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Abstract

We show that the ABJM theory, which is an N = 6 superconformal U(N) × U(N) Chern-
Simons gauge theory, can be studied for arbitrary N at arbitrary coupling constant by
applying a simple Monte Carlo method to the matrix model that can be derived from the
theory by using the localization technique. This opens up the possibility of probing the
quantum aspects of M-theory and testing the AdS4/CFT3 duality at the quantum level. Here
we calculate the free energy, and confirm the N3/2 scaling in the M-theory limit predicted
from the gravity side. We also find that our results nicely interpolate the analytical formulae
proposed previously in the M-theory and type IIA regimes. Furthermore, we show that some
results obtained by the Fermi gas approach can be clearly understood from the constant map
contribution obtained by the genus expansion. The method can be easily generalized to the
calculations of BPS operators and to other theories that reduce to matrix models. We also
study the supersymmetric Wilson loops in the ABJM theory. Our result nicely interpolates
the expressions at weak and strong coupling regions.
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Forward

M-theory is an eleven-dimensional theory, which has been proposed as a strong coupling
limit of the type IIA superstring theory. It has been also expected that the M-theory
includes the eleven-dimensional supergravity (11d SUGRA) as a low-energy limit. The 11d
SUGRA consists of the graviton, gravitino and three-form gauge field. The three-form field in
eleven dimensions electrically (magnetically) couples to two(five)-dimensional object. Such
objects naturally appear as black brane solutions conserving a part of supersymmetries in the
11d SUGRA. On the analogy of the relation between such solutions in the ten-dimensional
supergravities and objects in the superstring theories as string, NS5-brane and D-branes,
we can expect that the M-theory has fundamental two- and five-dimensional objects. These
objects are called as “M2-brane“ and “M5-brane“, respectively. In this thesis, we focus on
Physics of the multiple M2-branes.

As well known, a low-energy limit of parallel N Dp-branes is described by the (p + 1)-
dimensional U(N) maximally supersymmetric Yang-Mills theory. This U(N) gauge sym-
metry can be intuitively understood by the facts that open string includes spin-1 massless
boson in its spectrum and have an U(1) charge called as a Chan-Paton factor. What is
a low-energy effective theory of the parallel N M2-branes? Unfortunately, we have not an
established answer to this question yet as we will argue below.

From the single M2-brane analysis and implication of the AdS/CFT correspondence, we
expect that the low energy effective theory for N M2-branes has the following properties:

• Three dimensional conformal symmetry

• N = 8 supersymmetry

• SO(8) R-symmetry

• Moduli space: M = (R8)N/SN

• Identical to the three dimensional U(N) N = 8 super Yang-Mills theory in a strong
Yang-Mills gauge coupling limit

• Dual to the classical 11d SUGRA on AdS4 × S7 for N ≫ 1.

Such a theory had not been found for long years. There are many reasons for this. One
of most serious obstacle is difficulty of quantization of supermembrane [1] while there is
a M(atrix) conjecture [2]. This prevents us from finding spectrum and something like a
Chan-Paton factor for M2-branes. Another difficulty is that it is not easy to construct gauge
theory with conformal and high supersymmetry except for four dimensions. Since Yang-
Mills action is scale invariant only for four dimensions, we can use only Chern-Simons term
of vector multiplet and marginal term of chiral multiplet for the construction. Indeed in
1990’s, a maximal supersymmetric extension of Chern-Simons theory had been N = 3 [3, 4]
(see also [5]).

Meanwhile the Bagger-Lambert-Gustavsson (BLG) theory [6, 7] based on the Lie 3-
algebra [Xa, Xb, Xc] = fabcdX

d appeared. If we take the structure constant fabcd to be totally
anti-symmetric, then the BLG theory generically has manifest N = 8 supersymmetry, SO(8)
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R-symmetry and conformal symmetry. In spite of such successful structures, it is known that
the only nontrivial solution for a generalized Jacobi identity is the A4 algebra defined by
fabcd = ϵabcd [8, 9]. Then the resulting A4 BLG theory can be rewritten as the SU(2) ×
SU(2) Chern-Simons matter theory with a Chern-Simons level k [10]. Actually moduli
space analysis of this theory [11, 12] implies that the interpretation as two indistinguishable
M2-branes on R8/Zk can be possible only for k = 1 and k = 2. After proposed the BLG
theory, it has been found thatN = 4 superconfomal Chern-Simons theory can be constructed
by a type of quiver gauge theory [13, 14].

In 2008, Aharony, Bergman, Jafferis and Maldacena (ABJM) [15] has proposed a U(N)×
U(N) theory with Chern-Simons levels k and −k coupled to bi-fundamental matters. The
on-shell supersymmetric Lagrangian of the theory is given by

LU(N)×U(N)

= kTr

[
1

2
ϵµνρ

(
−Aµ∂νAρ −

2

3
AµAνAρ + Ãµ∂νÃρ +

2

3
ÃµÃνÃρ

)
+
(
−DµΦ̄

αDµΦα + iΨ̄α /DΨα

)
− iϵαβγδΦαΨ̄βΦγΨ̄δ + iϵαβγδΦ̄

αΨβΦ̄γΨδ

+i
(
−Ψ̄βΦαΦ̄

αΨβ +ΨβΦ̄αΦ
αΨ̄β + 2Ψ̄αΦβΦ̄

αΨβ − 2ΨβΦ̄αΦβΨ̄α

)
+
1

3

(
ΦαΦ̄

βΦβΦ̄
γΦγΦ̄

α + ΦαΦ̄
αΦβΦ̄

βΦγΦ̄
γ

+4ΦβΦ̄
αΦγΦ̄

βΦαΦ̄
γ − 6ΦγΦ̄

γΦβΦ̄
αΦαΦ̄

β
) ]

,

where Aµ and Ãµ are U(N) gauge fields, and Φα and Ψα (α = 1, 2, 3, 4) are bosonic and
fermionic complex bi-fundamental fields, respectively. This theory has N = 8 supersymme-
try for k = 1, 2 and N = 6 supersymmetry for k ≥ 3. It has been conjectured to be dual to
M-theory on AdS4 × S7/Zk for k ≪ N1/5, and to type IIA superstring on AdS4 × CP 3 in
the planar large-N limit with the ’t Hooft coupling constant λ = N/k kept fixed.

From the viewpoint of quantum gravity, the ABJM theory is important since it may
provide us with a nonperturbative definition of type IIA superstring theory or M-theory on
AdS4 backgrounds since the theory is well-defined for finite N . One may draw a precise
analogy with the way maximally supersymmetric Yang-Mills theories may provide us with
nonperturbative formulations of type IIA/IIB superstring theories on D-brane backgrounds
through the gauge/gravity duality [16, 17, 18, 19]. In particular, the M-theory limit is
important given that M-theory is not defined even perturbatively, although there is a well-
known conjecture on its nonperturbative formulation in the infinite momentum frame in
terms of matrix quantum mechanics [2]. The planar limit, which corresponds to type IIA
superstring theory, has interest on its own since it may allow us to perform more detailed tests
of the gauge/gravity duality than in the case of AdS5/CFT4. In particular, we may hope to
calculate the 1/N corrections to the planar limit, which enables us to test the gauge/gravity
duality at the quantum string level, little of which is known so far.

In all these prospectives, one needs to study the ABJM theory in the strong coupling
regime. As in the case of QCD, it would be nice if one could study the ABJM theory on
a lattice by Monte Carlo methods. This seems quite difficult, though, for the following
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three reasons. Firstly, the construction of the Chern-Simons term on the lattice is not
straightforward, although there is a proposal [20, 21] based on its connection to the parity
anomaly. Secondly, the Chern-Simons term is purely imaginary in the Euclidean formulation,
which causes a technical problem known as the sign problem when one tries to apply the idea
of importance sampling. Thirdly, the lattice discretization necessarily breaks supersymmetry,
and one needs to restore it in the continuum limit by fine-tuning the coupling constants of
the supersymmetry breaking relevant operators. (See, for instance, ref. [22].) This might,
however, be overcome by the use of a non-lattice regularization of the ABJM theory [23]
based on the large-N reduction on S3 [24, 25], which is shown to be useful in studying the
planar limit of the 4d N = 4 super Yang-Mills theory [26, 27, 28].

What we do here instead is to apply Monte Carlo methods not to the original theory
but to a matrix model obtained after a huge reduction of the degrees of freedom due to
supersymmetry. In fact, it has been known for a while in certain supersymmetric theories
that one can reduce the path integral to a finite dimensional matrix model by using the
so-called localization technique. Such a technique was applied [29] to 4d N = 4 super Yang-
Mills theory, and some conjecture on the half-BPS Wilson loops [30, 31] has been confirmed.
In ref. [32], the same technique has been applied to the ABJM theory on three-sphere S3,
and its partition function was shown to reduce to a matrix integral

Z(N, k) =
1

(N !)2

∫
dNµ

(2π)N
dNν

(2π)N∏
i<j

(
2 sinh

µi−µj
2

)2(
2 sinh

νi−νj
2

)2
∏

i,j

(
2 cosh µi−νi

2

)2 exp

[
ik

4π

N∑
i=1

(µ2
i − ν2i )

]
,

which is commonly referred to as the ABJM matrix model. By using this matrix model, the
free energy of the ABJM theory has been studied intensively [33, 34, 35, 36, 37, 38, 39, 40].
In ref. [34] the planar limit and the 1/N corrections around it have been studied employing a
technique from topological string theory, and the on-shell action of the type IIA supergravity
onAdS4×CP 3 has been reproduced. In ref. [35] the free energy in the M-theory limit has been
obtained using some ansatz for the eigenvalue distribution. In ref. [38] the genus expansion
at strong ’t Hooft coupling has been considered and a resummed form was obtained in terms
of the Airy function by using the holomorphic anomaly equation [41]. The obtained simple
form was claimed to be valid to all orders in the genus expansion up to the worldsheet
instanton effect. In ref. [40], the free energy in the M-theory regime at small k has been
calculated by the Fermi gas approach, and the result turns out to be given by the Airy
function obtained in ref. [38] with some extra terms. These results, if correct, would enable
us to shed light on the dynamical aspects of M-theory and to test the AdS/CFT duality
including the string loop effect by studying the gravity side further.

In this thesis we show that the ABJM matrix model can be rewritten in a form suitable for
Monte Carlo simulations [42, 43], which enables simple calculation of the partition function
and BPS operators for arbitrary values of the rank N and the level k from first principles.
In particular, we calculate the partition function explicitly for various N and k, which is
supposed to contain the nonperturbative effects corresponding to the worldsheet instantons
in string theory neglected in refs. [34, 38]. We find the well-known constant map contribution
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[41, 44, 45] is also correctly reproduced.
We pursue this direction further and study the supersymmetric Wilson loops in the

ABJM theory. Recently, Klemm, Mariño, Schiereck and Soroush proposed a beautiful ana-
lytic formula for the expectation value of the supersymmetric Wilson loop at finite N and
finite k, which should hold in the strong coupling region up to the instanton corrections [46].
We calculate the full expectation value including the instanton corrections and test their
proposal. We explore the whole parameter region and see how their formula and the pertur-
bative formula are interpolated. By taking the difference of our full result and the analytic
formula of Klemm et al., we extract the instanton contribution.

This thesis is organized as follows. In chapter 1 we introduce the novel ABJM theory
[15] as a leading candidate of such a theory. In chapter 2 we introduce the localization
method [29] and apply the method to general 3d N = 2 supersymmetric field theory on S3,
which includes the ABJM theory as a specific case. This chapter is essentially a review of
refs [32, 47, 48]. In chapter 3 we show our numerical results of the free energy [42, 43]. In
chapter 4 we present our (preliminary) numerical result of the supersymmetric Wilson loop.
Chapter 5 is devoted to summary and discussions.
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1 Low energy effective theory of multiple M2-branes

M2-brane has been considered as one of fundamental object in M-theory. While D-branes
[49] in superstring theory are well described by DBI action at low energy scale, effective
description of M2-branes has been considered to be more nontrivial. In this chapter, we
introduce the novel ABJM theory [15] as a leading candidate of such a theory. This chapter
is organized as follows. In section 1.1 we briefly review expected properties of M-theory.
In section 1.2 we study an effective theory of single M2-brane and investigate its property.
In section 1.3 we consider AdS/CFT correspondence for M2-branes and give properties of
multiple M2-branes theory if we assume the correspondence. In section 1.4 we introduce
ABJM theory.

1.1 M-theory

M-theory has been proposed as a strong coupling limit of the type IIA superstring theory
[50]. Here we briefly introduce M-theory. First we will give a relation between the type IIA
supergravity (IIA SUGRA) and the eleven-dimensional supergravity (11d SUGRA), which
has been considered as a low energy limit of the M-theory. Next we will investigate black
brane solutions in the 11d SUGRA, which is identified with M2- and M5-branes in the M-
theory. Finally we discuss that various objects in the type IIA superstring theory can be
consistently explained from the M-theory.

1.1.1 Type IIA supergravity and Eleven-dimensional supergravity

As ten-dimensional supergravity is a low-energy limit of superstring theory, the eleven-
dimensional supergravity [51] has been considered as a low-energy limit of M-theory as
we will see below. Here we motivate existence of M-theory by providing a relation between
the IIA and 11d SUGRA. As a result, the IIA SUGRA can be understood as a Kaluza-Klein
(KK) reduction of the 11d SUGRA [52, 53, 50].

Eleven-dimensional supergravity

Let us start with the 11d SUGRA. It is widely believed that consistent supergravity can exist
up to eleven dimension [54]. As well known, the 11d SUGRA action is uniquely determined
up to second derivative. The field content is quite simple. It consists of the gravition
GMN (M,N = 0, 1, · · · , 10), gravitino ψM,α (α = 1, 2, · · · , 32) and anti-symmetric 3-form
CMNP . The 3-form field is needed to compensate the difference of the on-shell degrees of
freedom between the gravition and gravitino: (10×9

2
− 1)− 8×32

2
= −84 = −9C3. The bosonic
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part of the action is given by1

2κ211S11d =

∫
d11x

√
−G
[
R− 1

2
|F (4)|2

]
− 1

6

∫
C ∧ F (4) ∧ F (4), (1.2)

where κ11 is the eleven-dimensional gravitational coupling constant related to the Newton
constant G11 and Planck length lp as

16πG11 = 2κ211 =
1

2π
(2πlp)

9. (1.3)

F (4) = dC is the field strength of C and |F (4)|2 = 1
4!
F

(4)
MNPQF

(4)MNPQ. The full action is
invariant under the following local supersymmetric transformation2:

δE A
M =

i

2
ϵ̄ΓAψM ,

δCMNP = −3i

2
ϵ̄Γ[MNψP ],

δψM = 2∇M(ω̂)ϵ+
1

144

(
ΓPQRSM + 8ΓQRSδ P

M

)
F̂

(4)
PQRSϵ, (1.4)

where ΓM satisfies the Clifford algebra: {ΓM ,ΓN} = 2GMN and the symbol ΓM1···Mn stands
for

ΓM1···Mn =
1

n!

∑
σ

ΓMσ(1)···Mσ(n) , (1.5)

with permutation σ. The covariant derivative ∇M(ω̂) is given by

∇M(ω̂)ψN = ∂MψN − 1

4
ω̂MABΓ

ABψN . (1.6)

The spin connection ω̂ is slightly different from the usual Levi-Civita spin connection ω(0) in
terms of the vielbein E A

M . This is defined by

ω̂MAB = ωMAB − i

16
ψ̄NΓ

NP
MAB ψP ,

ωMAB = ω
(0)
MAB +

i

16

[
ψ̄NΓ

NP
MAB ψP − 2(ψ̄MΓBψA − ψ̄MΓAψB + ψ̄BΓNψA)

]
. (1.7)

1Although the fermionic part of the action is irrelevant in this thesis, this is concretely given by

2κ211S
(F )
11d =

∫
d11x

√
−G

[
− i

2
ψ̄MΓMNP∇N

(
ω + ω̂

2

)
ψp

− i

384

(
ψ̄MΓMNABCDψN + 12ψ̄AΓBCψD

) (
F

(4)
ABCD + F̂

(4)
ABCD

)]
, (1.1)

where each symbol is defined below.
2We mainly follow the notation of [55]. This notation can be obtained from the notation of the original

paper [51] by rescaling ΓM → iΓM ,Γ
M → iΓM , ∂M → −∂M , ψ̄M → iψ̄M .
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F̂ (4) is defined in terms of F (4) and ΨM as

F̂
(4)
MNPQ = F

(4)
MNPQ +

3i

2
ψ̄MΓNPψQ. (1.8)

Presence of the 3-form field implies existence of electrically coupled 2-dimensional object
and magnetically coupled 5-dimensional object as we will see later. In sec. 1.1.2 we find so-
called black M2- and M5-brane solutions [56, 57] as Bogomolny-Prasad-Sommerfield (BPS)
solutions of this theory.

Kaluza-Klein reduction

Now let us compactify the eleventh dimension x10 as

xM = (xµ, x10), x10 ∼ x10 + 2πR11 (µ = 0, 1, · · · , 9). (1.9)

In an appropriate choice of coordinate, the eleven-dimensional vielbein E A
M reduces as [52,

53, 50]

E A
M =

(
e−ϕ/3e a

µ e2ϕ/3A
(1)
µ

0 e2ϕ/3

)
, E N

A =

(
eϕ/3e ν

a −eϕ/3A(1)
a

0 e−2ϕ/3

)
, (1.10)

where e a
µ , A

(1)
µ and ϕ are the ten-dimensional vielbein, 1-form field and scalar field, respec-

tively. From this expression, GMN is decomposed as

GMN = e−2ϕ/3

(
gµν + e2ϕA

(1)
µ A

(1)
ν e2ϕA

(1)
µ

e2ϕA
(1)
ν e2ϕ

)
, (1.11)

where gµν is the ten-dimensional metric. The 3-form is also reduced as

Cµνρ = A(3)
µνρ, Cµν10 = B(2)

µν , (1.12)

in terms of the 3-form A
(3)
µνρ and 2-form fields B

(2)
µν . Dropping derivative terms along the

eleventh direction, we obtain the following ten-dimensional action

S10d =
2πR11

2κ211

[∫
d10x

√
−g
{
e−2ϕ

(
R̃ + |dϕ|2 − 1

2
|H(3)|2

)
− 1

2
|F (2)|2 − 1

2
|G(4)|2

}

−1

2

∫
B(2) ∧G(4) ∧G(4)

]
, (1.13)

where R̃ is the ten-dimensional scalar curvature. The field strengths H(3), F (2) and G(4) are
defined by

H(3) = dB(2), F (2) = dA(1), G(4) = dA(3) + A(1) ∧H(3). (1.14)

If we identify ϕ,B(2), A(1) and A(3) with the dilaton, B-field, Ramond-Ramond (R-R) 1-form
and R-R 3-form, we can find that this is nothing but the bosonic action of the IIA SUGRA
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in the string frame up to overall constant3. This overall constant can agree with the one of
IIA SUGRA if we impose

2πR11

2κ211
=

1

2κ210
=

2π

(2πls)8g2s
, (1.15)

where κ10, ls and gs are the ten-dimensional gravitational coupling constant, string length
and string coupling, respectively. This matching and eq. (1.11) imply that a physical distance
L in unit of lp and ls are related with each other by

L

lp
= e−ϕ/3

L

ls
. (1.16)

Recalling the string coupling gs is given as the vacuum expectation value of the dilaton, we
find

lp = g1/3s ls. (1.17)

Combining this with (1.15) leads us to

R11 = g2/3s lp = gsls. (1.18)

Thus we have seen that the 11d SUGRA compactified on S1 with the appropriate radius
is identical to the IIA SUGRA. While the eleventh dimension is almost shrunk in weak string
coupling regime, it opens in strong gs region. So far we have discussed only at supergravity
level. Then what will happen for the strong coupling limit of the type IIA superstring theory?
This is the idea of the M-theory. Remaining of this section is devoted to arguments from
the point of view of D-branes [49]. This motivates existence of M-theory.

1.1.2 Black brane solutions in eleven-dimensional supergravity

p-form gauge field naturally couples to (p − 1)-dimensionally extended object. In the IIA
SUGRA, these object appear as a kind of black hole (brane) solutions [58, 59], which have
been identified with fundamental string, D-branes and NS5-brane in the type IIA superstring
theory. It is natural to suspect that the 3-form and its magnetic dual in the 11d SUGRA
imply black 2-brane and 5-brane solutions. Here we discuss that the 11d SUGRA indeed
also have such solutions as BPS solutions [56, 57] corresponding to M2-brane and M5-brane
in M-theory.

The BPS solutions of the 11d SUGRA satisfy

δψM = 2∇M(ω(0))ϵ+
1

144

(
ΓPQRSM + 8ΓQRSδ P

M

)
F

(4)
PQRSϵ = 0, (1.19)

where we set ψM = 0 = ψ̄M . We can show that the solutions for this equation also solves
the equation of motion (EOM) in this theory. This solution is stable [60] thanks to the BPS
bound [61, 62].

3Although we have seen the agreement only for the bosonic part, the fermionic part also agrees with the
one of the IIA SUGRA up to the (same) overall constant.
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M2-brane solution

Let us consider the black 2-brane solution [56]. If we expect parallel 2-brane on flat space as
a simplest situation, then such a solution should have SO(2, 1) × SO(8) Lorenz symmetry.
Thus we consider the following ansatz:

ds2 = f1(r)dxµdx
µ + f2(r)dy

IdyI ,

F (4) = f3(r)dx0 ∧ dx1 ∧ dx2 ∧ dr, others = 0, (1.20)

where we parametrize xM = (xµ=0,1,2, yI=1,··· ,8) and r2 = yIyI . Substituting this ansatz to
eq. (1.19) and EOM, we find

f1(r) = H2(r)
−2/3, f2(r) = H2(r)

1/3, f3(r) = − ∂

∂r
H2(r)

−1 with H2(r) = 1 +
R6

2

r6
,

(1.21)
where R2 is a constant related to the electric charge as we will see below. In order to study
the electric charge, we introduce the dual 7-form as

F (7) = ⋆F (4) − 1

2
C ∧ F (4), (1.22)

where ⋆ denotes the Hodge dual. Here the second term is necessary for satisfying dF (7) = 0
since we have the topological coupling

∫
C ∧ F (4) ∧ F (4). Then the electric charge qe of the

2-brane is given by

qe =

∫
S7

4(7) = 6R6
2VS7 = 2π4R6

2, (1.23)

where the integration is performed over S7 enclosing the 2-brane and VS7 = π4/3 is the
volume of S7.

R2 can be denoted also by the 2-brane tension TM2 . Let us consider the asymptotic
infinity r ≫ 1 and Newtonian limit G00 ≫ GMN (M,N ̸= 0) with the static N branes
contribution

Tµν = NTM2δ
(8)(yI)ηµν , TIJ = 0. (1.24)

where TMN is the energy-momentum tensor. Then we can approximate G00 as4

G00 = −
(
1 +

R6
2

r6

)−2/3

≃ −1 +
2

3

R6
2

r6
. (1.26)

In this approximation, the Einstein equation

RMN − 1

2
GMNR = κ211NTMN =⇒ R = −2κ211

3
NTM2δ

(8)(yI) (1.27)

reduces to

∇2
I

(
1

r6

)
= −2κ211NTM2

R6
2

δ(8)(yI) (1.28)

4Recall that the scalar curvature R at first order of the metric perturbation:GMN = ηMN +hMN is given
by

R = ∇M∇NhMN −∇2(GMNhMN ). (1.25)
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By using ∇2
Ir

−6 = −6VS7δ(8)(yI), we obtain

R6
2 =

κ211
3VS7

TM2 = 128π4l9pNTM2 . (1.29)

M5-brane solution

Next we consider parallel N 5-branes on flat space [57]. Then the black 5-brane solution
should have SO(5, 1)× SO(5) Lorenz symmetry. Thus we consider the following ansatz:

ds2 = g1(r)dxµdx
µ + g2(r)dy

IdyI ,

⋆F (4) = g3(r)dx0 ∧ dx1 ∧ dx2 ∧ dr, others = 0, (1.30)

where we parametrize xM = (xµ=0,1,··· ,5, yI=1,··· ,5) and r2 = yIyI again. From this ansatz,
eq. (1.19) and EOM, we obtain

g1(r) = H5(r)
−1/3, g2(r) = H5(r)

2/3, g3(r) = − ∂

∂r
H5(r)

−1 with H5(r) = 1 +
R3

5

r3
,

(1.31)
where R5 is a constant related to the magnetic charge of 5-brane by

qm =

∫
S4

⋆F (4) = 3R3
5VS4 = 8π2R3

5, (1.32)

where S4 enclose the 5-brane and the volume VS4 of S4 is given by VS4 = 8π2/3. Similarly
for the 2-brane case, R5 is given in terms of TM5 by

R3
5 =

κ211
3VS4

NTM5 = 32π6l9pNTM5 . (1.33)

Moreover, the Dirac quantization condition [63]

1

2κ211
qeqm = 2πZ (1.34)

gives the important relation

TM2TM5 =
1

(2π)7l9p
. (1.35)

In next subsection we show that tensions of fundamental string, NS5-brane and D-branes in
the type IIA superstring theory can be understood from M-theory if we assign

TM2 =
1

(2π)2l3p
, TM5 =

1

(2π)5l6p
. (1.36)
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1.1.3 Type IIA superstring and M-theory

The type IIA superstring theory has fundamental string, NS5-brane and Dp-branes (p =
0, 2, 4, 8), whose tensions are given by

TF =
1

2πl2s
, TNS5 =

1

g2s(2π)
5l6s
, TDp =

1

gs(2π)pl
p+1
s

, (1.37)

respectively. Here we discuss that these tensions are consistently explained from the M-
theory.

• Fundamental string = Wrapped M2-brane on the circle
First of all, these tensions agree with each other:

2πR11TM2 = 2πgsls
1

(2π)2(g
1/3
s ls)3

=
1

2πl2s
= TF . (1.38)

As an additional check, such a wrapped M2-brane should couple to Cµν10 → B
(2)
µν ,

which couples to the fundamental string. One of more direct evidences is that the
Green-Schwarz action of the type IIA superstring can be derived from the classical su-
permembrane action [64] in eleven dimension by a simultaneous dimensional reduction
along the worldvolume and space [65].

• D2-brane = Transverse M2-brane

TM2 =
1

(2π)2(g
1/3
s ls)3

=
1

gs(2π)2l3s
= TD2. (1.39)

Associated with the compactification, the 3-form field Cµνρ coupled to the transverse

M2-brane reduces to the R-R 3-form A
(3)
µνρ coupled to the D2-branes. In next subsection

we will show that in a low energy limit, single M2-brane is identical to single D2-brane
in strong coupling limit.

• D4-brane = Wrapped M5-brane on the circle

2πR11TM5 = 2πgsls
1

(2π)5(g
1/3
s ls)6

=
1

gs(2π)4l5s
= TD4. (1.40)

• NS5-brane = Transverse M5-brane

TM5 =
1

(2π)5(g
1/3
s ls)6

=
1

g2s(2π)
5l6s

= TNS5. (1.41)

• D0-brane = KK momentum

1

R11

=
1

gsls
= TD0. (1.42)

The D0-brane couples to the R-R 1-form coming from the KK gauge field in M-theory.
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• D6-brane = KK monopole
The D6-brane couples to the magnetic dual of the R-R 1-form. The magnetic dual of
the KK gauge field in the 11d SUGRA corresponds KK monopole [66, 67]:

1

2κ211
(2πR11)

2 =
1

gs(2π)6l7s
= TD6. (1.43)

1.2 Single M2-brane

In this section we consider a single M2-brane action and investigate expected properties of
an action for arbitrary number of M2-branes. If the number of M2-brane is one, we can write
down the action as a summation of a (super-)Nambu-Goto action and minimal coupling to
the 3-form C [64]. Let us start with the low-energy limit (lp → 0) of the action for the flat
single M2-brane with C = 0 in a static gauge:

SM2 =

∫
d3ξ

(
−1

2
∂µX

I∂µXI +
i

2
ψ̄Aγµ∂µψ

A

)
, (1.44)

where µ = 0, 1, 2, I = 1, · · · , 8 and A = 1, · · · , 8. XI , ψA and ψ̄A are functions of the world-
volume coordinate ξµ. This is the free field theory with N = 8 supersymmetry, conformal
symmetry and SO(8) R-symmetry. Since the superpotential is trivial, its moduli space M
is simply given by

M = R8, (1.45)

which corresponds to the single M2-brane on R8. This action have a relation with an action
for single flat D2-brane coupled to a worldvolume gauge field Aµ as we will see below. The
low-energy limit (ls → 0) is the three-dimensional U(1) N = 8 super Yang-Mills theory,
whose action is

SD2 =
1

g2YM

∫
d3ξ

(
−1

2
∂µX

i∂µX i − 1

4
FµνF

µν +
i

2
ψ̄Aγµ∂µψ

A

)
, (1.46)

where gYM is the gauge coupling, i = 1, · · · , 7 and Fµν = ∂µAν − ∂νAµ. As we already
discussed in previous section, we expect that the D2-brane becomes the M2-brane in the
strong string coupling limit. Recalling the relation

g2YM =
gs√
α′
, (1.47)

such a limit corresponds to the strong gauge coupling limit gYM → ∞.
Indeed we can show that the two theories (1.44) and (1.44) are identical to each other via

abelian duality [68, 69]. By adding an auxiliary field Bµ and X8, we consider the following
equivalent Lagrangian:

LD2 =
1

g2YM

(
1

2
ϵµνλBµFνλ −

1

2
B2
µ +

gYM

2
X8ϵµνλ∂µFνλ −

1

2
∂µX

i∂µX i +
i

2
ψ̄Aγµ∂µψ

A

)
=

1

g2YM

(
1

2
ϵµνλBµFνλ −

1

2
B2
µ −

gYM

2
(∂µX

8)ϵµνλFνλ −
1

2
∂µX

i∂µX i +
i

2
ψ̄Aγµ∂µψ

A

)
.
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(1.48)

Then the conjugate momentum of X8 is quantized by a charge quantization condition as

p = − 1

gYM

∮
F =

2π

gYM

Z. (1.49)

This means that X8 satisfies a periodicity condition

X8 ∼ X8 + gYM. (1.50)

The EOM of Fνλ gives
Bµ = gYM∂µX

8. (1.51)

Rescaling X i → gYMX
i and ψA → gYMψ

A leads us to

SD2 =

∫
d3ξ

(
−1

2
∂µX

I∂µXI +
i

2
ψ̄Aγµ∂µψ

A

)
. (1.52)

Although this is nothing but the classical action SM2 of the M2-brane, these are not quantum
mechanically equivalent due to the periodicity condition (1.50) generically. This equivalence
holds only in the strong coupling limit gYM → ∞. Thus we have shown that the single
D2-brane behaves as the single M2-brane in the strong gs limit.

What do we expect for multiple M2-branes case? From the single M2-brane analysis, we
desire the following properties for the low-energy effective theory of N M2-branes:

• Three dimensional conformal symmetry

• N = 8 supersymmetry

• SO(8) R-symmetry

• Moduli space:

M =
(R8)N

SN
, (1.53)

where SN is a permutation group with degree N . This moduli space denotes indistin-
guishable N M2-branes on R8.

• Identical to the strong gauge coupling limit of the three dimensional U(N) N = 8
super Yang-Mills theory, which is the low-energy effective theory of N D2-branes.

In next section we will argue that the AdS/CFT correspondence for M2-branes also
demands such properties and some additional constraints.

19



1.3 AdS/CFT correspondence for M2-branes

In this section we consider AdS/CFT correspondence [16, 17, 18, 19] for M2-branes. The
basic idea of AdS/CFT correspondence is that there is a duality between low energy physics
of

Superstring Theory or M Theory on a certain geometry by branes

and

Worldvolume theory of the branes.

Although this is still the conjecture, there are many indirect evidences. First we will consider
D3-brane case as a most typical example. Next we will apply the idea to M2-brane case.

1.3.1 D3-brane case

Applying the basic idea to D3-brane case, the conjecture becomes

Low Energy Type IIB String Theory on the geometry by D3-branes

↕ dual

Low Energy Worldvolume theory of N coincident D3-branes.

In order to justify and make the correspondence more clearly, we investigate the low energy
limit of each case concretely.

Low Energy Physics of D3-branes

Here we consider the same system from two points of view5:

1. Regarding D3-branes as end points of open strings

2. Regarding D3-branes as massive charged objects which act as a source for the various
supergravity fields

First let us consider the former position in the framework of type IIB string theory, where
D3-branes are extended in flat spacetime. There are two excitations which are of closed
strings in the bulk and open strings on D3-branes. In the low energy limit ls→0, only
massless strings can be excited. The closed and open string massless state give the type IIB
SUGRA and N = 4 U(N) Super Yang-Mills theory (SYM) in the limit, respectively.

Complete effective action of these massless modes have the form

Seff = Sbulk + Sbrane + Sint. (1.54)

Sbulk is the action of type IIB SUGRA with many higher derivative terms generically, which
is suppressed in the low energy limit. Sbrane is generally the action of N = 4 SU(N) SYM
plus many higher derivative terms, but this is just the action of N = 4 SU(N) SYM in the

5This explanation follows to the excellent review [70].
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low energy limit. Sint is interaction terms between the bulk modes and modes on D3-branes,
which mainly include interactions obtained by the DBI action.

If we expand these action as power series of κ10 and take only O(κ010) terms, we will
find two decoupled systems: free gravity in the bulk and N = 4 SYM. It is easy to see
that the leading order of Sbulk become the free gravity. For example, writing the metric as
g = η + κ10h, the Einstein-Hilbert term becomes

1

2κ210

∫ √
−gR ∼

∫
(∂h)2 + κ10(∂h)

2h+O(κ210). (1.55)

Other terms in the type IIB SUGRA action trivially can be expanded in similar way and
higher derivative terms themselves is O(κ10). Namely Sbulk is the free gravity in the low
energy limit. Since all interactions in Sint is O(κ10), this is also dropped out in the limit.
Sbrane just becomes N = 4 SYM since higher derivative terms is also O(κ10). Thus we have
two decoupled systems in the low energy limit: the free massless particles in the bulk and
N = 4 SYM.

Geometry made by D3-branes

Next we see the same system from the other point of view. In this point of view, we regard
the D3-branes as massive charged objects, which act as a source for the various SUGRA
fields. As a conclusion, we will have also two decoupled systems in the low energy limit as
for the previous case.

Let us consider the geometry made by the D3-branes. In the extremal case, the geometry
is described by the following black D3-brane solution

ds2 = A−1/2(−dt2 + dx21 + dx22 + dx23) + A1/2(dr2 + r2dΩ2
5) , (1.56)

where

A ≡ 1 +
R4

3

r4
, R4

3 ≡ 4πgsα
′2N . (1.57)

Since gtt is not constant, the energy Er of an object, which is located at a constant
position r and measured by an observer at r, is related to the energy E∞ of the object
measured by an observer at infinity by the redshift factor as

E∞ = f−1/4Er =

(
r4

r4 +R4
3

)1/4

Er (1.58)

This means that the observer at infinity measures the energy of the same object around
r = 0 as very low.

If we take the low energy limit again, then we have two kinds of low energy excitations:
massless particles propagating in the bulk with very large wavelength and any excitations in
near horizon region. We can see that these two excitations are decoupled from each other in
the limit again.

Let us consider the bulk massless particles. They are decoupled from near horizon region
because the low energy absorption cross section σ behaves as [71]

σ ∼ ω3R8
3, (1.59)
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where ω is the incident energy. Similarly it is hard that the excitations around r = 0 climb
the gravitational potential and escape to the asymptotic region. Namely the near horizon
excitations are decoupled from the bulk massless particles.

Correspondence

So far, we have seen the same system from the two points of view and found that both cases
have two decoupled systems in the low energy limit. In both cases, one of the decoupled
systems is massless particles propagating in the bulk. Therefore it is natural to identify the
second decoupled system in the both descriptions. Thus we can arrive at the conjecture
that the four-dimensional N = 4 SU(N) Super Yang-Mills theory dimension is dual (or
equivalent) to type IIB string theory on near horizon geometry of the extremal black D3-
brane solution.

What is the near horizon geometry? If we take the near horizon limit r→0, the solution
(1.56) becomes

ds2 =
R2

3

z2
(−dx20 + dx21 + dx22 + dx23 + dz2) +R2

3dΩ
2
5 , (1.60)

where z ≡ R2/r. Note that the first term is the AdS5 metric in the Poincare coordinate6.
As a conclusion, the conjecture is

Four-dimensional N = 4 SU(N) SYM

↕ dual

Type IIB String theory on AdS5 × S5.

Symmetry matching

If the conjecture is correct, both theories must have the same symmetries. Surprisingly,
symmetries of both theories completely match to each other.

• Supersymmetry
The number of preserved supercharges of Type IIB superstring theory on the AdS5×S5

background7 is 32. The N = 4 SYM has usual 16 Poincare supercharges usually called
as ”Q”. However, since this theory is the conformal field theory [73, 74, 75, 76, 77],
the N = 4 SYM has more bonus 16 special supercharges, which we can construct by
combining special conformal generators K with Poincare supercharges Q as

S ≃ [K,Q] . (1.61)

Thus both theories have the same number of supercharges and this is consistent with
the conjecture.

6We review properties of anti-de Sitter space in appendix A.
7Strictly speaking, the full extremal black D3-brane solution has only 16 supercharges. There is the

enhancement of supersymmetry because of the near horizon limit. See [72] for detail.
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• SO(4, 2) symmetry
While the isometry of AdS5 is SO(4, 2), the conformal symmetry group of N = 4 SYM
is isomorphic to SO(4, 2) group. This is because the Lie algebra of d-dimensional
conformal group is isomorphic to the Lie algebra of SO(d, 2) group. (See appendix B
for detail).

• SU(4) ∼ SO(6) symmetry
While the isometry of S5 is SO(6), N = 4 SYM has SUR(4) R-symmetry and SU(4)
is homomorphic to SO(6).

Coupling Constant and Stringy corrections

We consider corresponding relations between both theories in detail. First, we discuss a
relation between coupling constant of the SYM and stringy corrections of string theory. Let
us consider natures of the coupling constant of the SYM. In order to see the specialty of D3-
branes, we consider more generally coupling constant of the (p + 1)-dimensional maximally
supersymmetric Yang-Mills theory. By a simple dimensional analysis, the gauge coupling
gYM of (p+ 1)-dimensional SYM has the dimension8

[g2YM] = [mass]3−p. (1.62)

Therefore, the dimensionless effective coupling of the SYM is

g2eff(M) ∼ g2YMM
p−3 (1.63)

where M is the energy scale of the theory. This shows the following dependence of the
effective coupling on the energy scale:

• For p < 3,

M → large =⇒ g2eff → small

M → small =⇒ g2eff → large

• For p > 3,

M → large =⇒ g2eff → large

M → small =⇒ g2eff → small

For p = 3, the effective coupling is independent of the energy scale M at least classically.
Although this is not true quantum theoretically in general (3+1)-dimensional gauge theories
due to trace anomaly, this is exactly valid for the N = 4 SYM since the N = 4 SYM is a
”quantum” conformal field theory!

How is this fact realized on the string theory side? gYM is related to gs due to open-closed
duality by the relation

g2YM = 4πgs. (1.64)

8Here we assign the dimension of gauge fields to [mass]1.
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Although the dilaton is not constant for general p, the dilaton for p = 3 is constant. This fact
corresponds to that the β function of N = 4 is zero. By using the relation (1.57) between
AdS5(or S

5) radius and string coupling, we obtain

R3

ls
= λ

1
4 . (1.65)

This represents the relation between the radius and ’tHooft coupling.

• Weakly coupled: λ≪ 1 =⇒ R ≪ ls
In this case, since the near horizon geometry of extremal black D3-brane solution is

ds2 ∼ R2dx · dx+ dz2

z2
(1.66)

and (curvature) ∼ 1
R2 , the geometry of dual string theory is strongly curved and it is

difficult analysis the system. To make matters worse, SUGRA approximation is not
valid in this case since we cannot ignore the string length ls compared with the scale
length R.

• Strongly coupled: λ≫ 1 =⇒ R ≫ ls
In this case, we can ignore the string length and the geometry is weakly curved, that
is, SUGRA approximation is quite valid in this region. Thus we expect that strong
coupling regime in 4-dimensional N = 4 SYM is described by type IIB SUGRA on
weakly curved AdS5 × S5.

Rank of Gauge Group and Quantum Gravity corrections

In addition, we can see below that quantum effect of gravity is suppressed for the large rank
of the gauge group N ≫ 1. As we discussed in sec 1.1.1, the string length ls has to do with
the Planck length lp through the string coupling gs by the relation

lp = g
1
4
s ls.

By using λ = 4πgsN and R = λ
1
4 ls, one finds

N =
1

4π

λ

gs
=

1

4π

R4

gsl4s
=

1

4π

(
R

lp

)4

. (1.67)

Thus for N ≫ 1, quantum (loop) effects are suppressed since R ≫ lp, namely, we see the
physics in the low energy scale compared with the Planck scale. This means that the N = 4
SYM for λ ≫ 1, N ≫ 1 is well described by the classical supergravity. Note that this is
consistent with the relation between the genus and 1/N expansions [78].

Dictionary

We summarize the D3-brane case of the AdS/CFT correspondence in following
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• Coupling:
g2YM = 4πgs.

gYM independent of the energy scale ⇐⇒ dilaton=const.

• Symmetry(
4d conformal group ≃ SO(4, 2)

SU(4)R symmetry

)
=

(
AdS5 × S5 isometry group :

SO(4, 2)× SO(6)

)
• The relation between ’t Hooft coupling λ = g2YMN and the AdS5 radius R:

R = λ
1
4 ls.

1.3.2 M2-brane case

In the spirit of the D3-brane case, let us return to the black M2-brane solution:

ds2 = H2(r)
−2/3dxµdx

µ +H2(r)
1/3dyIdyI , with H2(r) = 1 +

R6
2

r6
, (1.68)

where we parametrize xM = (xµ=0,1,2, yI=1,··· ,8) and r2 = yIyI . If we take the near horizon
limit again, then we obtain

ds2 =
R2

2

4z2
(
−dx20 + dx21 + dx22 + dz2

)
+R2

2dΩ
2
7, (1.69)

where z = R3
2/(2r

2). This spacetime is AdS4 × S7, whose isometry group is SO(3, 2) ×
SO(8). It is known that the 11d SUGRA on AdS4 × S7 has 32 supercharges [72], which
are twice of ones before the near horizon limit. Thus, if we the AdS/CFT correspondence
is true, the low-energy effective theory of multiple M2-branes should also have the three-
dimensional conformal symmetry, SO(8) R-symmetry and 32 supersymmetries. This has
been also expected from single M2-brane analysis in previous section. From this metric, we
fin that the classical 11d SUGRA picture is quite good for R2 ≫ lp. Since R2 is given by

R6
2 = 32π2l6pN, (1.70)

this region corresponds to N ≫ 1. Hence, when N is not so large, quantum gravity effect is
comparable.

1.4 Multiple M2-branes

From the single M2-brane analysis and implication of the AdS/CFT correspondence, we
expect that the low energy effective theory for N M2-branes has the following properties:

• Three dimensional conformal symmetry

• N = 8 supersymmetry
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• SO(8) R-symmetry

• Moduli space: M = (R8)N/SN

• Identical to the three dimensional U(N) N = 8 super Yang-Mills theory in the limit
gYM → ∞

• Dual to the classical 11d SUGRA on AdS4 × S7 for N ≫ 1.

Such a theory had not been found for long years. There are many reasons for this. One
of most serious obstacle is difficulty of quantization of supermembrane [1] while there is
a M(atrix) conjecture [2]. This prevents us from finding spectrum and something like a
Chan-Paton factor for M2-branes. Another difficulty is that it is not easy to construct gauge
theory with conformal and high supersymmetry except for four dimensions. Since Yang-
Mills action is scale invariant only for four dimensions, we can use only Chern-Simons term
of vector multiplet and marginal term of chiral multiplet for the construction. Indeed in
1990’s, a maximal supersymmetric extension of Chern-Simons theory had been N = 3 [3, 4]
(see also [5]).

Meanwhile the BLG theory [6, 7] based on the Lie 3-algebra [Xa, Xb, Xc] = fabcdX
d

appeared. If we take the structure constant fabcd to be totally anti-symmetric, then the BLG
theory generically has manifest N = 8 supersymmetry, SO(8) R-symmetry and conformal
symmetry. In spite of such successful structures, it is known that the only nontrivial solution
for a generalized Jacobi identity is the A4 algebra defined by fabcd = ϵabcd [8, 9]. Then the
resulting A4 BLG theory can be rewritten as the SU(2) × SU(2) Chern-Simons matter
theory9 with a Chern-Simons level k [10]. Actually moduli space analysis of this theory
[11, 12] implies that the interpretation as two indistinguishable M2-branes on R8/Zk can be
possible only for k = 1 and k = 2. After proposed the BLG theory, it has been found that
N = 4 superconfomal Chern-Simons theory can be constructed by a type of quiver gauge
theory [13, 14].

In 2008, Aharony, Bergman, Jafferis and Maldacena (ABJM) [15, 83] has proposed a
U(N)×U(N) theory with Chern-Simons levels k and −k coupled to bi-fundamental matters.
The on-shell supersymmetric Lagrangian of the theory is given by

LU(N)×U(N)

= kTr

[
1

2
ϵµνρ

(
−Aµ∂νAρ −

2

3
AµAνAρ + Ãµ∂νÃρ +

2

3
ÃµÃνÃρ

)
+
(
−DµΦ̄

αDµΦα + iΨ̄α /DΨα

)
− iϵαβγδΦαΨ̄βΦγΨ̄δ + iϵαβγδΦ̄

αΨβΦ̄γΨδ

+i
(
−Ψ̄βΦαΦ̄

αΨβ +ΨβΦ̄αΦ
αΨ̄β + 2Ψ̄αΦβΦ̄

αΨβ − 2ΨβΦ̄αΦβΨ̄α

)
+
1

3

(
ΦαΦ̄

βΦβΦ̄
γΦγΦ̄

α + ΦαΦ̄
αΦβΦ̄

βΦγΦ̄
γ

9Although this is actually the same as the SU(2) × SU(2) ABJM theory, the moduli space of this
theory is different from expected one except for k = 2. However, analysis by dual photon formulation and
superconformal index [79] strongly support that a quotient of the BLG theory is isomorphic [80, 81, 82] to
the U(2)× U(2) ABJM theory with some values of Chern-Simons level.
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+4ΦβΦ̄
αΦγΦ̄

βΦαΦ̄
γ − 6ΦγΦ̄

γΦβΦ̄
αΦαΦ̄

β
) ]

,

where Aµ and Ãµ are U(N) gauge fields, and Φα and Ψα (α = 1, 2, 3, 4) are bosonic and
fermionic complex bi-fundamental fields, respectively. This theory has manifest N = 6
supersymmetry for arbitrary integer k and the supersymmetry is enhanced to N = 8 su-
persymmetry for k = 1, 2 on quantum level [84]. The moduli space of this theory is given
by

M =
(R8/Zk)

N

SN
, (1.71)

which is the same as the moduli space of N M2-branes on R8/Zk. For k = 1, this is the
desired moduli space.

Gravity dual

Let us consider the black 2-brane solution corresponding to N M2-branes on R8/Zk in the
11d SUGRA. Such a solution is given by

ds211 = H(r)−2/3(−dt2 + dx21 + dx22) +H(r)1/3ds2R8/Zk
,

F (4) = dt ∧ dx1 ∧ dx2 ∧ dH−1, (1.72)

where the harmonic function H(r) is

H(r) = 1 +
Q

r6
, with Q = 32π2(kN)l6p. (1.73)

If we take the near-horizon limit, then we obtain AdS4 × S7/Zk as

ds211 =
R2
k

4z2
(
−dx20 + dx21 + dx22 + dz2

)
+R2

kds
2
S7/Zk

,

F (4) =
3

8
R2
kϵ4. (1.74)

where Rk = (25π2kN)1/6lp and ϵ4 is the unit volume form on AdS4.
Here we regard S7/Zk as the Hopf fibration of CP 3,

ds2S7/Zk
=

1

k2
(dϕ+ kω)2 + ds2CP 3 (1.75)

where ϕ = 0 ∼ ϕ = 2π and dω = J . Since the radius of the eleventh circle in the unit of
Planck length is

R11 =
Rk

klp
=

(
25π2N

k5

)1/6

, (1.76)

we can trust the 11d SUGRA picture only for k ≪ N1/5.
For k ≫ N1/5, the M-theory circle shrinks to zero. Then the dimensional reduction of

the solution (1.74):

ds210 =
R3
k

k

(
1

4
ds3AdS4

+ ds2CP 3

)
, e2Φ =

R3
k

k3
, F2 = kJ , F̃4 =

3

8
R3ϵ4, (1.77)
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solves the equation of motion of the type IIA supergravity10. Since the curvature radius is
given by √

R3
k

k
=

(
25π2N

k

)1/4

, (1.78)

the type IIA SUGRA picture should be valid only for N1/5 ≪ k ≪ N .

10Here we set α′ = 1.
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2 Localization method

In this chapter we introduce the localization method [29] and apply the method to general
3d N = 2 supersymmetric field theory on S3 [32, 47, 48]. which includes the ABJM theory
as a specific case11. The method enables us to denote a class of supersymmetric observables
in terms of a matrix model. This chapter is organized as follows. In section 2.1 we introduce
the localization method with a simple example. In section 2.2 we construct N = 2 super-
symmetric field theory with rigid supersymmetry. In section 2.3 we apply the localization
to 3d N = 2 supersymmetric field theory on S3. In section 2.4 we specify the argument to
the ABJM theory.

2.1 Basic idea

Let us consider the partition function of a field theory,

Z =

∫
DΦ e−S[Φ], (2.1)

where Φ represents the collection of the components fields. Let us suppose that the action is
invariant under an charge Q of a fermionic off-shell symmetry. If we assume the absence of
the boundary term, this is equivalent to QS[Φ] = 0. Then the closure of the algebra requires
Q2 = LB, where LB is the generator of a bosonic symmetry the theory has. The first step
of the localization method is to consider the deformation by a Q-exact term as

Z(t) =

∫
DΦ e−S[Φ]−tQV [Φ], (2.2)

where V is any fermionic functional satisfying LBV [Φ] = 0. By taking the derivative with
respect to t, we obtain

dZ(t)

dt
= −

∫
DΦ (QV [Φ])e−S[Φ]−tQV [Φ] = −

∫
DΦ Q

(
V [Φ]e−S[Φ]−tQV [Φ]

)
=

∫
(QDΦ) V [Φ]e−S[Φ]−tQV [Φ]. (2.3)

If we assume the Q-invariance of the measure (QDΦ = 0), namely that Q is non-anomalous,
then the deformed partition function Z(t) should be independent of the parameter t. This
implies that the original partition function Z can be written as

Z = lim
t→+0

Z(t) = Z(t) = lim
t→∞

∫
DΦ e−S[Φ]−tQV [Φ]. (2.4)

In this limit, the saddle point approximation around the classical solution toQV = 0 becomes
exact. Hence we obtain

Z =
∑
Φ0

exp(−S[Φ0])Z1−loop(Φ0), (2.5)

11The localization of the ABJM theory and related theories on various spaces has also been considered:
S1 × S2 [85, 86], squashed S3 [87, 88], lens space [89, 90, 91] and Seifert manifold [92].
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where Φ0 is the ‘localized’ configuration determined by (QV )[Φ0] = 0. The summation
∑

Φ0

over the saddle points should be understood as an integration if the saddle points are labeled
by continuous parameters. The one-loop determinant Z1−loop around Φ0 is given by

Z1−loop = lim
t→∞

∫
D(δΦ) e−tQV [Φ]

∣∣∣∣
Φ=Φ0+δΦ

. (2.6)

We can also use this method to calculate Q-invariant operators such as supersymmetric
Wilson loops. Then the expectation value is formally written as

⟨O⟩ =
∑

Φ0
O(Φ0) exp(−S[Φ0])Z1−loop(Φ0)∑
Φ0

exp(−S[Φ0])Z1−loop(Φ0)
. (2.7)

Such a technique was applied [29] to 4d N = 4 super Yang-Mills theory, and some conjecture
on the half-BPS Wilson loops12 [30, 31] has been confirmed.

Example: Zero-dimensional supersymmetric field theory

Let us consider the zero-dimensional field theory as a simple example whose action is given
by

S(X,B, ψ1, ψ2) =
1

2
B2 + iB(∂Xh)−

(
∂2Xh

)
ψ1ψ2, (2.8)

where h = h(X) is a degree-n polynomial of a real scalar X and ψ1(2) is the fermionic field.
The action is invariant under the following supersymmetric transformations off-shell :

δ1X = ϵ1ψ1

δ1B = 0
δ1ψ1 = 0
δ1ψ2 = −iϵ1B

and

δ2X = −ϵ2ψ2

δ2B = 0
δ2ψ1 = −iϵ2B
δ2ψ2 = 0

. (2.9)

The partition function of the theory is exactly evaluated as

Z =
1

2π

∫
dXdBdψ1dψ2 e

− 1
2
B2+iB(∂Xh)+(∂2Xh)ψ1ψ2

=
1√
2π

∫
dX (∂2Xh)e

− 1
2
(∂Xh)

2

=
1√
2π

∫
dy e−

1
2
y2 (y = ∂Xh)

=

{
0 for n : odd

sign (∂nXh) for n : even
. (2.10)

We can also derive this result by using the localization method. From the supersymmetric
transformations (2.9), we can easily show δ21(2) = 0 and [δ1, δ2] = 0. This structure leads us
to apply the localization method to the theory. Because the action is written as δ1δ2-exact
as

δ1δ2

(
1

2
ψ1ψ2 − h

)
= (ϵ1ϵ2)S = (ϵ1ϵ2)

[
1

2
(B + i(∂Xh))

2 +
1

2
(∂Xh)

2 − (∂2Xh)ψ1ψ2

]
, (2.11)

12This formula is also reproduced by a numerical simulation in the large-N limit [26, 27].

30



we choose the action itself as QV . The localization configuration is given by

B + i∂Xh = 0, ∂Xh = 0, ψ1 = 0, ψ2 = 0. (2.12)

If we consider the fluctuation X → x0 +
1√
t
X,B → 1√

t
B,ψ1 → 1√

t
ψ1, ψ2 → 1√

t
ψ2 around the

configuration, then the quadratic action over the fluctuation is given by

tQV |Gaussian =
1

2
(B + ih′′(x0)(X − x0))

2
+

1

2
h′′(x0)(X − x0)

2 − 1

2
h′′(x0)ψ1ψ2, (2.13)

where x0 is defined by ∂Xh|X=x0 = 0. From the action we obtain the 1-loop determinant as

Z1−loop(x0) = 2π
h′′(x0)

|h′′(x0)|
. (2.14)

Since the classical contribution is zero, the partition function via the localization method is

Z =
∑
x0

h′′(x0)

|h′′(x0)|
= =

{
0 for n : odd

sign (∂nXh) for n : even
,

which is the same as the direct result (2.10).

2.2 3d N = 2 supersymmetric field theory on S3

In this section we construct 3d N = 2 supersymmetric field theory on S3 with rigid super-
symmetry and investigate structures of the supersymmetry. We mainly follow the notation
of [48].

2.2.1 Killing spinor and Killing vector on S3

Let us consider the three-sphere with the radius l. We parametrize the unit S3 as an element
g of the Lie group SU(2)

g = eiαγ3eiθγ2eiβγ3 (2.15)

=

(
ei(α+β) cos θ −ei(α−β) sin θ

−e−i(α−β) sin θ e−i(α+β) cos θ

)
, (2.16)

where γa (a = 1, 2, 3) are Pauli matrices and 0 ≤ θ ≤ π
2
, 0 ≤ α ≤ π, 0 ≤ β ≤ 2π. From the

parametrization we define the left and right invariant 1-form µ, µ̃ in the following way:

g−1dg = iµaγa, dgg−1 = iµ̃aγa (2.17)

which satisfy the Maurer-Cartan equation

dµa = ϵabcµb ∧ µc, dµ̃a = −ϵabcµ̃b ∧ µ̃c. (2.18)

The 1-forms give the metric of S3 as

ds2 =
1

2
l2tr

(
dgdg−1

)
= l2µaµa = l2µ̃aµ̃a
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= l2
[
dθ2 + sin2 2θdα2 + (dβ + cos 2θdα)2

]
. (2.19)

We use below the vielbein and spin connection in the left-invariant frame given by

ea = eaµdx
µ, ωab = ϵabcµc. (2.20)

Since S3 is curved, Killing spinors on S3 are no longer constant. The Killing spinor
equation on S3 is given by (see [93] for example)

∇µϵ ≡
(
∂µ +

1

4
γabωabµ

)
ϵ = γµϵ̃, (2.21)

where γab = 1
2
[γa, γb] = iϵabcγc and ϵ̃ = 1

3
γµ∇µϵ. The solutions of this equation are{

ϵ = ϵ0, ϵ̃ = + i
2l
ϵ

ϵ = g−1ϵ0, ϵ̃ = − i
2l
ϵ
, (2.22)

where ϵ0 is a constant spinor. The first(second) solution is constant in the left(right)-invariant
frame.

The Killing vectorRa = Raµ ∂
∂xµ

generating the right action is determined byRag = igγa.
This is proportional to the inverse of vielbein explicitly given by

R1 = − sin (2β)
∂

∂θ
+ cos (2β)

(
1

sin (2θ)

∂

∂α
− cot (2θ)

∂

∂β

)
R2 = cos (2β)

∂

∂θ
+ sin (2β)

(
1

sin (2θ)

∂

∂α
− cot (2θ)

∂

∂β

)
R3 =

∂

∂β
. (2.23)

If we introduce Ja = 1
2i
Ra from the Killing vector, then Ja satisfies the SU(2) commutation

relation as
[Ja, J b] = iϵabcJ c. (2.24)

2.2.2 Actions and symmetries

We construct 3d N = 2 supersymmetric field theory on S3 with off-shell supersymmetry.
Note that we will take spinors in the Euclidean space, which cannot take reality condition
contrary to the Minkowski signature. Although off-shell supersymmetry on S3 recently has
been understood from supergravity [94], we do not discuss the detail.

Yang-Mills part

We begin with the 3d N = 2 Super Yang-Mills theory (SYM) on S3. Although the ABJM
theory does not the Yang-Mills term, this part is important in the context of the localization
as we will discuss below. The three-dimensional N = 2 vector multiplet consists of

(Aµ, σ,D, λ, λ̄), (2.25)
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where Aµ, σ,D are the gauge field, adjoint scalar and auxiliary field, respectively. λ and λ̄
are the gauginos given by two-component spinors. The action of the N = 2 SYM on S3 is
given by

SYM =
1

g2YM

∫
d3x

√
g Tr

[1
4
F 2
µν +

1

2
(Dµσ)

2 +
1

2

(
D +

σ

l

)2
+
i

2
λ̄γµDµλ+

i

2
λ̄[ σ, λ ]− 1

4l
λ̄λ
]
, (2.26)

where Di(·) = ∂i(·)− i[ Ai, · ]. As a convention for the fermionic bilinear product, we take

ψ̄χ = ψ̄αCαβχ
β (2.27)

for all spinors with the charge conjugation matrix C. In this convention, note that

ψ̄χ = χψ̄, ψ̄γµχ = −χγµψ̄. (2.28)

The action is invariant under the following supersymmetric transformation:

δAa = − i

2
(ϵ̄γaλ− λ̄γaϵ)

δσ =
1

2
(ϵ̄λ− λ̄ϵ)

δλ =
1

2
γabϵFab −Dϵ+ iγaϵDaσ +

2i

l
σϵ̃

δλ̄ =
1

2
γabϵ̄Fab +Dϵ̄− iγaϵ̄Daσ − 2i

l
σ˜̄ϵ

δD = − i

2
ϵ̄γaDaλ− i

2
Daλ̄γ

aϵ+
i

2
[ϵ̄λ+ λ̄ϵ, σ] +

i

2l
(˜̄ϵλ− λ̄ϵ̃). (2.29)

Again ϵ and ϵ̄ are independent of each other since we consider the spinors in the Euclidean
space.

Next we consider the algebra generated by the supersymmery. Decomposing the trans-
formation as δ = δϵ + δϵ̄, [δϵ, δϵ̄] for each field is given by

[δϵ, δϵ̄]Aµ = ξν∂νAµ + ∂µξ
νAν +DµΛ

[δϵ, δϵ̄]σ = ξµ∂µσ + i[Λ, σ] + ρσ

[δϵ, δϵ̄]λ = ξµ∂µλ+
1

4
Θµνγ

µνλ+ i[Λ, λ] +
3

2
ρλ+ αλ

[δϵ, δϵ̄] λ̄ = ξµ∂µλ̄+
1

4
Θµνγ

µνλ̄+ i[Λ, λ̄] +
3

2
ρλ̄− αλ̄

[δϵ, δϵ̄]D = ξµ∂µD + i[Λ, D] + 2ρD, (2.30)

where

ξµ = iϵ̄γµϵ

Θµν = D[µξν] + ξλωµνλ
Λ = −Aµϵ̄γµϵLσϵ̄ϵ
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ρ =
i

3
(ϵ̄γµDµϵ+ (Dµϵ̄)γ

µϵ)

α = − i

3
(ϵ̄γµDµϵ− (Dµϵ̄)γ

µϵ) . (2.31)

Here ξµ,Θµν ,Λ, ρ and α denote the parameters of translation, rotation, gauge transformation,
dilatation and R-rotation, respectively. While this closes for superconformal field theory as
in the ABJM theory, the dilatation hinders closure for non-conformal field theory. However,
if we restrict the Killing spinors to the constant solution in the left-invariant frame (the first
solution in eq. (2.22)), then the dilatation ρ vanishes and therefore the supersymmety closes
also for non-CFT. Hence we use the restricted Killing spinor below.

Chern-Simons part

The ABJM theory has the Chern-Simons (CS) term. The Chern-Simons action for theN = 2
vector multiplet is given by

SCS = − ik

4π

∫
Tr
[
A ∧ dA− 2

3
iA ∧ A ∧ A+ (−λ̄λ+ 2σD)

√
gd3x

]
, (2.32)

where k is the Chern-Simons level. This action is also invariant under the transformation
(2.29). Most important property of the transformation in the context of the localization is
that the Lagrangian LSYM of the SYM is written as δϵ̄δϵ-exact:

ϵ̄ϵLSYM = δϵ̄δϵTr

(
1

2
λ̄λ− 2Dσ

)
. (2.33)

This fact enables us choose SSYM as the deformation term QV . Then the localization states
that δϵ̄ and δϵ-invariant observables are independent of the YM coupling gYM since 1/g2YM

plays role as the deformation parameter t in (2.2).

Matter part

The ABJM theory contains the two bi-fundamental and anti-bi-fundamental chiral multiplet.
The action of the chiral multiplet with the representationR under the gauge group G is given
by

SMatter =

∫
d3x

√
g (Lkin + Lpt) , (2.34)

where Lkin and Lpt are a supersymmetric kinetic term and a superpotential term with higher
powers13 of the matter fields, respectively. Lkin is given by

Lkin = Tr

[
Dµϕ̄D

µϕ+ ϕ̄σ2ϕ+
i(2q − 1)

l
ϕ̄σϕ+

q(2− q)

l2
ϕ̄ϕ+ iϕ̄Dϕ+ F̄F

−iψ̄γµDµψ + iψ̄σψ − 2q − 1

2l
ψ̄ψ + iψ̄λϕ− iϕ̄λ̄ψ

]
, (2.35)

13As we mentioned later, this term is irrelevant in the context of the localization method as long as we do
not consider mass terms.
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where q is the dimension and R-charge of ϕ, which is 1/2 in the canonical assignment. Here
we understand that for example ϕ̄σϕ means

ϕ̄σϕ = ϕ̄σαTαϕ, (2.36)

where Tα is the generator of the gauge group G in the representation R. The action is
invariant under the supersymmetric transformation:

δϕ = ϵ̄ψ,

δϕ̄ = ϵψ̄,

δψ = iγaϵDaϕ+ iϵσABϕ+ 2qiϵ̃ϕ+ ϵ̄F,

δψ̄ = iγaϵ̄Daϕ̄+ iϕ̄σAB ϵ̄+ 2qiϕ̄˜̄ϵ+ F̄ ϵ,

δF = ϵ(iγaDaψ − iσABψ − iλϕ)− i

l
(2q − 1)ϵ̃ψ,

δF̄ = ϵ̄(iγaDaψ̄ − iψ̄σAB − iϕ̄λ̄)− i

l
(2q − 1)˜̄ϵψ̄. (2.37)

From the transformation we obtain the supersymmetry algebra14 as

[δϵ, δϵ̄]ϕ = ξµ∂µϕ+ iΛϕ− qαϕ

[δϵ, δϵ̄] ϕ̄ = ξµ∂µϕ̄− iϕ̄Λ + qαϕ̄

[δϵ, δϵ̄]ψ = ξµ∂µψ +
1

4
Θµνγ

µνψ + iΛψ + (1− q)αψ

[δϵ, δϵ̄] ψ̄ = ξµ∂µψ̄ +
1

4
Θµνγ

µνψ̄ − iψ̄Λ + (q − 1)αψ̄

[δϵ, δϵ̄]F = ξµ∂µF + iΛF + (2− q)αF

[δϵ, δϵ̄] F̄ = ξµ∂µF̄ − iF̄Λ + (q − 2)αF̄ , (2.38)

which closes off-shell. One of important property of the transformation is that the matter
Lagrangian Lkin is again written as

ϵ̄ϵLkin = δϵ̄δϵTr

(
ψ̄ψ − 2iϕ̄σϕ+

2(q − 1)

l
ϕ̄ϕ

)
. (2.39)

2.3 Localization of 3d N = 2 supersymmetric field theory on S3

Here we apply the localization method to a general N = 2 supersymmetric field theory on
S3 [32, 47, 48] (see also [92] for equivariant localization). The action of such a theory is
conventionally denoted as

S = SCS + SYM + SMatter. (2.40)

The localization method states that the partition function given by the original action (2.40)
is the same as the “deformed“ partition function given by the action

S(t) = SCS + (1 + t)SYM + (1 + t)SMatter. (2.41)

14Here we restrict the Killing spinor to the constant in the left-invariant frame. If we do not impose this
restriction, the algebra contains the dilatation again.
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Then we can exactly evaluate the original partition function by the saddle point method as

Z = lim
t→∞

∫
DΦe−SCS[Φ]−t(SYM[Φ]+SMatter[Φ]) (2.42)

=
∑
Φ0

e−SCS[Φ0]Z
(YM)
1−loop[Φ0]Z

(Matter)
1−loop [Φ0], (2.43)

where Z
(YM)
1−loop[Φ0] and Z

(Mat)
1−loop[Φ0] is the one-loop determinant from the gauge and Matter

sector on the localized configuration Φ0 satisfying SYM[Φ0] + SMat[Φ0] = 0, respectively.

2.3.1 Gauge sector

The action of the N = 2 SYM on S3 is given by

SYM =
1

g2YM

∫
d3x

√
g Tr

[1
4
F 2
µν +

1

2
(Dµσ)

2 +
1

2

(
D +

σ

l

)2
+
i

2
λ̄γµDµλ+

i

2
λ̄[ σ, λ ]− 1

4l
λ̄λ
]
.

Imposing SYM = 0, the localized configuration for the vector multiplet is determined by

Fµν = 0, Dµσ = 0, D = −σ
l
, λ = 0, λ̄ = 0. (2.44)

This is solved by15

Aµ = 0, σ = σ0, D = −σ
l
, λ = 0, λ̄ = 0, (2.45)

up to gauge transformation. Here σ0 is a constant matrix valued in the Lie algebra. At the
localized configuration, the Chern-Simons action becomes

SCS = iπl2kTrσ2
0. (2.46)

Before preceding to evaluation of the one-loop determinant, we should take care of gauge
fixing omitted for simple explanation16. We introduce the gauge fixing term as The gauge-
fixing action plus the ghost action is

LGF = δBTr(bG), (2.48)

where δB denotes the BRST transformation defined by

δBAµ = Dµc (2.49)

15Here we assume absence of singularities. See [95, 96] for more general situation.
16Strictly speaking, we should first treat the BRST symmetry δB together with the supersymmetries δϵ, δϵ̄

and consider deformation by “δϵ + δB“ or “δϵ̄ + δB“ exact term. However, we can show

LSYM + LGF ≃ (δϵ̄ + δB)(δϵ + δB)Tr

(
1

2
λ̄λ− 2Dσ

)
+ (δϵ(ϵ̄) + δB)Tr(bG). (2.47)

Since the first term is gauge invariant, δB does not affect. Then although the term we need to worry is
δϵ(ϵ̄)Tr(bG), this can be absorbed by assigning δϵ(ϵ̄)b = 0 and an appropriate field redefinition of c.
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δBc = ic2 (2.50)

δBb = B (2.51)

δBB = 0. (2.52)

b, c and B are ghosts and Nakanishi-Lautrup field, respectively. If we choose the gauge fixing
function G as

G = ∇µAµ, (2.53)

the gauge fixing action becomes

LGF = B∇µAµ − b∇µDµc. (2.54)

Note that the addition of this action does not change the localized configuration (2.45).
Expanding the fields around

σ → σ0 +
1√
t
σ, D → −σ0

l
+

1√
t
D, (Other fields) → 1√

t
(Other fields), (2.55)

we obtain the quadratic action as

t(SYM + SGF)|Gaussian

=

∫
d3x

√
gTr
[1
4
f 2
µν +

1

2
(∂µσ)

2 − 1

2
[Aµ, σ0]

2 +
1

2

(
D +

σ

l

)2
+
i

2
λ̄γµ∇µλ+

i

2
λ̄[ σ0, λ ]− 1

4l
λ̄λ+B∇µAµ − b∇µ∂µc

]
, (2.56)

where fµν = ∇µAν −∇νAµ. Since the integration over D is trivial, we omit the forth term
below. In order to simplify the integration over Aµ, we decompose the gauge field into a
divergenceless part plus divergence part [97] as

Aµ = ∂µa+Bµ, (2.57)

with ∇µBµ = 0. Then integrating over B leads us to the gauge fixing condition

δ(−∇2a), (2.58)

which makes easy to integrate a out. Being careful to the Jacobian factor det(−∇2)−1/2

associated with the delta function, we can easily find that integrating B, a, σ, b and c out
gives just 1. Thus remaining nontrivial part is

t(SYM + SGF)|Gaussian

=

∫
d3x

√
gTr
[
−1

2
(ϵµντ∇νBτ )

2 − 1

2
[Bµ, σ0]

2 +
i

2
λ̄γµ∇µλ+

i

2
λ̄[ σ0, λ ]− 1

4l
λ̄λ
]
.(2.59)

Next we make harmonic expansion as

Bµ =
∑
ρ=±1

∞∑
J=

ρ(ρ−1)
2

,2J+1∈Z

J+
ρ(ρ+1)

2∑
mL=−J− ρ(ρ+1)

2

J+
ρ(ρ−1)

2∑
mR=−J− ρ(ρ−1)

2

BJmLmRρY
ρ
JmLmRµ

,
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λα =
∑
κ=±1

∞∑
J=−κ−1

4

J+κ+1
4∑

mL=−J−κ+1
4

J−κ−1
4∑

mR=−J+κ−1
4

λJmLmRκY
κ
JmLmRα, (2.60)

where YJmLmRρµ and YJmLmRρµ are the vector and spinor spherical harmonics on S3, respec-
tively. Note that Bµ does not have the ρ = 0 mode since ∇µBµ = 0. Important properties
of these harmonics here are

ϵµντ∇νY
ρ
JmLmRτ

= −2ρ(J + 1)Y ρ
JmLmRµ

,

(γµ∇µY
κ
JmLmR

)α = iκ

(
2J +

3

2

)
Y κ
JmLmRα

,∫
dΩ3

2π2
(Y ρ1

J1m1
Lm

1
Rµ
)∗Y ρ2

J2m2
Lm

2
Rµ

= δρ1ρ2δJ1J2δm1
Lm

2
L
δm1

Lm
2
L
,∫

dΩ3

2π2
(Y κ1

J1m1
Lm

1
Rα

)∗Y κ2
J2m2

Lm
2
Rα

= δκ1κ2δJ1J2δm1
Lm

2
L
δm1

Lm
2
L
. (2.61)

Then the quadratic action becomes

t(SYM + SGF)|Gaussian

=
∑

ρ,J,mL,mR

Tr
[4(J + 1)2

2l2
B†
JmLmRρ

BJmLmRρ −
1

2
[B†

JmLmRρ
, σ0][BJmLmRρ, σ0]

]
+

∑
κ,J,mL,mR

Tr
[ 1
2l

(
−κ
(
2J +

3

2

)
− 1

2

)
λ̄†JmLmRκ

λJmLmRκ +
i

2
λ̄†JmLmRκ

[ σ0, λJmLmRκ]
]
.

(2.62)

Finally we introduce the Cartan-Weyl basis (Hi, Eα, E−α) satisfying

[ Hi, Hj ] = 0, [ Hi, Eα ] = αi · Eα, [ Eα, E−α ] =
2

|α|2
αiHi

E†
α = E−α, Tr(EαEβ) = δα+β,0. (2.63)

If we expand each field in terms of the basis as

X = XiHi +
∑
α∈∆+

(XαEα +X−αE−α) (2.64)

and choose the gauge taking σ0 as the Cartan values, then we obtain

t(SYM + SGF)|Gaussian

=
∑
α∈∆

∑
ρ,J,mL,mR

1

2

{
4(J + 1)2

l2
+ (α · σ)2

}
B−α
JmLmRρ

Bα
JmLmRρ

+
∑
α∈∆

∑
κ,J,mL,mR

1

2

{
−κ
(
2J + 3

2

)
− 1

2

l
+ i(α · σ)

}
λ̄−αJmLmRκ

λαJmLmRκ
. (2.65)
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Thus the one-loop determinant from the vector multiplet is given by

Z
(YM)
1−loop(σ0) =

∏
α∈∆

∏∞
J=0,2J+1∈Z

[−2J−2
l

+ i(α · σ)
](2J+1)(2J+2)

∏∞
J=0,2J+1∈Z

[
4(J+1)2

l2
+ (α · σ)2

] (2J+1)(2J+3)
2

×
∏∞

J=− 1
2
,2J+1∈Z

[
2J+1
l

+ i(α · σ)
](2J+1)(2J+2)

∏∞
J=−1,2J+1∈Z

[
4(J+1)2

l2
+ (α · σ)2

] (2J+1)(2J+3)
2

=
∏
α∈∆

(α · σ)
(
1

l2
+ (α · σ)2

)2

×
∞∏

J=0,2J+1∈Z

[−2J−2
l

+ i(α · σ)
](2J+1)(2J+2) [2J+2

l
+ i(α · σ)

](2J+2)(2J+3)[
4(J+1)2

l2
+ (α · σ)2

](2J+1)(2J+3)

=
∏
α∈∆+

(α · σ)2
(
1

l2
+ (α · σ)2

)2 ∞∏
J=0,2J+1∈Z

[
4(J+1)2

l2
+ (α · σ)2

]2(2J+2)2

[
4(J+1)2

l2
+ (α · σ)2

]2(2J+1)(2J+3)

=
∏
α∈∆+

(α · σ)2
∞∏
n=0

[
(n+ 1)2

l2
+ (α · σ)2

]2
=

∏
α∈∆+

[2 sinh (πl(α · σ))
(α · σ)

]2
, (2.66)

where we used some formulas of infinite products:

∞∏
n=1

n2 + x2

n2
=

sinh (πx)

πx
,

∞∏
n=1

n2 = e2ζ
′(0) = 2π,

∞∏
n=1

c = eζ(0) log c =
1√
c
. (2.67)

Note that the factor
∏

α∈∆+

1
(α·σ)2 is canceled with the factor coming from the residual gauge

fixing of σ0.

2.3.2 Matter sector

Next we consider the matter part whose Lagrangian is

SMat =

∫
d3x

√
gTr

[
Dµϕ̄D

µϕ+ ϕ̄σ2ϕ+
i(2q − 1)

l
ϕ̄σϕ+

q(2− q)

l2
ϕ̄ϕ+ iϕ̄Dϕ

+F̄F − iψ̄γµDµψ + iψ̄σψ − 2q − 1

2l
ψ̄ψ + iψ̄λϕ− iϕ̄λ̄ψ

]
.

We can easily find that the localized configuration except for σ and D is trivial:

ϕ = ϕ̄ = F = F̄ = ψ = ψ̄ = 0. (2.68)
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If we expand the fields around the configuration, we obtain the quadratic action as

tSMat|Gaussian =

∫
d3x

√
gTr

[
∂µϕ̄∂

µϕ+ ϕ̄σ2
0ϕ+

i(2q − 2)

l
ϕ̄σ0ϕ+

q(2− q)

l2
ϕ̄ϕ

−iψ̄γµ∇µψ + iψ̄σ0ψ − 2q − 1

2l
ψ̄ψ

]
, (2.69)

where we omit the trivial term F̄F . We make harmonic expansion again as

ϕ =
∞∑

J=0,2J+1∈Z

J∑
mL=−J

J∑
mR=−J

ϕJmLmR
YJmLmR

,

ψα =
∑
κ=±1

∞∑
J=−κ−1

4

J+κ+1
4∑

mL=−J−κ+1
4

J−κ−1
4∑

mR=−J+κ−1
4

ψJmLmRκY
κ
JmLmRα, (2.70)

where YJmLmR
is the scalar spherical harmonics satisfying

∇2YJmLmR
= −4J(J + 1)YJmLmR

,∫
dΩ3

2π2
(YJ1m1

Lm
1
R
)∗YJ2m2

Lm
2
R
= δJ1J2δm1

Lm
2
L
δm1

Lm
2
L
. (2.71)

Then the quadratic action is

tSMat|Gaussian =
∑

J,mL,mR

Tr

[
ϕ̄†
JmLmR

{
4J(J + 1) + q(2− q)

l2
+ σ2

0 +
i(2q − 2)

l
σ0

}
ϕJmLmR

]

+
∑

κ,J,mL,mR

Tr

[
ψ̄†
JmLmRκ

{
κ(2J + 3/2)− q + 1/2

l
+ iσ0

}
ψJmLmRκ

]
.(2.72)

Thus the one-loop determinant from the matter sector is

Z
(Mat)
1−loop =

∏
ρ∈R

∏∞
J=0,2J+1∈Z

[
2J+2−q

l
+ i(ρ · σ)

](2J+1)(2J+2)

∏∞
J=0,2J+1∈Z

[
4J(J+1)+q(2−q)

l2
+ (ρ · σ)2 + i(2q−2)

l
(ρ · σ)

](2J+1)2

×
∞∏

J=− 1
2
,2J+1∈Z

[
−2J − 1− q

l
+ i(ρ · σ)

](2J+1)(2J+2)

=
∏
ρ∈R

∞∏
J=0,2J+1∈Z

[
2J+2−q

l
+ i(ρ · σ)

](2J+1)(2J+2) [2J+1+q
l

− i(ρ · σ)
](2J+1)(2J+2)[

2J+2−q
l

+ i(ρ · σ)
](2J+1)2 [2J+q

l
− i(ρ · σ)

](2J+1)2

=
∏
ρ∈R

∞∏
n=1

(
n+1−q

l
+ i(ρ · σ)

n−1+q
l

− i(ρ · σ)

)n

=
∏
ρ∈R

s1(i− iq − l(ρ · σ)) (2.73)

where sb(z) is the double sine function introduced in appendix. C.

40



Thus we can write down formula for the partition function of general 3d N = 2 su-
persymmetric gauge theory on S3: which is a Yang-Mills Chern-Simons gauge theory with
arbitrary gauge group G = G1 × · · · × Gr and Chern-Simons levels coupled to arbitrary
number of N = 2 chiral multiplets with arbitrary representations and R-charge assignment.
Taking care of the residual gauge fixing term

∏
α∈∆+

(α · σ)2 and rescaling σ0 as 2πlσ0 → σ0,
the partition function is obtained as

Z =
1

|W |

∫
drankG1σ(1)

(2π)rankG1
· · · d

rankGrσ(r)

(2π)rankGr

r∏
a=1

∆Ga
Vec(σ

(a))
∏
α

∆Rα
Mat(σ; qα), (2.74)

where |W | is the order of the Weyl group of G, and σ(a) is the Cartan part of the adjoint
scalar in the vector multiplet with the gauge group Ga at the localization point. ∆Ga

Vec(σ
(a))

represents the contribution from the vector multiplet with the gauge group Ga given by

∆Ga
Vec(σ

(a)) =
∏

α(a)∈∆+

[
2 sinh

α(a) · σ(a)

2

]2
· exp

[
ika
4π
σ(a) · σ(a)

]
, (2.75)

where α(a) labels the positive roots of Ga. ∆Rα
Mat(σ; qα) is the contribution from the chiral

multiplet with the representation Rα and R-charge qα:

∆Rα
Mat(σ; qα) =

∏
ρα∈Rα

s1

(
i− iqα −

ρα · σ
2π

)
, (2.76)

where ρα is the weight vector of Rα. As a special case of a pair of chiral multiplets with
the representation R and R̄ in the canonical R-charge assignment, which corresponds to the
N = 4 hyper multiplet, the formula (2.76) reduces to the following simple form

∆R
Mat(σ; 1/2)∆

R̄
Mat(σ; 1/2) =

∏
ρ∈R

1

2 cosh ρ·σ
2

. (2.77)

2.4 Localization of the U(N)× U(N) ABJM theory

Let us focus on the U(N) × U(N) ABJM theory. Since the ABJM theory is the U(N)k ×
U(N)−k Chern-Simons theory with two bi-fundamental and anti-bi-fundamental chiral mul-
tiples in the canonical R-charge assignment, the partition function is given by

Z(N, k) =
1

(N !)2

∫
dNµ

(2π)N
dNν

(2π)N∏
i<j

[
2 sinh

µi−µj
2

]2[
2 sinh

νi−νj
2

]2
∏

i,j

[
2 cosh µi−νi

2

]2 exp

[
ik

4π

N∑
i=1

(µ2
i − ν2i )

]
. (2.78)

We can also apply the localization method to BPS Wilson loops in the ABJM theory.
The 1/6-BPS Wilson loop in the representation R [98, 99, 100], which keeps 4 of 24 super-
symmetries,

W1/6 =
1

N
TrP exp

[∫
ds

(
iAµẋ

µ +
2π

k
|ẋ|MIJΦ

IΦ̄J

)]
, (2.79)
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where MIJ = diag. (1, 1,−1,−1) and xµ(s) parametrize the great circle on S3. This is dual
to the smeared fundamental string in the dual supergravity background. Since only σ and D
are nontrivial on the localized configurations (2.45) (2.68), the operator on the configuration
naively seems to be trivial. However, the operator (2.79) is equivalent to the operator

1

N
TrP exp

[∫
ds (iAµẋ

µ + σ|ẋ|)
]
, (2.80)

after integrating σ out [101]. Thus we find that the expectation value reduces to⟨
W1/6

⟩
=

1

dimR
⟨TrReσ0⟩M.M. , (2.81)

where ⟨ · · · ⟩M.M. represents an expectation value in the ABJM matrix model (2.78).
In ref. [102], the 1/2-BPS Wilson loop has also been constructed. It can be written as

W1/2 =
1

dimR
TrR P exp

(∫
dsL̂

)
, (2.82)

where L̂ is given by

L̂ =

iAµẋµ + 2π
k
|ẋ|MIJΦ

IΦ̄J i
√

2π
k
|ẋ(τ)|ηαI (τ)ψ̄Iα

i
√

2π
k
|ẋ(τ)|ψαI η̄Iα(τ) iÃµẋ

µ + 2π
k
|ẋ|M̃IJΦ̄

JΦI

 . (2.83)

Here MIJ and M̃IJ are again MIJ = M̃IJ = diag. (1, 1,−1,−1) for the great circle and
this is dual to the localized fundamental string in the gravity dual. The parameters ηαI (τ)
and η̄αI (τ), which are determined by requiring supersymmetry, are irrelevant on the local-
ization argument. By applying the localization method to the 1/2-BPS Wilson loop in the
fundamental representation, the expectation value of the operator can be written as

⟨
W1/2

⟩
=

1

dimR

⟨
STrR

(
eσ0 0
0 −eσ̃0

)⟩
M.M.

. (2.84)
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3 Free energy

In this chapter, we show numerical results of the free energy [42, 43]. This chapter is
organized as follows. In section 3.1 we review the previous results for the free energy of the
ABJM matrix model in various limits, which are obtained by analytical methods. In section
3.2 we describe our numerical method. In section 3.3 we present our results, and discuss the
discrepancies from the analytical results. In section 3.4 we show that these discrepancies can
be interpreted as the constant map contributions.

3.1 Previous analytical results for the free energy

In this section we summarize some known analytical results for free energy of the ABJM
theory, which is defined in terms of the partition function (2.78) as

F (N, k) = logZ(N, k) . (3.1)

3.1.1 Perturbative results for all N

The free energy can be calculated by using a usual perturbative technique, and the result at
the one-loop level is given as (See, for example, ref. [37].)

Fweak = −N2 log
2N

πλ
−N log 2π + 2 logG2(N + 1) (3.2)

N≫1
= N2

(
log 2πλ− 3

2
− 2 log 2

)
− 1

6
logN + 2ζ ′(−1) +

∞∑
g=2

B2g

g(2g − 2)
N2−2g ,(3.3)

where G2(x) is the Barnes G-function G2(x) ≡
∏x−2

s=1 s!. The 1/N -expansion is shown in the
second line with Riemann’s zeta function ζ(x) and the Bernoulli numbers B2g. The O(N2)
terms in (3.3) agree with the result (3.5) obtained in the planar limit. Note, however, that
the expression (3.2) includes contributions to all orders in the 1/N -expansion.

3.1.2 N = 2 with arbitrary k

An exact expression for N = 2 is obtained by Okuyama [39] as17

F (2, k) =


log

[
1

k

k−1∑
s=1

(−1)s−1

(
1

2
− s

k

)
tan2 πs

k
+

(−1)
k−1
2

π

]
− 4 log 2 for odd k

log

[
1

k

k−1∑
s=1

(−1)s−1

(
1

2
− s

k

)2

tan2 πs

k

]
− 4 log 2 for even k .

(3.4)

This result has been obtained by direct integration of (3.17). Since the expressions for the
odd and even k cases are different, the analyticity in k (when one regards k or equivalently

17Note that the normalization of the partition function adopted in ref. [39] differs from ours as ZOkuyama =
22NZours.
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the ’t Hooft coupling constant λ as a continuous variable) is not obvious a priori. However,
as we will see in section 3.3, our numerical results suggest that the free energy is a smooth
function of k. The analyticity is important in the context of the AdS/CFT correspondence,
in which one assumes the analyticity on the gravity side. Also the analysis in the planar
limit usually assumes the analyticity implicitly.

3.1.3 Planar limit (N → ∞ with λ fixed)

The free energy in the planar limit (N → ∞ with λ fixed) has been calculated by Drukker,
Marino and Putrov (DMP) [34]. These results have been obtained by a standard matrix
model technique after the analytic continuation [33] to the lens space L(2, 1) = S3/Z2 matrix
model [103, 104], which is obtained from the pure Chern-Simons theory on L(2, 1). The
validity of the analytic continuation is proved diagramatically in refs. [105, 106].

At weak coupling (λ≪ 1) the authors obtain

Fweak,planar = N2

(
log 2πλ− 3

2
− 2 log 2

)
(3.5)

up to O(λ).
At strong coupling (λ≫ 1) the authors obtain

FDMP = −π
√
2

3

λ̂3/2

λ2
N2 where λ̂ = λ− 1

24
(3.6)

to all orders of the 1/λ expansion. The leading behavior FDMP ≃ −
√
2πN2/(3

√
λ) agrees

with the dual type IIA supergravity prediction [34, 107] including the overall coefficient. It
has been claimed that the free energy (3.6) at strong coupling receives the correction of the
form

≃ N2

λ2

∑
l≥1

e−2πl
√

2λ̂f
(l)
I

(
1

π
√
2λ̂

)
,

where f
(l)
I (x) is a polynomial in x of degree 2l − 3 (for l ≥ 2). This exponentially small

correction has been interpreted in ref. [34] as the effect of the worldsheet instanton in the
dual type IIA superstring, which corresponds to a string worldsheet wrapping a CP 1 cycle
in CP 3 [108].

In section 3.3 we will show that another contribution of the order of O(N2/λ2) due to
the constant map needs to be added in comparing with precise numerical analysis. Although
this term does not affect the agreement with supergravity, it must be taken into account
when one compares the finite λ corrections with the string α′ corrections.
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3.1.4 M-theory limit (N → ∞ with k fixed)

In ref. [35], the free energy in the M-theory limit18 (N → ∞ with k fixed) has been calculated
and confirmed the prediction

FSUGRA = −π
√
2k

3
N3/2 (3.7)

from the dual eleven-dimensional supergravity, which shows the well-known N3/2 scaling for
the degrees of freedom in the theory of M2-branes [109]. Note also that (3.7) agrees with
what one obtains formally from the leading large-λ behavior of the planar result (3.6) by
replacing λ with N/k.

The result (3.7) was obtained by imposing an ansatz for the eigenvalue distribution

µi = Nαzi + iwi , νi = Nαzi − iwi (zi, wi ∈ R) ,

which is necessary for the cancellation of long-range forces, and is also suggested by numerical
studies of the saddle point equation. The parameter α is chosen to be 1/2 by requiring that
all the short-range forces contribute to the free energy at the same order of N in order to
have nontrivial solutions.

3.1.5 1/N expansion around the planar limit

Fuji, Hirano and Moriyama (FHM) [38] studied the free energy to all orders in the genus

expansion neglecting the instanton contribution, which is of the order of O(e−2π
√
λ). Their

proposal for a resummed form is given by

FFHM(N, λ) = log

 1√
2

(
4π2N

λ

)1/3

Ai

( π√
2

(
N

λ

)2

λ3/2ren

)2/3
 , (3.8)

where Ai(x) is the Airy function, and the “renormalized ’t Hooft coupling” λren is given by

λren = λ− 1

24
− λ2

3N2
. (3.9)

The appearance of the Airy function [38] is also encountered in the context of M-theory flux
compactification [110]. Note that the expression (3.8) reproduces (3.6) in the large-N limit as

one can easily see by using the asymptotic formula log Ai(x) ∼ −2x3/2

3
for x≫ 1. In section

3.3 we will show that (3.8) has another contribution, which is necessary for comparison with
our numerical results.

The free energy at higher genus has been studied earlier [34, 36] by using a topological
string technique after analytic continuation to the lens space matrix model. The analysis in
ref. [38] has been performed by using the holomorphic anomaly equation [41], whose solution

18Strictly speaking, since the ABJM theory has been conjectured to be dual to the M-theory for k ≪ N1/5,
the limit N → ∞ with k fixed is merely a sufficient condition. In the following, however, we simply call it
“the M-theory limit”.
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is the same as the one for the loop equation [111, 112] with some appropriate boundary
conditions. In order to solve the holomorphic anomaly equation, one needs to provide some
inputs such as the free energy at genus zero and one, which are taken to be

F
(0)
FHM =

4
√
2π3

3
λ̂3/2 and F

(1)
FHM =

π

3
√
2
λ̂1/2 − 1

4
log (8λ̂) .

In this way the authors have found a general solution, which gives the free energy at all
genus up to the worldsheet instanton effect. The integration constants were determined by

assuming the absence of non-perturbative corrections of the type ∼ O
(
e−1/g2s

)
. Strictly

speaking, what one obtains in this way is the “weight zero” contribution to the free energy
in the language of topological string theory. It is claimed that one can turn this result into
the one including contributions from all weights by making a replacement λ → λren, which
is given in (3.9).

This “renormalized ’t Hooft coupling” is different from the expectation from the gravity
side [113] : λren,grav = λ − 1/24 + λ2/(24N2). While it is possible that this disagreement
may imply that the AdS/CFT does not hold at finite-N/quantum string level, we should
definitely gain more understanding on both gauge theory and gravity sides. The additional
contribution to the FHM result from the constant map should be important also from this
point of view.

3.1.6 N ≫ 1, small k

In ref. [40], the free energy with fixed small k has been calculated by using the Fermi gas
approach neglecting the quantum mechanical instanton effect (worldsheet instanton) and
the terms which are suppressed exponentially at large N (membrane instanton). In this
approach, the partition function of the ABJM theory is regarded as an ideal Fermi gas
system described by (3.15) with the Planck constant identified as ℏ = 2πk. The result is
given by

FFermi = log

[
(4π2k)

1/3

√
2

Ai

[(
πk2√
2

)2/3(
N

k
− 1

24
− 1

3k2

)]]
+ A(k)− 1

2
log 2 . (3.10)

The leading large-N behavior reproduces eq. (3.7) exactly. The function A(k) in (3.10) is
given for k ≪ 1/(2π) as19

A(k) =
2ζ(3)

π2k
− k

12
− π2k3

4320
+ O(k5) . (3.11)

Since the first term in (3.10) can be obtained formally from the FHM result FFHM in
(3.8) by replacing λ with N/k, one can rewrite it as

FFermi = FFHM + A(k)− 1

2
log 2 , (3.12)

19Although the Chern-Simons level k must be integer in a physical setup, the integral (2.78) is itself well-
defined also for non-integer k and we can actually obtain numerical results, which turn out to be a smooth
function of k.
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where A(k) may be viewed as “quantum corrections” with the “Planck constant” ℏ = 2πk.
Note that the first term in (3.12) is valid for all k although (3.11) is obtained at small k.
The authors note that the second and third terms in (3.11) are given by

A(k) =
2ζ(3)

π2k
−

∞∑
n=1

(−1)n−1B2n

n(2n− 1)(2n)!
π2n−2k2n−1

=
2ζ(3)

π2k
− 2

π

∫ πk

0

dξ

ξ2
log

[
sin(ξ/2)

ξ/2

]
(3.13)

for n = 1, 2. This is the power series with odd powers of k unlike the usual genus expansion
around the planar limit. The authors suggest that A(k) may encode the effect from D0-
branes of the order of O

(
e−k
)
∼ O

(
e−1/gs

)
.

Since this analysis for A(k) assumes k ≪ 1/(2π), it is not clear a priori whether the
result holds at physical values of k corresponding to integers. As we will see later, (3.11) and
(3.13) are in reasonable agreement with our numerical result for small k such as k = 1, 2, 3,
but not for larger k (including the planar limit).

3.2 Numerical methods for the ABJM matrix model at arbitrary
N and k

In this section we discuss how we can study the ABJM matrix model at arbitrary N and
k by applying a standard Monte Carlo method. For the readers who are not familiar with
Monte Carlo methods in general, we review the basic ideas in Appendix D. For an earlier
work on Monte Carlo simulation of a one-matrix model, see ref. [114].

3.2.1 Derivation of the sign-problem-free form of the ABJM matrix model

The ABJM matrix model in the form (2.78) is not suitable for Monte Carlo simulation since
the integrand is not real positive.20 However, as we review below in detail, one can rewrite
the ABJM matrix model in a sign-free form. which was used in ref. [115, 39, 40] for a different
purpose. Let us start with the ABJM matrix model (2.78). We are going to use the Cauchy
identity21 ∏

i<j(ui − uj)(vi − vj)∏
i,j(ui + vj)

=
∑
σ

(−1)σ
∏
i

1

ui + vσ(i)
. (3.14)

Here σ runs through all permutations. By setting ui = eµi , vi = eνi , it becomes∏
i<j(e

µi − eµj)(eνi − eνj)∏
i,j(e

µi + eνj)
=

∑
σ

(−1)σ
∏
i

1

eµi + eνσ(i)
.

20One might think of simulating a system without the phase factor exp((ik/4π)(µ2
i − ν2i )), and including

its effect afterwards by reweighting. While it is possible to obtain results for the k = 1 case along this line,
the calculation becomes more and more difficult for larger k due to the sign problem.

21See the appendix of ref. [115] for the proof of this identity.
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From this, we obtain∏
i<j

[
2 sinh

(µi−µj
2

)][
2 sinh

(νi−νj
2

)]
∏

i,j

[
2 cosh

(µi−νj
2

)] =
∑
σ

(−1)σ
∏
i

1

2 cosh
(
µi−νσ(i)

2

) .
Therefore, the partition function can be written as

Z(N, k)

=
1

N !2

∑
σ,σ′

(−1)σ+σ
′
∫

dNµ

(2π)N
dNν

(2π)N

∏
i

[
1

2 cosh
µi−νσ(i)

2
· 2 cosh µi−νσ′(i)

2

]
e

ik
4π

∑N
i=1(µ

2
i−ν2i )

=
1

N !

∑
σ

(−1)σ
∫

dNµ

(2π)N
dNν

(2π)N

∏
i

[
1

2 cosh
(
µi−νi

2

)
· 2 cosh

(
µi−νσ(i)

2

)]e ik
4π

∑N
i=1(µ

2
i−ν2i ) .

By using the formula
1

2 cosh p
=

1

π

∫
dx

e
2i
π
px

2 cosh x
,

we obtain ∑
σ

(−1)σ
∏
i

1[
2 cosh

(
µi−νi

2

)][
2 cosh

(
µi−νσ(i)

2

)]
=

∑
σ

(−1)σ
1

π2N

∫
dNxdNy

exp
[
i
π

∑
i(µi − νi)xi +

i
π

∑
i(µi − νσ(i))yi

]
∏

i 2 cosh xi · 2 cosh yi

=
∑
σ

(−1)σ
1

π2N

∫
dNxdNy

exp
[
i
π

∑
i(µi − νi)xi +

i
π

∑
i(µiyi − νiyσ(i))

]
∏

i 2 coshxi · 2 cosh yi
.

Therefore, the partition function becomes22

Z(N, k)

=
1

N !

∑
σ

(−1)σ
1

π2N

∫
dNxdNy

1∏
i 2 cosh xi · 2 cosh yi

22In the Fermi gas approach [40], the integrand is identified with a partition function for the ideal Fermi
gas given by

Z(N, k) =
1

N !

∑
σ

(−1)σ
∫
dNx

N∏
i=1

ρ(xi, xσ(i)) , (3.15)

where ρ(x1, x2) is interpreted as the one-particle density matrix

ρ(x1, x2) =
1

2πk

1(
2 cosh x1

2

)1/2 1(
2 cosh x2

2

)1/2 1

2 cosh
(
x1−x2

2k

) . (3.16)
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∫
dNµ

(2π)N
dNν

(2π)N
exp

[ i
π

∑
i

(µi − νi)xi +
i

π

∑
i

(µiyi − νiyσ(i)) +
ik

4π

∑
i

(µ2
i − ν2i )

]
=

1

N !

∑
σ

(−1)σ
1

π2N

∫
dNxdNy

1∏
i 2 cosh xi · 2 cosh yi

∫
dNµ

(2π)N
dNν

(2π)N

exp
[ ik
4π

N∑
i=1

(
µi +

2

k
(xi + yi)

)2

− ik

4π

N∑
i=1

(
νi +

2

k
(xi + yσ(i))

)2]
exp

[
− i

kπ

N∑
i=1

(
(xi + yi)

2 − (xi + yσ(i))
2
)]

=
1

N !

∑
σ

(−1)σ
1

π2N

∫
dNxdNy

1∏
i 2 cosh xi · 2 cosh yi

∫
dNµ

(2π)N
dNν

(2π)N

exp
[ ik
4π

N∑
i=1

µ2
i −

ik

4π

N∑
i=1

ν2i −
2i

kπ

N∑
i=1

xi(yi − yσ(i))
]

=
1

N !

∑
σ

(−1)σ
1

kNπ2N

∫
dNxdNy

1∏
i 2 cosh xi · 2 cosh yi

e−
2i
kπ

∑N
i=1 xi(yi−yσ(i))

=
1

N !

∑
σ

(−1)σ
1

(kπ)N

∫
dNy

1∏
i 2 cosh

(
yi−yσ(i)

k

)
· 2 cosh yi

=
1

N !

∑
σ

(−1)σ
∫

dNx

(2πk)N
1∏

i 2 cosh
(
xi
2

)
· 2 cosh

(
xi−xσ(i)

2k

) . (3.17)

We use the Cauchy identity again:

∑
σ

(−1)σ
∏
i

1

2 cosh
(
xi−xσ(i)

2k

) =

∏
i<j

[
2 sinh

(xi−xj
2k

)]2
∏

i,j

[
2 cosh

(xi−xj
2k

)] =
1

2N

∏
i<j

tanh 2

(
xi − xj
2k

)
.

Thus we arrive at the final expression

Z(N, k) =
1

2NN !

∫
dNx

(2πk)N

∏
i<j tanh

2
(xi−xj

2k

)∏
i 2 cosh

(
xi
2

) , (3.18)

which does not have a sign problem. In the k = 1 case, one may view this as a mirror
description of the ABJM theory in terms of the 3d U(N) N = 4 SYM with adjoint and
fundamental hypermultiplets, which is isomorphic to 3d U(N) N = 8 SYM in the low-
energy limit [115]. The important point here is that the integrand is real positive, and we
can perform Monte Carlo simulation in a straightforward manner as described in Appendix
D.

We should also note that, while the level k should be an integer in the original 3d gauge
theory, nothing prevents us from considering non-integer k in the integral (2.78). In what
follows, we therefore extend the value of k to any real number.
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3.2.2 Calculating the ratio of partition functions

In the previous section, we show that the ABJM matrix model is rewritten as

Z(N, k) = CN,k g(N, k) , CN,k =
1

(4πk)N N !
,

g(N, k) =

∫
dNx

∏
i<j tanh

2
(xi−xj

2k

)∏
i 2 cosh(xi/2)

. (3.19)

In order to calculate the free energy (3.1), which is the log of the partition function, we need
to rewrite it in terms of expectation values of some quantities, which are directly calculable
by Monte Carlo methods.23 The basic idea in our case is to calculate the ratios of the
partition functions for different k or N as expectation values. Since we know the results for
k = 0 or N = 1, we can obtain results for arbitrary k and N by calculating an appropriate
product of the ratios. Depending on whether we change k or N , we have the following two
methods, which give the same result within statistical errors as we have checked for various
k and N . The second method is particularly useful in studying the M-theory limit, which
corresponds to the large N limit with fixed k.

Reweighting by different k

Let us consider a trivial identity

g(N, k2)

g(N, k1)
=

∫
dNx e−S(N,k2;x)∫
dNx e−S(N,k1;x)

=
⟨
e−S(N,k2;x)+S(N,k1;x)

⟩
N,k1

, (3.20)

where we have defined

e−S(N,k;x) =

∏
i<j tanh

2(
xi−xj
2k

)∏
i 2 cosh(xi/2)

(3.21)

and ⟨ · · · ⟩N,k stands for the expectation value with respect to the action S(N, k;x)

⟨O⟩N,k =
∫
dNxO(x)e−S(N,k;x)∫
dNx e−S(N,k;x)

. (3.22)

The quantity (3.20) can be calculated easily by the standard Monte Carlo method as far as
k1 and k2 are sufficiently close.24 Therefore, we can calculate the free energy F as

F = logZ = logCN,k + log g(N, k)

= logCN,k +
l∑

i=1

log
g(N, ki)

g(N, ki−1)
+ log g(N, 0)

23For applications of such an idea on different supersymmetric systems, see refs. [116] and [117].
24As k2 moves away from k1, the quantity e−S(N,k2;x)+S(N,k1;x) fluctuate violently during the simulation

of the system S(N, k1;x), which leads to larger statistical errors.
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= logCN,k +
l∑

i=1

log
⟨
e−S(N,ki;x)+S(N,ki−1;x)

⟩
N,ki−1

+N log π , (3.23)

where 0 = k0 < k1 < · · · < kl = k and we have used g(N, 0) =
∫

dNx∏
i 2 cosh(xi/2)

= πN in the

last line. We have to make the adjacent values of k close enough for the reason mentioned
above.

Reweighting by different N

Let us decompose N into N = N1 +N2 and consider the ratio

g(N, k)

g(N1, k)g(N2, k)
=

∫
dNx e−S(N,k)∫

dNx e−S(N1,k;x1,··· ,xN1
)−S(N2,k;xN1+1,··· ,xN )

=
⟨
eS(N1,k;x1,··· ,xN1

)+S(N2,k;xN1+1,··· ,xN )−S(N,k)⟩
N1,N2

, (3.24)

where the symbol ⟨· · · ⟩N1,N2 denotes the expectation value with respect to the “action”
S(N1, k;x1, · · · , xN1) + S(N2, k;xN1+1, · · · , xN). Note that

eS(N1,k;x1,··· ,xN1
)+S(N2,k;xN1+1,··· ,xN )−S(N,k) =

N1∏
i=1

N∏
J=N1+1

tanh2

(
xi − xJ

2k

)
, (3.25)

due to the factorization of the potential terms. In order to calculate the right-hand side of
(3.24) with good accuracy, it is necessary to take N2 small enough to make sure that (3.25)
does not fluctuate violently during the simulation. In actual calculation we use N2 = 1.
Then by calculating (3.24) for N1 = 1, 2, 3, · · · , and by using the N = 1 result

g(1, k) =

∫
dx

2 cosh(x/2)
= π , (3.26)

we can calculate the free energy for N = 2, 3, 4, · · · successively with a fixed value of k.

3.3 Results for the free energy

In this section we present our numerical result for the free energy of the ABJM theory. In
order to test our code, we first study the N = 2 case and compare our result against the exact
result (3.4) obtained by Okuyama [39]. As can be seen from fig. 1, our result reproduces the
exact result very accurately. We have also obtained results for non-integer values of k, which
are not obtained in ref. [39]. They are found to connect the results for integer k smoothly.

3.3.1 Planar limit

Next we consider the planar limit (N → ∞ with λ = N/k fixed), which is conjectured to be
dual to the classical type IIA superstring on AdS4 × CP 3. In fig. 2 we plot the normalized
free energy F/N2 against 1/N2 for various values of λ. Our results can be fitted well by
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Figure 1: The free energy of the ABJM theory for N = 2 is plotted against the Chern-Simons
level k. The circles and triangles represent our Monte Carlo result and the exact result (3.4),
respectively.

F (N, λ)/N2 = f0(λ) + f1(λ)/N
2 − 1

6
logN as theoretically expected25. In the left panel of

fig. 3, we plot f0(λ) = limN→∞ F (N, λ)/N2 against 1/
√
λ. The results seem to interpolate

the DMP result (3.6) at strong coupling and the perturbative result (3.5) at weak coupling.
However, by looking more carefully into the asymptotic behavior for large λ, we find certain
discrepancies. This can be seen from the right panel of fig. 3, in which we plot the difference
limN→∞(F − FDMP)/N

2, which is found to behave as

lim
N→∞

F − FDMP

N2

λ≫1≃ a0
λ2

+ b0 , (3.27)

a0 = −0.015± 0.001 , b0 = −0.0006± 0.0002 (3.28)

instead of the behavior O(e−2π
√
λ) expected from the worldsheet instanton effect. We consider

that b0 is consistent with zero since the fitting error may well be slightly underestimated.
Since the discrepancy (3.27) vanishes at λ = ∞ (assuming that b0 in (3.27) is zero), it does
not affect the agreement with the dual type IIA supergravity.

In section 3.4 we explain that this discrepancy can be understood as the constant map
at genus 0. Similar discrepancies exist also in 1/N corrections around the planar limit as we
will see.

3.3.2 M-theory limit

Next we consider the large-N limit with fixed k, which is conjectured to correspond to the
eleven dimensional supergravity on AdS4 × S7/Zk. Figure 4 shows that the free energy F
grows in magnitude asN3/2 withN , and F/N3/2 behaves as F (N, k)/N3/2 = h0(k)+h1(k)/N ,
which enables us to obtain the M-theory limit h0(k) = limN→∞ F (N, k)/N3/2 reliably.

In fig. 5 we plot h0(k) against
√
k, which confirms the prediction (3.7) from eleven-

dimensional supergravity for k = 1, 2, · · · , 10 very precisely.

25The functions f0(λ) and f1(λ) defined here are related to F0(λ) and F1(λ), which are defined in (4.4),
as f0(λ) = −F0(λ)/4π

2λ2 and f1(λ) = F1(λ).
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Figure 2: The normalized free energy F/N2 is plotted against 1/N2 for various values of λ
(Left). In the right panel, we zoom up the plot for λ = 1. The data can be nicely fitted to
F (N, λ)/N2 = f0(λ)+f1(λ)/N

2− 1
6
logN , which enables us to make a reliable extrapolation

to the planar N → ∞ limit.

3.3.3 Finite N effects

One of the important results on finite N effects in the free energy is that the 1/N corrections
around the planar limit are resummed in a closed form (3.8) neglecting the worldsheet
instanton effect. In fig. 6 we plot our results for N = 4 and N = 8 and compare them with
the FHM result (3.8) and the DMP result (3.6). We find that both FHM and DMP are close
to our data at strong coupling, but the difference between them is too small to see whether
FHM is doing any better than DMP. This is simply because the term (3.7), which commonly
exists in both results, is dominating over the difference. We therefore plot F−FSUGRA against
N for k = 1 (Left) and k = 8 (Right) in fig. 7. The leading large-N behavior of the plotted
quantity is π√

2
( 1
24

+ 1
3k2

)k3/2
√
N for FHM and π

24
√
2
k3/2

√
N for DMP, where the difference

comes from the λ2/(3N2) = 1/(3k2) term in (3.9). The difference becomes negligible for
k = 8, but it is significant for k = 1, in which case our data are indeed closer to FHM than
to DMP.

We also find some discrepancy between our result and FHM, which are almost indepen-
dent of N . To see it more directly, we plot in fig. 8 the difference between our result and
the FHM result for various k. It turns out that the discrepancies are indeed almost inde-
pendent of N . This strongly suggests that the FHM result correctly incorporates the finite
N effects except for a term which depends only on k. Note that this discrepancy cannot be
explained by the worldsheet instanton effect O(e−2π

√
λ), which is neglected in FHM. While

this discrepancy does not affect the M-theory limit corresponding to the strict N → ∞ limit
for fixed k, it is non-negligible when one considers 1/N corrections. As we will see in section
3.4, this discrepancy coincides with A(k) − 1

2
log 2 in eq. (3.12) by Fermi gas approach [40]

for small k and with the constant map contribution for all k.
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Figure 3: (Left) The free energy in the planar limit f0(λ) = limN→∞ F (N, λ)/N2 extracted
from fig. 14 is plotted against 1/

√
λ. Our results seem to interpolate the DMP result at strong

coupling and the perturbative result at weak coupling. (Right) The difference between our
result and the DMP result, i.e., limN→∞(F − FDMP)/N

2, is plotted against 1/λ2. The data
points can be fitted to a straight line, which implies (3.27) and (3.28).

3.4 Interpretation of the discrepancies

In this section we provide an interpretation of the discrepancies between our data and the
known analytical results, which we observe in the previous section.

3.4.1 Genus expansion

Let us consider the planar limit, in which gsN = 2πiN/k = 2πiλ is kept fixed. In that limit,
the free energy can be expanded with respect to the genus as

F (gs, λ) =
∞∑
g=0

Fg(λ)g
2g−2
s

= − N2

(2πλ)2
F0(λ) + F1(λ)−

(2πλ)2

N2
F2(λ) + · · · . (3.29)

Below we consider the free energy order by order in this expansion.

Planar contribution

The planar contribution −k2F0(λ)/(4π
2) can be studied by the saddle point method, and

the F0(λ) can be determined by solving [33, 34, 37, 118]

∂λF0(λ) =
κ

4
G2,3

3,3

(
1
2

1
2

1
2

0 0 −1
2

−κ
2

16

)
+
iπ2κ

2
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
, (3.30)

λ(κ) =
κ

8π
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
, (3.31)
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Figure 4: (Left) The free energy is plotted against N3/2 for k = 1, 2, 4, 6, 8. The data
points can be fitted to straight lines, which implies F ∼ N3/2 as N increases. (Right) The
normalized free energy F/N3/2 is plotted against 1/N . The data can be nicely fitted to
straight lines, which enables us to make extrapolations to the M-theory limit reliably.

where G2,3
3,3 is the Meijer G-function26 and 3F2 is the hypergeometric function. Note that

these equations are exact for arbitrary λ, and hence they fully incorporate the worldsheet
instanton effect. One can obtain F0(λ) by carrying out the integration over λ as

F0(λ) = F0(0) +

∫ λ

0

dλ′ ∂λ′F0(λ
′) = F0(0) +

∫ κ(λ)

0

dκ′
∂λ′

∂κ′
∂λ′F0(λ

′) . (3.32)

At weak coupling λ≪ 1, in particular, one obtains

F0(λ) = F0(0) + F̃0(λ) + O(λ9) , (3.33)

F̃0(λ) = 2π2λ2
(
3− 2 log

πλ

2

)
+

4π4λ4

9
− 61π6λ6

450
+

12289π8λ8

79380
. (3.34)

By comparing this with the perturbative calculation (3.5), one finds F0(0) = 0.
At strong coupling λ≫ 1, one obtains

F0(λ) = c0 + F̂0(λ) + O

(
e−8π

√
2λ̂

)
, (3.35)

F̂0(λ) =
4π3

√
2

3
λ̂3/2 − e−2π

√
2λ̂ + e−4π

√
2λ̂

(
9

8
+

1

π
√

2λ̂

)

−e−6π
√

2λ̂

(
82

27
+

9
√
2

4π
√
λ̂
+

1

π2λ̂
+

√
2

12π3λ̂3/2

)
, (3.36)

26The Meijer G-function is defined by

Gm,n
p,q

(
a1 · · · ap
b1 · · · bq

x

)
=

1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
xsds ,

where the path L is chosen in an appropriate way depending on the parameters.
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Figure 6: The free energy of the ABJM theory for N = 4 (Left) and N = 8 (Right) is plotted
against 1/

√
λ. The solid line and the dashed line represent the FHM result (3.8) and the

DMP result (3.6), respectively. The dotted line represent the perturbative results (3.2).

where λ̂ = λ − 1/24. Here c0 is an “integration constant”, which has been set zero in the
previous works, for instance, in ref. [34], which leads to eq. (3.6).

In fig. 9 we plot c(λ) ≡ F0(λ)−F̂0(λ), where F0(λ) is evaluated numerically by performing
the integral (3.32) explicitly. As λ increases, we find that c(λ) approaches a nonzero constant

c0 ≃ 0.60103 , (3.37)

which coincides with ζ(3)/2 ≃ 0.601028 obtained as the constant map contribution at genus
zero [41, 44, 45]. The value of a0 in (3.27) predicted from the above calculation is a0 =
−c0/4π2 ≃ −0.015224, which agrees well with the discrepancy (3.28) observed in the planar
limit.
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represent the FHM result (3.8) and the DMP result (3.6), respectively.

Higher genus contributions

Next we discuss the discrepancy at higher genus, which can be also interpreted as the constant
map contributions as in the planar part. Let us note that the analytical results up to the
constant map have been obtained for genus one and two in terms of modular forms as
[34, 36, 112, 119]

F
(1)
modular(λ) = − log η(τ) , (3.38)

F
(2)
modular(λ) =

1

432ϑ4
2ϑ

8
4

(
−5

3
E3

2 + 3ϑ4
2E

2
2 − 2E4E2

)
+
16ϑ12

2 + 15ϑ8
2ϑ

4
4 + 21ϑ4

2ϑ
8
4 + 2ϑ12

4

12960ϑ4
2ϑ

8
4

, (3.39)

where η(τ) is the Dedekind eta function, En(τ) is the Eisenstein series of weight n, ϑn(τ) is
the theta function, and τ(λ) is defined as

τ(λ) = i
K(
√

1 + κ2/16)

K( iκ
4
)

= 1 +
i

4π3
∂2λF0(λ) , (3.40)

where K(x) is the complete elliptic integral of the first kind.

In fig. 10 we plot F
(1)
modular −

(
F

(1)
weak +

1
6
log k

)
(Left) and F

(2)
modular −F

(2)
weak (Right) against

λ, where we have defined the weak coupling results

F
(1)
weak(λ) = −1

6
(log λ+ log k) + 2ζ ′(−1) , (3.41)

F
(2)
weak(λ) = − B4

16π2λ2
, (3.42)

at genus one and two, respectively, as can be read off from (3.3). We find in both cases that
the result approaches a constant as λ→ 0, which gives

c1 ≃ 0.25558 , c2 ≃ 0.0027777 , (3.43)
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Figure 8: The difference F − FFHM is plotted against N for various values of k. It reveals
non-negligible discrepancies for each k, which are almost independent of N .

respectively. This suggests that in the weak coupling region there are additional terms given
by

∆F (1) = −1

6
log k − c1 , ∆F (2) = −c2 , (3.44)

which precisely coincide with the constant map contributions [41, 44, 45]

for genus 1 : − 1

6
log k + 2ζ ′(−1) +

1

6
log

π

2
,

for genus g ≥ 2 :
4gB2gB2g−2

4g(2g − 2)(2g − 2)!
. (3.45)

Since the FHM result (3.8) reproduces the previous results in the genus expansion, the FHM
result must also have the additional contributions

F − FFHM ≃ −c0
k2

4π2
− 1

6
log k − c1 + c2

4π2

k2
+O(k−4) , (3.46)

where the worldsheet instanton effect is neglected.
As we did in the case of planar contribution, we can test whether the discrepancy in the

genus one contribution between our data and the previous analytical results can be explained
by the additional terms identified above. In fig. 11 we extract the genus one contribution
from our data in the following way. First we subtract from our data for the free energy,
the planar contribution g−2

s F0(λ), where F0(λ) is obtained by (3.32), and subtract also the
term −1

6
log k that appears in the weak coupling result (3.41). Then we plot the result after

these subtractions against 1/N2 in fig. 11 (Left), which can be nicely fitted to straight lines.
The intercepts give the values of the genus one contribution for each λ, which are plotted
against λ in fig. 11 (Right). We find that the result is in good agreement with the genus one
contribution of FFHM after making a constant shift by −c1 determined as (3.43).
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3.4.2 Finite N effects

Let us see how well the FHM result with the corrections (3.46) does at finite N . In fig. 12
we plot F − FFHM, i.e., the discrepancies between our result and the FHM result for N = 2
and N = 10 against k. At k ≳ 1, the N = 2 data and the N = 10 data are on top of each
other as anticipated from fig. 8. In this regime, the discrepancies are in good agreement with
the corrections (3.46) identified in section 3.4.1.

It is interesting to see what happens if we go to smaller k region in fig. 12 although non-
integer k is not physical in the original gauge theory. Firstly we start to see some difference
between N = 2 and N = 10, which implies that there is some N dependence which is not
captured by the FHM result in this regime. We speculate that the N dependence is due to
the membrane instanton effect [36, 120], which behaves as O(e−π

√
2kN), since the worldsheet

instanton effect is negligible in this regime. Secondly, we find that the discrepancy between
our result and the FHM result no longer agrees with (3.46) including corrections up to genus
two. This is understandable since the higher genus terms become non-negligible as one goes
to smaller k (larger gs).

On the other hand, the free energy at small k is calculated by the Fermi gas approach as
(3.12). We find that our data for N = 10 interpolate nicely the behavior (3.12) at small k and
the behavior (3.46) at large k. This also supports our speculation that the difference between
the N = 2 and N = 10 data at small k is due to the membrane instanton effect, which is
neglected in the Fermi gas approach. Note, in particular, that the Fermi gas approach yields
correction to the FHM result in odd powers of k, whereas the genus expansion yields even
powers of 1/k. Our data nicely interpolate the two asymptotic behaviors, which are smoothly
connected around k ∼ 1.

Finally let us consider the sum of the constant map contributions at all genus (3.45),
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(
F
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)
, which is the differ-

ence between the modular expression (3.38) and the weak coupling result for genus one. It
approaches a constant smoothly for λ → 0, which gives c1 in (3.43). The dotted line repre-

sents F
(1)
FHM −

(
F

(1)
weak +

1
6
log k

)
, which diverges as λ → 0 since the FHM result neglects the

worldsheet instanton effect. (Right) The solid line represents F
(2)
modular − F

(2)
weak, which is the

difference between the modular expression (3.39) and the weak coupling result for genus two.
It approaches a constant smoothly for λ→ 0, which gives c2 in (3.43). The dotted line rep-

resents F
(2)
FHM−F

(2)
weak, which diverges as λ→ 0 since the FHM result neglects the worldsheet

instanton effect. Here F
(2)
FHM is given by F

(2)
FHM = 1

144
√
2π
λ̂−1/2 − 1

48π2 λ̂
−1 + 5

96
√
2π3 λ̂

−3/2.

which is given by27

Fconst = −ζ(3)
8π2

k2 − 1

6
log k +

1

6
log

π

2
+ 2ζ ′(−1)

−1

3

∫ ∞

0

dx
1

ekx − 1

(
3

x3
− 1

x
− 3

x sinh2 x

)
. (3.47)

In fig. 12 we find that this function agrees well with the discrepancy between our result and
the FHM result for the whole range of k investigated, including k ≲ 1. Since the Fermi
gas result (3.12) also gives accurate description there, it is natural to guess that they are
actually the same. Indeed, as we show in appendix E, the sum of the constant map (3.47)
can be expanded around k = 0 as

Fconst =
2ζ(3)

π2k
− 1

2
log 2 +

∞∑
n=1

(−1)n

(2n)!
B2nB2n−2π

2n−2k2n−1

= −1

2
log 2 +

2ζ(3)

π2k
− k

12
− π2k3

4320
+

π4k5

907200
+ · · · , (3.48)

which exactly reproduces the result of the Fermi gas approach (3.12) to the k3 term.28

Remarkably, the constant map contribution (3.47) and the expansion (3.48) are equivalent
27An assumption is needed to obtain (3.47) and (3.48). For details, see appendix E.
28Note that the Fermi gas calculation has been done only to the k3 term, and the higher order terms are

just an educated guess. Calculations at higher orders would be an interesting future direction.
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1
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(1)
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where c1 is given by (3.43). The dashed line represents the weak coupling behavior given by
(3.41) with the −1

6
log k term being subtracted.

at any k. Therefore, we expect that the result (3.48) is the all-order form of A(k) − 1
2
log 2

in the Fermi gas approach. In other words, we expect that the expansions of the free energy
around k = ∞ (the constant map contribution) and k = 0 (the Fermi gas approach) give
the same answer after taking sums to all orders. In this sense the free energy around the
planar and M-theory limits are smoothly connected with each other.
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4 Supersymmetric Wilson loop

In this chapter we present our (preliminary) numerical result of the supersymmetric Wilson
loop. This chapter is organized as follows. In Sec. 4.1 we introduce the supersymmetric
Wilson loops of the ABJM theory and review analytic results which are compared with our
numerical data. We will explain in what parameter region and up to what corrections the
results should be valid. In Sec. 4.2 we present our numerical technique. Then in Sec. 4.3 we
show the Monte Carlo data. By comparing them with the analytic expressions in various
limits, we confirm the validity of the previous results, and furthermore, extract the instanton
effects.

4.1 Supersymmetric Wilson loops in various limit

From (2.81) the expectation value of the 1/6-BPS Wilson loop in the fundamental represen-
tation is written as29 ⟨

W1/6

⟩
=

1

N

∑
i

⟨eµi⟩M.M. , (4.1)

By applying the localization method to the 1/2-BPS Wilson loop in the fundamental repre-
sentation, the expectation value of the operator is given by⟨

W1/2

⟩
=

1

N

∑
i

⟨eµi + eνi⟩M.M. . (4.2)

from (2.84). Because ⟨eνi⟩M.M. = ⟨eµi⟩∗M.M., this has the following simple relation to the
expectation value of the 1/6-BPS Wilson loop as⟨

W1/2

⟩
= 2Re

⟨
W1/6

⟩
. (4.3)

Therefore we consider only
⟨
W1/6

⟩
from now on.

The expectation value of the 1/6-BPS Wilson loop can be expanded with respect to the
genus as

⟨
W1/6

⟩
=

∞∑
g=0

g2gs
⟨
W1/6

⟩
g

=
⟨
W1/6

⟩
g=0

− (2πλ)2

N2

⟨
W1/6

⟩
g=1

+
(2πλ)4

N4

⟨
W1/6

⟩
g=2

+ · · · , (4.4)

where gs = 2πi/k = 2πiλ/N .

29In order to obtain the result in the trivial framing, we must multiply e−πiλ, which is the inverse of
so-called framing factor.
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Planar limit (N → ∞ with λ fixed) for all λ

In ref. [33], the single differential equation determining the planar expectation value of the
Wilson loop had been obtained as

d

dκ

[
λ(κ)

⟨
W1/6

⟩
g=0

]
= − 1

2π2
√
ab(1 + ab)

[aK(k)− (a+ b)Π(n|k)] . (4.5)

Here,

λ(κ) =
κ

8π
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
,

a(κ) =
1

2

(
2 + iκ+

√
κ(4i− κ)

)
, b(κ) =

1

2

(
2− iκ+

√
−κ(4i+ κ)

)
,

n(κ) =
b(κ)

a(κ)

a(κ)2 − 1

1 + a(κ)b(κ)
, k(κ) =

√
(a(κ)2 − 1)(b(κ)2 − 1)

1 + a(κ)b(κ)
, (4.6)

where 3F2 is a generalized hypergeometric function. K and Π are the complete elliptic
integrals of the first and third kind, respectively.

Perturbative results (λ≪ 1/2π) for all N

In the planar limit, perturbative calculations had been performed in refs. [98, 99, 100, 121].
Alternatively, one can obtain the weak coupling expression by solving the differential equa-
tion (4.5). The result is

⟨
W1/6

⟩
g=0

= eπiλ
(
1 +

5π2

6
λ2 − iπ3

2
λ3 − 29π4

120
λ4 +

iπ5

12
λ5 +O(λ6)

)
. (4.7)

Furthermore, by taking small λ expansion of eq. (4.1), one can calculate the expression to
all order in 1/N [34]

⟨
W1/6

⟩
= eπiλ

[
1 +

(
5

6
+

1

6N2

)
π2λ2 −

(
1

2
− 1

2N2

)
iπ3λ3

−
(

29

120
− 8

9N2
− 7

360N4

)
π4λ4 +O(λ5)

]
, (4.8)

which is valid for all finite N and reduces to eq. (4.7) in the large-N limit.

Strong coupling in the planar limit (N → ∞ and λ≫ 1/2π)

At the strong coupling region in the planar limit, the analytic expression is obtained by
solving the equation (4.5) in the κ≫ 1 and λ≫ 1 limit [33], and given by

⟨
W1/6

⟩
g=0

=
1

2πiλ

(
−1

2

√
2λ̂+

1

2π
+
i

4

)
eπ
√

2λ̂ +O(e−π
√

2λ̂) , (4.9)
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where λ̂ = λ− 1/24. (For the derivation, see Appendix F.) This expression shows a perfect
agreement with the dual gravity calculation. Exponentially small correction of the order

e−π
√

2λ̂ had been interpreted in ref. [34] as the effect of the worldsheet instanton in the dual
type IIA superstring, which corresponds to a string worldsheet wrapping a CP 1 cycle in
CP 3 [108].

The 1/N2 correction to this expression had also been studied in ref. [34]. Then we can
obtain the genus-1 contribution as

⟨
W1/6

⟩
g=1

=
1

2πiλ

(
1

12

√
2λ̂− i

24
− 1

12π
+

i

12π
√

2λ̂
− i

32π2λ̂

)
eπ
√

2λ̂ , (4.10)

up to O(e−π
√

2λ̂). Note that the instanton correction becomes large as λ becomes small.
Therefore, it is important to see how this strong-coupling expression and the weak coupling
expression (4.7) are interpolated at the intermediate region λ ∼ 1/2π.

All N and k, up to the instanton effects

In ref. [46], the Fermi gas approach [40] is applied to the Wilson loop with fixed k, neglecting
the quantum mechanical instanton effect (worldsheet instanton effect) and the exponentially
small corrections in the chemical potential of the gas (membrane instanton effect [120]). The
result is

⟨
W1/6

⟩
= − A1(k)

NC1/3

Ai′
[
C−1/3

(
N − k

24
− 7

3k

)]
Ai
[
C−1/3

(
N − k

24
− 1

3k

)] +
A2(k)

N

Ai
[
C−1/3

(
N − k

24
− 7

3k

)]
Ai
[
C−1/3

(
N − k

24
− 1

3k

)]
(4.11)

up to O(e−π
√

2λ̂, e−π
√
2kN). The parameters A1(k), A2(k) and C are given by

A1(k) =
i

πk
csc

2π

k
, A2(k) =

(
1

4
− i

k
cot

2π

k

)
csc

2π

k
, C =

2

π2k
. (4.12)

Note that this expression is singular for k = 1, 2. The authors of ref. [46] concluded that the
expression is not valid for these values of k. Therefore, it is important to look more closely
what happens when k = 1, 2.

As we have explained before, the instanton correction becomes large at weak ’t Hooft
coupling, and hence this expression should cease to work at some point and should be
interpolated to the weak coupling formulae (4.7) and (4.8).

4.2 Numerical methods for ABJM BPS Wilson loop

Let us consider the expectation value of an observable O(x):

⟨O⟩ =
∫
dNxO(x)e−S(x)∫
dNx e−S(x)

. (4.13)
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Figure 13: The contour deformation in eq. (4.18)

When e−S(x) is real and positive, one can use the Monte Carlo method to calculate it. (For
the details, see Appendix A in ref. [42].) The partition function of the ABJM theory on S3

(2.78) can be rewritten in the positive-definite form [39, 40, 115]

ZABJM =
1

2NN !

∫
dNx

(2πk)N

∏
i<j tanh

2
(xi−xj

2k

)∏
i 2 cosh

(
xi
2

) , (4.14)

so that the Monte Carlo method is applicable. Actually, in ref. [42], we performed the
Monte Carlo simulation of the free energy by using this expression. In this section, we
show the expectation value of 1/6-BPS Wilson loop can be also calculated by using this
positive-definite expression. Moreover, we introduce an efficient simulation technique.

4.2.1 1/6-BPS Wilson loop in positive-definite form

The expectation value of 1/6-BPS Wilson loop (4.1) is written as

⟨
W1/6

⟩
=

1

ZABJM

1

(N !)2

∫
dNµ

(2π)N
dNν

(2π)N
eµ1

∏
i<j

(
2 sinh

µi−µj
2

)2(
2 sinh

νi−νj
2

)2
∏

i,j

(
2 cosh

µi−νj
2

)2
× exp

[ ik
4π

N∑
i=1

(µ2
i − ν2i )

]
. (4.15)

By using the Cauchy identity (G.3), the integrand can be simplified:

⟨
W1/6

⟩
=

1

ZABJM

1

N !

∑
σ

(−1)σ
∫

dNµ

(2π)N
dNν

(2π)N
eµ1∏

i 2 cosh
µi−νi

2
· 2 cosh µi−νσ(i)

2

× exp
[ ik
4π

N∑
i=1

(µ2
i − ν2i )

]
. (4.16)
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As we will see below, this integral is divergent at small k. Therefore, in order to make the
argument robust, we set the cutoff Λ for the integration domain and then remove it:⟨

W1/6

⟩
=

limΛ→∞WΛ

ZABJM

, (4.17)

where we define

WΛ :=
1

N !

∑
σ

(−1)σ
∫ Λ

−Λ

dNµ

(2π)N
dNν

(2π)N
eµ1∏

i 2 cosh
µi−νi

2
· 2 cosh µi−νσ(i)

2

× exp
[ ik
4π

N∑
i=1

(µ2
i − ν2i )

]
. (4.18)

Let us now change the integration contours as in Fig. 13 to make the convergence of
integrand faster: C1 → C2 + C3 + C4 and C ′

1 → C ′
2 + C ′

3 + C ′
4. We should take |ϵ| < π/Λ,

so that the values of integrations remain unchanged by the Cauchy’s integration theorem.
Since the integrations along C2, C4, C

′
2, C

′
4 are irrelevant30 for the Λ → ∞ limit, we drop

these contributions below. Then, by using the Fourier transformation for 1/ cosh µ−ν
2
, WΛ is

rewritten as

WΛ =
1

N !

∑
σ

(−1)σ
1

π2N

∫
dNxdNy

e−
i
πk((x1+y1−iπ)2−(x1+yσ(1))

2)− i
πk

∑N
i=2((xi+yi)2−(xi+yσ(i))

2)∏
i 2 cosh xi · 2 cosh yi

×
∫ Λ

−Λ

dNµ

(2π)N
dNν

(2π)N
exp

[
ie2iϵk

4π

(
µ1 +

2e−iϵ

k
(x1 + y1 − iπ)

)2

+
ie2iϵk

4π

N∑
i=2

(
µi +

2e−iϵ

k
(xi + yi)

)2

− ie−2iϵk

4π

N∑
i=1

(
νi −

2eiϵ

k
(xi + yσ(i))

)2
]
.

(4.19)

Then we can easily perform the integrations over µ2, · · · , µN and νi by the usual Gauss
integrations. The remaining integration over µ1, however, is not so simple: we need to
impose ϵ > 1/Λ2 in order to obtain the finite value of the Gauss integration.31 By using
again the Cauchy identity (G.6), we finally obtain⟨

W1/6

⟩
· ZABJM = lim

Λ→∞
WΛ

=
e

π
k
i

2NN !

1

cos π
k

∫
dNx

(2πk)N
e−

x1
k

N∏
j=2

[
tanh

(
x1−xj−2πi

2k

)
tanh

(x1−xj
2k

) ]∏
i<j tanh

2
(xi−xj

2k

)∏
i 2 cosh

xi
2

. (4.20)

Therefore,
⟨
W1/6

⟩
can be calculated as

⟨
W1/6

⟩
=

e
π
k
i

cos π
k

⟨
e−

x1
k

N∏
j=2

[
tanh

(
x1−xj−2πi

2k

)
tanh

(x1−xj
2k

) ]⟩
(4.21)

30Here we must take sign(ϵ) = sign(k).
31More precisely, we require limΛ→∞ e−

k
2π ϵΛ2

= 0.
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where the expectation value in the right hand side is evaluated by using the partition function
(4.14).

When x1 takes a large negative value, we see that

(integrand of eq. (4.20)) ∼ e(1/k−1/2)|x1| (4.22)

and hence the integral is divergent for k ≤ 2. This means that the expectation value of the
Wilson loop

⟨
W1/6

⟩
itself is divergent for k ≤ 2 since the partition function of the ABJM

matrix model is finite. This is consistent with the observation in ref. [46].

4.2.2 Simulation method

In the Monte Carlo simulation, it is not easy to evaluate a rapidly increasing operator like
(4.21).32 This difficulty becomes severe when k is close to 2 and/or λ is large. In order to
avoid it, we consider

e−Sα(N,k;x) :=

∣∣∣∣∣∣ e−x1
k

N∏
j=2

[
tanh

(
x1−xj−2πi

2k

)
tanh

(x1−xj
2k

) ]∣∣∣∣∣∣
α ∏

i<j tanh
2
(xi−xj

2k

)∏
i 2 cosh

xi
2

. (4.23)

Then the expectation value of the Wilson loop can be written as

⟨
W1/6

⟩
=

e
π
k
i

cos π
k

· ⟨phase⟩Sαℓ
·
ℓ−1∏
i=0

⟨
e−Sαi+1+Sαi

⟩
Sαi

, (4.24)

where ⟨· · ·⟩Sαi
is an expectation value with the weight e−Sαi , phase is the phase factor

e−S1/|e−S1 |, and 0 = α0 < α1 < · · · < αℓ = 1. Then, by dividing the integral to suffi-
ciently many steps ℓ ≫ 1 (i.e. by taking αi+1 − αi sufficiently small), each step can be
calculated reliably and hence one can evaluate

⟨
W1/6

⟩
accurately.

4.3 Simulation results

Now we show our Monte Carlo data. As we have seen in Sec. 4.1, nontrivial things which
can be studied by the Monte Carlo simulation are:

• How the strong and weak coupling formulas are interpolated.

• The detail of the instanton correction.

In this section we study these points, after confirming the consistency of the data and analytic
formulas. Note that we don’t restrict k to integer; although it is quantized in the original
ABJM theory, the matrix model obtained through the localization is well-defined also for
non-integer k.

In the following, we denote
⟨
W1/6

⟩
simply as ⟨W ⟩. Remember that the expectation value

of 1/2-BPS Wilson loop is given by the real part of that of 1/6-BPS Wilson loop as eq. (4.3).
32During the simulation, the fluctuation of the integrand in eq. (4.20) becomes very violent, so that the

importance sampling fails in practice. More precisely, very sharp spikes appear due to the prefactor e−
x1
k in

the integrand. Such spikes take 105 times or 1010 times or even bigger values compared to most samples.
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Figure 14: Plots of Re ⟨W ⟩ (left) and Im ⟨W ⟩ (right) for various values of λ as functions

of 1/N2. The data can be fitted by Re ⟨W ⟩ = f
(R)
0 (λ) + f

(R)
1 (λ)/N2 + f

(R)
2 (λ)/N4 and

Im ⟨W ⟩ = f
(I)
0 (λ) + f

(I)
1 (λ)/N2 + f

(I)
2 (λ)/N4.

4.3.1 Planar limit (N → ∞ with λ = N/k fixed)

First we consider the planar limit, which is conjectured to be dual to the classical type IIA
superstring theory on AdS4 × CP 3.

In fig. 14, we plot Re ⟨W ⟩ and Im ⟨W ⟩ for various fixed values of λ as functions of 1/N2.
At sufficiently large N , the data can be fitted well by

Re ⟨W ⟩ = f
(R)
0 (λ) +

f
(R)
1 (λ)

N2
+
f
(R)
2 (λ)

N4
(4.25)

and

Im ⟨W ⟩ = f
(I)
0 (λ) +

f
(I)
1 (λ)

N2
+
f
(I)
2 (λ)

N4
, (4.26)

as expected from the usual 1/N counting. In the following, we study the properties of f
(R)
g (λ)

and f
(I)
g (λ) determined by the numerical fit.

In fig. 15, we plot

lim
N→∞

Re ⟨W ⟩ = f
(R)
0 (λ) =: Re ⟨W ⟩g=0 , lim

N→∞
Im ⟨W ⟩ = f

(I)
0 (λ) =: Im ⟨W ⟩g=0 (4.27)

against
√
λ. The solid lines are the strong coupling expression (4.9) obtained by Mariño and

Putrov [33], while the dashed lines are the perturbative result (4.7) at weak coupling region.
Our numerical data nicely interpolate these two expressions. The data agree well with the
strong coupling expression at

√
λ ≳ 0.6.

In fig. 16, we plot the discrepancy between our data limN→∞Re ⟨W ⟩, limN→∞ Im ⟨W ⟩
and eq. (4.9). This should be the contribution from the worldsheet instanton, which can be
estimated analytically as

⟨W ⟩inst,g=0 = eπ
√

2λ̂

9∑
l=2

wl(λ)e
−lπ

√
2λ̂ +O(e−9π

√
2λ̂), (4.28)
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Figure 15: The real part in the planar limit Re ⟨W ⟩g=0 (left) and Im ⟨W ⟩g=0 (right) extracted
from fig. 14.
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where wl(λ)’s are explicitly given in eq. (F.6). We find that our data match the analytical
expression within the statistical error. Therefore, we conclude that our numerical data
nicely reproduce the previous analytical results including the worldsheet instanton effect in
the planar limit.

4.3.2 Finite N
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Figure 17: The numerical data for each N . The solid lines are Fermi gas result (4.11) for
strong coupling region, while the dashed lines are perturbative result (4.8) for weak coupling
region. The data agree with the strong coupling expression at

√
λ ≳ 0.6.

Finally we compare our full numerical data with the analytical results at finite N . In
fig. 17, we plot Re ⟨W ⟩ and Im ⟨W ⟩ against

√
λ for various values of N . The solid lines are

the Fermi gas result (4.11), while the dashed lines are the perturbative result (4.8) to λ4.
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Our results successfully interpolate the perturbative result at weak coupling and the Fermi
gas result at strong coupling.
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Figure 18: The difference between the full numerical data and Fermi gas result (4.11). The
dashed lines are the fitting of data in the expression .

In fig. 18, we plot the discrepancy between our data Re ⟨W ⟩, Im ⟨W ⟩ and the Fermi gas
result. This should correspond to the contribution from worldsheet instanton and membrane
instanton. At sufficiently large N and/or small λ, the membrane instanton effect is exponen-

tially suppressed as ∼ e−π
√
2kN = e−πN

√
2/λ, so we should be able to see only the worldsheet

instanton effect ∼ e−π
√

2λ̂. In all the graphs, we can see such behavior at small λ. At small
N and large λ, however, the both effects should be visible, so the behavior of the discrepancy
becomes a little complicated. The graphs for N = 3 at large λ seem to be in this case.
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5 Summary and discussions

We have established a simple numerical method for studying the ABJM theory on a three
sphere for arbitrary rank N at arbitrary Chern-Simons level k. The crucial point is that we
are able to rewrite the ABJM matrix model, which is obtained after applying the localization
technique, in such a way that the integrand becomes positive definite. By using this method,
we have confirmed from first principles that the free energy in the M-theory limit grows
proportionally to N3/2 as predicted from the eleven-dimensional supergravity. We have also
found that the FHM formula with the additional terms describes the free energy of the ABJM
theory in the type IIA superstring and M-theory regimes. Analytic form of the additional
terms is discussed in detail, and beautiful agreement between planar and M-theory regions
is found. These additional terms become important when we consider the quantum string
effect in the AdS/CFT duality.

There are many issues worth being addressed by using our method. Most importantly
from the conceptual point of view, we can use the free energy obtained for finite N and
finite k to test the AdS/CFT duality at the quantum string level. At the tree level, or
equivalently in the planar limit, there is strong evidence that the gauge theory correctly
describes the string α′ effect. For example, the D0-brane quantum mechanics reproduces the
α′ correction to the black 0-brane solution in type IIA superstring theory [122]. However, no
definite conclusion is obtained for quantum string corrections so far. In fact, as pointed out
in ref. [38], the FHM formula does not seem to agree with a prediction from the string theory
side [113]. This disagreement is not solved even if we take into account of the corrections
found in this paper. Some of the possible solutions to this puzzle includes: (i) one has
to consider some different gauge theory such as SU(N)k × SU(N)−k theory, which gives
different 1/N corrections, (ii) one has to refine the argument on the string theory side, and
(iii) the AdS/CFT does not hold at the quantum string level. In particular, the scenario (i)
can be tested straightforwardly by extending our method.

We consider it equally important to study quantum M-theory. While there is very little
knowledge on it so far, we may hope to get some insight through intensive numerical studies
of the ABJM theory. In fact similar attempts have been made recently [123, 124] using
the BFSS matrix theory [2]. Numerical studies suggest that the prediction from the dual
string theory for the scaling dimension of a certain class of operators continues to hold in
the M-theory region. Similar or possibly more striking features of M-theory may show up
by studying the ABJM theory numerically.

While we have focused on the free energy as the most fundamental quantity in the ABJM
theory, our method can be used to calculate the expectation values of BPS operators. For
instance, it is possible to calculate the expectation value of the circular Wilson loop for
various representations. They are conjectured to be related to the string worldsheet area
and the D-brane world-volume in the type IIA superstring region, respectively. It would be
interesting to test this conjecture and to see the stringy corrections.

Our method can be also applied to other theories, which have recently attracted much
attention in connection to the F-theorem and the entanglement entropy. For example, one
can study the necklace-type quiver discussed in ref. [125]. We can also study other gauge
groups such as O(N) and USp(N) studied in ref. [126, 127]. Detailed studies of these theories
outside the planar limit, in particular, would be very interesting. For instance, the so-called
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orbifold equivalence, which is usually proven to hold only in the planar limit, can hold outside
the planar limit in these models [128, 129]. Note also that the ABJM matrix model is related
to the lens space matrix model, which appears in the context of the topological string theory.
It is therefore conceivable that there might be some applications to the topological string
theory as well.

We hope that the results of this work are convincing enough to show the power of the
numerical approach, and that many more applications other than those listed above would
reveal themselves as we proceed further.
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Figure 19: AdSd+1 is represented as the hyperboloid in R2,d−1.

A Anti-de Sitter space

In this appendix, we summarize properties of Anti-de Sitter spacetime (AdS). One of the most
important fact in the context of AdS/CFT correspondence is that the boundary of AdSd+1

is the same as the conformal compactification of the d-dimensional Minkowski spacetime.
For references about this appendix, see [130], [70] and section 12.3 of [131].

A.1 The definition of AdS

First, we give the definition of AdS. AdSd+1 has a constant negative curvature, and this is
represented as certain hypersurface (fig.19):

−X2
−1 −X2

0 +
d∑
i=1

X2
i = −R2 (A.1)

in the (d+ 2)−dimensional flat space Rd,2 with the metric

ds2 = −dX2
−1 − dX2

0 +
d∑
i=1

dX2
i , (A.2)

where R is AdS radius. In the following, we fix R to unity for simplicity. By this construction,
AdSd+1 has manifestly the isometry SO(d, 2) and its topology is

AdSd+1 ≈ S1 × Rd. (A.3)

Note that AdS has a closed timelike curve (CTC) since the topology of the timelike direction
is S1.
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A.2 Useful coordinates in AdS

Here we introduce various convenient coordinates of AdSd+1.

Open chart：(t, z1, · · · , zd)

The open chart is given by

X−1 = sin t , Xj = cos tzj, (j = 0, · · · , d) (A.4)

where
−(z0)2 + (z1)2 + (z2)2 + · · · (zd)2 = −1. (A.5)

Since

dX−1 = cos tdt, (A.6)

−dX2
0 + dX2

1 + dX2
2 + · · ·+ dX2

D = − sin 2tdt2 + cos 2t(−(dz0)2 + (dzi)2), (A.7)

we find
ds2 = −dt2 + cos 2t(−(dz0)2 + (dzi)2). (A.8)

In addition, by transforming as

z0 = coshχ
(z1, z2, · · · , zd) = sinhχ · dΩd−1

, (A.9)

and using
−(dz0)2 + (dzi)2 = dχ2 + sinh 2χdΩ2

d−1 , (A.10)

one can find
ds2 = −dt2 + cos 2t(dχ2 + sinh 2χdΩ2

d−1). (A.11)

This corresponds to the open Robertson-Walker spacetime. Since this coordinate has singu-
larity at t = ±1

2
π, the coordinate does not cover all of the AdSd+1.

Static chart:(θ, r,Ωd−1)

The static chart is given by

X−1 = cosh r sin θ
X0 = cosh r cos θ

(X1, X2, · · · , Xd) = sinh rΩd−1

. (A.12)

Since
−dX2

−1 − dX2
0 = − sinh 2r − cosh 2rdθ2 , (A.13)

dX2
i = cosh 2rdr2 + sinh 2rdΩ2

d−1 , (A.14)

the line element is given by

ds2 = − cosh 2rdθ2 + dr2 + sinh 2rdΩ2
d−1. (A.15)

This chart is static and spherically symmetric. Since this coordinate cover with all of the
AdSd+1, the static chart is the complete chart of AdSd+1.
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Poincare coordinate:(z, x0, xi)

The Poincare coordinate is given by

(z, x0, xi) = ((X−1 +Xd)
−1, X0z,Xi(X−1 +Xd)

−1). (A.16)

This expression says that the Poincare coordinate has a discontinuous change between X−1+
Xd > 0 and X−1 +Xd < 0. Therefore we can not describe the AdSd+1 over X−1 +Xd = 0,
namely, the Poincare coordinate is not the complete chart. Since

dz = −(X−1 +Xd)
−2(dX−1 + dXd) ⇐⇒ dX−1 + dXd = − 1

z2
dz, (A.17)

dx0 = zdX0 +X0dz = zdX0 +
x0

z
dz ⇐⇒ dX0 =

1

z
(dx0 − x0dz), (A.18)

dxi = zdXi +
xi

z
dz ⇐⇒ dXi =

1

z
dxi − xi

z2
dz, (A.19)

we obtain

X2
i +X2

d −X2
−1 −X2

0 = −1 ⇐⇒ X2
i − (X−1 +Xd)(X−1 −Xd)−X2

0 = −1

⇐⇒ (X−1 −Xd) = z
[
X2
i −X2

0 + 1
]
=

1

z
(x2i − x20) + z.

(A.20)

Moreover, since

d(X−1 −Xd) = − 1

z2
(x2i − x20)dz +

2

z
(xidxi − x0dx0) + dz , (A.21)

one can find

−dX2
−1 + dX2

d = −(dX−1 − dXd)(dX−1 + dXd)

=
1

z2
dz

{
− 1

z2
(x2i − x20)dz +

2

z
(xidxi − x0dx0) + dz

}
,

(A.22)

dt22 =
1

z2
(dx0 − x0dz)2 , (A.23)

dyidyi =
1

z2
(dxi − xi

z
dz)2. (A.24)

Thus we obtain the metric

ds2 = −dX2
−1 −X2

0 + dXidXi + dX2
d

=
1

z2
(−(dx0)2 + dxidxi + dz2). (A.25)

The Poincare coordinate is quite useful for AdS/CFT correspondence since we can see d-
dimensional Poincare symmetry manifestly.
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Figure 20: The region covered by AdS in the X−1 −XD plane.

A.3 Euclidenized AdS geometry

For later convenience, we consider the Euclideanized AdS : EAdS. Wick-rotating X0,
EAdSd+1 is expressed as the hyper surface:

X2
1 + · · ·+X2

d −X2
−1 +X2

0 = −1 (A.26)

in the d+ 2-dimensional flat spacetime:

ds2 = −dX2
−1 + dX2

0 + dX2
1 + · · ·+ dX2

d . (A.27)

It is trivial from the definition that EAdSd+1 has the SO(d+ 1, 1) symmetry. Representing
the Poincare coordinate, this becomes

ds2 =
1

z2
(dz2 + (dx2)d) (A.28)

where (dx2)d is the line element of the d-dimensional Euclid space

(dx2)d ≡ dx21 + · · ·+ dx2d. (A.29)

One of main difference between EAdS and AdS is whether the Poincare coordinate is the
complete chart or not. We show this in the following: We rewrite eq.(A.26) as follows

(X−1 +Xd)(X−1 −Xd) = X2
1 + · · ·+X2

d +X2
0 + 1. (A.30)

Note that since the right hand side is always positive, the left hand side is also always
positive:

X−1 +Xd > 0 =⇒ X−1 −Xd > 0 ⇐⇒ X−1 > |Xd|
X−1 +Xd < 0 =⇒ X−1 −Xd < 0 ⇐⇒ X−1 < −|Xd|

, (A.31)

and since the right hand side is always nonzero, it holds

t1 + yd, t1 − yd ≠ 0. (A.32)

Although AdS covered the region X−1 ≤ |Xd| ∩ X−1 ≥ −|Xd| which is problematic in the
Poincare coordinate, EAdS does not cover the region. Therefore, the Poincare coordinate is
the complete chart of EAdS.
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Figure 21: The Penrose diagram of Minkowski space.

A.4 The infinity structure of AdSd+1

Let us investigate the infinity structure of AdSd+1.

Minkowski spacetime

In order to compare the infinity structure of AdS with the conformal compactification of
Minkowski space, we first consider the infinity structure of d-dimensional Minkowski space-
time. Let us start with the metric:

ds2 = −dt2 + dr2 + r2dΩ2
d−2. (A.33)

Putting u± = t± r and using r = 1
2
(u+ − u−) and dt

2 + dr2 = −du+du−, we derive

ds2 − du+du− +
1

4
(u+ − u−)

2dΩ2
d−2 (A.34)

where u+ ≥ u− because of r ≥ 0. Additionally transforming coordinates as u± = tan ũ± and
using du± = dũ±/ cos

2 ũ± and (u+−u−)
2 = sin2 (ũ+ − ũ−)/ cos

2 ũ+ cos2 ũ−, the line element
is

ds2 =
1

cos2 ũ+ cos2 ũ−

(
−dũ+dũ− +

1

4
sin2 (ũ+ − ũ−)dΩ

2
d−2

)
(A.35)

where −π
2
≤ ũ± ≤ π

2
and ũ+ ≥ ũ−. If we introduce the coordinates τ = ũ+ + ũ− and

θ = ũ+ − ũ−, we finally obtain the metric conformal to the Einstein’s static universe:

ds2 =
1

cos2 ũ+ cos2 ũ−

(
−dτ 2 + dθ2 + sin2 θdΩ2

d−2

)
(A.36)

where −π ≤ τ ≤ π and 0 ≤ θ ≤ π. This is the conformal embedding of the Einstein’s static
universe whose domain is −π ≤ τ ≤ π and 0 ≤ θ ≤ π and therefore we can draw the Penrose
diagram as fig.21. And the generator H of the τ translation is

H =
1

i

∂

∂τ

79



=
1

2i
(1 + u2+)

∂

∂u+
+

1

2i
(1 + u2−)

∂

∂u−

=
1

2i

∂

∂t
+

1

2i

(
−u+u−

∂

∂t
− 2 ∗

(
−1

2

)
∗ (u+ + u−)

(
u+

∂

∂u+
+ u−

∂

∂u−

))
=

1

2
(P0 +K0) = J0(−1). (A.37)

This corresponds to the SO(2) part of the maximally symmetric subgroup SO(2) × SO(d)
of SO(2, d).

AdS

Transforming the coordinate as v = sinh r in the static chart (A.15), we obtain

ds2 = −(1 + v2)dθ2 +
dv2

1 + v2
+ v2dΩ2

d−1. (A.38)

In addition, the coordinate transformation v = tan ρ(−π/2 < ρ < π/2) leads to the line
element which is given by

ds2 =
1

cos 2ρ
(−dθ2 + dρ2 + sin 2ρdΩ2

d−1). (A.39)

Since (second term) + (third term) is conformal to the d-dimensional ball Bd, the topology
is

≈ S1 ×Bd (A.40)

Therefore the topology of the boundary (spatial infinity) is

≈ S1 × Sd−1. (A.41)

It is important that if we consider the universal covering space CAdSd+1 of AdSd+1, this is
the same as the conformal-compactification of the d-dimensional Minkowski spacetime.

B Conformal group

We show that the Lie algebra of d-dimensional conformal group is isomorphic to the one of
SO(d, 2) 33.

B.1 Conformal transformation

First, we define conformal transformation as coordinate transformation which change metric
up to arbitrary scalar function:

gµν(x′)→Ω2(x)gµν(x). (B.1)

33Here, we consider only for d ≥ 3 case.
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Considering the infinitesimal transformation:

xµ→x′µ = xµ + ϵµ(x) , (B.2)

and since the transformation law of the metric tensor is

gµν ′(x′) =
∂xµ
∂x′α

∂xν
∂x′β

gαβ(x) , (B.3)

we obtain
g′µν(x′) = gµν(x)− (∂µϵν + ∂νϵµ). (B.4)

Because this is the conformal transformation, we can rewrite this in terms of a scalar function
f(x) as

∂µϵν + ∂νϵµ = f(x)gµν . (B.5)

Multiplying gµν and contracting lead to

f(x) =
2

d
gµν∂µϵν . (B.6)

In the following, let suppose for the flat spacetime gµν = ηµν = diag(−,+, · · · ,+). Then
eq.(B.5) becomes

∂µϵν + ∂νϵµ = f(x)ηµν . (B.7)

Differentiating both sides,
∂ρ∂µϵν + ∂ρ∂νϵµ = (∂ρf)ηµν . (B.8)

Replacing indices by ρ→ν, µ→ρ, ν→µ,

∂ν∂ρϵµ + ∂ν∂µϵρ = (∂νf)ηρµ. (B.9)

Again, replacing the indices by ρ→ν, µ→ρ, ν→µ,

∂µ∂νϵρ + ∂µ∂ρϵν = (∂µf)ηνρ. (B.10)

Subtracting eq.(B.9) from eq.(B.8),

∂ρ∂µϵν − ∂ν∂µϵρ = (∂ρf)ηµν − (∂νf)ηρµ. (B.11)

bv Therefore, substituting this into eq.(B.10),

2∂µ∂νϵρ = (∂µf)ηνρ − (∂ρf)ηµν + (∂νf)ηρµ. (B.12)

Multiplying both sides by ηµν and contracting,

2∂2ϵρ = ∂ρ − d(∂ρf) + ∂ρf

= (2− d)∂ρf. (B.13)

Differentiating both sides again,

∂σ∂
2ϵρ = (2− d)∂σ∂ρf
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⇐⇒ ∂2(∂σϵρ + ∂ρϵσ) = (2− d)∂σ∂ρf

⇐⇒ ηρσ∂
2f = (2− d)∂σ∂ρf (B.14)

Multiplying both sides by ηρσ and contracting,

d∂2f = (2− d)∂2f ⇐⇒ (d− 1)∂2f = 0. (B.15)

Using this equation and eq. (B.14),

∂µ∂νf = 0. (B.16)

Since f is scalar, this leads to the limited form of f :

f(x) = A+Bµx
µ (B.17)

Substituting this into eq.(B.12),

2∂µνϵρ = Bµηνρ −Bρηµν +Bνηρµ (B.18)

Therefore, ∂µ∂νϵρ is the constant tensor. This allowed form is

ϵµ = aµ + bµνx
ν + cµνρx

νxρ , (B.19)

where
cµνρ = cµρν . (B.20)

Substituting this into
∂µϵν + ∂νϵµ = fηµν , (B.21)

the equation :

f(x) =
2

d
ηαβ∂αϵβ

=
2

d
(bαα + 2ηαβcαβγx

γ)

=
2

d
bαα − 2bαx

α (bα ≡ −2

d
ηβγcβγα)

leads to

(bνµ + 2cνµαx
α) + (bµν + 2cµναx

α) =

(
2

d
bαα − 2bγx

γ

)
ηµν . (B.22)

Extracting O(x) terms from this equation,

bνµ + bµν =
2

d
bααηµν . (B.23)

Decomposing bµν into the symmetric part sµν and anti-symmetric part ωµν ,

bµν = sµν + ωµν (sµν = sνµ, ωµν = −ωνµ). (B.24)
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According to eq.(B.23),

sµν =
1

d
(trb)ηµν ≡ ληµν , (B.25)

we obtain
bµν = ληµν + ωµν . (B.26)

The infinitesimal transformation corresponding to this is

δxµ ∼ bµνx
ν = λxµ + ωµνx

ν (B.27)

where the first term represent the scale transformation and the second term represent the
Lorentz transformation.

In addition, substituting eq.(B.19) into

2∂µ∂νϵρ = ηνρ∂µf − ∂µν∂ρf + ηµρ∂νf , (B.28)

we get
cρµν = −ηνρbµ + ηµνbρ − ηµνbρ − ηρµbν . (B.29)

Thus, the corresponding infinitesimal transformation corresponding is

δxρ ∼ cρµνx
µν = −2(b · x)xρ + bρx

2. (B.30)

This represent the special conformal transformation. And since O(x0) of ϵµ aµ is not con-
strained, this represent the translation.

Let us summarize. The conformal transformation constitute from the following:

• Translation
x′µ = xµ + aµ (B.31)

• Lorentz transformation
x′µ = ωµνx

ν (B.32)

• Dilatation
x′µ = λxµ (B.33)

• Special conformal transformation　

x′µ =
xµ + bµx2

1 + 2bνxν + b2x2
(B.34)

B.2 Algebra

Denoting the generators of the conformal group as differential operators,

• Translation
Pµ = −i∂µ (B.35)

• Lorentz transformation
Mµν = i(xµ∂ν − xν∂µ) (B.36)
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• Dilatation
D = −ixµ∂µ (B.37)

• Special conformal transformation

Kµ = −i(x2∂µ − 2xµx
ν∂ν) (B.38)

These satisfy the following commutation relations:

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ) (B.39)

[Mµν , Kρ] = −i(ηµρKν − ηνρKµ) (B.40)

[Mµν , Mρσ] = −iηµρMνσ ± (permutations) (B.41)

[Mµν , D] = 0 (B.42)

[D , Kµ] = iKµ (B.43)

[D , Pµ] = −iPµ (B.44)

[Pµ , Kν ] = 2iMµν − 2iηµνD (B.45)

others = 0

Putting34

Jµν ≡Mµν , Jµd ≡
1

2
(Kµ − Pµ) , Jµ(−1) ≡

1

2
(Kµ + Pµ) , J(−1)d ≡ D , (B.46)

we obtain

[Jµν , Jρd] =
1

2
[Mµν , (Kρ − Pρ)]

=
1

2
{−i(ηµρKν − ηνρKµ)− (−i)(ηµρPν − ηνρPµ)}

= −iηµρJνd + iηνρJµd (B.47)[
Jµν , Jρ(−1)

]
= −iηµρJν(−1) + iηνρJµ(−1) (B.48)[

Jµν , J(−1)d

]
= 0 (B.49)

[Jµd , Jνd] =
1

4
[(Kµ − Pµ) , (Kν − Pν)]

=
1

2
{+(iMνµ − iηνµD)− (iMµν − iηµνD)}

= iJµν (B.50)[
Jµd , J(−1)d

]
=

1

2
[(Kµ − Pµ) , D] =

i

2
(Kµ + Pµ)

= iJµ(−1) (B.51)[
Jµd , Jν(−1)

]
= +iηµνD

= +iηµνJ(−1)d (B.52)[
Jµ(−1) , J(−1)d

]
= iJµd (B.53)

34Other combination is taken as J is anti-symmetric.
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[
Jµ(−1) , Jν(−1)

]
= −iJµν (B.54)[

J(−1)d , J(−1)d

]
= 0 (B.55)

Supposing M,N = −1, 0, 1, · · · d,ηMN = diag(−1,−1, 1, · · · , 1), we find that these are the
SO(d, 2) commutation relation.

C Double sine function

In this section we introduce double sine function.

C.1 Double Gamma function

Because the double sine function can be defined as a ratio of double gamma function, here
we introduce the double gamma function. We define the double gamma function as

log Γ2(x|w1, w2) =
∂

∂t

∞∑
n1,n2=0

(x+ n1w1 + n2w2)
−t

∣∣∣∣∣
t=0

= −
∞∑

n1,n2=0

log (x+ n1w1 + n2w2), (C.1)

or equivalently,

Γ2(x|w1, w2) =
∞∏

n1,n2=0

1

(x+ n1w1 + n2w2)
. (C.2)

This satisfies the following relations:

Γ2(x+ w1|w1, w2)

Γ(x|w1, w2)
=

√
2π

w
1
2
− x

w2
2

Γ(x/w2)
,

Γ2(x+ w2|w1, w2)

Γ(x|w1, w2)
=

√
2π

w
1
2
− x

w1
1

Γ(x/w1)
. (C.3)

If we specify to the case for w1 = b, w2 = b−1, we obtain

Γ2(x+ b±1|b, b−1)

Γ(x|b, b−1)
=

√
2π
b∓( 1

2
−xb±1)

Γ(b±1x)
,

Γ2(x|b, b−1)

Γ(x− b±1|b, b−1)
=

√
2π
b∓( 1

2
−xb±1+b±2)

Γ(b±1x− b±2)
. (C.4)

From the definition (C.1), we find that there are simple poles at x = −mw1 − nw2 with
non-negative integer m,n.

C.2 Double sine function

In terms of the double gamma function, we define the double sine function as

sb(z) =
Γ2(η + iz|b, b−1)

Γ2(η − iz|b, b−1)
=

∞∏
p,q=0

bq + b−1p+ η − iz

bp+ b−1q + η + iz
, (C.5)

where η = (b+ b−1)/2.
This function has the following properties:
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• Self-duality
sb(z) = sb−1(z) (C.6)

• Functional equation
sb(z +

ib±1

2
)

sb(z − ib±1

2
)
=

1

2 cosh (πb±1z)
(C.7)

• Reflection property
sb(x)sb(−x) = 1 (C.8)

• Zeros
z = −i(η +mb+ nb−1) with non− negative m,n (C.9)

• Poles
z = +i(η +mb+ nb−1) with non− negative m,n (C.10)

• Asymptotics

sb(z) ∼

{
e+

iπ
2
(z2+ 1

12
(b2+b−2) for | arg z| < π

2

e−
iπ
2
(z2+ 1

12
(b2+b−2) for | arg z| > π

2

(C.11)

• Simplification for b = 1 [47]

s1(z) =
∞∏

p,q=0

(
p+ q + 1− iz

p+ q + 1 + iz

)
=

∞∏
n=1

(
n− iz

n+ iz

)n
(C.12)

= exp

[
iz log (1− e2πz) +

i

2

(
−πz2 + 1

π
Li2(e

2πz)

)
− iπ

12

]
(C.13)

D Basics and details of the Monte Carlo simulation

In this section we explain the basics and details of the Monte Carlo simulation35. Let us
consider the action

S(N, k;x) = − log

(∏
i<j tanh

2((xi − xj)/2k)∏
i 2 cosh(xi/2)

)
. (D.1)

(Below we abbreviate S(N, k; x) as S(x).) Let O(x) be an “observable”, which is a function
of {xi}. In general, it is difficult to calculate the expectation value of O defined by

⟨O⟩ =
∫
dNxO(x)e−S(x)∫
dNx e−S(x)

. (D.2)

A brute force integration is not practical unless the number of variables N is very small such
as N ≲ 5. Monte Carlo simulation is a practical tool, which enables this calculation even
for large N .

35There are many good references on Monte Carlo methods.
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In Monte Carlo simulation, a series of configurations {xi}

{x(0)i } → {x(1)i } → {x(2)i } → · · · (D.3)

is generated in such a way that the probability with which a configuration {xi} appears
approaches e−S(x)/Z as the number of configurations increases. More precisely, we require
that the probability wk({xi}) with which a configuration {xi} appears atM -th step converge
to e−S(x)/Z as

lim
M→∞

wM({xi}) =
e−S(x)

Z
. (D.4)

Then the expectation value can be obtained by simply taking an average over the configu-
rations {x(n)i } as

⟨O(x)⟩ = lim
M→∞

1

M

M∑
n=1

O(x
(n)
i ) . (D.5)

This can be achieved by generating the series with a transition probability P ({x(n)i } →
{x(n+1)

i }), which (neglecting a few technical details) satisfies following conditions.

• Markov chain. — The transition probability from {x(n)i } to {x(n+1)
i } does not depend

on previous configurations {x(l)i } (l < n).

• Ergodicity. — For any pair of configurations {x} and {x′}, there is nonzero transition
probability within finite steps.

• Aperiodicity. — The probability from {xi} to {xi} is always nonzero.

• Positive state. — All configurations have finite mean recurrence time36.

• Detailed balance. — The following equality should hold for arbitrary pairs of configu-
rations {x} and {x′}.

e−S(x)P (x→ x′) = e−S(x
′)P (x′ → x) . (D.6)

There are many ways to satisfy these conditions. In this work we use the Hybrid Monte
Carlo (HMC) method [132]. We introduce fictitious momentum variables pi (i = 1, 2, · · · , N),
which are conjugate to xi, and consider a Hamiltonian

H =
∑
i

p2i
2

+ S(x) . (D.7)

Starting with an initial configuration {x(0)i }, we generate a series of configurations {x(n)i } (n =
1, 2, · · · ) by repeating the following steps:

36If P
(n)
ii is the probability to get from {x} to {x} in n-steps of the Markov chain, without reaching this

configuration at any intermediate step, then the mean recurrence time of {x} is defined by τi =
∑∞

n=1 nP
(n)
ii .
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• Generate p
(n−1)
i randomly, with a probability weight e

−
(
p
(n−1)
i

)2
/2

.

• Starting with a configuration {xi, pi} = {x(n−1)
i , p

(n−1)
i }, get a new configuration {x′i, p′i}

by the “molecular dynamics” explained below.

• “Accept” the new configuration {x′i, p′i} (i.e. take {x(n)i } = {x′i}) with a probability
min{1, eH−H′}, where H and H ′ are the value of the Hamiltonian calculated with
{xi, pi} and {x′i, p′i}, respectively. When the new configuration is rejected, we keep an

old configuration, so that {x(n)i } = {xi} = {x(n−1)
i }.

The “molecular dynamics” is defined as follows. First we introduce a fictitious time τ
and consider the time evolution according to the Hamilton equations

dxi
dτ

=
dpi
dτ

=
∂H

∂pi
= pi ,

dpi
dτ

= −∂H
∂xi

= − ∂S

∂xi
. (D.8)

If we solve the Hamilton equations exactly, the Hamiltonian is conserved. In practice, we
solve them approximately by discretizing the differential equations, so the Hamiltonian is
not conserved exactly. We denote the time step as ∆τ and the number of steps as Nτ . Then
x′i ≡ xi(Nτ∆τ) and p

′
i ≡ pi(Nτ∆τ) are calculated by using the following “leap-frog method”,

starting with xi(0) ≡ xi and pi(0) ≡ pi.

• xi
(
∆τ
2

)
= xi(0) + pi(0) · ∆τ

2

• pi(∆τ) = pi(0)− ∂S
∂xi

∣∣∣
τ=∆τ

2

·∆τ

• xi
(
3
2
∆τ
)
= xi

(
∆τ
2

)
+ pi(∆τ) ·∆τ

• pi(2∆τ) = pi(∆τ)− ∂S
∂xi

∣∣∣
τ= 3

2
∆τ

·∆τ

• · · ·

• xi((Nτ − 1/2)∆τ) = xi((Nτ − 3/2)∆τ) + pi((Nτ − 1)∆τ) ·∆τ

• pi(Nτ∆τ) = pi((Nτ − 1)∆τ)− ∂S
∂xi

∣∣∣
τ=(Nτ−1/2)∆τ

·∆τ

• xi(Nτ∆τ) = xi((Nτ − 1/2)∆τ) + pi((Nτ )∆τ) · ∆τ
2

Note that the leap-frog method is designed so that the reversibility is satisfied. Namely,
by starting with the final configuration {x′i} and {p′i} and reversing the time, the initial
configuration {xi} and {pi} is reproduced. As a result, the detailed balance condition is
satisfied.37

37For simplicity, let us assume H > H ′. (The argument for the case with H < H ′ is the same.) Because
of the reversibility, the transition probabilities are

P ({xi} → {x′i}) = e−p2/2/
√
π ×min{1, eH−H′

} (D.9)

= e−p2/2/
√
π (D.10)
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In the simulation, Nτ and ∆τ should be chosen so that a good approximation is achieved
with fewer configurations. For that purpose, (i) the change at each transition should be
sufficiently large, and (ii) the acceptance rate should be large. The first condition is achieved
by taking Nτ∆τ sufficiently large. However, if we fix ∆τ and take larger Nτ , the Hamiltonian
is not conserved at all, and the new configurations are hardly accepted. Therefore one has
to take ∆τ smaller so that the conservation of the Hamiltonian becomes better. In actual
simulations (at N = 20 and k = 5, for example), we took ∆τ ∼ 0.1 and Nτ ∼ 200, so that

the acceptance rate is around 0.8. As an initial configuration, we choose x
(0)
i to be a random

number in [−0.5, 0.5].
In Monte Carlo simulation, configurations with larger path-integral weight (“important

samples”) appear more often. For this reason it is called also the importance sampling. Since
the region of configuration space, which gives dominant contribution to the path integral is
typically quite limited, a good approximation can be achieved with a rather small number of
important samples. This should be contrasted to the usual brute force integration, in which
most of the CPU time is wasted for calculating the integrand for unimportant configurations.

In Monte Carlo simulation, as we have described above, configurations are generated with
the probability e−S/Z. Therefore, the Monte Carlo method works only if the path-integral
weight e−S is real and positive. If the measure e−S is not real and positive, the model is
said to suffer from the sign problem or the phase problem; here “sign” and “phase” mean the
negative sign and the complex phase of the integration weight. In the original form of the
ABJM matrix model (2.78), the partition function is given by an integration of a complex
function. Therefore it suffers from the sign problem, and the Monte Carlo method is not
applicable.

E The relation between the constant map and the Fermi

gas result

In this appendix we show the correspondence between the constant map contribution and
the Fermi gas result A(k)− 1

2
log 2, which is derived by the large-k and small-k expansions,

respectively.
As we mentioned earlier, the constant map contribution Fconst is given by

Fconst =
∞∑
g=0

g2g−2
s F

(g)
const , (E.1)

and

P ({x′i} → {xi}) = e−p′2/2/
√
π ×min{1, eH

′−H} (D.11)

= e−p2/2+(S(x′)−S(x))/
√
π . (D.12)

Therefore,

e−S(x)P ({xi} → {x′i}) = e−S(x) × e−p2/2/
√
π (D.13)

= e−S(x′)P ({x′i} → {xi}) . (D.14)
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where the coefficients F
(g)
const are

F
(0)
const =

ζ(3)

2
, F

(1)
const = 2ζ ′(−1) +

1

6
log

π

2k
, F

(g≥2)
const = 4g

B2gB2g−2

(4g)(2g − 2)(2g − 2)!
. (E.2)

We consider the following summation:

f(gs) =
∞∑
g=2

4g
B2gB2g−2

(4g)(2g − 2)(2g − 2)!
g2g−2
s = 4g2s

∞∑
n=0

B2n+4B2n+2

(n+ 2)(2n+ 2)(2n+ 2)!
(4g2s)

n (E.3)

Since

lim
n→∞

∣∣∣ B2n+4B2n+2

(n+2)(2n+2)(2n+2)!

∣∣∣∣∣∣ B2n+6B2n+4

(n+3)(2n+4)(2n+4)!

∣∣∣ = lim
n→∞

(n+ 3)(2n+ 3)(2n+ 4)2|B2n+2|
(n+ 2)(2n+ 2)|B2n+6|

= 0, (E.4)

the convergence radius is zero and therefore this series is divergent. We try to perform Borel
summation. The Borel transformation of the series is

Bf(t) = 4g2s

∞∑
n=0

1

n!

B2n+4B2n+2

(n+ 2)(2n+ 2)(2n+ 2)!
tn (E.5)

This series is still divergent. We make Borel trans one more times:

B2f(u) = 4g2s

∞∑
n=0

1

(n!)2
B2n+4B2n+2

(n+ 2)(2n+ 2)(2n+ 2)!
un (E.6)

This has a finite radius of convergence. But we do not know how to sum. This series is still
divergent. We make Borel trans one more times:

B3f(v) = 4g2s

∞∑
n=0

1

(n!)3
B2n+4B2n+2

(n+ 2)(2n+ 2)(2n+ 2)!
vn (E.7)

This has infinite radius of convergence. In order to evaluate the summation more easily, we
use the integral representation of the Bernoulli number,

B2g = (−1)g−14g

∫ ∞

0

x2g−1

e2πx − 1
dx (g = 1, 2, · · · ) . (E.8)

By using this representation, we obtain

B3f(v) = −32g2s

∞∑
n=0

∫ ∞

0

x2n+3

e2πx − 1
dx

∫ ∞

0

y2n+1

e2πy − 1
dy

1

(n!)3
1

(2n+ 2)!
vn

= −32g2s

∫ ∞

0

x3

e2πx − 1
dx

∫ ∞

0

y

e2πy − 1
dy

∞∑
n=0

1

(n!)3
1

(2n+ 2)!
(x2y2v)n

(E.9)
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The Borel summation (z = 2gs) is∫ ∞

0

dvdudt e−v+u+tB3f(vutz)

= −8z2
∫ ∞

0

dvdudt e−v+u+t
∫ ∞

0

dx
x3

e2πx − 1

∫ ∞

0

dy
y

e2πy − 1
∞∑
n=0

1

(n!)3
1

(2n+ 2)!
(x2y2vutz)n

= −8z2
∫ ∞

0

dx
x3

e2πx − 1

∫ ∞

0

dy
y

e2πy − 1

∞∑
n=0

1

(2n+ 2)!
(x2y2z2)n

= −8

∫ ∞

0

dx
x

e2πx − 1

∫ ∞

0

dy
y−1

e2πy − 1
(cosh (xyz)− 1)

= −1

3

∫ ∞

0

dy
y−1

e2πy − 1

(
−1− 12

y2z2
+

3

sin2 yz
2

)
= −1

3

∫ ∞

0

dy
y−1

e2πy − 1

(
−1 +

3

(2πy/k)2
− 3

sinh2 2πy
k

)
(E.10)

By changing the variable as t = 2πy
k
, we obtain a simpler form,∫ ∞

0

dvdudt e−v+u+tB3f(vutz) = −1

3

∫ ∞

0

dt
t−3

ekt − 1

(
3− t2 − 3t2

sinh2 t

)
. (E.11)

Although each term of the integrand is divergent at t ∼ 0, this is canceled with each other,
and therefore the integral gives a finite value. In order to make our analysis easier, we will
apply the zeta-function regularization to the integral.

For later convenience, we decompose the integral as

∞∑
g=2

g2g−2
s F

(g)
const =

∫ ∞

0

dt
1

ekt − 1

(
− 1

t3
+

1

3t

)
+

1

k

∫ ∞

0

dt
kt

ekt − 1

1

t2 sinh2 t
. (E.12)

Note that the first factor in the second term is the generating function of the Bernoulli
number

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
. (E.13)

Although this series also converges only for |x| < 2π, we analytically continue it to the whole
region and assume that this does not affect the result. Then by using the formula

1

ex − 1
=

∞∑
m=1

e−mx ,
1

sinh2 x
= −

∞∑
m=1

me−mx , (E.14)

the integral rewritten as

∞∑
g=2

g2g−2
s F

(g)
const =

∞∑
m=1

∫ ∞

0

dt e−mkt
(
− 1

t3
+

1

3t

)
+

4

k

∞∑
n=0

Bnk
n

n!

∞∑
m=1

m

∫ ∞

0

dt t−2+ne−2mt .
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(E.15)

The first integral is easily performed by using∫ ∞

0

dt e−stt−1 = −γ − log s,

∫ ∞

0

dt e−stt−3 = −1

4
s2(−3 + 2γ + 2 log s) ,

where γ is the Euler-Mascheroni constant. We obtain

∞∑
m=1

∫ ∞

0

dt e−mkt
(
− 1

t3
+

1

3t

)
=

k2

4

∞∑
m=1

n2(−3 + 2γ + 2 log (km)) +
1

3

∞∑
m=1

(−γ − log (mk))

=
k2

4
[(−3 + 2γ + 2 log k)ζ(−2)− 2ζ ′(−2)] +

1

3
[(−γ − log k)ζ(0) + ζ ′(0)]

= −k
2

2
ζ ′(−2) +

1

6
[(γ + log k)− log (2π)] . (E.16)

Next we evaluate the second integral

∞∑
m=1

m

∫ ∞

0

dt t−2+ne−2mt .

• For n = 0
By using the formula ∫ ∞

0

dt e−stt−2 = s(−1 + γ + log s) , (E.17)

we obtain
∞∑
m=1

m

∫ ∞

0

dt t−2e−2mt = −2ζ ′(−2) . (E.18)

• For n = 1

∞∑
m=1

m

∫ ∞

0

dt t−1e−2mt =
1

12
(γ + log 2) + ζ ′(−1) . (E.19)

• For n ≥ 2
By using the formula∫ ∞

0

dt e−sttλ−1 = Γ(λ)
1

sλ
(Re(λ) > 0) , (E.20)

the integral becomes

∞∑
m=1

m

∫ ∞

0

dt t−2+ne−2mt =
Γ(n− 1)

2n−1
ζ(n− 2) . (E.21)
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Thus the constant map contribution is rewritten as

Fconst = −ζ(3)
8π2

k2 − 1

6
log k +

1

6
log

π

2
+ 2ζ ′(−1)− k2

2
ζ ′(−2) +

1

6
(γ + log k − log (2π))

+
4

k

[
−2B0ζ

′(−2) +B1k

(
1

12
(γ + log 2) + ζ ′(−1)

)

+
∞∑
n=1

B2n

(2n)!
k2n

Γ(2n− 1)

22n−1
ζ(2n− 2)

]

= −
(
ζ(3)

8π2
+
ζ ′(−2)

2

)
k2 + 2(1 + 2B1)ζ

′(−1) +
1

6
(1 + 2B1)γ +

1

3
(−1 +B1) log 2

−8

k
B0ζ

′(−2) +
∞∑
n=1

B2n

(2n)(2n− 1)22n−3
ζ(2n− 2)k2n−1 . (E.22)

Since B0 = 1, B1 = −1
2
, ζ ′(−2) = − ζ(3)

4π2 and ζ(2n) = (−1)n−1 22n−1π2n

(2n)!
B2n, we obtain

Fconst = −1

2
log 2 +

2ζ(3)

π2k
+

∞∑
n=1

(−1)n
B2nB2n−2

(2n)!
π2n−2k2n−1 (E.23)

= −1

2
log 2 +

2ζ(3)

π2k
− k

12
− π2k3

4320
+

π4k5

907200
+ · · · , (E.24)

which is the same as A(k)− 1
2
log 2 derived by the Fermi gas approach [40] up to the order

of O(k5). Therefore, we expect that this is the all-order form in the Fermi gas picture if we
calculate higher order of k.

Thus we conclude that the constant map contribution and the term A(k)− 1
2
log 2 in the

Fermi gas result are the asymptotic series expansions of the integral representation (E.11)
around k = ∞ and k = 0, respectively, with the radius of convergence being finite. In other
words, the two expansions are smoothly connected with each other by analytic continuation.

F Details of analytic studies

F.1 Planar limit

According to ref. [33], the expectation value of the 1/6-BPS Wilson loop at genus 0 is
obtained by solving the differential equation (4.5). By using the asymptotic behavior at
strong coupling, we obtain

d

dκ

[
λ(κ)

⟨
W1/6

⟩
g=0

]
=
π − 2i log

(
1
κ

)
8π2

+
i
(
log
(
1
κ

)
+ 1
)

π2κ2
−
i
(
18 log

(
1
κ

)
+ 29

)
2π2κ4

+
8

π2κ5

+
2i
(
150 log

(
1
κ

)
+ 299

)
3π2κ6

− 168

π2κ7
−
i
(
14700 log

(
1
κ

)
+ 33967

)
12π2κ8

+
5
(
18 log

(
1
κ

)
− 3iπ + 3569

)
6π2κ9

,
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(F.1)

up to O(κ−10). Integrating this over κ, the Wilson loop is given by

λ(κ)
⟨
W1/6

⟩
g=0

= c0 +
1

24π2

[
3(−2i+ π)κ+

92i

κ3
− 48

κ4
− 4304i

5κ5
+

672

κ6
+

63734i

7κ7
+

5i(14267i+ 12π)

8κ8

−
3i (2κ9 + 8κ7 − 24κ5 + 160κ3 − 1400κ− 15i) log

(
1
κ

)
κ8

]
, (F.2)

up to O(κ−9). Here the integration constant c0 is generically required to satisfy the boundary

condition λ(κ)
⟨
W1/6

⟩
g=0

∣∣∣
κ=0

= 0. Here we assume c0 = 0 as it is suggested by numerical

integration of eq. (F.1).
The asymptotic behavior of κ for λ≫ 1 can be written as [34]

κ = eπ
√

2λ̂

(
1 +

4∑
l=1

cl

(
1

π
√

2λ̂

)
· e−2lπ

√
2λ̂ +O(e−10π

√
2λ̂)

)
, (F.3)

where

c1(x) = −2 + x,

c2(x) = 3− x

4
− 3x2

2
− x3

2
,

c3(x) =
1

36

(
18x5 + 90x4 + 195x3 + 225x2 − 158x− 360

)
,

c4(x) = − 1

288
(x+ 2)

(
180x6 + 900x5 + 2412x4 + 4080x3 + 3773x2 − 2219x− 7056

)
.

(F.4)

Thus we obtain ⟨
W1/6

⟩
g=0

= eπ
√

2λ̂

9∑
l=0

w
(0)
l (λ)e−lπ

√
2λ̂ (F.5)

up to O(e−9π
√

2λ̂). Here w
(0)
l (λ)’s are given by

w
(0)
0 (λ) =

1

2πiλ

(
−1

2

√
2λ̂+

1

2π
+
i

4

)
,

w
(0)
1 (λ) = 0,

w
(0)
2 (λ) =

1

8πiλ

[
−2

√
2(c1 + 4)

√
λ̂+ ic1

]
,

w
(0)
3 (λ) = 0,

w
(0)
4 (λ) = − 1

8πiλ

[
2
√
2π
√
λ̂(c2 − 4(c1 + 3)) + c1(c1 + 8)− iπc2 + 20

]
,
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w
(0)
5 (λ) = 0,

w
(0)
6 (λ) =

1

24π2iλ

[
−6

√
2π
√
λ̂(4c1(c1 + 9)− 4c2 + c3 + 80)

+(c1 + 4)(c1(c1 + 32)− 6c2 + 124) + 3iπc3

]
,

w
(0)
7 (λ) = 0,

w
(0)
8 (λ) = − 1

48π2iλ

[
−12

√
2π
√
λ̂
{
4
(
c1
(
c21 + 18c1 − 2c2 + 100

)
− 9c2 + c3 + 175

)
− c4

}
+ c41 + 88c31 − 6c21(c2 − 204) + 4c1(−36c2 + 3c3 + 1480)

+ 6(c2 − 84)c2 + 48c3 − 6iπc4 + 9460
]
,

w
(0)
9 (λ) = 0, (F.6)

where we define c1,2,3,4 := c1,2,3,4

(
1

π
√

2λ̂

)
.

F.2 Genus 1 contribution

In ref. [34], the expectation value of the 1/6-BPS Wilson loop at genus 1 is analytically
calculated. By using the asymptotic behavior (F.3) of κ, the analytical result is expanded
as

⟨
W1/6

⟩
g=1

= eπ
√

2λ̂

8∑
l=0

w
(1)
l (λ)e−lπ

√
2λ̂ (F.7)

up to O(e−8π
√

2λ̂). Here w
(1)
l ’s are given by

w
(1)
0 = − 1

192π3λλ̂

[
3 + 4π

√
λ̂
(
2i
√
2πλ̂+ (π − 2i)

√
hλ−

√
2
)]
,

w
(1)
1 = 0,

w
(1)
2 = 1

192
√
2π4iλλ̂3/2

[
4π3λ̂3/2

(
4c1

√
λ̂− i

√
2c1 + 16

√
λ̂
)
+ 8iπ2c1λ̂

−i
√
2π(7c1 + 16)

√
λ̂+ 6i(c1 + 4)

]
,

w
(1)
3 = 0,

w
(1)
4 = 1

384π5iλλ̂2

[
8π4

(
2
√
2λ̂5/2(c2 − 4(c1 + 3))− ic2λ̂

2
)

+8π3
(
(c1(c1 + 8) + 20)λ̂2 + i

√
2(c2 + 16)λ̂3/2

)
− 2iπ2λ̂(2(c1 − 8)c1 + 7(c2 − 8))

+i
√
2π
√
λ̂(c1(7c1 + 8) + 6c2 − 92)− 9i(c1 + 4)2

]
,

w
(1)
5 = 0,

w
(1)
6 = − 1

1152π6iλλ̂5/2

[
−ic31

(
−8iπ4λ̂5/2 − 4π3λ̂3/2 + 3

√
2π2λ̂+ 12π

√
λ̂− 18

√
2
)
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+12c21

(
−24π4λ̂5/2 − 8iπ3λ̂3/2 + 16

√
2π5λ̂3 − 6i

√
2π2λ̂+ 15iπ

√
λ̂+ 18i

√
2
)

+6c1

(
−4iπ3(c2 + 58)λ̂3/2 + 8π4

(
(c2 − 42)λ̂5/2 − 24i

√
2λ̂2
)

+i
√
2π2(7c2 + 82)λ̂− 3iπ(3c2 − 118)

√
λ̂+ 288

√
2π5λ̂3 + 144i

√
2
)

+2
{
iπ3λ̂3/2(48c2 − 21c3 − 1408) + 4π4λ̂2

(
8
(
(3c2 − 62)

√
λ̂− 96i

√
2
)
+ 3i

√
2c3

)
+12π5

(
−8

√
2(c2 − 20)λ̂3 + c3

(
2
√
2λ̂3 − iλ5/2

))
+ 3i

√
2π2λ̂(4c2 + 3c3 + 512)
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√
λ̂+ 576i

√
2
}]
,

w
(1)
7 = 0,

w
(1)
8 = 1

4608π7iλλ̂3

[
−ic41

(
2
√
2π3λ3/2 − 16iπ5λ3 − 8π4λ2 + 33π2λ− 12

√
2π

√
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)
+16c31

(
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√
2π6λ7/2 − 26i

√
2π3λ3/2 − 88π5λ3 − 24iπ4λ2 + 27iπ2λ+ 84i

√
2π

√
λ+ 90i

)
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{
3i
√
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(
(c2 − 204)λ3 − 96i

√
2λ5/2

)
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√
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√
λ+ 1152

√
2π6λ7/2 + 720i
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−8c1
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√
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√
2λ5/2

)
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√
2π6(c2 − 50)λ7/2 + 24i

√
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√
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−4
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8π5λ5/2
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3c22

√
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λ− 144i

√
2c2 + 24c3

√
λ+ 3i

√
2c4 + 4730

√
λ+ 11496i

√
2
)

+i
√
2π3λ3/2

(
21c22 + 492c2 + 24c3 + 18c4 − 39802

)
−6iπ4λ2

(
2c22 + 232c2 − 16c3 + 7c4 − 4996

)
− 9iπ2λ

(
3c22 − 236c2 + 24c3 + 7020

)
+24π6λ3

(
8
(√

2
√
λ(9c2 − c3 − 175) + 24i

)
+ c4

(
2
√
2
√
λ− i

))
+96i

√
2π(9c2 − 218)

√
λ− 5760i

}]
, (F.8)

where c1,2,3,4 = c1,2,3,4

(
1

π
√

2λ̂

)
.

G Another argument for derivation of positive-definite

form

In this section, we show another argument for the derivation of 1/6-BPS Wilson loop in the
positive-definite form (4.20).
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We consider the unnormalized Wilson loop W (N ; k1, k2) given by

W (N ; k1, k2) =
1

N !2

∫
dNµ

(2π)N
dNν

(2π)N
eµ1

∏
i<j

[
2 sinh

(µi−µj
2

)]2[
2 sinh

(νi−νj
2

)]2
∏

i,j

[
2 cosh

(µi−νj
2

)]2
× exp

[ i
4π

N∑
i=1

(k1µ
2
i + k2ν

2
i )
]
, (G.1)

where we don’t impose k1 + k2 = 0. Let us now use the Cauchy identity∏
i<j(ui − uj)(vi − vj)∏

i,j(ui + vj)
=
∑
σ

(−1)σ
∏
i

1

ui + vσ(i)
, (G.2)

where σ runs through all permutations. By setting ui = eµi , vi = eνi , it becomes∏
i<j

[
2 sinh

(µi−µj
2

)][
2 sinh

(νi−νj
2

)]
∏

i,j

[
2 cosh

(µi−νj
2

)] =
∑
σ

(−1)σ
∏
i

1

2 cosh
(
µi−νσ(i)

2

) . (G.3)

Then we obtain

W n(N ; k1, k2) =
1

N !

∑
σ

(−1)σ
1

π2N

∫
dNxdNy

1∏
i 2 cosh xi · 2 cosh yi

∫
dNµ

(2π)N
dNν

(2π)N

×exp
[ik1
4π

(
µ1 +

2

k1
(x1 + y1 − iπ)

)2

+
ik1
4π

N∑
i=2

(
µi +

2

k1
(xi + yi)

)2

+
ik2
4π

N∑
i=1

(
νi +

2

k2
(xi + yσ(i))

)2]
×exp

[
− i

π

(
1

k1
(x1 + y1 − iπ)2 +

1

k2
(x1 + yσ(1))

2

)
− i

π

N∑
i=2

(
1

k1
(xi + yi)

2 +
1

k2
(xi + yσ(i))

2

)]
. (G.4)

Here we can easily perform the integrations over µ2, · · · , µN and νi by the usual formula of
the Fresnel integration. However, the integration over µ1 is divergent for real k1 since the
offset is the complex number. Although each term is divergent, cancellation with each other
may occur except for N = 1.

Then, we assume
W (N ; k,−k) = lim

ϵ→+0
W (N, k + iϵ,−k), (G.5)

which corresponds to assume that W (N ; k1, k2) on real k1 axis is smoothly connected with
W (N ; k1, k2) on upper half plane of complex k1 plane. Under this assumption, we obtain

W (N, k,−k)
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=
e

π
k
i

N !

∑
σ

(−1)σ
1

π2N

∫
dNxdNy

1∏
i 2 cosh xi · 2 cosh yi

∫
dNµ

(2π)N
dNν

(2π)N

exp
[ ik
4π

N∑
i=1

µ2
i −

ik

4π

N∑
i=1

ν2i −
2i

kπ

N∑
i=1

xi(yi − yσ(i))−
2

k
(x1 + y1)

]
=

e
π
k
i

N !

∑
σ

(−1)σ
∫

dNx

(2πk)N
e−

x1
k

2 cosh
(
x1−xσ(1)−2πi

2k

)∏N
i=2 2 cosh

(
xi−xσ(i)

2k

)
·
∏N

i=1 2 cosh
xi
2

.

We use the Cauchy identity (µ1 =
xi−2πi

k
, µi≥2 =

xi
k
, νi =

xi
k
) again

∑
σ

(−1)σ
1

2 cosh
(
µ1−νσ(1)

2

) N∏
i=2

1

2 cosh
(
µi−νσ(i)

2

)
=

∏N
j=2

[
2 sinh

(µ1−µj
2

)]∏
i<j,i≥2

[
2 sinh

(µi−µj
2

)]∏
i<j

[
2 sinh

(νi−νj
2

)]
∏N

j=1

[
2 cosh

(µ1−νj
2

)]∏
i,j,i≥2

[
2 cosh

(µi−νj
2

)] (G.6)

↔
∑
σ

(−1)σ
1

2 cosh
(
x1−xσ(1)−2πi

2k

) N∏
i=2

1

2 cosh
(
xi−xσ(i)

2k

)
=

∏N
j=2

[
2 sinh

(
x1−xj−2πi

2k

)]∏
i<j,i≥2

[
2 sinh

(xi−xj
2k

)]∏
i<j

[
2 sinh

(xi−xj
2k

)]
∏N

j=1

[
2 cosh

(
x1−xj−2πi

2k

)]∏
i,j,i≥2

[
2 cosh

(xi−xj
2k

)]
=

1

2N
1

cos π
k

N∏
j=2

[
tanh

(
x1−xj−2πi

2k

)
tanh

(x1−xj
2k

) ]∏
i<j

[
tanh

(
xi − xj
2k

)]2
(G.7)

Therefore, By cosh (x− iπ) = − coshx,

ZABJM⟨ W1/6 ⟩ =
e

π
k
i

2NN !

1

cos π
k

∫
dNx

(2πk)N
e−

x1
k

N∏
j=2

[
tanh

(
x1−xj−2πi

2k

)
tanh

(x1−xj
2k

) ]

×
∏
i<j

[
2 tanh

(
xi − xj
2k

)]2 1∏
i 2 cosh

xi
2

.

Since for large |x1|,
(integrand) ∼ e(1/k−1/2)|x1|,

this should be divergent for k ≤ 2.

References

[1] B. de Wit, M. Luscher, and H. Nicolai, The Supermembrane Is Unstable, Nucl.Phys.
B320 (1989) 135.

98



[2] T. Banks, W. Fischler, S. Shenker, and L. Susskind, M theory as a matrix model: A
Conjecture, Phys.Rev. D55 (1997) 5112–5128, [hep-th/9610043].

[3] H.-C. Kao, K.-M. Lee, and T. Lee, The Chern-Simons coefficient in supersymmetric
Yang-Mills Chern-Simons theories, Phys.Lett. B373 (1996) 94–99, [hep-th/9506170].

[4] A. Kapustin and M. J. Strassler, On mirror symmetry in three-dimensional Abelian
gauge theories, JHEP 9904 (1999) 021, [hep-th/9902033].

[5] D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories,
JHEP 0708 (2007) 056, [arXiv:0704.3740].

[6] J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple
M2-branes, Phys.Rev. D77 (2008) 065008, [arXiv:0711.0955].

[7] A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl.Phys. B811 (2009)
66–76, [arXiv:0709.1260].

[8] G. Papadopoulos, M2-branes, 3-Lie Algebras and Plucker relations, JHEP 0805
(2008) 054, [arXiv:0804.2662].

[9] J. P. Gauntlett and J. B. Gutowski, Constraining Maximally Supersymmetric
Membrane Actions, JHEP 0806 (2008) 053, [arXiv:0804.3078].

[10] M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple
M2-branes, JHEP 0805 (2008) 105, [arXiv:0803.3803].

[11] N. Lambert and D. Tong, Membranes on an Orbifold, Phys.Rev.Lett. 101 (2008)
041602, [arXiv:0804.1114].

[12] J. Distler, S. Mukhi, C. Papageorgakis, and M. Van Raamsdonk, M2-branes on
M-folds, JHEP 0805 (2008) 038, [arXiv:0804.1256].

[13] D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The
theta-Angle in N=4 Super Yang-Mills Theory, JHEP 1006 (2010) 097,
[arXiv:0804.2907].

[14] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park, N=4 Superconformal
Chern-Simons Theories with Hyper and Twisted Hyper Multiplets, JHEP 0807 (2008)
091, [arXiv:0805.3662].

[15] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 0810 (2008)
091, [arXiv:0806.1218].

[16] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity,
Adv.Theor.Math.Phys. 2 (1998) 231–252, [hep-th/9711200].

[17] S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from
noncritical string theory, Phys.Lett. B428 (1998) 105–114, [hep-th/9802109].

99



[18] E. Witten, Anti-de Sitter space and holography, Adv.Theor.Math.Phys. 2 (1998)
253–291, [hep-th/9802150].

[19] N. Itzhaki, J. M. Maldacena, J. Sonnenschein, and S. Yankielowicz, Supergravity and
the large N limit of theories with sixteen supercharges, Phys.Rev. D58 (1998) 046004,
[hep-th/9802042].

[20] W. Bietenholz and J. Nishimura, Ginsparg-Wilson fermions in odd dimensions,
JHEP 0107 (2001) 015, [hep-lat/0012020].

[21] W. Bietenholz and P. Sodano, A Ginsparg-Wilson approach to lattice Chern-Simons
theory, hep-lat/0305006.

[22] J. Giedt, Progress in four-dimensional lattice supersymmetry, Int.J.Mod.Phys. A24
(2009) 4045–4095, [arXiv:0903.2443].

[23] M. Hanada, L. Mannelli, and Y. Matsuo, Large-N reduced models of supersymmetric
quiver, Chern-Simons gauge theories and ABJM, JHEP 0911 (2009) 087,
[arXiv:0907.4937].

[24] T. Ishii, G. Ishiki, S. Shimasaki, and A. Tsuchiya, N=4 Super Yang-Mills from the
Plane Wave Matrix Model, Phys.Rev. D78 (2008) 106001, [arXiv:0807.2352].

[25] H. Kawai, S. Shimasaki, and A. Tsuchiya, Large N reduction on group manifolds,
Int.J.Mod.Phys. A25 (2010) 3389–3406, [arXiv:0912.1456].

[26] M. Honda, G. Ishiki, J. Nishimura, and A. Tsuchiya, Testing the AdS/CFT
correspondence by Monte Carlo calculation of BPS and non-BPS Wilson loops in 4d
N=4 super-Yang-Mills theory, PoS LAT2011 (2011) 244, [arXiv:1112.4274].

[27] J. Nishimura, Non-lattice simulation of supersymmetric gauge theories as a probe to
quantum black holes and strings, PoS LAT2009 (2009) 016, [arXiv:0912.0327].

[28] M. Honda, G. Ishiki, S.-W. Kim, J. Nishimura, and A. Tsuchiya, Supersymmetry
non-renormalization theorem from a computer and the AdS/CFT correspondence,
PoS LATTICE2010 (2010) 253, [arXiv:1011.3904].

[29] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson
loops, arXiv:0712.2824.

[30] J. K. Erickson, G. W. Semenoff, and K. Zarembo, Wilson loops in N = 4
supersymmetric Yang-Mills theory, Nucl. Phys. B582 (2000) 155–175,
[hep-th/0003055].

[31] N. Drukker and D. J. Gross, An Exact prediction of N=4 SUSYM theory for string
theory, J.Math.Phys. 42 (2001) 2896–2914, [hep-th/0010274].

[32] A. Kapustin, B. Willett, and I. Yaakov, Exact Results for Wilson Loops in
Superconformal Chern-Simons Theories with Matter, JHEP 1003 (2010) 089,
[arXiv:0909.4559].

100



[33] M. Marino and P. Putrov, Exact Results in ABJM Theory from Topological Strings,
JHEP 1006 (2010) 011, [arXiv:0912.3074].

[34] N. Drukker, M. Marino, and P. Putrov, From weak to strong coupling in ABJM
theory, Commun.Math.Phys. 306 (2011) 511–563, [arXiv:1007.3837].

[35] C. P. Herzog, I. R. Klebanov, S. S. Pufu, and T. Tesileanu, Multi-Matrix Models and
Tri-Sasaki Einstein Spaces, Phys.Rev. D83 (2011) 046001, [arXiv:1011.5487].

[36] N. Drukker, M. Marino, and P. Putrov, Nonperturbative aspects of ABJM theory,
arXiv:1103.4844.

[37] M. Marino, Lectures on localization and matrix models in supersymmetric
Chern-Simons-matter theories, J.Phys. A44 (2011) 463001, [arXiv:1104.0783].

[38] H. Fuji, S. Hirano, and S. Moriyama, Summing Up All Genus Free Energy of ABJM
Matrix Model, JHEP 1108 (2011) 001, [arXiv:1106.4631].

[39] K. Okuyama, A Note on the Partition Function of ABJM theory on S3,
Prog.Theor.Phys. 127 (2012) 229–242, [arXiv:1110.3555].

[40] M. Marino and P. Putrov, ABJM theory as a Fermi gas, arXiv:1110.4066.

[41] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira-Spencer theory of gravity
and exact results for quantum string amplitudes, Commun.Math.Phys. 165 (1994)
311–428, [hep-th/9309140].

[42] M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba, et. al., Numerical studies
of the ABJM theory for arbitrary N at arbitrary coupling constant, arXiv:1202.5300.

[43] M. Honda, M. Hanada, Y. Honma, J. Nishimura, S. Shiba, et. al., Monte Carlo
studies of 3d N=6 SCFT via localization method, arXiv:1211.6844.

[44] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory,
math/9810173.

[45] M. Marino, S. Pasquetti, and P. Putrov, Large N duality beyond the genus expansion,
JHEP 1007 (2010) 074, [arXiv:0911.4692].

[46] A. Klemm, M. Marino, M. Schiereck, and M. Soroush, ABJM Wilson loops in the
Fermi gas approach, arXiv:1207.0611.

[47] D. L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 1205
(2012) 159, [arXiv:1012.3210].

[48] N. Hama, K. Hosomichi, and S. Lee, Notes on SUSY Gauge Theories on
Three-Sphere, JHEP 1103 (2011) 127, [arXiv:1012.3512].

[49] J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys.Rev.Lett. 75
(1995) 4724–4727, [hep-th/9510017].

101



[50] E. Witten, String theory dynamics in various dimensions, Nucl.Phys. B443 (1995)
85–126, [hep-th/9503124].

[51] E. Cremmer, B. Julia, and J. Scherk, Supergravity Theory in Eleven-Dimensions,
Phys.Lett. B76 (1978) 409–412.

[52] M. Huq and M. Namazie, KALUZA-KLEIN SUPERGRAVITY IN
TEN-DIMENSIONS, Class.Quant.Grav. 2 (1985) 293.

[53] I. Campbell and P. C. West, N=2 D=10 Nonchiral Supergravity and Its Spontaneous
Compactification, Nucl.Phys. B243 (1984) 112.

[54] W. Nahm, Supersymmetries and their Representations, Nucl.Phys. B135 (1978) 149.

[55] J. Bagger, N. Lambert, S. Mukhi, and C. Papageorgakis, Multiple Membranes in
M-theory, arXiv:1203.3546.

[56] M. Duff and K. Stelle, Multimembrane solutions of D = 11 supergravity, Phys.Lett.
B253 (1991) 113–118.

[57] R. Gueven, Black p-brane solutions of D = 11 supergravity theory, Phys.Lett. B276
(1992) 49–55.

[58] G. Gibbons and K.-i. Maeda, Black Holes and Membranes in Higher Dimensional
Theories with Dilaton Fields, Nucl.Phys. B298 (1988) 741.

[59] G. T. Horowitz and A. Strominger, Black strings and P-branes, Nucl.Phys. B360
(1991) 197–209.

[60] E. Witten and D. I. Olive, Supersymmetry Algebras That Include Topological
Charges, Phys.Lett. B78 (1978) 97.

[61] E. Bogomolny, Stability of Classical Solutions, Sov.J.Nucl.Phys. 24 (1976) 449.

[62] M. Prasad and C. M. Sommerfield, An Exact Classical Solution for the ’t Hooft
Monopole and the Julia-Zee Dyon, Phys.Rev.Lett. 35 (1975) 760–762.

[63] M. Duff, J. T. Liu, and R. Minasian, Eleven-dimensional origin of string-string
duality: A One loop test, Nucl.Phys. B452 (1995) 261–282, [hep-th/9506126].

[64] E. Bergshoeff, E. Sezgin, and P. Townsend, Supermembranes and Eleven-Dimensional
Supergravity, Phys.Lett. B189 (1987) 75–78.

[65] M. Duff, P. S. Howe, T. Inami, and K. Stelle, Superstrings in D=10 from
Supermembranes in D=11, Phys.Lett. B191 (1987) 70.

[66] R. Sorkin, Kaluza-Klein Monopole, Phys.Rev.Lett. 51 (1983) 87–90.

[67] D. J. Gross and M. J. Perry, Magnetic Monopoles in Kaluza-Klein Theories,
Nucl.Phys. B226 (1983) 29.

102



[68] P. Townsend, D-branes from M-branes, Phys.Lett. B373 (1996) 68–75,
[hep-th/9512062].

[69] C. Schmidhuber, D-brane actions, Nucl.Phys. B467 (1996) 146–158,
[hep-th/9601003].

[70] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Large N field
theories, string theory and gravity, Phys.Rept. 323 (2000) 183–386,
[hep-th/9905111].

[71] I. R. Klebanov, World volume approach to absorption by nondilatonic branes,
Nucl.Phys. B496 (1997) 231–242, [hep-th/9702076].

[72] G. Gibbons and P. Townsend, Vacuum interpolation in supergravity via super
p-branes, Phys.Rev.Lett. 71 (1993) 3754–3757, [hep-th/9307049].

[73] L. Avdeev, O. Tarasov, and A. Vladimirov, VANISHING OF THE THREE LOOP
CHARGE RENORMALIZATION FUNCTION IN A SUPERSYMMETRIC GAUGE
THEORY, Phys.Lett. B96 (1980) 94–96.

[74] M. T. Grisaru, M. Rocek, and W. Siegel, Zero Three Loop beta Function in N=4
Superyang-Mills Theory, Phys.Rev.Lett. 45 (1980) 1063–1066.

[75] W. E. Caswell and D. Zanon, ZERO THREE LOOP BETA FUNCTION IN THE
N=4 SUPERSYMMETRIC YANG-MILLS THEORY, Nucl.Phys. B182 (1981) 125.

[76] M. F. Sohnius and P. C. West, Conformal Invariance in N=4 Supersymmetric
Yang-Mills Theory, Phys.Lett. B100 (1981) 245.

[77] P. S. Howe, K. Stelle, and P. Townsend, Miraculous Ultraviolet Cancellations in
Supersymmetry Made Manifest, Nucl.Phys. B236 (1984) 125.

[78] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl.Phys. B72
(1974) 461.

[79] J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, An Index for 4 dimensional
super conformal theories, Commun.Math.Phys. 275 (2007) 209–254,
[hep-th/0510251].

[80] N. Lambert and C. Papageorgakis, Relating U(N)xU(N) to SU(N)xSU(N)
Chern-Simons Membrane theories, JHEP 1004 (2010) 104, [arXiv:1001.4779].

[81] D. Bashkirov and A. Kapustin, Dualities between N = 8 superconformal field theories
in three dimensions, JHEP 1105 (2011) 074, [arXiv:1103.3548].

[82] M. Honda and Y. Honma, 3d superconformal indices and isomorphisms of M2-brane
theories, arXiv:1210.1371.

[83] O. Aharony, O. Bergman, and D. L. Jafferis, Fractional M2-branes, JHEP 0811
(2008) 043, [arXiv:0807.4924].

103



[84] D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators,
JHEP 1105 (2011) 015, [arXiv:1007.4861].

[85] S. Kim, The Complete superconformal index for N=6 Chern-Simons theory,
Nucl.Phys. B821 (2009) 241–284, [arXiv:0903.4172].

[86] Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field
theories with general R-charge assignments, JHEP 1104 (2011) 007,
[arXiv:1101.0557].

[87] N. Hama, K. Hosomichi, and S. Lee, SUSY Gauge Theories on Squashed
Three-Spheres, JHEP 1105 (2011) 014, [arXiv:1102.4716].

[88] Y. Imamura and D. Yokoyama, N=2 supersymmetric theories on squashed
three-sphere, Phys.Rev. D85 (2012) 025015, [arXiv:1109.4734].

[89] D. Gang, Chern-Simons theory on L(p,q) lens spaces and Localization,
arXiv:0912.4664.

[90] F. Benini, T. Nishioka, and M. Yamazaki, 4d Index to 3d Index and 2d TQFT,
Phys.Rev. D86 (2012) 065015, [arXiv:1109.0283].

[91] Y. Imamura and D. Yokoyama, S3/Zn partition function and dualities,
arXiv:1208.1404.

[92] K. Ohta and Y. Yoshida, Non-Abelian Localization for Supersymmetric
Yang-Mills-Chern-Simons Theories on Seifert Manifold, arXiv:1205.0046.

[93] H. Lu, C. Pope, and J. Rahmfeld, A Construction of Killing spinors on S**n,
J.Math.Phys. 40 (1999) 4518–4526, [hep-th/9805151].

[94] G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace,
JHEP 1106 (2011) 114, [arXiv:1105.0689].

[95] A. Kapustin, B. Willett, and I. Yaakov, Exact results for supersymmetric abelian
vortex loops in 2+1 dimensions, arXiv:1211.2861.

[96] N. Drukker, T. Okuda, and F. Passerini, Exact results for vortex loop operators in 3d
supersymmetric theories, arXiv:1211.3409.

[97] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and M. Van Raamsdonk,
The Hagedorn - deconfinement phase transition in weakly coupled large N gauge
theories, Adv.Theor.Math.Phys. 8 (2004) 603–696, [hep-th/0310285].

[98] N. Drukker, J. Plefka, and D. Young, Wilson loops in 3-dimensional N=6
supersymmetric Chern-Simons Theory and their string theory duals, JHEP 0811
(2008) 019, [arXiv:0809.2787].

[99] B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in N=6 Super
Chern-Simons-matter theory, Nucl.Phys. B825 (2010) 38–51, [arXiv:0809.2863].

104



[100] S.-J. Rey, T. Suyama, and S. Yamaguchi, Wilson Loops in Superconformal
Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual,
JHEP 0903 (2009) 127, [arXiv:0809.3786].

[101] M. Benna, I. Klebanov, T. Klose, and M. Smedback, Superconformal Chern-Simons
Theories and AdS(4)/CFT(3) Correspondence, JHEP 0809 (2008) 072,
[arXiv:0806.1519].

[102] N. Drukker and D. Trancanelli, A Supermatrix model for N=6 super
Chern-Simons-matter theory, JHEP 1002 (2010) 058, [arXiv:0912.3006].

[103] M. Marino, Chern-Simons theory, matrix integrals, and perturbative three manifold
invariants, Commun.Math.Phys. 253 (2004) 25–49, [hep-th/0207096].

[104] M. Aganagic, A. Klemm, M. Marino, and C. Vafa, Matrix model as a mirror of
Chern-Simons theory, JHEP 02 (2004) 010, [hep-th/0211098].

[105] R. Dijkgraaf and C. Vafa, N=1 supersymmetry, deconstruction, and bosonic gauge
theories, hep-th/0302011.

[106] R. Dijkgraaf, S. Gukov, V. A. Kazakov, and C. Vafa, Perturbative analysis of gauged
matrix models, Phys.Rev. D68 (2003) 045007, [hep-th/0210238].

[107] R. Emparan, C. V. Johnson, and R. C. Myers, Surface terms as counterterms in the
AdS / CFT correspondence, Phys.Rev. D60 (1999) 104001, [hep-th/9903238].

[108] A. Cagnazzo, D. Sorokin, and L. Wulff, String instanton in AdS(4) x CP**3, JHEP
1005 (2010) 009, [arXiv:0911.5228].

[109] I. R. Klebanov and A. A. Tseytlin, Entropy of near extremal black p-branes,
Nucl.Phys. B475 (1996) 164–178, [hep-th/9604089].

[110] H. Ooguri, C. Vafa, and E. P. Verlinde, Hartle-Hawking wave-function for flux
compactifications, Lett.Math.Phys. 74 (2005) 311–342, [hep-th/0502211].

[111] J. Ambjorn, L. Chekhov, C. Kristjansen, and Y. Makeenko, Matrix model calculations
beyond the spherical limit, Nucl.Phys. B404 (1993) 127–172, [hep-th/9302014].

[112] G. Akemann, Higher genus correlators for the Hermitian matrix model with multiple
cuts, Nucl.Phys. B482 (1996) 403–430, [hep-th/9606004].

[113] O. Bergman and S. Hirano, Anomalous radius shift in AdS(4)/CFT(3), JHEP 0907
(2009) 016, [arXiv:0902.1743].

[114] N. Kawahara, J. Nishimura, and A. Yamaguchi, Monte Carlo approach to
nonperturbative strings - Demonstration in noncritical string theory, JHEP 0706
(2007) 076, [hep-th/0703209].

[115] A. Kapustin, B. Willett, and I. Yaakov, Nonperturbative Tests of Three-Dimensional
Dualities, JHEP 1010 (2010) 013, [arXiv:1003.5694].

105



[116] W. Krauth, H. Nicolai, and M. Staudacher, Monte Carlo approach to M theory,
Phys.Lett. B431 (1998) 31–41, [hep-th/9803117].

[117] I. Kanamori, A Method for Measuring the Witten Index Using Lattice Simulation,
Nucl.Phys. B841 (2010) 426–447, [arXiv:1006.2468].

[118] N. Halmagyi and V. Yasnov, The Spectral curve of the lens space matrix model,
JHEP 0911 (2009) 104, [hep-th/0311117].

[119] M.-x. Huang and A. Klemm, Holomorphic Anomaly in Gauge Theories and Matrix
Models, JHEP 0709 (2007) 054, [hep-th/0605195].

[120] K. Becker, M. Becker, and A. Strominger, Five-branes, membranes and
nonperturbative string theory, Nucl.Phys. B456 (1995) 130–152, [hep-th/9507158].

[121] T. Suyama, On Large N Solution of ABJM Theory, Nucl.Phys. B834 (2010) 50–76,
[arXiv:0912.1084].

[122] M. Hanada, Y. Hyakutake, J. Nishimura, and S. Takeuchi, Higher derivative
corrections to black hole thermodynamics from supersymmetric matrix quantum
mechanics, Phys.Rev.Lett. 102 (2009) 191602, [arXiv:0811.3102].

[123] M. Hanada, J. Nishimura, Y. Sekino, and T. Yoneya, Monte Carlo studies of Matrix
theory correlation functions, Phys.Rev.Lett. 104 (2010) 151601, [arXiv:0911.1623].

[124] M. Hanada, J. Nishimura, Y. Sekino, and T. Yoneya, Direct test of the gauge-gravity
correspondence for Matrix theory correlation functions, JHEP 1112 (2011) 020,
[arXiv:1108.5153].

[125] D. R. Gulotta, C. P. Herzog, and S. S. Pufu, From Necklace Quivers to the F-theorem,
Operator Counting, and T(U(N)), JHEP 1112 (2011) 077, [arXiv:1105.2817].

[126] D. R. Gulotta, J. Ang, and C. P. Herzog, Matrix Models for Supersymmetric
Chern-Simons Theories with an ADE Classification, JHEP 1201 (2012) 132,
[arXiv:1111.1744].

[127] D. R. Gulotta, C. P. Herzog, and T. Nishioka, The ABCDEF’s of Matrix Models for
Supersymmetric Chern-Simons Theories, JHEP 1204 (2012) 138,
[arXiv:1201.6360].

[128] M. Hanada, C. Hoyos, and H. Shimada, On a new type of orbifold equivalence and
M-theoretic AdS4/CFT3 duality, Phys.Lett. B707 (2012) 394–397,
[arXiv:1109.6127]. 8 pages, updated references, published version.

[129] M. Hanada, C. Hoyos, and A. Karch, Generating new dualities through the orbifold
equivalence: a demonstration in ABJM and four-dimensional quivers, JHEP 1201
(2012) 068, [arXiv:1110.3803].

[130] S. Hawking and G. Ellis, The Large scale structure of space-time, .

106



[131] K. Becker, M. Becker, and J. Schwarz, String theory and M-theory: A modern
introduction, .

[132] M. Clark and A. Kennedy, The RHMC algorithm for two flavors of dynamical
staggered fermions, Nucl.Phys.Proc.Suppl. 129 (2004) 850–852, [hep-lat/0309084].

107


