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I ABEOES

. General-purpose preconditioners for the conjugate gradient (CG) and generalized min-
imal residual (GMRES) type methods are proposed for solving the linear least squares
problem

Iin |6~ Az|l;
and the general least squares problem
mig ]z, § = {= € R": |[b~ Acll> = min b - A€]la},

where A € R™*" and b € R™. Numerical experiments show their effectiveness. We
develop their convergence theory and evaluate one of the proposed methods for practical
problems.

Background.

Solving linear least squares problems is a fundamental requirement in a wide range of
areas across science, engineering, industry, and statistics, in particular, signal processing,
control, tomography, geodetics, curve fitting, optimization etc. Hence, a significant point
is to design robust, efficient, and reliable methods for computing least squares solutions.
Conventional solution methods for the problems are direct methods such as the Cholesky
and QR factorizations, and the singular value decomposition. Such methods are effective
for solving relatively small or dense problems. However, there are ever-increasing demands
for solving large-scale and complex problems. Such requirements are far beyond existing
computers and computational methods. Thus, it is becoming difficult to apply those
methods to recent large and sparse problems in terms of time and space complexity. With
improvement of computational methods, this work attempts to take measures to deal with
this coming serious situation. ' ‘

Tterative methods are also well-established solution methods for the problems. The
Jacobi and successive overrelaxation type methods (JOR and SOR) applied to the normal
equations inspired by the Kaczmarz method and the Cimmino method, and Krylov sub-
space iterative methods such as the CGLS method proposed by Hestenes and Stiefel [12]
and the LSQR methods developed by Paige and Saunders [17] have been studied and used
for solving large and sparse linear least squares problems arising from many application
fields. If the problems are well-conditioned, then these methods converge fast. Otherwise,
the convergence becomes slow. Then, preconditioning is necessary to accelerate the conver-
gence. It is known that appropriate preconditioners dramatically improve the convergence
of Krylov subspace methods and achieve less storage requirement for Krylov subspace
methods.
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Motivation.

The majority of the studies on preconditioning Krylov subspace methods for least squares
problems is devoted to incomplete matrix factorizations such as the robust incomplete
factorization (RIF) developed by Benzi and Tima [2]. However, such techniques require
preconditioning time and memory for computing and storing incomplete matrix factors of
the matrix.

Different types of preconditioners called inner iterations have been extensively studied
and developed in the context of solutions to square systems of linear equations, e.g., DeLong
and Ortega [8, 9] and Saad [18]. However, these types of preconditioners have not been
studied so much and the sufficient conditions for their convergence are not well known in
the context of solutions to least squares problems (cf Aoto, Ishiwata and Abe [1]).

On the other hand, an application of the generalized minimal residual (GMRES)
method developed by Saad and Schultz to linear least squares problems iiras'proposed
by Hayami, Yin and Ito [11), where the right- and left-preconditioned GMRES methods
(AB- and BA-GMRES) were combined with RIF. The convergence conditions of GMRES
for singular systems are well understood due to the work by Brown and Walker [3] and
Hayami and Sugihara [10]. These studies motivated us to investigate AB- and BA-GMRES
more in de;ﬁth in the thesis.

Previously AB- and BA-GMRES preconditioned by RIF was comparable with, but
not definitely superior to, the reorthogonalized CGLS (or the CG normal error (CGNE)
method) preconditioned by RIF in terms of time complexity. Moreover, many previous
preconditioners based on incomplete matrix factorization such as RIF will break down for
rank-deficient matrices. The Greville preconditioner proposed by Cui, Hayami and Yin is
an exception, but was not definitely superior to previous methods [5]. Few authors ad-
dressed the problem of preconditioning Krylov subspace methods for solving rank-deficient
least squares problems with sufficient theoretical justification. To the author’s knowledge,
 little has been done in preconditioning in the rank-deficient case.

Least squares problems have an infinite number of solutions if the problems are not full
column rank. On the other hand, general least squares problems have a unique solution
called the pseudo-inverse solution, whose Euclidean norm is minimum. CGLS without
preconditioning with an appropriate initial approximate solution determines the pseudo-
inverse solution. However, little has been done in preconditioning general least squares
problems even though the pseudo-inverse solution is useful in many applications such as
inverse problems and control.

Objectives.

Based on the above mentioned points, the main objectives for proposing the new precondi-
tioners is to reduce time and space complexity significantly, broaden the scope of problems
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that can be solved to the rank-deficient case, and remove the above-mentioned drawbacks.
Based on the understanding of the solution methods for least square problems, we describe
a comprehensive treatment of preconditioners for least squares problems and general least

squares problems,

Organization.

The thesis is organized as follows. In Chapter 1, we describe the background, motivation,
and objectives of the thesis. In Chapter 2, we prepare relevant basics and notations, and
explain about the least squares problems which to be solved. In Chapter 3, we describe
existing methods for solving least squares problems, including direct approaches, stationary
iterations, Krylov subspace methods, and preconditioners.

In Chapter 4, we present the main results. We design new general-purpose precon-
ditioners based on linear stationary iterative methods for Krylov subspace methods such
as CGLS, CGNE, and AB- and BA-GMRES for solving linear least squares problems in-
cluding the rank-deficient case. The proposed preconditioners are given by several steps
of linear stationary iterative methods, which are regarded as inner iterations, and serve as
preconditioners for the Krylov subspace methods, which are regarded as outer iterations.

We first consider using general linear stationary iterative methods applied to the normal
equations as the inner-iteration preconditioners. With the help of the convergence theory
for GMRES- and CG-type methods for least squares problems including the rank-deficient
case and linear stationary iterative methods for singular systems of linear equations, we
develop a general convergence theory for AB- and BA-GMRES, CGNE, and CGLS precon-
ditioned by inner iterations. That is, we show that a sufficient condition for the proposed
methods to determine a least squares or the pseudo-inverse solution within r iterations
without breakdown for arbitrary initial approximate solution is that the inner-iteration
matrix H is semi-convergent, i.e., ;]fg; H' exists, where r = rankA. This theory holds
irrespective of whether A is over- or under-determined and whether A is of full-rank or
rank-deficient. In addition, we correct the previous convergence theory for AB- and BA-
GMRES given by Hayami, Yin and Ito [11] .

‘We next consider using specific linear stationary iterative methods as the inner-iteration
preconditioners. It was shown by Dax [7] that JOR and (S)SOR applied to the normal
equations give a semi-convergent iteration matrix with a value of the relaxation parameter
in an appropriate range. There exist efficient implementations of these specific iterative
methods called the Cimmino-NE and NR and NE- and NR-(S)SOR methods in terms
of time and space complexity and we use them. Compared to previous preconditioners
based on incomplete matrix factorizations, the advantage of these methods is that they
enable one to avoid computing and storing the normal equation matrix and factors of the
preconditioning matrix explicitly.
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We analyze the spectrum of the preconditioned coefficient matrix, and characterize it by
the spectral radius of the inner-iteration matrix p(H) and the number of inner iterations
¢ and then show that the nonzero eigenvalues lie inside the circle of radius p(H)* with
center at unity and they approach unity as the number of inner iterations £ increases.
This theoretical result is tested by numerical examples. In addition, we show that the
zero eigenvalues do not affect the residual norm convergence of the proposed GMRES-type
methods.

We left the analysis of the convergence rate for the proposed methods for the future. It is
know that the residual norm convergence of GMRES for general matrices is not necessarily
determined only by the spectrum of the matrices. On the other hand, experiments often
show a correlation between the spectrum and the convergence property. Hence, we hope
to study more in depth the convergence analysis in connection with the spectrum of the
preconditioned matrix given by inner iterations. '

The SOR-type inner-iteration preconditioner uses two para.meters, the relaxation pa-
rameter and the number of inner iterations. CPU time for the preconditioned iterative
method varies with the values of these parameters. ‘Hence, we need to determine the
values of these parameters before the outer iterations start. In Chapter 5, we propose a
procedure to automatically tune the value of the parameters in terms of time complexity,
and showed that it is effective. 7

In Chapter 6, numerical experiments on large and sparse overdetermined least squares
problems with artificial ill-conditioned and practical matrices from [6] illustrate that the
proposed methods are efficient and robust, and serve as powerful preconditioners especially
for ill-conditioned and rank-deficient problems, outperforming previous methods such as
the CGLS and CGNE methods preconditioned by the diagonal scaling and RIF,

More work has to be done regarding the stopping criteria. In the experiments, we
judged the convergence of the methods explicitly by using the residual norm of the normal
equations [|A7rlla. However, it would be ideal to judge the convergence of the methods
in terms of estimates of the residual norm ||AT7k||2, error norm ||z, ~ a:,,||3, and backward
error of mm |6 — Ax||a, where a2, is a least squares solution.

The mner»zteratzon preconditioning in Chapter 4, the automatic parameter tuning pro-
cedure in Chapter 5, and numerical experiment results in Chapter 5 were presented by the
suthor and Hayami [14] (see also [13]). The convergence theory in Chapter 4 was given by
the author and Hayami [15). '
~ Numerical experiments on the proposed methods comparing with previous methods on
test least squares problems led us to focus on the behavior of AB-GMRES for inconsistent
problems. In Chapter 7, we indicate that AB-GMRES numerically fails to converge for
inconsistent problems even though it is theoretically convergent. Based on this observation,
in order to overcome the defect, we propose using BA-GMRES. for solving inconsistent
problems instead. We have not completed the analysis of the numerical behavior of the
GMRES-type methods applied to inconsistent problems. We hope to study more in depth
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these subjects in conjunction with numerical experiments on the proposed methods in the
future.

In Chapter 8, we consider preconditioning and solving general least squares problems.
We present preconditioned CG and GMRES-type methods for general least squares prob-
_lems, give their convergence theories, and evaluate the methods through numerical ex-
periments. However, more numerical experiments on test problems are required to fully
evaluate the proposed methods comparing them with CGLS.

In Chapter 9, in order to evaluate the proposed methods in a practical application, we
apply AB-GMRES preconditioned by SOR-~type inner iterations to image reconstruction
problems arising from the use of electron microscopes in biology, where large least square
problems arise. Here, we combine the method with the Tikhonov regularization in order
to smooth the images, and with restarts in order to satisfy the non-negativity constraint,
and call this the restarted regularized AB-GMRES (RRAB-GMRES) method. Numerical
experiments on relatively small and large problems show that the method performs com-
petitively with previous methods such as the Algebraic Reconstruction Technique (ART)
and CG-type methods, although not decisively.

A part of the results in Chapter 9 was presented by the author, Hosoda and Hayami
(16].

We did not address the problem of how to choose the regularization parameter and
operator and set the stopping criterion. Further investigation in terms of numerical ex-
periments on more test problems is required. Also, in order to improve the accuracy, we
néed to utilize the characteristic of the problem. Introducing appropriate constraints to
the approximate solution would give a better solution.

In Chapter 10, we conclude the thesis and summarize the results obtained for the pro-
posed methods for least squares problems and general least squares problems, respectively.
BA-GMRES with NR-SOR is recommended for solving overdetermined and inconsistent
underdetermined problems. AB-GMRES with NE-SOR is recommended for solving consis-
tent underdetermined problems. Our theory filled a gap by investigating preconditioners
for rank-deficient cases and applying AB- and BA-GMRES to the case of general least
squares problems.

Contributions.

This work contributes to the development of new methods for solving least squares prob-
lems. ,

Recently, linear stationary iterative methods alone are regarded as classical approaches
and not useful in general. However, this work showed that some of them combined with
Krylov subspace methods as preconditioners serve as powerful preconditioners and play
a significant role in accelerafing the convergence of the Krylov subspace methods, when
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used as inner iterations for least squares problems. Investigations of stationary iterative
methods would still contribute to the development of preconditioners.

From the theoretical point of view, we showed that semi-convergence of the inner-
iteration matrix is intrinsically significant in the determination of convergence of CG- and
GMRES-type methods preconditioned by inner iterations. Semi-convergence is a useful
property for the. convergence analysis of linear stationary iterative methods for solving
singular systems of linear equations. Here, we utilize this property for the convergence
analysis of the Krylov subspace methods preconditioned by inner iterations for least squares
problems in the full rank and rank-deficient cases. ’

Our methods are promising candidates which would meet the increasing demands for
solving large-scale least squares problems in the future,

Future 'WOI‘k.

We are interested in the application of the proposed methods to least squares problems
arising from the interior point method for linear programming problems [4] and tomo-
graphic imaging reconstruction problems arising from the use of electronic astronomical
telescopes in which least squares problems with sparse, ill-conditioned and sometimes rank
deficient coefficient ‘ma,trices arise.
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