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ABSTRACT

We have developed an analytical theory for a celestial body orbiting in a highly eccentric orbit
under the perturbational influence of an inner body which revolves in a circular orbit around a
central body. It is a form of restricted three-body problem. The theory is constructed using a
canonical perturbation method of Lie type.

We avoided expanding the Hamiltonian in eccentricity and made it closed in form to the
orbital eccentricity. Thus our analytical theory can be applied to any highly eccentric orbit.
This is different from the process seen in ordinary perturbation methods that concern the
celestial bodies of the Solar System which revolve in nearly circular orbits.

We confirmed that our theory is highly accurate by comparing numerically integrated results.
However, the theory loses its high accuracy when the eccentricity of the outer body is very large.
This is mainly due to the following: (1)The theory shows ill-convergence for short periodic
perturbations. (2)Offset phenomena (the abrupt changes in the orbital elements that occur
when the outer body passes through its pericenter) are shown in the numerical results. The
magnitudes of the offsets are closely related to the spatial configurations of the two satellites.

The theory can be applied to some celestial bodies. The motion of the Neptunian satellite
Nereid orbiting in a highly eccentric orbit (¢ = 0.75) perturbed by Triton is one example.
Our theory provides a degree of accuracy, with results generally much better than 30Km in
the (osculating) semimajor axis of Nereid. For some extrasolar planetary systems, a circularly
revolving planet (sometimes called “Hot Jupiter”) is known to be in the vicinity of the central
star, and another new planet may exist in the outer field. The motion of these new planets can
also be described by this theory.
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Chapter 1

Introduction

1.1 Purpose of this study

In this thesis, we describe the motion of a celestial body (hereafter, we call it the ‘outer’)
moving in a highly eccentric orbit around a pair consisting of the primary body and an inner
revolving body (called the ‘primary’ and the ‘inner’, respectively). The mass of the inner body
is small enough compared to the primary, and that of the outer can be neglected (i.e. mass-less
particle). For brevity’s sake, we can say that the inner body orbits around the primary star in

a circular motion. It is one kind of restricted three-body problem.

1.2 Background

Astronomical ephemerides provide precise positions of celestial bodies in tabular form. These
ephemerides are compiled from numerical integrations or using analytical theory.

In the numerical approach, the equations of motion are numerically integrated by computer.
The results are usually obtained in the Cartesian coordinate system. Initial conditions and
constants used for calculations determine all of the results uniquely.

Today, numerically integrated ephemerides are widely used in the world. DE (Development
Ephemeris) series compiled by JPL are the most famous planetary ephemerides. For satellites,
numerical ephemerides are also used.

In the analytical approach, the equations of motion are described in trigonometrical functions
and their results are expressed as osculating elements which are functions of time. Therefore,
we can calculate osculating elements at an arbitrary time without numerically integrating the
equations of motion.

When we discuss the motion of a celestial body in the Solar System analytically, we usually
handle a perturbation theory. From the dawn of celestial mechanics, many astronomers have
devoted their efforts in the study of a perturbation theory to construct ephemerides of planets
or satellites.

In the mid-20th century, canonical perturbation theories based on the Lie theory were pro-
posed by some astronomers. Hori (1966) constructed a canonical perturbation theory through

evaluating Poisson brackets of elements. A few years later, Deprit (1969) developed a different



type. These two formulations are mathematically equivalent. A canonical perturbation method
is superior to other classical ones in the point that the theory is free from secular terms, like
o t". Therefore, we don’t face the steady (artifact) increase of orbital elements with time,
which is seen in other perturbation methods. Thus, the theory’s validity is long-term.

In a perturbation theory, we expand a perturbing function in a small parameter. Since most
planets or satellites revolve in nearly circular orbits, i.e. orbital eccentricity e < 1, we usually
expand a perturbing function in terms of powers of eccentricity.

However, a Neptunian satellite Nereid revolves on a highly eccentric orbit (e = 0.75), the
power series of eccentricity converges quite slowly. Mignard(1975)’s study is the pioneered work
on the motion of Nereid. Saad(2000) studied the motion of Nereid using a canonical perturbation
method of Hori type. The inner orbiting satellite, Triton, is not taken into consideration in
these studies because its perturbational effect is weaker than the Sun’s and is not detected by
astrometric observations from ground telescopes. However, if we would like to obtain a more
precise ephemeris, the effect of Triton has to be included in the theory.

1.3 Newly adopted method

The problem in this study has the same orbital configuration as that of the Nereid system.
Therefore, we can utilize previous work on Nereid under the perturbational influence of Triton,
such as the research carried out by Oberti (1990), Segerman and Richardson (1997).

In their work, the motion of Nereid is described in the barycentric coordinate system of Nep-
tune and Triton to express the problem in simple form. Oberti (1990) expanded the Hamiltonian
in eccentric anomaly, thereafter Segerman and Richardson (1997) expanded the Hamiltonian in
eccentricity. It is suspected that these theories are accurately calculated for a highly eccentric
- orbit. We cannot guess their accuracy from the authors’ papers because they did not compare
their analytical results with numerical ones.

In this study, we construct an analytical theory using a Lie-type canonical perturbation
method, proposed by Hori (1966). Using this method, an analytical theory does not have
secular trends in action variables (a, €,?) or (L, G, H) in Delauney’s elements.

When evaluating an averaged value over the angular variable [, we integrate it by true anomaly
f with %. This approach does not require expanding in eccentricity. Hence it is suitable for a
highly eccentric body.

We decompose the perturbing function in each degree of Legendre polynomials, such that we
can estimate the truncational error of the Hamiltonian.

1.4 Application

We aim to construct this theory to describe the motion of Nereid. However, since our theory
does not contain some numerical values which are peculiar to the Nereid system, it is applicable
to other celestial bodies orbiting on highly eccentric orbits. See details in Ch. 8.

One example may be found in the extrasolar planetary system. In 1995, the first candidate
for an extrasolar planet was reported by Mayor and Queloz (1995). After this discovery, several



tens of extrasolar planets have been found from radial-velocity observations as of 2001. Some
of the planets are revolving near a primary star at small distances. These are called “Hot
Jupiters”. It is hoped that another planet will be discovered moving in the outer field of a Hot

Jupiter system in near future. Our theory is also applicable to these planets.




Chapter 2

Methods of Analysis

2.1 Analytical formulation

2.1.1 A general expression of the problem in the barycentric coordinate sys-

tem

Hereafter, we designate masses of the Primary, Inner and Outer as M, my,, m, respectively.
The subscript In is for a quantity of Inner, and no subscript (except M) is for Outer. The
universal gravity constant is written by k2.

In general, a force function of the three-body problem is expressed as follows:

Uy = X Mmp, N mr,m mM

TPrimary-Inner  "Inner-Outer  "Outer-Primary

where 7 is a mutual distance of two bodies of the set declared in the subscript.

When we consider the motion of the outer orbiting body, it is preferable to introduce the
barycentric (Jacobi) coordinate system of the primary and the inner, because the time-variation
in osculating elements is limited in the small magnitude (for example, Carusi et.al. (1985b,
1987)). Therefore, orbital elements of the Inner are referred to as the Primary-centric coordinate
system, and those of the Outer as the Primary-Inner barycentric system as we see in Brouwer
and Clemence (1961a), Oberti (1990) and Segerman and Richardson (1997).

From the definition written above, the radii of orbits are

TIn = TPrimary-Inner
ro= r(Barycenter of Primary and Inner)-Outer"
So we can rewrite Uy as

Up = k2 [—Mmln
TIn
mr,m M TIn
—)P;
+— {1+M+m1n( " )Pi(cos S)
M

M+ mp,

+( 2(22)? Pycos S)



M

e mIn)3(%)3P3(cos S) +.. }

mM Mrn  ,TIn
+ - {1—m(T)P1(COSS)
( mIn
M+mIn
Mn
(

_ m)?»(’%)m(cos S) - }]

)2(T—£E)ZP2(COS S)

B TIn
M n
+( +:nz ym
Mm;,,m 1 PIn\2
Y —— r( " )*Py(cos S)
MmInm(M mIn) 1(?‘[.,l
(M+m1 )

P Pafcos )+
where S is the elongation between Inner and Outer, and P; is a Legendre polynomial of degree
i.

For the motion of Outer, a force function has to be multiplied by a mass factor, %ﬁ"gﬁ,

ie.
M+ mp+m
U=—1—"—-—V,.
(M + mp,)m 0
The unperturbed Hamiltonian of Outer (i.e. Kepler motion) is expressed as

n
Hy= —
0~ 24

where y = k*(M + mp, + m) and a is a semi-major axis of the orbit of Outer.
When a perturbation from Inner is added to the system, a (perturbed) Hamiltonian for Outer
becomes,

1 Mmp, 7'_? Mm_rn(M mIn) 1'1
F = — = inPp n
u % + O )E 73 2(cos S) + ™ PRE —2P3(cos S) + -+

2.1.2 Simplification of the problem (Restricted problem)
After this, we simplify the problem:

e Inner moves on a circular orbit.

e Outer’s perturbation does not affect the motion of the Primary or Inner (practically, it is
equivalent to neglecting the mass of Outer, i.e. we study it as a restricted problem)

After neglecting Inner’s eccentricity, the Hamiltonian is expressed simply:

1 Mmg, a® “I
. Inp,
F=up + (M + my,)? r3 a3 2(cos §) + (M+m1 )3




G : Primary-Inner barycenter

Figure 2.1: A schematically illustrated model of an inclined restricted problem

Legendre polynomials P;s are expanded as follows:

Py(cosS) = =(3cos(25)+1)

1
4
1
P3(cosS) = 5(5 cos(3S5) + 3cos S).
An angular distance S is measured as an angle between Inner and Outer at the Primary-Inner

barycenter. Using spherical trigonometry, .5 can be expressed by the angular orbital elements,
f,w,Q and Ar, (See Figure 2.2) as follows: '

cos S = cos(f + w) cos(Ar, — ) + sin(f + w) sin(Ar, — Q) cos T

2.1.3 Representation in canonical form

When we consider a Kepler motion (non-perturbational problem), orbital elements of a, e, I

eternally remain constant values. Now, we introduce Delaunay variables:

L = v

G = +Jua(l-e?)

H = /pa(l—e?)cosl
I =1

g = w

h = Q.



Figure 2.2: An angular distance S expressed by angular orbital elements.

Using these variables, equations of motion can be written in canonical form (as canonical equa-

tions), i.e.,
dL _ 0F
d - Al
dG 0k
dt ~ dg
dH  0F
dt 0k
a 0Fy
dt ~ oL
dg OFy
da 4G
dh OF,
dt —  8H’

where Fj is the Hamiltonian of the Kepler problem. In this case, Fp does not depend on time
explicitly, so Fy is the energy integral. Needless to say, a set of angular variables [, g, h and the
one of action variables L, G, H are canonical.

Thinking through a problem in canonical form has some advantages. One of the examples is:
once we find a generating function suitable to the problem, equations of motion can be rewritten
in another canonical form through a canonical transformation.

If we wish to separate periodic terms by their periodicity from a Hamiltonian, we have to
define a generating function acting like that. Operating a canonical transformation on the

Hamiltonian, we can eliminate periodic terms from it.



2.1.4 Elimination of time from Hamiltonian

As we have already seen in the previous section, the elongation S contains a variable Aj,,

which depends on time:
Afn = k = np,t + const..

Therefore, the Hamiltonian F' depends on time t explicitly.
To make a Hamiltonian independent of time, we introduce a canonical conjugate action vari-
able, K. The term —nj;,K has to be added to the Hamiltonian, then

F = —

Mmy, d®aj, 1
+#mr—3—c—l%z(3cos(25) +1)
Mmp,(M — min) at a?n 1
BT ) rat 50 Cos(3S) + 3eosS)
+....

There are three independent angular variables in this system:
f , g and h-k

i.e. there are three degrees of freedom.

After a suitable canonical transformation, we can deduce the Hamiltonian including only three
sets of canonical variables, (y1,21), (y2,22) and (ys, 23). Suppose the canonical transformation

F(lagv hakaLsG’ HsK) — F(y19y2:y3wmlvz27z3)'
This transformation is obtained when the condition below is satisfied:
Ll+Gg+ Hh+ Kk = 21y + T2y2 + 23y3 + 4.

One example is:

o= 1
Y2 9
Y3 h
Y4 k
z7 = L
ze = G
zs = H
K

T4 =



Then the Hamiltonian becomes

1
#2a
—nin(24 — 23)
Mmyp, a®di 1
O+ mpn)2r® a® 4
Mmp, (M - mp,)a*ad, 1

TET 1 ) 14 g(9cos(35) + 3cos S)
+oen

F =

+ (3cos(25) + 1)

The Hamiltonian does not depend on y,; anymore, so we can eliminate z4. Finally, the
Hamiltonian is reduced to:

1
Fo= iy
+nrazs
Mmp, a3a% 1
_ 7 7 TIn 9 1
AL mi )7 o 109+

MmIn(M — mln) a,4 a?n 1
TE T fr A g g (0 cos(35) F 8o )+

This simplified Hamiltonian expression is used hereafter.

2.1.5 Simplification of the problem (Planar problem)

In the later chapter, to interpret results of complicated phenomena, another simplification is
added to the problem,

e All bodies move on a common plane

(See Figure 2.3).
In this case, an angular distance S can be expressed as f+w™ — Ar,, and the number of degrees
of freedom in the system is reduced to two. Angular variables which are independent are:

f and g+h—k.

2.2 Hori’s canonical perturbation theory

In this section, we briefly discuss Hori’s canonical perturbation theory. See Hori(1966)’s work
in detail. By applying this method, we can achieve decreasing degrees of freedom one by one in
a Hamiltonian, to make a system integrable analytically.

2.2.1 Setting a new first integral

Suppose a canonical transformation such that

F(z,y) — F*(*,y"),



G : Primary-Inner barycenter

Figure 2.3: A schematically illustrated model of a planar restricted problem

where (z,y) and (z*,y*) are canonical variables, F and F* are Hamiltonians, free from time ¢.

These variables satisfy canonical equations, i.e.,

d _ oF
dt Oy
dy OF
d oz
and

dz* . oF*
dt Oyt
dy* OF*
dt Oz’

Since a Hamiltonian F does not depend on time explicitly, F' is the energy integral. Therefore

F* is also the energy integral which satisfies:

F* = const..

We suppose that a Hamiltonian contains perturbational terms, which are developed in powers

of a small parameter e,
F=F+Fh+F+...,

where Fy is the Hamiltonian of the two-body problem and subscripts are orders of e.
To solve equations of motion, we would like to obtain a first integral, Fj, to reduce by a

degree of freedom after a canonical transformation:

Fy = const.,

10



or, in other words, we would like to eliminate an angular variable through a transformation.

For this reason, we set a canonical transformation such that
Fy = Fj.

Therefore, Fj is taken as an unperturbed Hamiltonian through this transformation.
Now, let us we consider the following equation (NOTE: in celestial mechanics, the Hamiltonian

is usually reversed in its sign):

dF*(z*,y* OF* de} OF*dy}
=0~ ).

dt* ozt dt* | Oy di*

1

where t* is defined as an artificial time parameter such that

dz* . BF()
dt* Oy
dy* OFy
dt — da+’

Then, the right hand side of the above equation can be rewritten as

Z 3F*dw:+3F*dyf _ Z 8F*8F0_8F*3F0
—~ \ Oz d* Oy dt* ] <\ 8zF Oy Oy} Oz}

{F*’ FO}
_{FOv F*},

where, {A, B} is a Poisson bracket operation.

On the other hand, substituting canonical equations into ‘?95 - and %I: ~ on the right hand side

of the first equation,

OF* dz? OF dy,.) - @) _ (R F}

Z,: (Bm;‘ i oy ar )T @
also holds.
Therefore, if we set a canonical transformation such that Fy = Fg (unperturbed) can be
satisfied,
F§ = const.

is also satisfied.

2.2.2 Canonical transformations in Hori’s method

Suppose Hamiltonians F(z,y) and F*(z*,y*) are expanded in a small parameter ¢, i.e.,

F Fo+ Fi+Fy+...
Fx = Fox+ Fix+ Fox+ ...,

where subscripts mean powers of e.

11



An arbitrary function f of canonical variables (z,y) can be developed in a converged series

of € using the Lie theorem:

flew) = Y SO ),
n=0 """

where D, is an operator of n-times Poisson bracket with S , i.e.:

DY = f
D; = {f,5}
D? = {{f,5}S}

Substituting a Hamiltonian F in f, we obtain F in a series of ¢ with variables (z*,y*).

Comparing this expression with F*(z*, y*), we obtain the following equivalences for each power

of e:
F()*
Fl*
F2*
Fax

Fo
{Fo, 51} + F1
{Fo,S2} +{F1, 51} + %{{Fo, 51}, 81} + P2
{Fo, 83} + {F1, S2} + {F2, 51}
o, $21, 81} + 5 1B, 813,52} + S {{F1, 51, 51)

-}%{{{FO, 51}, 81}, 81} + F3

Recalling a character of the Poisson bracket,

0Fy 0S 0Fy 0S8
—{Fy, S} = -
(Fos) = 3 (-G i+ )

_ ¥ (dy; 8s  dx} as)
F dt* ay;‘ dt* 0z
ﬁ

dt*

is satisfied. Therefore, we can obtain F;* and S, as follows:

Fg*
Fl*

S1
F2*

S
F3*

[l

il

F
[Fl]sec
/ (P erdt*

[(Fy S0} + 5 ({Fo, $1}, 51 + Plaee

J U813 + R, 813,81} + Filperd
[{F1, S2} + {F2, 51}

12



+%{{F07 S2}, 51} + %{{Fo, 51}, 52} + %{{Fl,sl}, 51}
+ %{{{Fm Si}h 51} 811+ Fs] »
S = [[F,S}+{F8)

+51{F0, S2}, 81} + 5 {{Fo, 51}, S2} + 5{{F1, 51}, 51)

+ %{{{Fo,sl}, S1}, 81} + Fs] dat*

per

If an unperturbed Hamiltonian Fy only depends on one action variable z;, % can be rewritten

as
ds
dt = _{FO’S}
_ ones
- Oz Oy

So, we can replace an artificial time t* with an angular variable y;,

. 1 .
z

Note that separating the Hamiltonian F into a secular part F* and a periodic one S means
separating perturbations according to their periodicities. Therefore, defining F* and S as above,

we achieve the decomposition of short periodic perturbations of longer periodic ones.

2.2.3 Relation between variables before and after transformation

When you obtain osculating elements, variables before transformation, (z,y) require expres-
sion in variables (z*,y*). With Hori’s theory, they are written:

>, " a8
z = z*+Z%Dg_13y*
n=1 """
a5 o8
= z*+€3*+_2{3y*’5}+'“
and
Pl pn- 0S8
y = Z_:_l S ozr*
s 1, 0S8
= v 3¢ g S

With an arbitrary function f,

f= P4 AS+ TSNS 4o

is also correct. It is noted that f can be replaced by canonical elements, i.e., z or y. If you
substitute an angular variable y for f, it is not necessary to replace their signs with negative ones
as in the former notation. In practical use, the latter expression is convenient for calculating

osculating 2 and y.

13



2.2.4 Advantages of Hori’s method compared to other canonical methods

In the field of celestial mechanics, some types of canonical transformation are widely used,

such as:
e von Zeipel (1916) method
e Hori (1966) method.
e Deprit (1968) method

The von Zeipel method is a popular one, but it has some disadvantages. For example, vari-
ables before transformation are not expressed explicitly in terms of those after transformation.
When you rebuild osculating elements, it is necessary to substitute variables iteratively until
achieving the required accuracy. Moreover, von Zeipel’s transformation does not hold its canon-
ical character of a Hamiltonian. The Hori and Deprit methods do not have these disadvantages.

The latter two methods are based on the Lie theorem, mathematically equivalent. Both
methods expand variables in a small parameter. You can see some differences in the expression
of generating functions or in expressions of Hamiltonians expanded in their Poisson bracket for
higher orders of ¢. Using Deprit’s method, the expression is slightly more complicated than
using Hori’s one.

2.3 Computational methods

2.3.1 Numerical approach

Today, our scientific studies are vastly supported by the aid of powerful and strong compu-
tational technology. Numerical simulations reveal to us new facts.

For example, in the field of celestial mechanics, experiments with numerical integrations have
brought about a revolutionary change. Practically, the business of numerical ephemerides is
prospering today. High accuracy numerical ephemerides (e.g. DE series by Standish/JPL) are
widely distributed and utilized over the worldwide, taking the place of analytical ephemerides.

However, old-fashioned analytical ephemeris have advantages insofar as they:

e make it easy to understand each periodic contribution in the time-variation of orbital
elements

e are quickly calculated
e do not depend on astronomic constants, such as mass of satellites/planets

In this work, we also handle numerically integrated results to check the accuracy of analytically
derived results. Since this study focuses on the ephemeris of Outer (i.e. the motion of Quter
for a short period), it is enough to consider for some centuries at most, not for the age of the
Solar System.

Therefore, we adopt the extrapolation (Bulirsch-Stoer) integration code for numerical inte-

grations, since it produces much more accurate results for short period problem.
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We check these two results by calculating their residuals. Ideally, it is hoped that the resid-
uals are zero for any given time, however, due to approximations by truncations of analytical
expressions, or by round-off errors in numerical integrations, the residuals cannot be zero.

If residuals are not equal to zero, but small enough compared to a required accuracy, the
divergences do not produce any problem. However, if they are beyond the expected accuracy,
they create difficulties in terms of the accuracy of the results.

2.3.2 Machines and softwares

To accomplish this study, we utilize some powerful computational software.

e Mathematica (ver.4.0.2.0) copyrighted by Wolfram Research Inc.

e Fortran & C Package (ver.1.0) copyrighted by Fujitsu Kyushu System Engineering Ltd.
(1999)

Mathematica is run on a Windows 2000 Operating System, and the Fortran compiler is
operated on a Linux (Slackware 3.6) platform.

2.4 Checking accuracy (comparison with numerical integra-

tions)

In an analytical approach, osculating elements are compounds of many periodic terms. When
any time is given, the theory provides osculating elements. We calculate complicated arithmetic
with the aid of a computational software, MATHEMATICA ver.4.

Astronomical constants, e.g. the masses of planets or satellites, are not determined from
the theoretical study. It it necessary to combine the observational data with a theory to fix
these constant values. Thereafter an analytical theory can be utilized as an ephemeris for the
particular celestial bodies.

However, in this study, we do not aim to make an ephemeris peculiar to some celestial bodies,
but we aim to construct a multipurpose analytical theory. Therefore, we do not give some
numerical values for these constants.

The accuracy of ephemerides is assessed by comparing the results to observational data, i.e.
calculating residuals of O — C( (observed) — (calculated)). Observations are contaminated by
noise, the constants are fit by methods of least squares.

In this work, we do not study for some specific celestial bodies, therefore we check the accuracy
of our theory by comparing numerical integrations and calculating residuals of ((analyticals) —
(numericals)). We discuss the process in detail.

We assess the accuracy of our analytical expression through comparison with numerical re-
sults, or by calculating residuals in time sequence (See Figure 2.4). Numerical integration is
performed by Bulirsch-Stoer (“extrapolation method”) code in double-precision accuracy. This
code provides high accuracy in results, suitable for our aim. We start integration with posi-
tion and velocity values that are converted into Cartesian coordinates from a set of analytical
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Comparison between analytical and numerical resuits

~

(Analytical) - (Numerical)

N
Numerical approach Analytical approach
Mean elements
Initial position/ : Osculating elements
velocity| t TO (the initial ti
at TO (the initial time at TO (the initial time
Numerical integration
(Bulirsch-Stoer)
Position/velocity
at T
Orbital elements ‘E:ONEI:FF_S?_N_’ Osculating elements
atT atT
- R AN
Residuals

Figure 2.4: Flowchart for calculating residuals

Table 2.1: Mean elements for analytical calculation

Planar Problem

Item Inclined Problem
Semimajor axis [Km] 5.5 x 108
Eccentricity 0.75

Inclination [deg] 132.40

Angular variable y; [deg] 0.0

Angular variable y, [deg] 0.0

Angular variable y3 [deg] 0.0

Longitude of the Inner Ay,[deg] 0.0

5.5 x 108
0.75
0.0
0.0

0.0
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osculating elements at the initial time. Then, at a time T, residuals (analytical results minus

numerically integrated ones) are calculated as:
(Residuals) = (Analytical results) — (Numerical results).

When we calculate residuals in angular variables, y;, y2 and ys, secular trends (the slopes of
regression line for raw data) are subtracted, not to hide fine structures in residuals for output
figures.

We set the values in Table 2.1 for the mean elements in analytical calculations.
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Chapter 3

Planar Restricted Problem

3.1 Preparations for solving the problem

In this section, we simplify the problem in a coplanar configuration, already mentioned in
Chapter 2. The system has two degrees of freedom: angular variables corresponding to them
are y1 (= 1) and y2(= g+ h— Ar,i). Therefore, the outer body suffers periodic disturbances with
the periodicities of the revolutions of y; and y,.

Hereafter, we decompose perturbations into three parts according to their periodicities. They

are:

e Short periodic perturbation caused by the revolution of the inner body (in Neptunian

system case, the periodicity is ~ 6 days)

e Long periodic perturbation caused by the revolution of the outer body (in Neptunian

system case, the periodicity is ~ 1 year)
o Secular perturbation .

Removal of each periodic contribution from the Hamiltonian means decreasing degrees of free-
dom of the Hamiltonian, and finally we can integrate equations of motion analytically. A briefly
summarized flowchart is seen in Figure 3.1.

In this chapter, for the sake of brevity, we mainly follow equations only up to P, term of
Legendre polynomial in the perturbed Hamiltonian. The following discussion can be applied

when higher terms of P, are included in the Hamiltonian.

3.1.1 Short periodic perturbation: Elimination of short periodic terms

First, we take a time-averaged Hamiltonian over the short periodic variable, y2. Through this
manipulation, we can obtain a new Hamiltonian, F*(y1, 1) , which only contains one angular
variable, y;.

We consider a canonical transformation

F(y1,y2,21,22) — F*(y1,21)
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Canonical Transformation

F=(x1, x2, y1, y2)

Disturbed Hamiltonian .
Degrees of freedom
:2

Transformation

Canonical l

F’=(X1’ ] y1!-)

* Degrees of freedom
1

Eliminate short periodic terms [y2]
= Eliminate short periodic perturbation

Canonical
Transformation
Eliminate long periodic terms [y1] Ft=(--)
= Eliminate long periodic perturbation " Degrees of geedom

Equations of motion are SOLVED analytically

Figure 3.1: Flow chart of canonical transformations in the planar problem

such that
dz*  0F
dt* — oy
dy* _ aFo
a* ~  9z*’

where Fj is taken as the unperturbed Hamiltonian.

From the second equation above, a fictitious time increment dt* is replaced by an angular
variable dy*

o W4y
(—g—fg‘) (_nTri),

since Fj only depends on zs.

The original Hamiltonian (before transformation) is written as:

F=F+F+F

where,
F = nrees
7
R = —
! 2a

3 42
Mmr,; a°ar,;1

M + mp,.;)2r3 a3 4

F, = M (3cos(2(f + y2)) + 1)
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Subscripts are approximate orders of a small parameter #, the ratio of mean motions of the

outer body to the inner one. In the Neptunian system, the value is ~ 616'

However, a mass coefficient #’T"Tﬂ can act as a more efficient, small parameter. For example,
in the case of Neptunian system, the value is ~ 2 x 104,

In fact, in the case of extrasolar planetary systems, it is possible to take various values.
However, if we consider a typical one such that: a sun-like primary (for the F,G,K main sequence
star, its mass is ~ 1[Mg]) with a brown dwarf companion (the upper limit of mass is ~ 0.08[ Mg ])
in neighbor and a planet revolving > 1[AU] apart from the primary. For extra-solar systems,

which satisfy these conditions, the mass coeflicient A—,I—;’—ZT can be regarded as an infinitesimal

1
parameter.
m

M+mpp;
we continue to use subscripts for a small parameter #, but we sometimes truncate Poisson
r:
m )1
M+Amzp/ °
We apply Hori’s canonical perturbation method to F, a new Hamiltonian F* = ), F* and a

Therefore, in the following discussion, we neglect ( )% or higher order terms. Note that

series by orders of (

generating function S =3, 5; :

F; = Fo(UNPERTURBED)

Fl* = [Fl]sec
2

Y
2z2
S, = f [Filyerdt*
=0
F; = [{F17SI}+F2]sec
1 Mmg,; a® a%n-

Z”(M + 7’7’7,:1",.1’)2 r3 a3
52 - /[{Fh Sl} + F2]perdt*

3 u  Mmp,y d®df,; .
= -2 2 ZTri gin o
8 nrei (M + mg,;)2 r3 a3 sin2(f +2)
F;; = [{FlaSZ}]sec
=0

S; = /[{Fl,Sz}]perdt*

Ffo= {F Sl + O
=0
F= (B Sioaleee + 0777

m

Si = [HR SicaHperdt” + O((77)?)

Here, {X,Y } is an operation of Poisson bracket of X and Y. A conventional definition in the
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field of celestial mechanics, the Hamiltonian sign is usually reversed. Therefore,

_ ~[0X8Y O8X8Y
xYr=3, [a—zia};‘ 59, az,-]'

An infinitesimal increment of time dt* in indefinite integrals [ Odt* can be replaced by an

angular variable, ys, since Fy depends only on 2.

e = [ergmyti

3.1.2 Long periodic perturbation: Elimination of long periodic terms

Next, we eliminate a long periodic angular variable y;. After a canonical transformation, we
can eliminate all of the angular variables y; of the Hamiltonian expression, which means the
problem is solved analytically, and equations of motion (canonical equations) are integrable.

A canonical transformation

F*(y1,21) — F*

is defined by :

de**  OF}
dt** By"
dy** B 8F1*
dtv Bz

A time increment dt** is replaced by yi*:

* %k dyr* 1 *%k
™ = W =y

— =%
Oz}

since F; only depends on z;.

The Hamiltonian (before transformation) is :

F*=F} +F +F}

where,
Fg = Fy
2
* 4
Fl = Ty
2:0%
o 1 Mmr.; a® a%ri
2 4”(M + mrp)2 P8 ad
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Hori’s canonical perturbation method is applied to this Hamiltonian, neglecting O((ﬁrp),
we obtain a new Hamiltonan F** = ). F** and a generating function §* =}, 5} :

B = K
F{* = F}(UNPERTURBED)
F3* = [F3l,.

1 Mmrg,; 1 agpri
4#(M+ ’ITI/_r,.i)2 7]3 as
s;:/m%w*
1 Mmg,; 1 a%ri
4“(M + m7y;)2 np® ad
F3* = [{F3, ST Hsee
_ m 2
N O((M+mTrz) )
S; = [UF S,

= O

(f+esinf—y)

t**

Here, an indefinite integral with is replaced by

ok 1 -
1

1 **k
= /Q—dy1 .
n

3.1.3 Secular perturbation

We have obtained a Hamiltonian F** which does not depend on any angular variables. To
summarize again, it forms :
F** — F(;nt + Fiu + FZ**

where,
R = R
Rt o= R

1 Mmg,.; 1 ag,,m-
4”(M+ mr.i)? 3 ad

%
Fy* =

This Hamiltonian also satisfies canonical equations, i.e.:

dm** aF** _
at —  Ooy* (=0)
dy** L OF**
dt Oz**
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From the first equation, we obtain

and from the second one,

aF**
¥y =(- T )t + const..
If we calculate real values of ’31::: ,
oF** pr 3 Mmr.;  af,;
82:—‘{* B _:c_"f B Z” (M + mr,;)? nabn?
= —p— §£ Man' Arpi
4a% (M + mr,)? 73
oz3* " 47 (M + mgy)? naty?
_ g, 3 Mmr 0%,
" 4a? (M +mre)? 7t

and substitute values into them,

aF**
yi© = (—5—)t+ const.
%1
* %k ( 6F**)t+ t
Yo = Ty const..
Oz}

In other words, action variables z** are constants, and angular variables y** increase (or
decrease) linearly with time ¢. This means the action variables, or a semimajor axis ¢** and an
eccentricity e**, does not have secular trends, while the angular variables, or a mean anomaly

I** and a longitude of perihelion w**, have secular trends linearly with time.

3.1.4 Mean elements

Orbital elements a**, e**, [**, ** deduced from z** and y** are mean orbital elements.

Their real values are not obtained from dynamical theories, which only indicates that these
values are constants. We have to merge results of astrometrical positions to get real numerical
values for Nereid.

In this study, we do not identify numerical values for them because they do not affect the
construction of an analytical theory.

3.1.5 Deriving osculating elements

Osculating elements F for canonical variables can be summed up by the following contribu-

tions:
e Mean elements E**
e Contribution from long periodic perturbation § E*

e Contribution from short periodic perturbation 6F .
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Le., we first calculate
E* = E** + §E*,

and after that, we evaluate
E=E"+4E.

When we obtain a quantity of E*, we have to evaluate d E* with values of E**. Similarly, a
value F is calculated with E* on the right hand side of the above equation.

From the relationship between old and new variables of Hori’s canonical perturbation method
(see Ch. 2), 6E* and 0F are expressed as:

1
6B = {B*,S'}+{{E" S}, +...

0F

1
If we neglect O((ﬁy) terms, all we have to do is take the Poisson bracket once, then,

SE* = {E*, S*}
6EF = {E,S},

since S or S* contains at least a factor of (M%F)l They are equivalent to the following

operations.
b= = (a8} = Gor
* * * 65*
dy; = {5 =5
52:,' = {:E,',S}: g:i
oS

0y = {45} =5~

Deriving osculating elements expressed in orbital elements, we can use variational equations

between orbital elements and canonical ones:

da = E&cl

de = —l 22 dzg — (z2)26
T e @) @)

8l = 6:‘/1

dw = 6y2.

The last equation is derived from dw = §ys + 6k and k has no effect on the Nereid’s motion

since k = nr,;t + const. is supposed.
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Figure 3.2: Numerical results (a)for one year (b)for 15 years (Note: for panel (b), the vertical
axis is trimmed to reveal offsets in semimajor axis and eccentricity). The initial values for this
calculation use the mean elements instead of the initial osculating elements generated by an
analytical theory. Secular trends of residuals in angular variables are subtracted.
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Table 3.1: Preliminary analytical models

Model Name | Hamiltonian expression | Generating Function Direction of
(P; of (S: Triton’s revolution
Legendre polynomials for short periodic terms
are considered) are considered)

P2S2p P, Ss Prograde

P2S4p P, Sa, 53,54 Prograde

P3S2p Py, P So Prograde

P3S2r Py, P Ss Retrograde

3.2 Results and discussion

3.2.1 Numerical results

Figure 3.2 shows numerical results for one year and 15 years (Only these two calculations
start with initial conditions of mean elements, rather than osculating elements). In semimajor
axis and eccentricity, they exhibit many rapid-changing variations with a period of six days,
superposed on eminent bowl-shaped variations with a period of one-year. Amplitudes of the
former variations grow larger with Nereid’s approaching its pericenter.

It is noted that the bottom level of the latter variations is offset slightly to one of the next
revolutional periods. This phenomenon is caused by the phase of Neptune-Triton system against
its barycenter when the Nereid passes through its pericenter. The pericentric distance of Nereid
is ~ 1.4 x 10% [Km] from the barycenter, which is only four times that of the Triton’s distance
from the barycenter. In a planar problem, a configuration of close approach occurs, which often

creates difficulties in building accurate ephemerides.

3.2.2 Preliminary analytical results and residuals

We calculated residuals preliminarily, and they are shown in Figures 3.3 and 3.4. The ana-
lytical models we used are listed in Table 3.1.

To summarize, there exist large discrepancies between analytical results and numerical ones. If
we take up to smaller quantities (e.g. up to higher small parameter of generating functions or up
to higher Legendre polynomials) into consideration in the analytical calculation, discrepancies
become small, but unpleasantly, large residuals still remaine.

Comparing the two models, with Triton orbits either in prograde or retrograde, we can see
significant differences in residuals (see Figure 3.4). A retrograde model decreases its residuals
drastically.

Hereafter, we use mainly prograde orbiting models. If we consider retrograde orbiting ones,

residuals are smaller than those of the prograde models.
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Figure 3.3: Preliminary results. Residuals are shown for each model. (a)model P2S2p, (b)model
P2S4p

3.2.3 Influence on residuals of truncation of Legendre polynomials

If we consider the problem fully, we have to deal with a full expression of the Hamiltonian, i.e.
infinite series of Legendre polynomials. However, we simplify the Hamiltonian for convenience,
which may cause discrepancies between analytical and numerical results. To check the influence

of truncation of Legendre polynomials,
(Full numerical results) — (Numerical results including up to P; Legendre polynomials)

are calculated. The direction of Triton’s revolution is prograde.

The full numerical calculation considers forces on Nereid from circular-orbiting Neptune and
Triton, while a numerical calculation with truncated Legendre polynomials considers the model
such that:

e a perturbing function is formulated into Cartesian coordinates. A P, potential is taken
as an example:

@ MmT"i rf?t'ri 1
(M—f-TnT,.,‘)2 r3 2

1 Mmr,.; 3 2, .

P e U

F(P) = (3cos? S — 1)
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Figure 3.4: Preliminary results (continued). Residuals are shown for each model. (a)model
P3S2p, (b)model P3S2r

where (A - B) is an operation of the inner product for A and B.
e acceleration is calculated through differentiating the potential.

These results are shown in Figure 3.5. If we expect to achieve accuracy of sub-Km in the
semimajor axis (in the case of Triton revolving in prograde), we have to take terms up to Ps in

the Hamiltonian into account.

3.2.4 Influence on residuals of truncation of generating functions

Next, we assess the influence of truncational errors of short periodic generating functions S;.
The full expression of the short periodic generating function is

o]
§$=>8.
1
To check the contribution from truncational effects, we introduce a Hamiltonian, which includes

only the P, term of Legendre polynomial, for both numerical and analytical calculations. ILe.,

( Numerical results ) ( Analytical results including only P, and )

including only P, up to S; of generating functions for short periodic
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Figure 3.5: Residuals of full numerical results minus numerical results up to Legendre P; terms

in the Hamiltonian. (a)up to P, term, (b)up to P; terms, (c)up to Py terms, (d)up to P5 terms
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In this calculation, Triton revolution is prograde.

Results are in Figures 3.6 and 3.7. In the case of P;-limited problem, residuals are converged
below sub-Km in the semimajor axis when we take up to S; terms of a generating function
into account. This means that it must include higher orders of a small parameter, #, in
calculations. This slow-converging property is reflected from the character of closely approaching

problems. Since S; is calculated as (neglecting (7 +"7:"Tri)2 ):

S; = / {F1, Si_1}de*

n 8 S,‘_ 1
= - dy?a
nr.iJ  On

0S;_ .
however =3*=1 are converted into
%1

8Si—1 _ 0f 8Si

Oy Oy Of
a term
Of _ (L4ecosf)?
Oy U
~ 10.583(at the pericenter)
dilutes the converging factor of 7~ ~ glﬁ and prevents series of S; from rapidly converging.

Moreover, in the case of the Ps-limited problem, another phenomenon troubles us. This is
shown in Figure 3.8. Eminent offsets on the bottom level in semimajor axis or eccentricity
are shown for each revolution of Nereid. These offsets caused by the longitude of Triton when
Nereid passes through its pericenter are discussed in the section on Numerical results. The
offsets observed in the Ps-limited problem and the P5-limited one are nearly comparable to the
offset in numerical results, which means the offsets for each revolution of Nereid are mainly
explained by contributions of P; and P; terms of Legendre polynomials in the Hamiltonian.

If Triton orbits in retrograde, residuals are decreased.

In any case, eminent discrepancies between analytical and numerical results when Nereid ap-
proaches its pericenter are observed, especially in low degrees of S;. This phenomenon seems to
be caused by (1)a slowly varying frequency with time near the pericenter, and (2)approximations
in trigonometic functions of an offset function .

Near the point of close approach of Nereid with Neptune (or Triton), the synodic period

" between them is continuously varying, which means a time-variation profile of orbital elements
cannot be described using a single frequency of trigonometric series. A compound expression
of trigonometric functions with many frequencies is required.

In fact, shown in Figures, time-series profiles of residuals are more simple and smoother when
we take higher S;s into account. These are shown in the Appendix; the number of trigonometric

terms are increasing for higher S;s.
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Figure 3.6: Residuals of numerical results minus truncated S; results for a Hamiltonian limited
only by Legendre P, contribution. Secular trends of residuals in angular variables are subtracted.

(a)up to Sa terms, (b)up to S3 terms, (c)up to3S4 terms, (d)up to S5 terms
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Chapter 4

Inclined Restricted Problem

4.1 Preparations for solving the problem

In this section, we discuss the inclined problem, applicable to any mutual inclinations of the
orbital planes of the inner and outer bodies. The system has three degrees of freedom; angular
variables corresponding to these are y;(= 1), y2(= g) and y3(= h — Ary;).

Hereafter, as we did in the planar problem (Chap.3), we break down perturbations into four
parts according to their periodicities. They are:

e Short periodic perturbation caused by the revolution of the inner body (in the Neptunian
system, the periodicity is ~ 6 days)

e Intermediate periodic perturbation caused by the revolution of the outer body (in the
Neptunian system, the periodicity is ~ 1 year)

e Long periodic perturbation caused by the circulation of the pericenter of the outer body
(in the Neptunian system, the periodicity is of order ~ 10° year)

e Secular perturbation .

A summarized flowchart of the process is in Figure 4.1.

In this chapter, we mainly describe the equations for the perturbed Hamiltonian only up to
P, terms of Legendre polynomials for the short or intermediate periodic perturbations, and up
to Pg terms for the long periodic ones.

4.1.1 Short periodic perturbation: Elimination of short periodic terms

We average the Hamiltonian over the short periodic variable, y3 and decrease the number of
degrees of freedom by one. The Hamiltonian is transformed into:

F(y1,92,y3, 21,22, 23) — F*(y1, Y2, 21, 22)

such that
dz* 0K
e Oy*
dy* OF,
d* ~ 8z’
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Canonical Transformation

Disturbed Hamiltonian

l Canonical

Transformation

Eliminate short periodic terms [y3]
caused by revolutions of the inner body

= Eliminate short periodic perturbation

Canonical
Transformation

Eliminate intermediate periodic terms [y1]
caused by revolutions of the outer body

= Eliminate intermediate periodic perturbation

Considered C ical
only P2 or (P2+P3) anonica .
perturbations Transformation

Eliminate long periodic terms [y2]
caused by circulations
of the outer body'’s pericenter

= Eliminate long periodic perturbation

Equations of motion are SOLVED analytically

F=(x1,x2, x3, y1,y2,y3
* Degrees of freedom
:3

F*=(x1,x2,-, y1,y2,-)

* Degrees of freedom
12

Fe=(,x2- -y2-)
* Degrees of freedom
1

* Degrees of freedom
10

Figure 4.1: Flow chart of canonical transformations in the inclined problem
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where Fj is unperturbed. An artificial time increment dt* is replaced by an angular variable

dy*

o W 4y
(_65‘2) (_nT‘n)

since Fj only depends on z3.

The original Hamiltonian (before transformation) is written as:

where,

and

F=F+F+F

Fo = nrpzg
In
F = —
! 2a
Mmr,; a® a%‘- 1 2
F, = ——2 [ —(-1 0
? M+ mr)2r® o [8( +30°)

3
+§(1 - 92) cos(2f + 2y2)

3
+1_6(1 — 0)%cos(2f + 2y2 — 2y3)
+g(1 — 6?) cos(2y3)

3
+ E(l + 0)2 cos(2f + 2y2 + 2y3) |,

6 = cos 1.

As we have seen in Chap. 3, subscripts are approximate orders of a small parameter —"—, and
Tri

from here on, the expressions are neglected (

m
MAmap,;

)2 or higher order terms.

A new Hamiltonian F* = }_; F;* and a generating function S = Y, S; are:

Fg
F}

S1

Sa

Fo(UNPERTURBED)
[F1]sec

s

222

/ [Filper dt*

0

[({F1,51} + F2]sec 2

1 u Mmr,i f‘iaTn'
8 (M+mT,.,~)2 r3 a3

JUFL 81} + Falperdt”
2

B Mmr,; P,
nrri (M + mrp.)? 73 ad
3

+E(1 — 6?) sin(2y3)

[(—1 +36%) + 3(1 — 6%) cos(2f + 2y2)]

[_3_32'(1 — 0)sin(2f + 2y2 — 2ys)

36



+33—2(1 + 6)?sin(2f + 2ya + 2y3)
F3‘ = [{F], S2}].sec
=0
S = [UF:SaYlperdt?
F,; = [{F1,S3}]sec +O((
=0

m

T y2
M+mTri) )

F'o= B SictYuee + 0577 m)")

S = [UFLSicaperdt” + O

))

Here, {X,Y} is an operation of the Poisson bracket of X and Y.

_ [0X0Y 09X oY
Y =5 |5 5 o)

An infinitesimal increment of time d¢* in indefinite integrals [ Odt* can be replaced by an

angular variable, y3, since Fy depends only on z3.

i = [o s

*
Oz

=fQ1dy§

—NTr

4.1.2 Intermediate periodic perturbation: Elimination of intermediate peri-
odic terms

Next, we eliminate an intermediate periodic perturbation by using a canonical transformation
F‘(yl, Y2,21, 232) — F"(y2, :BQ).

Aucxiliary equations are

dz** OF;

d *k By"
dy** oF;
dt** - Sx** ’

therefore a time increment dt** is

since unperturbed Hamiltonian Fj only depends on ;.
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The Hamiltonian (before transformation) is :

F*=F} +F +F}

where,
Fy = Fo
2
o=
1
« 1 Mmg,;  d®a},; 2 2
Fy = gH(M+mTri)2r—3 i [(—1+39 )+3(1-¢6 )cos(2f+2y2)].

Neglecting O((W':;Tr;)z), we obtain a new Hamiltonan F** = . F'* and a generating
function $* = . S} :

F* = Fg
F* = F;(UNPERTURBED)
F* = [F}le.

1 MmT,.i 1 a?,w”-
SP(M + mr.)? 03 a®

st = / [F3],, dt"

(—1+ 36%)

- "(Mﬁin::;;)z n%:;az;i [é(_1 +36%)(f + esin f — y1)
+ 2(1 - 6?) {%esin(f + 2y2) + %sin(2f + 2y9) + %e sin(3f + 2y2)}]
F* = [{F, 51,
= O(377 7))
S; = [ UFS StHper ™
= O((——)?)

M + mg,;

In the above results, S} does not satisfy the condition that the time-averaged value of S*
be zero, since sin(mf + 2y3) is decomposed into sin(mf)cos(2y2) and cos(mf)sin(2ya), the
y1-averaged quantity of the latter has some non-zero value. So, we have to add additional terms
for ST to avoid contaminating secular trends in angular variables.

Moreover, an indefinite integral with ¢** is replaced by

*ok 1 *%
Jou = [omsi

(—7=%)

1 *xk
- /Q—oly1 .
n
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Finally we obtain the Hamiltonian F** and a generating function $* as follows:

' = Fy
o= Fl*(UNPERTURBED)
1 MmT,., ]. aT 2
B = = ri(_1 4 36
8'u(M+mT,.i) 773 ad (=1 +36°)
MmTri 1 aT : [1 2 R
* — - ™| 0 —
5 H (M + mpp)? o a® 8( L438°)(f +esinf —u1)
3 1 1, 1 .
+8(1 - 6?) { —esin(f + 2y2) + 551n(2f + 2y2) + g€ sin(3f + 2y2)}
—%(1 - 02)e_2(2 — 32 — 27%) sin(2y2)]
m
Fu — 2
O((M + mr.;
m
S = O 2
2 ((M + an')

4.1.3 Long periodic perturbation: Elimination of long periodic terms

Finally, we eliminate the long periodic variable y, from the Hamiltonian and obtain a new
Hamiltonian F*** free from any angular variables y.

However, we have seen in the previous section, the Hamiltonian F** does not contain an
angular variable. This is attributed to the fact that we take only P, perturbational contributions
into consideration. In other words, if we include higher P; terms (in practice, only the even
numbers of ¢ contribute intermediate or long periodic perturbations), F** contains trigonometric
functions of y,. For example, if we follow up till Fg terms,

F3* = nrees
2
F** — I‘I'
1 2:1:%

Mmr,; 1 aT 2
F** P — i 1 0
2 ( 2) (M + mr, )2 B a3 8( +3 )

1 a%—v : 9 2 4
*x — i) 9
F*(Py) uc4~7—~[1024(3 3002 + 356%)(2 + 3¢2)

45
512(1 — %) (1 - 76%)€? cos(2y2)]
- 1 af,; 2 4 6 2 4
F'(Ps) = nCor 5 [32768( 5+ 10562 — 3150% + 2316%)(8 + 40¢? + 15¢4)
+ 2025 1 g2)(1 — 1862 + 330%)e3(2 + ) cos(2y2)
32768
1575

65536(1 — 6%)%(-1+116%)e! cos(4yg)] ,
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where,

MmTTi(M3 + m%ri)
(M + mg;)®
Mmr,i(M® + m3,;)
(M + m.;)7

C4E

Cs

1]

Now we rewrite the above expression into:

ok
F§* = nrgzg
2
m
Ftt —
! 222

F3* = F*(R)
F3* = F3*(Py)+ F}*(Ps) + F§* (for higherP),

i.e. the old F3* are divided into two groups, the new Fy* and the new F3*.

In this process, we consider the new Fy* as an unperturbed Hamiltonian for a canonical

transformation
F*#(yz, 32) ___} F***, )

and eliminate y» from F**. Canonical equations for an artificial time ¢*** are:

et OFy
dt*+* - aymu
dy*" 3 8F2u
dt*** - = Ox*** !
therefore,
dt*** = dy;"
T (_9F
-2

Since the Hamiltonian F** only depends on y3, equations of motion are reduced to

dzﬁ*
di =0 — 21" = const.
dz3*
p =0 — 23" = const.,

therefore, only the manipulation of g—fé is meaningful for obtaining dt***.
2

Using Hori’s canonical perturbation method and neglecting O((ﬁr'ﬁ)’ the new Hamil-
tonian F*** = Y . F*** and the generating function §** = >, §7* are:

FO*** — F[;*
FI**# — Fltk
F* = F;*(UNPERTURBED)
F3 = [F37]

sec
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B PR — (3 — 306% + 3560%)(2 + 3¢?)
= M 1024

1, 2
'l a7 32768

S“ — /[Fg*]perd ok
2

+Cs (=54 1056% — 3156* + 2316°%)(8 + 40¢? + 15¢?)

]_5 aT - n 2 2 2 .

= ——B,- I 1-6H)(1-176 2
28 B Ty © (L (1 - 70%) sin(2y)
175 _ a%.; n

B on.2 21 _ a2V(1 _ 1%02 4y
33768 2% gt (157 [-206%(2 + €?)(1 — 6%)(1 - 1862 + 336%) sin(2y2)

et(1 - 6%)%(~1 + 116%) sin(4y2)]

kK m 2
BT o= O((M +an')
- m 2
51 = 0((M+an') )
where,
B M3 + m%‘ri
4 (M + mr,;)3
B — M5 + mg'ri
8 T M ¥ mrn)¥

t# * ¥k

An indefinite integral with is replaced by

— 1 xx
/th = /deyz

1

— Q d ran

Mmaqyi 9 Y2
8'“'(M—}-m¢p,‘,)2 n02 4 a3 (1 — 56 )

It is noted that S}* is O((
a factor 0fO((M+mT
by 375mo-; than the short or intermediate one. In other words, long periodic perturbations have

7 ey )°) because in integrating [ Qdt***, a quantity Q is divided by

)}). Therefore, obtained long periodic perturbations become a lower order

large amphtude, compared with shorter ones.

4.1.4 Secular perturbation

We have obtained a Hamiltonian F*** which does not depend on any angular variables. To

summarize again, it forms :

F*** — FS** + Fl**‘ + F*** + F***

where,
3™ = nppes
2
Fnuu _ H
22

41



Mmr,; 1 aTn 1

F***
(M+mT )2n® a3 8

~(-1+ 36%)

1 a3 9
Fn* — = Trs 92 3504 9 3 2
7 04777 & Tozal3 3067 +3507)(2 + 3e%)
1 a’g'rz 25 2 4 6 2 4
+Ce—~ 3 ——(—5+ 1056° — 3150" 4 2316°)(8 + 40e” + 15¢%)

7 32768

The equations of motion are:

dzttt 3F***
dy*** _ aF***
dt Qx>+

From the first equation, we obtain

z*** = const.,

and from the second one,

*x (_BF )t + const..
a *kok
If we calculate real values of 2 Yo oF -~ ,
OF*** n Mmr,; 3na? . (—1+ 36%)
dzr (M + mT"-)2 8a2n3
135 _ na%.; 2(3

“T024C4 o n7 (3

175 naTN

— 300% + 356*)

% (-8 + 20e® + 15e*)(—5 + 1056 — 3156* + 2316°)

32768 °
OF*™*  Mmgy 3naTn-(1 — 56%)
oz (M + mr)? 8a2nt
45 naT”

—_— 3(4 2y — 1862 )+ 76%(28 + 2
102404‘1417 [3(4 + 3e?) — 186%(8 + 7e?) + 76%(28 + 27€?)]

525 nad
327680 g8 Tlr;
+56%(184 + 500e® + 135¢*)
—756%(40 + 116€? + 33¢*)
+336°(72 + 220¢? + 65¢*)]

[-5(8 + 20¢? + 5¢*)

oF*™ n Mmg.; 3na 0
82*** Tri t (M_*_an)2 4a2n4
4
+—504"aT" (2 + 3¢%)6(—3 + 76%)
256
525 _ na$,, ) .
— 8 + 40e? + 15¢1)8(5 — 3062 + 330
+163846a6n(+ e? + 15¢*)6( + 336%)
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and substitute values into them,

aF***

yI** = (_B:B_I**)t + const.
s 8F***

Y = (- dep )t + const.
6F***

yr = (_B:c—;,**)t + const..

*kk

Action variables *** are constants, and angular variables y*** increase (or decrease) linearly

with time ¢. This means that the action variables (the semimajor axis a***, the eccentricity e***

and the inclination I***) have no secular trend, while the angular variables (the mean anomaly

*

[***, the argument of the perihelion w*** and the longitude of the ascending node 2***) have

secular trends linearly with time.
4.1.5 Mean elements

Orbital elements a***, e***, I***, [***, w***, Q*** deduced from z*** and y*** are mean orbital
elements. Their real values are not determined from theories, requiring the merging of results
of astrometrical observations. In this work, we do not identify these values.

4.1.6 Deriving osculating elements

As we have already discussed in Chap. 3, osculating elements F for canonical variables are
summed up by the following contributions:

e Mean elements E***
e Contribution from long periodic perturbation § E**
e Contribution from intermediate periodic perturbation § E*
e Contribution from short periodic perturbation §F .
Therefore, we evaluate the following procedure: first,
E* = E*** | §E™(E*™),

then,
E* — E** + 6E*(E**),

and finally
E = FE* 4+ 6E(E").

Old and new variables in canonical transformations are linked as
1
JEtt — {Et*’ S**} + 5{{E**, S**},S**} _+_ ..
1
SE* = {E*,S*}+ E{{E’*,S*},S*} 4 ...

oF

(8,5} + (B, 5),5} + ...,
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and neglecting O((#W)Q) terms, then,

or

*x
621:

sy
szt
8y}

(52!,'

dy;

If we express elements in orbital elements,

da =

de =

80 =

8l =
ow
N =

(SE** — {E**, S*t}
SE* = {E*,S*}
6E = {E,S},
as*t
— Z:‘,S" - 2F
* %k *%k 35*‘
= {y*, 5"} = _BF
. an  08*
= {z},8"} = £
. s as*
= v, 5% = 9z
a8
- {mia S} - g:‘;:
0S
= {mS}=-5.
2ﬂ5$1
1| 2o (2!2)2
_e (2}1)251:2_ (zl)a&cl
L523 - 2—352:2
dy
dy2
5:!/3.

4.2 Results for inclined problem

4.2.1 Numerical results

For the inclined problem, results of numerical integration by Bulirsch-Stoer code are in Figure
4.2. The integrational pereiod is for 15 years and Figure 4.2 (b) is zoomed up and trimmed to
reveal offsets of orbital elements. Comparing results for the planar problem, shapes of elements-
time plots are changed. However, offset features can be observed when Nereid approaches its

pericenter.

Hereafter, we use the word ‘residual range’ as follows:

e residual range

a range of residuals (analytical elements minus numerical ones) during

an integration period (see Fig. 4.3)
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Figure 4.2: Numerical results (a)for 15 years and (b)zoomed up (Note: for panel (b), the vertical

axis is trimmed to reveal offsets in semimajor axis and eccentricity). The initial values for this

calculation use the mean elements.
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Figure 4.3: Definition of residual range in this study.
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Table 4.1: Variational ranges of residuals when we take up to P; terms of Legendre polynomials
into consideration. Integration period is 400[days].

P, Residual ranges

a [Km] e Ideg]
P, |73 34x107% 6.3x 1075
P; | 18 8.2x10°7 1.4x 1075
Py | 6.7 3.2x 1077 5.8x 1076
Ps |11 49 %1078 9.3x10°7

4.2.2 Influence on residuals of truncation of Legendre polynomials

As seen in the experiments for the planar problem, we assess the truncational effect of Leg-
endre polynomials in the Hamiltonian expression. Results of residuals

(Full numerical results) — (Numerical results including up to P; Legendre polynomials)

are in Fig.4.4.

Ranges of residuals (differences between the maximum residuals and the minimum residuals)
are tabulated in Table 4.1 If we expect to achieve accuracy of sub-Km on the semimajor axis,
we have to take terms up to P; in the Hamiltonian into account.

4.2.3 Influence on residuals of truncation of generating functions

Next, we check the influence of truncational errors of short periodic generating functions S;
using residuals of

( Numerical results ) B ( Analytical results including only P, and )

including only P, up to S; of generating functions for short periodic

Their results are shown in Fig. 4.5 for the P,-limited Hamiltonian and in Fig. 4.6 for the
Ps-limited one. They are also summarized in Table 4.2.

Because there seemed to be features similar to those in the planar problem; we must take
higher orders of a small parameter, %, into consideration for the property of slow-converging
series.

For the Ps-limited problem, eminent offsets are observed again and they seemed to be in

correlation with the longitude of Triton when Nereid passes through its pericenter.

4.3 Orbital evolution for a long timespan

We have discussed the orbital evolution of Nereid for a relatively short interval of several
years. From now on, we focus on orbital evolution for a very long interval in order to observe
a circulation of the pericenter of Nereid, which takes about 3.4 x 10° years.
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Figure 4.5: Residuals of numerical results minus truncated S; results for a Hamiltonian lim-
ited only by a Legendre P> contribution. Secular trends of residuals in angular variables are
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Figure 4.6: Residuals of numerical results minus truncated S; results for a Hamiltonian lim-
ited only by a Legendre P; contribution. Secular trends of residuals in angular variables are

subtracted. (a)up to S terms, (b)up to S3 ter{igs, (c)up to Sy terms, (d)up to Ss terms



Table 4.2: Variational ranges of residuals when we take up to S; of generating functions into

consideration. Integration period is 400[days].

S; Residual ranges for the P;-limited problem

a [Km] e I [deg] a[Km] e I [deg]
Sy | 31 1.5x107% 9.3x107% |45 2.2x1076 2.2x10°5
S3 | 7.0 34x1077 25x107% |27 1.3x107% 1.4x10°°
Sy | 2.7 1.3x10"7 5.4x10-7 | 24 1.2x107% 1.1x10°5
Ss | 0.91 46x1078% 2.2x1077 |19 9.5x10"7 8.8x 106
S; Residual ranges for the P;-limited problem

a [Km] e I [deg] a [Km] e I [deg]
Sy | 2.7 1.3x1077 1.2x10°% | 5.4 2.5x 1077 3.5x10°°
S3 | 0.95 4.6 x10~% 3.3x10°7 | 4.1 1.9%x 1077 2.6 x10°8
S4 | 0.49 24%x107% 1.5x1077 | 3.7 1.8x 1077 2.3x10°°
Ss | 0.24 1.2x10% 6.0x107% 3.3 1.6 x 1077 2.0 x10°°

4.3.1 Numerical results

We numerically integrated the equations of motion for Nereid using Bulirsch-Stoer code for
~ 4 X 10° years. The results are shown in Figure 4.7. Mean orbital elements are used for the
initial values in the calculation. We can easily find that the semimajor axis a is composed of
shorter periodic perturbations, while the eccentricity e and the inclination I are superimposed
by longer periodic perturbations on shorter periodic ones. The longitude of ascending node
Q and the argument of pericenter w circulate toward the prograde. Their periods are about
3.1 x 10% and 3.4 x 10° years, respectively.

Time variations in e and I are synchronized with a half period of a circulation of the pericenter.

4.3.2 Equi-potential curves

The time-independent Hamiltonian F that contains three angular variables (y1,¥2, y3) is the
energy integral. When we averaged F over two shorter periodic terms, we can obtain F**,
depending only on the longest periodic angular variable. In this study, it is the argument of
pericenter y,. If we dictate F** with canonical variables,

F**(22,y2).
It no longer depends on z; and z3. Alternatively, if we express it with orbital elements,
F**(e, I,w),

i.e. we cannot separate the contributions of the two variables of e and I.
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Figure 4.7: Numerical results for a long timespan. Mean elements are given as the initial values.
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However, we can easily obtain the nature of variations between e and w (or I and w) from
F**. Our strategy is the following: first, F'** no longer depends on y; and ys3, then we obtain

z1(=/pa) = const.
z3(=y/pa(l —e?)cosl) = const.,
or,
a = const.
V(1 —e2)cosI = const.(= (23)o)-
From the last equation, we can deduce a relation

(733)0

This means that once we specify the value of (z3)g, or the sets of (e, I), we can eliminate the

cosl =

variable I from F**. Namely, we substitute the above equation into F**(e, I, w), and we obtain

the Hamiltonian which depends only on e and w,
F**(e,w) for the initial values of (eg, Ip).

We can plot equi-F** curves on the 2-D (e,w) map.
Fortunately, we already derived the expression of F** = Fg* + F}'* 4 F3* as

Fg* = np.e3(= const.)
e
F* = —2—;?(5 const.)

** Mmg,; 1 a?l'ril 2
B = O g o 8

*% 1 a‘%’ 1 9 2 4 2
F3*(Py) = pCa——Lri| (3 —300% + 356%)(2 + 3¢?)

77 a® [1024
——g(l — 86% 4 76%)e? cos(2y2)]
512
- 1 a’g'ri 25 2 4 6 2 4
F{*(Pe) = pCooiy-ort | syrgg( 5+ 10567 — 3156" + 2316%)(8 + 40¢” + 15¢)
2625 2 4 6y 2 2
~oorag(~1+196% — 516" 1 336°)c(2 + €*) cos(2y2)
1575
+m(—1 + 6%)2(—1 + 116%)¢* cos(4y2)] ,
where,
04 = MmTT"i(M3 + m%"‘ri)
(M 4 mq.;)3
Cs = Mmr,(M® + mg..;)
(M + mg,)7

52



0.748 0.748

y2 (argument of pericenter) [rad] y2 (argument of pericenter) [rad]
(a) (b)
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Table 4.3: Secular circulation rates of w and €2 in the analytical model.

Analytical w Q

Model Rate [deg/yr] Period [yr] Rate [deg/yr] Period [yr]
upto P, | 1.072x 1073 3.358 x 10° 1.136 x 10~%  3.170 x 10°
upto Py |1.034x 1072 3.481 x 10° 1.139 x 1072  3.160 x 10°
upto Ps | 1.033 x 1073  3.485 x 10° 1.138 x 102  3.164 x 10°

The equi-potential curves of Nereid’s F** for eg = 0.75 and Iy = 132.4[deg] are shown in
Fig. 4.8. They show a circulation nature of the argument of pericenter. We cannot see a clear
difference in these curves between Figs. 4.8 (a) and (b) that take the Hamiltonian up to Py
and P; into consideration, respectively. This fact indicates long periodic contributions from P
terms are small enough compared with those from P;.

The eccentricity shows a bimodal variation with its amplitude of ~ 0.003 during a circulation

of the argument of pericenter w. It agrees with numerical results.

4.3.83 Secular circulation rates of w and Q

L]

Secular circulation rates of w and 2 in the analytical model are calculated from —‘?91:7 and
2
3F‘tt

- ETL]
Oz;

rates are mainly explained by P» perturbation.

+npr; , as we derived in Section 4.1.4. These values are listed in Table 4.3. The secular
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4.3.4 Comparison with numerical results

As seen in the previous sections, we calculate residuals between analytical and numerical
results. In this section, we include P, and Py perturbations in the analytical theory and neglect

the intermediate and short periodic perturbations. Namely,

(Analytical model) = ( Secular perturbations: ) ( Long periodic perturbations > ,

Non-perturbing terms +P; + P4 from P, terms

and
(Residuals) = (Numerical results) — (Analytical results).

We note that there is no contribution from long periodic P, terms when we neglect 0((#,”")2)
Of course, the initial values for numerical integration use osculating elements produced by an
analytical model.

The analytical results compared with numerical ones are shown in Fig. 4.9 (a) and (b).
Both agree in global perspective. Next, we extract only long periodic terms and compare both
models. They are shown in Fig. 4.9 (c) and (d). Analytical extracted data are equal to
4 E** contributions in Section 4.1.6, while numerical ones only subtract secular trends from the
angular variables w and 2 by fitting regression lines. Both results agree.

Now we check residuals. We subtracted secular trends from the angular variables residuals in
order to easily observe periodic misfits. They are shown in Fig. 4.10.

In e,I and €2, misfits of cos 2w or sin 2w terms dominate. They come from the higher order

terms of (37774 -) that we have neglected in our construction of a theory. In residuals of w,
Trs
cos 4w or sin 4w terms are also seen.
Residuals in mean anomaly I remain quadratic trends. They are due to growth of numerical
round-off errors in longitude (or position) with time. ILe., they are attributed to the errors in

numerical integration, not to those in our analytical theory.

4.4 Combined analytical model

4.4.1 Combined analytical theory

Finally, we combine all P;-limited analytical theories and, from this point on, call it a ‘com-
bined analytical theory’. First, for each periodic component, we sum up net contributions of
P, to P, and then sum up periodic components from the longer one to the shorter.

Therefore, the procedure is the following:

1. Secular perturbations:

z;** = (mean elements)
OF (P + Py)***
y*r o= —( ( ;;**4) )t + const.

2. Long periodic perturbations:

SE* = {E“, S;*(Pz + P4)}
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Figure 4.9: Long periodic orbital evolution. Kepler, P» and P, terms are included in the
equations of motion. (a)Numerical results. (b)Analytical results. (c)Numerical results. Secular
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Figure 4.10: Residuals for a long timespan. Kepler, P, and P, terms are included in the model.

Secular trends in the angular variables are subtracted.
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Table 4.4: Combined analytical theory. The listed contribution is taken into account.

Period P, P Py Py

ShOI‘t 52,53, 54, 55 52,53,54,55 S2,SS,S4,S5 52,53,54, 55

Intermediate S - ST -

Long - - St -

Secular y** — y** -
then,

E*i — E**’I + 5El**.
3. Intermediate periodic perturbations:
SE* = {E*, 51 (P)} +{E", 57(Pa)}

then,
E* = E** +§E".

4. Short periodic perturbations:
5 5 5 5
§E = {E,Si(P)} + > {E, Si(P3)} + Y {E,Si(Py)} + Y _{E, Si(Ps)}
=2 1=2 =2 =2

then,
E=FE"+§FE.

Finally we obtain osculating elements E. (See also Table 4.4.)
By virtue of neglecting O((g37775
brackets written above. (Because S is the order of O(z777.——).) It is noted that we can add

each P;-contribution linearly because the Poisson bracket satisfies the distributive law:

)?) terms, all we have to evaluate is the single Poisson

(X, (Y +2)} = (X, ¥} +{X,2}.

4.4.2 Results

We calculate residuals to give the full numerical results and show them in Fig. 4.11.

We can easily interpret that the residuals are dominated by offsets. These are mainly ex-
plained by the P3 and P; terms.

Short periodic variations, which are trigonometric functions of y3, are almost entirely removed
from the profile (only slightly remain near the offset corners!). Therefore, we conclude that the

combined analytical theory represents the true Nereid system fairly well, except for offsets.
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Figure 4.11: Residual of full numerical results minus ‘combined analytical’ ones.
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Chapter 5

Accuracy of Our Analytical Theory

In Chapters 3 and 4, we have discussed the accuracy of our theory for the problem of Nereid
(a = 5.5 x 10[Km)], e = 0.75). In this chapter, we assess accuracy of our analytical theory for
other orbital parameters.

5.1 Normalized residual range

Before assessing accuracy, we will define the term ‘normalized residual range’:

¢ whole range a range of the orbital elements during an integration period (see Fig.
5.1; the orbital data are based on the numerical results.)

e normalized residual range a value of the residual range (defined in Section 4.2.)

normalized by a value of the whole range

The reason for introducing the normalized residual range is the following: if we change orbital
parameters of the outer body, such as a or e, the magnitudes of perturbation are also changed
(see Fig. 5.2). The absolute magnitude of the residual depends on one of the perturbations.
Therefore, we adopt the normalized values using the absolute magnitude of perturbations.

5.5005e+06 T T T T T T - v - T
5.50046+06 Fenesrnnananscasanans ceemmmna——- ememseeezeeguessesesesnensnaes a .(.S:?’.TJ'.".‘.E_‘J‘?!.E!’.".S)I'.(_.'PJ....' .
—5.5003e+06 [ : ; : : : : ; : 7
¥ 5.5002e+06 | : i ¢ | "whole range" < 1
© 5.5001e+06 | 3 g" g: i i b K i T
5.5e+06 L——JL'--'“M-,----------------------\ ).t& j.k J. ................. -4
5.4999e+06 [ .

5.4998e+06 . . : . L 1 . L

Al

One orbital period of Nereid

Figure 5.1: Definition of the whole range in this study.
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Figure 5.2: The growth of the whole range with the eccentricity. Each curve shows the values for
the same semimajor axis. (From the upper panel to the lower) Whole ranges in the semimajor

axis, the eccentricity and the inclination.
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Table 5.1: Initial values for numerical integrations. The inclination of the outer body refers to
the orbital plane of the inner one. We use the same parameters as in the Nereid problem except

for those of the semimajor axis and the eccentricity.

Item Model

Mass of the primary body [Mg] 5.1514 x 1075

Mass of the inner body (2.89 x 107%)x (Mass of Primary)
Mass of the outer body 0. (test particle)
Semimajor axis [Km] variable (Integer multiples of 5.5 x 109)
Eccentricity variable

Inclination [deg] 132.4

Longitude of ascending node [deg] 0.0

Argument of pericenter [deg] 0.0

Initial longitude of the outer body [deg] 0.0

Semimajor axis of the inner body [Km] 14.15 x 24764
Eccentricity of the inner body 0.0

Inclination of the inner body [deg] 0.0

Integration period [day] 40000.

5.2 Initial values and models

In this chapter, we adopted the initial values as shown in Table 5.1. We vary the values of a
and e and check the normalized residual ranges. We used the same values as in the problem of
Nereid for other parameters for the sake of convenience, to allow comparison with data in the
previous chapters.

From here on, we assess the accuracy of the ‘Combined analytical model’ (See Section 4.4).

5.3 Comparing accuracy of the ‘Combined analytical theory’

with the ‘full numerical model’

First, we compare the accuracy of the ‘Combined analytical theory’ with the ‘full numerical
model’.

The. growth of the normalized residual ranges with the eccentricity is shown in Fig. 5.3. Our
theory maintains a high degree of accuracy for a wide range of eccentricity, especially for a larger
semimajor axis. The normalized residual range on the order of ~ 107° is a machine precision
limit for calculating residuals. Therefore, our theory perfectly agrees with numerical results.

However, for a larger eccentricity or for a smaller semimajor axis, the combined analytical

model degrades accurately. This is due to the following:

e Offset growth
(Discussed in detail in Chapter 6.)
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Figure 5.3: The growth of the normalized residual ranges with the eccentricity. Each curve
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residual ranges in the semimajor axis, the eccentricity and the inclination.
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Table 5.2: The values of the factors (a) ;- and (b) %ﬁ
@) (> 2
Eccentricity Q—*—';-L

n
0.1 1.23
Semimajor axis a e 0.5 3.46
ANereid (= 5.5 x 108[Km]) 1.61 x 1072 0.7 7.93
2 X GNereid (= 1.1 x 107[Km]) 5.69 x 1073 0.75 10.6
4 X aNereia (= 2.2 X 107[Km]) 2.01 x 1073 0.8 15.0
085 23.4
0.9 43.6

o Ill-convergent series of .S;
For short periodic perturbations, the series of S; converges by a factor of 7—5— However,

S; is calculated as follows:

S = [{R,Siayar

_ _" 85"—1(1
N oy vz
n B_fasi_l

ngmJ Oy Of v2

n (1+ecos f)? 88,
= —— 3 dyg.
Nin n af

The factor of Q%fsfﬁ becomes a larger value for a large eccentricity, especially at the

. 1+e!2 . .
pericenter, “— 5. Therefore it prevents S; from converging. When we vary the values of
a and e, these factors change as shown in Table 5.2.

e Truncational error of Legendre polynomials 7
Our theory is truncated by the P5 terms of Legendre polynomials. Thus, the accuracy of

our theory is decreased when the outer body approaches the pericenter.

e Truncational error of canonical transformation
Our theory is truncated by the S5 terms for short periodic perturbations and neglects
terms of the order of (37+42—). It cannot fully explain all of the perturbations.

M+mp,
5.4 Comparing accuracy of the ‘Combined analytical theory
up to P; terms’ with the ‘numerical model up to P, terms’
Next, we compare the accuracy of the ‘Combined analytical theory’ with the ‘numerical model

up to P; terms’. Both models contain up to P; Legendre polynomials, i.e. we use the model of
)
p;.

=2
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Figure 5.4: Normalized residual range for the model up to P, Legendre polynomials. (a)For

G = GNereid (b)fOI‘ a =2 X aNereid-

The results are shown in Fig. 5.4. They show the P; terms decrease the accuracy of our
analytical theory. In other words, the accuracy of the analytical theory is determined by one of

the P; terms.
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Chapter 6

Offset Phenomena

6.1 Some remarkable aspects of abrupt changes in orbital el-

ements (Offset phenomena)

As we have already seen in the previous chapter, offsets in the orbital elements are observed
when Nereid passes its pericenter. In this chapter, we discuss the phenomena in detail. Here-
after, we use the following terminologies (see also Fig. 6.1):

o offset: AFE a difference of the values of an orbital element between the successive

revolutional periods
e offset range a range of offset levels of an orbital element during an integration period

An offset is designated by AFE for brevity. AFEs are computed from the results of numerical
integrations (the same model that we called “full numerical” in the previous chapters). However,
the magnitude of offset cannot be measured accurately at the Nereid’s pericenter passage,
because it is superimposed by large fluctuations of the orbital elements caused by perturbations
of Triton. Instead, we take AFEs as differences of averaged orbital elements near Nereid’s
apocenter between the successive orbital revolutions.

In this chapter, we use initial values in Table 6.1. An integration period is 40000 [days] (~
110 [yrs]).

5.500026+06 [
5.500026+06 |
£5.50001e+06 [
L 550406
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5.5e+06
5.49999¢+06

1

One orbital period of Nereid

Figure 6.1: Definition of offset and range in this study.
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Table 6.1: Initial values for numerical integrations. The inclination of Nereid refers to the
orbital plane of Triton. [Rnep) is Neptune’s radius, 24764[Km]. (x) Two cases (prograde and
retrograde) are considered for the planar model.

Item Planar model Inclined model
Semimajor axis [Km)] 5.5 x 108 5.5 x 108
Eccentricity 0.75 0.75
Inclination [deg] 0.0 132.4
Longitude of ascending node [deg] - 0.0
Argument of pericenter [deg] 0.0 0.0
Initial longitude of Nereid [deg] 0.0 0.0
Semimajor axis of Triton [Ryep) 14.15 14.15
Eccentricity of Triton 0.0 0.0
Inclination of Triton [deg] 0.0/180.0 (x) 0.0

6.2 Longitude of Triton at the time of Nereid’s pericenter pas-

sage

Firstly, we observe the raw result of numerical integration for the inclined problem for a long
timespan (nearly 100 [yrs]) and show it in Fig. 6.2. This reveals that osculating elements a, e
and I do NOT increase with time, i.e. they do not have secular trends, but they stay in fixed
ranges, fluctuating with a periodicity of several revolutions of Nereid.

In our numerical calculations, Triton moves

62.18 revolutions

in one orbital period of Nereid. (If we use mostly accepted values of orbital elements or constants,
Triton revolves about 61;11— times per one orbital period of Nereid.) Thus, when Nereid returns
to the pericenter, the longitude of Triton proceeds about 66 degrees. The longitude of Triton
at the time of Nereid’s pericenter passage have the same period as the fluctuations in AFE. It
seems that Triton’s phase at the Nereid’s pericenter passage affects the offset phenomena. To

ensure this hypothesis, we will continue to observe offsets in more detail.

6.3 Some remarks on numerical results

To clarify the relation of AE to Triton’s phase, we depict AE versus the longitude of Triton
at the time of Nereid’s pericenter passage \},.. Hereafter, we refer to this as “AE-)%, ; plot.”
The results are shown in Fig. 6.3. We can easily show a strong correlation between AFE and
A%‘ri'
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Figure 6.2: Time variations of the orbital elements for the inclined problem.
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Figure 6.4: Maximum offsets A Ep,ax versus the eccentricity (the planar case).

6.3.1 Growth of offsets with eccentricity

If we change the initial values of Nereid’s eccentricity, the offsets are vastly altered (see Figs.
6.5 and 6.6 for the planar problem and Fig. 6.7 for the inclined problem). Results are sum-
marized in Table 6.2 and Fig. 6.4. Generally speaking, as the eccentricity of Nereid increases,
AFEs increase drastically. For e > 0.6, AFEp,.x exponentially increases with eccentricity.

The shapes of AE—)\%"- plot show sinusoid-like curves, but they are severely distorted due to
the high eccentricity for Nereid.

We notice that the shape of the Aa—/\%n- plot is similar to that of the Ae-A}. ; plot. Interest-
ingly, that of the AI—/\%"- is in antiphase to the former two plots.

6.3.2 Growth of offsets with mutual velocity between Nereid and Triton

In the previous section, initial conditions of the eccentricity of Nereid are varied, however, it
is not so clear to what these offsets can be attributed whether, as the eccentricity increases, (1)
the orbital velocity of Nereid at its pericenter increases or (2) the disturbing force from Triton
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Table 6.2: Offsets in orbital elements when the eccentricity is changed. Since offsets vary with

)\%ri, AF .  is taken as the maximum value of AE among )\%ris.

(a) Planar problem (Prograde)

Eccentricity Offset range Maximum offset
a e Atmax Aemax
[Km] [Km]
0.1 41x107% 1.2x107% [4.0x10"3 1.2x107°
0.3 2.5x107% 57x10710 [ 22x107% 5.2x10°10
0.5 1.4x107% 2.6x10710 [1.2x107% 23x 10710
0.6 14x1073 2.0x10710 [1.2x10% 1.7x10"10
0.7 8.7x107! 56x10"% [4.7x10°! 3.1x10°8
0.75 1.7 x 10 8.8x10°7 | 9.3 4.8 x 1077
0.8 2.2x102 89x10°% |1.4x102 5.6x10°6
0.85 1.6 x 103 4.6x10°% |1.5x10®2 4.3x10°%
0.9 3.9x10° 7.4x107% |75x10* 1.4x1073
(b) Planar problem (Retrograde)
Eccentricity Offset range Maximum offset
a e Atmax Aemax
[Km] [Km]
0.1 3.1x1073 1.1x1079 [24x10°% 9.9x10°10
0.3 1.9x 1073 4.6x10719 [ 1.9%x10"% 4.0x 10710
0.5 1.3x107% 1.9x1071°[1.2x1073 1.8x 10710
0.6 9.8 x107% 1.3x10710 [ 9.0x10"% 1.2x10°10
0.7 1.9x1072 1.3x10°° |1.1x10"2 7.0x10°10
0.75 55x10"! 3.0x10°% |29x107! 1.6x1078
0.8 1.2 x 10 5.1x10°7 | 6.3 2.6 x 1077
0.85 24x102 75x10% |1.1x10%2 3.3x10°°
0.9 49x10® 9.8x107% |[1.9x10® 3.8x1075
(c) Inclined problem
Eccentricity Offset range Maximum offset
a e I Admax Aemax Al ex
[Km] [deg] (Km] [deg]
0.1 8.6x107% 24x107? 56x10°8|82x10"3 23x107? 54x10°8
0.3 23%x107% 1.0x107° 3.0x1078|21x107% 89x10°10 27x10°8
0.5 53x107% 89x10710 34x1078|43x107* 35x107% 1.5x10°8
0.6 4.6x107% 1.9x107° 8.6x1078|2.6x10"% 42x1071% 1.4x10°8
0.7 2.8 1.8x1077 1.7x107%| 1.5 9.3x107% 7.2x1077
0.75 3.6 x 10 1.8x107% 1.8x107%|1.9x10 9.6 x 1077 9.4x 107
0.8 3.2x102 1.2x107% 1.6x107%|1.7x102 65x107% 8.4x10°°
0.85 21x10% 58x107% 11x107%|1.1x10® 31x10"® b55x1074
0.9 32x10% 6.0x107% 15x107%2|9.7x10® 1.8x107* 45x1073
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Figure 6.5: Offsets AFE versus the longitude of Triton at the time of Nereid’s pericenter passage
A9..; when the eccentricity of Nereid changes (the planar prograde case). (a)e = 0.5, (b)e = 0.7,
(c)e = 0.8, (d)e = 0.9.
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Figure 6.7: Offsets AF versus the longitude of Triton at the time of Nereid’s pericenter passage
2%,; when the eccentricity of Nereid changes (the inclined case). (a)e = 0.5, (b)e = 0.7,

(c)e = 0.8, (d)e = 0.9. -3



(or Neptune) increases since Nereid approaches to Triton more closely, etc.

Here, the orbital velocity of Triton (or Neptune) is changed, while the initial value of the
eccentricity of Nereid is fixed at 0.75. This is equivalent to the mutual velocity of Nereid to
Triton being changed.

The models are listed in Table 6.3, and AE-A}. ; plots are shown in Fig. 6.8.

For the sake of brevity, we discuss only the planar case from here on.

If the mean motion of Triton is large enough (2nr,;), large offsets are not observed for any
A%, (Fig. 6.8 (a)). However, as nr,; decreases, the magnitude of offsets is increased, and
their AE-)A}. ; plots show profiles highly distorted from sinusoidal curves (Fig. 6.8 (b) and (c)).
Rather, they seem to be double-sinusoidals. The direction of the orbital motion of Triton is
reversed (i.e. in retrogradal motion), offsets are decreased, and the plots exhibit (reversed)
sinusoids again (Fig. 6.8 (d)). Through these numerical experiments, large offsets are observed
when the mean motion of Triton is near %nT,.,-.

Now, we estimate the orbital angular velocity of Nereid at its pericenter. The angular orbital
velocity to its focus (Neptune) is equivalent to ‘-;{. The value is derived as:

af a’ny
dt ~—  r?
n 2
= 77_3(1 + ecos f)*,
and at its pericenter, f = 0,
df (1+e)®
_ ) n
dt|s=0 U/
~ 10.583n.

In the case of the Neptunian system, # ~ 61—0, therefore, the angular velocity of Nereid is:

df 1
= ~ ZNTrs.

dt|s—o 6

When the angular velocity of Nereid at its pericenter is close to that of Triton, the maximum

offsets are observed.

6.4 Summary of observed offsets
We have seen the observational aspects of offsets. If we summarize the facts:
e The magnitude of offsets varies with the spatial configuration of Triton and Nereid.
e The magnitude of offsets varies with the mutual velocity of Triton and Nereid.

e A Aa-)}.; plot has a similar shape to a Ae-A},; plot and exhibits an antiphased shape
compared with a AI-)\}. ; plot.

e For the case of A}, =0[deg] or 180[deg], no offset is observed. AE-12. . plots exhibit
antisymmetric feature against A%, ; =0[deg] or 180[deg].
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Table 6.3: Offsets in orbital elements when the mean motion of Triton is changed, i.e. the

mutual velocity of Triton and Nereid is changed. Offsets are taken as the maximum values since

offsets vary with A} ..

(a) Planar problem

Offset range Maximum offset
Model Mean motion of Triton | a e Aamax Aemax
[Km] [Km]

(A) 207, 1.4x10°% 7.3x10710 | 1.3x10"% 6.6 x 10710

(B) nr; (prograde) 1.7x10  88x1077 |93 4.8 x 1077

(C) InTw 5.8 x 102 2.9x107% |3.0x 102 1.5x107°

(D) Inge 59x10% 28x107* |26x10° 1.2x10°*

(E) N7 3.2x10% 14x107% |31x10® 1.3x10°*

(F) — N7 54x10 34x107% [38x10  24x1078

(G) —ing. 27x10 1.6x107% [27x10  1.6x 1076

(H) ~inre 2.8 x 10 1.6x10°% | 7.7 4.3 x 1077

I —nry; (retrograde) 55x 107! 3.0x107% [29x10°! 1.6x 1078

(b) Inclined problem
Offset range Maximum offset
Model Mean motion | a e I Aamax Aemax ALy
of Triton | [Km)] [deg] [Km)] [deg]

(A) 2nT,; 1.0x107! 1.6x1078 1.1x107%9.4x1072 49x107% - - —
(B) nTy 36x10 1.8x107% 1.8x1075[19x10 9.6x10°7 9.4 x 106
(C) InT 3.9x102 1.9x107% 32x107*|11x10® 53x10® 8.9x1075
(D) InTe 51x 102 25x107% 51x107*|22x102 11x1075 25x107*
(E) §NTri 3.3x 102 1.6x107° 58x107*|3.3x102 1.6x10°5 5.7x10~*
(F) —gnrei [ 23x10° 1.0x107* 1.3x107%|22x10° 9.9x107° 1.2x1073
(G) — N 45x10% 22x107* 1.0x107® |1.8x10® 85x107° 3.4x10°*
(H) — N7 8.3x102 38x107% 3.0x107*[3.6x10® 1.7x10°% 9.5x107®
1) — T 1.2x 102 58x107® 25x107° |65x10 3.2x107% 1.3x107°
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6.5 Theoretical interpretation of offsets

6.5.1 Jacobi integral and Tisserand criterion

Now we introduce the Jacobi integral or the Tisserand criterion. The primary and the sec-
ondary bodies (whose mass m; and my respectively, and the mutual distance a.) orbit circularly
around a common barycenter with the common angular velocity n.. A mass-less body (apart
7y from the primary and r; from the secondary) moves around them (i.e. restricted three body
problem). If we ride on the corotating coordinate system of (X, Y, Z) with the primary and the
secondary, the motion of the third body can be described as follows:

%[(X)2 + (V) + (2)Y] + U* = const.,
where R R
* my ac my a. 1 2 2 2
U* = -n? —< =< - -n}(X?+Y?).
e [ml-l-mz 1+m1+m27'2] 2n°( +Y)

This invariant is called the Jacobi integral.
If ms < my, the value of ,ﬂn% is negligible, then, in the inertial coordinate system, the third
body’s orbital elements a, e and I are satisfied the following equation,

e | [21_e2 ~
2a+ ac(l e?) cos I ~ const.

which is called the Tisserand criterion.

In the prograde planar problem, cos I = 1, the Tisserand criterion is reduced to

a. a
— —(1 — e2) ~ t..
% + ac( e?) ~ cons

We take variations in a and e,
1] a. 4 1—e? 5 a 1 5
—|—— an~ [4]— ede
2| a2 aa, a.1—e?

In the Neptunian system, substituting numerical values for them,

is derived.

da[Km] ~ 1.93 x 107de

which means offsets in a are proportional to those in e, which is true in our results as we have
seen in the previous sections.

In the case of retrograde motion (cosI = —1), then
da[Km] ~ 1.84 x 10"de

is obtained.
Est

max

We estimate da; from the observed Aenax in Table 6.4. These agree with the observed

6a0b.9

max*

These facts show that offset phenomena occur in the theoretical framework of restricted
three-body problems. Offsets are NOT the products of numerical errors.
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Table 6.4: Estimated offsets in semimajor axis from those in eccentricity.
(a) Planar problem (Prograde)

Eccentricity Estimation by Tisserand criterion Observation
Aefb Factor Aafst AaQb
[Km] [Km]
0.1 1.2x 1079 1.12936 x 106 1.4x 1073 | 4.0 x 10~3
0.3 5.2 x 10710 3.68855 x 106 1.9 x 1073 | 2.2 x 103
0.5 2.3x10710 747208 x 10 1.7x107% | 1.2x 1073
0.6 1.7 x 10710 1.05241 x 107 1.8x 1073 |1.2x 103
0.7 3.1x10°% 1.54459 x 107 4.8 x 107! | 4.7 x 10!
0.75 4.8 x 107 1.93270 x 107 9.3 9.3
0.8 5.6 x 107% 251177 x 107 1.4 x 102 | 1.4 x 102
0.85 43x107% 3.47547 x 107 1.5x10® | 1.5 x 10®
0.9 1.4x 102 5.41012 x 107 7.6 x 10* | 7.5 x 10*

(b) Planar problem (Retrograde)

Eccentricity Estimation by Tisserand criterion Observation
Aefbs Factor AaBst Aa%b
(Km] [(Km]
0.1 9.9 x 1071 1.09344 x 106 1.1x1073 | 2.4 x 1073
0.3 4.0 x 10710 356625 x 106 1.4x107%|1.9x 10°3
0.5 1.8 x 10710 7.19964 x 10® 1.3x 1073 |1.2x 102
0.6 1.2 x1071% 1.01093 x 107 1.2x 1073 [ 9.0 x 10~*
0.7 7.0 x 10710 1.47655 x 107 1.0 x 1072 | 1.1 x 1072
0.75 1.6 x 1078  1.84096 x 107 2.9 x 107! | 2.9 x 10~}
0.8 2.6 x1077 2.38064 x 107 6.2 6.3
0.85 3.3x107%  3.26956 x 107 1.1 x 10> | 1.1 x 10?
0.9 3.8x107% 5.02513 x 107 1.9x10® | 1.9 x 108
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6.5.2 Gauss’ planetary equations

A perturbing force F is applied to Nereid, and its orbital elements never remain in constant
values. Changes in the orbital elements are expressed by Gauss’ planetary equations. They
state: if we decompose F into the three components of (T, N, W), where

e T : a component tangential to the orbit
e N : a component perpendicular to T and on the orbital plane
e W : a component perpendicular to the orbital plane .

Then, changes in the orbital elements are:

da 24

& T

de L

5 = %[{2(e+cosf)}T— {;Slnf}N]
dI r

= = natn {cos(f + w)}W,

and A = /14 2ecos f + €.
Hereafter, we discuss offset phenomena with use of these equations.
6.5.3 Impulsive perturbing force model at pericenter

Now we suppose that an impulsive force F1,mp(T1mpy Nimp, Wimp) acts on Nereid at the instant
of pericenter passage. Substituting f = 0 in Gauss’ planetary equations, then

d 24
%= Tl
—Z—i = n;n{cosw}WImp,
and Ag = 1 + e. If the presumption is true,
Aa x Trmp

is satisfied.

However, as we have already seen in the previous sections, results show that Aa for the
direct motion is different from that for the retrograde motion. Thus T, for the direct motion
differs from the one for the retrograde model in spite of having the same spatial configuration
of the three bodies at the time. Therefore, this model does not work well in describing offset

phenomena in general.
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6.5.4 Cumulative effect of perturbing force

Next, we consider cumulative effects of the orbital change during Nereid stays near pericenter.
That is, we sum up the variation during a pericenter passage over an orbital period.

7 dE
Dg = /; e Edt,
where P is the orbital period of Nereid and the time is measured from the pericentral passage
time of Nereid. %(t) is given by Gauss’ planetary equations. In other words, Dg is the net
gain of the orbital element F per Nereid revolution.
First, for the planar model, we evaluate the value of

P
7 da
m‘[;ﬁ“

for a fixed value of A}, ;. Then we change A} ; and plot a Dg-)1%..; diagram. These are shown in
Figs. 6.9 and 6.10. In this calculation, we adopt P = 360[day]. The values of ‘;—‘t’ versus time ¢
(%-¢ plot) for some A},; are also paneled. The total area enclosed by the curve 92(¢) (including
its sign) and the time axis gives D,.

Now we compare the results in Section 5.3. Dg-AY,; curve is almost identical to that in AE-
/\21"- ! This means that observed offsets are represented by the net gains of the orbital elements
per one pericenter passage of Nereid.

42t plots (only extracted in —25[day] < t < +25[day] for drawing) show that if the Nereid’s
eccentricity is high enough (for example, e = 0.9), an impulsive force is applied to Nereid at the
instant of ¢ = 0. For these models, we can deal with the offsets using an impulsive force model
as discussed in the previous section.

When large offsets are observed, the ‘fl—‘t‘-t plot shows an asymmetric feature in relation to the
pericenter passage time (¢ = 0).

From these results, we convince ourselves again of the accuracy of numerical integrations by
Bulirsch-Stoer in the previous chapters.

6.6 Descriptive explanation of offset phenomena — Analogy

to mean motion resonance

We introduce Peale(1976)’s description of the mechanism of the mean motion resonance,
because his explanation can be applied to the offset mechanism.

If the system is trapped in the mean motion resonance, the repetitious perturbing force is
applied to a perturbed body in the same direction at the same location. Its orbital elements
evolve in the direction such that the system is in a stable configuration. Thenafter the system
librates around it.

Peale(1976) explained the mean motion resonance descriptively. For his large eccentric model,
he considered two bodies orbiting about the primary: a perturbed body moving in an outer
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Figure 6.9: Dg versus the longitude of Triton at the time of Nereid’s pericenter passage A .
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eccentric orbit and an inner perturbing body moving in a circular orbit (see Fig. 1 of Peale
(1976)). This is the same orbital configuration as in this study.

He discussed the net gain (or loss) of the outer body’s angular velocity and angular momentum
during the conjunction of two bodies. He showed the relation between their net gains and the
longitude of the conjunction. Total amounts of the angular velocity and angular momentum
will not cancel to zero except when the conjunction occurs at its pericenter or apocenter.

In the case of the mean motion resonance, the gained angular velocity and angular momentum
will drive the system to a stable configuration so that the conjunction occurs at the apocenter.

In the case of Nereid, Triton and Nereid are not in resonant configuration. However, the same
discussion can apply to the Nereid system. Nereid’s angular velocity and angular momentum
can change during the conjunction with Triton. An increase in the angular velocity means a
decrease in the semimajor axis (—Aa). Similarly, an increase in the angular momentum equals
a decrease in the eccentricity (—Ae). Therefore, offsets in the orbital elements are observed.

Since they are not in mean motion resonance, changes in orbital elements do not accumulate
in one direction. Therefore, the orbital elements stay in some ranges. In other words, the
inner and the outer bodies meet at points along their orbits. However, conjunctions occur at
different longitudes at each recursion, so that successive conjunctions don’t happen at the same

longitude.

6.7 Study of the evolution of cometary orbits

From the ancient era onward, many comets have been recorded or observed, and after the
study of Halley, their periodical appearances have attracted a great deal of attention for as-
tronomers. However, since some comets are greatly perturbed by the giant planet, Jupiter, they
do not return back to the Sun in fixed periods. Some also change their periodicities by small
amounts because non-gravitational effects influence their motions.

Today, chaotic periodicity in the orbital period for long periodic comets is indicated, including
Halley’s Comet. A change in the orbital period directly reflects a change in the semimajor axis
through n2a® = p.

Carusi et.al. (1985a, 1985b, 1987) showed the results of numerical integrations of known
comets and pointed out that sudden changes in orbital elements are NOT due to the close
approach to giant planets, but rather, caused by indirect perturbations from giant planets (in
the heliocentric coordinate system). They stated that the cometary motion is well written in
the heliocentric coordinates in the neighborhood of the Sun while it refers to the barycentric
system (the barycenter of the Sun and Jupiter) far from the Sun. Chirikov and Vecheslavov
(1989) discussed the fact that time intervals of the perihelion passage for Halley’s Comet are
strongly correlated to Jupiter’s phase.

Recently, Chambers (1995) pointed out that offset phenomena observed in the semimajor
axis of Comet Swift-Tuttle are caused by the combined effect of (1) the displacement of the
Sun from the barycenter of the Solar System and (2) the relative velocity of the Sun and the
barycenter. They showed its dependency as

Aa x M, sin(¢, — 0),

83



where M, is the mass of a perturbing body (mainly explained by Jupiter), ¥, is its longitude
when the comet passes its perihelion and 8 is a parameter of orbital configurations.

These models are similar to our study in the sense that offsets in orbital elements are observed
for a body moving in a highly eccentric orbit. The analogous configurations are:

Primary: Neptune <« Sun
Inner:  Triton ¢ Jupiter

Outer: Nereid <+ Comet.

However, in these cometary studies, a comet comes inside the perturbing body’s orbit, while
in our model, Nereid does not enter the orbit.
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Chapter 7

Discussion

7.1 Validity of neglecting higher order terms of (;712—)

In this paper, we deal with the small factor of the order (M—’:%f or higher terms as negligible
parameters. Here, we discuss the validity of this simplification.
From the beginning, we consider a system of a primary body with two objects orbiting around

it. Therefore, the mass of the primary is large enough compared with the others, i.e.
Mass of the primary > Mass of the inner (or outer).

This makes the small parameter of H‘—‘;;—o“ﬂ such that

min (or Out)

1.
M <

Therefore, its square can be negligible.
In practice, this simplification is valid for the system that the theory is applicable to. For the
Nereid system,

MTri 2,89 x 104,

the squared value is approximately of the order of 10~7. This is comparable to higher degrees
of Legendre expansion of the Hamiltonian or higher orders of small parameters in canonical
transformations for the short periodical variable. We only have to include the factor of (M%)z
terms in the problem when we take higher small parameters in the Hamiltonian or in the
canonical transformations into consideration.

For the extrasolar planetary system, it depends on each system. In the Solar System, the
mass ratio of Jupiter to the sun is approximately ~ 1073, The typical mass for the primary
star is listed in Table 7.1. The spectral type of the primary star is estimated from spectroscopic
observations. On the other hand, the upper limit of the planetary mass is bounded by 13 Jupiter
masses. (This is the lower limit of the mass for brown dwarfs. Recently, this classification has
come to be accepted among astronomers. See Martin et.al.(1999) or Oppenheimer et.al.(2000).)

It is noted that today’s search for an extrasolar planetary system is mainly directed at the
sun-like stars (with spectral types of F,G,K) located in the neighborhood of our Solar System.
Hence, this selectional effect biases the distribution of characters which these planetary systems

have.
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Table 7.1: Spectral type and its mass. The data is extracted from Allen (1973).
Spectral type Mass [Mg]

05 40
A0 3
FoO 1.7
GO 1.1
Ko 0.8
MO 0.5
If we consider a planet with Jupiter-mass around a sun-like star, the mass ratio is M—Tfnﬂ; ~

10~3. The upper limit of the ratio for a system in which the most massive planet revolves

around a sun-like star is M’:jr':l ~ 1072, Therefore, it is valid to neglect the square of the mass
ratio. When other extrasolar planetary systems are discovered in future, it is hoped that a large

variety of the mass ratio and orbital configurations will be found.

7.2 Differences between the perturbations of Triton and Sun

when constructing an analytical theory

When we build an analytical theory for Nereid under the influence of the Sun’s perturbations,
its perturbed Hamiltonians or generating functions of canonical transformations are rapidly
converging for the small parameter. This feature is seen in the work of Mignard (1975) or Saad
(2000). However, this characteristic feature no longer holds for a theory that takes into account
Triton’s perturbations.

This difference reflects the character of small parameters. Now we compare the small param-
eters for these two perturbations from the viewpoint of the speed of convergence.

The perturbing potential is depicted in a series of Legendre polynomials P;s. In the case of the
Sun’s perturbation, the value of one degree higher in terms of Legendre polynomials decreases
by a factor of

r
— ~1.22 x 1073
Teo

On the other hand, in the case of Triton’s perturbation, the one decreases by the factor of

PTrs { 0.255 (Nereid is at the pericenter)

r 0.0365 (Nereid is at the apocenter)

i.e. the Sun’s perturbations are more rapidly converging when the perturbed Hamiltonian is
expanded in the Legendre polynomials.

Similarly, the slow-converging character of Triton’s perturbations is also seen in short-periodic
generating functions S; when we evaluate Poisson brackets. In the case of the Sun’s pertur-
bations, the value of one order higher in terms of generating functions decreases by a factor
of

%0 L 6.x 1073,
n
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whereas in the case of Triton’s perturbation, the one decreases by the factor of

n 1
NTri 60 .

In practice, as we have already seen in the results section, we multiply 22 by IH—E;-;ﬂ)i ~
10.583(Nereid is at the pericenter) for changing variables. This manipulation also prevents S;
from rapidly converging (or, uniformly converging).

Slow converging series directly bring large truncational errors. In other words, we have to
take the problem up to a higher degree of small parameters into consideration to achieve a fixed
accuracy.

Triton’s perturbation has unwanted effects on the construction of an analytical theory of
Nereid. However, there are some pleasant affects. The mass coefficient in the perturbed Hamil-
tonian "]‘w—'-’loﬂ acts as a preferable small parameter.

In the case of the Sun’s perturbation,

mg
— ~ 19412.2
My ’

the value is far from the small parameter. In the case of Triton’s, the value is

MTe;
0

~ 2.89 x 1074,

therefore, the square of the value can be treated as negligible. If we leave out the (ﬂl‘}oﬂ)2 terms,
the number of Poisson brackets to be evaluated can be reduced.

7.3 Configuration of celestial bodies at the time of close ap-

proach

During Nereid’s orbiting near the pericenter, there is a risk of coming into close approach
with Triton. Here, we introduce some introductive indicators and assess the closest distance.

For a close-approaching property, two characteristic lengths are widely used.

e Hill radius rg : The radius in which a celestial body stays forever nearby a perturbing

body.

o The sphere of action 7, : The radius in which the ratio of tidal force to Keplerian
force for a perturbing body is larger than that for the central main body. Inside this
radius, a celestial body is considered to be moving about the perturbing body.

If we denote masses of central body and perturbing body as M and m, respectively, these

two radii 7y and 74, measured from the perturbing body are expressed as follows:

m .1

a0 B
m . 2

Pact — (‘M’)ERa

rg = (

where R is the distance between the central and perturbing body.
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Table 7.2: The closest distance between Nereid and Triton in the case that they revolve on the
common plane (i.e. the planar case, I = 0). We adopt Nereid’s semimajor axis for 222.1 [Rnep)
(~ 5.5 x 10% [Km)])

Eccentricity Pericenter distance of Nereid Closest Distance

[Bnep] [Bnep]
0.75 55.5 41.4
0.9 22.2 8.06

Now we apply them for the Nereid system. If we adopt the values m = 2.89 x 10~%*M and
R = 14.15[RNep)] (RNep is a radius of Neptune, 24,764[Km)]),

rg = 0.649Rn.,  (1.61 x 10*[Km)])
Taet = 0.534Rpy.,  (1.32 x 10*[Km)),

respectively. On the other hand, the closest mutual distance of Triton and Nereid varies with
Nereid’s eccentricity (see Table 7.2). Therefore, the closest distance between Nereid and Triton
studied in the previous chapter is far from rg or 7., and there is no danger of falling into a

close approach.

7.4 Reliability of Numerical Integration

We have checked the accuracy of our analytical theory by comparing it with the numerical re-
sults integrated by Bulirsch-Stoer. Results of numerical integrations are degraded by numerical
errors, like a ‘round-off’. They occur in a round-off process at the smallest digit throughout cal-
culation. For a long-interval calculation, the result suffers severely from these errors; therefore,
‘good’ integration codes are for the purpose.

The Bulirsch-Stoer code used in this study is widely admitted as a highly accurate integration
code for a relatively short interval (which means that it is not suited for the age of the Solar
system). Murison (1989) discussed the usefulness of the code for keeping a Jacobi integral value,
which is the integral for the restricted three-body problem in the corotating coordinate system
with a perturbing body, throughout his numerical integration.

For its good numerical accuracy, the code is widely utilized in dynamical studies of the solar
system (for example, Nakamura and Yoshikawa (1991)).
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Chapter 8

Further Application of This Study

8.1 Application to the Nereid system

8.1.1 Brief description of the Nereid satellite

Nereid, a satellite of Neptune, moves on the most eccentric orbit of known satellites in the
Solar system. It was discovered by Kuiper in 1949 to be the second satellite of Neptune, and
has an orbital period of nearly one year.

Nereid is observed as a 19th-magnitude object close to the bright image of Neptune. Its faint-
ness and its long orbital period have prevented astronomers from acquiring precise astrometric
data, necessary for estimating orbital elements of Nereid. The semimajor axis of the orbit is
about 5.5 x 10% [Km] (~ 220 radii of Neptune). However, its orbital eccentricity reaches 0.75,
Nereid approaches Neptune in 1.4 x 10 [Km)].

Before investigation by the spacecraft Voyager II, only two satellites were known to be orbiting
Neptune. Triton, the first one discovered, by Lassell in 1846, orbits in a nearly circular but
retrograde orbit once every six days.

Since the inner satellite Triton revolves in a nearly circular retrograde orbit, where the outer
satellite Nereid has a large eccentric orbit and direct motion, many astronomers have been
attracted to the problem of the satellites’ origins after the discovery of Nereid.

During the Voyager II mission, six new satellites were found. All of them are in the vicinity
of Neptune, and their semimajor axes are spread from 1.94 to 4.75 in the radius of Neptune,
since Voyager II passed Neptune at a close distance. For Nereid, large amounts of astrometric

positional data and some images were taken by the mission.

8.1.2 Ephemerides of Nereid

After the discovery of Nereid, many astronomers reported its osculating elements, such as van
Biesbroeck (1951,1957), Rose(1974) and Veillet(1982). Due to its long orbital period (nearly 1
year), astrometric observations for a long span are required to obtain orbital elements accurately.
Besides, its faintness (19th magnitude) has obstructed the acquisition of clear images of Nereid
from ground-based telescopes.

Mignard (1975) first studied the motion of Nereid, and built an ephemeris (Mignard (1981))
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Table 8.1: Some approximate values related to the spatial configuration of the Neptunian sys-

tem. « and § mean the right ascension and the declination referring to the Earth’s equator and

equinox.
Item afdeg] d[deg]
Neptune’s pole 298.0+1.3 40.7%1.2
Triton’s orbital ANTIPOLE 295.2 20.4
Nereid’s orbital pole 263.1 62.6

Table 8.2: Some approximate values of the mutual inclinations.
Item Mutual Inclination [deg]

Nereid’s orbital plane ¢ Triton’s orbital plane 132.4
Nereid’s orbital plane ¢ Sun’s orbital plane 6.7

analytically. He used canonical transformations and took only the solar perturbation (P and
P; terms) into account.

For the Voyager II mission’s flight program, it is necessary to get precise ephemerides of
satellites, and for this purpose, Jacobson(1990, 1991) constructed a precise numerical ephemeris
of Neptunian satellites.

In an analytical approach, Oberti (1990) showed periodic and secular perturbation terms of
Nereid using a canonical perturbation method of Deprit type. In this work, the solar perturba-
tion (P, to P4 terms) and that of Triton (P, and P terms) were included in his Hamiltonian and
set the origin at the Neptune-Triton barycenter. Segerman and Richardson (1997) also studied
the motion of Nereid. They took the solar perturbation (P, and P terms), that of Triton (P2
and Pj3 terms) and the J; effect of Neptune into consideration.

Saad(2000) studied the motion of Nereid using a canonical perturbation method of Hori type.
He considered only the solar perturbation (P; term only). The secular perturbation he solved
analytically, based on Kinoshita and Nakai(1999)’s work.

8.1.3 Today’s orbital configuration of the Neptunian system

Jacobson (1990) not only reported a numerical ephemeris of the two Neptunian satellites, but
also summarized the astronomical constants of Neptune and the satellites (e.g. orbital planes of
satellites or the rotational axis of Neptune, etc.). Now we consider the spatial configuration of
the Neptunian system (Table 8.1). Orbital elements are recalculated from Cartesian positions
and velocities in Table.2 of Jacobson(1990)’s paper, since the epoch (JD 2447080.5) is not far
from the one (JD 2447763.5) in his Table.3.

Visualizing this configuration, we adopt a stereograophic projection. These values are plotted
on the stereonet, projected onto the northern (upper) hemisphere of the celestial sphere and
referred to the Earth’s equatorial plane. The diagram is shown in Fig. 8.1.

90



042

Figure 8.1: A stereographic projection map of the spatial configuration of the Neptunian system.
The data are projected onto the northern hemisphere of the celestial sphere and referred to the
Earth’s equatorial plane. The border circle indicates the equatorial plane of the Earth, and the
angles indicate the right ascension of the coordinate in degrees.
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Table 8.3: The ratios of the magnitude of the main perturbing potential to that of Kepler
potential.

Ratio Nereid stays at

pericenter mean distance apocenter
Sun/Kepler 6. x 1077 4.x107° 2.x 1074
Triton/Kepler 2. x 1075 1. x 1076 4.x 1077
J2/Kepler 1.x 1078 7.x 1078 2.x 1078

8.1.4 Perturbations on the motion of Nereid

Nereid is revolving around Neptune, but its Kepler motion is disturbed incessantly by the
Sun, Triton and other disturbers.

The magnitude of perturbation is roughly estimated by taking a ratio of a perturbing force and
a Kepler force. Now, we designate the masses of Sun, Neptune and Triton as My, M, mr,;, and
distances from Nereid to those as rq, r,rr,;, respectively. The universal gravitational constant
is written as k2, and the dynamical oblateness coefficient and the equatorial radius of Neptune
is written by J, and Rnep. Then, the main part of (perturbational) potential are estimated as
follows:

M
Kepler = k2—
r
Mgr?
_ 2 4@
SllIl = k —’,'3—
O]
2
Triton = k2%
T
MR?
Jy = K22,
r

perturbational potential
Kepler potential
The table shows that the Sun’s perturbation is dominant among these perturbations. There-

fore, the Sun plays an important role in the time-variation of orbital elements of Nereid. The

pioneering work of Mignard (1975) contained only the effect of the Sun’s perturbation up to P;
terms.

The values of ratios

are summarized in Table 8.3.

However, the table also indicates that when Nereid is near its pericenter, other perturbations
are not neglected in magnitude. Next, it is necessary to include Triton’s perturbation in the
theory. That is the goal of the analytical theory on the motion of Nereid.

For a long time period, planetary satellites have been classified into two categories according

to the predominant perturbing body. Brouwer and Clemence (1961b) categorized as follows:

e TYPEA ..... A perturbation from the oblateness of the mother planet plays an important
role.

e TYPEB ..... The attraction by the Sun plays an important role.
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Table 8.4: The corresponding length to the angle of 0.1[arcsec] at some distances from
ground-based telescopes.

At the mean distance of Corresponding distance[Km]
Jupiter v 380
Saturn 690
Uranus 1400
Neptune 2200
Pluto 2900
Pluto (at aphelion) 3600

e TYPE C ..... The attraction by other satellites plays an important role.

A TYPE A satellite orbits in the vicinity of a planet, while a TYPE B one orbits far from a
planet. A TYPE C satellite orbits near massive satellites or in mean motion resonance with
other satellites. Nereid is classified as a TYPE B satellite.

8.1.5 Accuracy of astrometric observation from ground-based telescopes

The positions of satellites have been observed from ground-based telescopes (including merid-
ian circles) for a few hundred years. Accuracy of positional observation is bounded by atmo-
spheric conditions (e.g. seeing). Some planetary spacecraft missions have recorded positions of
satellites from close distances, free from atmospheric disturbance. However, these data cover
only a short timespan.

The accuracy of ground-based positional astrometry (by meridian circles) is about 0.1[arcsec].
It corresponds to the length of about 2200[Km] at the mean distance of the Neptune. The
corresponding lengths of the angle 0.1[arcsec] at some distances are summarized in Table 8.4.

8.2 Application to newly discovered outer satellites

Gladman et.al. (1997) discovered two satellites of Uranus on CCD-images using the Hale 5-
meter telescope at Mount Palomar. Some successive observations revealed that these satellites
orbit far from Uranus in retrograde. Today, they are named Caliban (semimajor axis ~ 280
radii of Uranus) and Sycorax (~ 480 radii of Uranus).

After this discovery, satellites orbiting the outer region have been reported one after another
for Jupiter, Saturn and Uranus. These newly discovered satellites tend to have slightly more
eccentric orbits (eccentricity ~ 0.5). For Jovian and Saturnian outer satellites, perturbation by
the Sun is predominant. However, satellites of the farther revolving planet from the Sun have
the same spatial configuration (the planet + the inner orbiting satellite + the outer orbiting
satellite) as those in this study. Further discovery of satellites may be applicable to this theory.
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8.3 Application to extrasolar planetary systems

8.3.1 Brief history of discovery

In the mid-1990’s, Mayor and Queloz (1995) reported the presence of a Jupiter-mass com-
panion to 51 Pegasi through observations of its radial velocity. This discovery opens our eyes to
the real existence of extra-solar planets. Many observers are eager to detect other candidates
through catching variations in radial velocities or using other techniques.

Fortunately, as of 2001, several tens of extra-solar planets have been detected. It is hoped
that, in the near future, more extra-solar planets will be discovered and the existence of planets
may be common for sun-like stars.

Table 1 shows the planetary candidates discovered as of July, 2001. (This list is duplicated
from the website of University of California Planet Search Project. URL is http://exoplanets.org.)

8.3.2 Their observational characters

On the study of extrasolar planets, some review papers have already been published (for
example, Marcy and Butler(1998) or Marcy et.al.(2000)). Today’s findings are mainly due to
radial velocity observation. Since an orbiting planet drifts the central star around a common
barycenter, we can detect radial velocity from spectral data of the primary star.

In the study of binary dynamics, the orbital inclination I is referred to the celestial sphere,
which is perpendicular to the line of sight. We cannot get information on the orbital inclination
from velocity data except for some eclipsing binaries. If I = 0, no Doppler shift is detected.

The orbital period P and the radial velocity are measured from observational data, we can get
information on the total mass of the binary system Mrp,,;. However, observed radial velocity
is multiplied by the factor of sin I, and all we can estimate is the value of M1, sinI. In other

words, we can give the lower limit of the My,,;.

The amplitude of radial velocity K directly relates to the P~5 with a factor of ﬁ sin [;
«+mp)3
i.e.,
KxPs—"2 _sn1,
(M, 4 mp)s

where M, and mp are the masses of the primary and the planet, respectively. This factor
enables us to estimate the planetary mass when the mass of the primary star is estimated from
its spectral type.

The distribution of M sinI for the known extrasolar planets is highly concentrated in the
mass lower than several Jupiter masses. This means that slightly more massive planets than
Jupiter are orbiting around the sun-like stars. From the study of stellar evolution, stars with
mass greater than 0.08 Mg(~ 83.8Mj,,) ignite their hydrogen cores and burn by themselves.
A celestial object with a mass larger than 13Mj,, is regarded as a ‘planet’ in recent studies.
(A body with a mass between 13My,, and 0.08 M is called a ‘brown dwarf’. See Martin
et.al.(1999) or Oppenheimer et.al.(2000).) This is the upper limit of mass for a planet.

Although the formation theory of the Solar System indicates that giant planets were born far
from the central star (i.e. the Sun), some extrasolar giant planets have been detected in the

neighborhood of the primary stars.
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Table 8.5: Masses and Orbital Characteristics of Extrasolar Planets. (Duplicated from the
website of University of California Planet Search Project.) Stellar masses are derived from
spectral types, metallicity, and stellar evolution. Column M sin¢ is the companion mass (with
ambiguity of orbital inclination) in Jupiter mass, P is the orbital period and K is the velocity

semiamplitude.
No. Star name M sini P a e K
[Myup] [day] [AU] [m/sec]
1 HD83443 0.34 3.0 0.038 0.08 57.0
2 HD46375 0.25 3.0 0.041 0.02 35.2
3 HD179949 0.93 3.1 0.045 0.00 112.0
4 HDI187123 0.54 3.1 0.042 0.01 72.0
5 71Boo 4.14 3.3 0.047 0.02 474.0
6 BD-103166 0.48 3.5 0.046 0.05 60.6
7 HD75289 0.46 3.5 0.048 0.00 54.0
8 HD209458 0.63 3.5 0.046 0.02 82.0
9 b51Peg 0.46 4.2 0.052 0.01 55.2
10 wAnd b 0.68 4.6 0.059 0.02 70.2
11 HD168746 0.24 6.4 0.066 0.00 28.0
12 HD217107 1.29 7.1 0.072 0.14 139.7
13 HD162020 13.73 84 0.072 0.28 1813.0
14 HD130322 1.15 10.7 0.092 0.05 115.0
15 HD108147 0.35 10.9 0.098 0.56 37.0
16 HD38529 0.77 14.3 0.129 0.27 53.6
17 55Cnc 0.93 14.7 0.118 0.03 75.8
18 HD13445=GJ86 4.23 15.8 0.117 0.04 379.0
19 HD195019 3.55 18.2 0.136 0.01 271.0
20 HD6434 048 22.1 0.154 0.30 37.0
21 HD192263 0.81 24.4 0.152 0.22 68.2
22 HD83443 c 0.17 29.8 0.174 0.42 14.0
23 GJ876 ¢ 0.56 30.1 0.130 0.27 81.0
24 pCrB 0.99 39.8 0.224 0.07 61.3
25 HD74156 b 1.55 51.6 0.276 0.65 108.0
26 HD168443 b 7.64 58.1 0.295 0.53 470.0
27 GJ876 b 1.89 61.0 0.207 0.10 210.0
28 HD121504 0.89 64.6 0.317 0.13 45.0
29 HD178911 B 6.46 T71.5 0.326 0.14 343.0
30 HD16141 0.22 75.8 0.351 0.28 10.8
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Table 8.4: (Continued)

No. Star name Msinz P a e K
[Msu]  [day] [AU] [m/sec]

31 HD114762 10.96 84.0 0.351 0.33 615.0
32 HD80606 3.43 111.8 0.438 0.93 414.0
33 T0Vir 7.42 116.7 0.482 0.40 316.2
34 HDb52265 1.14 119.0 0.493 0.29 45.4
35 HD1237 3.45 133.8 0.505 0.51 164.0
36 HD37124 1.13 154.8 0.547 0.31 48.0
37 HD82943 ¢ 0.88 221.6 0.728 0.54 34.0
38 HD8574 2.23  228.8 0.756 0.40 76.0
39 HD169830 295 230.4 0.823 0.34 83.0
40 wvAndc 2.05 241.3 0.828 0.24 58.0
41 HD12661 2.84 250.5 0.795 0.19 89.1
42 HD89744 7.17 256.0 0.883 0.70 257.0
43 HD202206 14.68 258.9 0.768 0.42 554.0
44 HD134987 1.58 260.0 0.810 0.24 50.2
45 HD17051= (Hor 2.98 320.0 0.970 0.16 80.0
46 HD92788 3.88 337.0 0.969 0.28 113.0
47 HD28185 5.59  385.0 1.000 0.06 168.0
48 HD177830 1.24 391.0 1.10 0.40 34.0
49 HD27442 1.42 426.0 1.18 0.02 34.0
50 HD210277 1.29 436.6 1.12 0.45 39.1
51 HD82943 b 1.63 4446 1.16 0.41 46.0
52 HD1999%4 1.83 454.2 1.26 0.20 42.0
53 HD222582 5.18 576.0 1.35 0.71 179.6
54 HD141937 9.69 658.8 1.48 0.40 247.0
55 HD160691 1.99 743.0 1.65 0.62 54.0
56 HD213240 3.75 759.0 1.60 0.31 91.0
57 16Cyg B 1.68 796.7 1.69 0.68 50.0
58 HD10697 6.08 1074.0 2.12 0.11 114.0
59 47UMa b 2.54 1089.0 2.09 0.06 49.3
60 HD190228 5.01 1127.0 2.25 0.43 96.0
61 HD50554 491 1279.0 2.38 0.42 95.0
62 wvAndd 4.29 1308.5 2.56 0.31 70.4
63 "HD106252 6.81° 1500.0 2.61 0.54 139.0
64 HD168443 ¢ 16.96 1770.0 2.87 0.20 289.0
65 14Her 4.05 2000.0 3.17 0.45 70.4
66 HDT74156 c 7.46 2300.0 3.47 0.40 121.0
67 €Eri 0.88 2518.0 3.36 0.60 19.0
68 47UMa c 0.76 2594.0 3.73 0.10 11.1
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Some primary stars with planets show high metalicity (high [Fe/H] ratio). Many astronomers
try to explain the relation theoretically.

8.3.3 Their orbital characters and applicability of our theory

For the discovered extrasolar planets listed in Table 8.5, we are going to discuss orbital
characters.

Fig. 8.2 shows their individual characters among the parameters of the semimajor axis, the
eccentricity and the planetary mass (the value of mpsinI). The original idea of such plottings
appeared in Russell and Boss(1998)’ article. Fig. 8.2 is newly reproduced from the all data in
Table 8.5, and does not contain companions classified as brown dwarfs or binaries.

The extrasolar planets are distributed from the lower-left to the upper-right in the figure;
however, this is due to an observational bias. Since we detect the radial velocity K of the
central star drifted by the companion, it must be larger than the observational detection limit
Ky, i.e.,

Ko< K o«c P~5mpsinl.

We rewrite P into the semimajor axis of a planet a, then
K a_%mp sin 1.

The constant value of K lies on a linear line in the log(mpsin I)-log a plot like Fig. 8.2, thus
K > Ky occupies the upper region of the constant K line. In other words, some undiscovered
planets can exist in the lower region of the line.

The figure tells us that the orbital eccentricity of extrasolar planet seems to become larger
as the distance from the central star is further. Some astronomers try to explain the near-zero
eccentricity in the vicinity of the central star by tidal dissipation. This is an analogy to binary
stars studied by Duquennoy and Mayor(1991).

This property supports the expectation that a more highly eccentric planet revolves further
from the known extrasolar planets. Our theory can be applied to such a system.
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Figure 8.2: Orbital properties of the discovered extrasolar planets. The (Minimum) mass means
the value of mp sin I. The eccentricity is indicated by the gray-scale-filled plot circle.
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Chapter 9

Conclusions

We have developed an analytical theory on the motion of a celestial body orbiting in a highly
eccentric orbit. The body is perturbed by an inner celestial body which revolves in a circular
orbit around the main star. Our theory is constructed using Hori’s canonical perturbation
method without expanding the Hamiltonian in eccentricity. In order to check the accuracy of
our theory, we compared the analytical results with numerically integrated ones.

We ascertained that our theory provides the orbital elements with high accuracy. The semi-
major axis ratio of the outer body to the inner one is larger, and our theory maintains its high
degree of accuracy in the case of a higher eccentricity.

We also found that both results diverge in the case of a very large eccentricity. This is
mainly due to the following: (1) The series of the generating function S; for the short periodic
perturbations becomes less convergent, or more diverse. (2) The offset phenomena: abrupt
changes in the orbital elements take place when the outer body passes through its pericenter.
The magnitude of the offset relates to a spatial configuration of the two revolving satellites.
They are not represented in the analytical theory.

We assessed errors due to truncational effects of the Legendre series in the Hamiltonian. We
also discussed truncational errors of the generating functions when we calculated short periodic
perturbations.

We tried to apply our theory to the Neptunian satellite Nereid that orbits in a highly eccentric
orbit (e = 0.75) perturbed by the inner revolving satellite, Triton. Our theory maintains a good
degree of accuracy, yielding results better than 30Km in the osculating semimajor axis of Nereid.

Our analytical theory can also be applied to other highly eccentric orbits. Some extrasolar
planets are known as “Hot Jupiters”, which revolve around their primary stars in circular orbits
at small distances from them. Another new planet may exist in the outer field. The motion of

such a new planet can be described by our theory.
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Appendix A

Analytical Expressions (The Planar
Problem)

We use the following descriptions in this paper.

M Mass of the primary body

my, Mass of the inner body

m (= 0) Mass of the outer body

I EX(M + mp, + m) = n2a®

a Semimajor axis of the outer body
ar, Semimajor axis of the inner body
n Mean motion of the outer body
nr, Mean motion of the inner body
Eccentricity of the outer body
V1i-e?

True anomaly of the outer body
Radius of the outer body
Longitude of pericenter of the outer body

§ 33 o

Arn  Longitude of the inner body
Y2 w — AIn

Cy = Mmp,
o (M + 777‘111)2
Cy = Mmp,(M? —mi)
(M + "nIn)4
Hereafter, we neglect O((377% In)z) or higher order terms.
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A.1 Hamiltonians

Original Hamiltonian
2

F = NinZ2 + m
+#C2i(2)3l[1 + 3cos(2f + 232)]
ad‘r’ 4

3

1
+#C3%I7f(g)4§[5 cos(3f + 3ya) + 3cos(f + y2)]
+...

Hamiltonians F* and F**

2 2
* M 1 arn
F* = nI"z2+Q+Z”CZ7.—3+"'
2 1 a%n

_ [l
F* = nI"z2+E+chza3n3+”'

A.2 Pr-limited generating functions

IFor short periodic termsl

S =0
3 1 a%, .
= —— —in 2 2
Sy Sﬂoznln .3 sin(2f + 2y2)
Sy = 3 na i

32k 27]”%,. r4
[—esin(f + 2y2)
+4sin(2f + 2y2)

+5esin(3f + 2y2)]
_ _ 3 (),
5 = _ﬁ“cz n°nd, r°
[+3€? sin(2y2)
—10esin(f + 2y2)
+(16 — 10e?) sin(2f + 2y3)
+54esin(3f + 2y2)
+35¢2 sin(4f + 2y2)]
3 . (na)®d},
"Mt 7
mng,
[+15€3sin(f — 2y2)
+40e? sin(2y2)

+(—68e + 45¢%) sin( f + 2y2)

S5
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S7

Sg =

3

3

+(64 — 208e%) sin(2f + 2y2)
+(436e — 105¢3) sin(3f + 2y3)
+712¢2 sin(4f + 2ya2)

+315e3sin(5 f + 2y2)]
(na)* a,

[—105¢*sin(2f — 2y2)

+210e3 sin(f — 2y3)

+(340e? — 300e*) sin(2y2)

+(—392e + 1162¢®) sin(f + 2y2)
+(256 — 2616€® + 630e*) sin(2f + 2y2)
+(3128e — 3718¢%) sin(3f + 2y2)
+(9620e% — 1260¢*) sin(4f + 2y2)
+10270€> sin(5f + 2y2)

+3465¢* sin(6 f + 2y2)]
(na)® ai,

“ 819272 nn§, rd

[+945¢€% sin(3f — 2y2)

—1260e*sin(2f — 2y2)

+(1960€® — 2625¢°) sin(f — 2y2)

+(2352¢? — 8232¢*) sin(2y2)

+(—2064e + 17784€® — 5250¢€°) sin(f + 2y2)
+(1024 — 2611262 + 26688¢*) sin(2f + 2y2)
+(21072e — 74712¢® + 9450€°) sin(3 f + 2y2)
+(108240e? — 67800e*) sin(4f + 2y2)
+(208520e3 — 17325€%) sin(5f + 2y2)
+164820¢* sin(6 f + 2y2)

+45045¢€° sin(7f + 2y2)]
(na)® af,

T 327684 2 pBnl_ 19

[—10395€8 sin(4f — 2y2)

+6930€° sin (3 f — 2y2)

+(—12600e* + 28350¢%) sin(2f — 2y2)

+(14896€® — 68166€°) sin(f — 2y3)

+(14448¢* — 138208e* + 55125¢°) sin(2y»)

+(—10272e + 211056€3 — 236484€%) sin(f + 2y2)
+(4096 — 228384¢® + 640368e* — 94500¢%) sin(2f + 2y2)
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So

+(136672e — 1142352¢3 + 594780¢°) sin(3f + 2y2)
+(1097712¢% — 1989792¢* + 155925¢%) sin(4f + 2y,)
+(3384080e® — 1316490¢°) sin(5 f + 2y»)
1-(4688600e* — 270270¢°) sin(6 f + 2y2)

42938110€° sin(7f + 2y2)

+675675¢® sin(8 f + 212)]
3 (na)” a%

~ 13107212 n'n§, ri0

[4+-135135¢" sin(5f — 2y2)

+(97020€5 — 363825¢7) sin(3f — 2y2)

+(—98560e* + 609840€°) sin(2f — 2y,)

+(100240€® — 1195740€° + 694575¢) sin(f — 2y2)

+(82176€* — 1807616e* + 2437200€°) sin(2ys)

+(—49216e + 2150832¢® — 6199416¢® + 1157625¢7) sin(f + 2y2)
+(16384 — 1836288¢? + 11526144e* — 6311520€%) sin(2f + 2y»)
+(865088e — 14854896¢> 4 20561688¢® — 1819125¢7)sin(3f + 2y2)
+(10421760e” — 43162880e* 4 13650720¢%) sin(4f + 2y2)
1(48111056€® — 53097996¢° + 2837835e”) sin(5f + 2y3)
+(103640320e* — 27550320¢%) sin(6 f + 2y2)

+(111462540€° — 4729725¢") sin(7 f + 2y2)

+57820560€° sin(8f + 2y3)

+11486475¢” sin(9f + 2y2)]

For long periodic termsl

S* = lcii(f_ + esin f)
1 = 4p 273 7n y1 + esin
* _m 2

S = 0((M—+—m1n)

A.3 P;-limited generating functions

IFor short periodic terms|

S
S

[+9sin(f + y2)
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1
Sy =

1

Sy = —=—uCj3

+5sin(3F + 3y2)]

na a3,

“ 148" 377”%,, >

[—8lesin(y2)
+54sin(f + y2)
+135esin(2f + y2)
—5esin(2f + 3y2)
+30sin(3f + 3y2)

+35esin(4f + 3y2)]
(na)® ap

864 n?n, 76

1

S5 = —zg;#Cs

n

[-1215€e? sin(f — y2)
—648esin(y2)

+(324 — 2430€%) sin(f + y2)
+2592esin(2f + y2)
+2835e2 sin(3f + y2)

+15€? sin(f + 3y2)
—80esin(2f + 3y2)

+(180 — 70€?) sin(3f + 3y2)
+520esin(4f + 3y2)

+315e%sin(5f + 332)]
(na)* af,

5184" “ndn}, o7

[+-25515€3 sin(2f — ya)

—4374e? sin(f — y2)

+(—4860e 4 54675¢3) sin(y2)
+(1944 — 57348¢€%) sin(f + y2)
+(37908e — 76545¢>) sin(2f + y2)
+113238¢% sin(3f + y2)
+76545¢% sin(4f + ya)

—175¢® sin(3y,)

+350¢* sin(f + 3y2)

+(—860e + 315¢%) sin(2f + 3y2)
+(1080 — 2100€?) sin(3 f + 3y2)
+(5780e — 945¢%) sin(4f + 3y2)
4-8350e? sin(5f + 3y2)
+3465¢%sin (6 f + 3y2)]
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1 (na)* o},
- Pe3 5 8
31104 n*ny, T
[—688905¢* sin(3f — y2)
—201204¢€3 sin(2f — y3)
+(—175816€2 + 1530900¢*) sin(f — y2)
+(—34992¢ + 1110996¢%) sin(y2)

Se

+(11664 — 1014768¢? + 2296350¢*) sin(f + y2)

+(501552¢ — 3653748¢3) sin(2f + y2)
+(3061800e% — 2755620e*) sin(3f + y2)
+5234220€3 sin(4f + y2)

+2525985¢* sin(5f + y2)
—525¢*sin(f — 3y2)
—2100€® sin(3y3)
+(5000e? — 2100e*) sin(f + 3y2)
+(—7760e + 12460¢%) sin(2f + 3y2)
+(6480 — 37680e” + 5670e*) sin(3 f + 3y2)
+(57040e — 45260€%) sin(4f + 3y2)
+(147080e? — 13860e*) sin(5f + 3y2)
+141780€3 sin(6 f + 3y2)

+45045¢* sin(7f + 3y2)

1 (na)® a3,

T 186624" 2 PnS_ 19

[+22733865€5 sin(4f — ya)
+18436410e* sin(3f — y3)
+(4461480¢e® — 51667875€°) sin(2f — y2)
+(—384912¢* 4 13856832¢*) sin(f — y2)

S7 =

+(—244944e + 22902264¢% — 80372250¢°) sin(y2)
+(69984 — 15956352¢” + 106209468¢*) sin(f + y2)
+(6333552¢ — 117170712¢3 + 103335750€°) sin(2f + y2)
+(70158960e> — 222024240¢*) sin(3f + ya)
+(226660680e3 — 113669325¢°) sin(4f + y2)
1264211470e*sin(5f + y2) |

+98513415€5 sin(6 f + y3)

+4725€% sin(2f — 3y2)

—15750e* sin(f — 3y2)

+(—35000€® + 18375¢°) sin(3y2)
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+(56560e2 — 95760e*) sin( f + 3y2)

+(—63440e + 283240e® — 47250€%) sin(2f + 3ya)
+(38880 — 531840 + 339660e*) sin(3f + 3y2)
+(527600e — 1217800€3 + 103950¢°) sin(4f + 3y2)
+(2155280¢* — 965280¢*) sin(5f + 3y2)
+(3613400e® — 225225¢°) sin(6f + 3y2)
+2615550e* sin(7 f + 3y2)

+675675€° sin(8f + 3y2)]
1 (na)® o},

T 1119744 P yal 710

[-886620735€8sin(5f — y2)

—1209323520€° sin(4f — y2)

+(—479084220e* 4 2046047850€®) sin(3f — y2)

+(—41990400€® + 536164920¢°) sin(2f — y2)

+(—4304016¢2 + 628911216¢* — 3255076125€5) sin(f — ya)
+(—1679616e + 392190336¢% — 2881591200€°) sin(ys)

+(419904 — 235356192¢> + 3716202888¢* — 4340101500€°) sin(f + y2)
+(78102144¢ — 3147600384¢> + 8422749360¢°) sin(2f + ya)
+(1471868496¢? — 11262980016¢* + 5115119625¢%) sin(3 f + y2)
+(7965578880e> — 13891474080€%) sin(4f + y2)
+(16766110620e* — 5319724410€%) sin(5 f + y2)
+14643364680€° sin(6 f + y2)

+4433103675¢% sin(7f + y2)

51975 sin(3f — 3y2)

+138600¢e° sin(2f — 3y2)

+(—283500e* 4 198450€®) sin(f — 3y»)

+(—452480¢® + 892080¢°) sin(3ys)

+(557200e* — 2489200e* + 496125€%) sin(f + 3y2)

+(—487040e + 4889600¢® — 3184560e5) sin(2f + 3y2)
+(233280 — 6526880e2 + 11242600e* — 1039500€%) sin(3f + 3y2)
+(4687360e — 24745600€> + 8768640¢°) sin(4f + 3y2)
+(28411600e — 36324400e* + 202702566) sin(5f + 3y2)
+(73534720e — 21447720€° )sin(6f + 3y2)

+(90818700e* — 4054050¢°) sin (7 f + 3y2)

+52659600e° sin(8 f + 3y2)

+11486475€% sin(9f + 3y2)]
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For long periodic ternEl

S*
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Appendix B

Analytical Expressions (The
Inclined Problem)

We use the following descriptions in this paper.

M  Mass of the primary body

my, Mass of the inner body

m (= 0) Mass of the outer body

m k2(M + mp, +m) = n2a3

a Semimajor axis of the outer body
er, Semimajor axis of the inner body
n Mean motion of the outer body
nr, Mean motion of the inner body

e Eccentricity of the outer body

n  Vi-eé

I Inclination of the outer body

0 =cos/

f True anomaly of the outer body

r Radius of the outer body

Arn  Longitude of the inner body

Y2 (= w) Argument of pericenter of the outer body

Ys (E h - AIn)

MmIn

Cp, = T

2 (M + 7'771'71)2

C3 = M’n"l,Iﬂ(.ZM'2 - m%n)
(M + 777‘In)4

Ci = Mmp, (M3 +mi)
(M + mIn)5

05 = MmI"(M4 — m?n)
(M + mIn)6

CG — Mr'"’I"I(M5 + m?n)
(M + mIn)7
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Hereafter, we neglect O((g77%—)?) or higher order terms.

B.1 Hamiltonians

Original Hamiltonian

2
71
a2
I

+uCyIn (293 21+ 30%)

—|—§(1 - 02) cos(2f + 2y2)

3
+i€(1 ~ 0)? cos(2f + 2y — 2y3)

+g(1 — 6%) cos(2y3)
3
—(1 + 0)2 cos(2f + 2y2 + 2y3)

15
+uCs aIn( )4 ( —0-6*+ 93) cos(f + y2 — 3y3)

+@(1 — 30 + 362 — %) cos(3f + 3y2 — 3y3)

15
——(1 + 0 — 602 — 6%) cos(f + ya + 3y3)
5

+64 (14 30 + 36% + 6%) cos(3f + 3y2 + 3y3)
+634( 1+ 110 + 56% — 150%) cos(f + y2 — y3)
+(152(1 — 0 — 6%+ 6% cos(3f + 3y2 — y3)
+634( 1— 116 + 562 4 156%) cos(f + y2 + y3)

+ a(1—|—t9—()2 - 93)cos(3f+3y2+y3)]
+...

Hamiltonians F*, F** and F***

F* = npz3
2

+§;I

2
+—p02“ﬂ[(—1 +36%) + 3(1 — 6%) cos(2f + 2y2)]
4

I 2 4
+512p,c4 n[3(3 — 306 + 350*%)

—20(1 - 862 4 76%) cos(2f + 2y2)
+35(1 — 02)2 cos(4f + 4y2)]
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6
5 aj

v “In _ 2 4 6
+ oo HC IR [10(~5 + 1056  3156* + 2316°%)

—105(—1 + 1962 — 516* + 336°) cos(2f + 212)
+126(—1+ 8%)2(~1 4+ 116%) cos(4f + 4y2)
—231(—=1 4 6%)% cos(6f + 6y2)]

+..
F* = np,z3
2
+E
1 a% 1 9
- —2 _—(-1+30
+8/‘C2 a3 7]3( +3 )
+—?—pc4@ l[(3 — 3062 + 350%)(2 + 3¢%) — 10(1 — 862 + 78*)e® cos(2y3)]
1024774795 7 Y2
25 a?n 1 2 4 6 2 4
+—— uCe—I —_[+2(—5 + 10562 — 3150* + 2316°)(8 + 40€? + 15¢*)

65536 a’ nll
~210(—1+ 196 — 516* + 336%)e?(2 + €?) cos(2y2)
+63(—1 4+ 6%)%(—1 + 116%)e* cos(4y2)]

+..
F**t - nInzs
2
ol
+2a:%
1 a%n 1 o
—pCy—Ir—(—1+ 36
+8,UC'2 3 773( + 36%)
9 a}n 1 ) . y
+—1-0—241#C4FF(3—300 + 356%)(2 + 3¢*)
25 a8 1
——uCe—1n ——(—5+ 1056% — 3156* + 2314° 2 4
T 3976887 7711( 5+ 105 + 23165)(8 + 40e? + 15¢*)
+.

B.2 P;-limited generating functions

IFor short periodic termsl

St =0
314,
Sy = _16“ 2;;7.—3
[[20 sin(2f + 2y2)] cos(2y3)
+[(1-6%)
+(1 + 6%) cos(2f + 2y2)]sin(2y3)]
2
Sy = _iuczﬂaﬁ

64" “nn3 rt
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[[=6(~1+ 6?)esin(f)
+(1 + 6*){—esin(f + 2y2)
+4sin(2f + 2y2)
+5esin(3f + 2y2)}] cos(2ys3)
+[26{—e cos(f + 2y2)
+4cos(2f + 2y2)
+5ecos(3f + 2y2)}] sin(2y3)]
3 (na)? a?,
~ 25642 n?nd, 5
[[29{362 sin(2y2)
—10esin(f + 2y2)
+2(8 — 5€?) sin(2f + 2y2)
+54esin(3f + 2y2)
+35€? sin(4f 4 2y2)}] cos(2y3)
+[-18€3(1 — 6%)
—12(—1 4+ 6%)ecos(f)
—30(—1+ 6%)e? cos(2f)
+3(1 + 6%)e? cos(2y2)
—10(1 + 6%)e cos(f + 2y2)
~2(1 4+ 6%)(—8 + 5€%) cos(2f + 2y2)
+54(1 + 6%)e cos(3f + 2y2)
+35(1 + 6%)e? cos(4f + 2y2)}] sin(2ys)]
3 (na)3 a2,
~1024"2 nni, 6
[[(=1+6%){6e(—4+ 45¢?) sin(f)
—192¢? sin(2f)
—210e3sin(3f)}
+(1 4 6%){15e3sin(f — 2y2)
+40e? sin(2y2)
+e(—68 + 45€2) sin(f + 2y3)
—16(—4 + 13e?) sin(2f + 2y2)
—e(—436 4 105¢?) sin(3f + 2y2)
+712e sin(4f + 2y2)
+315€®sin(5f + 2y2)}] cos(2y3)
+[26{—15¢® cos(f — 2y2)
+40e? cos(2ys)

Sy =

Sy =
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+e(—68 + 45¢€?) cos(f + 2y2)
—16(—4 + 13¢?) cos(2f + 2y2)
—e(—436 + 105¢?) cos(3f + 2y2)
+712€? cos(4f + 2y2)

+315¢% cos(5f + 29)}] sin(29s)]

For intermediate periodic termsl

1 .
St = 1—611.02‘11" ——[2(~1 + 36%){(f - I) + esin f}

+(1 - 92){36 sin(f + 2y2) + 3sin(2f + 2y3) + esin(3f + 2y2)}
-(1- 92) 7{2 — 3¢’ — 2n(1 — €”)} sin(2yy)]
m

5i = G

|F0r long periodic terrns|

S**:O

B.3 P;-limited generating functions

[For short periodic termsl

S5t = 0

5 1 aIn

Sy = —%ﬂcs P

[(04-3(~1 + 6?) sin(f + 32)

+(3+ 6%) sin(3f + 3y2)}] cos(3ys)
+[—=3(=1+ 6%) cos(f + y2)

+(1 + 36%) cos(3f + 3y)}] sin(3ys)

3
[[9{(—11 +1562) sin(f + y2)
~5(—1+ 6%)sin(3f + 3y2)}] cos(y3)
+H[(~1+ 56%) cos(f + y2)
—5(—1+ 6%) cos(3 + 3y)}] sin(ys) |

3
5 na_aj,

S3 = ——pCs—s—
3 5761 on 3

[[3(-1 + 6%){3e sin(y2)
—2sin(f + y2)
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—besin(2f + y2)}

+(1+ 392){—6 sin(2f + 3yz)
+6sin(3f + 3y2)

+7esin(4f + 3ya)}] cos(3ys3)
+[30(—1 + 6%){3e cos(y2)
—2cos(f + y2)

—5ecos(2f + y2)}

+0(3 4 62){—ecos(2f + 3y2)
+6cos(3f + 3y2)

+7ecos(4f + 3ya2) }] sin(3y3)]

3 na ﬁ?_a

——uC:
6a 3nn§n rd

[[(~1 + 56%){3e sin(y2)
+2sin(f + y2)
+5esin(2f + y2)}
~5(=1+ 8%){—esin(2f + 3y2)
+6sin(3f + 3y2)
+7esin(4f + 3y2)}] cos(ys)
+[0(—11 + 156%){—3e cos(y2)
+2cos(f + y2)
+5ecos(2f + y2)}
-50(—1+ 02){—e cos(2f + 3y2)
+6cos(3f + 3y2)
+7ecos(4f + 3y2)}] sin(yg)]

5 (na) dd,

~3456" 317271?" 6

[[36(~1+ 6%){15€?sin(f - 3»)
+8esin(yz2)
+2(—2 + 15€%) sin(f + y2)
—32esin(2f + y2)
—35e%sin(3f + y2)}
4-0(3 4 62){3e?sin(f + 3y2)
—16esin(2f + 3y2)
—2(—18 + 7€) sin(3f + 3y3)
+104esin(4f + 3y2)
+63e?sin(5f + 3y2)}] cos(3y3)

Sy =
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+3(~1+ 6%){~15¢" cos(f — 1)
+8ecos(yz)
+2(-2+ 1562) cos(f + ya)
—32ecos(2f + y2)
—35e2cos(3f + y2)}
+(1 + 36%){3€® cos(f + 3y2)
—16ecos(2f + 3ya)
—2(—18 + 7e?) cos(3f + 3y2)
+104ecos(4f + 3y2)
+63e% cos(5f + 3y2)}] sin(3y3)]

3 (na)®d},
T128" g e

[[6(-11 + 156%){~15¢* sin(f — g)
—8esin(y2)
—2(=2 + 15€?) sin(f + v2)
+32esin(2f + y2)
+35e%sin(3f + y2)}
+50(—1 + 62){—3e*sin(f + 3y2)
+16esin(2f + 3y2)
+2(—18 4 7€?) sin(3f + 3y2)
—104esin(4f + 3y2)
—63e?sin(5f + 3y2)}] cos(ys)

(=1 + 567){15¢” cos(f — y2)
—8ecos(y2)
—2(—2+ 15€%) cos(f + 2)
+32ecos(2f + y2)
+35¢% cos(3f + y2)}
+5(~1+ 6%){~3¢” cos(f + 3y2)
+16ecos(2f + 3y2)
+2(—18 + 7e?) cos(3f + 3y2)
—104e cos(4f + 3y2)
—63¢? cos(5f + 3y2)}] sin(y3)]

5 (na)® af,

" 20736 Bnt, T

[13(-1+ 6%){~105¢ sin(2 - y2)

+18¢? sin(f — Yy2)

55:
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~5e(—4 + 45¢?) sin(ys)

+4(—2 + 59¢?) sin(f + y2)
+3e(—52 4 105€?) sin(2f + y2)
—466e%sin(3f + y2)
—315e3sin(4f + y2)}

+(1 4 36%){—15¢>sin(3y2)

+70€2 sin(f + 3y2)

+e(—172 + 6362) sin(2f + 3y2)
~12(—18 4 35€%) sin(3f + 3y2)
—e(—1156 4 189¢?) sin(4f + 3y2)
+1670e% sin(5f + 3y2)

+693¢3 sin(6 f + 3y2)}] cos(3y3)
+[36(—1 + 6%){105€3 cos(2f — y2)
—18e% cos(f — y2)

—be(—4 + 45€?) cos(y2)

+4(—2 + 59¢?) cos(f + y2)
+3e(—52 + 105¢?) cos(2f + y2)
—466€% cos(3f + y2)

—315¢® cos(4f + y2)}

+8(3 + 6%){—15€> cos(3y2)
+70e2 cos(f + 3y2)

+e(—172 + 63e?) cos(2f + 3y2)
—12(—18 + 35¢%) cos(3f + 3y2)
—e(—1156 + 189¢?) cos(4f + 3y2)
+1670e% cos(5f + 3y2)

+693¢ cos(6f + 3y2)}] sin(3ys)

[[~(~1+ 56%){~105¢" sin(2f — y5)
+18e%sin(f — y2)
—5e(—4 4 45¢?) sin(y2)
+4(—2 + 59¢%) sin(f + y2)
+3e(—52 + 105¢?) sin(2f + y2)
—466¢? sin(3f + y2)
—315€e3sin(4f + y2)}
—5(=1 + 6*){-15¢3sin(3y,)
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+70e2 sin(f + 3y2)

+e(—172 + 63¢?) sin(2f + 3y2)
~12(—18 4 35¢%) sin(3f + 3y2)
—e(—1156 4 189¢?) sin(4f + 3y2)
+1670e%sin(5 f + 3y2)

+693¢® sin(6 f + 3y2)}] cos(y3)
+[-0(—11 + 156%){105¢3 cos(2f — y2)
—18e% cos(f — y2)

—5e(—4 + 45¢?) cos(y2)

+4(-2+ 5962) cos(f + y2)
+3e(—52 + 105€%) cos(2f + y2)
—466¢? cos(3f + y2)

—315€® cos(4f + y2)}

—50(—1 + 6%){—15€® cos(3y2)
+70e% cos(f + 3y2)

+e(—172 + 63e?) cos(2f + 3y2)
—12(—18 4 35€%) cos(3f + 3y2)
—e(—1156 + 189¢?) cos(4f + 3y2)
+1670€ cos(5 f + 3y2)

+693¢® cos(6f + 3y2)}] sin(ys)]

|For intermediate periodic termsl

S$*=0

|For long periodic termsl

§* =0
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