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Abstract

We study cosmological tests of models that can explain the apparent accelerated ex-

pansion of the present universe. In this thesis, we provide methods of testing these models

by particularly focusing on inhomogeneities of the universe, because, practically, our uni-

verse is inhomogeneous.

First, we consider the effective gravitational stress-energy tensor for short-wavelength

perturbations in modified gravity theories in the cosmological context. We address this

problem in a simple class of f(R) gravity theories on the assumptions that (i) the back-

ground, or coarse-grained metric averaged over several wavelengths, has the Friedmann-

Lemâıtre-Robertson-Walker symmetry and that (ii) when our f(R) theory reduces to Ein-

stein gravity, the field equations of Einstein gravity should be reproduced. We show by

explicit computation that the effective gravitational stress-energy tensor for a cosmologi-

cal model in our f(R) theories, as well as that obtained in the corresponding scalar-tensor

theory, takes a similar form to that in general relativity and is in fact traceless, hence

acting again like a radiation fluid as in the case of general relativity. If the assumption

(ii) above is dropped, then an undetermined integration constant appears and the resul-

tant effective stress-energy tensor acquires a term that is in proportion to the background

metric, hence being, in principle, able to describe a cosmological constant. Whether this

effective cosmological constant term is positive and whether it has the right magnitude

as dark energy depends upon the value of the integration constant.

Second, we discuss temperature anisotropies of cosmic microwave background (CMB)

in local void models. We derive analytic formulae for the dipole and quadrupole moments

of the CMB temperature anisotropy that hold for any spherically symmetric universe

model and can be used to compare consequences of this model with observations of the

CMB temperature anisotropy rigorously. We check that our formulae are consistent with

the numerical studies previously made for the CMB temperature anisotropy in the void

model. We also update the constraints concerning the location of the observers in the

void model by applying our analytic dipole formula with the latest WMAP data.
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Chapter 1

Introduction

In modern cosmology, it is commonly assumed that our universe be isotropic and ho-

mogeneous on sufficiently large scales under the cosmological principle, and accordingly

be described by the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric as a first ap-

proximation. Then, together with consequences of various cosmological observations such

as the power spectrum of Cosmic Microwave Background (CMB) temperature anisotropy,

the distance-redshift relation of SuperNova of type Ia (SN Ia) indicates that the expansion

of the present universe is apparently accelerated as first observed in 1998 [1, 2].

In general relativity, if the universe is filled with ordinary non-relativistic matter and

radiation that are the two known constituents of the universe, then gravity should lead

to a slowing of the expansion. Since the expansion is apparently accelerated, there are

three possibilities, any of which would have deep implications for our understanding of

the universe and theory of gravity. The first is that about 75% of the energy density of

the universe exists in a new form, known as “dark energy” which has negative pressure.

However, there does not appear to be any satisfactory theory that can naturally explain

the origin of dark energy and its magnitude required by observations. The second is

that general relativity is broken on cosmological scales and must be replaced with a

more appropriate theory of gravity, i.e., “modified gravity theory.” The third is that the

assumption that the universe is homogeneous breaks down, having instead an under-dense

local void in the surrounding overdense universe, so-called “local void model.”

We can regard the so-called cosmological constant Λ whose equation of state is wDE =
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−1 as the simplest candidate for dark energy. If the cosmological constant originates

from a vacuum energy of particle physics, its energy scale is significantly larger than the

observed value of the present dark energy density [3]. We need to find a mechanism to

obtain the tiny value of Λ consistent with observations.

To understand the property of dark energy, we should first clarify whether it is a

simple constant or it dynamically changes in time. The dynamical dark energy models

can be distinguished from the cosmological constant by considering the time evolution

of wDE. A wide variety of variations of wDE is predicted by the scalar field models,

such as quintessence [4, 5] and k-essence [6–8]. Still, the current observational data are

not sufficient to provide some preference of such models over the Λ-Cold Dark Matter

(ΛCDM) model. Furthermore, the field needs to have sufficiently flat potentials such

that the field evolves slowly enough to drive the accelerated expansion of the present

universe. This demands that the field mass is extremely small relative to typical mass

scales appearing in particle physics [9, 10]. It seems to be an extremely difficut task to

construct viable scalar field dark energy models within the framework of particle physics.

There exists another class of dynamical dark energy models based on the large-distance

modification of gravity, for example, f(R) gravity [11], scalar-tensor theories, Gauss-

Bonnet gravity [12, 13], Dvali-Gabadadze-Porrati (DGP) braneworld model [14], and so

on. An attractive feature of these models is that the cosmic acceleration can be realized

without introducing dark energy for matter contents of the universe. There are tight

constraints coming from local gravity tests by modifying general relativity. Hence, in

general, the restriction on modified gravity theories is stringent compared to modified

matter models.

Among many, one of the simplest of modified theories so far proposed is the so-

called f(R) gravity, whose action is a generalization of the Einstein-Hilbert action to

an arbitrary function, f(R), of the scalar curvature R. For example, an f(R) model

of the form f(R) = R − µ2(n+1)/Rn (n > 0) was proposed to explain the late-time

cosmic acceleration [15,16]. However, this model suffers from a number of problems such

as the incompatibility with local gravity constraints [17, 18], the instability of density

perturbations [19, 20], and the absence of a matter-dominated epoch [21, 22]. As we will

see in this thesis there are a number of conditions required for the viability of f(R) dark
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energy models [23–25], which stimulated to propose viable models [26–28]. It is well known

that f(R) gravity is equivalent to a scalar-tensor theory which contains the coupling of

the scalar curvature R to a scalar field ϕ in a certain way [17]. Brans-Dicke theory [29] is

one of the simplest examples.

In addition to the scalar curvature R, we can construct other scalar quantities such

as RµνR
µν and RµνλσR

µνλσ from the Ricci tensor Rµν and Riemann tensor Rµνλσ [30].

For the Gauss-Bonnet curvature invariant defined by G ≡ R2 − 4RµνR
µν + RµνλσR

µνλσ,

it is known that we can avoid the appearance of spurious spin-2 ghosts [31]. In order to

give rise to some contribution of the Gauss-Bonnet term to the Friedmann equation, we

require that (i) the Gauss-Bonnet term couples to a scalar field ϕ, i.e., F (ϕ)G or (ii) the

Lagrangian density f is a function of G, i.e., f(G). We shall review such theories and

observational constraints on them.

In DGP braneworld model, we consider a 3-dimensional brane embedded in the 5-

dimensional Minkowski bulk spacetime [14]. The gravitational leakage to the extra dimen-

sion leads to a self-acceleration of the universe on the 3-dimensional brane. A longitudinal

graviton (i.e. a branebending mode ϕ) gives rise to a nonlinear self-interaction of the form

(r2c/mpl)□ϕ∂µϕ∂µϕ through the mixing with a transverse graviton, where rc is a cross-over

scale (of the order of the Hubble radius H−1
0 today) and mpl is the Planck mass [32]. In

the local region where the energy density ρ is much larger than r−2
c m2

pl, the nonlinear

self-interaction can lead to the decoupling of the field from matter through the so-called

Vainshtein mechanism [33], which allows a possibility for the consistency with local grav-

ity constraints. However, the DGP braneworld model suffers from a ghost problem [34],

in addition to the difficulty for satisfying the combined observational constraints.

In addition to the above mentioned models, there are attempts to explain the cosmic

acceleration without dark energy. One of such attempts is the local void model pro-

posed by Tomita [35,36], also independently by Celerier [37] and by Goodwin et al. [38].

In this model, our universe is no longer assumed to be homogeneous, having instead an

under-dense local void in the surrounding overdense universe. The isotropic nature of cos-

mological observations on large scales is realized by assuming the spherical symmetry and

demanding that we live close to the center of the void. Furthermore, the model is supposed

to contain only ordinary dust like cosmic matter, describing, say, CDM component. Such
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a spacetime can be described by the Lemâıtre-Tolman-Bondi (LTB) spacetime [39–41].

Since the rate of expansion in the void region is larger than that in the outer overdense

region, this model can account for the observed dimming of SN Ia luminosity. In fact,

recent numerical analyses [42–52] have shown that the LTB model can accurately repro-

duce the SN Ia distance-redshift relation. For this reason, despite the relinquishment of

the widely accepted Copernican/cosmological principle, the local void model has recently

attracted considerable attention.

Another example is the so-called backreaction model in which the backreaction of

spatial inhomogeneities on the FLRW background is responsible for the real acceleration.

Our observable universe appears to be homogeneous and isotropic on large scales, but

highly inhomogeneous on small scales. It is therefore interesting to consider whether

the local inhomogeneities can have any effects on the global dynamics of our universe,

in particular, any effect that corresponds to a positive cosmological constant or dark

energy. A number of authors have explored this possibility of explaining the present cosmic

accelerating expansion by some backreaction effects of the local inhomogeneities [53–61].

Such a backreaction effect may be described in terms of an effective stress-energy tensor

arising from metric as well as matter perturbations.

In this thesis, we discuss cosmological tests of modified gravity theories and the local

void model in terms of inhomogeneities of the universe. We first consider backreaction of

inhomogeneities and effective stress energy tensor in f(R) gravity (Chapter 5) and then

consider off-center CMB anisotropies in local void models (Chapter 6).

In Chapter 5, the high frequency limit in f(R) gravity and scalar-tensor theory is

studied [62]. In general relativity, a consistent expansion scheme for short-wavelength

perturbations and the corresponding effective stress-energy tensor were largely developed

by Isaacson [63, 64], in which the small parameter, say ϵ, corresponds to the amplitude

and at the same time the wavelength of perturbations. Isaacson’s expansion scheme is

called the high frequency limit or the short-wavelength approximation. If the effective

stress-energy tensor had a term proportional to the background spacetime metric, then

it would correspond to adding a cosmological constant to the effective Einstein equations

for the background metric, thereby explaining possible origin of dark energy from local

inhomogeneities. It has been shown, however, that this effective gravitational stress-
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energy tensor is traceless and satisfies the weak energy condition, i.e. acts like radiation

[65,66], and thus cannot provide any effects that imitate dark energy in general relativity.

However, it is far from obvious if this traceless property of the effective gravitational

stress-energy tensor is a nature specific only to the general relativity or is rather a generic

property that can also hold in other types of gravity theories.

The purpose of Chapter 5 is to address this question in a simple, concrete model in

the cosmological context. Since f(R) gravity contains higher-order derivative terms, one

can anticipate the effective gravitational stress-energy tensor to be generally modified

in the high frequency limit. Our analysis can be performed, in principle, either (i) by

first translating a given f(R) gravity into the corresponding scalar-tensor theory and

then inspecting the stress-energy tensor for the scalar field ϕ, or (ii) by directly dealing

with metric perturbations of f(R) gravity. We may expect that the former approach is

sufficient for our present purpose and much easier than the latter metric approach, as

we have to deal with metric perturbations of complicated combinations of the curvature

tensors in the latter case. Nevertheless, we will take both approaches. In fact, in the

metric approach, by directly taking up perturbations of the scalar curvature R, the Ricci

tensor Rµν and the Riemann tensor Rµ
νλσ involved in a given f(R) theory, we can learn

how to generalize our present analysis of a specific class of f(R) gravity to analyses of

other, different, types of modified gravity theory that cannot even be translated into a

scalar-tensor theory, such as the Gauss-Bonnet gravity. Then, we will make sure that the

effective stress-energy tensor in Brans-Dicke theory is consistent with that in our f(R)

gravity.

In Chapter 6, we turn to the local void model. In order to justify the local void model

as a viable alternative to the standard ΛCDMmodel, we have to test this model by various

observations other than the SN Ia distance-redshift relation. Most of previous analyses

were performed for various types of local void models by using numerical methods, and it

does not seem to be straightforward to compare analyses for each different model so as to

have a coherent understanding of the results. In order to have general consequences of the

local void model and systematically examine its viability, it is desirable to develop some

general, analytic methods that can apply, independently of the details of each specific

model.
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The purpose of Chapter 6 is to derive the analytic formulae for the dipole and

quadrupole of the CMB anisotropy in general spherically symmetric spacetimes, including

the Λ-LTB spacetime, and to give constraints on the local void model. We will exploit the

key requirement of the local void model that we, observers, are restricted to be around

very near the center of the spherical symmetry: Namely, we first note that the small dis-

tance between the symmetry center and an off-center observer gives rise to a corresponding

deviation in the photon distribution function. Then, by taking ‘Taylor-expansions’ of the

photon distribution function at the center with respect to the deviation, we can read

off the CMB temperature anisotropy caused by the deviation in the photon distribution

function. By doing so, we can, in principle, construct the l-th order multiple moment of

the CMB temperature anisotropy from the (up to) l-th order expansion coefficients, with

the help of the background null geodesic equations and the Boltzmann equation. We will

do so for the first and second-order expansions to find the CMB dipole and quadrupole

moments. We also provide the concrete expression of the corresponding formulae for the

local void model. Our formulae are then checked to be consistent with the numerical

analyses of the CMB temperature anisotropy in the local void model, previously made

by Alnes and Amarzguioui [47]. We apply our formulae to place the constraint on the

distance between an observer and the symmetry center of the void, by using the latest

Wilkinson Microwave Anisotropy Probe (WMAP) data, thereby updating the results of

the previous analyses.

This thesis is organized as follows. In Chapter 2, we briefly review the FLRW cos-

mology and provide recent observational constraints on dark energy obtained from SN Ia,

CMB and Baryon Acoustic Oscillations (BAO) data. Moreover, we introduce the cosmo-

logical constant Λ and the cosmological constant problem. In Chapter 3, we summarize

current theoretical approaches to accelerated expansion and dark energy, including mod-

ified matter models, modified gravity theories, the local void model. In Chapter 4, we

provide a number of ways to distinguish modified gravity theories and the local void model

observationally from the ΛCDM model, and some constraints on these models. Chapter

5 and Chapter 6 are the main parts of this thesis. Chapter 7 is devoted to a summary

and discussion.

Our signature convention for gµν is (−,+,+,+). We define the Riemann tensor by
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Rµνλ
σωσ = 2∇[µ∇ν]ωλ and the Ricci tensor by Rµν = Rµλν

λ as in Wald’s book [68]. We use

units such that c = ℏ = 1, where c is the speed of light and ℏ is reduced Planck’s constant.

The gravitational constant G is related to the Planck mass mpl = 1.2211× 1019 GeV via

G = 1/m2
pl and the reduced Planck massMpl = 2.4357×1018 GeV via κ2 = 8πG = 1/M2

pl,

respectively.
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Chapter 2

Apparent accelerated expansion of

the present universe

2.1 FLRW cosmology

2.1.1 Isotropic and homogeneous universe

FLRW spacetime

Our observable universe appears to be isotropic and homogeneous on large scales and

accordingly be described by the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

gµνdx
µdxν = −dt2 + a2(t)γijdx

idxj

= −dt2 + a2(t)

{
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdϕ2

)}
, (2.1.1)

where a(t) is cosmic scale factor with cosmic time t. The coordinates r, θ and ϕ are known

as comoving coordinates. The spatial curvature constant K describes the geometry of the

spatial section. It may be convenient to write the metric (2.1.1) in the following form:

gµνdx
µdxν = −dt2 + a2(t)

{
dχ2 + f 2

K(χ)
(
dθ2 + sin2 θdϕ2

)}
, (2.1.2)
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where

fK(χ) =


sinχ (K > 0); closed

χ (K = 0); flat

sinhχ (K < 0); open.

(2.1.3)

Note that (2.1.1) is invariant under the scaling a(t) → ξa(t), r → r/ξ, K → ξ2K, where

ξ is an arbitrary constant. This allows us to normalize k or a(t) arbitrarily. We can set

a(t0) ≡ 1, (2.1.4)

where a subscript 0 means the present value.

The stress-energy tensor of the isotropic and homogeneous universe should take the

same form as for a perfect fluid [69]:

Tµν = (ρ+ P )UµUν + Pgµν , (2.1.5)

where ρ = ρ(t) and P = P (t) are the energy density and the pressure density of the fluid,

respectively, and Uµ ≡ dxµ/dt is the four-velocity with UµUµ = −1. With one index

raised, the stress-energy tensor takes the convenient form:

T µ
ν = diag(−ρ, P, P, P ). (2.1.6)

The Einstein field equation reads

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν , (2.1.7)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor and R ≡ Rµ
µ is the scalar

curvature. In the FLRW background (2.1.1), the Einstein equation gives the Friedmann

equations

H2 =
8πG

3
ρ− K

a2
, (2.1.8)

ä

a
= −4πG

3
(ρ+ 3P ) , (2.1.9)
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where dot denotes a derivative with respect to t, and

H(t) ≡ ȧ(t)

a(t)
(2.1.10)

is the Hubble parameter which characterizes the rate of cosmic expansion. The value of the

Hubble parameter at the present epoch is the Hubble constant, H0. Current observations

lead us to believe that the Hubble constant is 73.8± 2.4 km/sec/Mpc [70]. (Mpc stands

for megaparsec, which is 3.09 × 1024 cm.) Since there is still some uncertainty in this

value, we often parametrize the Hubble constant as

H0 = 100h km/sec/Mpc, (2.1.11)

so that h ≈ 0.7.

Equation (2.1.8) can be rewritten

Ω− 1 =
K

H2a2
, (2.1.12)

where Ω ≡ ρm/ρc is the dimensionless density parameter and ρc is the critical density

defined by

ρc ≡
3H2

8πG
. (2.1.13)

The density parameter tell us which of the three spatial geometries describes our universe,

i.e.,

ρ > ρc ↔ Ω > 1 ↔ K > 0 ↔ closed

ρ = ρc ↔ Ω = 1 ↔ K = 0 ↔ flat

ρ < ρc ↔ Ω < 1 ↔ K < 0 ↔ open.

(2.1.14)

Recent observations of the cosmic microwave background (CMB) anisotropy have shown

that the current universe is very close to a spatially flat geometry (Ω ≃ 1) [71]. This is

actually a natural result from inflation in the early universe [72]. Hence, we will consider

a flat universe (K = 0) as necessary.

The stress-energy tensor is conserved by virtue of the Bianchi identities, leading to
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the continuity equation

ρ̇ = −3H(ρ+ P ). (2.1.15)

This equation can be derived from (2.1.8) and (2.1.9), which means that two of equations

(2.1.8), (2.1.9) and (2.1.15) are independent.

Evolution of the scale factor

Let us consider the evolution of the universe filled with a barotropic perfect fluid with an

equation of state

P = wρ. (2.1.16)

By solving (2.1.15), we obtain

ρ ∝ exp

[
−3

∫ a da1
a1

(1 + w(a1))

]
. (2.1.17)

When w is assumed to be constant, this can be integrated to derive

ρ ∝ a−3(1+w). (2.1.18)

The two most popular examples of cosmological fluids are known as non-relativistic matter

(w = 0) and radiation (w = 1/3). The energy densities in the matter or radiation

dominated universe are

ρm ∝ a−3 : matter, (2.1.19)

ρr ∝ a−4 : radiation. (2.1.20)

Solving the Friedmann equation (2.1.8) with K = 0 and (2.1.18) yields

a ∝ (t− t0)
2

3(1+w) . (2.1.21)
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The scale factors in the matter or radiation dominated universe behave

a ∝ (t− t0)
2
3 : matter, (2.1.22)

a ∝ (t− t0)
1
2 : radiation. (2.1.23)

Both cases correspond to a decelerated expansion of the universe. From (2.1.9), an accel-

erated expansion (ä(t) > 0) occurs for the equation of state given by

w < −1

3
. (2.1.24)

In order to explain the current acceleration of the universe, we require an exotic energy

dubbed “dark energy” with equation of state satisfying (2.1.24). From (2.1.18), the energy

density is constant for w = −1. In this case, the Hubble parameter is also constant from

(2.1.8), given the evolution of the scale factor:

a ∝ eHt, (2.1.25)

which is the de-Sitter universe.

Cosmological constant

The exponential expansion also arises by including a cosmological constant, Λ, in the

Einstein equation. The Einstein tensor Gµν and the stress-energy tensor Tµν satisfy the

Bianchi identity ∇µG
µ
ν = 0 and energy conservation ∇µT

µ
ν = 0. There is a freedom

to add a term Λgµν in the Einstein equation because of ∇µgνλ = 0. Then, the Einstein

equation is modified from (2.1.7) to

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (2.1.26)
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In the FLRW background (2.1.1), the Friedmann equations are modified from (2.1.8) and

(2.1.9) to

H2 =
8πG

3
ρ− K

a2
+

Λ

3
, (2.1.27)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (2.1.28)

The cosmological constant term corresponds to the energy density term for w = −1. This

clearly demonstrates that the cosmological constant contributes negatively to the pressure

term and exhibits a repulsive effect. Equation (2.1.27) can be rewritten

Ω + ΩK + ΩΛ = 1, (2.1.29)

where ΩK ≡ −K/ (H2a2) and ΩΛ ≡ Λ/ (3H2).

2.1.2 Kinematic properties of the expanding universe

Cosmological redshift

Suppose that a wavecrest of light is emitted from a source located at comoving coordinate

r at time t, and arrives at the origin (r = 0) at time t0. As a ray of light travels along a

null geodesic (ds2 = 0):
dt

dr
= − a(t)√

1−Kr2
, (2.1.30)

the comoving distance is defined by

χ(t) ≡
∫ t0

t

dt1
a(t1)

= −
∫ 0

r

dr1√
1−Kr21

, (2.1.31)

where the FLRW metric (2.1.1) is used. The next wavecrest emitted at time t + δt will

arrive at the origin at time t0 + δt0. Since the source position and the origin are both

fixed in the comoving coordinate system, the right-hand-side of (2.1.31) is constant and

∫ t0

t

dt1
a(t1)

=

∫ t0+δt(t0)

t+δt(t)

dt1
a(t1)

. (2.1.32)
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We can select δt as a period of light, and then, δt ≪ t. Tis equation can be Taylor

expanded as
δt(t)

a(t)
=
δt(t0)

a(t0)
, (2.1.33)

The emitted and observed frequencies ν are related by

a(t0)

a(t)
=
δt(t0)

δt(t)
=

ν(t)

ν(t0)
. (2.1.34)

The cosmological redshift is now expressed as

z ≡ ν(t)

ν(t0)
− 1 =

a(t0)

a(t)
− 1. (2.1.35)

If the universe is expanding, then a(t0) > a(t) and the light is red-shifted to give positive

z. On the other hand, if the universe is contracting, then a(t0) < a(t) and the light is

blue-shifted to negative z. We can also find the relationship to the Hubble parameter:

H = (1 + z)
d

dt

(
1

1 + z

)
= − 1

1 + z

dz

dt
. (2.1.36)

Definitions of distances

It is desirable to measure the angular size of an object at a cosmological redshift or the

apparent luminosity of that object. Given a class of objects of the same size (standard

rulers), we find that the corresponding angular size changes with redshift in a specific

way that depends on the values of cosmological parameters. The same is also true for

the apparent luminosities of objects with the same total brightness (standard candles).

Therefore, if we know the appropriate dependencies for particular classes of standard

rulers or standard candles, we can determine the cosmological parameters.

First, we introduce the angular diameter distance. Consider an object of proper diam-

eter D located at coordinate r that emits light at time t. Using the FLRW metric (2.1.1),

it follows that the angular diameter of the source θ observed at the origin r = 0 is related
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to D by

θ =
D

a(t)r
. (2.1.37)

The angular diameter distance is defined as

dA ≡ D

θ

= a(t)r

=
r

1 + z
, (2.1.38)

where we use (2.1.4) and (2.1.35). Solving (2.1.31) yields

dA(z) =
1

(1 + z)



sin(
√
Kχ)√
K

(K > 0)

χ (K = 0)

sinh(
√
−Kχ)√

−K
(K < 0)

, (2.1.39)

where

χ =

∫ z

0

dz1
H(z1)

=
1

H0

∫ z

0

dz1√
Ωm0(1 + z1)3 + Ωr0(1 + z1)4 + ΩK0(1 + z1)2 + ΩΛ0

(2.1.40)

using (2.1.31)、(2.1.8) and (2.1.29).

Second, we introduce the luminosity distance. If source at coordinate r emits δN

photons with frequency range from ν to ν + δν at time t, the luminosity (energy per unit

time) in this frequency range is written as

δL = hν
δN

δt
, (2.1.41)

where h is the Planck constant. Since the number of photon is conserved, the detector at

the origin r = 0 will receive at time t0 the flux (energy per unit area per unit time) given
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by

δf = hν0
δN

δt0

1

4πa2(t0)r2

=
δL

4πa2(t0)r2(1 + z)2
, (2.1.42)

where (2.1.34), (2.1.35) and (2.1.41) are used. Since this equation is independent of the

emitted frequency, the luminosity distance is defined by

dL ≡

√
δL

4πδf

= (1 + z)r, (2.1.43)

where (2.1.4) is used. Thus, the luminosity distance (2.1.43) and the angular diameter

distance (2.1.38) are related as

dL = (1 + z)2dA. (2.1.44)

Instead of the flux f , astronomers often use the apparent (bolometric) magnitude m

defined as

m1 −m2 = −2.5 log10
f1
f2
. (2.1.45)

A difference of five magnitudes should correspond to a ratio of a factor 100 in fluxes. The

distance modulus is defined by

µ ≡ m−M

= −2.5 log10

{
L

4πd2L

4π(10 pc)2

L

}
= 5 log10

dL
10 pc

, (2.1.46)

where the absolute magnitude M is the apparent magnitude which an object would have

at a distance of 10 pc.
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2.2 Observational constraints on dark energy

2.2.1 Constraints from SN Ia

SuperNovae of type Ia (SNe Ia) are believed to occur when a carbon-oxygen white dwarf

star in a binary system accretes sufficient matter from its companion star to push its

mass close to the Chandrasekhar mass, which is the maximum possible mass and can

be supported by electron degeneracy pressure. The white dwarf becomes unstable as

this happens. Then, the increase of temperature and density causes the conversion of

carbon and oxygen into 56Ni, and bring about a thermonuclear explosion. Light curves

for SN Ia are powered by the radioactive decays of 56Ni at early times, and 56Co after

a few weeks. The peak luminosity is determined by the mass of 56Ni produced in the

explosion. If the white dwarf is fully burned, we expect ∼ 0.6M⊙ of 56Ni to be produced.

As a result, although the detailed mechanism of SN Ia explosions remains uncertain, SNe

Ia are expected to have similar peak luminosities. Since they are about as bright as a

typical galaxy when they peak, SNe Ia can be observed to distances of several thousand

megaparsecs, recommending their utility as standard candles for cosmology.

The SN Ia data released by Riess et al. [1] and Perlmutter et al. [2] in the redshift

regime 0.2 < z < 0.8 showed that the luminosity distances of observed SN Ia tend to be

larger than those predicted in the flat universe without dark energy. Perlmutter et al. [2]

found that the cosmological constant is present at the 99% confidence level if we assume

a flat universe with a dark energy equation of state wDE = −1 (i.e. the cosmological

constant). According to their analysis, the density parameter of non-relativistic matter

today was constrained to be Ωm0 = 0.28+0.09
−0.08 (68% confidence level) in the flat universe

with the cosmological constant.

Over the past decade, more SN Ia data have been collected by a number of high-redshift

surveys, such as “SuperNova Legacy Survey” (SNLS) [73], “Hubble Space Telescope”

(HST) [74,75] and “Equation of State: SupErNovae trace Cosmic Expansion” (ESSENCE)

[76, 77] survey. These data also confirmed that the universe entered the late-time cosmic

acceleration epoch after the matter-dominated epoch. If we allow the case in which dark

energy is different from the cosmological constant (i.e. wDE ̸= −1), then observational

constraints on wDE and ΩDE0 (or Ωm0) are not so stringent.
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Figure 2.1: Hubble diagrams of SuperNova Legacy Survey (SNLS) and nearby SNe Ia, with
various cosmologies superimposed [73]. The upper and bottom panels show the distance
moduli plotted against redshift for a sample of SNe Ia. Solid and dashed curves give the
distance moduli for cosmological models with (Ωm0,ΩΛ0) = (0.26, 0.74) and (Ωm0,ΩΛ0) =
(1, 0), respectively.

Hubble diagrams of SNLS [73] and nearby data are shown in Fig. 2.1, together with

the best fit ΛCDM cosmology for a flat universe. They make use of 44 nearby objects

and 71 SNLS objects. In Fig. 2.2, we show the observational contours on (ΩΛ0,Ωm0) and

(wDE,Ωm0) for constant wDE obtained from the “Union08” SN Ia data by Kowalski et

al. [78]. Clearly the SN Ia data alone are not yet sufficient to place tight bounds on wDE.

2.2.2 Constraints from CMB

The presence of dark energy affect the temperature anisotropies in cosmic microwave

background (CMB). The position of acoustic peaks in CMB anisotropies depends on the

expansion history from the decoupling epoch to the present. Therefore, dark energy

leads to the shift for positions of acoustic peaks. There is also another effect called the

Integrated-Sachs-Wolfe (ISW) effect [79] induced by the variation of the gravitational po-

tential during the cosmic acceleration epoch. The former effect is typically more important

than the latter effect because the ISW effect is limited to large-scale perturbations.

The cosmic inflation in the early universe [80,81] predicts nearly scale-invariant spec-

tra of density perturbations through the quantum fluctuation of a scalar field. This is

consistent with the CMB temperature anisotropies observed by “COsmic Background Ex-
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Figure 2.2: The left plot shows contours at 68.3%, 95.4% and 99.7% confidence level
on ΩΛ0 and Ωm0 obtained with the Union08 [78] set, without (filled contours) and with
(open contours) inclusion of systematic errors. The right plot shows the corresponding
confidence level contours on the equation of state parameter w and Ωm0, assuming a
constant w.

plorer” (COBE) [82] and “Wilkinson Microwave Anisotropy Probe” (WMAP) [83]. After

the scale λ = 2πa/k (k is a comoving wavenumber) leaves the Hubble radius H−1 during

inflation (λ > H−1), perturbations are “frozen” [72]. After inflation, the perturbations

cross inside the Hubble radius again (λ < H−1) and they begin to oscillate as sound

waves. This second horizon crossing happens earlier for larger k, i.e., for smaller scale

perturbations.

The sound horizon is defined by

rs ≡
∫ η

0

dη1cs(η1), (2.2.1)
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where cs is the sound speed and dη ≡ dt/a. The sound speed is given by

cs ≡

√
∂P

∂ρ

=

√
1

3 (1 +Rs)
, (2.2.2)

where

Rs ≡
3ρb
4ργ

=
3Ωb0

4Ωγ0

a, (2.2.3)

and subscripts b and γ mean baryons and photons, respectively. The characteristic an-

gular scale of the CMB acoustic peaks is set by [84]

θA ≡ rs(zdec)

d
(c)
A (zdec)

, (2.2.4)

where d
(c)
A is the comoving angular diameter distance related with the proper angular

diameter distance dA via the relation d
(c)
A ≡ dA/a = dA(1 + z), and zdec ≃ 1090 is the

redshift at the decoupling epoch. The CMB multipole ℓA that corresponds to the angle

(2.2.4) is given by

ℓA =
π

θA
= π

d
(c)
A (zdec)

rs(zdec)
. (2.2.5)

Using the Friedmann equation (2.1.8), (2.1.39) and (2.1.40) for the redshift z > zdec, we

obtain [85,86]

ℓA =
3π

4

√
Ωb0

Ωγ0

{
ln

(√
Rs(adec) +Rs(aeq) +

√
1 +Rs(adec)

1 +
√
Rs(aeq)

)}−1

R, (2.2.6)

where adec and aeq correspond to the scale factor at the decoupling epoch and at the

radiation-matter equality, respectively, and R is the so-called CMB shift parameter de-

fined by [87]

R ≡
√

Ωm0

ΩK0

sinh

(√
ΩK0

∫ zdec

0

dz
H0

H(z)

)
. (2.2.7)

The CMB shift parameter R is affected by the cosmic expansion history from the

decoupling epoch to the present. This leads to the shift for the multipole ℓA. The general
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relation for all peaks and troughs of observed CMB anisotropies is given by [88,89]

ℓm = ℓA (m− ϕm) , (2.2.8)

where m represents peak numbers (m = 1 for the first peak, m = 3/2 for the first

trough,...) and ϕm is the shift of multipoles. The quantity ϕm depends weakly on Ωb0

and Ωm0 for a given cosmic curvature ΩK0. The shift of the first peak can be fitted as

ϕ1 = 0.265 [89]. The WMAP 7-year bound on the CMB shift parameter is given by [71]

R = 1.725± 0.018, (2.2.9)

at the 68% confidence level. Taking R = 1.725 together with other values Ωb0h
2 =

0.02249, Ωm0h
2 = 0.1345 and Ωγ0h

2 = 2.469 × 10−5 constrained by the WMAP 7-year

data, we obtain ℓA ≃ 300 from (2.2.6). Using the relation (2.2.8) with ϕ1 = 0.265, we find

that the first acoustic peak corresponds to ℓ1 ≃ 220, as observed in CMB anisotropies.

In the flat universe (K = 0), the CMB shift parameter is simply given by

R =
√

Ωm0

∫ zdec

0

dz
H0

H(z)
. (2.2.10)

For smaller Ωm0 (i.e. for larger ΩDE0), R tends to be smaller. For the cosmological

constant (wDE = −1), the Hubble parameter is given by

H(z) = H0

√
Ωm0(1 + z)3 + ΩDE0. (2.2.11)

Under the bound (2.2.9), the density parameter is constrained to be 0.70 < ΩDE0 <

0.76. This is consistent with the bound coming from the SN Ia data. We can also show

that, for increasing wDE, the observationally allowed values of Ωm0 gets larger. However,

R depends weakly on the wDE. Hence, the CMB data alone do not provide a tight

constraint on wDE. In Fig. 2.3, we show the joint observational constraints on wDE and

Ωm0 (for constant wDE) obtained from the WMAP 7-year data and the Union2 SN Ia

data [90]. The joint observational constraints provide much tighter bounds compared

to the individual constraint from CMB and SN Ia. For the flat universe, Amanullah
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Figure 2.3: 68.3%, 95.4% and 99.7% confidence regions of the (ΩM0, w) plane from SN Ia
combined with the constraints from BAO and CMB both without (left panel) and with
(right panel) systematic errors. The flat universe (K = 0) and constant w have been
assumed [90].

et al. [90] obtained the bounds wDE = −0.997+0.050
−0.054(stat)

+0.077
−0.082(stat + sys together) and

Ωm0 = 0.269+0.019
−0.017(stat)

+0.023
−0.022(stat + sys together) from the combined data analysis of

CMB and SN Ia.

2.2.3 Constraints from BAO

Eisenstein et al. [91] first reported the detection of Baryon Acoustic Oscillations (BAO)

in a spectroscopic sample of 46, 748 luminous red galaxies observed by the “Sloan Digital

Sky Survey” (SDSS). This has provided another test for probing the property of dark en-

ergy. Peaks and troughs in the angular power spectrum of CMB temperature anisotropies

arise from gravity-driven acoustic oscillations of the coupled photon-baryon fluid in the

early universe. After decoupling epoch, photons and baryons decouple and the sound

speed of the baryons due to the loss of photon pressure. Sound waves remain imprinted

in the baryon distribution and through gravitational interactions in the dark matter dis-

tribution as well. Since the sound horizon scale provides a standard ruler calibrated by

CMB anisotropies, measurement of the BAO scale in the galaxy distribution provides a

geometric probe of the expansion history. Since the impact of baryons on the far larger
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dark matter component is small, in the galaxy power spectrum, this scale appears as a

series of oscillations with amplitude of order 10%. This is more subtle than the acoustic

oscillations in CMB.

The location of BAO is determined by the sound horizon at which baryons were

released from the Compton drag of photons. This epoch (, called the drag epoch,) occurs

at the redshift zd. The sound horizon at z = zd is given by rs(zd) =
∫ ηd
0
dηcs(η). According

to the fitting formula of zd by Eisenstein and Hu [92], zd and rs(zd) are constrained to be

around zd ≃ 1020 and rs(zd) ≃ 150 Mpc.

We observe the angular and redshift distributions of galaxies as a power spectrum

P (k⊥, k//) in the redshift space, where k⊥ and k// are the wavenumbers perpendicular and

parallel to the direction of light respectively. In principle, we can measure the following

two ratios [93]

θs(z) =
rs(zd)

d
(c)
A (z)

, (2.2.12)

δzs(z) = zs(zd)H(z), (2.2.13)

where the quantity θs(z) characterizes the angle orthogonal to the line of sight, whereas

the quantity δzs corresponds to the oscillations along the line of sight.

The current BAO observations are not sufficient to measure both θs(z) and δzs(z)

independently. From the spherically averaged spectrum, we can find a combined distance

scale ratio given by [93]

(
θ2s (z)δzz(z)

)1/3 ≡ rs(zd)

{(1 + z)2d2A(z)/H(z)}1/3
, (2.2.14)

or, alternatively, the effective distance ratio [91]

DV(z) ≡
{
(1 + z)2d2A(z)z

H(z)

}1/3

. (2.2.15)

In 2005, Eisenstein et al. [91] obtained the constraint DV(z) = 1370 ± 64 Mpc at the

redshift z = 0.35. In 2010, Percival et al. [94] measured the effective distance ratio
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defined by

rBAO(z) ≡
rs(zd)

DV(z)
, (2.2.16)

at the three redshifts: rBAO(z = 0.2) = 0.1905 ± 0.0061, rBAO(z = 0.275) = 0.1390 ±

0.0037 and rBAO(z = 0.35) = 0.1097 ± 0.0036. This is based on the data from SDSS

Data Release 7 (DR7) and the 2-degree Field (2dF) Galaxy Redshift Survey. These data

provide the observational contour of BAO plotted in Fig. 2.3. Amanullah et al. [90]

placed the constraints wDE = −1.009+0.050
−0.054(stat)

+0.077
−0.082(sys + stat together) and Ωm0 =

0.277+0.014
−0.014(stat)

+0.017
−0.016(sys + stat together) for the constant equation of state of dark energy

in the flat universe from the joint data analysis of SN Ia [90], WMAP 7-year [71] and

BAO data [94]. Hence, the ΛCDM model is well consistent with a number of independent

observational data.

Finally, we should mention that there are other constraints coming from the cosmic

age [95], large-scale clustering [96], gamma ray bursts [97] and weak lensing [98]. So far

we have not found strong evidence for supporting dynamical dark energy models over the

ΛCDM model, but future high-precision observations may break this degeneracy.

2.3 Cosmological constant

In 1917, Einstein originally introduced the cosmological constant Λ to achieve a static

universe. After Hubble discovered the expansion of the universe in 1929, Λ was dropped

by Einstein as it was no longer required. From the point of view of particle physics,

however, the cosmological constant naturally arises as an energy density of the vacuum.

If Λ originates from the vacuum energy density, the energy scale of it should be much

larger than that of the present Hubble constant H0. Before the accelerated expansion of

the universe is discovered [1,2], this “cosmological constant problem” [3] was well known

to exist long. There have been a number of efforts to solve this problem.

Attempts to evaluate the value of the energy density of the quantum vacuum lead

to very large or divergent results. There is a zero-point energy ω/2 for each mode of a
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quantum field with mass m, so that the vacuum energy density is given by

ρvac =
1

2

∑
fields

gi

∫ ∞

0

d3k

(2π)3

√
k2 +m2, (2.3.1)

where gi means the degrees of freedom of the field (the sign of gi is + for bosons and −

for fermions) and the sum runs over all quantum fields, e.g., quarks, leptons, gauge fields,

etc. This exhibits an ultraviolet divergence: ρvac ∝ k4. However, we expect that quantum

field theory is valid up to some cut-off scale kmax in which case the integral (2.3.1) is finite:

ρvac ≃
∑
fields

gik
4
max

16π2
. (2.3.2)

On the one hand, Λ is known as of order the present value of the Hubble constant H0

by observations, that is

Λ ≈ H2
0

=
(
2.13h× 10−42 GeV

)2
. (2.3.3)

This corresponds to the density of Λ

ρΛ =
Λ

8πG

≈ 10−47 GeV4. (2.3.4)

On the other hand, if we take the cutoff to be the Planck scale (kmax = mpl = 1.22× 1019

GeV) where we expect the quantum field theory in a classical spacetime metric to break

down, we find that the vacuum energy density is estimated as

ρvac ≈ 1074 GeV4, (2.3.5)

which is about 10121 orders of magnitude larger than the observed value (2.3.4). It is

very unlikely that a classical contribution to the vacuum energy density would cancel this

quantum contribution to such high precision. Even if we take an energy scale of Quantum

ChromoDynamics (QCD) for kmax, we obtain ρvac ≈ 10−3 GeV4 which is still much larger
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than ρΛ. This very large discrepancy is known as the cosmological constant problem [3].

Supersymmetry (SUSY) which is the hypothetical symmetry between bosons and

fermions, appears to provide a resolution of the zero-point energy. In SUSY theories,

every fermion in the standard model of particle physics (SM) has an equal-mass SUSY

bosonic partner that contributes to the zero point energy with an opposite sign compared

to the fermionic degree of freedom, and vice versa. Therefore, fermionic and bosonic zero-

point contributions to ρvac would exactly cancel. However, none of the SUSY particles has

yet been observed in collider experiments, so they must be sufficiently heavier than their

SM partners. If SUSY is spontaneously broken at a mass scale M , we would expect the

imperfect cancellations to generate a finite vacuum energy density ρvac ∼M4. For a viable

SUSY scenario, the SUSY breaking scale should be around MSUSY ∼ 1 TeV because we

want to ensure that no new scales are introduced between the electroweak scale (∼ 246

GeV) and the Planck scale. This also leads to a very large discrepancy from the observed

value (2.3.4). We do not know how the Planck scale or SUSY breaking scales are really

related to the observed vacuum scale.
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Chapter 3

Alternative models to ΛCDM model

3.1 Modified matter models

In this section, we shall briefly describe “modified matter models,” such as quintessence,

K-essence, etc. In these models, the energy-momentum tensor Tµν on the right hand

side of the Einstein equation contains an exotic matter source with a negative pressure.

Scalar fields naturally arise in particle physics including string theory and these can act

as candidates for dark energy. So far a wide variety of scalar-field dark energy models

have been proposed. We have to keep in mind that the contribution of the dark matter

component needs to be taken into account for a complete analysis. In this section, we

shall study a flat FLRW universe (K = 0) unless otherwise specified.

3.1.1 Quintessence

A quintessence field [4, 5] is a scalar field with standard kinetic term, minimally coupled

to gravity. The scalar field part action takes the form

S =

∫
d4x

√
−g
[
−1

2
∇µϕ∇µϕ− V (ϕ)

]
, (3.1.1)
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where V (ϕ) is the potential of the field. In the flat FLRW background, the variation of

the action (3.1.1) with respect to ϕ gives

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0 . (3.1.2)

Taking variation of gµν , we obtain the stress-energy tensor:

Tµν = − 2√
−g

δS

δgµν

= ∇µϕ∇νϕ− gµν

[
1

2
∇λϕ∇λϕ+ V (ϕ)

]
. (3.1.3)

The energy density and pressure can be derived from the stress-energy tensor as

ρ = −T 0
0

=
1

2
ϕ̇2 + V (ϕ), (3.1.4)

P = T i
i

=
1

2
ϕ̇2 − V (ϕ) . (3.1.5)

Then, the Einstein equations becomes

H2 =
8πG

3

[
1

2
ϕ̇2 + V (ϕ)

]
, (3.1.6)

ä

a
= −8πG

3

[
ϕ̇2 − V (ϕ)

]
. (3.1.7)

The equation of state for the field ϕ is given by

wϕ =
Pϕ

ρϕ

=
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (3.1.8)

In order to answer what kind of potentials can give rise to acceleration of the present

universe, we consider the power-law expansion

a(t) ∝ tp, (3.1.9)
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where we have kept p general, keeping in mind that p = 1 corresponds to no acceleration

and p > 1 corresponds to acceleration. From (3.1.6) and (3.1.7), we obtain the relation

Ḣ = −4πGϕ̇2. The field ϕ and the potential V (ϕ) can be solved from this relation as

ϕ =

∫
dt

[
− Ḣ

4πG

]1/2
, (3.1.10)

V =
3H2

8πG

(
1 +

Ḣ

3H2

)
, (3.1.11)

where we chose the positive sign of ϕ̇. Hence, The field and the potential driving the

power-law expansion correspond to

ϕ ∝ ln t, (3.1.12)

V (ϕ) ∝ exp

(
−
√

16π

p

ϕ

mpl

)
. (3.1.13)

Although the energy density for radiation (or matter) is much larger than that for the

field ϕ during radiation-dominated (or matter-dominanted) era, the field energy density

ρϕ needs to dominate at present to be responsible for dark energy. From (2.1.24), the

condition for the present cosmic acceleration corresponds to wϕ < −1/3, i.e. ϕ̇2 < V (ϕ)

from (3.1.8). This means that the potential for the scalar field needs to be flat enough

for the field to evolve slowly. If the slowly rolling scalar field satisfying the condition

ϕ̇2 ≪ V (ϕ) (3.1.14)

gives the dominant contribution to the energy density of the universe, we obtain the

approximate relations

3Hϕ̇+ V,ϕ ≃ 0 (3.1.15)

and

3H2 ≃ κ2V (ϕ) (3.1.16)

from (3.1.2) and (3.1.6), respectively. Then, the equation of state for field in (3.1.8) is
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approximately given by

wϕ ≃ −1 +
2ϵs
3
, (3.1.17)

where ϵs ≡ {(dV/dϕ)/V }2/(2κ2) is the so-called slow-roll parameter [72]. Since the po-

tential is sufficiently flat, ϵs is much smaller than unity during the accelerated expansion

of the universe. Note that the field equation of state deviates from −1 (wϕ > −1) unlike

the cosmological constant.

3.1.2 K-essence

There are often scalar fields with non-canonical kinetic terms in particle physics. The

scalar-field action for such theories is generally given by

S =

∫
d4x

√
−gP (ϕ,X) , (3.1.18)

where P (ϕ,X) is a function of a scalar field ϕ and its kinetic energy

X ≡ −1

2
∇µϕ∇µϕ. (3.1.19)

Quintessence relies on the field potential V (ϕ) to lead to the late-time accelerated ex-

pansion of the universe. Even in the absence of the potential energy of scalar fields, it

is possible to realize the cosmic acceleration due to the kinetic energy X. Armendariz-

Picon et al. [99] originally proposed kinetic energy driven inflation, called “k-inflation,”

to explain inflation in the early universe. The application of these theories to dark energy

was first carried out by Chiba et al. [6]. The analysis was extended to a more general

Lagrangian by Armendariz-Picon et al. [7,8] and this scenario based on the action (3.1.18)

was called “k-essence.” In these theories with the action (3.1.18), the pressure Pϕ and the

energy density ρϕ of the field are

Pϕ = P, (3.1.20)

ρϕ = 2X
∂P

∂X
− P. (3.1.21)
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Then, the equation of state of k-essence is given by

wϕ =
Pϕ

ρϕ

=
P

2X∂P/∂X − P
. (3.1.22)

As long as the condition |2XP,X | ≪ |P | is satisfied, wϕ can be close to −1.

The action (3.1.18) includes a wide variety of theories, for example, the ‘ghost conden-

sate model’ [100]. The theories with a negative kinetic energy −X generally suffer from

the vacuum instability, but the presence of the quadratic term X2 can avoid this problem.

The model constructed in such context is the ghost condensate model whose Lagrangian

is

P = −X +
X2

M4
, (3.1.23)

where M is a constant. In this model, we have

wϕ =
1−X/M4

1− 3X/M4
, (3.1.24)

which gives −1 < wϕ < −1/3 for 1/2 < X/M4 < 2/3. The de Sitter solution (wϕ = −1),

in particular, appears when X/M4 = 1/2. We can explain the present cosmic acceleration

for M ≃ 10−3 eV because the energy density for the field is ρϕ = M4/4 at the de Sitter

point.

In order to discuss stability conditions of k-essence, we decompose the field into the

homogeneous parts and perturbed parts as ϕ(t,x) = ϕ0(t) + δϕ(t,x) in the Minkowski

background [101]. Then, the second-order Hamiltonian reads

δH =

(
dP

dX
+ 2X

d2P

dX2

)
(δϕ̇)2

2
+
dP

dX

(∇δϕ)2

2
− d2P

dϕ2

(δϕ)2

2
. (3.1.25)

The term d2P/dϕ2 is related with the effective mass of the field. From the positivity of
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the first two terms in (3.1.25), we can derive the stability conditions:

dP

dX
+ 2X

d2P

dX2
≥ 0, (3.1.26)

dP

dX
≥ 0. (3.1.27)

The propagation speed cs of the field is given by

c2s =
dPϕ/dX

dρϕ/dX

=
dP/dX

dP/dX + 2Xd2P/dX2
, (3.1.28)

which is positive under the conditions (3.1.27). Furthermore, we also require the sound

speed cs ≤ 1. This is satisfied when

d2P

dX2
> 0 . (3.1.29)

3.2 Modified gravity theories

There is another class of dark energy models in which gravity is modified from general

relativity. This class contains f(R) gravity, scalar-tensor theories, Gauss-Bonnet gravity,

DGP braneworld model, etc. In this section, we will review “modified gravity theories.”

3.2.1 f(R) gravity

The simplest modification to general relativity is f(R) gravity with the action

S =
1

2κ2

∫
d4x

√
−gf(R) +

∫
d4xLM, (3.2.1)

where f is a function of the Ricci scalar R and LM is a matter Lagrangian for perfect

fluids. The field equation can be derived by varying the action (3.2.1) with respect to gµν :

F (R)Rµν(g)−
1

2
f(R)gµν −∇µ∇νF (R) + gµν□F (R) = κ2Tµν , (3.2.2)
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where F (R) ≡ df/dR, and

Tµν = − 2√
−g

δLM

δgµν
(3.2.3)

is the energy-momentum tensor of matter. The trace of (3.2.2) is given by

3□F (R) + F (R)R− 2f(R) = κ2T , (3.2.4)

where T ≡ T µ
µ.

General relativity (without the cosmological constant) corresponds to f(R) = R,

so that □F (R) = 0 and (3.2.4) becomes R = −κ2T . Then, the Ricci scalar R is di-

rectly determined by the matter T . In f(R) gravity, the term □F (R) does not vanish

in (3.2.4) generally, which means that there is a propagating scalar degree of freedom,

ϕ ≡ F (R). The trace equation (3.2.4) determines the dynamics of the scalar field ϕ

(dubbed “scalaron” [102]).

The de Sitter point corresponds to a vacuum solution (T = 0) at which the Ricci

scalar is constant. Since □F (R) = 0 at this point, we obtain

F (R)R− 2f(R) = 0 . (3.2.5)

The model f(R) = cR2 satisfies this condition, and hence it gives rise to an exact de

Sitter solution. In fact, the first model of inflation proposed by Starobinsky [102] corre-

sponds to f(R) = R + cR2, in which the inflationary expansion ends when the term cR2

becomes smaller than the linear term R. This is followed by a reheating stage in which

the oscillation of R leads to the gravitational particle production. Dark energy models

based on f(R) theories can be also constructed to realize the late-time de Sitter solution

satisfying the condition (3.2.5).

In 2002, Capozziello [15] first suggested the possibility of the late-time cosmic accel-

eration in f(R) gravity. The model takes the form

f(R) = R− µ2(n+1)

Rn
(n > 0). (3.2.6)

However, it became clear that this model suffers from a number of problems, such as
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inability to satisfy local gravity constraints [17, 18], the matter instability [19, 20] and

absence of the matter era [21,22]. The main reason why this model does not work is that

the quantity FR ≡ d2f/dR2 is negative.

We can see why the models with negative values of FR are excluded by considering

perturbations. Decomposing quantities, such as R = R(0) + δR, F = F (0)(1 + δF ),

gµν = g
(0)
µν + hµν and Tµν = T

(0)
µν + δTµν , we can expand the trace equation (3.2.4) [18]:

(
∂2

∂t2
−∇2

)
δF +M2 δF = − κ2

3F (0)
δT , (3.2.7)

where δT ≡ g(0)µνδTµν , and

M2 ≡ R(0)

3

{
F (R(0))

R(0)FR(R(0))
− 1

}
. (3.2.8)

In the isotropic and homogeneous universe, δF is a function of the cosmic time t only and

(3.2.7) reduces to

δ̈F +M2 δF = − κ2

3F (0)
δT. (3.2.9)

Since we consider the models where the deviation from the ΛCDM model is small, we

have FR(R
(0)) ≪ 1 so that |M2| ≫ R(0). IfM2 < 0, the perturbation δF exhibits a violent

instability. Then, the condition M2 ≃ F (R(0))/(3FR(R
(0))) > 0 is needed for the stability

of cosmological perturbations. As we will see below, we also require that F (R(0)) > 0 to

avoid anti-gravity, i.e., to avoid a ghost. Hence, the condition

FR > 0 (3.2.10)

needs to hold for avoiding a tachyonic instability associated with the negative mass

squared [19].

In order to derive conditions for the avoidance of ghosts, we expand the action (3.2.1)

up to the second-order by considering the perturbed metric about the FLRW background:

ds2 = −(1 + 2α)dt2 − 2a(t)∂iβdtdx
i + a2(t) (δij + 2ψδij + 2∂i∂jγ) dx

idxj , (3.2.11)

where α, β, ψ and γ are scalar metric perturbations [103, 104]. We can construct the
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gauge-invariant curvature perturbation

R ≡ ψ − H

Ḟ
δF . (3.2.12)

Expanding the action (3.2.1) without the matter source, we obtain the second-order action

for the curvature perturbation [11]

δS(2) =

∫
d4x

3a3Ḟ 2

2κ2F [H + Ḟ /(2F )]2

[
1

2
Ṙ2 − 1

2

1

a2
(∇R)2

]
. (3.2.13)

If F < 0, there is a ghost field because of the negative kinetic energy. Hence, the condition

for the avoidance of ghosts is given by

F > 0 . (3.2.14)

From local gravity constraints in solar system, f(R) needs to be close to that in the

ΛCDMmodel in the region of high density, i.e., R ≫ R0, where R0 means the cosmological

Ricci scalar today. We also require the existence of a stable late-time de Sitter point given

in (3.2.5), and we can show that it is stable [11] for

0 <
RFR

F
< 1. (3.2.15)

Then, we can summarize the conditions for the viability of f(R) dark energy models:

(i) F > 0 for R ≥ R0.

(ii) FR > 0 for R ≥ R0.

(iii) f(R) → R− 2Λ for R ≫ R0.

(iv) 0 < RFR/F < 1 at the de Sitter point satisfying RF = 2f .
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There are examples of viable models that satisfy all these requirements:

(A) f(R) = R− µRc
(R/Rc)

2n

(R/Rc)2n + 1
, (3.2.16)

(B) f(R) = R− µRc

[
1− 1

(1 +R2/R2
c)

n

]
, (3.2.17)

(C) f(R) = R− µRc tanh(R/Rc), (3.2.18)

where µ, Rc, and n are positive constants, and Rc is roughly of the order of R0 for

µ = O(1). The models (A), (B) and (C) have been proposed by Hu and Sawicki [26],

Starobinsky [27] and Tsujikawa [28], respectively. If R ≫ Rc, the models are close to the

ΛCDM model (f(R) ≃ R − µRc), so that general relativity is recovered in the region of

high density. The models (A) and (B) have the asymptotic behavior

f(R) ≃ R− µRc

[
1− (R/Rc)

−2n
]

(R ≫ Rc) , (3.2.19)

which rapidly approaches the ΛCDM model for n >∼ 1. The model (C) shows an even

faster increase of M2 in the region R ≫ Rc.

For example, let us consider the model (A). At the de Sitter point, we have the relation:

µ =
(1 + x2nd )2

x2n−1
d (2 + 2x2nd − 2n)

, (3.2.20)

where xd ≡ R1/Rc and R1 is the Ricci scalar at the de Sitter point. The stability condition

(3.2.15) gives [11]

2x4nd − (2n− 1)(2n+ 4)x2nd + (2n− 1)(2n− 2) ≥ 0 . (3.2.21)

The parameter µ has a lower bound determined by this condition. For example, when

n = 1, we have xd ≥
√
3 and µ ≥ 8

√
3/9. Under (3.2.21), the conditions for the viability

of f(R) dark energy models are also satisfied.
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3.2.2 Scalar-tensor theories

In this section, we will see that f(R) gravities are equivalent to Brans-Dicke theory [29]

which is one of the simplest examples of scalar-tensor theory. Scalar-tensor theories are

some of the most established and well studied alternative theories of gravity. Used as

the prototypical way, they are of particular interest since the simple structure of field

equations allow exact analytic solutions in physically interesting situations. Scalar-tensor

theories arise naturally as the dimensionally reduced effective theories of higher dimen-

sional theories, such as Kaluza-Klein and string models. We can construct viable dark

energy models based on Brans-Dicke theory with a constant parameter ωBD.

In the Jordan frame, the 4-dimensional action in Brans-Dicke theory is described by

S =
1

2κ2

∫
d4x

√
−g
[
ϕR− ωBD

ϕ
∇µϕ∇µϕ− 1

2
V (ϕ)

]
+ SM, (3.2.22)

where ωBD is the Brans-Dicke parameter which is a constant, V (ϕ) is a potential of the

scalar field ϕ and SM is an action of matter fields. The original Brans-Dicke theory [29]

does not possess the field potential V (ϕ). Taking the variation of (3.2.22) with respect to

ϕ and gµν , we obtain the equations of motion for ϕ and gµν are, respectively, obtained as

□ϕ+
ϕ

2ωBD

(
−ωBD

ϕ2
∇µϕ∇µϕ+R− 2∂ϕV (ϕ)

)
= κ2T

(0)
ϕ µν , (3.2.23)

ϕGµν −
ωBD

ϕ

(
∇µϕ∇νϕ− gµν

2
∇λϕ∇λϕ

)
−∇µ∇νϕ

+gµν
(
gλσ∇λ∇σϕ+ V (ϕ)

)
= κ2T (0)

µν , (3.2.24)

where T
(0)
ϕ µν and T

(0)
µν are the stress-energy tensor for matter fields obtained by taking

variations of ϕ and gµν , respectively. The f(R) gravity of the metric formalism (3.2.1)

can be cast into the form of the above Brans-Dicke theory by setting

ϕ = F (R), ωBD = 0, V =
F (R)R− f(R)

2
. (3.2.25)

More general theories called scalar-tensor theory can be considered, in which R is

coupled to a scalar field ϕ. The general 4-dimensional action for scalar-tensor theory can
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be written as

S =

∫
d4x

√
−g
[
1

2
h(ϕ)R− 1

2
ω(ϕ)∇µϕ∇µϕ− U(ϕ)

]
+ SM, (3.2.26)

where h(ϕ) and U(ϕ) are functions of ϕ. Under the conformal transformation g̃µν = hgµν ,

we obtain the action in the Einstein frame [105]

SE =

∫
d4x
√
−g̃
[
1

2
R̃− 1

2
∇̃µϕ̃∇̃µϕ̃− V (ϕ̃)

]
+ S̃M, (3.2.27)

where V = U/h2. A new scalar field ϕ̃ to make the kinetic term canonical is

ϕ̃ ≡
∫

dϕ

√
3

2

(
dh/dϕ

h

)2

+
ω

h
. (3.2.28)

These theories have the very useful property of being ‘conformally equivalent’ to gen-

eral relativity. Under a transformation of the metric that changes scales but not angles,

we can find a new metric that obeys the Einstein equation, with the scalar contributing

as an ordinary matter field. However, scalar-tensor theories are not the same as gen-

eral relativity since the metric that couples to matter fields must also transform. In the

theory recovered after conformal transformation, the metric obeys field equations similar

to these in general relativity, but with an unusual matter content that does not follow

geodesics of the new metric with the exception of radiation fields, or null geodesics, which

are themselves conformally invariant. This property can sometimes allow field equations

to be manipulated into more familiar forms, which allow solutions to be found more easily.

3.2.3 Gauss-Bonnet models

In construction of f(R) gravity, we consider modification to the Einstein-Hilbert action

by introducing a general function of the Ricci scalar. This is a very special case. We can

extend f(R) gravity to more general theories in which the Lagrangian density f is an

arbitrary function of all the infinite and possible scalars made out of the Riemann tensor

and its derivatives [30], such as RµνRµν , R
µνλσRµνλσ, ∇µRν

µ∇λRνλ, etc. Rµν and Rµνλσ

are Ricci tensor and Riemann tensor, respectively. However, we usually encounter serious
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problems of such theories. For example, besides the graviton, there typically appears

another spin-2 ghost which has a kinetic term with an opposite sign [31].

In order to remove these spin-2 ghosts, we first introduce the Lovelock scalars [106]

which are particular combinations and contractions of the Riemann tensor. The theory

with Lovelock scalars does not include higher than third-order derivatives of gµν in the

equations of motion. For example, in 1917, Kretschmann pointed out that the form

of the Lagrangian cannot be determined from only general covariance. Instead of the

Ricci scalar, he introduced the so-called Kretschmann scalar RµνλσRµνλσ. The Riemann

tensor Rµνλσ is a fundamental tensor in gravity theories, we think that this action is

well motivated. Moreover, in this theory, Bianchi identities hold, as both sides of the

equations of motion are covariantly conserved. However, there are third-order derivatives

in the equations of motion.

The appearance of these terms in the equation of motion can be avoided by taking a

Gauss-Bonnet combination [12,13]

G ≡ R2 − 4RµνR
µν +RµνλσRµνλσ . (3.2.29)

Then, the action for this invariant takes the form

S =

∫
d4x

√
−g G. (3.2.30)

There are only the terms up to second-order derivatives of the metric in the equations of

motion coming from this action. We can consider another class of general Gauss-Bonnet

theories with a self-coupling of the form [13]

S =

∫
d4x

√
−g

[
1

2κ2
R + f(G)

]
, (3.2.31)

where f(G) is a function of the Gauss-Bonnet term.

At first glance, the number of the Lovelock scalars looks infinite. In four dimensions,

however, the only non-zero Lovelock scalars are the Ricci scalar R and the Gauss-Bonnet

term G because of topological reasons. Therefore, in four dimensions, we can study the
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theories with the action

S =

∫
d4x

√
−g f(R,G) . (3.2.32)

This theory will not introduce spin-2 ghosts.

3.2.4 DGP braneworld model

The so-called Dvali-Gabadadze-Porrati (DGP) braneworld model [14] is considered as a

model which realize the “self accelerating universe” even without dark energy because of

the existence of the extra-dimensions. In the DGP braneworld model, the 3-dimensional

brane is embedded in the 5-dimensional Minkowski bulk spacetime with large extra-

dimensions. Newton gravity can be recovered by adding a 4-dimensional Einstein-Hilbert

action sourced by the brane curvature to the 5-dimensional action. While the standard

4-dimensional gravity is recovered for small distances, the 5-dimensional gravity appears

for large distances. The accelerated expansion of the present universe can be realized

without introducing dark energy.

The action for the DGP braneworld model is given by

S =
1

2κ2(5)

∫
d5X

√
−g̃ R̃ +

1

2κ2(4)

∫
d4X

√
−gR−

∫
d5X

√
−g̃LM , (3.2.33)

where g̃AB is the metric in the 5-dimensional bulk, gµν = ∂µX
A∂νX

B g̃AB is the induced

metric on the brane, XA(xc) are the coordinates of an event on the brane labelled by xc.

κ2(5) and κ
2
(4) are the 5-dimensional and 4-dimensional gravitational constants, respectively.

The first and second terms in (3.2.33) correspond to Einstein-Hilbert actions in the 5-

dimensional bulk and on the brane. The matter action is composed of matter localized

on the 3-dimesional brane. The action for it is given by
∫
d4x

√
−g
(
σ + Lbrane

M

)
, where σ

is the 3-dimensional brane tension and Lbrane
M is the Lagrangian density on the brane.

The equation of motion in the 5-dimensional bulk is

G
(5)
AB = 0, (3.2.34)

where G
(5)
AB is the 5-dimensional Einstein tensor. The 4-dimensional Einstein equation is
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given by

Gµν −
1

rc
(Kµν −Kgµν) = κ2(4)Tµν , (3.2.35)

where Kµν is the extrinsic curvature on the brane and Tµν is the stress-energy tensor for

localized matter. The continuity equation ∇µTµν = 0 can be derived because ∇µ(Kµν −

gµνK) = 0. The cross-over scale rc is defined by

rc ≡
κ2(5)
2κ2(4)

. (3.2.36)

The modified Friedmann equation on the flat FLRW brane (K = 0) takes the form

H2 − ϵ

rc
H =

κ2(4)
3
ρM , (3.2.37)

where ϵ = ±1, and ρM is the energy density of matter on the brane. When rc is much

larger than the Hubble radius H−1, the first term in (3.2.37) dominates over the second

one. In this case, the standard Friedmann equation is recovered.

The two branches of the solution of (3.2.37) are often called the normal branch (ϵ =

−1) and the self-accelerating branch (ϵ = +1). In the self-accelerating branch, if the

universe is dominated by non-relativistic matter (ρM ∝ a−3), the universe approaches a

de Sitter solution

HdS =
1

rc
. (3.2.38)

We can think that the present cosmic acceleration occurs when rc is of the order of the

present Hubble radius H−1
0 . This self acceleration is the result of gravitational leakage

into extra-dimensions at large distances. In the normal branch, such cosmic acceleration

is not realized.

3.3 Local void models

There are works to explain the apparent accelerated expansion of the present universe by

inhomogeneities in the distribution of matter without the need for dark energy. One of

such approaches is the “local void model.” In this model, there are the underdense void

45



which realizes the faster cosmic expansion compared to the outer overdense region. That

is, we live near the center of the void and can interpret the evolution of the void as an

apparent cosmic acceleration. These models can be represented by the Lemâıtre-Tolman-

Bondi (LTB) spacetime [39–41].

3.3.1 LTB spacetime

A spherically symmetric spacetime with only non-relativistic matter, or dust, is described

by the Lemâıtre-Tolman-Bondi (LTB) metric [39–41]:

ds2 = −dt2 + (R′(t, r))2

1− k(r)r2
dr2 +R2(t, r)

(
dθ2 + sin2 θdϕ2

)
, (3.3.1)

where k(r) is an arbitrary function of r. Then, the Einstein equation (2.1.7) reduce to

(
Ṙ

R

)2

=
2GM(r)

R3
− k(r)r2

R2
, (3.3.2)

4πρ(t, r) =
M ′(r)

R2R′ , (3.3.3)

where M(r) is an arbitrary function of only r, and ρ(t, r) is the energy density of the

dust fluid. The solutions to (3.3.2) depend on the sign of k(r) and can be expressed in

parametric form: For k(r) > 0, we have

R(t, r) =
M(r)

k(r)r2
(1− cos η), (3.3.4)

t− ts(r) =
M(r)

{k(r)r2} 3
2

(η − sin η), (3.3.5)

where ts(r) is an arbitrary function of only r. For k(r) = 0, we have

R(t, r) =

(
9

2

) 1
3

M
1
3 (r){t− ts(r)}

2
3 . (3.3.6)
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For k(r) < 0, we have

R(t, r) =
M(r)

−k(r)r2
(cosh η − 1), (3.3.7)

t− ts(r) =
M(r)

{−k(r)r2} 3
2

(sinh η − η). (3.3.8)

The area radius R(t, r) vanishes at t = ts(r), so that ts(r) is called the big-bang time.

The solutions admit three arbitrary functions k(r), M(r) and ts(r), but due to one degree

of freedom in rescaling r, only two of them are independent. By appropriately choosing

the profile of these two arbitrary functions, we can construct LTB cosmological models

that can reproduce the observed SN Ia distance-redshift relation.

3.3.2 Local void models

In the model introduced by Tomita [35, 36] soon after the first discovery of the apparent

cosmic acceleration of the present universe, there are a local homogeneous void and the

outer overdense region, which are described by homogeneous FLRW spacetimes with a

singular mass shell. The former is described by an open FLRW spacetime, and the latter

tends to the Einstein-de Sitter (EdS) spacetime in the limit of radial infinity. In this

model, by adjusting the Hubble constants H0 and the density parameters ΩM0 in the two

regions, we can find that the theoretical distance-redshift relation of SN Ia is consistent

with the observed relation. At that time, the boundary is at the distance of z ≈ 0.07

from the center of the void.

Afterwards, general inhomogeneous models using LTB spacetimes are presented by

Iguchi, Nakamura and Nakao [42]. The distance-redshift relation of SN Ia can be re-

produced in the concordant model. Then, they showed that a critical point appears at

an intermediate radius (z < 1.7) when they assume the big-bang time and asymptotic

vanishing spatial curvature. By improving the model introduced by Iguchi et al., when

we assume only the uniform big-bang time, Yoo, Kai and Nakao [51] showed that we

can derive the LTB void models which reproduce the distance-redshift relation in the

concordant model and have no critical point.

On the other hand, Kasai [50] found that SN Ia data can be divided into the low-
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dA [Gpc] 

Figure 3.1: The radial dependence of the matter density in units of the critical density
(ρm), of density parameter (Ωm) and of the transverse and longitudinal expansion rates
(H⊥ and H//) in units of 100 km/s/Mpc [52]. The radial axis is the angular diameter
distance (dA), and everything is taken at the present time for the observer of the center.

redshift group (z < 0.2) and the high-redshift group (z > 0.3), which correspond to

higher and lower Hubble constants. He also suggested that the different trend of the data

about redshifts shows the inhomogeneity of the universe.

We will show the example of local void models which can successively reproduce the

observed distance-redshift relation below. From (3.3.2), the effective density parameters

of matter and the spatial curvature today can be shown, respectively, as

Ωm0(r) ≡ 2GM

R3
0H

2
⊥0

, (3.3.9)

ΩK0(r) ≡ 1− Ωm0(r)

= − kr2

R2
0H

2
⊥0

, (3.3.10)

where

H⊥(t, r) ≡
Ṙ

R
(3.3.11)

denotes the Hubble parameter in the transverse direction. For example, local void models

48



can be written by choosing Ωm0(r) and H⊥0 in the following form [52] (see also [46] for

another choice)

Ωm0(r) ≡ Ωout + (Ωin − Ωout)
1− tanh((r − r0)/2∆)

1 + tanh(r0/2∆)
, (3.3.12)

H⊥0(r) ≡ H⊥0,out + (H⊥0,in −H⊥0,out)
1− tanh((r − r0)/2∆)

1 + tanh(r0/2∆)
, (3.3.13)

where r0 and ∆ describe a size of void and thickness, and “in” and “out” represent

quantities inside and outside the void, respectively.

Figure 3.1 show a plot of ρM, ΩM, H⊥ and H// for this model, as a function of the

angular diameter distance today, dA, where

H//(t, r) ≡
Ṙ′

R′ (3.3.14)

denotes the Hubble parameter in the longitudinal direction.
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Chapter 4

Previous attempts to test alternative

models to ΛCDM model

4.1 Previous tests of modified gravity theories

4.1.1 Parameterized post-Newtonian framework

In this section, we will introduce the “Parameterised Post-Newtonian” (PPN) frame-

work [107] that contains a wide class of different gravitational theories, and that contains

parameters which can be constrained by observations. Observers can apply observational

results to constrain a wide class of theories without considering the details of the indi-

vidual theories themselves. Theorists can straightforwardly constrain new theories by

comparing to the already established bounds on the PPN parameters without recalculat-

ing individual gravitational phenomena. Then, this approach has been highly successful.

In the weak gravitational system, such as the solar system, where gravitation is weak

enough for Newton’s theory of gravity, there are the relation between the velocity ṽ and

the Newtonian gravitational potential Ũ

v2 ∼ U =
GM

c2R

∼ 2× 10−6

(
M

M⊙

)(
R

R⊙

)−1

, (4.1.1)

where v ≡ ṽ/c and U ≡ Ũ/c2 are dimensionless in geometrized units (c = G = 1), and
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G = 6.7×10−8 cm3g−1s−2,M⊙ = 2.0×1033 g and R⊙ = 7.0×1010 cm are the gravitational

constant, the solar mass and the solar radius, respectively. Then, we can find that

U⊙ ∼ 10−5, Uearth ∼ 10−11, UNS ∼ 10−1, UBH ∼ 100, (4.1.2)

in the solar system, the system of earth, neutron star and black hole, respectively. When

we begin to demand accuracies greater than a part in 105, the Newtonian limit no longer

suffices. For example, it cannot account for Mercury’s additional perihelion shift of ∼

5× 10−7 radians per orbit. Then, we need a more accurate approximation to the metric

that goes “post”-Newtonian theory.

The PPN framework is a perturbative treatment of weak-field gravity, and therefore

requires a small parameter. For this purpose, we define an order of smallness:

U ∼ v2 ∼ P

ρ
∼ Π ∼ O

(
ϵ2
)
, (4.1.3)

where P is the pressure of the fluid, ρ is its rest-mass density, Π is the ratio of energy

density to rest-mass density and ϵmeas the small parameter. The single powers of velocity

v are O (ϵ), U2 is O (ϵ4), Uv is O (ϵ3), UΠ is O (ϵ4), and so on. Derivatives with respect to

time also have an order of smallness associated with them, relative to spatial derivatives:

|∂/∂t|
|∂/∂x|

∼ O(ϵ) . (4.1.4)

The PPN framework proceeds as an expansion in this order of smallness.

Equations of motion for time-like particles show that the approximation required to

recover the Newtonian limit is g00 to O (ϵ2). The post-Newtonian limit for time-like

particles requires

g00 to O
(
ϵ4
)
, g0i to O

(
ϵ3
)
, gij to O

(
ϵ2
)
. (4.1.5)

In order to obtain the Newtonian limit of null particles, we have to know the metric to

background order. Light follows straight lines, to Newtonian accuracy. Then, it requires

g00 and gij both to O (ϵ2).
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Dynamical fields should be perturbed from background values, and perturbations

should be assigned an appropriate order of smallness each. The appropriate expansion is

usually

g00 = −1 + h
(2)
00 + h

(4)
00 +O

(
ϵ6
)
, (4.1.6)

g0i = h
(3)
0i +O

(
ϵ5
)
, (4.1.7)

gij = δij + h
(2)
ij +O

(
ϵ4
)
, (4.1.8)

where superscripts in brackets denote the order of smallness. When the theory contains

an additional scalar field, then the usual expansion is

ϕ = ϕ0 + ϕ(2) + ϕ(4) +O
(
ϵ6
)
, (4.1.9)

where ϕ0 is the background value of ϕ. We can also specify additional vector and tensor

gravitational fields in a corresponding way.

The stress-energy tensor in the PPN framework is taken to be that of a perfect fluid.

In a similar manner, we can derive the components of this:

T00 = ρ(1 + Π + v2 − h00) + O
(
ϵ6
)
, (4.1.10)

T0i = −ρvi +O
(
ϵ5
)
, (4.1.11)

Tij = ρvivj + Pδij +O
(
ϵ6
)
. (4.1.12)

Taking these expressions, and substituting in the perturbed expressions for the fields, the

field equations can be solved for order by order in the smallness parameter.

The first step is to solve for h
(2)
00 . We then proceeds to solve for h

(2)
ij and h

(3)
0i simulta-

neously with this solution, and finally h
(4)
00 can be solved for. To find h

(2)
ij , h

(3)
0i and h

(4)
00 ,

we need to specify a gauge. We have the freedom to make gauge transformations of the

form xµ → xµ + ξµ, where ξµ <∼ O(ϵ2). This freedom should be used to obtained into

the “standard post-Newtonian gauge”. In this gauge, the spatial part of the metric is

diagonal, and terms containing time derivatives are removed.

In order to derive the appropriate form of the metric, we need to follow that couples
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to matter fields in the weak-field limit. The result can be compared to the PPN metric

below:

g00 = −1 + 2GU − 2βG2U2 − 2ξG2ΦW + (2γ + 2 + α3 + β1 − 2ξ)GΦ1

+2(1 + 3γ − 2β + β2 + ξ)G2Φ2 + 2(1 + β3)GΦ3 − (β1 − 2ξ)GA

+2(3γ + 3β4 − 2ξ)GΦ4, (4.1.13)

g0i = −1

2
(3 + 4γ + α1 − α2 + β1 − 2ξ)GVi −

1

2
(1 + α2 − β1 + 2ξ)GWi, (4.1.14)

gij = (1 + 2γGU)δij, (4.1.15)

where β, γ, ξ, β1, β2, β3, β4, α1, α2 and α3 are the ‘post-Newtonian parameters’, and

ΦW , Φ1, Φ2, Φ3, Φ4, A, Vi and Wi are the ‘post-Newtonian gravitational potentials’ [107].

They have particular physical significance.

Comparison of the metric in the theory with the PPN metric allows us to find values

for the PPN parameters. The great utility of the PPN formalism is that observers can

take the PPN metric and can constrain the parameters without having a particular theory

in mind. These constraints can be applied directly to a number of gravitational theories,

without working out how complicated gravitational phenomena work in each theory. In

general relativity, for example, we have

β = γ = 1,

ξ = β1 = β2 = β3 = β4 = α1 = α2 = α3 = 0. (4.1.16)

Other theories predict other values for these parameters.

Observations that involve only null geodesics are sensitive to the Newtonian part of

the metric g
(2)
00 and g

(2)
ij that involve the PPN parameter γ only. In order to constrain on

γ, we can use constraints on the bending of light by the Sun. Using the PPN metric, the

predicted bending of light is [107]

θ = 2(1 + γ)
M⊙

R⊙

=
(1 + γ)

2
θGR, (4.1.17)
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where θGR is the prediction in general relativity. Using the observed value of θ gives [107]

γ − 1 = (−1.7± 4.5)× 10−4, (4.1.18)

which is consistent with the value of γ = 1 in general relativisty. Similarly, we can use

the PPN metric to find that the Shapiro time delay effect is given by [107]

∆t =
(1 + γ)

2
∆tGR. (4.1.19)

Taking the observed value of ∆t gives the even tighter constraint [107]

γ − 1 = (2.1± 2.3)× 10−5, (4.1.20)

again consistent with γ = 1. In fact, the bending of light by the Sun and the Shapiro

time delay effect constrain the same aspect of space-time geometry.

4.1.2 Parameterized post-Friedmann framework

Similar approaches to the PPN framework have been developed, which describe the de-

viations from the standard perturbed universe in general relativity on cosmological scale,

such as [108]. Since there is freedom to modify evolution over the whole of cosmic time

and over a range of scales on cosmological scales, such parameterizations are not unique

unlike the PPN framework. These approaches have been dubbed the “Parameterized

Post-Friedmann” (PPF) framework as we will show below.

On the one hand, they introduce two free functions directly into the modified Pois-

son equation and the ‘slip relation’, i.e., the transverse and traceless component of field

equations, as these are the expressions relevant to observables, such as weak lensing of

galaxies and measures of structure growth. One of these free functions acts as an effective

rescaling of gravitational constant G, while the other is defined as the ratio of the two

potentials that describe the perturbed metric in the conformal Newtonian gauge. We

will refer to this approach as ‘phenomenology-based.’ In this approach, the free functions

should be considered as indication of non-general relativistic behavior. A disadvantage
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of phenomenological-based parameterizations is their tendency to obscure which regions

they correspond to, because there is no direct mapping between the free functions and

the parameters of a specific theory. Therefore, it is difficult to translate constraints on

the two free functions into those on a given modified gravity theory.

On the other hand, they consider directly specifying quantities describing a 4 × 4

tensor of scalar modifications to the linearly perturbed Einstein equations [109]. Then,

we can derive the corresponding Poisson equation and slip relation, which will contain

components of this new tensor. We call this approach ‘mathematics-based.’

Mathematics-based PPF framework

In the mathematics-based approach, a parameterization was proposed by writing modifi-

cations as an additional tensor to the Einstein equations in general relativity:

Gµν = 8πG0a
2TM

µν + a2Uµν , (4.1.21)

where TM
µν is the stress-energy tensor for all standard fluids and the tensor Uµν may contain

metric, matter and additional field degrees of freedom coming from a modified gravity

theory. We assume that all known matter fields which are part of TM
µν couple to the

same metric gµν . Then, the stress-energy tensor of matter obeys its usual conservation

equations, and hence Uµν is separately conserved.

We parameterize around the linearly perturbed equation of (4.1.21). In order to com-

pare with the phenomenology-based PPF framework below directly, we will specialize

to the case of purely metric theories, that is, those for which the action is constructed

from curvature invariants, e.g., f(R) gravity, or non-local gravities. The most general

perturbations of Uµν in a second-order purely metric theory are as follows [109]:

−a2δU0
0 = k2A0Φ̂,

−a2δU0
i = kB0Φ̂,

a2δU i
i = k2C0Φ̂ + kC1

˙̂
Φ,

a2δU i
j = D0Φ̂ +

D1

k
˙̂
Φ, (4.1.22)
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where dots denote derivatives with respect to conformal time η and k is the Fourier

wavenumber. The gauge-invariant metric perturbation Φ̂ reduces to the curvature per-

turbation Φ in the conformal Newtonian gauge which is defined by

ds2 = −a2(1 + 2Ψ)dη2 + a2(1 + 2Φ)dx⃗2. (4.1.23)

Further below we introduce a second gauge-invariant metric perturbation, Ψ̂ which reduces

to Ψ in this gauge.

The coefficients A0, B0, C0, C1, D0 and D1 are functions of background quantities,

A0 = A0(k, η) etc., and the factors of k are chosen such that these coefficients are dimen-

sionless. However, these functions are not all independent. Perturbations of the Bianchi

identity ∇µU
µ
ν = 0 yield additional constraint equations which can be used to reduce the

six free functions in (4.1.22) down to just two. One of these is defined by

D1

k
=

g̃

H
, (4.1.24)

where H ≡ ȧ/a and

g̃ ≡ −1

2

(
A0 + 3

H
k
B0

)
. (4.1.25)

Then, in Fourier space, the modified Poisson equation can be written by

k2Φ̂ = 4πGeffa
2ρ∆. (4.1.26)

where the gauge-invariant comoving density perturbation ρ∆ is a summation over all

conventional cosmologically-relevant fluids, and

Geff ≡ G

1− g̃
(4.1.27)

is an effective (modified) gravitational constant.

We choose the second free function to be D0, which we will hereafter relabel as ζ =

ζ(k, η) to distinguish it from its appearance in the more general format of (4.1.22). The

function ζ appears in the ‘slip relation’ between the potentials Φ̂ and Ψ̂ which are equal
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to one another in general relativity:

Φ̂ + Ψ̂ = −8πG0a
2(ρ+ P )Σ + ζΦ̂ +

g̃

H
˙̂
Φ, (4.1.28)

where the anisotropic stress of matter Σ is negligible after the radiation-dominated era.

Note that the slip relation and the modified gravitational constant are not independent,

as the function g̃ appears in both. This special case of the mathematics-based PPF

framework does not capture the behavior of many modified gravity theories, because we

have not allowed for additional degrees of freedom to appear [109]. However, it is directly

comparable to a phenomenological-based PPF framework. Hence, we will regard (4.1.26)

and (4.1.28) simply as possible alternatives to (4.1.31) and (4.1.32).

Phenomenology-based PPF framework

We can find that it is enough to work with only two of the four Einstein field equations,

i.e., the Poisson equation and the slip equation. The only observable modifications to

gravity at least at the perturbative level will be modifications to the these equations:

k2Φ− 4πG0a
2ρ∆ = F1, (4.1.29)

(Ψ + Φ) + 8πG0a
2(ρ+ P )Σ = F2, (4.1.30)

where F1 and F2 are arbitrary functions of time and space. We take a simple ansatz that

F1 = −αk2Φ and F2 = ζΦ. Then, we can find

k2Φ = 4πGeffa
2ρ∆, (4.1.31)

Ψ = −8πG0a
2(ρ+ P )Σ− (1− ζ)Φ. (4.1.32)

The phenomenology-based PPF framework is defined in the conformal-Newtonian gauge,

so that Φ and Ψ replace Φ̂ and Ψ̂ in (4.1.26) and (4.1.28). This parameterization suggests

that, once the anisotropic stress has become negligible, a modified gravity theory could

potentially modify one of equations (4.1.31) or (4.1.32) while leaving the other unchanged.

This behavior does not arise analytically from theories below third order [109], but given
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enough freedom in the functional ansatz the numerical behavior that occurs in any theory

can be realized with this parameterization.

4.2 Previous tests of local void models

In order to justify the local void model as a viable alternative model to the standard

ΛCDM model, we have to test this model by various observations other than the distance-

redshift relation of SN Ia. A number of papers for this purpose have appeared re-

cently, studying constraints from observations, such as BAO [43], the kinematic Sunyaev-

Zeldovich (kSZ) effect [44, 45], the CMB temperature anisotropy [43, 46, 47], the redshift

drift [110], cosmological perturbations [111, 112], etc. Many local void models with a

small, a few hundreds Mpc size void are already ruled out, but at present, the models

with a huge, Gpc size void still remain to be tested.

Apart from the quest of alternatives to dark energy, the LTB metric may also serve

as a toy model for getting some insights into the dynamics and possible observational

effects of non-linear perturbations in the standard ΛCDM cosmology. The LTB metric

can incorporate a cosmological constant in a straightforward manner, hence being able

to describe, as an exact solution, highly non-linear inhomogeneities —almost arbitrary

in magnitude, as long as being spherically symmetric— in the FLRW universe with dark

energy. In view of this, it is also worth attempting to derive some analytic formulae

that can be used to make theoretical predictions of the Λ-LTB spacetimes and rigorous

comparison with cosmological observations.

4.2.1 Constraints from BAO

When we calculate the BAO scale in local void models, we have to consider that the

transverse and the longitudinal expansion rates are different. In order to compare with

observations, we need to make two assumptions. The first assumption is to neglect the

effects of the growth of perturbations because the evolution of perturbations in the LTB

model is not clearly understood [111,112]. The second assumption is to consider that the

sound horizon rs is given by recombination physics in the FLRW cosmology (see also Sec.
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2.2.3) because it is true that the BAO scale is imprinted in the sky at early times when

the universe can be regarded as homogeneous enough.

As we showed in Sec. 2.2.3, the observed BAO scales brought from the galaxy samples

in the surveys, such as SDSS DR7 and the 2dF Galaxy Redshift Survey, are used to

constrain the values of the effective distance ratio (2.2.15) which is the average of the

transverse and logitudinal scales. Alexander, Biswas, Notari and Vaid [43] constrained

the lower limit of the size of the void from observations of the effective distance ratio

defined by (2.2.16) at z = 0.2 and z = 0.35 [113]:

rBAO(z = 0.2) = 0.1980± 0.0058,

rBAO(z = 0.35) = 0.1094± 0.0033. (4.2.1)

In the ΛCDM model, rBAO(z = 0.2) and rBAO(z = 0.35) can be reproduced well. However,

in the models with about Mpc void size, these observed effective distance ratios (4.2.1)

cannot be reproduced. This is because, in such models, the domains z = 0.2 and z = 0.35

belong to the outer region with the EdS model.

In order to make the local void model be consistent with the observations of the BAO

scale, the epoch z = 0.35 must belong to the inner underdense region, so that the size of

the void must be Gpc size. Thus, the models whose void size is smaller than about Gpc

size are ruled out.

4.2.2 Constraints from kSZ effect

If we live at the center of the large (about Gpc size) void, observers in other clusters that

is not at the center will see a large dipole in the CMB temperature anisotropy. We can

regard such a dipole as the kinematic Sunyaev-Zeldovich (kSZ) effect.

The (first-order/thermal) Sunyaev-Zeldovich (SZ) effect is a small spectral distortion

of the CMB radiation caused by the interaction of CMB photons with electrons that have

high energies because of their temperature. CMB photons that pass through the hot

center of massive clusters collide with electrons there, and take a small distortion in the

CMB spectrum due to the inverse-Compton scattering, in which the low energy CMB

photons receive energy from the high energy cluster electrons.
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The (second-order) kSZ effect is an additional spectral distortion because of the

Doppler effect of the cluster velocities. If the clusters are moving with respect to the

CMB rest frame, CMB photons gain energy from electrons with high energies because

clusters where electrons belong to have bulk velocity. The kSZ effect can be ued to map

the cosmic peculiar velocity field inside our own light cone.

Garćıa-Bellido and Haugbølle [44] constrained the upper limit of the size of the void

from available obserbations of the kSZ effect. In local void models, the CMB photon

received by an observer of the center of the void is emitted at the outer overdense region.

The Hubble constant outside the void (Hout) is smaller than that in inner underdense

region (Hin). Then, a cluster in the distance r from the center of the void has a velocity

vpec = (Hin −Hout) r, (4.2.2)

relative to the CMB rest frame, and vpec can be observed as a peculiar velocity of the

cluster in the kSZ effect. They showed that a strong constraint is given to the Gpc void

models. using the observed kSZ effect from 9 clusters. The size of the void is smaller than

about 1.5 Gpc.

On the other hand, Yoo, Nakao and Sasaki [45] studied the amount of inhomogeneity

in the bang time ts(r) that is need to fit the obserbations of the kSZ effect. They tested

the same dataset considered in [44] and found their void model ruled out because of

the high peculiar velocities. They considered the case of an inhomogeneous decoupling

hypersurface. A large kSZ effect is owing to a large cluster velocity, but this can be

relieved if there are radial inhomogeneities in the non-relativistic matter on the decoupling

hypersurface.

4.2.3 Constraints from CMB temperature anisotropies

From the anisotropic relation between the luminosity distance and the redshift of the

observation of SN Ia, Alnes and Amarzguioui [114] have constrained the observer’s position

to about 200 Mpc from the center of the void. However, Alnes and Amarzguioui [47] have

presented much tighter constraints by numerically using the observation of the CMB

dipole. An observer near the center of the void and comoving with the LTB metric
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has a peculiar velocity with respect to the void model. This can be represented b y

∆v = ∆H · dobs and is due to the inhomogeneous Hubble expansion rate. This gives rise

to a Doppler shift in the CMB temperature and a consequent dipole [47]:

a10 =

√
4π

3

∆v

c

=

√
4π

3

hin − hout
3000Mpc

dobs . (4.2.3)

Typical void models have hin − hout ∼ 0.2, so that the distance from an observer to the

center is about 20 Mpc by using the observed CMB dipole.

In Chapter 6, we will discuss analytical results for off-center CMB anisotropies in gen-

eral spherically-symmetric spacetimes and update the constraints concerning the location

of the observers in the void model by applying our analytic dipole formula with the latest

WMAP data [67].

4.2.4 Tests by using redshift drift

Yoo, Kai and Nakao [110] studied the redshift drift, i.e., the time derivative of the cosmo-

logical redshift in LTB void models. They showed that the redshift drift is one of decisive

differences between LTB void models and the standard ΛCDM model. Although the red-

shift drift in the ΛCDM model is positive, that in LTB void models is negative. Their

results suggest that we can determine whether the local void model is a viable model or

not by observing the redshift drift.

In the same way as we showed in Sec. 2.1.2, we can define the cosmological redshift

in the general LTB spacetime. The null geodesic equation in the LTB spacetime

dt(r)

dr
= − R′

√
1− kr2

(4.2.4)

leads to
d δt(r)

dr
= − Ṙ′

√
1− kr2

δt. (4.2.5)
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Then, we have the equation for the redshift z as

dz

dr
= (1 + z)

Ṙ′
√
1− kr2

. (4.2.6)

Equations (4.2.4) and (4.2.6) can be rewritten in the following form

d

dz
δz =

1

1 + z
δz +

R̈′

Ṙ′
δt, (4.2.7)

d

dz
δt = − 1

1 + z
δt. (4.2.8)

We can easily integrate (4.2.8) to derive

δt =
1

1 + z
δt0. (4.2.9)

By using above results, (4.2.7) is rewritten with the equation of the redshift drift

d

dz

(
δz

1 + z

)
=

1

(1 + z)2
R̈′

Ṙ′
δt0. (4.2.10)

Thus, if we know the signs of Ṙ′ and R̈′, we can find the sign of δz, i.e., the redshift drift

δz/δt because we know δz = 0 at z = 0.

Near the center of the general spherically symmetric LTB spacetime, we have

Ṙ′
∣∣∣
t=t0,r=0

= H0, (4.2.11)

R̈′
∣∣∣
t=t0,r=0

= −1

2
Ωm0H

2
0 , (4.2.12)

because of the regularity of the metric at r = 0, i.e., R(t, r) ∼ a(t)r near the center.

Then, in the neighborhood of the symmetric center, (4.2.10) becomes

d

dz
δz

∣∣∣∣
t=t0,r=0

=
R̈′

Ṙ′

∣∣∣∣∣
t=t0,r=0

δt0 +O(z)

= −1

2
Ωm0δt0 +O(z) . (4.2.13)
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From this equation, we have

δz

δt0
= −1

2
Ωm0z +O

(
z2
)

≤ 0, (4.2.14)

and then, we can find that the redshift drift is non-positive near the center in the general

LTB spacetime.

In the LTB void model, we have

Ṙ′ > 0 (4.2.15)

because of (4.2.6), and

R̈′ =
4πGR′

R3

(
−ρR3 + 2

∫ r

0

dr1ρ(t, r1)R
2(t, r1)R

′(t, r1)

)
= −4πG

R′

R3

∫ R

0

dR1

(
dρ

dR1

R3
1 + ρR2

1

)
< 0 (4.2.16)

because R′ > 0 from (3.3.3) by the definition of LTB void models, i.e., M ′ > 0, and

dρ/dR = ρ′/R′ > 0. Then, the eqaution of the redshift drift (4.2.10) in the LTB void

models becomes
d

dz

(
δz

1 + z

)
< 0. (4.2.17)

From this inequality, it can be seen that the redshift drift is negative:

δz

δt
< 0 (4.2.18)

for z > 0 because δz = 0 at z = 0.

On the other hand, in the ΛCDM model, we find that, for z < 2,

R̈′

Ṙ′
=

ä

ȧ

> 0, (4.2.19)
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and then, the redshift drift is positive:

δz

δt
> 0. (4.2.20)

Yoo et al. [110] showed that, assuming the mass density of the dust is positive, the

redshift drift of an off-center source is negative unlike that in the ΛCDM model. Thus,

when we observe the redshift drift, we can get a strong constraint on LTB void models.

If the redshift drift turns out to be positive at some redshift, we can reject LTB void

models. From, for example, the observation of compact binary stars by DECIGO [119] or

BBO [120], the redshift drift at z ≃ 1 can be measured [118].
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Chapter 5

High frequency limit in modified

gravity theories

In general relativity, a consistent expansion scheme for short-wavelength perturbations

and the corresponding effective stress-energy tensor were largely developed by Isaac-

son [63, 64], in which the small parameter, say ϵ, corresponds to the amplitude and at

the same time the wavelength of perturbations. Isaacson’s expansion scheme is called the

“high frequency limit” or the “short-wavelength approximation.” In this expansion, the

dominant order of the Einstein equation with respect to this parameter ϵ corresponds to

the equations of motion for linearized gravitational waves in the ordinary perturbation

theory, and is in fact divergent as ϵ−1. The next order of the expansion of the Ein-

stein equation provides the Einstein equation for the background metric with an effective

stress-energy tensor, which is essentially given as minus the second-order Einstein tensor

averaged over a spacetime region of several wavelengths of metric perturbations. Since

taking a derivative of perturbations corresponds, roughly speaking, to multiplying the

inverse of the smallness parameter (or the inverse of the wavelength of perturbations),

the effective stress-energy tensor consisting of the square of derivatives of the first-order

metric perturbations can have large effects on the background dynamics. Furthermore it

can be shown that the effective stress-energy tensor thus constructed is gauge-invariant,

hence has a physical meaning. If the effective stress-energy tensor had a term proportional

to the background spacetime metric, then it would correspond to adding a cosmological

65



constant to the effective Einstein equations for the background metric, thereby explaining

possible origin of dark energy from local inhomogeneities. It has been shown, however,

that this effective gravitational stress-energy tensor is traceless and satisfies the weak en-

ergy condition, i.e. acts like radiation [65, 66], and thus cannot provide any effects that

imitate dark energy in general relativity.

However, it is far from obvious if this traceless property of the effective gravitational

stress-energy tensor is a nature specific only to Einstein gravity or is rather a generic

property that can also hold in other types of gravity theory. The purpose of this chap-

ter is to address this question in a simple, concrete model in the cosmological context.

Since f(R) gravity contains higher-order derivative terms, one can anticipate the effective

gravitational stress-energy tensor to be generally modified in the high frequency limit.

Over the past decade, cosmological implications of f(R) gravity theories have been

extensively studied especially in the quest of finding an alternative cosmology to Λ-CDM

model. A viable class of f(R) theories is summarized in Sec. 3.2.1. Although it is

desirable to examine all these cosmologically favored models, in this chapter, we will

restrict our attention to the simplest model f(R) = R + cR2 with an eye to applications

to analyses of more generic cases, which are left for future study. This model itself is not

considered as a cosmologically favored modified gravity theory for describing the present

accelerating universe, but has rather been introduced as a prototype of an inflationary

universe model by Starobinsky [102]. However, this simple model can be viewed as the

leading term truncation of a more generic class of f(R) theories that take an analytic

form with respect to R around the vacuum solution R = 0 and therefore provides, as the

first step toward this line of research, a good starting point for our analysis. It would

also be interesting to check whether or not a once-excluded model can possibly revive as

a cosmologically favored model, due to the inclusion of the backreaction effects of local

inhomogeneities.

As we have showed in Sec. 3.2.2, it is well known that f(R) gravity is equivalent to a

scalar-tensor theory which contains the coupling of the scalar curvature R to a scalar field

ϕ in a certain way [11, 17]. The Brans-Dicke theory [29] is one of the simplest examples.

Our analysis can therefore be performed, in principle, either (i) by first translating a given

f(R) theory into the corresponding scalar-tensor theory and then inspecting the stress-
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energy tensor for the scalar field ϕ, or (ii) by directly dealing with metric perturbations of

the f(R) theory. We may expect that the former approach is much easier than the latter

metric approach, as one has to deal with metric perturbations of complicated combinations

of the curvature tensors in the latter case. Nevertheless, we will take both approaches. In

fact, in the metric approach, by directly taking up perturbations of the scalar curvature

R, the Ricci tensor Rµν and the Riemann tensor Rµ
νλσ involved in a given f(R) theory,

we can learn how to generalize our present analysis of a specific class of f(R) gravity to

analyses of other, different, types of modified gravity theory that cannot even be translated

into a scalar-tensor theory, such as the Gauss-Bonnet gravity.

The theory we consider in this chapter contains higher-order derivative terms. As

in the case of general relativity, we can consider short-wavelength metric perturbations

with a small parameter ϵ and expand the field equations with respect to ϵ. In contrast

to Einstein gravity, the dominant part of the field equations for this theory is of order

O(ϵ−3). In O (ϵ−1), we have equations of motion for linearized gravitational waves. In

O (1) we obtain equations for the background metric with a source term arising from

the short-wavelength perturbations. This source term contains a number of higher-order

derivatives of metric perturbations. However, as one cannot have any meaningful notion

of stress energy for gravitational waves in a local sense (at least within a wavelength),

we have to take a suitable spacetime average over several wavelengths. Also, since we

are interested in backreaction effects on the cosmological dynamics, we assume that our

background metric takes the form of the FLRWmetric. We also assume that in the limit to

Einstein gravity, i.e., f(R) → R (as c→ 0), the field equations for our f(R) theory reduce

to those for Einstein gravity in the corresponding order of the expansion parameter. At

this point, a number of terms that involve higher-order derivatives of metric perturbations

vanish by the spacetime averaging procedure and the assumption of background FLRW

symmetry. Eventually, besides the terms corresponding to Isaacson’s formula in Einstein

gravity, only a few terms that contain higher-order derivatives of metric perturbations

can remain in the effective stress-energy tensor for short-wavelength perturbations in our

modified gravity. Furthermore, in this case, the resultant effective stress-energy tensor is

shown to be traceless as in Einstein gravity case.

It is interesting to note that if we drop one of our assumptions that our f(R) theory
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reproduces the field equations for Einstein gravity in the limit c → 0, then the resultant

effective stress-energy tensor is no longer traceless and in fact acquires a term propor-

tional to the background metric and therefore can have effects that mimic a cosmological

constant. However, as we will see later, the cosmological constant term depends on an

undetermined constant and there does not seem to be a way to determine the value of

the constant within the framework of the theory considered.

We briefly comment on previous work along the similar line. Since the effective stress-

energy tensor can be used to measure energy flux carried out by gravitational radiation

from astrophysical sources, such as inspiral binary systems, it can be used by near-future

gravitational wave detectors to test various modified gravity theories [115–123]. For this

purpose, the effective stress-energy tensor for gravitational radiation has been derived

by Sopuerta and Yunes [124] by applying Isaacson’s scheme to the field equations of

dynamical Chern-Simons theory. A more general formalism to compute the effective

stress-energy tensor from the effective action, which can apply to a wide class of modified

gravity theories, has been proposed by Stein and Yunes [125]. As a concrete example,

the formula has been applied to dynamical Chern-Simons gravity as well as theories with

dynamical scalar fields coupled to higher-order curvature invariants. It has been shown

that in these modified theories the stress-energy tensor for gravitational radiations reduces,

at future null infinity, to that in Einstein gravity. Also, Berry and Gair [126] have derived

the effective stress-energy tensor for gravitational waves in f(R) gravity which is analytic

around the vacuum R = 0. However, since the main concern in these studies is to test

alternative theories in the astrophysical context by using gravitational wave detectors,

the formulas mentioned above have been formulated for asymptotically flat spacetimes

(as the energy flux of gravitational waves needs to be evaluated at future null infinity)

and therefore do not appear to apply to cosmological models. In contrast, our analysis

will proceed by exploiting the cosmological setup that our background metric possesses

FLRW symmetry.

In the next section, before going into the effective stress-energy tensor in modified

gravity theories, we will first briefly summarize the high frequency limit in general rela-

tivity. In Sec. 5.2, we consider the high frequency limit in f(R) gravity theory. Based

on Isaacson’s scheme, we expand the field equations for f(R) = R+ cR2 theory and first
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derive the general expression of the effective stress-energy tensor for gravitational per-

turbations in our f(R) gravity. Then, assuming that our background metric has FLRW

symmetry and also that the resulting equations reduce to the corresponding equations for

Einstein gravity in the limit c → 0, we see that the effective stress-energy tensor, whose

expression is significantly simplified, is in fact traceless as in Einstein gravity case. As

briefly mentioned above, when a given f(R) gravity is translated into the corresponding

scalar-tensor theory, the scalar field ϕ, which expresses an extra degree of freedom in the

f(R) theory, possess a non-trivial potential term. [Compare with the earlier work by

Lee [127] on a computation of the effective stress-energy tensor in a scalar-tensor theory

with vanishing potential term.] In Sec. 5.3, we will make sure that the effective stress-

energy tensor in Brans-Dicke theory is consistent with that in our f(R) gravity. We will

also see that, in the Einstein frame, the traceless property of the effective stress-energy

tensor is shown to hold in more generic circumstances.

5.1 High frequency limit in general relativity

In this section, we introduce our notation by recapitulating Isaacson’s expansion scheme

for short-wavelength gravitational perturbations in general relativity.

Let gµν be the metric with linear perturbation hµν ; it is described by gµν = g
(0)
µν + hµν

with g
(0)
µν being the background metric including the backreaction from perturbations.

The amplitude of hµν is of order hµν ∼ O(ϵ) with ϵ being the small parameter, which

also corresponds to the wavelength λ of perturbations compared with the background

characteristic curvature radius, L. The order of derivatives of hµν are

∇µ1∇µ2 · · · ∇µmhνλ ∼ O

(
ϵ

(λ/L)m

)
∼ O

(
ϵ1−m

)
, (5.1.1)

where∇µ denotes the covariant derivative with respect to g
(0)
µν , so that∇µg

(0)
νλ = 0. We may

bear in mind perturbations of the form h ∼ ϵ sin(x/λ) and λ/L ∼ O(ϵ). In what follows

we normalize L ∼ 1. The inverse metric takes the form gµν = g(0)µν − hµν + hµλh
λν + · · · ,

where hµν ≡ g(0)µλg(0)νσhλσ.

There is the general relationship between the Ricci tensor of gµν and that of g
(0)
µν ,
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namely

Rµν = Rµν [g
(0)] + 2∇[λC

λ
ν]µ + 2Cλ

σ[λC
σ
ν]µ , (5.1.2)

where Cµ
νλ ≡ Γµ

νλ−Γµ
νλ[g

(0)] = gµσ (∇νgσλ +∇λgνσ −∇σgνλ) /2. Since Rµν contains terms

such as those schematically expressed as g−1∇∇g, ∇g−1∇g and g−1g−1∇g∇g, we can find

R(n)
µν [h] ∼ O

(
ϵn−2

)
, (5.1.3)

where n is the number of hµν included in Rµν . We also find

R(n)[h] ∼ G(n)
µν [h] ∼ O

(
ϵn−2

)
, (5.1.4)

where R ≡ gµνRµν , Gµν ≡ Rµν − gµνR/2 is the Einstein tensor, and R(n)[h] and G
(n)
µν [h]

do not contain Rµν [g
(0)].

The Einstein equation is

Gµν = Rµν −
1

2
gµνR = κ2T (0)

µν , (5.1.5)

where κ2 = 8πG and T
(0)
µν is the stress-energy tensor for the background matter fields. In

the following, for simplicity, we focus on metric perturbations and ignore perturbations

of the matter fields in T
(0)
µν . We can find the dominant terms, O (ϵ−1), of the Einstein

equation as

G(1)
µν [h] = R(1)

µν [h]−
1

2
g(0)µνR

(1)[h] = 0 ,

or simply

R(1)
µν [h] = 0 . (5.1.6)

This is equivalent to the equation for linearized gravitational waves in the ordinary per-

turbation theory. Next, in the order of O (1), we find

Gµν [g
(0)] = κ2T (0)

µν + κ2T eff
µν , (5.1.7)
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where the effective gravitational stress-energy tensor, T eff
µν , is given by

κ2T eff
µν ≡ −

⟨
G(2)

µν [h]
⟩

= −
⟨
R(2)

µν [h]−
1

2
g(0)µν g

(0)λσR
(2)
λσ [h]

⟩
=

⟨
1

4
∇µh

TTλσ∇νh
TT
λσ

⟩
. (5.1.8)

Here, and in the following, ⟨· · · ⟩ denotes taking a spacetime average over several wave-

lengths of perturbations. Here the indices are raised and lowered with g(0)µν and g
(0)
µν .

For the expression of the third line, the transverse-traceless gauge, ∇µh
µ
ν = 0 = hµµ,

denoted by hTT , and (A.6) have been used (see also Appendix. A). We can check that

T eff
µν is traceless, i.e., it acts like radiation:

κ2T effµ
µ = 0 , (5.1.9)

from (5.1.6) and (A.2). Thus, in particular, it cannot provide any effects that mimic dark

energy in general relativity. More general treatment of the effective stress-energy tensor for

gravitational waves is given in Appendix. B. For more mathematically rigorous treatments

of short-wavelength perturbations and the effective stress-energy tensor, see [65, 66].

The effective stress-energy tensor (5.1.8) can be shown to be gauge-invariant [65]. In

fact, the expression of the right-hand side of (5.1.8) is given by manifestly gauge-invariant

part of hTT
µν . For this purpose, one can introduce the polarization tensors ϵ

(+,×)
µν , as usual,

and decompose the metric perturbation accordingly hTT
µν = ϵ

(+)
µν h(+) + ϵ

(×)
µν h(×). In the

cosmological context, one is concerned with the FLRW metric,

ds2 = −dt2 + a(t)2γijdx
idxj (5.1.10)

with dσ2 = γijdx
idxj being the metric of 3-dimensional constant curvature space. So,

it may be more convenient to impose the transverse-traceless condition with respect to

this FLRW time-slicing, i.e., hTT
00 = 0, hTT

0i = 0,∇µh
TTµ

i = 0, hTTi
i = 0. This condition

completely fixes the gauge freedom and (5.1.8) is written by the gauge invariant variable

hTT
ij as

⟨
1
4
∇µh

TTij∇νh
TT
ij

⟩
.
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5.2 High frequency limit in f (R) gravity

The general action for f(R) gravity is given by

S =
1

2κ2

∫
d4x

√
−gf(R) +

∫
d4xLM , (5.2.1)

where LM is the Lagrangian for matter fields, such as perfect fluid in the cosmological

context. Varying this action with respect to the metric, we have the field equations

Gf(R)
µν ≡ Gµν + F̂Rµν −

1

2
gµν f̂ −∇µ∇νF̂ + gµνg

λσ∇λ∇σF̂ = κ2T (0)
µν , (5.2.2)

where f̂ ≡ f −R, F̂ ≡ df̂/dR, and T
(0)
µν denotes the matter stress-energy tensor.

The field equations in f(R) gravity have terms consisting of higher-order derivatives

of R, and the orders of those derivatives are higher than that of R:

∇µ1∇µ2 · · · ∇µmR
(n)[h] ∼ O

(
ϵn−2−m

)
. (5.2.3)

Therefore it is expected that the effect of the short-wavelength approximation would be

enhanced. In order to see whether this is the case, from now on we restrict our attention

to the concrete model

f(R) = R + cR2 , (5.2.4)

where c is a constant. This model has been considered for the first time in the context of

inflationary universe [102]. The field equations are

Gf(R)
µν ≡ Gµν + 2c

(
RRµν −

1

4
gµνR

2 −∇µ∇νR + gµνg
λσ∇λ∇σR

)
= κ2T (0)

µν . (5.2.5)

As in Isaacson’s formula reviewed in the previous section, we expand the above equa-

tions with respect to the small parameter ϵ. Then, the dominant part is of order O (ϵ−3),

in which we have the following equations

∇µ∇νR
(1)[h]− g(0)µν□R(1)[h] = 0 . (5.2.6)
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By contracting with g(0)µν , we immediately have

∇µ∇νR
(1)[h] = 0 . (5.2.7)

Next, for order O (ϵ−2), we have

R(1)[h]R(1)
µν [h]−

1

4
g(0)µν

(
R(1)[h]

)2 −∇µ∇νR
(2)[h] + g(0)µν □R(2)[h] = 0 . (5.2.8)

By dotting with g(0)ab, we have

□R(2)[h] = 0 , (5.2.9)

∇µ∇νR
(2)[h] = R(1)[h]R(1)

µν [h]−
1

4
g(0)µν

(
R(1)[h]

)2
. (5.2.10)

Note that since we are working in the short-wavelength approximation, we find that

g(0)µνR
(1)
µν [h] = R(1)[h] in O (ϵ−1), which is different from calculations in ordinary pertur-

bation theory, where in general g(0)µνR
(1)
µν [h] ̸= R(1)[h]. For O (ϵ−1), we have

R(1)
µν [h]−

1

2
g(0)µνR

(1)[h] + 2c
{(
R[g(0)] +R(2)[h]

)
R(1)

µν [h] +R(1)[h]
(
Rµν [g

(0)] +R(2)
µν [h]

)}
− c
2

{
2g(0)µν

(
R[g(0)] +R(2)[h]

)
R(1)[h] + hµν

(
R(1)[h]

)2}
−2c

(
∇µ∇νR

(3)[h]−Rλσ[g
(0)]∇µ∇νh

λσ
)

+2c
{
g(0)µν

(
□R(3)[h]−Rλσ[g

(0)]□hλσ
)
− g(0)µν h

λσ∇λ∇σR
(2)[h]

}
= 0 . (5.2.11)

Again, by dotting with g(0)ab, we have

R(1)[h] +
c

2
hµµ

(
R(1)[h]

)2 − 6c
(
□R(3)[h]−Rλσ[g

(0)]□hλσ
)
+ 8chµν∇µ∇νR

(2)[h] = 0 .

(5.2.12)

In order O (1), as in Isaacson’s formula in general relativity, we have the field equations for

the background metric with the backreaction source term: G
f(R)
µν [g(0)] = κ2T

(0)
µν + κ2T eff

µν ,
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where

κ2T eff
µν≡−

⟨
R(2)

µν [h]−
1

2

(
g(0)µνR

(2)[h] + hµνR
(1)[h]

)
+2c

{
R(1)[h]R(3)

µν [h] +R[g(0)]R(2)
µν [h]

+R(2)[h]
(
Rµν [g

(0)] +R(2)
µν [h]

)
+
(
R(3)[h]− hλσRλσ[g

(0)]
)
R(1)

µν [h]

}
− c
2

[
g(0)µν

{
2R(1)[h]R(3)[h]− 2R(1)[h]hλσRλσ[g

(0)] + 2R[g(0)]R(2)[h] +
(
R(2)[h]

)2}
+2hµν

(
R[g(0)] +R(2)[h]

)
R(1)[h]

]
+2c

{(
−g(0)µν h

λσ + hµνg
(0)λσ

) (
∇λ∇σR

(3)[h]−Rαβ[g
(0)]∇λ∇σh

αβ
)

+
(
g(0)µν h

λ
αh

ασ − hµνh
λσ
)
∇λ∇σR

(2)[h]

}⟩
. (5.2.13)

This is the expression of the stress-energy tensor for short-wavelength metric perturbations

on the generic background metric g
(0)
µν in our f(R) gravity.

From now on, we consider the cosmological context. We assume that our background

is spatially homogeneous and isotropic, that is, our background metric possesses FLRW

symmetry and therefore takes the form of (5.1.10). Then, thanks to this background

symmetry we can explicitly solve equations of the form ∇µ∇νS(t, x⃗) = 0, such as (5.2.7)

(see Appendix. C). Equation (5.2.7) (the equations of motion of O (ϵ−3)) is solved to yield

R(1)[h] = const . (5.2.14)

Taking the average, we find

R(1)[h] = const. = ⟨const.⟩ =
⟨
R(1)[h]

⟩
= 0 . (5.2.15)

Then, the equations (5.2.10) (those of O (ϵ−2)) become

∇µ∇νR
(2)[h] = 0 . (5.2.16)
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Again using the result in Appendix. C, we find

R(2)[h] ≡ S1 = const . (5.2.17)

By using (5.2.15) and (5.2.16), the equation (5.2.12) (of O (ϵ−1)) immediately yields

□R(3)[h]−Rµν [g
(0)]□hµν = 0 , (5.2.18)

and the equations (5.2.11) (of O (ϵ−1)) reduce to

(
1 + 2cR[g(0)] + 2cS1

)
R(1)

µν [h] = 2c
(
∇µ∇νR

(3)[h]−Rλσ[g
(0)]∇µ∇νh

λσ
)
. (5.2.19)

The effective stress-energy tensor (5.2.13) is then expressed as

κ2T eff
µν = −

⟨(
1 + 2cR[g(0)]

)
R(2)

µν [h]−
1

2
g(0)µν S1

+2c
{(
R(3)[h]− hλσRλσ[g

(0)]
)
R(1)

µν [h] + S1

(
Rµν [g

(0)] +R(2)
µν

)}
− c
2
g(0)µν

(
2R[g(0)] + S1

)
S1

+2c
(
−g(0)µν h

λσ
) (

∇λ∇σR
(3)[h]−Rαβ[g

(0)]∇λ∇σh
αβ
)⟩

. (5.2.20)

This is the most general expression of our effective stress-energy tensor.

We immediately notice that our expression (5.2.20) contains the integration constant

S1. There does not seem to be a definite way to determine S1 within the framework

of the present f(R) theory itself. As a sensible way to specify S1, let us assume in the

following that the effective stress-energy tensor (5.2.20) in the R2 model should reduce

to that in general relativity when c = 0, and accordingly choose S1 (= R(2)[h]) to be 0.

75



Then, (5.2.20) becomes

κ2T eff
µν = −

⟨(
1 + 2cR[g(0)]

)
R(2)

µν [h] + 2c
(
R(3)[h]− hλσRλσ[g

(0)]
)
R(1)

µν [h]

−g(0)µν

(
1 + 2cR[g(0)]

)
hλσR

(1)
λσ [h]

⟩

= −

⟨(
1 + 2cR[g(0)]

)
R(2)

µν [h] + 2c
(
R(3)[h]− hλσRλσ[g

(0)]
)
R(1)

µν [h]

⟩
,(5.2.21)

where we have used (5.2.19) in the first equality above, and

⟨
hλσR

(1)
λσ [h]

⟩
= 0 (5.2.22)

in the second equality so as to make the above expression compatible with that of general

relativity in the c = 0 case. The expression, (5.2.21), is our main result of this section.

From R(2)[h] = 0 and (5.2.22), we see

⟨
g(0)µνR(2)

µν [h]
⟩

=
⟨
R(2)[h] + hµνR(1)

µν [h]
⟩

= 0 . (5.2.23)

Then using this and R(1)[h] = 0, we can find that κ2T eff
µν is in fact traceless:

κ2T effµ
µ = 0 . (5.2.24)

It should be stressed that as mentioned above, there is no a priori way to determine S1

by the theory itself. If we choose S1 to be, instead, a non-zero constant, then the effective

stress-energy tensor, (5.2.20), has a term proportional to the background metric, that is,

a cosmological-constant-like term, even in the limit to the Einstein gravity.

5.3 High frequency limit in scalar-tensor theory

In the previous section, the scalar curvature R and the Ricci tensor Rµν are taken up

directly in the metric formalism of the f(R) gravity. As we have shown in Sec. 3.2.2, it
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is well known that any f(R) gravity theory is included in Brans-Dicke theory, which is

one of the simplest examples of scalar-tensor theory [11, 17]. In this section, we will see

that the results obtained in the previous section are indeed consistent with those obtained

within the corresponding scalar-tensor theory.

In the Jordan frame, the action of Brans-Dicke theory [29] is

S =
1

κ2

∫
d4x

√
−g
{
1

2
ϕR− ωBD

2ϕ
∇µϕ∇µϕ− V (ϕ)

}
+

∫
d4xLM , (5.3.1)

where ωBD is a constant called the Brans-Dicke parameter and ϕ is a dimensionless scalar

field, and LM denotes the Lagrangian for matter fields, which can in general couple to the

metric gµν as well as the scalar field ϕ. Then the equations of motion for ϕ and gµν are,

respectively, obtained as

□ϕ+
ϕ

2ωBD

(
−ωBD

ϕ2
∇µϕ∇µϕ+R− 2∂ϕV (ϕ)

)
= κ2T

(0)
ϕ µν , (5.3.2)

ϕGµν −
ωBD

ϕ

(
∇µϕ∇νϕ− gµν

2
∇λϕ∇λϕ

)
−∇µ∇νϕ

+gµν
(
gλσ∇λ∇σϕ+ V (ϕ)

)
= κ2T (0)

µν , (5.3.3)

where T
(0)
ϕ µν and T

(0)
µν are the stress-energy tensor for matter fields obtained by taking

variations of ϕ and gµν , respectively.

The f(R) gravity of the metric formalism, (5.2.1), can be cast into the form of the

above Brans-Dicke theory by setting

ϕ = F (R) ≡ df(R)

dR
, ωBD = 0 , V =

F (R)R− f(R)

2
. (5.3.4)

In this case, as one can find R − 2∂ϕV = 0, the equations of motion for ϕ and gµν given

above become, respectively

□ϕ− 1

2ϕ
∇µϕ∇µϕ = κ2T

(0)
ϕ µν , (5.3.5)

GST
µν ≡ ϕ

(
Rµν −

1

2
gµνR

)
−∇µ∇νϕ+ gµν

(
gλσ∇λ∇σϕ+ V (ϕ)

)
= κ2T (0)

µν . (5.3.6)

From now we consider short-wavelength perturbations for ϕ: ϕ = ϕ0 + δϕ. We also
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assume that there is no coupling of matter fields with the second-order derivatives of ϕ,

so that there are no non-vanishing terms of order O(ϵ−1) in the stress-energy tensor for

matter fields. Then, the equation of motion for ϕ of O (ϵ−1) is

□δϕ = 0 , (5.3.7)

and the equations of motion for gµν of O (ϵ−1) are

ϕ0

(
R(1)

µν [h]−
1

2
g(0)µνR

(1)[h]

)
= ∇µ∇νδϕ− g(0)µν □δϕ . (5.3.8)

Contracting with g(0)µν , we have

R(1)[h] =
3

ϕ0

□δϕ = 0 , (5.3.9)

where we have used (5.3.7). From this equation, we can immediately find

R(1)
µν [h] =

1

ϕ0

∇µ∇νδϕ . (5.3.10)

The equations of motion of O (1) are given by GST
µν [g

(0), ϕ0] = κ2T
(0)
µν + κ2T eff

µν , where

κ2T eff
µν ≡ −

⟨
ϕ0R

(2)
µν [h] + δϕR(1)

µν [h]− g(0)µν h
λσ∇λ∇σδϕ

⟩
. (5.3.11)

Here we would like to emphasise that so far we have made no assumptions concerning

the form of f(R) or the symmetry of our background metric g
(0)
µν ; the above expression,

(5.3.11), applies to the generic f(R) theory with an arbitrary background metric.

If we restrict the form of f(R) to be (5.2.4), then by inspecting the expansions ϕ =

ϕ0 + δϕ + · · · and F (R) = 1 + 2cR =
(
1 + 2cR[g(0)]

)
+ 2c

(
R(3)[h]− hλσRλσ[g

(0)]
)
+ · · · ,

we find

ϕ0 = 1 + 2cR[g(0)] , δϕ = 2c
(
R(3)[h]− hλσRλσ[g

(0)]
)
. (5.3.12)
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Using these and (5.3.10), we have

κ2T eff
µν = −

⟨(
1 + 2cR[g(0)]

)
R(2)

µν [h]

+2c
(
R(3)[h]− hλσRλσ[g

(0)]
)
R(1)

µν [h]− g(0)µν ϕ0h
λσR

(1)
λσ [h]

⟩
. (5.3.13)

Now we consider the cosmological situation so that the background metric has FLRW

symmetry. Provided that the limit c → 0 should reproduce the same results as in the

Einstein gravity case, we finally obtain

κ2T eff
µν = −

⟨(
1 + 2cR[g(0)]

)
R(2)

µν [h] + 2c
(
R(3)[h]− hλσRλσ[g

(0)]
)
R(1)

µν [h]
⟩
, (5.3.14)

where we have used (5.2.22), derived under FLRW symmetry in Sec. 5.2. We see that

expression (5.3.14) is precisely the same as (5.2.21) derived within the metric formalism

of the f(R) gravity. This verifies our methods for dealing with short-wavelength pertur-

bations of the f(R) gravity within the metric formalism.

In the Einstein frame, the action becomes [105]

SE =
1

κ2

∫
d4x
√

−g̃
{
1

2
R̃− 1

2

(
∇̃ϕ̃
)2

− Ṽ (ϕ̃)

}
, (5.3.15)

where g̃µν ≡ Fgµν , ϕ̃ ∝ lnϕ and Ṽ ≡ V/F 2. From this action, one can find that

the equation of motion of O (ϵ−1) is □δϕ̃ = 0 and the effective stress-energy tensor is

κ2T eff
µν =

⟨
∇̃µδϕ̃∇̃νδϕ̃

⟩
. It then immediately follows that the effective stress-energy tensor

must be traceless, i.e., T effµ
µ = 0. This can be shown only on the assumption of FLRW

symmetry.
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Chapter 6

Off-center CMB anisotropies in local

void models

As we show in Sec. 4.2, there have been a number of tests of local void models from

observations other than the SN Ia distance-redshift relation. The purpose of this chap-

ter is to derive analytic formulae for the dipole and quadrupole moments of the CMB

temperature anisotropy in general spherically symmetric inhomogeneous spacetimes, in-

cluding the Λ-LTB spacetime as a particular case, and give constraints on the local void

model. In the standard cosmology, basic properties of the CMB temperature anisotropy

are derived by inspecting perturbations of the Einstein and Boltzmann equations in the

FLRW background universe. Ideally, it is desirable to do the same thing in the LTB

background. However, perturbations in a LTB spacetime, let alone those in a general

spherically symmetric spacetime, have not been very well studied mainly because the per-

turbation equations are much more involved to solve in the spherical but inhomogeneous

background, though the linear perturbation formulae themselves have long been avail-

able [128,129]. There are some recent papers relevant to the LTB spacetime [111,112].

In this chapter, we are not going to deal with perturbations of the LTB metric. In-

stead, we will exploit the key requirement of the local void model that we, observers, are

restricted to be around very near the center of the spherical symmetry: Namely, we first

note that the small distance between the symmetry center and an off-center observer gives

rise to a corresponding deviation in the photon distribution function. Then, by taking
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‘Taylor-expansions’ of the photon distribution function at the center with respect to the

deviation, we can read off the CMB temperature anisotropy caused by the deviation in

the photon distribution function. By doing so, we can, in principle, construct the l-th

order multiple moment of the CMB temperature anisotropy from the (up to) l-th order

expansion coefficients, with the help of the background null geodesic equations and the

Boltzmann equation. We will do so for the first and second-order expansions to find the

CMB dipole and quadrupole moments. We also provide the concrete expression of the

corresponding formulae for the LTB cosmological model. Our formulae are then checked

to be consistent with the numerical analyses of the CMB temperature anisotropy in the

LTB model, previously made by Alnes and Amarzguioui [47]. We then apply our formulae

to place the constraint on the distance between an observer and the symmetry center of

the void, by using the latest WMAP data, thereby updating the results of the previous

analyses.

In the next section, we derive analytic formulae for the CMB temperature anisotropy

in the most general spherically symmetric spacetime. In Sec. 6.2, we obtain analytic

formulae for the CMB temperature anisotropy in the LTB model, and some constraints

concerning the position of the observer.

6.1 CMB anisotropies in general spherically symmet-

ric spacetime

In this section, we will derive analytic formulae for the dipole and quadrupole moments

of the CMB temperature anisotropy. We first briefly discuss the null geodesic equations,

the photon distribution function and its relation to the CMB photon temperature in the

most general spherically symmetric spacetime. Next, inspecting the first-order derivatives

of the photon distribution function at the center of the spherical symmetry and using the

null geodesic equations, we derive the dipole formula for the CMB. Then, taking further

derivatives, we derive the quadrupole formula of the CMB temperature anisotropy in

general spherically symmetric spacetimes.
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6.1.1 Photon distribution function in a general spherically sym-

metric spacetime

The most general spherically symmetric metric can be written in the following form

ds2 = −N2(t, r)dt2 + S2(t, r)dr2 +R2(t, r)(dθ2 + sin2 θdϕ2). (6.1.1)

In this background, the relevant geodesic equations are given by dpµ/dλ = −Γµ
αβp

αpβ

which can read

dpt

dλ
= −Ṅ

N
(pt)2 − 2N ′

N
ptpr − SṠ

N2
(pr)2 − Ṙ

N2R
p2⊥, (6.1.2)

dpr

dλ
= −NN

′

S2
(pt)2 − 2Ṡ

S
ptpr − S ′

S
(pr)2 +

R′

S2R
p2⊥, (6.1.3)

where pµ = dxµ/dλ, pµp
µ = 0 with λ being an affine parameter, and p⊥ is given by

p2⊥ ≡ R2{(pθ)2 + (pϕ)2 sin2 θ}. Here and in the rest of this chapter, prime and dot denote

the derivatives with respect to r and t, respectively.

We are concerned with the distribution function, F (x, p), for the CMB photons that

leave the “last scattering surface” appropriately defined, say, t = ti hypersurface, in the

universe modelled by the above metric and that eventually reach an “observer” very

near the symmetry center. We assume that the photon distribution function F (x, p) is

spherically symmetric, respecting the symmetry of the background geometry, so that

F (x, p) = F0(t, r, ω, µ), (6.1.4)

where ω ≡ pt and µ ≡ Spr/(Nω). Note that from the above geodesic equations, we have

ṙ = µ
N

S
, (6.1.5)

ω̇ = −ω

(
Ṅ

N
+ 2µ

N ′

S
+ µ2 Ṡ

S
+ (1− µ2)

Ṙ

R

)
, (6.1.6)

µ̇ = (1− µ2)

{
N

S

(
R′

R
− N ′

N

)
+ µ

(
Ṙ

R
− Ṡ

S

)}
. (6.1.7)
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In particular, it follows from the above equations

∂ωṙ = ∂ωµ̇ = 0, ∂rµ̇ = 0, (6.1.8)

where the last one holds for the radial null geodesics, for which µ = ±1.

Now, suppose the universe is locally in thermal equilibrium, that is, F is given as the

Planck distribution function, Φ, at the last scattering surface, as required in most of the

known LTB models. Then, given a photon geodesic γ, the ratio of the temperature T of

the photon and its energy ω is preserved along the trajectory γ. Therefore, ω comes in F

in the form

F = Φ(ω/T ). (6.1.9)

Then, the CMB temperature anisotropy δT/T is generally given by

(δF )(1) + (δF )(2) + · · · =

{
−δT
T
ω∂ω +

1

2

(
δT

T

)2

(ω∂ω)
2 + · · ·

}
Φ. (6.1.10)

Now, suppose that an observer lives at a distance of δxi from the symmetry center. Then,

the left-side are written as

(δF )(1) = δxi(∂iF )0, (δF )(2) =
1

2
δxiδxj(∂i∂jF )0, (6.1.11)

where here and in the following, the subscript ‘0’ implies the value evaluated at the center

(r = 0) at the present time (t = t0). The CMB temperature anisotropy dipole (δT/T )(1)

and quadrupole (δT/T )(2) are therefore given by

(
δT

T

)(1)

= −δx
i(∂iF )0
ω∂ωF0

, (6.1.12)(
δT

T

)(2)

= −1

2

δxiδxj(∂i∂jF )0
ω∂ωF0

+
1

2

{(
δT

T

)(1)
}2

(ω∂ω)
2F0

ω∂ωF0

. (6.1.13)

Since (6.1.4) implies ∂iF = (∂ir)∂rF0 + (∂iω)∂ωF0 + (∂iµ)∂µF0, (∂iF )0, (∂i∂jF )0 in the

right-hand side of the above equations are given by ∂αF0 and ∂α∂βF0 (α, β = r, ω, µ).

Therefore, our task is to find the concrete expressions of ∂αF0 and ∂α∂βF0 in terms of
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relevant geometric quantities.

6.1.2 Analytic formula for CMB dipole

First, we will obtain the CMB temperature dipole formula. For this purpose, we derive

the expression for ∂αF0. Our stating point is the Boltzmann equation for F0(t, r, ω, µ),

d

dt
F0 = ∂tF0 + ṙ∂rF0 + ω̇∂ωF0 + µ̇∂µF0 = 0, (6.1.14)

where ṙ, ω̇, µ̇ are defined for a given null geodesic curve γ. By differentiating this equation

by α = r, ω, µ, and using the formula (6.1.8), we obtain the first order differential equations

for ∂αF ,

d

dt


∂ωF0

∂rF0

∂µF0

 = −


∂ωω̇ 0 0

∂rω̇ ∂rṙ 0

∂µω̇ ∂µṙ ∂µµ̇




∂ωF0

∂rF0

∂µF0

 . (6.1.15)

The set of these equations can easily be integrated along the given photon trajectory γ

to yield the solutions

ω∂ωF0 = (ω∂ωF0)i, (6.1.16)

∂rF0 = e−P (t,ti)(∂rF0)i + (ω∂ωF0)i

∫ t

ti

dt1e
−P (t,t1)A(t1), (6.1.17)

∂µF0 = e−Q(t,ti)(∂µF0)i + (∂rF0)i

∫ t

ti

dt1e
−Q(t,t1)−P (t1,ti)

(
−N
S

)
t1

+(ω∂ωF0)i

∫ t

ti

dt1e
−Q(t,t1)

{
B(t1)−

(
N

S

)
t1

∫ t1

ti

dt2e
−P (t1,t2)A(t2)

}
,(6.1.18)

where

A ≡

(
Ṅ

N
± 2

N ′

S
+
Ṡ

S

)′

, B ≡ 2

{
N ′

S
±

(
Ṙ

R
− Ṡ

S

)}
, (6.1.19)
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and

P (t1, t2) ≡ ∓
∫ t2

t1

dt

(
N

S

)′

, (6.1.20)

Q(t1, t2) ≡ 2

∫ t2

t1

dt

{
±N
S

(
R′

R
− N ′

N

)
+
Ṙ

R
− Ṡ

S

}

= 2

[
ln
R

N

]t2
t1

+ 2

∫ t2

t1

dt

(
Ṅ

N
− Ṡ

S

)
, (6.1.21)

and where the subscript ‘i’ denotes the value evaluated at the last scattering surface.

Note that ω∂ωF0 is constant for any null geodesics, as in (6.1.16). Furthermore, as

shown in Appendix, by inspecting the regularity of F at the center, as well as the behavior

of some relevant geometric quantities near the center, we can observe that ∂rF0 does not

contribute to the leading behavior of ∂iF in the limit r → 0. Therefore, we only need to

find the expression of ∂µF .

Using the null geodesic equation for a radial geodesic, µ = ±1, dt/dr = ±S/N , we

find that (6.1.20) and (6.1.21) become

P (t1, t2) =

[
ln
S

N

]t2
t1

+ U(t1, t2), Q(t1, t2) = 2

[
ln
R

N

]t2
t1

+ 2U(t1, t2), (6.1.22)

where

U(t1, t2) ≡
∫ t2

t1

dt

(
Ṅ

N
− Ṡ

S

)
. (6.1.23)

Substituting these into (6.1.18), we have

∂µF0 =
R2

N2

N2
i

R2
i

e−2U(t,ti)(∂µF0)i −
R2

N2

Ni

Si

(∂rF0)i

∫ t

ti

dt1

(
NS

R2

)
t1

e−2U(t,t1)−U(t1,ti)

+
R2

N2
(ω∂ωF0)i

∫ t

ti

dt1

(
N2

R2

)
t1

e−2U(t,t1)

{
B(t1)−

∫ t1

ti

dt2e
−U(t1,t2)A(t2)

}
.

(6.1.24)

Here we note that the second and third terms in the right-side of the above equation have

the form

I(r) ≡
∫ t

ti

dt1
V (t, t1)

R2(t1)
= ±

∫ r

ri

dr1

(
S

N

)
r1

V (r, r1)

R2(r1)
, (6.1.25)
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where V (r, r1) is a function of r and r1 that is regular at 0 ≤ r ≤ r1. For the radial

geodesic that reaches r = 0 at t = t0, I(r) behaves as

I(r) ≃ −1

r

S0

N0

V (0, 0)

(R′
0)

2
. (6.1.26)

Substituting the above expression of ∂µF0 into

∂iF ≃ S0
pi

p
(fν)0 = S0

pi

p

(
∂µF0

r

)
0

, as r → 0, (6.1.27)

which is derived in Appendix (see (D.16)), we have

(∂iF )0 ≃ ∓S2
0

N0

pi

p

[
Ni

Si

e−U(t0,ti)(∂rF0)i + (ω∂ωF0)i

{∫ ri

0

dre−U(t0,t)A(t)−B0

}]
. (6.1.28)

Thus, using this expression, we can write (6.1.12) as

(
δT

T

)(1)

= ∓δLn · Ω
N0

[
Ni

Si

e−U(t0,ti)

(
∂rF0

ω∂ωF0

)
i

+

∫ ri

0

dre−U(t0,t)A(t)−B0

]
, (6.1.29)

where δLn is the position vector of the observer. This is our dipole formula for the

CMB temperature anisotropy in the most general spherically symmetric spacetime. The

regularity of the metric, (6.1.1) at the symmetry center implies that N2 ≃ C1 + O(r2),

R/r ≃ C2 + O(r2), and S2 ≃ (R/r)2 + O(r2) near the center, with C1, C2 being some

constants with respect to r. Using these estimations, we can check that the right-hand

side of (6.1.29) is convergent, hence well-defined.

6.1.3 Analytic formula for CMB quadrupole

Next, we will derive the CMB quadrupole formula by inspecting the second-order deriva-

tives, ∂α∂βF0, (α, β = r, ω, µ). By differentiating the first row of (6.1.15) with respect to
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lnω, r, and µ, we obtain

d

dt
{(ω∂ω)2F0} = 0, (6.1.30)

d

dt
(ω∂ω∂rF0) = ∓

(
N

S

)′

ω∂ω∂rF0 + A(ω∂ω)
2F0, (6.1.31)

d

dt
(ω∂ω∂µF0) = 2

{
±N
S

(
R′

R
− N ′

N

)
+
Ṙ

R
− Ṡ

S

}
ω∂ω∂µF0

−N
S
ω∂ω∂rF0 +B(ω∂ω)

2F0, (6.1.32)

for a radial geodesic for which µ = ±1. We can easily integrate this set of equations, and

get the solutions

(ω∂ω)
2F0 = {(ω∂ω)2F0}i, (6.1.33)

ω∂ω∂rF0 = e−P (t,ti)(ω∂ω∂rF0)i + {(ω∂ω)2F0}i
∫ t

ti

dt1e
−P (t,t1)A(t1), (6.1.34)

ω∂ω∂µF0 = e−Q(t,ti)(ω∂ω∂µF0)i − {ω∂ω∂rF0}i
∫ t

ti

dt1e
−Q(t,t1)−P (t1,ti)

(
N

S

)
t1

+{(ω∂ω)2F0}i
∫ t

ti

dt1e
−Q(t,t1)

{
B(t1)−

(
N

S

)
t1

∫ t1

ti

dt2e
−P (t1,t2)A(t2)

}
.

(6.1.35)

Similarly, we can get the ordinary differential equations

d

dt
(∂2rF0) = ∓2

(
N

S

)′

∂2rF0 ∓
(
N

S

)′′

∂rF0 + A′(ω∂ωF0)i + 2Aω∂ω∂rF0, (6.1.36)

d

dt
(∂r∂µF0) =

[
∓
(
N

S

)′

+ 2

{
±N
S

(
R′

R
− N ′

N

)
+
Ṙ

R
− Ṡ

S

}]
∂r∂µF0 −

N

S
∂2rF0

+Bω∂ω∂rF0 + Aω∂ω∂µF0 −
(
N

S

)′

∂rF0 + C∂µF0 +B′(ω∂ωF0)i,

(6.1.37)

d

dt
(∂2µF0) = 4

{
±N
S

(
R′

R
− N ′

N

)
+
Ṙ

R
− Ṡ

S

}
∂2µF0 − 2

N

S
∂r∂µF0 + 2Bω∂ω∂µF0

+D∂µF0 + 2

(
Ṡ

S
− Ṙ

R

)
(ω∂ωF0)i, (6.1.38)
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for a radial geodesic, µ = ±1. We can also integrate this set of equations, and obtain the

solutions

∂2rF0 = e−2P (t,ti)(∂2rF0)i

+

∫ t

ti

dt1e
−2P (t,t1)

{
∓
(
N

S

)′′

∂rF0 + A′(ω∂ωF0)i + 2Aω∂ω∂rF0

}
t1

, (6.1.39)

∂r∂µF0 = e−P (t,ti)−Q(t,ti)(∂r∂µF0)i

+

∫ t

ti

dt1e
−P (t,t1)−Q(t,t1)

{
−N
S
∂2rF0 −

(
N

S

)′

∂rF0 + C∂µF0

+B′(ω∂ωF0)i +Bω∂ω∂rF0 + Aω∂ω∂µF0

}
t1

, (6.1.40)

∂2µF0 = e−2Q(t,ti)(∂2µF0)i +

∫ t

ti

dt1e
−2Q(t,t1)

{
−2

N

S
∂r∂µF0 +D∂µF0

+2

(
Ṡ

S
− Ṙ

R

)
(ω∂ωF0)i + 2Bω∂ω∂µF0

}
t1

,

(6.1.41)

where

C ≡ 2

{
±N
S

(
R′

R
− N ′

N

)
+
Ṙ

R
− Ṡ

S

}′

, D ≡ 2
N

S

(
R′

R
− N ′

N

)
± 6

(
Ṙ

R
− Ṡ

S

)
. (6.1.42)

Thus, we have the six solutions, (ω∂ω)
2F0, ω∂ω∂rF0, etc. However, we note that

(ω∂ω)
2F0 is just constant. Furthermore, by inspecting the regularity of F0 at the center,

as well as the behavior of some geometric quantities near the center, we can find that only

∂2rF0 becomes relevant to the evaluation of ∂i∂jF in the limit r → 0. In fact, as we show

in Appendix (see (D.30)),

∂i∂jF → 2

(
δij − S2

0

pipj

p2

)
(f2)0 + S2

0

pipj

p2
(∂2rF0)0

+

{(
a′′⊥
a⊥

− N ′′

N

)
0

δij + C0
pipj

p2

}
(ω∂ωF0)i, (6.1.43)

where f2 = ∂r2F (see (D.7) in Appendix), and a⊥ ≡ R/r, which corresponds to the ‘scale

factor’ perpendicular to the radial direction. Then, in terms of f2 and ∂2rF0, the CMB
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quadrupole formula (6.1.13) is written as

(
δT

T

)(2)

= −1

2

δxiδxj

(ω∂ωF0)i

[
2(δij − ΩiΩj)(f2)0 + ΩiΩj(∂

2
rF0)0

+

{
a′′⊥
a⊥
δij + a⊥ (S ′′ − a′′⊥)

ΩiΩj

S2

}
0

(ω∂ωF0)i

]

+
1

2

{(
δT

T

)(1)
}2

{(ω∂ω)2F0}i
(ω∂ωF0)i

, (6.1.44)

where Ωi ≡ δijx
j/r. So, the remaining task is to find the expressions of the leading

behavior of f2 and ∂2rF0 at the center r → 0.

First, we note from (D.28) that (f2)0 is given by

(f2)0 =
1

2

(
∂rF0

r
∓ ∂µF0

r2

)
0

. (6.1.45)

In the limit r → 0, from (6.1.18), the second term of this equation can be written as

∂µF0

r2
→ a⊥

2
0

N2
0

N2
i

R2
i

e−2U(t0,ti)(∂µF0)i ∓
a⊥

2
0

N2
0

∫ ri

0

dr
N2

r2
e−2U(t0,t)

a2⊥

(
−∂rF0 +

S

N
Bω∂ωF0

)
=

a⊥
2
0

N2
0

N2
i

R2
i

e−2U(t0,ti)(∂µF0)i ±
a⊥

2
0

a⊥2
i

e−2U(t0,ti)

ri

(
−∂rF0 +

S

N
Bω∂ωF0

)
i

∓
{
1

r

(
−∂rF0 +

S

N
Bω∂ωF0

)}
0

±a⊥
2
0

N2
0

∫ t0

ti

dt
N2

r

d

dt

{
e−2U(t0,t)

a2⊥

(
−∂rF0 +

S

N
Bω∂ωF0

)}
. (6.1.46)

From the second row of (6.1.15), we have

−N
2

r

d

dt

(
∂rF0

a2⊥
e−2U(t0,t)

)
= −N

2

r

[{
2

(
Ṡ

S
− Ṙ

R
− Ṅ

N
∓ N

S

a′⊥
a⊥

)
∓
(
N

S

)′
}
∂rF0

a2⊥
e−2U(t0,t)

+
A

a2⊥
e−2U(t0,t)(ω∂ωF0)i

]
. (6.1.47)
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Thus, (f2)0 becomes

(f2)0 = ∓1

2

a⊥
2
0

N2
0

N2
i

R2
i

e−2U(t0,ti)(∂µF0)i −
a⊥

2
0

a⊥2
i

e−2U(t0,ti)

2ri

(
−∂rF0 +

S

N
Bω∂ωF0

)
i

+

(
1

r

S

N
Bω∂ωF0

)
0

−1

2

a⊥
2
0

N2
0

∫ t0

ti

dt
N2

r

[
−

{
2

(
Ṡ

S
− Ṙ

R
− Ṅ

N
∓ N

S

a′⊥
a⊥

)
+

(
N

S

)′
}
∂rF0

+

{
Ṅ

N
−

(
Ṡ

S

)′

− 2

(
Ṅ

N
− Ṡ

S

)
S

N
B + a2⊥

d

dt

(
SB

Na2⊥

)}
(ω∂ωF0)i

]
e−2U(t0,t)

a2⊥
.

(6.1.48)

Next, from (6.1.39), we obtain

(∂2rF0)0 = e−2P (t0,ti)(∂2rF0)i

+

∫ t0

ti

dte−2P (t0,t)

{
2Aω∂ω∂rF0 + A′(ω∂ωF0)i ±

(
N

S

)′′

∂rF0

}
.(6.1.49)

Thus, substituting (6.1.48) and (6.1.49) with (6.1.17) and (6.1.34) into (6.1.44), we

finally obtain the quadrupole formula for the CMB temperature anisotropy. As in the

dipole formula case, under the assumption that our metric (6.1.1) is regular at the sym-

metry center, we can check that the above quadrupole formula is well-defined.

6.2 CMB anisotropies in local void models

In this section, the CMB temperature anisotropy formulae obtained in the previous section

will be given concrete expressions for the LTB cosmological models, and then will be

applied in some specific LTB models considered in the numerical analyses of Alnes and

Amarzguioui [47], to check the consistency of the formulae. Further, the constraint on the

location of off-center observers will be derived by our analytic formulae with the latest

WMAP data, thereby updating the previous results numerically obtained. But before

doing so, we will first briefly recapitulate the LTB metric.
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6.2.1 LTB spacetime

A spherically symmetric spacetime with only non-relativistic matter, or dust, is described

by the LTB metric, which may be given by setting in (6.1.1),

N2 = 1, S =
R′(t, r)

1− k(r)r2
, (6.2.1)

with k(r) begin an arbitrary function of r. Then, the Einstein equations reduce to

(
Ṙ

R

)2

=
2GM(r)

R3
− k(r)r2

R2
, 4πρ(t, r) =

M ′(r)

R2R′ , (6.2.2)

where M(r) is an arbitrary function of only r, and ρ(t, r) is the energy density of the

dust fluid. The solutions to (3.3.2) depend on the sign of k(r) and can be expressed in

parametric form: For k(r) > 0, we have

R(t, r) =
M(r)

k(r)r2
(1− cos η), t− ts(r) =

M(r)

{k(r)r2} 3
2

(η − sin η), (6.2.3)

where ts(r) is an arbitrary function of only r. For k(r) = 0, we have

R(t, r) =

(
9

2

) 1
3

M
1
3 (r){t− ts(r)}

2
3 . (6.2.4)

For k(r) < 0, we have

R(t, r) =
M(r)

−k(r)r2
(cosh η − 1), t− ts(r) =

M(r)

{−k(r)r2} 3
2

(sinh η − η). (6.2.5)

The area radius R(t, r) vanishes at t = ts(r), so that ts(r) is called the big-bang time.

The solutions admit three arbitrary functions k(r), M(r) and ts(r), but due to one degree

of freedom in rescaling r, only two of them are independent. By appropriately choosing

the profile of these two arbitrary functions, one can construct LTB cosmological models

that can reproduce the observed SN Ia distance-redshift relation.
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6.2.2 CMB dipole in local void models

In the LTB cosmological model, in addition to a⊥ = R/r defined previously, we also in-

troduce the ‘scale factor along the radial direction’ by a//(t, r) ≡ R′(t, r). Accordingly, we

also define two Hubble expansion rates in the radial and azimuthal direction, respectively,

by

H// ≡
Ṡ

S
=
ȧ//

a//

, H⊥ ≡ Ṙ

R
=
ȧ⊥
a⊥
. (6.2.6)

From (6.1.19) and (6.1.23), we obtain

U(t1, t2) = −
∫ t2

t1

dtH//, A = H ′
//, B = ±2(H// −H⊥). (6.2.7)

Then, the analytic formula for the CMB temperature anisotropy dipole (6.1.29) takes the

form

(
δT

T

)(1)

= ∓δLn · Ω
{
e−U(t0,ti)

Si

(
∂rF0

ω∂ωF0

)
i

+

∫ ri

0

drH ′
//e

−U(t0,t)

}
. (6.2.8)

Now, using this formula, we derive some constraints concerning the position of off-

center observers. In general, the CMB temperature anisotropy can be decomposed in

terms of the spherical harmonics Ylm by δT/T =
∑

l,m almYlm. We are interested in a10

as the dipole moment. From (6.2.8), we obtain

a10 =

√
4π

3
δL

{
e−U(t0,ti)

Si

(
∂rF0

ω∂ωF0

)
i

+

∫ ri

0

drH ′
//e

−U(t0,t)

}
. (6.2.9)

Assuming that the universe is locally in thermal equilibrium at the last scattering surface,

the second term in the bracket is of the order of (∂rT/T )i because F0 is isotropic and

depends only on ω/Ti. In the models we consider in this chapter, this term can be

neglected because the void size is sufficiently smaller than the horizon size and therefore,

the observed region of the LTB universe is homogeneous with good accuracy on the

last scattering surface. Furthermore, in order to estimate this term correctly, we have

to specify the universe model before the last scattering. This is beyond the scope of

this chapter. Therefore, we have only estimated the contribution of the second term
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numerically. For the LTB model considered in [47], we have found that the induced a10 is

about 1.23×10−3 or less, according to WMAP data [130], which implies that the distance

from the observer to the center, δL, has to be, δL <∼ 16Mpc. This is consistent with the

numerical result of [47]. We have also applied this formula to various LTB models, and

found, for example, δL <∼ 14Mpc in the Garfinkle model [48], and δL <∼ 12Mpc in the

GBH model [52].

6.2.3 CMB quadrupole in local void models

As for the quadrupole moment in the LTB model, from (6.1.48) and (6.1.49), we obtain

(f2)0 = ∓1

2

a20
R2

i

e−2U(t0,ti)(∂µF0)i −
a20
a⊥2

i

e−2U(t0,ti)

2ri

(
−∂rF0 +

a//√
1− k(r)r2

Bω∂ωF0

)
i

−a
2
0

2

∫ t0

ti

dt
1

r

[
−
{
2

(
H// −H⊥ ∓ ξ

a//

a′⊥
a⊥

)
+

(
ξ

a//

)′}
∂rF0

+

{
−H ′

// + 2H//

a//

ξ
B + a2⊥

d

dt

(
SB

Na2⊥

)}
(ω∂ωF0)i

]
e−2U(t0,t)

a2⊥
,

(6.2.10)

(∂2rF0)0 = e−2P (t0,ti)(∂2rF0)i

+

∫ t0

ti

dte−2P (t0,t)

{
2H ′

//ω∂ω∂rF0 +H ′′
//(ω∂ωF0)i +

(
ξ

a//

)′′

∂rF0

}
,

(6.2.11)

where a0 ≡ S0 = a//0 = a⊥0, and ξ ≡
√
1− k(r)r2, just for notational simplicity, and

where

P (t1, t2) = ∓
∫ t2

t1

dt

(
ξ

a//

)′

, (6.2.12)

which is obtained from (6.1.20). Thus, we now have the analytic formula for quadrupole

moment of the CMB temperature anisotropy in the LTB model: (6.1.44) together with

(6.2.10) and (6.2.11).

From (6.1.44), we derive

a20 = −
√

16π

45

(δL)2

2a20

{
− 2(f2)0
(ω∂ωF0)i

+
(∂2rF0)0
(ω∂ωF0)i

+
(S ′′ − a′′⊥)0

a0

}
+

(a10)
2

2
√
5π

((ω∂ω)
2F0)i

(ω∂ωF0)i
.

(6.2.13)
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If the universe is locally in thermal equilibrium at the beginning, we can set (∂α∂µF0)i

to be zero. Further, for the same reason as we explained for the dipole formula, we

neglect the term (∂α∂rF0)i in this chapter. Under these assumption, we have estimated

the quadrupole moment using this formula numerically for the model in [47], and found

that a20 ≃ 8.61 × 10−7. This is consistent with the numerical result of [47]. For other

models, for example, a20 ≃ 5.51×10−6 in the Garfinkle model [48], and a20 ≃ −9.27×10−7

in the GBH model [52].

94



Chapter 7

Summary and discussion

In this thesis, we have provided formalisms for cosmological tests of models that can

explain the apparent accelerated expansion of the present universe, such as modified

gravity models and local void models, and also give constraints on local void models.

Although the universe is isotropic and homogeneous on sufficiently large scales under

the cosmological principle, the universe has inhomogeneities in practice. Therefore, we

particularly focus on inhomogeneities of the universe in this thesis.

In Chapter 5, we have addressed the effective gravitational stress-energy tensor for

short-wavelength perturbations in the simple class of f(R) gravity of R2 type in the

cosmological context. As in Isaacson’s formula for Einstein gravity reviewed in Sec. 5.1,

we have obtained the field equations for the background metric with a backreaction source

term T eff
µν of order O(1) of the small parameter ϵ. Reflecting the fact that our f(R)

theory contains higher-order derivative terms, the source term or the effective stress-

energy tensor T eff
µν takes, as given in (5.2.13), quite a complex form that contains, in

principle, terms of fourth-order derivatives, schematically expressed as ⟨∇h∇h∇h∇h⟩.

The resultant expression, (5.2.13), of the effective stress-energy tensor in fact applies to

any background metric g
(0)
µν ; until this point, no symmetry assumption on the background

metric has been used. Then, by imposing that our background has FLRW symmetry, we

have derived our effective stress-energy tensor for short-wavelength metric perturbations

in cosmological models. At this point, thanks to the background FLRW symmetry, the

spacetime averaging over several wavelengths and our choice of the constant S1 = 0, the
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expression of our effective stress-energy tensor has been significantly reduced to have the

simple form, (5.2.21). We have also shown that the effective stress-energy tensor obtained

is traceless, so that it acts like a radiation fluid as in the Einstein gravity case and thus,

in particular, cannot mimic dark energy.

We would like to stress that in order to obtain the traceless feature of our effective

stress-energy tensor, we have set S1 = 0. However, the field equations for Einstein gravity

need not be, a priori, reproduced in the limit to Einstein gravity: c → 0. In that case

S1 could take a non-vanishing value and give rise to a cosmological-constant-like term in

our effective stress-energy (5.2.20). It would be interesting to consider the question of

whether there exists any sensible way to provide the right sign and magnitude for S1 so

that (5.2.20) can mimic dark energy within the framework of our modified gravity theory.

Since any f(R) gravity theory is known to be equivalent to a scalar-tensor theory, we

have cast our f(R) theory into the corresponding scalar-tensor theory. Then, within

the scalar-tensor theory, we have derived the effective stress-energy tensor for short-

wavelength perturbations of the scalar field and checked consistency with the stress-energy

tensor obtained within the metric perturbations of the original f(R) theory.

Although we have focused on the R2 model, especially concerning the FLRW back-

ground, we have pushed forward our calculations with a general f(R) gravity about an

arbitrary background as far as possible, and have not used the property of the R2 model

about the FLRW background, up to (5.3.11) in Sec. 5.3. We can immediately note that

(5.3.11) does not involve any terms of fourth-order derivatives but has only terms of the

square of first-order derivatives of perturbations hµν and δϕ. We have mainly worked

in the Jordan frame in Sec. 5.2. When working in the Einstein frame, we have shown

the traceless nature of the effective stress-energy tensor by merely using the background

FLRW symmetry; we did not have to set S1 to any particular value. This is in contrast to

the case of the Jordan frame. This result obtained within the framework of scalar-tensor

theory indicates that the higher-order derivatives could also vanish in the metric frame-

work of general f(R) gravity theory for a generic background. However, to see whether

this is indeed the case needs further involved calculation, and is beyond the scope of this

chapter. This is left open for future study.

Our formulas derived in Sec. 5.2 deal directly with the scalar curvature R and the
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Ricci tensor Rµν , and therefore should apply to similar analyses of other modified gravity

theories which contain higher-order curvature terms composed of R, Rµν , and R
a
bcd and

which cannot even be cast in the form of a scalar-tensor theory. It would be interesting

to consider an extension of our present work to a wide class of modified gravity theories

with high-rank curvatures.

In Chapter 6, we derived the analytic formulae for the dipole (6.1.29) and quadrupole

(6.1.44) moments of the CMB temperature anisotropy in general spherically symmetric

spacetimes, including the LTB cosmological model as a special case. The formulae can

be used to compare consequences of the LTB/local void models with observations of the

CMB temperature anisotropy rigorously. The formulae also enable us to identify physical

origins of the CMB temperature anisotropy in the LTB models. For example, in the CMB

dipole formula (6.1.29), the first term comes from the initial (spherical) inhomogeneity at

the last scattering surface, while the second term represents the integrated Sachs-Wolfe

effect. Note that the first term also contains a contribution that reduces to the second-

order ISW effect in the spatially homogeneous case.

We have checked the consistency of our formulae for both dipole and quadrupole, with

the widely-used recent numerical results for the special LTB model by H. Alnes and M.

Amarzguioui [47]. Furthermore, we applied our formulae to other LTB models, such as

those in [48,52] and in particular, for the dipole moment, we found the constraints on the

distance between the void center and an off-center observer, by using the latest WMAP

data.

We can also utilise our analytic quadrupole formula to discuss the relevance of the LTB

model to observed anomalies. For example, the observed magnitude of the quadrupole is

known to be significantly lower than the ΛCDM model predicts. This is usually under-

stood as a cosmic variance, i.e., to be produced by a special feature of our Universe, one

particular realisation of the statistical ensemble. Because the local void model is one of

such realisation with a very low probalibity in the standard ΛCDM model, it is tempting

to see whether the quadrupole anomaly of the CMB anisotropy can be explained by a local

void model. Unfortunately, however, the above analysis of the constraint on the oberver

offset by the dipole moment implies that the observed anomaly cannot be explained soly by

the induced quadrupole moment in LTB models such as those in [47,48,52]. Nevetheless,
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this result is not conclusive. For example, we have implicitly assumed that the off-center

observer stays at a fixed comoving position. If the observer has a peculiar velocity pointed

toward the center of the void, however, the value of δL could be chosen to be much larger

than the case with no peculiar velocity. If it is the case, then the observed anomaly of the

quadrupole could be explained within the LTB models of [47,48,52]. Therefore, it would

also be worth attempting to develop other analytic formulae concerning CMB polariza-

tions, lensing effects, etc. (cf. [131]) that can be used to distinguish the LTB and FLRW

cosmologies.
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Appendix A

Perturbation formulas in

transverse-traceless gauge

The conditions of transverse-traceless waves are ∇µh
TTµ

ν = hTTµ
µ = 0. The Ricci tensors

for hTT
µν are

Cµ(1)
µν [hTT] = 0 , (A.1)

R(1)
µν [h

TT] = ∇λC
λ(1)
νµ [hTT] ,

= −1

2
□hTT

µν (A.2)

R(2)
µν [h

TT] = 2∇[λC
λ(2)
ν]µ [hTT]− Cλ(1)

σν [hTT]C
σ(1)
λµ [hTT]

= −1

2
hTTλσ∇λ

(
∇νh

TT
σµ +∇µh

TT
νσ −∇σh

TT
νµ

)
+
1

2
∇ν

{
hTTλσ

(
∇λh

TT
σµ +∇µh

TT
λσ −∇σh

TT
λµ

)}
−1

4

(
∇σh

TTλ
ν +∇νh

TT
σ
λ −∇λhTT

σν

)(
∇λh

TTσ
µ +∇µh

TT
λ
σ −∇σhTT

λµ

)
,

(A.3)
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and the scalar curvatures for hTT
µν are

R(1)[hTT] = g(0)µνR(1)
µν [h

TT]

= 0 , (A.4)

R(2)[hTT] = g(0)µνR(2)
µν [h

TT]− hTTµνR(1)
µν [h

TT]

=
3

4
∇µhTTνλ∇µh

TT
νλ − 1

2
∇µhTTνλ∇λh

TT
µν + hTTµν□hTT

µν , (A.5)

where we have used [∇µ,∇ν ]h
TT
λσ = R α

λ µν [g
(0)]hTT

ασ + R α
σ µν [g

(0)]hTT
λα = O(ϵ). From (5.1.6)

and (A.2), we find □hTT
µν = 0. Using these we find

⟨
R(2)

µν [h
TT]
⟩

= −1

4
∇µh

TTλσ∇νh
TT
λσ , (A.6)⟨

R(2)[hTT]
⟩

= 0 . (A.7)
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Appendix B

General treatment of high frequency

limit in general relativity

B.1 Characterization of high frequency limit in gen-

eral relativity

The metric with the linear perturbation hab is described by

gab = γab + hab, (B.1)

where γab is the background metric including the backreaction from perturbations, and is

normalized: γab ∼ O(1). hab and its derivatives are of order hab ∼ O(ϵ) and

∇a1∇a2 · · · ∇amhbc ∼ O

(
ϵ

(λ/L)m

)
∼ O

(
ϵ1−m

)
, (B.2)

where ∇a denotes the covariant derivative with respect to γab, so that ∇aγbc = 0, and ϵ is

the smallness parameter. λ is the wavelength of perturbations, such as h ∼ ϵ sin(x/λ) and

λ/L ∼ O(ϵ). L is a characteristic length over the background, and normalized: L ∼ 1.

The inverse metric takes the form

gab = γab − hab + hach
cb + · · ·, (B.3)
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where hab ≡ γacγbdhcd.

We can not have ∇ahbc → 0 pointwise λ → 0, but suitable spacetime averages of

∇ahbc will go to 0. More precisely, if fabc is any smooth tensor field of compact support,

we have

∫
fabc∇ahbc = −

∫ (
∇af

abc
)
hbc

−→
λ→0

0. (B.4)

If this equation holds for all test tensor fields fabc, we say that ∇ahbc → 0 weakly.

There is the general relationship between the Ricci tensor of gab and of γab, namely

Rab = Rab[γ] + 2∇[cC
c
b]a + 2Cc

d[cC
d
b]a, (B.5)

where

Ca
bc ≡ Γa

bc − Γa
bc[γ]

=
gad

2
(∇bgdc +∇cgbd −∇dgbc) . (B.6)

Because Rab includes g
−1∇∇g, ∇g−1∇g and g−1g−1∇g∇g, we can find

R
(n)
ab [h] ∼ O

(
ϵn−2

)
, (B.7)

where n is the number of hab included in Rab and a natural number. We also find

R(n)[h] ∼ G
(n)
ab [h] ∼ O

(
ϵn−2

)
, ∇a1∇a2 · · · ∇amR

(n)[h] ∼ O
(
ϵn−2−m

)
, (B.8)

where R = gabRab, Gab = Rab − gabR/2 is the Einstein tensor, and R(n)[h] and G
(n)
ab [h] do

not include Rab[γ].

We define a smooth tensor field µabcdef as

µabcdef ≡ w-lim
λ→0

(∇ahcd∇bhef ) , (B.9)
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where ”w-lim” means the weak limit. It follows immediately that µabcdef = µab(cd)(ef) =

µba(ef)(cd). The tensor field µabcdef also has the symmetry µabcdef = µ(ab)cdef because

µ[ab]cdef = w-lim
λ→0

(
∇[a|hcd∇|b]hef

)
= −w-lim

λ→0

(
hcd∇[a∇b]hef

)
= −w-lim

λ→0

(
hcdRab(e

g[γ]hf)g
)

= 0, (B.10)

where Rabc
d[γ] is the Riemann tensor. Using the Leibniz rule, we derive the relation

w-lim
λ→0

(hcd∇a∇bhef ) = −w-lim
λ→0

(∇ahcd∇bhef )

= −µabcdef . (B.11)

B.2 Effective gravitational stress-energy tensor

The Einstein equation is

Gab = Rab −
1

2
gabR = κ2Tab, (B.1)

where κ2 = 8πG. We can derive the vacuum Einstein equation of O (ϵ−1):

G
(1)
ab [h] = R

(1)
ab [h]−

1

2
γabR

(1)[h] = 0, (B.2)

and that of O (1):

Gab[γ] = −w-lim
λ→0

G
(2)
ab [h] ≡ κ2T eff

ab , (B.3)

where T eff
ab is the effective gravitational stress-energy tensor. From (B.2), we find

R
(1)
ab [h] = 0. (B.4)
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Then, T eff
ab becomes

κ2T eff
ab = −w-lim

λ→0

(
R

(2)
ab [h]−

1

2
γabR

(2)[h]

)
= −w-lim

λ→0

(
R

(2)
ab [h]−

1

2
γabγ

cdR
(2)
cd [h]

)
=

γab
8

(
2µcd e

cd e + µc de
c de − 2µcd e

c de − µc d e
c d e

)
−1

4

(
4µc d

[cd]a b + 2µc d
(ab)c d − µc d

c dab − µ cd
ab cd

)
, (B.5)

because

w-lim
λ→0

R
(2)
ab [h] = w-lim

λ→0

(
2C

c (1)
d[c [h]C

d (1)
b]a [h]

)
=

1

4

(
4µc d

[cd]a b + 2µc d
(ab)c d − µc d

c dab − µ cd
ab cd

)
, (B.6)

where we use the fact that ∇dC
a(2)
bc [h] → 0 weakly since C

a(2)
bc [h] → 0 weakly, and indices

are raised and lowered with γab and γab.

µabcdef is completely determined by the combination αabcdef ≡ µ[c|[ab]|d]ef and βabcdef ≡

µ(abcd)ef , so that

µabcdef = −4

3

(
αc(ab)def + αe(ab)fcd − αe(cd)fab

)
+ βabcdef + βabefcd − βcdefab, (B.7)

since

−4

3
αc(ab)def + βabcdef = −2

3

(
µ[b|[ca]|d]ef + µ[a|[cb]|d]ef

)
+ µ(abcd)ef

=
1

2
(µabcdef + µcdabef ) . (B.8)

Note that αabcdef = α[ab][cd](ef) = α[cd][ab](ef) and βabcdef = β(abcd)(ef) from their definitions.
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We can also find

α[abc]def =
1

3

(
α[ab]cdef + α[bc]adef + α[ca]bdef

)
=

1

3
(αabcdef + αbcadef + αcabdef )

=
1

3

(
µ[c|[ab]|d]ef + µ[a|[bc]|d]ef + µ[b|[ca]|d]ef

)
= 0 (B.9)

and

α b
abc ef = µ[c|[ab]|d]efγ

bd

= −w-lim
λ→0

(
hef∇[a|∇[chd]|b]γ

bd
)

= −w-lim
λ→0

(
hef∇[aC

b(1)
b]c [h]

)
= −w-lim

λ→0

(
hef

1

2
R(1)

ac [h]

)
= 0, (B.10)

because [∇a,∇b]hcd = O(ϵ) and (B.4).

Thus, (B.5) becomes

κ2T eff
ab =

γab
8

· 0− 1

4

{
−4

3

(
2αd c

(ca)b d − αc d
(ab) cd − αc(ab)d

cd
)}

= α c d
a b cd, (B.11)

and then

T effa
a = 0, (B.12)

because αabcdef is trace-free on its first four indices. Note that the right hand side is

independent of βabcdef .

B.3 Gauge

A infinitesimal gauge transformation is expressed as xa → x̃a = xa + ξa, where ξa is

regarded as a quantity of the same order as the perturbations. The change of the perturbed
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metric tensor under this gauge transformation is given by

g̃ab(x) ≃ gab(x)− 2γc(a(x)∂b)ξ
c − ξc∂cγab(x)

= γab(x) + hab(x)− 2γc(a(x)∂b)ξ
c − ξc∂cγab(x) (B.1)

because

g̃ab(x̃) =
∂xc

∂x̃a
∂xd

∂x̃b
gcd(x)

≃
(
δca −

∂ξc

∂x̃a

)(
δdb −

∂ξd

∂x̃b

)(
gcd(x̃)− ξl∂̃lgcd(x̃)

)
. (B.2)

Thus, we have

γ̃ab(x) = γab(x), (B.3)

ϵh̃ab(x) = hab(x)− 2γc(a(x)∂b)ξ
c − ξc∂cγab(x). (B.4)

We define some tensor fields τ d f
abc e and σ d

abc ef as

w-lim
λ→0

{
∇a

(
X̃c −Xc

)
∇b

(
Ỹe − Ye

)}
≡ τ d f

abc e XdYf , (B.5)

w-lim
λ→0

{
∇a

(
X̃c −Xc

)
∇b (ϵhef )

}
≡ σ d

abc efXd (B.6)

for any smooth fields Xa and Yb. It follows that τ d f
abc e and σ d

abc ef have symmetries

σ d
abc ef = σ d

(abc) (ef) and τ d f
abc e = τ

(d f)
(abc e) . The symmetries σ d

[ab]c ef = σ d
abc [ef ] = 0 are

clear. Note that

2∇[a

(
X̃b] −Xb]

)
= (dX̃)ab − (dX)ab

= ˜(dX)ab − (dX)ab, (B.7)

where d is the exterior derivative and we use the fact that (dX̃)ab = ˜(dX)ab. Since

X̃a → Xa uniformly as ϵ → 0, the symmetry σ d
a[bc] ef = 0 follows. The symmetries of

τ d f
abc e follow similarly. In addition, we can find the symmetry σ[c|[a|ef |b]|d]γ

bd = 0 similarly
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to (B.10). The change of µabcdef under this gauge transformation is given by

µ̃abcdef = w-lim
λ→0

(
∇ah̃cd∇bh̃ef

)
= w-lim

λ→0

[
∇a

(
h̃cd − hcd

)
∇b

(
h̃ef − hef

)
+∇a

(
h̃cd − hcd

)
∇bhef +∇ahcd∇b

(
h̃ef − hef

)
+∇ahcd∇bhef

]
= τ m n

abc e gmdgnf + τ m n
abc f gmdgen + τ m n

abd e gcmgnf + τ m n
abd f gcmgen

+σ m
abc efgmd + σ m

abd efgcm + σ m
abc efgid + σ m

abc efgmd

+µabcdef

= µabcdef + 2
(
σab(cd)ef + σab(ef)cd

)
+ 4τab(cd)(ef), (B.8)

where, in the third step, we use the fact that h̃ab − hab = g̃ab − gab from (B.3) and (B.4).

The fourth step results by taking the terms of order O (1). From this relation, we can

find that

α̃abcdef = µ̃[c|[ab]|d]ef

= αabcdef + 2σ[c|[a|(ef)|b]|d]. (B.9)

We define two tensor fields Tab ≡ αacbd
cd and Sab ≡ ∗αacbd

cd where ∗αabcdef ≡ ϵab
ghαghcdef .

We can show that, if α̃abcdef and αabcdef give rise to the same Tab and Sab, then α̃abcdef

and αabcdef are related as in (B.9) for some σefa
b
cd satisfying the symmetries and traces

given above. That is, Tab and Sab are the only gauge invariant parts of µabcdef . The tensor

field Tab is just the effective stress energy associated with the high frequency gravitational

waves that this field is gauge invariant.
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Appendix C

Solution of ∇µ∇νS(t, x⃗) = 0

We solve the equation

∇µ∇νS(t, x⃗) = 0 , (C.1)

such as (5.2.7), in the FLRW background spacetime:

ds2 = −dt2 + a2(t)γijdx
idxj . (C.2)

Since we are interested in the expanding universe, in what follows we assume that the

scale factor a(t) is dynamical, i.e., a(t) ̸= const. The (0, 0), (0, i) and (i, j) components

of (C.1) are

S̈(t, x⃗) = 0, (C.3)

∂iṠ(t, x⃗)−
ȧ(t)

a(t)
∂iS(t, x⃗) = 0, (C.4)

∂i∂jS(t, x⃗)− a(t)ȧ(t)γijṠ(t, x⃗)− Γ
k(3)
ij ∂kS = 0, (C.5)

where the dot denotes the derivative with respect to the cosmic time. The solution of

(C.3) is

S(t, x⃗) = c1(x⃗)t+ c2(x⃗) , (C.6)

where c1(x⃗) and c2(x⃗) are arbitrary functions of x⃗. Since ȧ ̸= 0, Equation (C.4) becomes

(
a(t)

ȧ(t)
− t

)
∂ic1(x⃗) = ∂ic2(x⃗) . (C.7)
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Therefore, either

c1, c2 = const. (C.8)

or ∂ic2/∂ic1 = const. In the latter case, by shifting t→ t− const., we have ȧ/a = 1/t, and

therefore have a(t) ∝ t; the behavior of the background FLRW universe is determined.

This is, in our present context, too restrictive, and for this reason, we should take the

former case; c1, c2 = const. Then, equation (C.5) for i = j becomes

a(t)ȧ(t)γijc1 = 0 , (C.9)

which immediately implies

c1 = 0 . (C.10)

Therefore we find the solution of (C.1) to be

S = const. (C.11)
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Appendix D

The regularity and derivatives of F0

near the center

In this appendix, we discuss the regularity of the distribution function F at the symmetry

center, and find which of ∂αF (resp. ∂α∂βF ), α, β = r, ω, µ, become relevant in the leading

behavior of the first- (resp. second-) order derivatives of F in the limit r → 0.

Mathematically, the distribution function can become singular at some radius includ-

ing at the center (r = 0). Furthermore, some authors concluded that a C2−-class singu-

larity of the metric should be allowed at the center in order to construct a model with

accelerated expansion exactly at the center [49]. However, such a model can be easily

made smooth by appropriate smoothing and the original singular model can be recovered

as a limit such that the smoothing length approaches zero. Hence, the final formulae for

the dipole and quadrupole anisotropies of CMB given in this appendix can be applied

also to models with singularity in the metric or the distribution function simply if the

results are finite. Hence, in this appendix, we assume that the metric and the distribu-

tion function are regular and smooth everywhere in Cartesian-type space coordinates on

which the rotational symmetry group acts as on the standard Cartesian coordinates of

the Euclidean space.

In such a coordinate system x = (xi), the spatial part of the metric (6.1.1), denoted

here by gij, can be written as

gij = S2ΩiΩj + a2⊥(δij − ΩiΩj), (D.1)
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where Ωi ≡ xi/r and a⊥ ≡ R/r. For any smooth and rotationally invariant function h in

this coordinate system, when it is Taylor expanded as

h = h0 + hix
i + hijx

ixj + · · · , (D.2)

where each coefficient hij··· must be a rotationally invariant constant tensor. Hence, these

coefficient tensors vanish for odd ranks and can be written as the sum of products of the

Kronecker delta δij for even ranks. This implies that h should be a smooth function of

r2 = δijx
ixj.

Similarly, a smooth distribution function in this coordinate system can be Taylor

expanded as

F (t,x, p) = b0(t,p) + bi(t,p)x
i + bij(t,p)x

ixj + · · · , (D.3)

where p = (pi). When F is rotationally invariant, each term on the right-hand side is ro-

tationally invariant seperately. This implies that each bi1···il is an SO(3) tensor depending

only on the non-trivial vector pi and therefore, can be written as the sum of products of

the Kronecker delta δij and the vector p = (pi). This implies that F can be written

F (t,x,p) = f̃(t, xix
i, |p|, xipi), (D.4)

where xix
i = r2 and |p| = (δijp

ipj)1/2. Here, from

p2 ≡ gijp
ipj = C(xip

i)2 + a2⊥δijp
ipj, (D.5)

where C is a smooth function defined by

C(t, r) ≡ S2 − a2⊥
r2

, (D.6)

it follows that |p| is a smooth function of t, ω = p, xip
i and r2. Therefore, the regularity of

F at the center is equivalent to the condition that the corresponding function F0(t, r, ω, µ)

can be written in terms of a smooth function f with the four arguments t, r2, y ≡ lnω, ν ≡

rµ = xip
i/p

F0(t, r, ω, µ) = f(t, r2, y, ν). (D.7)
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Then,

∂iF = ∂if = {∂i(r2)}f2 + (∂iy)fy + (∂iν)fν , (D.8)

where f2 ≡ ∂r2f, fy ≡ ∂yf , and fν ≡ ∂νf . Here, because the spatial derivative of p2 can

be written

∂i(p
2) =

{
C ′

r
(rpr)2 +

(a2⊥)
′

r
δjkp

jpk
}
xi + 2C(rpr)pi, (D.9)

we have

∂i(r
2) = 2xi, (D.10)

∂i(lnω) =

{
−N ′

rN
+

a′⊥
ra⊥

+

(
C ′

2r
− Ca′⊥
ra⊥

)(µr
S

)2}
xi + C

µr

S

pi

p
, (D.11)

∂iν = S
pi

p
+ rS ′x

i

r

pr

p
− rSpr

∂i(p
2)

2p3
. (D.12)

In particular, in the limit r → 0, we see

C → {a⊥(S ′′ − a′′⊥)}0, (D.13)

∂i(p
2), ∂i(r

2), ∂i(lnω) → O(r) , (D.14)

∂iν → S0
pi

p
. (D.15)

Therefore, from (D.8), we find that the first derivative of F0 behaves at the center as

∂iF → S0
pi

p
(fν)0 = S0

pi

p

(
∂µF0

r

)
0

. (D.16)

Next we study the second order derivatives of F with respect to xi, which are written

as

∂i∂jF = {∂i∂j(r2)}f2 + {∂j(r2)}
[
{∂i(r2)}f22 + (∂iy)f2y + (∂iν)f2ν

]
+(∂i∂jy)fy + (∂jy)

[
{∂i(r2)}fy2 + (∂iy)fyy + (∂iν)fyν

]
+(∂i∂jν)fν + (∂iν)

[
{∂i(r2)}fν2 + (∂iy)fνy + (∂iν)fνν

]
. (D.17)
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We find that

∂i∂j(r
2) = 2δij, (D.18)

∂i∂j(p
2) =

[(
C ′

r

)′

(rpr)2 +

{
(a2⊥)

′

r

}′

δklp
kpl
]
xi
xj

r
+ 2

C ′

r
(rpr)(pixj + pjxi)

+

{
C ′

r
(rpr)2 +

(a2⊥)
′

r
δklp

kpl
}
δij + 2Cpipj, (D.19)

∂i∂j(lnω) =
∂i∂j(p

2)

2p2
− ∂i(p

2)∂j(p
2)

2(p2)2
−
(
N ′

rN

)′
xi

r
xj − N ′

rN
δij, (D.20)

∂i∂jν =
S ′

r

[
xipj + 2xjpi

p
− rpr

2p3
{xj∂i(p2) + xi∂j(p

2)}
]
+

(
S ′

r

)′
rpr

p

xixj

r

− S

2p3
{pi∂j(p2) + pj∂i(p

2)} − S
rpr

2p3

{
∂i∂j(p

2)− 3

2p2
∂i(p

2)∂j(p
2)

}
.

(D.21)

In particular, in the limit r → 0,

∂i∂j(r
2) → 2δij, (D.22)

∂i∂j(p
2) → 2

(
a′′⊥
a⊥

)
0

p2δij + 2C0p
ipj, (D.23)

∂i∂j(lnω) →
(
a′′⊥
a⊥

− N ′′

N

)
0

δij + C0
pipj

p2
, (D.24)

∂i∂j(ν) → O(r) . (D.25)

From these we find that in the limit r → 0,

∂i∂jF → 2δij(f2)0 +

{(
a′′⊥
a⊥

− N ′′

N

)
0

δij + C0
pipj

p2

}
(fy)0 + S2

0

pipj

p2
(fνν)0. (D.26)

Now, from (D.7), we find that ∂rF0 = 2rf2 + µfν , ∂µF0 = rfν , ω∂ωF0 = fy, and ∂
2
rF0 =
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2f2 + 4r2f22 + 4rµf2ν + µ2fνν , and hence in the limit r → 0,

fν →
(
∂µF0

r

)
0

, (D.27)

f2 → 1

2

(
∂rF0

r
− µ

∂µF0

r2

)
0

, (D.28)

fνν → 1

µ2

(
∂2rF0 −

∂rF0

r
+
µ

r2
∂µF0

)
0

=
1

µ2

(
∂2rF0 − 2f2

)
0
. (D.29)

Thus, we finally obtain

∂i∂jF → 2

(
δij − S2

0

pipj

p2

)
(f2)0 + S2

0

pipj

p2
(∂2rF0)0

+

{(
a′′⊥
a⊥

− N ′′

N

)
0

δij + C0
pipj

p2

}
(ω∂ωF0)i. (D.30)
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[52] J. Garćıa-Bellido and T. Haugbølle, JCAP 0804, 003 (2008).

[53] T. Buchert, Gen. Rel. Grav. 32, 105 (2000).

[54] S. Rasanen, JCAP 0402, 003 (2004).

[55] E. W. Kolb, S. Matarrese, A. Notari and A. Riotto, Phys. Rev. D 71, 023524 (2005).

119



[56] C. M. Hirata and U. Seljak, Phys. Rev. D 72, 083501 (2005).

[57] A. Ishibashi and R. M. Wald, Class. Quant. Grav. 23, 235 (2006).

[58] E. W. Kolb, S. Matarrese and A. Riotto, New J. Phys. 8, 322 (2006).

[59] M. Kasai, H. Asada and T. Futamase, Prog. Theor. Phys. 115, 827 (2006).

[60] V. Marra, E. W. Kolb, S. Matarrese and A. Riotto, Phys. Rev. D 76, 123004 (2007).

[61] E. W. Kolb, V. Marra and S. Matarrese, Gen. Rel. Grav. 42, 1399 (2010).

[62] K. Saito and A. Ishibashi, Prog. Theor. Exp. Phys. 013E04 (2013).

[63] R. A. Isaacson, Phys. Rev. 166, 1263 (1968).

[64] R. A. Isaacson, Phys. Rev. 166, 1272 (1968).

[65] G. A. Burnett, J. Math. Phys. 30, 90 (1989).

[66] S. R. Green and R. M. Wald, Phys. Rev. D 83, 084020 (2011).

[67] H. Kodama, K. Saito and A. Ishibashi, Prog. Theor. Phys. 124, 163 (2010).

[68] R. M. Wald, General Relativity, University of Chicago Press (1984).

[69] S. Weinberg, Cosmology, Oxford Univ. Pr. (2008).

[70] A. G. Riess et al., Astrophys. J. 730, 119 (2011).

[71] E. Komatsu et al, Astrophys. J. Suppl. 192, 18 (2011).

[72] A. R. Liddle and D. H. Lyth, Cosmological inflation and large-scale structure, Cam-

bridge University Press (2000).

[73] P. Astier et al. [The SNLS Collaboration], Astron. Astrophys. 447, 31-48 (2006).

[74] A. G. Riess et al. [Supernova Search Team Collaboration], Astrophys. J. 607, 665

(2004).

[75] A. G. Riess et al., Astrophys. J. 659, 98 (2007).

120



[76] W. M. Wood-Vasey et al. [ESSENCE Collaboration], Astrophys. J. 666, 694 (2007).

[77] T. M. Davis et al., Astrophys. J. 666, 716 (2007).

[78] M. Kowalski et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 686,

749 (2008).

[79] R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967).

[80] K. Sato, Mon. Not. R. Astron. Soc. 195, 467 (1981).

[81] A. H. Guth, Phys. Rev. D 23, 347 (1981).

[82] G. F. Smoot et al., Astrophys. J. 396, L1 (1992).

[83] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148, 175 (2003).

[84] L. Page et al. [WMAP Collaboration], Astrophys. J. Suppl. 148, 233 (2003).

[85] W. Hu and N. Sugiyama, Astrophys. J. 444, 489 (1995).

[86] W. Hu and N. Sugiyama, Astrophys. J. 471, 542 (1996).

[87] G. Efstathiou and J. R. Bond, Mon. Not. Roy. Astron. Soc. 304, 75 (1999).

[88] W. Hu, M. Fukugita, M. Zaldarriaga and M. Tegmark, Astrophys. J. 549, 669

(2001).

[89] M. Doran and M. Lilley, Mon. Not. Roy. Astron. Soc. 330, 965 (2002).

[90] R. Amanullah at al., Astrophys. J. 716, 712 (2010).

[91] D. J. Eisenstein et al. [SDSS Collaboration], Astrophys. J. 633, 560 (2005).

[92] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998).

[93] M. Shoji, D. Jeong and E. Komatsu, Astrophys. J. 693, 1404 (2009).

[94] W. J. Percival et al., Mon. Not. Roy. Astron. Soc. 401, 2148 (2010).

[95] B. Feng, X. L. Wang and X. M. Zhang, Phys. Lett. B 607, 35 (2005).

121



[96] B. A. Reid et al, Mon. Not. Roy. Astron. Soc. 404, 60 (2010).

[97] R. Tsutsui, T. Nakamura, D. Yonetoku, T. Murakami, S. Tanabe, Y. Kodama and

K. Takahashi, Mon. Not. Roy. Astron. Soc. 394, L31 (2009).

[98] L. Hollenstein, D. Sapone, R. Crittenden and B. M. Schaefer, JCAP 0904, 012

(2009).

[99] C. Armendariz-Picon, T. Damour and V. F. Mukhanov, Phys. Lett. B 458, 209

(1999).

[100] N. Arkani-Hamed, H. C. Cheng, M. A. Luty and S. Mukohyama, JHEP 0405, 074

(2004).

[101] F. Piazza and S. Tsujikawa, JCAP 0407, 004 (2004).

[102] A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

[103] J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).

[104] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984).

[105] K. i. Maeda, Phys. Rev. D 39, 3159 (1989).

[106] D. Lovelock, J. Math. Phys., 12, 498 (1971).

[107] C. M. Will, Theory and experiment in gravitational physics, Cambridge University

Press (1993).

[108] W. Hu and I. Sawicki, Phys. Rev. D 76, 104043 (2007).

[109] T. Baker, P. G. Ferreira and C. Skordis, arXiv:1209.2117.

[110] C.-M. Yoo, T. Kai and K. Nakao, Phys. Rev. D 83, 043527 (2011).

[111] C. Clarkson, T. Clifton and S. February, JCAP 0906, 025 (2009).

[112] R. Nshikawa, C.-M. Yoo and K. Nakao, Phys. Rev. D 85, 103511 (2012).

[113] W.J. Percival et al., MNRAS 381, 1053 (2007).

122



[114] H. Alnes and M. Amarzguioui, Phys. Rev. D 75, 023506 (2007).

[115] LIGO, www.ligo.caltech.edu.

[116] VIRGO, www.virgo.infn.it.

[117] Lcgt, gw.icrr.u-tokyo.ac.jp/lcgt/.

[118] N. Seto, S. Kawamura and T. Nakamura, Phys. Rev. Lett. 87, 221103 (2001).

[119] S. Kawamura et al., Class. Quant. Grav. 28, 094011 (2011).

[120] E. S. Phinney et al., Big Bang Obsever Mission Concept Study (NASA) (2003).

[121] B. F. Schutz, Class. Quant. Grav. 28, 125023 (2011).

[122] K. Danzmann and A. Rudiger, Class. Quant. Grav. 20, S1 (2003).

[123] T. Prince, American Astronomical Society Meeting 202, 3701 (2003).

[124] C. F. Sopuerta and N. Yunes, Phys. Rev. D 80, 064006 (2009).

[125] L. C. Stein and N. Yunes, Phys. Rev. D 83 064038 (2011).

[126] C. P. L. Berry and J. R. Gair, Phys. Rev. D 83, 104022 (2011).

[127] D. L. Lee, Phys. Rev. D 10, 2374 (1974).

[128] U. Gerlach and U. Sengupta, Phys. Rev. D 19, 2268 (1979).

[129] U. Gerlach and U. Sengupta, Phys. Rev. D 20, 3009 (1979).

[130] G. Hinshaw et al, Astrophys. J. Suppl. 170, 288 (2007).

[131] H. Goto and H. Kodama, Prog. Theor. Phys. 125, 815 (2011).

123


