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abstract

We present a new model for time evolution of the fast magnetic reconnection in
free space, which is characterized by self-similarity. The possibility of this type of
evolution is verified by numerical simulations. We also find an analytical solution
which is consistent with the numerical result.

In many cases of astrophysical problems, e.g., solar flares or geomagnetospheric
substorms, the spatial scale of the reconnection system significantly expands as time
proceeds. The focus of this work is on this expanding phase. The resultant spatial scale
of the reconnection system is much larger than the initial scale (its dynamic range is
~ 10° — 107 in order of magnitude). Thus, actual astrophysical reconnection must be
treated as an evolutionary process in a free space which is free from any influence of
external circumstances, at least in its expanding phase just after the onset. Eventually,
the evolution will be strongly influenced by these external circumstances, and will settle
into a final state. Even in this final state, we can expect the influence of the expanding
phase will continue to affect the later evolution of the system.

In spite of this, most previous numerical works focused on the character of evolution
strongly affected by artificial boundary conditions on the simulation boundary. On the
other hand, most analytical works focused on a stationary state of the reconnection
as a boundary problem. However, we do not know how we should impose a well-
described boundary condition for these cases, because it is actually determined as a
result of the evolutionary process of this expanding phase. Hence, the freely expanding
phase is essential to our understanding of the properties of astrophysical magnetic
reconnections.

Our new model for magnetic reconnection aims to clarify a realistic evolution and
spontaneous structure formation in free space. We assume the reconnection arising in
an asymptotically uniform current sheet system (the Harris current sheet). The only
fixed spatial scale in this system is the initial current sheet thickness, which is finite.
Such a system probably has a self-similar solution, because when the system sufficiently
matures, there is no fixed proper spatial scale in the system other than the size of the
expanding system itself. Thus, it is worthwhile to study the possibility of self-similar
evolution of magnetic reconnection. We do this both numerically and analytically as
outlined below.

First we study it numerically, wishing to obtain evidence of self-similar evolution
of the system. The reconnection is supposed to be triggered by artificially enhanced
resistivity in the middle of the current sheet, which is held as a constant, independent of
the time. This is a simplified model for anomalous resistivity. We were able to carry the

computer simulation for the period while the system expanded by almost three orders



of magnitude in the spatial scale and we succeeded in finding the expected self-similar
expansion of the system. The characteristic structure around the diffusion region is
quite similar to the Petschek model which is characterized by a pair of slow-mode
shocks and the fast-mode rarefaction-dominated inflow. In the outer region, a vortex-
like return flow takes place driven by fast-mode compression caused by the piston
effect of the reconnection jet takes place. The entire reconnection system expands
self-similarly.

However, owing to technical reasons in computer simulation, the dynamic range of
the expansion in the spatial scale studied by our numerical simulation is not sufficient
to constitute evidence that the obtained evolution is truly a self-similar one. In order to
check this, we sought a self-similar solution of the inflow region by an analytical study
and compared the solution with our numerical result. By assuming that deviation owing
to the reconnection from the initial equilibrium state is very small, we can analyse it
with a perturbative method. This approximation is relevant for the inflow region to the
original current sheet. We adopt a traditional mathematical method called the Grad-
Shafranov approach. After a long derivation, we obtain several equations for the inflow
region. One of them is a second order partial differential equation of the elliptical type
for the magnetic flux function. We call it the Grad-Shafranov [G-S] equation. Each of
the other equations shows an algebraic relation between a physical quantity and the
magnetic flux function. Thus, by solving the G-S equation under a relevant boundary
condition, we can obtain the distribution of magnetic flux function which shows the
magnetic structure of the system. Once we obtain the magnetic flux function, we can
easily derive the distributions of other quantities from other equations. The obtained
solution for the inflow region is fairly consistent with our numerical solution.

This analytical study confirms the existence of self-similar growth. On the other
hand, numerical study by time-dependent computer simulation verifies the stability of
the self-similar growth with respect to any MHD mode. Hence, these two approaches
are complementary, and their results confirm the stable self-similar evolution of the

fast magnetic reconnection system.
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1. INTRODUCTION

It is widely accepted that magnetic reconnec-
tion takes place very commonly as a powerful en-
ergy converter in astrophysical plasma systems.
However, there still remain many open questions,
not only regarding the microscopic physics of the
resistivity, but also the macroscopic magnetohy-
drodynamical (MHD) structure. In this work, our
attention is focused on the macroscopic evolution-
ary properties of magnetic reconnection.

We consider reconnection in an anti-parallel
magnetic configuration called a “current sheet
system”. In this system, two similarly uniform
magnetized regions are set in contact, divided by
a boundary. We assume that the directions of
the magnetic field on both sides are anti-parallel.
In this case, the boundary carries a strong elec-
tric current, hence we call it the current sheet.
If resistivity is enhanced in this current sheet, it
plays an important role in energy conversion from
the magnetic form to others. In resistive plasmas,
there are two fundamental processes of magnetic
energy conversion. One is magnetic diffusion, and
another is magnetic reconnection.

The best known process of energy conversion in
resistive plasmas from magnetic to other forms is
Ohmic dissipation (magnetic diffusion). We must
note, however, that plasmas are highly conductive
in most_astrophysical problems. Since the resis-
tivity is very small, energy conversion by mag-
netic diffusion takes a very long time (see section
2.3), and is not applicable to many astrophysi-
cal phenomena with very violent energy releases,
e.g., solar flares. Even in such a case, the major-
ity believes that magnetic reconnection can con-
vert the magnetic energy very quickly (see section
2.5). This is why we must study magnetic recon-
nection. '

Magnetic reconnection is a kind of macroscopic
instability arising in current sheet systems. The
magnetic energy stored in the current sheet sys-
tem is released by the reconnection and converted
to kinetic or thermal energy. This energy release
is caused by a topological change in the magnetic
field lines. Such a process commonly takes place
in resistive plasmas. Previous studies presented
several theoretical and numerical models of recon-
nection. These are reviewed in section 2.

Such energy conversion in the current sheet
system is very important in many astrophysical
plasma systems. The most famous example is the
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relation between solar activity and geomagneto-
spheric activity, called solar flares and geomagne-
tospheric substorms. In this case, at least three
current sheet systems are included. The first one
is in the solar corona (see figure 1). The second
and third are on the day-side and the night-side
of the geomagnetosphere, respectively (see figure
2). Recent observations and numerical simula-
tions suggest that similar phenomena seemingly
activated by magnetic reconnection are universal,
e.g., flares in accretion disks of young stellar ob-
jects (YSOs, see Koyama et al. 1994, Hayashi et
al. 1999), galactic ridge X-ray emissions (GRXE,
see Koyama et al. 1986, Tanuma et al. 1999).

We must note that the actual magnetic recon-
nection in astrophysical systems usually grows
over a huge dynamic range in its spatial dimen-
sion. For example, the initial scale of the recon-
nection system can be defined by the initial cur-
rent sheet thickness, but this is too small to be
observed in-typical solar flares. We do not have
any convincing estimate of the scale, but if we
estimate it to be of the order of the ion Larmor
radius, it is extremely small (~ 10° [m] in the
solar corona). Finally, the reconnection system
develops to a scale of the order of the initial cur-
vature radius of the magnetic field lines (~ 107
[m] ~ 1.5% of the solar radius for typical solar
flares). The dynamic range of the spatial scale is
obviously huge (~ 107 for solar flares). For geo-
magnetospheric substorms, their dynamic range
of growth is also large (~ 10* for substorms).
Such a very wide dynamic range of growth sug-
gests that the evolution of the magnetic reconnec-
tion should be treated as a development in “free
space”, and that the outer circumstance does not
affect the evolutionary process of magnetic recon-
nection, at least at the expanding stage just after
the onset of reconnection.

However, no reconnection model evolving in a
free space has been studied. We should note that
most previous theoretical and numerical works on
reconnection treated it as a boundary problem
strongly influenced by external circumstances.
These previous results are reviewed in section 2.

In actual numerical studies, there is a serious
and inevitable difficulty: For magnetic reconnec-
tion to be properly studied, the thickness of the
current sheet must be sufficiently resolved by sim-
ulation mesh size. Usually, the thickness of the
current sheet is much smaller than the entire sys-
tem. Hence, in previous works, we have been
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forced to cut a finite volume out of actual large-
scale reconnection systems for numerical studies.

Of course, we wish to realize that the boundary
conditions of this type of finite simulation box re-
produce the evolution in unbounded space. How-
ever, we should note that, in actual simulations,
the boundary of such a simulation box necessarily
affects the evolution inside the box, even if we use
so-called “free” boundary conditions. This has an
adverse influence on the evolutionary process of
the numerically simulated magnetic reconnection:
When the reconnection proceeds and physical sig-
nals propagating from the inner region cross the
boundaries of the simulation box, the subsequent
evolution is necessarily affected by the boundary
conditions. This is because the information prop-
agated through the boundary is completely lost
and such an artificially cut-out simulation box
will never receive the proper response of the outer
regions. Additionally, numerical and unphysical
signals emitted from the boundary may disturb
the evolution. Such artificially affected evolution
is obviously unnatural, and the resultant station-
ary state should differ from actual reconnection
occurring in a free space.

Even in previous numerical studies aimed at
clarification of the time evolution of reconnection
(for example, series of studies originated by Ugai
& Tsuda 1977 or Sato & Hayashi 1979), the evo-
lution could not be followed for a long time. This
is mainly owing to restriction of the size of the
simulation box, hence application of the results
was limited to spatial scales typically, say, a hun-
dred times the spatial scale of the diffusion region.
We are interested in an evolutionary process in
a free space without any influence external cir-
cumstances. In such a system, the evolution and
resultant structure would be quite different from
these previous numerical models.

The same problem also appears in previous the-
oretical works. We must realize that astrophys-
ical magnetic reconnection is essentially a non-
stationary process because it grows in a huge spa-
tial dynamic range. Most of these works, how-
ever, for mathematical simplicity, treat a station-
ary state of the reconnection in a finite volume
(for example, see Priest & Forbes 1986). These
are obviously a boundary problem and solutions
must be influenced by boundary conditions. The
problem is that we do not know how we should
set the boundary condition in order to simulate
external influences. In general, it is impossible

to set. Hence, the situations argued in previous
works are rather artificial and unnatural. It is ob-
viously pointless to argue the actual evolutionary
process in a free space.

From the above discussion, we can see what we
have to do: We must clarify the nature of mag-
netic reconnection evolving with no external in-
fluence. This is possible by numerical simulation
if we take a very wide simulation box compared
with the initial thickness of the current sheet,
and simulate the evolutionary process, while no
wave emitted from the inside reaches the simula-
tion boundary. The result is presented in section
4. A brief summary of the obtained evolutionary
process is below.

We suppose a two-dimensional equilibrium state
with anti-parallel magnetic field distribution, as
in the Harris solution. When magnetic diffusion
takes place in the current sheet by some localized
resistivity, magnetic reconnection will occur, and
a pair of reconnection jets is ejected along the cur-
rent sheet. This causes a decrease in total pres-
sure near the reconnection point. Such informa-
tion propagates outward as a rarefaction wave. In
a low-£ plasma (8 < 1 in the region very distant
from the current sheet [asymptotic region]; as typ-
ically encountered in astrophysical problems), the
propagation speed of the fast-magnetosonic wave
is isotropic, and is much larger than that of other
wave modes. Thus, information about the de-
creasing total pressure propagates almost isotrop-
ically as a fast-mode rarefaction wave (hereafter
FRW) with a speed almost equal to the Alfvén
speed Vo in the asymptotic region. Hence, the
wave front of the FRW (hereafter FRWF) has a
cylindrical shape except near the point where the
FRWF intersects with the current sheet. When
the FRWF sufficiently expands, the initial thick-
ness of the current sheet becomes negligible com-
pared with the system size Vaot, where t is the
time from the onset of reconnection. In such a
case, there is only one characteristic scale, i.e.,
the radius of the FRWF (Vjot), which increases
linearly as time proceeds. This is just the condi-
tion for self-similar growth. A detailed scenario
of this process is argued in section 3.

In order to clarify the evolutionary process o
magnetic reconnection in a free space, a numerical
study of this process has been performed by our
group (see Nitta, Tanuma, Shibata and Maezawa
2001). This study is presented in the first half
of this paper (see section 4). We have discovered




a self-similar evolutionary process of fast recon-
nection as we expected. In our work, a stable
self-similar growth of the reconnection system was
shown. However, the simulated dynamic range of
self-similar growth was still not enough (~ 10%)
owing to the restriction of computer memory and
CPU time. In order to make our model convinc-
ing, our numerical result should be coupled with
an analytic study to find a self-similar solution.

In the latter half of this paper, our attention
is focused on the analytic study of the self-similar
stage of magnetic reconnection in a free space (see
section 5). Such an analytic approach has the fol-
lowing importance:

1) By finding the analytic solution for self-
similar growth, we can verify the possibility of
self-similar evolution more rigorously. We set the
initial thickness of the current sheet D. The self-
similar stage is realized in the limit of Vot > D.
However, in the computer simulation, we can only
perform calculations for a finite duration, owing
to technical reasons. Hence, we will never reach
the exact self-similar stage. But, if we can ver-
ify that the result of the numerical simulation re-
sembles the analytic self-similar solution, we can
accept that the result presented by our numerical
simulation is truly a self-similar evolution.

2) Existence of the analytic solution ensures
that the self-similar growth will continue indefi-
nitely. This is important because, for technical
reasons, in the computer simulation, we cannot
continue the calculation longer than we did in
Nitta et al. (2001). Of course, we should note
that when the system sufficiently grows to a scale
similar to the initially imposed system size (e.g.,
the scale of the flux tube in the case of solar
flares), this self-similar evolution must be mod-
ified by its circumstance. We should also note
that such analytic treatment cannot ensure the
stability of the self-similar evolution, while it is
ensured by our numerical simulation. Thus the
analytic treatment and numerical simulation are
complementary.

2. SUMMARY OF PREVIOUS STUDIES FOR
MAGNETIC RECONNECTION

We briefly summarize here the history of pre-
vious studies of magnetic reconnection as an ele-
mentary process in resistive plasmas. Develop-

ment of the study for fundamental models re-
viewed here was presented between the mid-60s
and mid-80s, and there has not been any essential
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development since that era. However, as we have
discussed in the previous section, we still have no
relevant models for astrophysical reconnection.

The energy conversion processes due to resis-
tivity are categorized into two types. In the first
type, the resistivity directly converts the mag-
netic energy by the Joule heating process (in other
words, Ohmic dissipation). In the other type, the
resistivity plays an indirect but important role in
energy conversion. The resistivity allows a change
in the topology of field lines. A point-like merging
of two anti-parallel magnetic field lines is called a
magnetic reconnection. After the reconnection of
the two field lines, the plasma on each line is accel-
erated by the Lorentz force (or the magnetic ten-
sion) and creates a strong bipolar flow along the
original current sheet. In this case, we can clearly
understand that resistivity is simply a trigger of
energy conversion, and the main energy conver-
sion is driven by the Lorentz force. Several models
for energy conversion in the current sheet system
have been presented over the past 40 years. We
summarize four representative models of these in
the following section.

2.1. Diffusion region

In order to achieve the merging of two magnetic
field lines, the breaking of the frozen-in condition
is necessary. This is equivalent to existence of the
magnetic diffusion in the resistive plasmas. We
call the region in which the reconnection occurs
the “diffusion region.” The diffusion region is de-
fined as the region in which the magnetic diffusion
speed is greater than the convection speed of the
plasmas (in another word, |v x B| < un|j|, where
v is the convection speed, B is the magnetic field,
i is the magnetic permeability [we suppose its
value is equal to the value for the vacuum, be-
cause we treat very thin plasma throughout this
paper|, 7 is the magnetic diffusivity and j is the
current density). In many astrophysical problems,
the current sheet system is filled with highly con-
ducting plasmas. In such systems, the magnetic
diffusion is efficient only inside a current sheet in
which the spatial gradient of the magnetic field
strength is large.

2.2. Reconnection Rate

When we argue the energy conversion through
the reconnection, the key term is the reconnection
rate which is a measure of the conversion speed
of the system. The reconnection rate is usually
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1) By finding the analytic solution for self-
similar growth, we can verify the possibility of
self-similar evolution more rigorously. We set the
initial thickness of the current sheet D. The self-
similar stage is realized in the limit of Vot > D.
However, in the computer simulation, we can only
perform calculations for a finite duration, owing
to technical reasons. Hence, we will never reach
the exact self-similar stage. But, if we can ver-
ify that the result of the numerical simulation re-
sembles the analytic self-similar solution, we can
accept that the result presented by our numerical
simulation is truly a self-similar evolution.

2) Existence of the analytic solution ensures
that the self-similar growth will continue indefi-

nitely. This is important because, for technical

reasons, in the computer simulation, we cannot
continue the calculation longer than we did in
Nitta et al. (2001). Of course, we should note
that when the system sufficiently grows to a scale
similar to the initially imposed system size (e.g.,
the scale of the flux tube in the case of solar
flares), this self-similar evolution must be mod-
ified by its circumstance. We should also note
that such analytic treatment cannot ensure the
stability of the self-similar evolution, while it is
ensured by our numerical simulation. Thus the
analytic treatment and numerical simulation are
complementary.

2. SUMMARY OF PREVIOUS STUDIES FOR
MAGNETIC RECONNECTION

We briefly summarize here the history of pre-
vious studies of magnetic reconnection as an ele-
mentary process in resistive plasmas. Develop-

ment of the study for fundamental models re-
viewed here was presented between the mid-60s
and mid-80s, and there has not been any essential
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development since that era. However, as we have
discussed in the previous section, we still have no
relevant models for astrophysical reconnection.
The energy conversion processes due to resis-
tivity are categorized into two types. In the first
type, the resistivity directly converts the mag-
netic energy by the Joule heating process (in other
words, Ohmic dissipation). In the other type, the
resistivity plays an indirect but important role in
energy conversion. The resistivity allows a change
in the topology of field lines. A point-like merging
of two anti-parallel magnetic field lines is called a
magnetic reconnection. After the reconnection of
the two field lines, the plasma on each line is accel-
erated by the Lorentz force (or the magnetic ten-
sion) and creates a strong bipolar flow along the
original current sheet. In this case, we can clearly
understand that resistivity is simply a trigger of
energy conversion, and the main energy conver-

~ sion is driven by the Lorentz force. Several models

for energy conversion in the current sheet system
have been presented over the past 40 years. We
summarize four representative models of these in
the following section.

2.1. Diffusion region

In order to achieve the merging of two magnetic
field lines, the breaking of the frozen-in condition
is necessary. This is equivalent to existence of the
magnetic diffusion in the resistive plasmas. We
call the region in which the reconnection occurs
the “diffusion region.” The diffusion region is de-
fined as the region in which the magnetic diffusion
speed is greater than the convection speed of the
plasmas (in another word, |v x B| < un|j|, where
v is the convection speed, B is the magnetic field,
p is the magnetic permeability [we suppose its
value is equal to the value for the vacuum, be-
cause we treat very thin plasma throughout this
paper], 1 is the magnetic diffusivity and j is the
current density). In many astrophysical problems,
the current sheet system is filled with highly con-
ducting plasmas. In such systems, the magnetic
diffusion is efficient only inside a current sheet in
which the spatial gradient of the magnetic field
strength is large.

2.2. Reconnection Rate

When we argue the energy conversion through
the reconnection, the key term is the reconnection
rate which is a measure of the conversion speed
of the system. The reconnection rate is usually
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defined as the ratio of the Alfvén wave transit
timescale across the system length to the energy
conversion timescale. It is conventionally defined
by the inflow Alfvén Mach number M;. The en-
ergy source (fuel) of the process is the magnetic
energy of the system. The “energy converter” (en-
gine) is located in the current sheet. Hence, the
energy conversion speed (power) is determined by
how much magnetic energy is injected per unit
time into the converter.

We should note that the magnetic flux is frozen
into the highly conducting plasma, thus the con-
version speed is in proportion to the inflow speed
if other quantities are fixed. To make a non-
dimensional parameter denoting the reconnection
rate, we adopt the Alfvén speed outside the cur-
rent sheet as the normalization quantity. Finally
we can see that the inflow Alfvén Mach number
M; denotes the reconnection rate.

One of the most important questions about
magnetic reconnection is what condition deter-
mines the reconnection rate, by which we can
estimate the speed of energy conversion. Since
reconnection can arise only in resistive plasmas,
one may think that the reconnection rate mainly
depends upon the magnetic Reynolds number
R,, which represents the ratio of the diffusion
timescale of the magnetic field to the Alfvén wave
transit timescale. However, we should note that
the magnetic diffusivity of astrophysical plasma
systems is very small (R,, ~ 10 for the solar
corona). This naturally leads us to the question
of how the plasma system having such small re-
sistivity can attain an effective energy conversion
mechanism like in a solar flare. We review here
the development of previous models of magnetic
reconnection from the viewpoint of the reconnec-
tion rate. :

23 Simple Diffusion Model

The most basic energy conversion in resistive
plasmas is the Joule dissipation. We review here
the model called the “simple diffusion model”.
The diffusion region spreads throughout the en-
tire system in this model. This model does not
include the process of magnetic reconnection, but
it is important to understand the advantage of re-
connection as an energy converter in comparison
with the simple diffusion. This process can con-
vert the magnetic energy of the current sheet sys-
tem by diffusion and annihilation of anti-parallel
field lines. So many researchers argue this pro-

cess, the origin of this model is unclear. In lieu of
the original research, we refer to a text by Tajima
& Shibata (1997) as our reference.

Let us estimate the timescale for energy conver-
sion by this process. We consider a box-shaped
region involving a current sheet at the center (see
figure 3). We set the scale of the box as L.
The magnetic field strength is B and the mass
density is p. These values are assumed to be
uniform except in the current sheet. The mag-
netic diffusivity is  which is related to the con-
ductivity o as n = 1/(uo) where p is the mag-
netic permeability. When the annihilation starts,
the thickness of the current sheet increases due
to the magnetic diffusion. At last, the thick-
ness of the current sheet will grow to the sys-
tem dimension L. We can clearly understand
that the annihilation slows as the current sheet
thickens. Therefore the timescale 7 is determined
by the slowest diffusion speed, and is estimated
as Tp = L%/n. On the other hand, this system
has another timescale: the Alfvén transit time
Ta = L/Va where V4 = B/,/pp is the Alfvén
speed. We can normalize the diffusion time as
R,, = 7p/Ta = LV4/n, which is called the mag-
netic Reynolds number.

Let us evaluate for the case of the solar flare.
The magnetic Reynolds number for the Spitzer
resistivity is estimated as

(L/107[m])(T/10°[K])**(B/10~*[T])
n/1015[m=3] ’
(1)
where T is the temperature and n is the electron
number density. In this case, the Alfvén tran-
sit time is estimated as 74 ~ 10[s] with V4 ~
10%[m s7!]. Thus we obtain the energy conversion
timescale 7 = 7p = R, 7a ~ 10%[s] ~ 10%[yr] (the
reconnection rate M; ~ 1/R,, ~ 1074). How-
ever, the actual timescale of the solar flare is typ-
ically 10%[s]. The energy conversion timescale of
this model is obviously too long to explain the so-
lar flare. Hence, we need a more efficient energy
conversion model.

Rm ~ 1014

2.4. Sweet-Parker Model

The first model including the reconnection is
presented by Sweet (1958) and Parker (1957,
1963). In order to increase the conversion speed,
they induce the plasma inflow toward the cur-
rent sheet (see figure 4). This inflow suppresses
the increase in the current sheet thickness and




keeps it constant. Thus, annihilation speed does
not decrease as time proceeds in contrast to the
simple diffusion model. The magnetic field con-
vected by the inflow can efficiently vanish in this
way. However, the injected plasma cannot vanish
like the magnetic field. This convected plasma is
“ejected along the original current sheet. In order
to achieve this outflow, Sweet and Parker impose
the reconnection of the convected magnetic field
lines. The outflow is ejected by the tension of the
reconnected field lines, and accelerated to almost
Alfvén speed at the inflow region.

Here, we abbreviate a detailed discussion, but
can obtain the resultant conversion timescale 7 ~
VRn7a. If we evaluate for the case of solar flares,
we obtain 7 ~ 108[s] ~ 10![yr] (the reconnection
rate M; ~ 1/v/R,, ~ 1077). The conversion speed
is considerably improved compared with the sim-
ple diffusion model, but is still too slow for a rel-
evant model of a solar flare.

2.5. Petschek Model

A completely different mechanism of energy
conversion in the current sheet system is proposed
by Petschek (1964). In the following, we argue the
essence of this model and explain how it differs
from the previous two models.

In the previous two models (the simple diffusion
model and the Sweet-Parker model), the speed of
energy conversion is mainly controlled by mag-
netic diffusion. Hence the conversion speed is very
low for the case of an extremely large magnetic
Reynolds number (this means very small resis-
tivity) which is frequently encountered in astro-
physical problems. The resultant timescale for
energy conversion explicitly depends on the mag-
netic Reynolds number. We call such a process a
“slow” process (another name is “magnetic com-
bustion”, because the timescale is determined by
magnetic diffusion).

In the Petschek model, the main process of en-
ergy conversion is slow-mode wave propagation.
An outline of the Petschek model is shown in
figure 5. One must note the existence of a pair
of slow-mode shocks (figure-X-shaped discontinu-
ity along the current sheet). The inflow toward
the current sheet collides with the original cur-
rent sheet plasma. If the inflow speed is relevant,
it creates a slow-mode shock. Outside and inside
the figure-X-shaped slow shock are the up-stream
and down-stream regions, respectively. From the
nature of the slow shock, the magnetic field of
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the down-stream region is weakened. The re-
leased fraction of up-stream magnetic energy is
converted mainly to kinetic energy of the bulk
motion in the down-stream region. We must note
that the slow shock is an accelerator, because it is
a strong current layer, thus the Lorentz force (ten-
sion of the reconnected field line) makes a bipolar
plasma jet along the original current sheet (the
“sling-shot” mechanism). If the greater part of
the magnetic energy is converted to the kinetic
energy of the plasma jets, its speed is similar to
the Alfvén speed in the inflow region.

We abbreviate again a detailed discussion of the
energy conversion timescale of this model. The
resultant timescale is 7 ~ log(R,,)74. We should
note that the timescale for energy conversion does
not explicitly depend on the magnetic Reynolds
number R, (here “explicit” means dependence
of a power function of R,,). We call this kind
of highly efficient energy conversion a “fast pro-
cess” (another name is “magnetic explosion”, be-
cause the timescale is determined by wave prop-
agation). The Petschek model is the first pre-
sented model of a fast process. This is easy to
understand if we notice that the main conver-
sion process of this model is not magnetic dif-
fusion, but slow-mode wave propagation. The es-
timated timescale for typical solar flares is thus
7 ~ 10%[s] (the reconnection rate is roughly esti-
mated as M; ~ 1/log R, ~ 107!: in detailed es-
timation by Vasyliunas [1975] results M; ~ 1072)
as a maximum value. This is good agreement with
the actual flares.

However, its conversion speed is restricted by
the nature of the inflow region as we see in the
following discussion. We discuss here the theoret-
ical optimization of energy conversion apart from
its astrophysical interest. The inflow region of this
model is altered from its original state by the fast-
mode rarefaction wave emitted from the vicinity
of the “X-point”. Ejection of the bipolar recon-
nection jets results in a decrease in total pres-
sure near the X-point, and hence the magnetic
field near the X-point is weakened. This nature
of fast-mode rarefaction suppresses the magnetic
diffusion near the X-point. The greater the re-
connection speed becomes, the more significant
this rarefaction of the magnetic field becomes.
This process naturally leads to a maximum re-
connection speed. A detailed discussion appears
in Vasyliunas (1975) and Priest & Forbes (1986),
and the resultant maximum reconnection rate is
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of the order of 1072. We should notice that the
energy conversion itself is mainly carried by the
slow shock, but this process is triggered and con-
trolled by reconnection at the X-point. Hence,
the fast-mode rarefaction nature limits the energy
conversion speed.

2.6. Sonnerup Model

Sonnerup (1970) proposed a somewhat artificial
model of the fast process which enables a higher
energy conversion speed than does the Petschek
model. The essence of the limitation of maximum
conversion rate in the Petschek model is owing to
the nature of the fast-mode rarefaction. In or-
der to cancel the effect of fast-mode rarefaction,
he considered adding the slow-mode rarefaction
wave (the hybrid rarefaction, see figure 6) into
the inflow region. In this hybrid rarefaction, a
decrease in the magnetic field strength by fast-
mode rarefaction is suppressed by the slow-mode
rarefaction, compared with the Petschek model.
The same situation is independently proposed by
Yeh and Axford (1970) from their study of the
spatial self-similar solution. Thus, the limitation
of the maximum reconnection speed is canceled
and we can attain a desirable conversion speed.

However, we should notice that the slow-mode
rarefaction wave which is necessary to achieve this
hybrid rarefaction cannot be emitted from the re-
gion near the X-point because the inflow region
is up-stream from the slow shock. Hence this
slow-mode rarefaction wave must be imposed by
a boundary condition (an artificial edge is needed
at the side boundary; see figure 6). In addi-
tion, that boundary condition must be tuned to
achieve a situation in which the two wave fronts
of this slow-mode rarefaction wave from both side
boundaries cross precisely at the X-point. The
majority thinks that such fine tuning is natu-
rally impossible in astrophysical problems, and
this model might be treated as simply a theoreti-
cal possibility.

2.7. Driven Reconnection vs. Spontaneous
Reconnection

Hereafter we call reconnection with a fast pro-
cess “fast reconnection.” One of our main in-

terests is to understand the essential control fac-
tor of fast reconnection. There are two historical
roots with respect to this problem. One root is
called “driven” reconnection. In models of driven
reconnection, external circumstances control the

system through boundary conditions. Another
root is “spontaneous” reconnection. In models
of spontaneous reconnection, the system controls
itself spontaneously. We review here the essence
of these roots and propose a new context: that of
self-similar reconnection.

Numerical studies of magnetic reconnection
as an elementary process were carried out by
Japanese researchers in the late ’70s. First,
Ugai and Tsuda (1977) succeeded in obtaining
a Petschek-like fast reconnection with their com-
puter simulation. They supposed that localized
resistivity is enhanced and kept constant in the
middle of the current sheet. This is a model of
anomalous resistivity. The entire simulation box
is bounded by a so-called “free boundary” (nor-
mal derivatives of each quantity at the boundary
are set to vanish). Hence, the system is controlled
by resistivity and evolves spontaneously. After a
period equal to the Alfvén transit time across the
system scale, a pair of slow shocks is formed. The
fast-mode rarefaction is dominant in the inflow
region. These properties are anticipated by the
Petschek model. Their numerical model is called
“spontaneous reconnection”.

Sato and Hayashi (1979) numerically studied
fast reconnection, but their supposed situation
was differed critically from that of Ugai and
Tsuda (1977). There are two essential differences
between Sato and Hayashi (1979) and Ugai and
Tsuda (1977). Sato and Hayashi set the resistivity
as an increasing function of the current density.
They also set a boundary condition in which in-
homogeneous plasma inflow is artificially injected
toward the current sheet. As a result, resistivity is
enhanced where strong inflow compresses the cur-
rent sheet. The reconnection occurs and evolves
to a Petschek-like structure (which is character-
ized by a pair of slow shocks). In this case, the in-
flow boundary condition crucially determines the
resistivity, and hence the reconnection rate. Their
numerical model is called an “(externally) driven
reconnection”.

Several theoretical models are reviewed by
Priest and Forbes (1986) . They aimed to make a
unified scheme of previous models from the view-
point of the boundary problem. They considered
stationary reconnection occurring in a rectangular
shaped region, and obtained a family of solutions
including the Petschek type and the Sonnerup
type as particular cases. The conditions imposed
on the inflow boundary determine which member




of the family occurs. These solutions vary contin-
uously as a functional of the inflow boundary con-
dition. We can see that their discussion is clearly
focused on driven reconnection.

We clarify our standpoint here with respect to
the controversy over differences between driven
and spontaneous reconnection. Our discussion is
focused on the evolution of time-dependent recon-
nection in a free space. In such a system, exter-
nal circumstances corresponding to the boundary
condition in previous works never influences, in
principle. Hence, the reconnection system must
grow spontaneously. The system will expand ac-
cording to the wave propagation emitted from the
central region. This expansion phase will con-
tinue, at least, while the fastest signal travels a
proper length of the system. We try to find a
solution for this expanding phase, and argue the
property of this new type of spontaneous recon-
nection.

3. SCENARIO FOR EVOLUTIONARY PROCESS OF
SELF-SIMILAR RECONNECTION

The scenario for the self-similar evolution of
magnetic reconnection is summarized as follows.
This paper extends in greater detail some of the
themes already sketched in Nitta (1988).

We suppose a global MHD equilibrium for
an anti-parallel magnetic field configuration with
an embedded current sheet as the initial state.
We apply Cartesian coordinates, whose z-axis is
taken to be along the current sheet and y-axis is
perpendicular to the current sheet. We assume
uniformity in the z-direction and hence treat a
two-dimensional MHD problem. Hereafter we
study only the configuration on the x — y plane.

The initial state is supposed to be the Harris
solution (see figure 7), ‘

B, = Bytanh(y/D) , (2)

PZ%(“W)’ )

where D is the initial thickness of the current
sheet, By the asymptotic strength of the magnetic
field, P the gas pressure, and [ the ratio of gas
to magnetic pressure (so-called plasma (3 value)
in the asymptotic region (Jy| > D). We should
remark again that our attention is focused on free
evolution without any influence of the boundary
conditions.
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1) Onset of reconnection (resistive stage: t
D/Vo)

When a microscopic disturbance takes place,
a localized resistivity is enhanced in the current
sheet (see figure 7). This resistivity induces mag-
netic diffusion, and anti-parallel magnetic field
lines begin to reconnect. This stage will corre-
spond to the Sweet-Parker type of reconnection
or to the resistive tearing mode instability (Furth
et al. 1963). Once the reconnection of field lines
begins, the total pressure in the vicinity of the
reconnection point should decrease owing to the
ejection of a pair of bipolar plasma jets (recon-
nection jets) along the current sheet (see figure
8).

In a low-8 plasma (f < 1 in the asymp-
totic region; this is the usual case in astrophys-
ical problems), the propagation speed of the fast-
magnetosonic wave is much higher than that of
other wave modes. The information of decreasing
total pressure near the reconnection point propa-
gates almost isotropically as a fast-mode rarefac-
tion wave (hereafter FRW) with a speed almost
equal to the Alfvén speed V4o in the asymptotic
region (|y| > D). Hence the wave front of the
FRW (hereafter FRWF) has a circular shape ex-
cept near the point where the FRWF touches the
current sheet.

2)Induction of the inflow (¢t > D/Vyo)

As the FRW propagates in the asymptotic re-
gion, the resultant total pressure gradient induces
a plasma inflow toward the current sheet (see fig-
ure 9). Outside the FRWF, plasmas do not move
because no signal reaches that region yet. Hence
the expansion speed and the shape of the FRWF
are kept constant throughout the evolution.

3)Self-similar evolution (self-similarly evolving
fast reconnection stage: ¢t > D/Vyo)

When the flow toward the current sheet devel-
ops sufficiently, a pair of slow-mode shocks forms
along the current sheet. After formation of the
slow shock, energy conversion is drastically en-
hanced. The greater part of the magnetic energy
is converted at the slow shock. Hence this stage
represents “fast reconnection”. Once this system
of fast reconnection is set up, the dimension of the
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system indefinitely develops self-similarly (see fig-
ure 10).

This scenario for the evolution is confirmed by
our numerical simulations. The outline and re-
sults of the simulations are shown in the next sec-
tion.

4. NUMERICAL APPROACH

In order to demonstrate the feasibility of the
self-similar evolution of magnetic reconnection,
we try to study it by numerical simulation. We
can see typical examples of self-similar evolution
in free space in the following subsections.

4.1. Qwutlines

We simulate time evolution of the 2-D magnetic
reconnection in free space (see figure 7). The ini-
tial equilibrium state is supposed to be expressed

by the Harris solution (see section 3). We im-

pose symmetry conditions on the lines x = 0 and
y = 0 and find solutions for the quadrant 0 < x
and 0 < y. A locally enhanced resistivity is put
at the center of the current sheet (i.e., in the re-
gion 0 < z < 2D, 0 <y < 2D in figure 7). In
this region, the value of resistivity is assumed to
be uniform and is kept constant throughout the
evolution. '

Our attention is focused on such evolutionary
processes as are free from the influence of outer
boundary conditions. For this purpose, we place
the outer boundaries as far from the reconnection
region as possible and observe the evolution that
takes place before any signal from the central re-
gion reaches the boundaries. To model such a
wide simulation region, we adopt a non-uniform
mesh as follows: In the vicinity of the diffusion re-
gion (z,y < 20D), the mesh size is D/10 in both
the £ and y directions to obtain a high spatial
resolution. Outside this region, the mesh size in-
creases exponentially in both z and y directions.
The maximum mesh size is 30D in both direc-
tions (as a result, our mesh has a very long, slen-
der shape at large distances along the z— or y—
axis).

We use the 2-step Lax-Wendroff scheme with
artificial viscosity to solve the following 2-D resis-
tive MHD equations:

dp

pg—lt’+p(v-V)v+VP = J x B, (5)
%? _Vx(@wxB) = -V x (uJ), ()
%'FV-[(E'FP)’U] =

pnldP +v- VP )

where p, v, P, B, n, e and J are the mass den-
sity, velocity, gas pressure, magnetic field, mag-
netic diffusivity, internal energy, and current den-
sity (= V x B/u), respectively. We use the equa-
tion of the state for ideal gas, i.e., P = (y — 1)e
where 7 is the specific heat ratio (=5/3).

4.2. Parameters & Normalization

The only parameters for this simulation are the
plasma (3 value and the magnetic Reynolds num-
ber R,,. /2 denotes the ratio of the Alfvén wave
transit timescale to the sound transit timescale.
Similarly, R,, denotes the ratio of the magnetic
diffusion timescale to the Alfvén wave transit
timescale. In most astrophysical problems, we
can set 8 to be much smaller than unity (e.g.,
B ~ 1072 for solar corona). R, is much larger
than unity (e.g., Rm ~ 10! for solar flares if we
estimate proper spatial scale by typical dimension
of the magnetic flux tube; see equation 1).

However, the situation with § < 1 and/or
R,, > 1 is very difficult to treat numerically,
because we must solve the problem with a very
wide dynamic range of timescales. Therefore,
we choose moderate values as approximations for
these parameters as follows (we call this a typical
case or case A; see below).

Py
Vao
= =245, 9

where P,, By and Vo are the gas pressure,
magnetic field strength and Alfvén speed in the
asymptotic region far from the current sheet (uni-
form in this region), respectively, and 7 is the
magnetic diffusivity in the diffusion region (z,y <
2D, see figure 7). '

One might think that the above adopted value
for magnetic Reynolds number (24.5) is consid-
erably apart from a realistic value (~ 10'%; see
equation [1]). We must note the difference of
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mesh as follows: In the vicinity of the diffusion re-
gion (z,y < 20D), the mesh size is D/10 in both
the x and y directions to obtain a high spatial
resolution. Outside this region, the mesh size in-
creases exponentially in both z and y directions.
The maximum mesh size is 30D in both direc-
tions (as a result, our mesh has a very long, slen-
der shape at large distances along the z— or y—
axis).

We use the 2-step Lax-Wendroff scheme with
artificial viscosity to solve the following 2-D resis-
tive MHD equations:

P ev(m) =0, (@

%?—Vx('va) = =V x (unJ),(6)
%te-+V-[(e+P)v] -
un|J? +v- VP (7)

where p, v, P, B, n, e and J are the mass den-
sity, velocity, gas pressure, magnetic field, mag-
netic diffusivity, internal energy, and current den-
sity (= V x B/u), respectively. We use the equa-
tion of the state for ideal gas, i.e., P = (y — 1)e
where 7 is the specific heat ratio (=5/3).

4.2. Parameters €& Normalization

The only parameters for this simulation are the
plasma [ value and the magnetic Reynolds num-
ber R,,. 3Y/2 denotes the ratio of the Alfvén wave
transit timescale to the sound transit timescale.
Similarly, R,, denotes the ratio of the magnetic
diffusion timescale to the Alfvén wave transit
timescale. In most astrophysical problems, we
can set 3 to be much smaller than unity (e.g.,
B ~ 1072 for solar corona). R,, is much larger
than unity (e.g., R,, ~ 10 for solar flares if we
estimate proper spatial scale by typical dimension
of the magnetic flux tube; see equation 1).

However, the situation with 8 < 1 and/or
R,, > 1 is very difficult to treat numerically,
because we must solve the problem with a very
wide dynamic range of timescales. Therefore,
we choose moderate values as approximations for
these parameters as follows (we call this a typical
case or case A; see below).

B
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where Py, By and V4o are the gas pressure,
magnetic field strength and Alfvén speed in the
asymptotic region far from the current sheet (uni-
form in this region), respectively, and 7 is the
magnetic diffusivity in the diffusion region (z,y <
2D, see figure 7).

One might think that the above adopted value
for magnetic Reynolds number (24.5) is consid-
erably apart from a realistic value (~ 10'%; see
equation [1]). We must note the difference of




the adopted spatial scales to estimate the mag-
netic Reynolds number between them. When we
estimate the proper spatial scale by the entire
system size (~ 107[m] for solar flares), we ob-
tain R,, ~ 10 for the Spitzer resistivity. How-
ever, we adopt here the current sheet thickness
(D ~ 10°[m)] for solar flares) for the proper spatial
scale. In addition, we suppose that an anomalous
resistivity which is much larger, say, in 5 orders
of magnitude than the Spitzer resistivity in the
following simulations. Thus, the realistic value
of magnetic Reynolds number is ~ 102 for so-
lar flares, and we can understand that the above
adopted. value (24.5) is a good approximation.

We normalize physical quantities as follows: the
constants Vo, D and pg are used to normalize the
dimensions [L T™!], [L] and [M L~3], respectively,
where Vg is the Alfvén speed and py is the mass
density in the asymptotic region. In the normal-
ized units, the values of other physical quantities
are expressed as Py = 0.6, By = 8.7, ¢y = 0.4
and n = 0.1, where ¢4 is the sound speed at the
initial state (uniform in the simulation box).

We have performed numerical simulations for
the following models. The main results discussed
in the following sections are based on case A.
Other cases are performed for comparison to the
typical case A.

Case A: Typical case (figures 11, 13, 14, 15, 16,
17, 18, 19, 20, 32 and 33). Details are explained
in the previous section. ’

Case A’ Larger simulation box (figure 12).
Mesh size is coarser than in the typical case in
order to study the evolution subsequent to case
A. The maximum mesh size is 100 in both direc-
tions. Other parameters are identical to those of
the typical case. The initial condition is equal to
case A. ' . ,

Case B: Circular resistive region (Nitta 1988).
The resistivity is distributed in a circular region
(r <1 where r is distance from the origin) as an
exponentially decaying function of r with maxi-
mum value at the center.

Case C: Larger resistivity (figure 31). The dif-
fusivity (n = 0.5) is larger than the typical case
(n = 0.1). Other parameters are identical to those
in the typical case.

Case D: Unmagnetized upper half region (fig-
ure 33 [dashed line]). As the initial condition, the
lower half region (y < 3000) is filled with uni-
formly magnetized plasma, while the upper half
(y > 3000) is unmagnetized. The magnetic field
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falls off as a tangent-hyperbolic function of y with
the characteristic decaying scale of 1000. Other
parameters are identical to those in the typical
case.

4.3. Swimulation Results

The most significant feature of our results is the
self-similar expansion of the entire reconnection
system, which means that a solution at a partic-
ular moment is the same as that in the past or
in future if we change the spatial scaling in pro-
portion to time from the onset. A sequence of
six snapshots shown in figure 11 shows the time
evolution of the reconnection system. The subse-
quent evolution (case A’) is shown in figure 12 (to
follow the evolution for a longer time, we adopted
larger meshes than figure 11). Each figure repre-
sents a snapshot of the evolution at the denoted
time. Note that the scale of both axes expands
in proportion to time. We call this “zoom-out co-
ordinates”. The color contours of the magnetic
pressure and the configuration of the magnetic
field lines are shown in figures 11 and 12. The
blue arc denotes the FRWF. The sequence in fig-
ures 11 and 12 clearly shows that the distribution
of physical quantities (e.g., the magnetic pressure
and the magnetic field lines) approaches a station-
ary solution in the zoom-out coordinates. As we
will see, other quantities have the same property.

In order to remove the ambiguity of the term
“self-similar evolution”, let us consider the fol-
lowing situation: Let distribution of a physical
quantity, say @, be time-varying in the fixed co-
ordinates (i.e., @ = f[r,t]). When we measure
the distribution of @) in the zoom-out coordinates,
if @ = g(r') (where ' = r/[Vaot] is the posi-
tion vector from the origin [the center of the dif-
fusion region| in the zoom-out coordinates, with
r being the position vector in the original fixed
coordinates) and is independent of the time, we
can say that the distribution of @ is self-similarly
expanding at speed V9. We have verified that
our case is exactly the case of self-similar evolu-
tion. In our case, ) denotes any of the variables
p, P, v, B, and any combination of these quanti-
ties (e.g., magnetic pressure, total pressure, etc.)
Hence we can conclude that our result shows self-
similar evolution.

Figure 13 shows the evolution of the velocity
field. We can see the self-similar evolutionary
character of this field. The upper panel shows the
velocity field (red arrows) and the magnetic pres-
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sure distribution (color contours) at ¢ = 2449.,
and the lower panel shows the distribution of the
same quantities at ¢ = 8818.1. These two pan-
els look almost the same, except that the spatial
scale is different.

Just after the onset of reconnection, the solu-
tion changes its form as time proceeds even if
it is expressed in the zoom-out coordinates (i.e.,
t < 1200). The evolution during this stage de-
pends significantly on the resistivity model. Dur-
ing the period much later than the onset (say,
t > 1200), the evolution gradually settles into
the self-similar stage (stationary solution in the
zoom-out coordinates). All of the physical quan-
tities shown in figures 14 (density), 15 (gas pres-
sure), 16 (B;; the z-component of magnetic field),
17 (Vy; z-component of velocity) and 18 (V,; the
y-component of velocity) clearly show this relax-
ation to the self-similar stage. These figures rep-
resent the distribution of physical quantities in
the zoom-out coordinates. Note that the scale of
the horizontal axis varies in proportion to time.
Also note that the location of x of the cross sec-
tion placed parallel to the y-axis is also shifted in
proportion to time (z = 0.3V ot; the yellow verti-
cal line in figure 5). This procedure ensures that
we take a cross section at the same place in the
zoom-out coordinates. We can clearly see that
the solution in the zoom-out coordinates is quasi-
stationary. This is equivalent to saying that the
evolution is self-similar. The reconnection system
indefinitely grows self-similarly once the solution
approaches the stationary solution in the zoom-
out coordinates.

One may think that the estimated duration of
time required for reaching the self-similar stage
(t ~ 1200) is so much longer than in the Alfvén
transit timescale, which is unity in our normal-
ization. We should note that the formation of the
slow shock is not caused by the FRW propaga-
tion itself but by the induced inflow. The speed of
this inflow is found to be of the order of 1072V4,.
Hence, the inflow transit timescale is of the order
of 10? in the normalized time unit. The relaxation
timescale of this flow may be estimated to be sev-
eral times the inflow transit timescale. Thus, the
period t ~ 1200 is comparable to the inflow relax-
ation timescale.

The detailed structure of the self-similar solu-
tion at ¢ = 8818 is shown in figures 19 and 20.
The color contours show the distributions of the
total pressure (figure 19) and magnetic pressure

(figure 20). The white lines are magnetic field
lines. The red arrows show velocity vectors of
plasmas. The blue arc denotes the FRWF. The
velocity field inside the reconnection outflow is
intentionally omitted to clarify the velocity struc-
ture of the inflow region.

In figure 20, we see the reconnection jet con-
fined by the slow-mode shock along the current
sheet (y ~ 0, 0 < z < 2000). We can also see
the plasmoid enclosed by the slow shock (y ~ 0,
2000 < x £ 7000). The magnetic energy is mainly
converted at the slow shock. Hence, this is a
“fast reconnection” similar to that in the Petschek
model. The contours of the total pressure (see fig-
ure 19) represent the effect of the fast-mode wave
propagation. The FRW is produced by the ejec-
tion of the reconnection jet. As the FRW prop-
agates from the reconnection point (z = y = 0),
the total pressure decreases in its vicinity (the
blue region in figure 19). The resultant total pres-
sure gradient induces inflow toward the reconnec-
tion point. This inflow slightly converges as it ap-
proaches the current sheet. Such convergence is a
property of the fast-mode rarefaction-dominated
inflow as pointed out by Vasyliunas (1975). These
properties (slow shock formation and converging
inflow) suggest that the central region of this re-
connection system is indeed very similar to that of
the Petschek model. However, we should note the
following differences from the original Petschek
model:

The ejected reconnection jet and the plasmoid
propagate along the initial current sheet. This
strong, dense flow of plasma produces a high total
pressure region (red region in figure 19) near the
spearhead of the plasmoid due to a “piston” effect
(fast-mode compression). A vortex-like return-
flow gushes out of this high total pressure region.
This return-flow is the property of the evolution
process that has not been pointed out in previous
works. A fast-mode shock is formed in front of
the plasmoid. A contact discontinuity is formed
at the interface between the outflow driven by the
reconnection and the plasmas in the initial cur-
rent sheet. But we cannot identify these disconti-
nuities in figures 19 and 20 since the scale of the
discontinuities is very small compared to the total
system length (see Abe & Hoshino 2001). To go
into details about the structure of the reconnec-
tion jet and the plasmoid is beyond the scope of
this paper.




4.4. Summary of numerical study

We have presented a new model for describing
the evolutionary process of magnetic reconnec-
tion: the self-similar evolution model.

The possibility of this type of evolution has been
demonstrated by numerical simulations. An out-
line of the evolutionary process has been given in
section 3.

We should note that, in this new model, prop-
agation of the fast-mode rarefaction wave (FRW)
plays an important role in the self-similar expan-
sion of the reconnection system. The FRW prop-
agates almost isotropically at a constant speed
of Vo (the Alfvén speed in the asymptotic re-
gion) in the case of low [ plasmas (8 <« 1). The
only characteristic scale of the system at a later
stage (the self-similar evolution stage, see figure
10) is the radius of the circular wave front of the
FRW (FRWF) because the initial current sheet
thickness D, which is a fixed characteristic scale,
is negligible in comparison with the scale of the
FRWEF in this stage. This fact suggests the pos-
sibility of a self-similar solution. In fact, the re-
sults of our numerical simulation (see figures 11,
12) clearly show that the evolution settles into a
stationary state if these results are expressed in
the zoom-out coordinates (see section 4.3). This
is equivalent to saying that such evolution is self-
similar. Again, note that the self-similar evolu-

tion is achieved only in the last stage of evolution -

(t > D/Vyao), in which the fixed characteristic
scale (D or the size of the resistive region) is neg-
ligible as compared to the system size (the radius
Vot of the FRWF). Of course, at that stage, the
shape and size of the resistive region, which are
artificially given in the model, no longer influence
the evolution.

This new type of reconnection system repre-
sents “fast” reconnection. As the FRW propa-
gates to the uniform region (the asymptotic region
y > D), an inflow is induced by the decrease in
total pressure near the reconnection point. Fig-
ure 20 clearly shows that a pair of slow shocks
is formed by this induced flow toward the cur-
rent sheet. These slow shocks efficiently con-
vert magnetic energy to kinetic or thermal energy
of plasma. Of course, the speed of this energy
conversion is determined by the slow-mode wave
speed, and is independent of the magnetic diffu-
sion speed (x R,,°). Hence, this energy release is
a fast one, and we can call it fast reconnection.
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5. ANALYTICAL APPROACH

The spatial dynamic range of the self-similar
evolution verified by our simulation is restricted
(~ 10?) for technical reasons. In order to ensure
that the evolution we have discovered is truly a
self-similar one, let us study this problem using
an analytical method.

5.1. Basic assumptions

We focus our attention on the inflow region
of the reconnection system that is spontaneously
evolving without any influence from outer bound-
ary conditions. Macroscopic aspects of this evo-
lution are well described by fluid approximation;
hence, we can use MHD equations for this re-
search. In the fast reconnection models, resistiv-
ity plays an important role only in the diffusion
region that is in the current sheet; thus, we can
neglect the resistive effects in the inflow region.
In the usual astrophysical plasma systems, the
plasma-3 value is very small (typically 8 ~ 1072
for the solar corona). Hence, we can assume
that the system is filled with non-resistive and
pressure-free (cold) plasmas (except, of course, in-
side the current sheet).

We study reconnection starting from an equi-
librium state of a two-dimensional current sheet
system with anti-paralle]l magnetic distribution,
as in the Harris solution. As discussed in the pre-
vious section, the self-similar stage arises in a very
late period (Vapt > D). This means that the ini-
tial current sheet thickness D becomes negligible
in comparison with the system size V4ot. We can
estimate only one system size using the fast-mode
wave transit scale Vyot. This is equivalent to as-
suming an infinitesimally thin current sheet.

In the case of Petschek-type reconnection, the
resultant reconnection rate is of the order of 1072,
which is consistent with our numerical simulation
for self-similar fast reconnection (see section 4).
We can expect a rather small reconnection rate
in many cases. This means that the variation of
physical quantities from initial equilibrium due to
reconnection is very small, and we can treat such
variation using a perturbation method.

5.2. Zoom-out coordinates

A “self-similar solution” can be regarded as a
stationary solution in the “zoom-out coordinates
system” that is defined as

v =1r/(Vaot) , (10)
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where 7 is the position vector from the recon-
nection point in the conventional coordinate sys-
tem (hereafter we call this the “fixed coordinates
system”) and ' is the position vector in the zoom-
out coordinates system. One must note that Vg
in equation (10) represents the Alfvén speed in the
asymptotic region far from the current sheet and
is constant throughout the evolution. The term 7’
can be expressed as ' = xi+yj+zk, where the z-
axis is parallel to both the current sheet and the
initial anti-parallel magnetic field, the y-axis is
perpendicular to the current sheet, and the z-axis
is parallel to the current sheet but is perpendic-
ular to the initial magnetic field (hence, 9,=0 in
this two-dimensional problem). The origin of this
coordinates system is at the reconnection point,
which is chosen to be the center of the current
sheet.

Let us express the MHD variables in a non-
dimensional form. Note that we give a general
formalism here, and hence gas pressure remains

in the following equations (when we solve these

equations actually, we will take the cold limit and
neglect the pressure terms). We adopt the follow-
ing normalization in this paper:

= V(v +7')

= Vaovitopo - B'(r')
= B/2-pVao® - P'(r')

N e e

where g is the magnetic permeability in a vac-
uum, and 8 = (Cs/Vao)? with Cy being the
sound speed in the asymptotic region. Note that
we use SI units throughout this section.

5.3. Non-dimensional MHD equations in
zoom-out coordinates

By using the above normalizations, the MHD
equations in zoom-out coordinates can be put into
the following non-dimensional form:

V' (pv) = -2/ (15)
V' [pv'v' — B'B' + I(BP' + B?)/2] =
=30’V (16)
V' (vB' - Bv')=-B’ (17)
Py =1 (18)

where I is the unit tensor and < is the specific
heat ratio.

(11)
= po-p(r') (12)
(13)
(14)

The left-hand side of each equation is very simi-
lar to its counterpart in ordinary MHD equations
(see equations [AT7]-[A10]), but strange source
terms appear on the right-hand side. These source
terms appear as apparent effects in the zoom-out
coordinates. We should note that our main fo-
cus is on the structure of the inflow region, which
is located outside the diffusion region and up-
stream from the slow shock as in the Petschek
model. Resistivity does not play any important
role in the inflow region. Thus, we can use ideal
(non-resistive) MHD equations. For simplicity, we
adopt the polytropic relation instead of the full
energy equation. The flow does not experience
a violent entropy production in the inflow region
(upstream of the slow shock). Thus, the poly-
tropic variation is a good approximation in the
inflow region.

5.4. Perturbative expansion

We treat here a slow energy conversion induced
by magnetic reconnection. The word “slow” used
here means a very small reconnection rate and
should not be confused with what it denotes in the
term “slow reconnection”, which usually means
an explicit dependence of the reconnection rate
on the magnetic Reynolds number. As we found
numerically, the self-similar reconnection that we
wish to study is “fast” reconnection in the sense
that the reconnection rate does not depend on the
magnetic Reynolds number (at most, it depends
logarithmically).

In such a case, deviation owing to reconnection
from the initial state is very small in the inflow
region. Hence, we can adopt the perturbative ex-
pansion method. We treat the quantities of the
initial equilibrium state to be of the zeroth order,
and any variation from it should be treated as a
first order quantity. In this paper, our attention is
focused on fundamental properties of self-similar
reconnection; thus, we treat up to the first order
variation. We can recognize that the small expan-
sion parameter in this work is the reconnection
rate.

We assume an anti-parallel two-dimensional
magnetic distribution with an infinitesimally thin
current sheet. Note that the self-similar stage is
established in the case where there is no fixed
proper length in the system. However, the sys-
tem does have a fixed scale: the initial thickness
D of the current sheet is finite. Thus, such a self-
similar stage is reached only if Vyot > D (see




section 4.4).
This initial equilibrium state (uniform distribu-
tion) is expressed as

36 = 1, (19)
vy = -1, (20)
P =1, (21)
po = 1, (22)

in the upper half-plane y > 0. The quantities
having subscript 0 are the zeroth order quantities.

The first order quantities represent the devia-
tion from the initial equilibrium. By substituting
the expansion form of each quantity

B' = B+ B}, (23)
v o= v+, (24)
P = P+P, (25)
o= potpi, (26)

together with equations (19) - (22) into the MHD
equations (15)-(18) in the zoom-out coordinates,
we obtain the equations for each order of magni-
tude. The zeroth order equations are satisfied au-
tomatically since the zeroth order quantities show
the uniform equilibrium state (see Appendix B).

In order to solve the reconnection in a low-8
plasma, let us take here the cold limit 7 — 0.

We obtain the first order equatlons (see Ap-
pendix B),

Vv, -7 -V =0, (

—r' . Vv, —1-V'B] +V'(z B))=0,(28
v -V'B+i- Vv, -7 (V'p)i=0,(
P{=w’1- (

Note that even in the cold limit, the dimension-
less gas pressure P’ has a finite value (see equation
[14]). When we obtain the value of dimensionless
density o/, we can easily obtain P’ by equations
(25) and (30). By solving these first order equa-
tions, we can obtain the self-similar solution.

5.5. Linearized Grad-Shafranov equation

We adopt the method of the Grad-Shafranov
(G-S) equation. The above basic equations (27)-
(30) show that every physical quantity can be ex-
pressed as a function of the z-component A} of
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magnetic vector potential. Basic physical quan-
tities are related to A} in the following way (see
Appendix C).

B, = V' x Ak (31)
vy, = 0 (32)
dy = oty (3)
b= (34)
R = a5 (35)

where the subscript x and y denote the z- and
y-components of the vector quantities.

By substituting these functional forms into the
above linearized MHD equations (27)-(30), we can
obtain the G-S equation for this linearized sﬂ:ua—
tion (see Appendix C):

o O A} 0? A, 0% A}
(1 x)axZ 258+(1 )32_0
(36)

In our zoom-out coordinates, the Alfvén wave-
front (or the fast-mode wave front in the cold
plasma limit 8 — 0; [the FRWF]) emitted from
the reconnection point is a unit circle. Hence, we
solve the G-S equation inside the FRWF.

We should note that equation (36) is a Tricomi-
type second-order partial differential equation.
We refer to region |r'| < 1 of the upper half-
plane (y > 0) as the region R and |r'| > 1 as
R. The equation is elliptic in R and hyperbolic in
R. Region R is affected by the FRW emitted from
the diffusion region. In R, there is no difference
from the initial equilibrium state (uniform distri-
bution), because no signal propagates here yet.
We do not need to solve for region R. Hence, in
the following, we solve the elliptic equation (36)
for R under boundary conditions at the FRWF
and at the bottom boundary (y = 0, which is the
junction surface to the reconnection jet).

It is convenient to rewrite the G-S equation (36)
and the other relations (32)-(35) in polar coordi-
nates (r, #), because the boundary of the FRWF
has a circular shape. We denote by r = /22 + y?
the distance from the reconnection point z = y =
0 and by 0 the angle in the z — y plane from the
z-axis (i.e., tanf = y/z). The G-S equation and
the other relations are rewritten as
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Ay PA A

207 _ .2
r*(1—1r°) a2 T e T 0, (37
and
v, = 0 (38)
A/ .
oy = roat— A, (39
0A| cosf 0A]
- : 1 1
P4 sin 6 5 + T (40)
Pl = vp, . | (41)

We solve the G-S equation (37) numerically in the
region 7 < 1, 0 < § < 7 with boundary conditions
at r =1 and 0 =0, 7 (see next subsection).

5.6. Boundary conditions

At the FRWF (r = 1), the deviation of
any quantity from the initial equilibrium state
must vanish (see equations [31]-[35] and [38]-[41]).
Thus, A} = const. and should be a C'-class con-
tinuous function at r = 1. Without any loss of
generality, we can set A} = 0 and 0,4} = 0 on
r=1. :

Note that if we impose a Dirichlet type bound-
ary condition A} = 0 at r =1, another condition
0,A} = 0 (this means B} = 0 at r = 1) is au-
tomatically satisfied. This is easily understood

from equation (37). The first two terms on the-

left-hand side vanish at » = 1, then §,A] must
vanish if these quantities are continuous at this
point.

The boundary condition at y = 0 is not trivial
as at r = 1. This boundary corresponds to the
slow shock and is the interface between the in-
flow region and the shocked region (reconnection
jet). We need a precise physical discussion to de-
termine the junction condition for this boundary.
Instead of solving this difficult problem, we set the
boundary condition at this interface by adopting
the result of our numerical simulation (see section
4).

Our previous simulation gives information for
every quantity just outside the slow shock. We
adopt the following simple functional form of A}
approximating the boundary values of A} from
our previous simulation,

A,l(lxlay = 0)

=l

= x—+1)A0 (42)
(for |z| < zp)
_ __”6';/;”":6 . Lzl - D40 (43)

(for z,, < |2| < 1) .

where Ap (< 1) is the value of A at the reconnec-
tion point z = y = 0 (this shows the reconnection
rate v}, at * = y = 0; see equation [33]), z. is
the location of the contact discontinuity (the in-
terface between the original current sheet plasma
and the reconnected inflow plasma), and z,, is the
location of the minimum of A]. Thus, we have set
a complete Dirichlet-type boundary problem for
the linearized G-S equation (37). We set Ao, z.
and z,, to be consistent with our numerical simu-
lation. For example, the figures shown in the next
section are for the case Ay = 0.055, z. = 0.64,
Ty = 0.84.

We compare the model boundary value defined
above and the simulation result (case A in sec-
tion 4.2) of A} along the slow shock in figure 21.
The solid and dotted lines show the approximated
model adopted here and the simulation result, re-
spectively. The actual slow shock has a small tilt
angle from the z-axis, so that, when plotting the
simulation result (dotted line), we have projected
the A} values obtained at the slow shock onto
the z-axis. The two straight line segments consti-
tuting the model boundary condition have been
determined in such a way that they pass the sim-
ulated values at the X-point (z = 0, A} = 0.055;
this value represents the reconnection rate), at the
contact point (x = 0.64, A} = 0; the vanishing A}
corresponds to the contact point between the ini-
tial current sheet plasma and the inflow plasma),
and at the minimum A} (z = 0.84). We can see
that the solid line approximates the dotted line
reasonably well.

5.7. Self-similar solution

By using the SOR routine, we numerically solve
the linearized G-S equation (37) under the Dirich-
let type boundary condition as discussed in the
previous section. A typical result (A9 = 0.055,
z, = 0.64, x,, = 0.84; see the last section) is
obtained in the figures 22 (A1), 24 (v},), and 26
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Let us compare the results of this semianalytic
study with the results of our simulation in sec-
tion 4. Figures 22, 24 and 26 are the semi-
analytic results showing the first order quanti-
ties solved here: the magnetic vector potential
(z-component), velocity (y-component), and mass
density, respectively. Figures 23, 25 and 27 show
the numerical results in section 4: the variation
from the initial equilibrium of the magnetic vector
potential (z-component), velocity (y-component),
and mass density, respectively. Each quantity is
renormalized in the way explained in section 5.2
(see equations [10]-[14]). Small numbers affixed
to some of the contours denote the level values at
these points. We easily find that the results of the
semianalytic study are consistent with the result
of our numerical simulation, not only in the topo-
logical sense of contours, but also quantitatively.

In order to reinforce the above discussion, we
compare profiles of magnetic vector potential (z-
component), velocity (y-component) and mass
density for the numerical solution and the semi-
analytic solution. Figures 28, 29 and 30 show pro-
files of the flux function (1st order), velocity field
(y-component) and mass density (1st order) dis-
tribution at z = 0.5, respectively. The dashed line
and the solid line in each figure show the numer-
ical and semi-analytic solutions, respectively. We
clearly can find that both solutions are fairly con-
sistent near the FRWF (y ~ 1). As we discussed
in section 5.4, we cannot adopt a perturbative

method inside the reconnection jet (y < 0.05),

because the deviation from the initial equilibrium
is very large in that region.

Though outside the slow shock, the analytical
solution gradually separates from the numerical
solution as the inflow approaches the slow shock.
This is owing to the following two reasons:

The first is concerned with a finite thickness of
the reconnection jet. As we note in section 5.6,
though the slow shock has a finite opening an-
gle from the original current sheet, we have set a
boundary condition which imitates the junction
condition between the inflow and the reconnec-
tion jet at y = 0 to obtain the analytic solution.
This necessarily results in a slight discrepancy be-
tween the numerical result and the analytic result
near the slow shock. The locus of the slow shock
at £ = 0.5 is y ~ 0.05. Thus if we shift the curves
for the analytic solution (solid line) toward the
right with 0.05 of the graduation of the abscissa
in figures 28 and 29, the discrepancy near the slow
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shock will almost vanish.

The second reason is an effect of the converg-
ing/diverging inflow induced by the fast-mode
rarefaction/compression. We can see the converg-
ing inflow near the reconnection point in our nu-
merical result (about x < 4000 of figure 19, which
corresponds to £ < 0.4 in the zoom-out coordi-
nates). The diverging inflow also arises near the
plasmoid (about 5000 < z < 7000 of figure 19,
which corresponds to 0.5 < z < 0.8 in the zoom-
out coordinates). As shown in equation (32), how-
ever, the z—component of the velocity is zero in
the linear approximation, hence any effect of the
converging or diverging inflow is neglected. This
naturally leads to a discrepancy typically in the
density distribution between the analytic result
and the numerical result as follows: In the region
near z = 0.5, the inflow diverges into a Petschek-
like converging flow and a vortex-like return flow.
Thus, the density indicated by the numerical re-
sult should be smaller than that in the analytic
result which does not include any converging or
diverging flow. If we take account of higher or-
der terms in the analytic work, both results will
coincide.

Here, we have succeeded in verifying that (1)
the results of our numerical simulation (see sec-
tion 4) truly represent a self-similar growth and
(2) this self-similar growth is stable over a long
duration. The spatial dynamic range of the nu-
merical study is limited (at most ~ 10%) by tech-
nical restrictions (e.g., restriction of memory and
CPU time), but the fact that the results of the nu-
merical simulation are consistent with the semi-
analytic solution suggests that the self-similar
growth will continue indefinitely. On the other
hand, the stability of the semianalytic solution
with respect to any MHD mode is certified by the
numerical simulation. We can say that our semi-
analytic study and numerical simulation comple-
ment each other.

5.8. Summary of Semi-analytical study

Together with our time-dependent numerical
simulation (see section 4), the linearized pertur-
bation solution discussed in this paper has en-
sured the existence of the self-similar growth of
fast magnetic reconnection.

Thus, we propose here a new model describ-
ing the “self-similar evolution of fast reconnec-
tion.” The time-dependent simulation directly
solving the MHD equations numerically is effec-
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tive for checking the stability of the evolving sys-
tem. However, the duration of the simulation is
restricted because of the restrictions of computer
memory and run time or the stability of the sim-
ulation code itself. Hence, even if we find behav-
ior resembling self-similarity in the simulation re-
sults, we cannot be convinced that this behavior
is a true one that may continue indefinitely.

On the other hand, an analytical study has the
following properties: If we solve the MHD equa-
tions in the zoom-out coordinates under the sta-
tionary assumption and obtain a (semi-) analytic
solution that is identical to the solution of the nu-
merical simulation, we can be convinced that the
numerically obtained solution, which seems to be
self-similar, is truly a self-similar one. On the
other hand, an analytical study of the stationary
equation does not give information on the stabil-
ity of the solution. : ‘

From these arguments, we can reach the fol-
lowing conclusion: our time-dependent numeri-
cal study and analytical study complement each
other in establishing a model of “self-similar evo-
lution of fast reconnection.”

6. DISCUSSION
6.1. Conditions for self-similar reconnection

The self-similar evolution of magnetic recon-
nection will be realized in systems in which (1)
the initial spatial scale of the disturbance (e.g.,
scale of microscopic instabilities that will lead to
anomalous transport phenomena, ~ 10° m if we
estimate it by the ion Larmor radius in the typi-
cal case of solar flares) is much smaller than the
entire spatial scale of the system (e.g., the curva-
ture radius of the loop of a magnetic flux tube,
~ 107 — 10® m in the typical case of solar flares)
and (2) there is no proper spatial scale except the
one that linearly expands with time (e.g., the ra-
dius of the FRWF in our case). In such a system,
the magnetic reconnection triggered by the initial
disturbance can evolve as the FRW propagates
(see section 3). The spatial scale of the FRW
propagation is the unique proper scale of the sys-
tem if it is much larger than the initial current
sheet thickness. The spatial dynamic range of the
evolution is determined by the ratio of the entire
system scale to the initial disturbance scale. In
the above-mentioned case of typical solar flares,
it will be of the order of 107. In such a system,
the external boundary does not affect the evolu-
tion for a certain amount of time after the onset

of reconnection. This means that the system can
freely evolve, independent of the outer boundary
condition. Such a very wide dynamic range and
only one evolving spatial scale strongly suggest
the possibility of a self-similar solution. In fact,
we have obtained a self-similar solution both nu-
merically and analytically.

We can expect that the size and shape of the
resistive region no longer influence the evolution,
because the dimension of the resistive region is
negligible as compared to that of the entire sys-
tem. In fact, we can numerically confirm that
evolution at the later stage is insensitive to the
resistivity model (see figure 31 and section 6.2).

It is important to check whether such self-
similar solutions are stable or not. We have ver-
ified by our numerical simulations that our self-
similarly evolving solution is stable with respect
to any MHD mode over ~ 10? of the spatial dy-
namic range of evolution.

Biernat, Heyn and Semenov (1987) and Se-
menov et al. (1992) analytically studied the evo-
lutionary process of magnetic reconnection in a
situation similar to that described in this paper.
They treat the reconnection rate as a free param-
eter that can be varied arbitrarily as a function
of time. From this perspective, the case they
treated is also categorized as spontaneous recon-
nection. Their analysis gives a general formalism
of spontaneous time-varying reconnection. How-
ever, in their works, plasma of the inflow region is
assumed to be incompressible for analytical con-
venience. This means that the sound speed is
infinitely high even when the Alfvén speed is fi-
nite. This is equivalent to assuming that the in-
flow region is filled with extremely high-3 plasmas
(note that B ~ [sound speed]?/ [Alfvén speed]?).
Needless to say, this assumption is unsuitable for
most astrophysical problems. Contrary to our
case, a fast-mode wave emitted from the central
region instantly propagates to infinity. Although
the proper spatial scale determined by the fast-
mode wave propagation does not exist in the case
of Biernat et al. (1987), there is a possibility
that the structure formed by slow-mode waves can
be self-similar, because the propagation speed of
their slow-mode wave is finite. Our work is un-
derstood as an extension of their work on realistic
low-/3 astrophysical plasma systems.

6.2. Adequacy of resistivity model
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tive for checking the stability of the evolving sys-
tem. However, the duration of the simulation is
restricted because of the restrictions of computer
memory and run time or the stability of the sim-
ulation code itself. Hence, even if we find behav-
ior resembling self-similarity in the simulation re-
sults, we cannot be convinced that this behavior
is a true one that may continue indefinitely.

On the other hand, an analytical study has the
following properties: If we solve the MHD equa-
tions in the zoom-out coordinates under the sta-
tionary assumption and obtain a (semi-) analytic
solution that is identical to the solution of the nu-
merical simulation, we can be convinced that the
numerically obtained solution, which seems to be
self-similar, is truly a self-similar one. On the
other hand, an analytical study of the stationary
equation does not give information on the stabil-
ity of the solution. :

From these arguments, we can reach the fol-
lowing conclusion: our time-dependent numeri-
cal study and analytical study complement each
other in establishing a model of “self-similar evo-
lution of fast reconnection.”

6. DISCUSSION ‘
6.1. Conditions for self-similar reconnection

The self-similar evolution of magnetic recon-
nection will be realized in systems in which (1)
the initial spatial scale of the disturbance (e.g.,
scale of microscopic instabilities that will lead to
anomalous transport phenomena, ~ 10° m if we
estimate it by the ion Larmor radius in the typi-
cal case of solar flares) is much smaller than the
entire spatial scale of the system (e.g., the curva-
ture radius of the loop of a magnetic flux tube,
~ 107 — 10® m in the typical case of solar flares)
and (2) there is no proper spatial scale except the
one that linearly expands with time (e.g., the ra-
dius of the FRWF in our case). In such a system,
the magnetic reconnection triggered by the initial
disturbance can evolve as the FRW propagates
(see section 3). The spatial scale of the FRW
propagation is the unique proper scale of the sys-
tem if it is much larger than the initial current
sheet thickness. The spatial dynamic range of the
evolution is determined by the ratio of the entire
system scale to the initial disturbance scale. In
the above-mentioned case of typical solar flares,
it will be of the order of 107. In such a system,
the external boundary does not affect the evolu-
tion for a certain amount of time after the onset

of reconnection. This means that the system can
freely evolve, independent of the outer boundary
condition. Such a very wide dynamic range and
only one evolving spatial scale strongly suggest
the possibility of a self-similar solution. In fact,
we have obtained a self-similar solution both nu-
merically and analytically.

We can expect that the size and shape of the
resistive region no longer influence the evolution,
because the dimension of the resistive region is
negligible as compared to that of the entire sys-
tem. In fact, we can numerically confirm that
evolution at the later stage is insensitive to the
resistivity model (see figure 31 and section 6.2).

It is important to check whether such self-
similar solutions are stable or not. We have ver-
ified by our numerical simulations that our self-
similarly evolving solution is stable with respect
to any MHD mode over ~ 10? of the spatial dy-
namic range of evolution.

Biernat, Heyn and Semenov (1987) and Se-
menov et al. (1992) analytically studied the evo-
lutionary process of magnetic reconnection in a
situation similar to that described in this paper.
They treat the reconnection rate as a free param-
eter that can be varied arbitrarily as a function
of time. From this perspective, the case they
treated is also categorized as spontaneous recon-
nection. Their analysis gives a general formalism
of spontaneous time-varying reconnection. How-
ever, in their works, plasma of the inflow region is
assumed to be incompressible for analytical con-
venience. This means that the sound speed is
infinitely high even when the Alfvén speed is fi-
nite. This is equivalent to assuming that the in-
flow region is filled with extremely high-3 plasmas
(note that 8 ~ [sound speed]?/ [Alfvén speed]?).
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case, a fast-mode wave emitted from the central
region instantly propagates to infinity. Although
the proper spatial scale determined by the fast-
mode wave propagation does not exist in the case
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that the structure formed by slow-mode waves can
be self-similar, because the propagation speed of
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In our simulation, localization and stationarity
of resistivity are essential assumptions. Since re-
sistivity cannot be derived from MHD equations,
we must adopt for it a certain model. In the
problem of magnetic reconnection in astrophysi-
cal plasmas, so-called anomalous resistivity plays
a part in the magnetic diffusion. In order to make
a realistic model, the physical process causing the
anomalous resistivity is very important, but re-
mains as an open question.

In addition, as discussed in section 2.7, there

is room for discussion concerning two different
points of view about influences of the resistivity

on the evolution of magnetic reconnection. Even

in a case in which resistivity does not play crucial
roles (“driven” reconnection), there is a predic-
tion that fast reconnection will never be attained
in a system with uniformly distributed resistivity
(Biskamp 1986, Scholer 1989, Yokoyama & Shi-
bata 1994). On the other hand, in a case in which
resistivity plays crucial roles (“spontaneous” re-
connection), the reason resistivity can be local-
ized is still unclear. We know neither the origin
of resistivity nor its influence on the reconnection
system. :

Our opinion of the resistivity model is that lo-
calization and stationarity of the resistivity are
essential for self-similar evolution, but the evolu-
tion does not depend upon the value of the resis-
tivity, the size or shape of the resistive region or
the physical process causing the resistivity.

In order to justify our opinion, we must com-
pare our simulation results with other resistivity
models. As an example of a different resistivity
model (case B), we have performed the following
exercise (Nitta 1988): We assume a circular resis-
tive region 7 < D in the current sheet, where r is
the distance from the origin and ‘D is the initial
thickness of the current sheet. In this resistive
region, the resistivity is distributed as an expo-
nentially decaying function of r. Simulation with
this resistivity model also results in self-similar
evolution of magnetic reconnection.

Another example (case C) we have tested has
a resistive region of the same shape as that of
the previous case (resistivity uniformly enhanced
in the central square region), but the value of
the resistivity is five times larger (n = 0.5 thus
R,, = 4.9) than in the previous case (n = 0.1
thus R,, = 24.5). The result (see figure 31) is
very similar to that of the original case (see figure
11). The evolution does not depend crucially on
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the value of resistivity.

In conclusion, we cannot identify any essential
difference among these three cases. Hence, we
believe that any model with a localized resistivity
and an infinitely large system size will result in
self-similar evolution.

Magnetic reconnection requires some processes
to maintain an electric field (reconnection electric
field) along the reconnection line in order to break
up the frozen-in condition. In the diffusion re-
gion of the plasma system with an extremely large
magnetic Reynolds number like in astrophysical
problems, macroscopic MHD approximation is no
longer valid, and the reconnection electric field
should be caused by microscopic processes. The
three resistivity models we have examined above
are all based on the Ohmic term unJ, where pu is
the magnetic permeability, n is the magnetic diffu-
sivity and J is the current density in the diffusion
region. In these models, the localized resistivity
um is supposed to represent anomalous resistivity
induced by anomalous collision between particles
and waves as a result of micro-instabilities (e.g.,
the lower hybrid drift [LHD] instability [Huba et
al. 1977; Shinohara et al.1998; Shinohara et al.
1999)). '

However, in actual plasma systems, the recon-
nection electric field might arise from other terms
of generalized Ohm’s law (Biskamp 1997). Several
collisionless processes to maintain the reconnec-
tion electric field have been proposed (e.g., the
Hall current effect [Ma & Bhattacharjee 1996],
the electron inertia effect [Tanaka 1995, or the
whistler turbulence effect [Shay & Drake 1998]).
Unfortunately, we do not have a definite strat-
egy for including a reconnection electric field such
as that produced by the above-mentioned micro-
scopic processes in the macroscopic MHD regime.
Thus, we adopted a simplified resistivity form in
our Ohm’s law.

Of course, the actual resistivity in astrophysical
plasma systems cannot be described by the simple
Ohm’s law adopted in our simulation, but our self-
similar evolution requires only a contrivance to
keep a finite electric field along the reconnection
line. We should emphasize again that self-similar
evolution occurs in the last stage when the system
scale becomes much larger than the initial current
sheet thickness and the size of the diffusion region.
Hence, such evolution can be described by macro-
scopic MHD and does not depend upon whether
the central resistivity is caused by collisional or
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collisionless processes.

6.3. Control factor of diffusion speed

There is no doubt that magnetic reconnection
is induced by the magnetic resistivity in the cur-
rent sheet. The efficiency of the energy conver-
sion in the reconnection system is controlled by
the inflow speed (i.e., the reconnection rate, see
2.2) which is balanced with the magnetic diffu-
sion speed. Thus, one may think that to reveal
the microscopic physics of resistivity is essential
to understanding the reconnection, or that the
value of resistivity is responsible for determining
the diffusion speed. We must realize, however,
that the diffusion speed v, is not described only
by the magnetic diffusivity n but also by the cur-
rent sheet thickness D as like v; = n/D. The
current sheet thickness is obviously a value deter-
mined by a certain macroscopic process. Let us
focus our interest on the macroscopic aspect of
magnetic diffusion.

The author believes the following conjecture,
which is supported by a number of experiences
of numerical simulations (see section 6.2): The
current sheet thickness seems to be self-regulated
by the reconnection system itself to keep the dif-
fusion speed constant. If the resistivity is small,
the current sheet thins and wvice versa. Hence, the
diffusion speed as a result of dynamical evolution
is insensitive to the value of resistivity.

In the MHD (fluid) approximation, the thick-
ness of the current sheet can be infinitesimally
small. Hence, the diffusion speed can remain fi-
nite if the resistivity is very small as in most as-
trophysical problems. Of course, in actual plasma
systems, the possible minimum value of the cur-
rent sheet thickness is bound by a scale of the
order of the ion Larmor radius (~ 1m for the so-
lar corona). Hence, this self-adjusting mechanism
might break down if the resistivity is extremely
small.

The core of all the problems is what process de-
termines the diffusion speed (which is equivalent
to the inflow speed). This is still an open ques-
tion, but the author believes that the key process
is not microscopic, but macroscopic. Once the

reconnection has started, the FRW emitted from
the reconnection point induces the inflow. Hence,
the inflow speed should depend upon the magni-
tude of the FRW that should be determined by
macroscopic fluid physics. However, this question
remains an important matter of future investiga-

tion.

6.4. Comparison with previous stationary models

There are several theoretical models for steady
state magnetic reconnection. We compare our
self-similar evolution model with these previous
models. Our discussion is focused only on fast
reconnection, because the very quick energy con-
version frequently observed in astrophysical phe-
nomena suggests that fast reconnection should be
considered the responsible mechanism.

The Petschek model (Petschek 1964) is charac-
terized by a pair of slow shocks and fast-mode
rarefaction in the inflow region. This fast-mode
rarefaction wave is produced in the central recon-
nection region. As a result of fast-mode rarefac-
tion, the gradient of the magnetic field strength
near the neutral point decreases because of the
bending of the magnetic field lines (Vasyliunas
1975). This process limits the diffusion speed and
hence the reconnection rate (see section 2.5).

The Sonnerup model (Sonnerup 1970) was de-
veloped from the Petschek model. This model is
characterized by a pair of slow shocks and a hy-
brid of fast-mode and slow-mode rarefaction. The
fast-mode rarefaction wave is produced in the cen-
tral region as in the Petschek model, but the slow-
mode rarefaction wave is injected from the bound-
ary. Because of the hybrid nature of rarefaction,
the gradient of the magnetic field strength near
the neutral point does not decrease as the in-
flow approaches the slow shock as in the Petschek
model. Therefore, the Sonnerup model can attain
the maximum reconnection rate possible for mag-
netic energy converters (Priest & Forbes 1986).

Our self-similar evolution is never influenced by
the boundary conditions, so Sonnerup-type hy-
brid rarefaction does not take place at all in our
case. Fast-mode rarefaction dominates in the
vicinity of the diffusion region. As discussed in
section 4.3, the central region of this self-similarly
evolving system is of the Petschek-type. There-
fore, the reconnection rate will be limited in a way
similar to the original Petschek model. This point
will be clarified in our future work.

Far from the central region, there is a region
in which fast-mode compression takes place by
the piston effect of the reconnection jet and the
plasmoid. This fast-mode compression causes a
vortex-like return flow (see figure 19). We can
consider that this self-similar evolution includes
the Petschek model as the inner solution. A




combined feature of the original Petschek model
and the vortex-like flow properly characterizes the
evolutionary process, and the entire system indef-
initely expands self-similarly.

6.5. Consistency between semianalytic and
numerical studies

In section 5.7, we compared our semianalytic
result with our numerical result and notice signif-
icant similarity between them.

If we compare them quantitatively in detail, we
notice that these two results are consistent in the
region in which v}, < 0 (inflow region). However,
in the region in which v}, > 0 (return flow region),
the value of the semianalytic result is somewhat
different from the numerical result. In this region,
strong fast-mode compression (the “piston effect”
of the reconnection jet) takes place, and, strictly
speaking, our linearized treatment might not be
suitable for application to the return flow region.

Thus, we can conclude that the inflow region
is well described by our linearized theory. This
is obviously due to the very small reconnection
rate (~ 1072%; see Nitta et al. 2001). However,
the mechanism leading to such a small reconnec-
tion rate is still unclear. In this self-similar re-
connection model, the reconnection rate should
be self-consistently determined by the dynamical
evolution process. This point will be discussed in
our future work.

6.6. Near the FRWF

The region near the FRWF (r ~ 1) actu-
ally has a complicated nature. The region near
the spearhead of the reconnection jet (roughly,
r~1, 0 <6 < 7/8) is influenced not only by the
fast-mode rarefaction wave but also by the fast-
mode compression wave induced by the “piston
effect” of the jet. Hence, one might think that the
term “FRWF” (fast-mode rarefaction wave front)
is somewhat misleading.

However, we should notice that, in our lin-
earized treatment, any nonlinear interaction be-
tween waves is completely neglected.  Thus,
the fast-mode rarefaction wave emitted from the
vicinity of the reconnection point maintains a cir-
cular shape that is truly located at » = 1 in the
zoom-out coordinates even if the compressional
mode is superimposed. For this reason, we can
continue to call it “FRWF”.

6.7. Boundary with reconnection jet
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In our analytic work, the boundary condition
at y = 0, which corresponds to the junction con-
dition to the reconnection jet, is artificially im-
posed, approximating the result of our numerical
simulation. Needless to say, this boundary condi-
tion is more important than other boundary con-
ditions (e.g., conditions at r =1 or § = 7/2), be-
cause it represents physical information about the
reconnection jet and it crucially influences the so-
lution of the inflow region. The process which de-
termines this boundary condition will be treated
in our future work.

One might think that the similarity of the
boundary condition at y = 0 is not trivial and
that the above boundary condition is imposed
ad hoc. However, we must note that everything
evolves self-similarly in this situation. In the
self-similar stage Vot > D, the entire reconnec-
tion system including the reconnection jet has no
proper length other than the scale of the FRWF
Vaot. Thus, it naturally follows that the reconnec-
tion jet itself will grow self-similarly, and hence
the similarity growth of the reconnection jet is
accomplished.

6.8. Relation to driven model and spontaneous
model

We consider our self-similar reconnection model
in comparison with the “driven” and “sponta-
neous” reconnection models. System size of the
self-similar reconnection is determined by the
size of the FRWF. In principle, the self-similar
phase will continue until a signal from outside
the FRWF reaches the system. Such a signal
may occur in the following way: If the FRWF
propagates into a non-homogeneous region, e.g.,
the boundary of the flux tube, the system will
be influenced. If some waves from external cir-
cumstances come into the system, it will influ-
ence the evolution. Our discussion is focused on
a case such that the evolution in a homogeneous
region which is free from any influence of external
circumstances. Hence, if we consider the entire
system of our self-similar reconnection, the prop-
erty of that evolutionary process must be spon-
taneously determined. From this point of view,
our model is clearly a spontaneous reconnection
model.

However if we focus our scope on an inner re-
gion having a fixed spatial scale in the vicinity of
the diffusion region, we will see another aspect of
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the self-similar model. For example, we consider
a rectangular region with a fixed finite dimension
around the X-point. The physical state of this
inner region settles to a final state as the scale of
the FRWF exceeds the scale of this region, even
while the entire system continues to evolve. Such
a situation of the inner region can be treated as
a stationary solution for magnetic reconnection.
Let us compare the property of this inner region
with previously presented stationary reconnection
models:

As we mentioned in section 4.3, the property
of the inner region is quite similar to the origi-
nal Petschek model which is characterized by the
presence of the figure-X-shaped slow shock and
the fast-mode rarefaction-dominated inflow. The
entire system is spontaneously determined by the
system itself, but the inner solution coincides with
a particular solution (the Petschek-type) of the
driven model.

We should note that the inflow toward the in-
ner region is spontaneously determined by a self-
consistent process of the self-similar evolution.
One might think that the inflow toward the inner
region may act as inflow injected by the boundary

condition as in the driven reconnection model. If -

we tune the inflow boundary condition to a condi-
tion exactly equivalent to the flow expected from
our self-similar model, the resultant solution of
the inner region should be the same. This trivial
fact shows that our self-similar solution of the in-
ner region is particular to the driven model while
the entire region is rather different from previous
models.

6.9. Applications to solar flares

We discuss here the possibility of observation.
The propagation speed of the FRW is estimated
to be ~ 10% [m s7!] for solar corona. Hence,
the duration of the self-similar evolution is 10! —
10%[s]. Evolution having such a timescale will
resolvable by the Solar-B project (required ca-
dence of the Solar-B X-ray telescope [XRT] is 2
sec., which is sufficient to resolve the expected
time evolution of the self-similar reconnection, see
Golub 2000.).

This study has been motivated by the fact that
actual reconnection has a very wide spatial dy-
namic range of evolution; in the case of geomag-
netospheric substorms or solar flares; the dynamic
range is 10* — 107. Therefore, the early stage
of evolution of magnetic reconnection can be ap-

proximated as evolution into free space without
any influence of boundary conditions. This ap-
proximation is justified as long as the spatial scale
of the reconnection system is much smaller than
that of the entire system (e.g., the radius of cur-
vature of the initial magnetic field lines). In the
case of large solar flares, the typical radius of
curvature is ~ 1077% m and the typical Alfvén
speed is ~ 10® m s!. Hence, we can predict
from our self-similar model that during the in-
terval ~ 10"78/10% ~ 10'=2? s from the onset of
magnetic reconnection, the evolution can be ap-
proximated by our self-similar evolution model,
and the total power, integrated over the entire
system, of the energy conversion increases in pro-
portion to time. The author expects that coming
observations by Solar-B will detect such phenom-
ena.

Another property of our self-similar model is the
characteristic structure of the inflow region. A
vortex-like flow around the head of the plasmoid
characterizes the evolutionary process (see figure
19). We may be able to verify our evolutionary
model by detecting this kind of vortex flow.

It has recently been found that solar flares (and
similar arcade formation events) are often asso-
ciated with depletion of ambient plasma density,
called “dimming”, during their main energy re-
lease phase (Tsuneta 1996; Sterling and Hudson
1997). Tsuneta (1996) attributed this to the re-
sult of reconnection inflow (see also Yokoyama
and Shibata 1997), while Sterling and Hudson
(1997) interpreted it as being due to plasma ejec-
tion from the system. In the case of a large
cusp-shaped flare (Tsuneta 1996), the timescale
of the dimming is 10-20 minutes just at the on-
set of the flare, which is about 7-14 ¢4 (where
ta is the Alfvén transit time), and the ratio of
depleted density to the initial density is ~ 0.2
during this period. Let us examine the possibil-
ity that the fast rarefaction wave associated with
the reconnection inflow can account for the ob-
served dimming at the onset of flares. In figure
32, a predicted X-ray image (in relative measure)

of the reconnection system is shown. This figure

is drawn from the result of case A. The temper-
ature range is assumed to be 107 — 108 K, which
is plausible for solar flares. We can clearly find
that a round dark region around the reconnection
point expands as the FRW propagates isotropi-
cally. Our simulation results shown in figure 32
show that the ratio of depleted density to the ini-




tial density in the rarefaction wave is of the order
of 0.1-0.2, consistent with observations (see figure
14).

In actual reconnection systems, the spatial scale
(say L) of the region in which magnetic flux
is piled up should be finite. This region is an
energy reservoir of magnetic reconnection. Al-
though the timescale of strict self-similar evolu-
tion in the bounded system (L = finite) is the
Alfvén time (t4 = L/Vap), our self-similar evolu-
tion (especially near the reconnection point) may
hold longer than the Alfvén time (up to a few
to 10 t4; see figure 33) even if the system is not
in an exactly free space. The solid line in figure
33 shows the time variation of the electric field
(un|J|) at the reconnection point (z = y = 0)
for the typical case (case A). The intensity of
the electric field is a measure of the reconnec-
tion rate of the system. The dashed line (case D)
shows the reconnection rate for a case in which
the lower half region (y < 3000) is filled with uni-
formly magnetized plasma, while the upper half
region (y > 3000) is unmagnetized. In case D,
the fast mode wave is reflected at the boundary
at y = 3000 (¢ = 3000), and returns to the resis-
tive region at ¢ = 6000. Hence, the physical dif-
ference between these cases (case A and D) will
appear after ¢t = 6000. Figure 33 shows that the
difference is only a few percent, and moreover, we
cannot detect any significant difference between
these two cases even after the reflected wave re-
turns to the current sheet (¢ > 6000).

Consequently, basic characteristics (density and
timescale) of a fast-mode rarefaction wave in a
self-similar evolution of fast reconnection seem to
account for observations of dimming associated
with solar flares. :

6.10. Future outlook

1) development to 3-D self-similar reconnection
model ‘

Our present discussion is restricted, for the sake
of simplicity, to 2-D reconnection, in this as well
as in the previous paper (Nitta et al. 2001). This
model is plausible for a case in which resistivity
enhancement is infinitely elongated in the z direc-
tion, perpendicular to the figures in this paper.
However, actual current sheet systems have finite
depth in the z direction (for example, radius of
the flux tube or length of the arcade structure of
a bunch of flux tubes). In such cases, reconnec-
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tion might be triggered by a “point” -like resis-
tivity enhancement. We must treat the evolution
of such a system as a three-dimensional problem.

We can expect that self-similar growth also
takes place in a 3-D system. As discussed in sec-
tion 4.4, a sufficiently evolved system has only one
proper spatial scale, i.e., the scale of the FRWF
Vaot, which is increasing in proportion to time
(note that the propagation speed of the fast-mode
is almost isotropic in a 3-D current sheet system
filled with a low 8 plasma, hence the shape of the
FRWF will be spherical). This is exactly the sort
of situation that leads to self-similar expansion.
Of course, detailed structure of the 3-D recon-
nection system will be different from that of our
2-D model, but essential properties will be com-
mon to both of them. Differences of 3-D evolution
from the 2-D self-similar evolution model will be
treated as a future problem.

We believe, however, our knowledge of 2-D
self-similar reconnection obtained here is valu-
able even in 3-D situations, and the essence of
self-similar growth has already been understood
by our 2-D approximation. When we discuss
the phenomenology of evolutionary reconnection
by virtue of a self-similar reconnection model in
the near future, we will need a more precise 3-D
model.

2) elongated diffusion region

We discussed here a situation in which the dif-
fusion region has finite and fixed spatial dimen-
sions in the fixed coordinate. In such a case, we
can treat the diffusion region as a point-like sin-
gularity in the self-similar stage. Thus, we ob-
tained a self-similar solution having Petschek-like
central structure. However, we must realize that
geometrical shape and spatial dimension of the
diffusion region will strongly depend upon a re-
sistivity model which has not been derived from
any discussion based on MHD. We do not yet have
any reliable model of anomalous resistivity.

In the field of magnetic reconnection, the major-
ity believes that anomalous resistivity plays im-
portant roles in the diffusion region. In many
studies of MHD reconnection, anomalous resistiv-
ity is supposed to be an increasing function of the
current density. We can expect that if the resis-
tivity increases as a Hevyside function of current
density with a large threshold value, the resultant
diffusion region would have a pointed shape and
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be located at the site of maximum inflow speed.
On the other hand, if the resistivity moderately
increases as a function of current density, the re-
sultant diffusion region will elongate along the
current sheet. Thus we can expect the resistivity
model will strongly affect the resultant self-similar
solution.

We note that current density is roughly propor-
tional to current sheet thickness, and this thick-
ness is controlled by the inflow speed toward the
- current sheet. Thus we can expect that if the
inflow speed exceeds a threshold value, the resis-
tivity is switched on at that point and behaves
as a diffusion region. In the self-similar reconnec-
tion model, the distribution of this inflow speed
is stationary in the zoom-out coordinates. Thus,
it is possible to realize that the size of the diffu-
sion region is fixed in the zoom-out coordinates.
This means the length of the diffusion region lin-
early increases as the time proceeds. As discussed
in Priest & Forbes (1986), the relative length of
the diffusion region compared with the entire sys-
tem size is very important in categorizing the so-
lutions. If the size of the diffusion region is very
small compared to the entire system size, it should
be similar to the Petschek-like solution discussed
in this thesis. On the other hand, if the size of the
diffusion region is comparable to that of the entire
system, the solution may be similar to the Sweet-
Parker solution. This notion of an elongated dif-
fusion region suggests that actual reconnection
can be understood by continuous solutions rang-

ing between the Petschek and Sweet-Parker solu-
tions. This should provide a new unified scheme
of spontaneous MHD reconnection.

We must note that such an elongated diffu-
sion region might be unstable for some kinds of
macroscopic instabilities (e.g., tearing-mode in-
stability). This is an open question. We need
a precise numerical simulation in order to check
this kind of non-linear time evolution.

The author supposes the elementary process
to enhance anomalous resistivity might not be
unique, and each process might, case by case, en-
hance proper resistivity which has a proper de-
pendence upon the current density. According to
the difference of the enhanced resistivity, the re-
sultant solution can vary to make various recon-
nection models.

Needless to say, the connection between the
macroscopic physics of MHD reconnection and
the microscopic physics of the origin of resistiv-
ity is very important. Indeed, we need a meso-
scopic picture in order to understand the physics
of the diffusion region. However, this is still un-
clear and such a mesoscopic study is very difficult
at present. Such difficulty stimulates our theo-
retical effort to understand the complete physics
of magnetic reconnection. I have a dream that
one day I will establish a complete theory of as-
trophysical magnetic reconnection. My challenge
has only just begun!

APPENDIX
APPENDIX A: DERIVATION OF MHD EQUATIONS IN ZOOM-OUT COORDINATES

~ We show the derivation of equations (15)-(18) briefly in this appendix. The zoom-out coordinates are
defined by equation (10). The velocity in these new coordinates has been given in equation (11). This
equation is deformed to

Vot = v — Vyor' . (A1)
The second term on the right-hand side is the apparent converging flow properly appearing in zoom-out
coordinates. Physical quantities are put into nondimensional forms as in equations (11)-(14). With
these preparations, we can derive the modified MHD equations in zoom-out coordinates.

Any scalar field, e.g., f(r,t) is transformed into zoom-out coordinates as f(r'[r,],t). Thus, the time
derivative of any scalar field can be transformed as
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be located at the site of maximum inflow speed.
On the other hand, if the resistivity moderately
increases as a function of current density, the re-
sultant diffusion region will elongate along the
current sheet. Thus we can expect the resistivity
model will strongly affect the resultant self-similar
solution.

We note that current density is roughly propor-
tional to current sheet thickness, and this thick-
ness is controlled by the inflow speed toward the
current sheet. Thus we can expect that if the
inflow speed exceeds a threshold value, the resis-
tivity is switched on at that point and behaves
as a diffusion region. In the self-similar reconnec-
tion model, the distribution of this inflow speed
is stationary in the zoom-out coordinates. Thus,
it is possible to realize that the size of the diffu-
sion region is fixed in the zoom-out coordinates.
This means the length of the diffusion region lin-
early increases as the time proceeds. As discussed
in Priest & Forbes (1986), the relative length of
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lutions. If the size of the diffusion region is very
small compared to the entire system size, it should
be similar to the Petschek-like solution discussed
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system, the solution may be similar to the Sweet-
Parker solution. This notion of an elongated dif-
fusion region suggests that actual reconnection
can be understood by continuous solutions rang-

ing between the Petschek and Sweet-Parker solu-
tions. This should provide a new unified scheme
of spontaneous MHD reconnection.

We must note that such an elongated diffu-
sion region might be unstable for some kinds of
macroscopic instabilities (e.g., tearing-mode in-
stability). This is an open question. We need
a precise numerical simulation in order to check
this kind of non-linear time evolution.

The author supposes the elementary process
to enhance anomalous resistivity might not be
unique, and each process might, case by case, en-
hance proper resistivity which has a proper de-
pendence upon the current density. According to
the difference of the enhanced resistivity, the re-
sultant solution can vary to make various recon-
nection models.

Needless to say, the connection between the
macroscopic physics of MHD reconnection and
the microscopic physics of the origin of resistiv-
ity is very important. Indeed, we need a meso-
scopic picture in order to understand the physics
of the diffusion region. However, this is still un-
clear and such a mesoscopic study is very difficult
at present. Such difficulty stimulates our theo-
retical effort to understand the complete physics
of magnetic reconnection. I have a dream that
one day I will establish a complete theory of as-
trophysical magnetic reconnection. My challenge
has only just begun! '

APPENDIX
APPENDIX A: DERIVATION OF MHD EQUATIONS IN ZOOM-OUT COORDINATES

~ We show the derivation of equations (15)-(18) briefly in this appendix. The zoom-out coordinates are
defined by equation (10). The velocity in these new coordinates has been given in equation (11). This

equation is deformed to
Vaot' = v — Vyor' . (A1)

The second term on the right-hand side is the apparent converging flow properly appearing in zoom-out
coordinates. Physical quantities are put into nondimensional forms as in equations (11)-(14). With
these preparations, we can derive the modified MHD equations in zoom-out coordinates.

Any scalar field, e.g., f(r,t) is transformed into zoom-out coordinates as f(v'[r,t],t). Thus, the time
derivative of any scalar field can be transformed as
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where the subscripts 7 and 7’ show the time derivative in fixed and zoom-out coordinates, respectively,
and V' denotes the spatial derivative with respect to r’. Here we have used (10) to derive the second
equality. The transform of the time derivative for any vector field is similar to this.

The gradient of any scalar field is transformed as

Vil = T/iv'f . (A4)

The divergence and rotation of any vector field, e.g., A are transformed as

1
A= V'-A A5
\4 Vit (A5)
1
VxA=—V xA A6
X 7Y <A (A6)
respectively. By using these transformed notations, we can rewrite the MHD equations as follows:
Op o
B + V- (pv) =0 (continuity eq.) (AT)
2
9(pv) +V- (pv'v - iBB) +V (P + E—) =0 (momentum eq.) (A8)
ot Ho 210
0B . .
TaRs V- (vB — Bv) =0 (induction eq.) (A9)
Pp™ = const. (polytrope relation) (A10)

As a representative case, we will demonstrate the derivation of the modified continuity equation. The
derivations for the other modified MHD equations are quite similar to this.
The original continuity equation

+V-(pv) =0 - (A11)

is transformed to

dp

ot Vaot

Here we suppose stationariness in the zoom-out coordinates (self-similar expansion). This makes the
first term vanish. By substituting the normalization relations (11)-(14) into this transformed equation,
we easily obtain the following equation:

/
— % -V'p+ V' (pv)=0. (A12)

lrl

vV -V [ +7r))=0. (A13)
This equation is expanded to the form

_V/pl.vl_p[vl.vl_p/v/.r/=0. (A14)

We combine the first two terms to obtain —V' - (p'v'). We should note that in the two-dimensional
problem, V' . 7’ = 2. Thus, we finally obtain the transformed continuity equation (15).

Similarly, we can easily obtain the other modified equations (16)-(18). Each derivation is not difficult,
but is very tedious; hence, we omit detailed derivation here.
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APPENDIX B: PERTURBATIVE RELATIONS

By assuming that the deviation by reconnection from the initial equilibrium state is very small, we
derive the linearized relations. We expand each quantity approximately as in equations (23)-(26) with
(19)-(22) and substitute them into the modified MHD equations (15)-(18). We obtain the linearized
MHD equations as demonstrated below.

For example, we will demonstrate the derivation of the linearized continuity equation (27). The
derivation of other linearized MHD equations is quite similar. We substitute the expansion forms (26)
and (24) into the modified continuity equation (15). By expanding equation (15) up to the first order
of magnitude, we obtain two equations: a zeroth order equation

V' (o) = —24) (B1)
and a first order equation
V' (ppvr + pivo’) = =20} . (B2)
- The left hand side of the zeroth order equation is reduced to
V' (povo’) = V' (=7') (B3)
= —2. - (B4)

The right hand side of this equation is -2. Thus, we can see that the zeroth order equation is trivial and
contains no information. The left hand side of the first order equation is reduced to

V' (povi' + prve’) = Vv + V' (=pir') (B5)
= V.v/' -7 -V —p V-7 ‘ (B6)

By noting that the last term is —2p} and together with the right-hand side, we obtain the linearized
continuity equation (27). By similar reduction, we obtain the other linearized equations (28)-(30). .

- APPENDIX C: DERIVATION OF THE GRAD-SHAFRANOV EQUATION AND OTHER RELATIONS

We show here the reduction of equations (32)-(35). Let us start with the deformation of the linearized
momentum equation (28). Each term of that equation is reduced as follows:

AL A

—1-V'B] = — C1
i-V'B] 6x8yz+ 502 ) (C1)
04 . PA |
"(3- B") = 1. 1. (C2
Vi B axay’ + Oy? J , , (C2)

o v oy Ov; ‘
XTI — 1z 1z | » ly My i C3
TV <x8x +y8y)z (xax +y8y)'7 (C3)

Then we obtain the reduced form of each component of equation (28) as
ovy ovy
Ovy, ovy, o2 o2 ;

— — — +—|A4]=0. C5
(‘” 5z Yoy ) T\o:2 T2 ) ( )

Similarly, from the linearized induction equation (29), we obtain the following two equations:
Y A, B ovy, _0. (C6)
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We should note that these two equations from the induction equation have in common the information

in
0A] N 04
oz Y Oy

The vector potential A] has the freedom of an indeterminate constant; thus, the constant on the right-
hand side can be absorbed into the potential, and we obtain equation (33).
We substitute the two components (C6) and (C7) of the induction equation into (C5) and obtain a
single partial differential equation (36) for A} after simple calculations. This is the G-S equation.
Another component of the momentum equation (C4) is transformed into a simple form:

—0. (o)

x

x

— A} — v}, = (const. independent of z, y) . (C8)

F oV =0 (C9)

This equation clearly shows that v], depends only on the angle § from the z-axis. We should remember
that v}, = 0 at 7" = 1 (the FRWF). Thus, this equation implies v}, = 0 everywhere in our linearized
analysis. This is equation (32).

The linearized continuity equation (27) is deformed using the above results. The first term is reduced
with the help of equation (C6) as

, o}
02A] 0?2 A,
= 11
x&r@y +y Oy? (C11)
0A;
_ AR v 1 ) 12
r.V By (C12)

Together with the second term of equation (27), we can see that the continuity equation implies

0A]

-V

Similarly to the discussion of the previous paragraph, we obtain result (34) because we have set the
boundary condition 0A’ /3y = 0 and p}j = 0 at the FRWF. Relation (35) is easily obtained from equation
(30).
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‘FI1G. - 1.— Reconnection in solar flares. Typical cases of reconnection in solar flares are shown. The solid lines show
the magnetic field line. We find a current sheet system around the X-points in each panel. This figure is from Yokoyama
(1995), courtesy of Dr. Yokoyama.

F1G. 2.— Geomagnetospheric reconnections. Thin solid lines with small arrows show the magnetic field lines. Thick
arrows show the plasma flow. When the solar wind convects the southward magnetic field, the current sheet will be
formed on the day-side of the geomagnetosphere (gray circle). At this point, a field line originating from the Earth
reconnects with a field line of the solar wind, and changes its topology to open field lines. The reconnected field lines are
convected to the night-side of the Earth, and accumulate to make a current sheet system (gray circle on night-side). The
stored magnetic energy in the night-side region will be released by magnetic reconnection. This night-side reconnection
induces a substorm. During this time, we can expect auroral activity around the magnetic poles of the Earth.

FiG. 3.— The simple diffusion model. Magnetic field lines (solid lines) are shown. In the lower panel, we can see
the effect of magnetic diffusion (the thickening of the current sheet). By this process, magnetic energy in the system is
converted to thermal energy due to Ohmic heating.

F1G. 4.— The Sweet-Parker model. Magnetic field lines (solid lines) and plasma flows (thick arrows) in the Sweet-
Parker model are shown. The hatched region shows the diffusion region. ‘The presence of the inflow suppresses the
extension of the current sheet. Reconnected field lines eject the plasmas on the field line by Lorentz force.

F1G. 5.— The Petschek model. Magnetic field lines (solid lines) and plasma flows (thick arrows) in the Petschek model
are shown. The hatched small region near the X-point is the diffusion region. The slow shocks are shown by dotted
lines.

Fig. 6.— The Sonnerup model. Magnetic field lines (solid lines), plasma flows (thick arrows) and discontinuities
(dotted lines) in the Sonnerup model are shown. The hatched small region near the X-point is the diffusion region. The
Sonnerup model requires the corners to set the boundary condition producing slow-mode rarefaction waves. We can see
that magnetic field strength near the X-point does not weaken in contrast to the Petschek model.

FiGc. 7.— The simulation box and the initial state. We set the z axis of our Cartesian coordinates along the current
sheet and the y axis perpendicular to the current sheet. We treat a 2-D MHD problem and assume uniformity in the
z-direction. An artificially imposed resistive region is placed near the origin, and the resistivity is held constant (the
diffusivity 7 = 0.1 in our dimensionless unit in the region 0 < z < 2D, 0 <y < 2D, and i = 0 outside). The initial state
is the Harris solution, so physical quantities in the asymptotic region far outside the current sheet are uniform.

Fia. 8.— Schematic scenario of the evolutionary process.
1): Resistive stage (t < D/Vap). When resistivity is locally enhanced in the current sheet, the magnetic field lines
begin to reconnect, and a flow field is induced as in the Sweet-Parker model or in resistive tearing instability. Ejection
of bipolar plasma flow (reconnection jets) causes a decrease in the total pressure around the reconnection point, and a
fast-mode rarefaction wave (FRW) is emitted from the diffusion region.
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FiG. 9.— 2): Induction of inflow (¢t > D/V40). When the fast-mode rarefaction wave front (FRWF) propagates into
the asymptotic region (the uniform region at y > D), the difference in the total pressure between the diffusion region
and the FRWF induces the inflow. This inflow is slightly converging. This feature is characteristic of the fast-mode
rarefaction dominated inflow.

Fic. 10.— 3): Self-similar evolution stage (¢ > D/V4). When the inflow sufficiently evolves, the inflow speed
exceeds the slow mode propagation speed, and a pair of slow-mode shocks is formed along the current sheet. Once this
show shock is formed, energy conversion by reconnection proceeds drastically (the fast reconnection). We should remark
that this fast reconnection system continues to expand self-similarly and indefinitely as the FRWF propagates.

Fi1G. 11.— A sequence of six snapshots representing the evolutionary process of magnetic reconnection. The color
contours denote the magnetic pressure distribution. The blue arc denotes the fast-mode rarefaction wave front (FRWF).
The system self-similarly evolves after t ~ 1224.7 (case A).

Fic. 12.— Evolution subsequent to the sequence in figure 11. The mesh size for this figure is rougher than that of
figure 11. We can clearly see that the self-similar evolution continues over a large spatial dynamic range (case A’).

FIG. 13.— Velocity distribution in the inflow region at different times (¢t = 2449 and ¢ = 8818.1). The velocity
vectors are shown by red arrows on the background color contours of the magnetic pressure. We cannot see any essential
difference between these two panels except for the spatial scaling. This indicates self-similarity of evolution of the velocity
field. The velocity field inside the reconnection outflow is intentionally omitted to clarify the velocity in the inflow region,
because it is much larger than the inflow velocity (case A). '

F1Gg. 14.— Density profile along the y axis in the zoom-out coordinates (x coordinate expands in proportion to time).
The profile gradually settles to a stationary state. We can roughly estimate the relaxation time scale as t ~ 1200. The
depleted density in the rarefaction wave is of the order of 0.1-0.2 times the initial density (case A).

F1G. 15.— Gas-pressure profile along the y axis in the zoom-out coordinates. Obvious step-like feature near = ~ 0.009
is the Petschek-type slow shock (case A).

FIG. 16.— Magnetic field (z-component) profile along the y axis in the zoom-out coordinates. Obvious step-like
feature near x ~ 0.009 is the Petschek-type slow shock (case A).

Fic. 17.— Velocity field (z-component) profile along the y axis in the zoom-out coordinates. Obvious step-like
feature near z ~ 0.009 is the Petschek-type slow shock (case A).

FiG. 18.— Velocity field (y-component) profile along the y axis in the zoom-out coordinates. Obvious step-like
feature near  ~ 0.009 is the Petschek-type slow shock. These profiles of physical quantities (figures 14, 15, 16, 17 and
18) clearly show that the solution is quasi-stationary in the zoom-out coordinates. This is equivalent to the presence of
self-similar evolution (case A).

Fia. 19.— Detailed structure of the self-similar solution. The total pressure distribution is shown by color contours.
The effects of the fast-mode wave are apparent in this figure. The effect of the fast-mode rarefaction wave (FRW) is
clearly seen near the reconnection point. The piston effect (the fast-mode compression) takes place near the spearhead
of the plasmoid. The inner structure near the reconnection point is quite similar to the Petschek model (case A).

Fig. 20.— Detailed structure of the self-similar solution. The magnetic pressure distribution is shown as color
contours. The effects of the slow-mode wave are apparent in comparison with figure 19. A pair of slow-mode shocks, the
reconnection jet, and the plasmoid are clearly shown (case A).

FIG. 21.— Boundary condition of A} along the slow shock (y = 0). The dotted line shows the result of our simulation
in section 4 (Case A). The solid line is the approximated boundary condition adopted in this work. We can see the
approximated model is very simple and gives good agreement with the simulation result.

FIG. 22.— Contours of the perturbed flux function (z-component of magnetic vector potential) A7. The contours show
field lines for the first order magnetic field. The solid (dashed) contours correspond to the positive (negative) value of A}
(The same applies to figures 24, 26, 23, 25 and 27). The contact discontinuity is located at z = z. ~ 0.64, y = 0. The
location of maximum value is at the reconnection point (z = y = 0), and that of minimum value is near the spearhead
of the reconnection jet (z = x,, ~ 0.84, y = 0). Hence, the first order magnetic field is turned counter-clockwise along
the left-half arcs, and clockwise in the right-half arcs. The direction of the zeroth order magnetic field is to the right in
the upper-half plane. Thus the strength of the magnetic field is reduced by the first order variation in the vicinity of
the reconnection point. This region is filled with the fast-mode rarefaction dominated inflow. This property is common
to characteristic of the original Petschek model. On the other hand, the strength of the magnetic field is enhanced by
the first order variation near the spearhead of the reconnection jet. This is caused by the fast-mode compression (piston
effect) produced by the reconnection jet. This compressed region is characteristic of our dynamically evolving system,
and quite different from previous stationary models.

FIG. 23.— The variation of flux function from the initial state (result of our simulation in section 4). We can
see essentially the same feature in figures 25 and 27 except that the configuration near the z-axis (y < 0.05) is rather
different. This is due to the existence of reconnection jets which are neglected in our present analytical study.
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Fi1c. 24.— Contours of the y-component v{y of the velocity perturbation. The z-component of velocity perturbation
is zero in the linear analysis. We should note that the value of v}, is equivalent to the strength of the electric field in
the z direction (so-called reconnection electric field) in the normalized unit. The value near the reconnection point is
negative. This means that the inflow is sucked into the reconnection jet. Positive values exist near the right-half outer
boundary. This is outflow gushing out of the region near the spearhead of the reconnection jet. Hence, this outflow is
a secondary flow properly characteristic of the evolutionary process. This outflow enhances the vortex-like flow. The
value at the reconnection point (z = y = 0) represents the reconnection rate of the system, and the value is 0.055 from
our simulation (see section 4).

Fic. 25.— The inflow velocity (y-component) (result of our simulation in section 4).

F1G. 26.— Contours of the perturbed density p}. If we divide this value by adiabatic constant -y, these contours
show the perturbation in gas pressure P| in the normalized unit. The density (hence pressure) is reduced near the
reconnection point, and enhanced near the spearhead of the reconnection jet. These features are also caused by the
fast-mode rarefaction and compression as discussed in the caption for figure 22.

FiG. 27.— The variation of density distribution from the initial state (result of our simulation in section 4).

F1G. 28.— The profile of the magnetic flux function (1st order) at x = 0.5. The dotted and solid lines show the
numerical solution and the semi-analytic solution, respectively.

F1G. 29.— - The profile of the velocity field (y-component) at = 0.5. The dotted and solid lines show the numerical
solution and the semi-analytic solution, respectively.

FiGg. 30.— The profile of mass density distribution (1st order) at z = 0.5. The dotted and solid lines show the
numerical solution and the semi-analytic solution, respectively.

FIG. 31.— The same as in figure 11, but for the case of larger resistivity (five times larger than that in the case
of figure 11; n = 0.5, R,, = 4.9). We find no essential difference from the previous case. This result suggests that the
self-similar evolution does not sensitively depend upon details of the resistivity model (case C).

Fic. 32.— X-ray flux distribution predicted by our model in relative measure. This figure shows the evolution of a
virtual X-ray image in the fixed coordinates. The contours indicate the distribution of the emission measure f n2T1/2
which shows X-ray flux distribution in the assumed temperature range of 107 — 108 K , where n is the particle number
density and T' the temperature. Our self-similar model may be applied to the observation of dimming (case A).

Fic. 33.— Evolution of the reconnection rate. The solid line shows the time variation of the electric field (un|J|)
at the reconnection point (z = y = 0) in the case shown in figures 11 and 12. This quantity may be taken as the
reconnection rate of the system (case A). In the same way, the dashed line shows the rate for the case in which the
lower half region (y < 3000) is filled with uniformly magnetized plasma, while the upper half region (y > 3000) is
unmagnetized. We cannot find any significant difference between these two cases even after the reflected wave from the
interface between magnetized and unmagnetized regions returns to the current sheet (¢ > 6000) (case D).
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