Appendix A.3.1). The equation of motion is given by

f ′′k +
grr

gtt

ω2fk +
(grr√ḡ)

′

grr
√

ḡ
f ′k = 0 . (2.2.10)

This takes the same form as the s-wave case (2.1.19), so the solution under the appropriate

boundary conditions is given by

fk(r) =

(
1 + 4Gd+1 · iωs

∫ ∞

r

dr′
grr(r

′)√
−ḡ(r′)

+O (
(ω/T )2)

)
, (2.2.11)

and the retarded Green function has the same form as the s-wave one (2.1.31). From the

Kubo formula, the shear viscosity to the entropy density ratio is

η2323

s
=

1

4π
. (2.2.12)
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The universality holds for this case as well.

η1212

Next, let us consider η1212. For d = 3, this is the only shear viscosity coefficient. The

perturbation h12 transforms as a vector under SO(d − 2). Thus, it couples to the vector

mode of the Yang-Mills perturbations. As a result, the existing technique is not applicable.

It should be straightforward to obtain the action for the relevant vector mode perturba-

tions since they are standard vector perturbations for which one can rely on the symmetry.

However, it does not seem straightforward to solve them analytically. Actually, η1212 was

calculated numerically [78, 79] and take non-universal value η1212/s ≥ 1/(4π) in the low

temperature phase. We will discuss it in Sec. 2.3.1.

2.2.2 The (p + ip)-wave superfluids

For completeness, let us consider the (p+ ip)-wave holographic superfluid. The (p+ ip)-

wave case is described by the ansatz

ds2 = −gtt(r)dt2 + gxx(r)(dx2
1 + dx2

2) + grr(r)dr2 , (2.2.13)

A = Φ(r)τ 3dt + w(r)(τ 1dx1 + τ 2dx2) . (2.2.14)

As in previous models, the regularity condition at the horizon r = rh implies

gtt → ct(r − rh) , gxx → cx , gtt → ct(r − rh)
−1 , (2.2.15)

which leads to the temperature and the entropy density as

T =
1

4π

√
ct

cr

, s =
cx

4G4

, (2.2.16)

respectively. It is argued that the (p + ip)-wave background is unstable and it turns into

the p-wave background [50]. But the analysis was carried out only in the probe limit and

the full analysis including the backreaction has not been done.

Unlike the p-wave case, the metric is isotropic. Thus, the shear viscosity is described by

a single coefficient. The anisotropy in the (x1, x2)-plane is caused by the Yang-Mills field.

The condensation breaks the SO(2) rotational symmetry in the (x1, x2)-plane as well as the

U(1) gauge symmetry. But, as is clear from Eq. (2.2.14), it preserves a diagonal U(1) which

is a combination of the two. Thus, there does not exist the tensor mode which decouples
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from Yang-Mills perturbations. As a result, the existing technique is not applicable.

Since the whole system does not have the SO(2) symmetry, it is worthwhile to see

explicitly how Yang-Mills perturbations couple to the “tensor mode” perturbations. In

Appendix A.3, we derived the interaction of the Yang-Mills perturbations and the metric

perturbations [Eq. (A.3.8)]. For the tensor mode metric perturbations h2
2 = −h1

1(:= φd)

and h1
2 = h2

1(:= φod)
4, the interaction reduces to

1

2
hijQ

ijMN
a fa

MN = hi
j (F · f)j

i . (2.2.17)

Here, we defined

fa
MN := DMaa

N −DNaa
M , (2.2.18)

Dab
M := ∇Mδab + gYMεacbAc

M , (2.2.19)

(F · f)i
j := F aiNfa

jN . (2.2.20)

As is clear from Eq. (2.2.17), the tensor mode hi
j couples to (F · f)i

j, which transforms

as a tensor under the diagonal U(1) symmetry. φd and φod couple to

(F · f)d := (F · f)2
2 = −(F · f)1

1 , (F · f)od := (F · f)1
2 = (F · f)2

1 , (2.2.21)

respectively. They contain the following components of δAa
M :

ad := δA1
1 = −δA2

2 , aod := δA1
2 = δA2

1 , (the other modes) = 0 . (2.2.22)

These perturbations φod, φd, aod and ad are all coupled. The explicit form of (F · f) is

given by

(F · f)od = grrgxx(∂rw)(∂raod) + gttgxxgYMΦw(Dtad), (2.2.23)

(F · f)d = grrgxx(∂rw)(∂rad)− gttgxxgYMΦw(Dtaod), (2.2.24)

which include the covariant derivatives of ai:

Dtaod = ∂taod + gYMΦad , Dtad = ∂tad − gYMΦaod . (2.2.25)

4In the s-wave and p-wave cases, the diagonal perturbation φod and the off-diagonal perturbation φd are
completely decoupled. So, we have set φd = 0. But this does not hold for the (p + ip)-wave case as we will
see below.
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Therefore, these forms mix aod and ad.

Let us summarize how the tensor mode metric perturbations couple with Yang-Mills

perturbations:

• The tensor mode metric perturbations φod and φd couple to the tensor (F · f)od and

(F · f)d, respectively, where (F · f) is made from the Yang-Mills perturbations. So,

the action for φod/d no longer takes the minimally-coupled scalar form.

• The Yang-Mills perturbations aod/d couple to φod and φd. As a result, φod couples to

φd through ai.

The complete actions in terms of these “tensor mode” fluctuations are given by

(2)(S(p+ip) + SGH) =
1

16πG4

∫
d4x(2)(Lgrav + Lgauge + Lint) ; (2.2.26)

(2)Lgrav =
√

ḡ
2∑

i=1

[
− 1

2

{−gtt(∂tφi)
2 + grr(∂rφi)

2
}− 1

2
M(r)2φ2

i

+(surface term)

]
, (2.2.27)

(2)Lgauge =
√

ḡgxx

2∑
i=1

[−grr(∂rai)
2 + g2

YMw2a2
i + gtt(Dtai)

2
]

, (2.2.28)

(2)Lint =
√

ḡ
2∑

i=1

φi(F · f)i , (2.2.29)

where we defined two-component vectors as φi = (φod, φd), ai = (aod, ad), (F · f)i =

((F · f)1, (F · f)2) and i runs isotropic components i = 1, 2. (2)Sint is the interaction term

we have discussed in Eq. (2.2.17). The mass-like function M(r) is defined by

M(r)2 := grrgxx(∂rw)2 + gxxg2
YM

(
gxxw2 − gttΦ2

)
w2 . (2.2.30)

The action leads to coupled equations of motion for φod, φd, aod and ad. It is difficult to

solve them analytically, and it does not seem straightforward to obtain the shear viscosity

to the entropy ratio.

2.3 Implications of the results

We study η/s for s-wave, (p + ip)-wave, and p-wave holographic superfluids. The shear

viscosity for the s-wave superfluids satisfies the universality. The p-wave superfluids are
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anisotropic, and there are two nontrivial independent shear viscosities, η2323 and η1212. We

show that one of the coefficients η2323 satisfies the universality.

On the other hand, for another coefficient η1212 of the p-wave superfluids and for the shear

viscosity of the (p + ip)-wave superfluid, the gravitational perturbations in question couple

to the Yang-Mills perturbations even in Kubo-formula method, and the existing technique

is not applicable. We extract the modes which couple to the gravitational perturbations.

For the (p + ip)-wave case, we write down the perturbed action for those modes.

There is another technique to derive η/s in the membrane paradigm context [24]. Ac-

cording to the method, transport coefficients in the boundary field theory can be determined

by (i) the flow equation for r-dependent transport coefficients, e.g., the shear viscosity η(r)

and by (ii) their values at the horizon. If the tensor mode metric perturbation is written as

a free scalar, the flow equation becomes trivial in the hydrodynamic limit: ∂rη(r) = 0. In

this case, (η/s)|boundary = (η/s)|horizon = 1/4π. This method works for η in the s-wave case

and for η2323 in the p-wave case. But it does not work for η1212 in the p-wave case and for

η in the (p + ip)-wave case. This is because the interactions of the metric and Yang-Mills

perturbations provide a non-trivial flow equation ∂rη(r) 6= 0.

We now discuss the shear viscosity itself of holographic superfluids below.

2.3.1 Viscosity of superfluids

The holographic superfluid shows a nonzero viscosity. To interpret the result, note the

following points.

First, a superfluid has a nonzero viscosity. For example, for 4He no viscous resistance is

observed when it goes through a narrow pipe, but a viscous drag is observed when a test

body is moved in the liquid.

According to the two-fluid model, a superfluid consists of the superfluid component and

the normal component. The normal component has a nonzero viscosity, so a superfluid

has a nonzero viscosity as a whole. The normal component represents the effect of thermal

fluctuation, and it always exists at finite temperatures. And the quasi-particle description

is valid for the normal component. Since we do not separate the normal and superfluid

components, one cannot observe the zero viscosity for the superfluid component.

Second, currently the boundary theory description is not clear for holographic super-

fluids, but the boundary theory presumably contains the fields which may not play an

important role in the superfluid behavior. Among the other things, the boundary theory

should include the SU(N) non-Abelian gauge field, which is unlikely to play an important

role. The computation of η/s includes the dissipation not only from the normal component
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but also from these fields.

Isotropic Components

Obviously, for the universal components, (i.e., η in the s-wave case and η2323 in the

p-wave case,) while η/s is the same in both phases, η itself can have different functional

forms. This requires the knowledge of s, and it would be interesting to compute it. In the

probe limit, both phases are described by the same bulk geometry since the backreaction of

matter fields onto the geometry is ignored. Thus, one needs the fully backreacted metric to

find a nontrivial behavior. In particular, it would be interesting to see if η in the superfluid

state is lower than η in the (unstable) normal state. Again one needs a fully backreacted

metric, but analysis near the critical point or a numerical computation would suffice for the

purpose.

In fact, the entropy density s has been obtained for a limited class of holographic super-

fluids. Especially, Ref. [77] obtained s for the (4 + 1)-dimensional p-wave superfluid in the

grand canonical ensemble.5 They use the parameter α := κ5/ĝ. In our notation, α ∝ 1/gYM,

and α → 0 corresponds to the probe limit. Once the backreaction is taken into account,

the p-wave superfluid undergoes the second-order phase transition only when α < αc, where

αc ∼ 0.365, and it undergoes the first-order phase transition when α > αc. Namely, the

phase transition becomes first-order when the backreaction becomes large.

According to their computation, s in the superfluid state is lower than s in the unstable

normal state below T < Tc at fixed chemical potential µ = A3
t . See Fig. 3(b) of Ref. [77].

Since η2323 satisfies the universality, η2323 in the superfluid state is lower than the normal

state one. This may be due to the zero viscosity of the superfluid component. Needless to

say, this statement is only for one coefficient of shear viscosities of one p-wave superfluid.

At this moment, it is not clear if the same holds in general.

Anisotropic Components

For the anisotropic components, (i.e., η1212 in the p-wave case and η in the (p+ ip)-wave

case,) it seems to be difficult to obtain them analytically. The former, η1212 in the p-wave,

was calculated numerically [78, 79] and takes non-universal value η1212/s ≥ 1/(4π) in the

low temperature phase. As noted above, since s in the superfluid state is lower than one in

the normal state, the decrement of η1212 is lower than that of s. The behavior of η1212 itself

is not, however, unclear.

5For a s-wave superfluid, s has been obtained in the microcanonical ensemble [80].
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Moreover, there is another difficulty to define the shear viscosity in the anisotropic fluids.

In the anisotropic fluids, additional viscosity coefficients appear since director fields, which

cause anisotropy 6, provide additional terms for the stress tensor. Therefore, η1212 may be

made of the shear viscosity η from the isotropic part in Eq. (1.2.11) and other viscosities

ηdirector come from the directors. We can expect two possibilities:

1. Although the contribution from ηdirector makes η1212/s ≥ 1/(4π), the viscosity from

the isotropic part preserves η/s = 1/(4π).

2. The viscosity from the isotropic part even breaks the universality: η/s = 1/(4π).

It is not necessary that η preserves the universality since h12 couples with other components.

If it turns out that it also satisfy the universality, these shear viscosities will give highly

nontrivial tests for the universality.

2.3.2 Implication to dynamic critical phenomena

We found that the universality of η/s holds both for high temperature phase and for

low temperature phase. In the second-order phase transition, critical phenomena occur and

one has singular behaviors in physical quantities. In the dynamic case, one has singular

behaviors in various transport coefficients [72]. But our results indicate that there is no

divergence in the shear viscosity. (Since the entropy density is the first derivative of the free

energy, it is continuous across the phase transition. Thus, the universality of η/s implies

that the shear viscosity is also continuous across the transition.)

More precisely, in the dynamic critical phenomena, the relaxation time of the order

parameter diverges, which is known as the critical slowing down. In fact, for s-wave holo-

graphic superfluids, the relaxation time of the order parameter diverges near the critical

point [73]. In general, when a system has a conserved charge, the associated transport

coefficient diverges as well. For example, for Tµν , one has a (mild) singularity in η. But

our results indicate that this does not happen in the holographic superfluids. The fact

that singular behavior does not occur in η has been observed in the critical phenomena of

R-charged black holes [74].

6e.g., the boundary field corresponding to w(r) in Eq. (2.2.4).
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Chapter 3

Another Realization of the

Relationship between Gravity and

Hydrodynamics

3.1 Linearized hydrodynamics by Metric Perturbations

3.1.1 Homogeneous Perturbations

The basic hydrodynamic equation is the conservation equation

∇µT
µν = 0 (3.1.1)

(or the continuity equation and the Navier-Stokes equation). In (3 + 1)-dimensions, there

are 4 equations whereas the stress tensor has 10 components. Since the equation of motion

is not closed, one introduces the constitutive equation1:

T µν = (ε + P )uµuν + Pgµν − τµν , (3.1.2)

τµν := P µαP νβ

[
η

(
∇αuβ+∇βuα − 2

p
gαβ∇λu

λ

)
+ ζgαβ∇λu

λ

]
, (3.1.3)

where P µν := gµν + uµuν is the projection tensor, η is the shear viscosity, and ζ is the

bulk viscosity. In other words, one chooses the velocity field uµ and the pressure P as the

1We use µ, ν, . . . for the (p + 1)-dimensional boundary coordinate indices. The boundary spatial coor-
dinates xi are also denoted as xi = (x, y, z) for p = 3. We use indices a, b, . . . for the spatial coordinates
transverse to z.
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basic hydrodynamic variables. Note that ε and P are not independent; rather they are

determined by an equation of state. We choose P as the independent variable. We assume

ε = ε(P ) and use c2
s = ∂P/∂ε, where cs is the speed of sound. Then, there are 4 degrees of

freedom in (3 + 1)-dimensions (three from uµ because of u2 = −1 and one from P ), and the

equation of motion is closed.

In equilibrium, there is no spatial flow, so one can take the rest frame ui = 0. Then, one

has

T t
t = −ε̄ , T i

j = P̄ δi
j , (3.1.4)

where “ ¯ ” denotes an equilibrium value2.

When one adds external gravitational perturbations hµ
ν , the hydrodynamic variables

P and ui have responses following the conservation equation. By solving the conservation

equation, one can determine the responses. For hydrodynamic computations, we always use

the Minkowski background ḡµν = ηµν . We consider the metric perturbations of the form

hµ
ν(t, z) = hµ

νe
−iωt+iqz . (3.1.5)

Then, the metric perturbations are decomposed as the tensor, shear and sound modes. We

consider the sound mode, which consists of

ht
t , ha

a = hx
x , hz

z , hz
t . (3.1.6)

The metric becomes

ds2 = −(1 + ht
t)dt2 +

∑
i

(1 + hi
i)dx2

i + 2hz
tdtdz . (3.1.7)

We write the responses as

P (t, z) = P̄ + δPe−iωt+iqz , (3.1.8)

ui(t, z) = δuie−iωt+iqz , (3.1.9)

and ε(t, z) = ε̄ + δεe−iωt+iqz. Accordingly, the stress tensor has the response

T µ
ν(t, z) = T̄ µ

ν + δT µ
νe
−iωt+iqz . (3.1.10)

2In this chapter, we consider Tµ
ν , the stress tensor with one upper and one lower indices, which is

convenient to compare with the Brown-York tensor (Sec. 3.2.1).
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We first consider homogeneous perturbations q = 0. Since u2 = −1, ut = 1− ht
t/2 (one

can set ua = 0). From the conservation equation ∇µT
µν = 0, one gets

iω

{
δε +

ε̄ + P̄

2
hs

}
= 0 , (3.1.11)

iω(ε̄ + P̄ )(hz
t + δuz) = 0 , (3.1.12)

where hs :=
∑

k hk
k is the spatial trace. Then, δT µ

ν becomes

δT t
t = −δε =

ε̄ + P̄

2
hs , (3.1.13a)

δT z
t = (ε̄ + P̄ )hz

t , (3.1.13b)

δT i
j = δP (h)δi

j + iηωhi
j − i

(
η

p
− ζ

2

)
ωhsδ

i
j , (3.1.13c)

where

δP (h) = c2
sδε = − ε̄ + P̄

2
c2
shs . (3.1.14)

These expressions may be familiar to readers. For instance, see App. A of Ref. [82] for δT i
j.

However, inhomogeneous perturbation case (q 6= 0) in the next subsection is more involved

and deserves a close inspection.

Anticipating the bulk results in the following sections, let us consider the cs →∞ limit.

In the cs →∞ limit, the continuity equation (3.1.11) becomes

iωP̄hs = 0 . (3.1.15)

The cs →∞ limit is rather special. In this limit, the conservation equation gives a condition

for the perturbations instead of a response. In order that time-dependent perturbations are

allowed, the spatial perturbations must be traceless. Or the fluid must be compressible for

generic time-dependent homogeneous perturbations. Then, one obtains

δT t
t → 0 , (3.1.16a)

δT z
t → (ε̄ + P̄ )hz

t , (3.1.16b)

δT i
j → iηωhi

j . (3.1.16c)
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3.1.2 Inhomogeneous Perturbations

We turn to inhomogeneous perturbations q 6= 0. Again take ut = 1− ht
t/2. For q 6= 0,

the continuity equation becomes

− iω

(
δε

ε̄ + P̄
+

1

2
hs

)
+ iqδuz = 0 . (3.1.17)

Combining this with the Navier-Stokes equation gives

δuz =
ω

q

c2
sq

2

c2
sq

2 − ω2 − iΓsωq2

[
1

2
hs +

ω

c2
sq

hz
t −

ht
t

2c2
s

− i

c2
s

{
1

2

(
ζ̂ − 2

3
η̂

)
ω(hx

x + hy
y) +

Γs

2
ωhz

z

}]
, (3.1.18a)

δP = (ε̄ + P̄ )
c2
sq

2

c2
sq

2 − ω2 − iΓsωq2

[
−1

2
ht

t +
ω

q
hz

t +
ω2

2q2
hs + iη̂ω

(
hx

x + hy
y

)]
, (3.1.18b)

η̂ :=
η

ε̄ + P̄
, ζ̂ :=

ζ

ε̄ + P̄
, (3.1.18c)

Γs :=
1

ε̄ + P̄

(
4

3
η + ζ

)
, (3.1.18d)

where Γs is the sound attenuation constant. Also, these are momentum-space expressions

so are complex; in real-space, they are real.

Having written down all hydrodynamic variables via metric perturbations, we are ready

to express the hydrodynamic stress tensor via metric perturbations only. The full expression

is rather cumbersome, so we give the expressions only in the cs →∞ limit, which is relevant

to the Rindler case. In the cs →∞ limit,

δuz → ω

2q
hs , (3.1.19)

δP → (ε̄ + P̄ )

[
−1

2
ht

t +
ω

q
hz

t +
ω2

2q2
hs

]
+ iηω

(
hx

x + hy
y

)
. (3.1.20)

Note that the sound pole (c2
sq

2−ω2 + iΓsωq2)−1 in Eqs. (3.1.18) disappears in this limit. At

the same time, the dependence on the bulk viscosity disappears. As a check, substituting

Eq. (3.1.19) into the continuity equation gives δε = 0 as expected. Also, some components
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of covariant derivatives are

∇xu
x = −1

2
iωhx

x , (3.1.21a)

∇yu
y = −1

2
iωhy

y , (3.1.21b)

∇zu
z =

1

2
iω(hx

x + hy
y) , (3.1.21c)

so uµ obeys

∇µu
µ = 0 . (3.1.22)

Then, δT µ
ν becomes

δT t
t → 0 , (3.1.23a)

δT z
t → −(ε̄ + P̄ )

ω

2q
hs , (3.1.23b)

δT x
x → δP (h) + iηωhx

x , (3.1.23c)

δT y
y → δP (h) + iηωhy

y , (3.1.23d)

δT z
z → δP (h)− iηω(hx

x + hy
y) , (3.1.23e)

in the cs → ∞ limit. Several points of Eqs. (3.1.23) deserve comments. (i) T z
t is not

proportional to hz
t [cf., Eq. (3.1.13b)]. (ii) The O(iω) terms of T z

z is not proportional to

hz
z. (iii) While Eqs. (3.1.18) themselves have the well-defined q → 0 limit, the cs →∞ case

does not have the limit. So, we consider the q = 0 and q 6= 0 cases separately.

We now compare hydrodynamic expressions obtained in this section with the Brown-

York tensor in Rindler space and in the SAdS5 black hole.

3.2 Sound Mode in Rindler Space

3.2.1 Thermodynamic Quantities

The (p + 2)-dimensional Rindler space is given by

ds2
p+2 = −rdt2 +

dr2

r
+

∑
i

dx2
i . (3.2.1)

The Rindler horizon is located at r = 0 and the Hawking temperature is given by T =

1/(4π).
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We consider the timelike surface r = rc. The Brown-York tensor is given by

T µ
ν =

1

8πG
(δµ

νK −Kµ
ν) , (3.2.2)

where Kµ
ν is the extrinsic curvature of the surface, and K is its trace. In this thesis,

we denote the Brown-York tensor as T µ
ν to avoid confusion with the hydrodynamic stress

tensor T µ
ν . For a diagonal metric, the extrinsic curvature takes a simple form:

Kµ
ν =

1

2
nrgµρ∂rgρν , (3.2.3)

where gµν is the induced metric on the surface. For Rindler space, gµν = diag(−rc,1). Also,

nr is the unit normal to the r = rc surface: nr = 1/
√

grr.

We consider the Brown-York tensor with one upper and one lower indices from the

following reasons:

1. The counterterm takes the form T µ
ν
(CT) ∝ δµ

ν (see below), so the counter term de-

pendence is absent upon metric perturbations.

2. We chose the Minkowski background ḡµν = ηµν for the hydrodynamic computations.

But this differs from the induced metric used for the Brown-York tensor by r-rescaling,

e.g., gµν = diag(−rc,1) for Rindler space. One way is to transform the Brown-York

tensor from the original coordinates xµ to the proper coordinates xµ̃:

t̃ =
√−ḡtt t , xĩ =

√
ḡii x

i . (3.2.4)

However, it is not necessary to distinguish xµ and xµ̃ for T t
t and T i

j since the upper

and lower indices receive the opposite scaling. (This does not apply to T t
z, so a care

is necessary.)

One can add “counterterms” to the Brown-York tensor. From the AdS/CFT point of

view, the counterterms regularize divergences in physical quantities [83]. They are given by

T µ
ν
(CT) = − 1

16πG

(
c1δ

µ
ν + c2G

µ
ν
(p+1) + · · ·

)
. (3.2.5)

The coefficient c1 = 2p/L, where L is the AdS radius. Gµ
ν
(p+1) is the Einstein tensor built

from the induced metric gµν . For Rindler space, Gµ
ν
(p+1) vanishes since the surface is flat3.

3This will not be the case when one adds metric perturbations. But our primary concern is thermody-
namic quantities and transport coefficients. The transport coefficients of first-order hydrodynamics appear
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We include the boundary cosmological constant term in order to compare with the SAdS5

result (Sec. 3.3).

For Rindler space, Kµ
ν = diag(1/(2r

1/2
c ),0). Then, one gets

T t
t = − c1

16πG
, (3.2.6)

T i
j =

1

16πG

(
1√
rc

− c1

)
δi

j , (3.2.7)

which gives

ε̄ =
c1

16πG
, (3.2.8a)

P̄ =
1

16πG

(
1√
rc

− c1

)
=

T̃

4G
− c1

16πG
. (3.2.8b)

Here, T̃ is the proper temperature not the Hawking temperature T :

T̃ (rc) =
1√

−ḡtt(rc)
T . (3.2.9)

When c1 = 0, P̄ agrees with the membrane paradigm result [1, 2]. The thermodynamic

relation T̃ s̄ = ε̄ + P̄ gives the entropy density s̄ = 1/(4G). Since the energy density

is constant, the stress tensor describes an incompressible fluid, and the speed of sound

c2
s = ∂P̄/∂ε̄ diverges.

3.2.2 Sound Mode Perturbations

We consider sound mode perturbations in Rindler space. We take the gauge where

h∗r = 0 for all ∗, and the metric is given by

ds2
p+2 = −r(1 + ht

t)dt2 +
∑

i

(1 + hi
i)dx2

i + 2hz
tdtdz +

dr2

r
. (3.2.10)

We consider the perturbations of the form

hµ
ν(t, z, r) = hµ

ν(r) e−iωt+iqz . (3.2.11)

In the gauge h∗r = 0, the extrinsic curvature takes the simple form (3.2.3). The response

only in O(ω) terms in the stress tensor, while G
(p+1)
µν gives O(ω2, q2) terms, so we can safely ignore the

Einstein tensor.
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of the Brown-York tensor is given by (′ = ∂r)

δT t
t = (ε̄ + P̄ )rchs

′ , (3.2.12a)

δT z
t = (ε̄ + P̄ )(hz

t − rch
z
t
′) , (3.2.12b)

δT i
j = (ε̄ + P̄ )rc

[
−hi

j

′
+ δi

j(h
t
t
′
+ hs

′)
]

, (3.2.12c)

where we used ε̄ + P̄ = 1/(16πGr
1/2
c ). In order to compare the Brown-York tensor with the

hydrodynamic tensor, one needs to rewrite hµ
ν
′. This requires the Einstein equation.

We first consider homogeneous perturbations q = 0. The Einstein equation with q = 0

gives

hi
i

′′
+

1

r
hi

i

′
+

ω2

r2
hi

i = 0 . (3.2.13a)

(r3/2ht
t
′
)′ = 0 , (3.2.13b)

−2ωhz
t
′ = 0 , (3.2.13c)

rhs
′ + O(ω2) = 0 . (3.2.13d)

Equations (3.2.13c) and (3.2.13d) are two of the “constraint equations” which are first-order

differential equations4. The solution of Eq. (3.2.13a) is given by

hi
i(r) = hi

i(rc)

(
r

rc

)−iω

, (3.2.14)

where we imposed the “incoming wave” boundary condition at the horizon. The remaining

integration constant is fixed by the Dirichlet boundary condition hi
i(rc). Equation (3.2.14)

is the exact solution for all r. For ht
t, imposing the regularity condition at the horizon, one

gets ht
t = ht

t(rc).

From Eq. (3.2.13d), we obtain δT t
t = 0, so the Brown-York tensor describes an incom-

pressible fluid. From Eq. (3.2.13d) and ht
t
′
= 0, the terms proportional to δi

j vanish, which

implies an incompressible fluid as well. Finally, from Eq. (3.2.13c), a non hydrodynamic

term in δT z
t [the second term of Eq. (3.2.12b)] vanishes.

4In this thesis, we use the word “constraint equations” in the sense of the radial foliation, not the time
foliation.

43



Thus, the Brown-York tensor becomes

δT t
t = 0 , (3.2.15a)

δT z
t = (ε̄ + P̄ )hz

t , (3.2.15b)

δT i
j =

iω̃

16πG
hi

j , (3.2.15c)

where we used Eq. (3.2.14) and ω̃ is the proper frequency. In order to compare the Brown-

York tensor with the Minkowski hydrodynamic stress tensor (3.1.13), one needs to rewrite

the Brown-York tensor in proper coordinates t̃ =
√−ḡtt t and xĩ =

√
ḡzz xi. In this thesis,

“ ˜ ” denotes proper coordinates and proper quantities. Proper frequencies and wave number

are given by

ω̃ =
ω√−ḡtt

=
ω

r
1/2
c

, q̃ =
q√
ḡzz

= q . (3.2.16)

However, as discussed previously, it is not necessary to distinguish xµ and xµ̃ for δT t
t and

δT i
j except the replacement (3.2.16). For the off-diagonal component, δT z

t ∝ hz
t, so the

expression does not change under the coordinate transformation.

Equations (3.2.15) take the same form as the hydrodynamic stress tensor in the cs →∞
limit (3.1.23) with

η =
1

16πG
. (3.2.17)

This agrees with the membrane paradigm result and the BKLS result [1, 2, 27, 28]. On the

other hand, the result of an incompressible fluid differs from the membrane paradigm.

From Eqs. (3.2.12), the term hs
′ gives δε and the bulk viscosity, but hs

′ = 0 up to

first order in (ω, q), so one immediately has an incompressible fluid. This is true even

for q 6= 0 [Eq. (3.2.21c)], thus one expects that the fluid remains incompressible even for

q 6= 0. However, it is not obvious that the Brown-York tensor takes the same form as the

hydrodynamic tensor when q 6= 0. Thus, we turn to the q 6= 0 case in Sec. 3.2.4.

3.2.3 Possible Connection with the Membrane Paradigm?

Our result shows that the Brown-York tensor gives an incompressible fluid, which differs

from the membrane paradigm. However, there is an interesting “coincidence” with the

membrane paradigm if one ignores part of the Einstein equation.

Let us ignore the constraint equation (3.2.13d) for a moment, which gives the incom-

pressible condition. In hydrodynamic analysis, the incompressible condition comes from the

continuity equation (Sec. 3.1), so ignoring the constraint equation (3.2.13d) corresponds to
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ignore the continuity equation. From Eq. (3.2.14), hs
′ = −iωhs/r. Substituting this into

Eq. (3.2.12c) gives

δT i
j =

iω̃

16πG

[
hi

j − δi
jhs

]
. (3.2.18)

If one compares this with the hydrodynamic stress tensor (3.1.13), one would get

ζ = −p− 1

p

1

8πG
, (3.2.19)

which coincides with the membrane paradigm [1, 2, 84]. The original membrane paradigm

focuses on the (3+1)-dimensional case, but the extension into the generic dimensions exists

[84]. Note that ζ < 0.

This is an interesting coincidence, and the result may have some relevance with the

membrane paradigm. On the other hand, we should stress that this result itself does not

give a consistent hydrodynamic interpretation completely. For example, Eq. (3.2.18) seems

to lack δP term in Eq. (3.1.13c). Also, δT t
t is nonvanishing, but

δT t
t = −(ε̄ + P̄ )iωhs . (3.2.20)

With Eqs. (3.1.13), this is consistent only if iω = −1/2. But this brings us another issue.

First, we consider the hydrodynamic limit |ω| → 0, so it is not clear if such an interpretation

is possible. Second, when |ω| is not small, it is not clear if O(hs) term in Eq. (3.2.18) is really

the viscosity term: the first term and the third term of Eq. (3.1.13c) are not distinguishable.

Thus, the only consistent interpretation is the incompressible fluid by taking Eq. (3.2.13d)

into account. But the coincidence (3.2.19) is suggestive. This might indicate that the mem-

brane paradigm is not fully consistent.

3.2.4 Inhomogeneous Perturbations

The Einstein equation consists of second-order differential equations which are dynam-

ical equations and first-order differential equations which are constraint equations. The

dynamics of the field obeying the constraints is determined by one dynamical equation.

They are referred as the master field and the master equation, respectively. This counting

goes as follows:

• For the sound mode in 5-dimensional spacetime, 4 components of metric perturbations

are relevant.

• The Einstein equation gives 4 dynamical equations and 3 constraint equations. Thus,
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one obtains 1 master equation, which gives the solution for a combination of 4 metric

components.

• The solution of the master equation has two integration constants. One is fixed by

imposing the incoming wave boundary condition at the horizon. Thus, one obtains

the solution for a combination of 4 metric components with one integration constant.

• The other 3 components are calculated using 3 constraint equations which give one

integration constant for each component.

• In summary, we obtain 4 solutions with 4 integration constants. These integration

constants are fixed by imposing boundary conditions at the boundary for each com-

ponents, hµ
ν(rc).

In reality, in order to compute the Brown-York tensor, one only needs hµ
ν
′(rc). They can be

determined from the constraint equations and the master equation. So, one does not have

to solve the constraint equations.

In Rindler space, the constraint equations are given by5

ω (2rhs
′ − hs) + 2q

(
rhz

t
′ − hz

t

)
= 0 , (3.2.21a)

−2ωhz
t
′ + q

(
2rht

t
′
+ ht

t + 4rhx
x
′
)

= 0 , (3.2.21b)

rhs
′ + O(ω2, ωq, q2) = 0 . (3.2.21c)

The master field is hx
x which obeys

hx
x
′′ +

1

r
hx

x
′ +

ω2 − rq2

r2
hx

x = 0 . (3.2.22)

We solve the master equation by imposing (i) the incoming wave boundary condition at the

horizon and (ii) the Dirichlet boundary condition at r = rc, hx
x(rc). After imposing the

former boundary condition, the solution takes the form

hx
x(r) =

hx
x

F

∣∣∣∣
rc

F (r) , (3.2.23)

where we fixed the remaining overall integration constant by the Dirichlet boundary condi-

tion hx
x(rc). The solution of the master equation in the near-horizon limit r → 0 is given

5These equations correspond to (t, r), (z, r), and (r, r)-components of the Einstein equation, respectively.
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by Eq. (3.2.14). When q = 0, it is the exact solution for all r. This is not the case when

q 6= 0, but the master equation takes the form

hx
x
′′ +

1

r
hx

x
′ + O(ω2, q2) = 0 . (3.2.24)

Thus, Eq. (3.2.14) still gives the solution to first order in (ω, q):

F (r) = 1− iω log r + O(ω2, q2) . (3.2.25)

For the sound mode, ha
a = hx

x, but it is convenient to keep each components separately.

Also, we focus on the five-dimensional case (p = 3) for simplicity. Substitute Eqs. (3.2.21)

and (3.2.23) into Eqs. (3.2.12). To first order in (ω, q), the Brown-York tensor becomes

δT t
t = 0 , (3.2.26a)

δT z̃
t̃ =

1

r
1/2
c

δT z
t = −(ε̄ + P̄ )

ω̃

2q̃
hs , (3.2.26b)

δT x
x = δP (h) +

iω̃

16πG
hx

x , (3.2.26c)

δT y
y = δP (h) +

iω̃

16πG
hy

y , (3.2.26d)

δT z
z = δP (h)− iω̃

16πG

(
hx

x + hy
y

)
, (3.2.26e)

where

δP = (ε̄ + P̄ )

[
−1

2
ht

t +
ω

qrc

hz
t +

ω2

2q2rc

hs

]

+
iω

16πGr
1/2
c

(
hx

x + hy
y

)
, (3.2.27)

= (ε̄ + P̄ )

[
−1

2
ht

t +
ω̃

q̃
hz̃

t̃ +
ω̃2

2q̃2
hs

]

+
iω̃

16πG

(
hx

x + hy
y

)
. (3.2.28)

Again, the Brown-York tensor in proper coordinates xµ̃ takes the same form except δT z
t.

So, we have rewritten δT z
t (and δP ) in proper coordinates. The Brown-York tensor takes

the same form as the hydrodynamic stress tensor in the cs → ∞ limit (3.1.23) with η =

1/(16πG).
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3.3 Sound Mode in Schwarzschild-AdS Black Hole

In this section, we study the bulk viscosity for the SAdS5 black hole. In the AdS/CFT

duality, the bulk viscosity for the SAdS5 black hole vanishes in the limit rc → ∞ because

of the scale invariance of the geometry. However, when rc 6= ∞, the stress tensor for the

SAdS5 black hole is no longer traceless (3.3.2), so one must examine the bulk viscosity in

this case.

The near-horizon limit of the SAdS5 black hole is Rindler space. So, one expects that the

bulk viscosity for the SAdS5 black hole agrees with the Rindler result in the limit rc → r0.

We find that the bulk viscosity vanishes even for arbitrary rc. One might wonder how

this result is compatible with the Rindler result. The answer is that the hydrodynamic

regime used in the SAdS computation differs from the hydrodynamic regime used in the

Rindler computation (when expressed in terms of the SAdS variables). We also compute a

second-order hydrodynamic coefficient τπ for arbitrary rc.

3.3.1 Thermodynamic Quantities

The SAdS5 metric is given by

ds2
5 =

( r

L

)2

[−f(r)dt2 + dx2
i ] +

dr2

(
r
L

)2
f(r)

, (3.3.1a)

=
1

u

[−f(u)dt2 + dx2
i

]
+

du2

4u2f(u)
, (3.3.1b)

f(r) = 1−
(r0

r

)4

, f(u) = 1− u2 , (3.3.1c)

where u = (r0/r)
2. The Hawking temperature is given by T = r0/(πL2). We take the

horizon radius r0 = 1 by rescaling t and xi, and we set the AdS radius L = 1. The

boundary position will be denoted as u = uc.

The Brown-York tensor and thermodynamic relations give the following thermodynamic
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quantities:

T̃ =
1

π

√
uc

1− u2
c

, (3.3.2a)

ε̄ =
3

8πG

(c1

6
−

√
1− u2

c

)
, (3.3.2b)

P̄ =
1

8πG

(
3− u2

c√
1− u2

c

− c1

2

)
, (3.3.2c)

s̄ =
ε̄ + P̄

T̃
=

u
3/2
c

4G
, (3.3.2d)

c2
s =

∂P̄

∂ε̄
=

1 + u2
c

3(1− u2
c)

, (3.3.2e)

where c1 is the counterterm dependence (3.2.5) (c1 = 6 for asymptotically AdS5 spacetime).

In the above expressions, one can eliminate uc by proper temperature T̃ , but the result is

not very illuminating.

Note that the stress tensor is no longer traceless. Also, one always has ε̄ < 0 for c1 = 0,

which may be troublesome, but ε̄ > 0 for c1 = 6. On the other hand, P̄ > 0 for both values

of c1.

The computation of thermodynamic quantities has some differences in the AdS/CFT

duality. The Brown-York tensor is the stress tensor with respect to the intrinsic metric on

the surface, and it is natural to use the proper temperature. In the AdS/CFT duality, one

identifies the gauge theory metric γ
(FT)
µν as gµν = (r/L)2γ

(FT)
µν . As a result, it is natural to

use the Hawking temperature in the AdS/CFT duality. The field theory stress tensor is

defined with respect to γ
(FT)
µν

6 . Then, the AdS/CFT stress tensor T (GKPW)
µν is related to the

Brown-York tensor as

T (GKPW)
µν = − 2√

−γ(FT)

δS

δγ(FT)µν
∼

( r

L

)2

T (BY)
µν (3.3.3)

for p = 3. However, physical quantities from the Brown-York tensor in terms of the proper

temperature takes the same from as the standard AdS/CFT expressions in the limit rc →∞
(see below).

Consider two interesting limits, the uc → 0 limit and the uc → 1 limit. They correspond

to the low-T̃ limit and the high-T̃ limit, respectively.

1. In the AdS/CFT limit (uc → 0), thermodynamic quantities take the same form as the

6The induced metric γµν in chapter 2 is not the same as this γ
(FT)
µν but rather is the same as the induced

metric gµν in this chapter.
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standard AdS/CFT result:

ε̄ =
3

16πG
(πT̃ )4 , (3.3.4a)

P̄ =
1

16πG
(πT̃ )4 , (3.3.4b)

s̄ =
1

4G
(πT̃ )3 , (3.3.4c)

c2
s =

1

3
. (3.3.4d)

2. In the Rindler limit (uc → 1), they reduce to Eqs. (3.2.8):

ε̄ =
c1

16πG
, (3.3.5a)

P̄ =
T̃

4G
− c1

16πG
, (3.3.5b)

s̄ =
1

4G
, (3.3.5c)

c2
s →∞ . (3.3.5d)

3.3.2 Sound Mode Perturbations

We consider sound mode perturbations in the SAdS5 black hole. Again we take the

gauge h∗u = 0, and the metric is given by

ds2
5 =

1

u

[
−f(1 + ht

t)dt2 +
∑

i

(1 + hi
i)dx2

i + 2hz
tdtdz

]
+

du2

4u2f
. (3.3.6)

Like the Rindler analysis, one can obtain the master equation for the master field after

some algebra. The definition of the master field is not unique, but different definitions are

related to each other describing the same physics. We take the following combination for

the master field:

Φ(u) = hx
x + f

4hx
x
′ + 2hz

z
′

4q2 − 3f ′
, (3.3.7)

which obeys the following master equation:

[
u−1f(u)Φ(u)′

]′
+ V (u)Φ(u) = 0 , (3.3.8)
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where

V (u) =
1

u3f (4q2 − 3f ′)2

×
[
uw2

(
4q2 − 3f ′

)2
+ q2f

(
15uf ′2 − 36ff ′

)

+ q4f (16f − 8uf ′)− 16q6uf
]

, (3.3.9)

w := ω/(2πT ) = ω/2, and q := q/(2πT ) = q/2.

We again solve the master equation by imposing (i) the incoming wave boundary con-

dition at the horizon u = 1 and (ii) the Dirichlet boundary condition at u = uc, hµ
ν(uc).

After imposing the former boundary condition, the solution takes the form

Φ(u) = CF (u) . (3.3.10)

The remaining integration constant C is fixed by the boundary condition hµ
ν(uc). We

expand the solution in w and q:

F (u) = (1− u)−iw/2 [F00(u) + (wF 10(u) + qF01(u))

+
(
w2F20(u) + wqF11(u) + q2F 02(u)

)
+ · · · ] . (3.3.11)

Here, we factorized (1−u)−iw/2 to implement the incoming wave boundary condition at the

horizon. Then, the incoming wave boundary condition becomes the regularity condition for

Fij(u) at the horizon. One can easily check F00 = 1. The master equation has no terms

with odd powers in q, so one can set F01 = F11 = 0 without loss of generality. The solutions

are

F 10 = − i

2
ln(1 + u) , (3.3.12a)

F 02 = − 2

3u
+

1

3
ln(1 + u) , (3.3.12b)

F 20 =
1

2
Li2

(
u + 1

2

)
− 1

2
{ln 2− ln(1 + u)} ln(1− u)

+ ln(1 + u)

{
1

8
ln(1 + u) + 1− ln 2

}
. (3.3.12c)

The integration constant C is fixed by the boundary condition hµ
ν(uc). Using the definition

of the master field (3.3.7) and the Einstein equation, we obtain C = Cnum/Cden. [See

Eqs. (B.2.1) for the detailed form of Cnum and Cden.]
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The response of the Brown-York tensor is given by

δT t
t = − ε̄ + P̄

2

f

uc

h′s , (3.3.13a)

δT z
t = (ε̄ + P̄ )

(
hz

t +
f

2uc

hz
t
′
)

, (3.3.13b)

δT x
x = − ε̄ + P̄

2

f

uc

(−hx
x
′ + ht

t
′
+ hs

′) , (3.3.13c)

δT z
z = − ε̄ + P̄

2

f

uc

(−hz
z
′ + ht

t
′
+ hs

′) , (3.3.13d)

where we used ε̄ + P̄ = u2
c/(4πGf 1/2). In order to compare the Brown-York tensor with

the hydrodynamic tensor, one needs to rewrite hµ
ν
′. Using Eq. (3.3.7) together with three

constraint equations, one can write hµ
ν
′ in terms of hµ

ν and Φ, schematically in the form of

hµ
ν
′ = Aµ

να
βhα

β + Bµ
νΦ . (3.3.14)

[See Eqs. (B.2.2) for the detailed form of A and B.]

3.3.3 Homogeneous Perturbations

One can carry out the same analysis as the q 6= 0 Rindler case. However, the full form of

the Brown-York tensor is rather complicated, so we focus on the following two cases. First,

we consider the q → 0 limit and compare the Brown-York tensor with the hydrodynamic

stress tensor (3.1.13). Second, we consider the q 6= 0 case and extract the sound pole.

We first consider homogeneous perturbations. Take the q → 0 limit in Eqs. (B.2.2) and

then expand it in w. One obtains

ht
t
′
=

u (3− u2)

3f 2
hs +O (

w2
)

, (3.3.15a)

hz
t
′ = 0 , (3.3.15b)

hx
x
′ = − u

3f
hs +

iwu(hx
x − hz

z)

3f
+O (

w2
)

, (3.3.15c)

hz
z
′ = − u

3f
hs − 2iwu(hx

x − hz
z)

3f
+O (

w2
)

. (3.3.15d)
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Substituting them into the Brown-York tensor (3.3.13), one obtains

δT t
t =

ε̄ + P̄

2
hs , (3.3.16a)

δT z
t = (ε̄ + P̄ )hz

t , (3.3.16b)

δT x
x = − ε̄ + P̄

2
c2
shs +

iω̃u
3/2
c

16πG

(
hx

x −
1

3
hs

)
, (3.3.16c)

δT z
z = − ε̄ + P̄

2
c2
shs +

iω̃u
3/2
c

16πG

(
hz

z −
1

3
hs

)
. (3.3.16d)

Again it is not necessary to distinguish xµ and xµ̃ for δT t
t and δT i

j. Since δT z
t ∝ hz

t, δT z
t

takes the same form in proper coordinates. Equations (3.3.16) take the same form as the

hydrodynamic stress tensor (3.1.13) with

η =
u

3/2
c

16πG
, ζ = 0 , (3.3.17)

which satisfies η/s = 1/(4π).

3.3.4 Inhomogeneous Perturbations and Sound Pole

We now consider the q 6= 0 case and the sound pole in the Brown-York tensor. The

coefficients of hµ
ν and hµ

ν
′ of the Brown-York tensor do not have non-trivial singularities.

Thus, the pole can appear in hµ
ν
′. But hµ

ν
′ can be written by Eq. (3.3.14), so the pole can

appear in the integration constant C in Φ. Namely, the pole is given by Cden = 0. From

Eqs. (B.2.1), the hydrodynamic pole is located at

w = d1q + d2q
2 + d3q

3 + · · · , (3.3.18)

with

d1 =

√
1 + u2

c

3
, (3.3.19a)

d2 = −i
1

3
(1− u2

c) , (3.3.19b)

d3 = (1− u2
c)

(1 + u2
c)[3− 2 ln 2 + 2 ln(1 + uc)]− 2uc

6
√

3(1 + u2
c)

. (3.3.19c)
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In terms of proper quantities,

ω̃ =
d1

f 1/2
q̃ +

d2

f

q̃2

2πT̃
+

d3

f 3/2

q̃3

(2πT̃ )2
+ · · · . (3.3.20)

We compare this pole with the dispersion relation of hydrodynamic sound mode (Sec. B.1):

ω = csq − i

(
p− 1

p
η̂ +

1

2
ζ̂

)
q2

+
1

2cs

[
p− 1

p
η̂

(
2c2

sτπ − p− 1

p
η̂

)
+ ζ

(
c2
sτΠ − p− 1

p
η̂ − 1

4
ζ̂

)]
q3 + · · · . (3.3.21)

The O(q3) terms are the modification by the second-order hydrodynamics. The coefficients

τπ and τΠ are two coefficients appeared in the second-order hydrodynamics. The coefficient

τπ gives the relaxation time of the shear stress.

Comparing Eq. (3.3.21) and Eq. (3.3.20) and using η/s = 1/(4π), we obtain7

c2
s =

1 + u2
c

3(1− u2
c)

, (3.3.22a)

ζ = 0 , (3.3.22b)

τπ =
(1 + uc)[1− ln 2 + ln(1 + uc)] + 1− uc

2πT̃ (1 + uc)2
. (3.3.22c)

The speed of sound cs agrees with the thermodynamic result (3.3.2). The second-order

coefficient τπ behaves as follows:

τπ =
2− ln 2

2πT̃
(uc → 0) , (3.3.23)

=
1

2πT̃
(uc → 1) . (3.3.24)

The uc → 0 limit takes the same form as the standard AdS/CFT result.

3.4 Relation between Rindler and SAdS Results

In Sec. 3.2, the Rindler result gives an incompressible fluid. On the other hand, the

SAdS result gives ζ = 0 even in the near-horizon limit uc → 1. An incompressible fluid

is different from a fluid with ζ = 0. To answer to the question, let us study the relation

7In second-order hydrodynamics, τΠ is defined as τΠ ∝ ζ, so τπ vanishes automatically.
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between the SAdS black hole and Rindler space.

The Rindler limit of the SAdS5 black hole is given by

u = 1− 8ε2r , t =
1

4
tNH , xi = ε xNH

i , with ε → 0 . (3.4.1)

Note that xi is ε-rescaled, but t is not. The coefficient of 1/4 in the definition of tNH

is necessary to match the SAdS5 Hawking temperature TSAdS = 1/π with the Rindler

temperature TRindler = 1/(4π). Under the rescaling, the SAdS5 metric becomes the Rindler

metric up to an overall rescaling:

ds2
SAdS = ε2ds2

Rindler . (3.4.2)

Consider the perturbations under the rescaling. The momentum is rescaled as

ω = 4ωNH , q =
1

ε
qNH . (3.4.3)

Since xi is rescaled but t is not, hz
t must be rescaled as

hz
t = 4ε hz

t
NH . (3.4.4)

The other components are not ε-rescaled since the upper and lower indices receive the

opposite rescaling. In the Rindler limit, the SAdS master equation (3.3.8) becomes

[rΦ′]′ +
(

ω2
NH

r
− q2

NH

)
Φ = 0 , (3.4.5)

which is identical to the Rindler master equation (3.2.22). The Dirichlet boundary condition

for the master field is also identical to the Rindler case. Using Eqs. (B.2.1),

C =
hx

x

F
+O(ε2)

∣∣∣∣
uc

, (3.4.6)

which reduces to Eq. (3.2.23). Thus, the SAdS master field is completely identical to the

Rindler master field.

Then, why does the SAdS result differ from the Rindler result? In the sound mode

computation in Sec. 3.3.4, we looked at the hydrodynamic regime ω ∼ O(q). But this does

not mean ωNH ∼ O(qNH) in the Rindler limit because of the scaling (3.4.3). In order to

have the hydrodynamic regime ωNH ∼ O(qNH), one must look at ω ∼ O(εq) in the original
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SAdS variables. Namely, the hydrodynamic regime used in the SAdS computation differs

from the hydrodynamic regime used in the Rindler computation (when expressed in terms

of the SAdS variables). In fact, one can show that the full SAdS Brown-York tensor reduces

to the Rindler Brown-York tensor (3.2.26) in the ε → 0 limit. The full SAdS Brown-York

tensor contains not only the SAdS ζ = 0 hydrodynamics but also the Rindler incompressible

hydrodynamics.

For the q = 0 case, the reason is slightly different. If one takes the q → 0 limit in the

SAdS boundary condition (B.2.1),

C =
hx

x − hz
z

3F

∣∣∣∣
uc

, (3.4.7)

which does not reduce to Eq. (3.4.6). Thus, in the boundary condition, the q → 0 limit and

the ε → 0 limit do not commute.
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Conclusion

We have studies two approaches for the realization of the relation between gravity and

hydrodynamics: the AdS/CFT duality and the BKLS approach. The results are summarized

as follows.

We have studied the shear viscosities for s-wave, (p + ip)-wave, and p-wave holographic

superfluids. The shear viscosity for the s-wave superfluids satisfies the universality of η/s.

The p-wave superfluids are anisotropic, and there are two nontrivial independent shear

viscosities. We have showed that one of the coefficients satisfies the universality.

On the other hand, for the other coefficient of the p-wave superfluids and for the (p +

ip)-wave superfluid, the gravitational perturbations in question couple to the Yang-Mills

perturbations even in Kubo-formula method, and the existing technique is not applicable.

We have extracted the modes which couple to the gravitational perturbations. For the

(p + ip)-wave case, we have written down the perturbed action for those modes. In fact,

the non-universality of p-wave holographic superfluids has been showed numerically [78,

79]. So our proposal is the first example of the non-universal shear viscosity. In addition,

inspired by our work, an application to a strongly coupled anisotropic plasma, which is a

model for the pre-equilibrium stage of quark-gluon plasma in heavy-ion collisions, has been

studied [86, 87, 88, 89].

We have studied yet another realization, the BKLS approach. Although one often starts

to identify the velocity field of the fluid in the bulk spacetime in the BKLS approach, we

have not taken such a path. We have written down the velocity field in terms of the metric

perturbations, and compared with the Brown-York tensor.

In particular, we have studied the issue of the bulk viscosity ζ, which is non-negative in

the AdS/CFT duality, negative in the membrane paradigm, and is irrelevant in the BKLS

approach (because of an incompressible fluid). At first glance, it might seem inconsistent

since the near horizon limit of the SAdS black hole includes Rindler space. The result is
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summarized schematically in Fig.3.1.

Fig. 3.1: The matrix of the geometries

• Path (i): The region A is the SAdS without the hydrodynamic limit, so one can take

the near horizon limit (from A to B) and then the hydrodynamic limit (from B to B’)

in terms of ωNH and qNH consistently. That is to say, the path (i) is allowed.

• Path (ii): Once the hydrodynamic limit of SAdS (from A to A’) is taken, the near

horizon limit (from A’ to B’) can not be taken consistently. This is because the

momentum diverges q → ∞ (in SAdS) with the near horizon limit ε → 0. (See

Eq. (3.4.3).) Therefore, there are no contradictions between two results since the

hydrodynamic regime used for the SAdS black hole “differs” from the hydrodynamic

regime used for Rindler space (when expressed in terms of the SAdS variables).

We have also found an interesting “coincidence” with the membrane paradigm in the

Rindler analysis. If one does not take into account a constraint equation of the Einstein

equation (in hydrodynamics, this corresponds not to take into account the continuity equa-

tion), one would get the negative bulk viscosity in accordance with the membrane paradigm.

The precise relation to the membrane paradigm is not clear and is left to a future work.
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Appendix A

Quadratic forms of perturbations for

Einstein-Matter actions

In this Appendix, we derive the quadratic forms of the tensor mode perturbation for the

s-wave, p-wave and (p + ip)-wave holographic superfluids. First, we derive the quadratic

form of the Einstein-Hilbert action. Then, we derive quadratic forms of the matter action

for these three models. Since we will not consider scalar perturbations, we will focus on the

metric perturbations and the gauge field perturbations.

A.1 The Quadratic Form of the Einstein-Hilbert Ac-

tion

Consider the general perturbation hMN to the background metric ḡMN :

gMN = ḡMN + hMN . (A.1.1)

Under the perturbation,

√−g =
√−ḡ

[
1 +

1

2
h +

1

2

(
1

4
h2 − 1

2
hMNhMN

)]
, (A.1.2)

and

(2)R =∇M

(
hIJ∇MhIJ + hMN∇Nh− hMN∇Ih

I
N − hIJ∇IhJ

M
)

− 1

4
(∇NhIJ)∇NhIJ +

1

2
(∇NhIJ)∇IhJN − 1

4
∇Nh∇Nh + R̄MIh

I
NhMN .

(A.1.3)
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Therefore, the quadratic form of hMN in the Einstein-Hilbert action is

(2)(
√−gR)√−ḡ

=

(
1

8
h2 − 1

4
hMNhMN

)
R̄ +

(
hMIhI

N − 1

2
hhMN

)
R̄MN

− 1

4
(∇MhIJ)(∇MhIJ) +

1

2
(∇MhIJ)(∇IhJM) +

1

4
(∇Mh)(∇Mh)− 1

2
(∇NhMN)(∇Mh)

+∇M

(
hIJ∇MhIJ + hMN∇Nh− hMN∇Ih

I
N − hIJ∇IhJ

M − 1

2
h∇Mh +

1

2
h∇NhMN

)
.

(A.1.4)

If we restrict the perturbation hMN to the tensor mode perturbation h12, this quadratic

form reduces to (φ := h1
2)

(2)(
√−gR) =

√−ḡ

[
(2)R− 1

2
R̄φ2

]
, (A.1.5)

where (2)R is the quadratic form of the Ricci scalar with the tensor mode perturbation:

(2)R =
√−ḡ

[
−1

2
(∇Mφ)2 + R̄2

2φ
2

]

+ ∂r

(
2

√−ḡ

grr

φ∂rφ +

√−ḡ

grr

g′x2x2

2gx2x2

φ2

)
− ∂t

(
2

√−ḡ

gtt

φ∂tφ

)
.

(A.1.6)

Here, we take the (d + 1)-dimensional p-wave metric (2.2.3) to preserve generality. Except

the free scalar part, all these terms will be removed in the end.

A.2 The Quadratic Form of the s-wave Holographic

Superfluid Action

The s-wave holographic superfluid is described by Eq. (2.1.1):

Ss =
1

16πGd+1

∫
dd+1x(

√−gR + Ls-matter) ; (A.2.1)

Ls-matter :=
√−g

[
−1

4
K1 (|Ψ|) FMNFMN −K2 (|Ψ|) |(DMΨ)|2 − V (|Ψ|)

]
,(A.2.2)

where we defined a covariant derivative as DM := ∇M − iqAM . Under the general gravita-

tional perturbation

gMN = ḡMN + hMN , (A.2.3)
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one can easily find

(2)Ls-matter =
1

2

√−ḡhMN

[
K1X

MNIJ + K2Y
MNIJ + V PMNIJ

]
hIJ , (A.2.4)

where

PMNIJ =
1

4

(
ḡMI ḡNJ + ḡMJ ḡNI − ḡMN ḡIJ

)
, (A.2.5)

XMNIJ =
1

4
FABFABPMNIJ +

1

2
FA

MFAN ḡIJ − FA
MFAJ ḡNI − 1

2
FMIFNJ , (A.2.6)

Y MNIJ = |DAΨ|2PMNIJ + (DMΨ)(DNΨ)∗ḡIJ − 2(DMΨ)(DJΨ)∗ḡNI . (A.2.7)

Note that some modes of the metric perturbations couple with the gauge field perturba-

tions δAI and the complex scalar perturbation δΨ in general. However, we drop these

perturbations since these decouple from the tensor mode metric perturbations.

The equation of motion for the background field is

(
1

2
R̄ḡMN − R̄MN

)
+ T̄MN = 0 . (A.2.8)

The background energy-momentum tensor T̄MN is defined as 1

T̄MN =
1√−ḡ

∂Ls-matter

∂gMN

=
1

2
K1

(
−1

4
ḡMNFABFAB + F (M

AFN)A

)

+ K2

(
−1

2
ḡMN(DAΨ)(DAΨ)∗ + (D(MΨ)(DN)Ψ)∗

)
− 1

2
ḡMNV .

(A.2.9)

This equation of motion leads to a relation between the Ricci scalar and the matter fields

R̄ =
d− 3

4(d− 1)
K1FMNFMN + K2|DMΨ|2 +

d + 1

d− 1
V , (A.2.10)

and an isotropic component leads to

R2
2 =

1

d− 1

(
V − 1

4
K1FMNFMN

)
. (A.2.11)

So far our discussion does not assume an explicit background nor perturbations. Now,

1Here, we defined the symmetric symbol as F (M
AFN)A = 1

2

(
FM

AFNA + FN
AFMA

)
.
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we take the s-wave background ansatz (2.1.2)-(2.1.4) and the tensor mode h1
2 = φ(t, r).

The quadratic form (A.2.4) reduces to

(2)Ls-matter =
1

2

√−ḡ

(
1

4
K1FMNFMN + K2|DMΨ|2 + V

)
φ2 , (A.2.12)

where we set the gauge field perturbations aM to zero since these decouple from φ. Using

the trace of the equations of motion (A.2.10) and an isotropic component of Eq. (A.2.11),

one gets

(2)Ls-matter =
√−ḡ

(
1

2
R̄− R̄2

2

)
φ2 . (A.2.13)

Combining the Einstein-Hilbert term (A.1.4) and the matter term (A.2.13), we obtain the

quadratic form of the s-wave holographic superfluid action (2.1.12):

(2)Ss =
1

16πGd+1

∫
dd+1x

[
− 1

2

√−g(∇Mφ)2 − ∂t

(
2
√−ḡgttφ∂tφ

)

+ ∂r

{√−ḡ

(
2grrφ∂rφ +

1

2

g′xx

gxx

grrφ2

)} ]
,

(A.2.14)

with gx1x1 = gx2x2 = gxx. The second term (the total derivative with respect to t) does not

affect the correlator, so we ignored the term in Eq. (2.1.12).

A.3 The Quadratic Form of the Einstein-Yang-Mills

Action

The Einstein-Yang-Mills action is

SEYM =
1

16πGd+1

∫
dd+1x(

√−gR + LEYM-matter) , (A.3.1)

LEYM-matter :=
√−g

[
−1

4
F a

MNF aMN − 2Λ

]
, (A.3.2)

where Aa
M is SU(2) gauge field and the field strength is defined as

F a
MN = ∂MAa

N − ∂NAa
M + gYMεabcAb

MAc
N . (A.3.3)
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Under the metric and gauge field perturbations

gMN = ḡMN + hMN , Aa
M = Āa

M + aa
M , (A.3.4)

one can find2

(2)LEYM = (2)Lgrav + (2)Lgauge + (2)Lint ; (A.3.5)

(2)Lgrav = (2)(
√−gR) +

√−ḡ

[
1

2
hMN

(
X̄MNIJ + 2ΛPMNIJ

)
hIJ

]
, (A.3.6)

(2)Lgauge =
√−ḡ

[
−1

4
fa

MNfaMN +
1

2
aa

MZMN
ab ab

N

]
, (A.3.7)

(2)Lint =
1

2

√−ḡhMNQMNIJ
a fa

IJ , (A.3.8)

where

fa
MN = DMaa

N −DNaa
M (A.3.9)

X̄MNIJ =
1

4
F a

ABF aABPMNIJ +
1

2
F a

A
MF aAN ḡIJ (A.3.10)

−F a
A

MF aAJ ḡNI − 1

2
F aMNF aIJ ,

QMNIJ
a = 2ḡMIF aNJ − 1

2
ḡMNF aIJ , (A.3.11)

ZMN
ab = −gYMεabcF cMN . (A.3.12)

The background satisfies the Einstein equation (A.2.8) with the energy-momentum ten-

sor given by 3

T̄MN =
1

2

(
−1

4
ḡMNF a

IJF aIJ − F a(M
AF |a|N)A − ḡMN2Λ

)
. (A.3.13)

This equation of motion leads to a relation between the Ricci scalar and the matter fields

R̄ =
d− 3

4(d− 1)
F a

MNF aMN +
d + 1

d− 1
2Λ , (A.3.14)

2The quadratic form of the Einstein-Yang-Mills action was obtained in Ref. [81] in order to calculate the
one-loop divergence, but they omitted surface terms.

3Here, the vertical bars indicate that we do not symmetrize over a: F a(M
AF |a|N)A =

1
2

(
F aM

AF aNA + F aN
AF aMA

)
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and an isotropic component leads to

R2
2 =

1

d− 1

(
2Λ− 1

4
F a

MNF aMN +
d− 1

2
F a

Mx2
F aMx2

)
. (A.3.15)

A.3.1 The p-wave Holographic Superfluid Action (Tensor Mode)

Here, we derive the effective action of the tensor mode metric perturbation for the

(d + 1)-dimensional p-wave system. If we set metric perturbation (A.3.4) to the tensor

mode h2
3 = φ(t, r), all the other perturbations are decoupled, so these perturbations can

be ignored consistently. The quadratic action (A.3.5) reduces to

(2)LEYM-matter =
1

2

√−ḡ

[
1

4
F a

MNF aMN + 2Λ

]
φ2 =

√−ḡ

(
1

2
R̄− R̄2

2

)
φ2 , (A.3.16)

using Eqs. (A.3.14) and (A.3.15). Then, one obtains the quadratic form of the p-wave action

for the tensor mode metric perturbation:

(2)Sp =
1

16πGd+1

∫
dd+1x

√−ḡ

[
− 1

2
(∇Mφ)2 − ∂t

(
2
√−ḡgttφ∂tφ

)

+ ∂r

{√−ḡ

(
2grrφ∂rφ +

1

2

g′x2x2

gx2x2

grrφ2

)} ]
.

(A.3.17)

A.3.2 The (p + ip)-wave Holographic Superfluid Action

Let us derive the effective action of the “tensor mode” metric perturbations for the

4-dimensional (p + ip)-wave system. In this case, we must turn on four perturbations

φod = h1
2 = h2

1, φd = h1
1 = −h2

2, aod = a1
2 = a2

1 and ad = a1
1 = −a2

2. The perturbed

action is obtained by substituting these perturbations into Eq. (A.3.5):

(2)S(p+ip) =
1

16πG4

∫
d4x

√−ḡ
(
(2)Lgrav + (2)Lgauge + (2)Lint

)
; (A.3.18)

(2)Lgrav =
√−ḡ

2∑
i=1

[
−1

2

{−gtt(∂tφi)
2 + grr(∂rφi)

2
}− 1

2
M(r)2φ2

i

]
, (A.3.19)

(2)Lgauge =
√−ḡgxx

2∑
i=1

[−grr(∂rai)
2 + g2

YMw2a2
i + gtt(Dtai)

2
]

, (A.3.20)

(2)Lint =
√−ḡ

2∑
i=1

φi(F · f)i , (A.3.21)
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where we defined two-component vectors φi = (φod, φd), ai = (aod, ad), (F ·f)i = ((F · f)1, (F · f)2)

and i runs isotropic components i = 1, 2. Here, we have omitted the surface term in

Eq. (A.3.19). The mass-like function M(r) is defined by

M(r)2 := grrgxx(∂rw)2 + gxxg2
YM

(
gxxw2 − gttΦ2

)
w2 , (A.3.22)

and the explicit form of (F · f)i is

(F · f)od = grrgxx(∂rw)(∂raod) + gttgxxgYMΦw(Dtad), (A.3.23)

(F · f)d = grrgxx(∂rw)(∂rad)− gttgxxgYMΦw(Dtaod). (A.3.24)

Note that the covariant derivatives of ai have forms

Dtaod = ∂taod + gYMΦad , Dtad = ∂tad − gYMΦaod . (A.3.25)

Therefore, these forms mix aod and ad.
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Appendix B

A Note on Chapter 3

B.1 The Dispersion relation of Second Order Hydrodyan-

mics

In this section, we derive the sound mode dispersion relation of the second order hydro-

dynamics (3.3.21). For hydrodynamic computations, we use the Minkowski back ground

ḡµν = ηµν and the rest fluid ūµ = (1, 0, 0, 0). Therefore, coefficients κ∗, which are the co-

efficients of Riemann tensor or Ricci tensor (1.2.15), are absent in the dispersion relations.

Without loss of generality we choose momentum direction to be the z-direction as in Eqs.

(3.1.9, 3.1.10). Using the constitutive equation of the second order fluid (1.2.15), one can

find the linearized stress tensor,

δT tt = δε , (B.1.1)

δT tz = (ε̄ + P̄ )δuz , (B.1.2)

δT zz = c2
sδε

[
−iq

(
2
p− 1

p
η̂ + ζ̂

)
+ ωq

(
2
p− 1

p
η̂τπ + ζ̂τΠ

)]
δuz . (B.1.3)

Hydrodynamic variables δuz and δε can be easily removed from the above expressions, and

with the conservation equation,

− iωδT tt + iqδT zt = 0 , −iωδT tz + iqδT zz = 0 , (B.1.4)

the full dispersion relation can be obtained

ω2 − c2
sq

2 −
[
−iωq2

(
2
p− 1

p
η̂ + ζ̂

)
+ (ωq)2

(
2
p− 1

p
η̂τπ + ζ̂τΠ

)]
= 0 . (B.1.5)
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Solving the equation for ω and expanding it in terms of q, one can find the dispersion

relation:

ω = ±csq − i

(
p− 1

p
η̂ +

1

2
ζ̂

)
q2

+
1

2cs

[
p− 1

p
η̂

(
±2c2

sτπ − p− 1

p
η̂

)
+ ζ

(
±c2

sτΠ − p− 1

p
η̂ − 1

4
ζ̂

)]
q3 + O(q4) . (B.1.6)

B.2 Several Expressions Used in Chapter 3

B.2.1 Integration constant

The integration constant C of the master field in terms of boundary values hµ
ν(uc):

C =
Cnum

Cden

(B.2.1a)

Cnum = u(4q2 − 3f ′)2
[−2qwhz

t + q2fht
t − {q2(1 + u2)−w2}hx

x −w2hz
z

]∣∣∣
uc

(B.2.1b)

Cden = 12q2uf 2(4q2 − 3f ′)F ′
∣∣∣
uc

+ 4[4q6u(−3 + u2) + 27u3w2

− 9q2u2(u + u3 − 4w2)− 12q4(1 + u4 − uw2)]F
∣∣∣
uc

(B.2.1c)

B.2.2 Explicit expression of Eq. (3.3.14)

Explicit expressions of Eq. (3.3.14):

ht
t
′
=

1

6f 2

[
−4q2ht

t + [8w2 + 4q2(f − uf ′)− 3(3f − uf ′)f ′]hx
x

+ 4w2hz
z + 8qwhz

t − (4q2 − 3f ′)(3f − uf ′)Φ
]

, (B.2.2a)

hx
x
′ =

1

12q2f 2

[
q2f(4q2 − 3f ′)ht

t + [(4q2 − 3f ′)(w2 + q2uf ′)− (4q4 − 9q2f ′)f ]hx
x

−w2(4q2 − 3f ′)hz
z − 2qw(4qw− 3f ′)hz

t − (4q2 − 3f ′)(3w2 − 3q2f + q2uf ′)Φ
]

,

(B.2.2b)

hz
z
′ =

1

6q2f 2

[
−q2f(4q2 − 3f ′)ht

t − [8q4f + (4q2 − 3f ′)(w2 + q2uf ′)]hx
x

+ w2(4q2 − 3f ′)hz
z + 2qw(4q2 − 3f ′)hz

t + (4q2 − 3f ′)(3w2 + q2uf ′)Φ
]

, (B.2.2c)

hz
t
′ =

1

2qf

[
w(4q2 − f ′)hx

x + wf ′hz
z + 2qf ′hz

t −w(4q2 − 3f ′)Φ
]

. (B.2.2d)
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