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Abstract 
 

The Northeast-Asian Wood White Leptidea amurensis (Lepidoptera, Pieridae) belongs 

to Dismorphiinae, a subfamily of the family Pieridae. We here studied the structure of 

the compound eye in this species through a combination of anatomy, molecular biology 

and intracellular electrophysiology, with a particular focus on the evolution of butterfly 

eyes. We found that their eyes consist of three types of ommatidia, with a basic set of 

one short, one middle and one long wavelength-absorbing visual pigment. The spectral 

sensitivities of the photoreceptors are rather simple, and peak in the ultraviolet, blue and 

green wavelength regions. The ommatidia have neither perirhabdomal nor fluorescent 

pigments, which modulate photoreceptor spectral sensitivities in a number of other 

butterfly species. These features are primitive, but the eyes of Leptidea exhibit another 

unique feature: the rough appearance of the ventral two-thirds of the eye. The roughness 

is due to the irregular distribution of facets of two distinct sizes. As this phenomenon 

exists only in males, it may represent a newly evolved sex-related feature.  
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Introduction 
 

Color vision of insects has been a major topic in the field of behavioral neurobiology 

ever since Karl von Frisch first demonstrated it in honeybees (Frisch, 1914). 

Honeybees’ vision is trichromatic, based on ultraviolet (UV), blue (B) and green 

(G)-sensitive photoreceptors in their compound eyes. The spectral sensitivity of each 

photoreceptor is primarily determined by the absorption spectrum of the visual pigment 

it expresses. In the case of bees, opsins of short (S), middle (M) and long (L) 

wavelength-absorbing visual pigments are expressed in the UV, B and G receptors 

respectively (Spaethe and Briscoe, 2005; Wakakuwa et al., 2005). 

Ommatidia are the basic structural units of compound eyes. Each one contains 

several photoreceptor cells of different spectral sensitivities. The combination of 

photoreceptor sensitivities differs among ommatidia, making the eye a patchwork of 

spectrally heterogeneous units. We previously described the ommatidial heterogeneity 

in the Japanese yellow swallowtail, Papilio xuthus in detail. The eye of Papilio has six 

classes of spectral receptors (UV, violet (V), B, G, red (R) and broad-band (BB)), which 

appear in three fixed combinations in the ommatidia (Arikawa, 2003). Since then, we 

have investigated the extent to which eye organization is common among insects in 

general and flower-visiting butterflies in particular. Accumulated evidence suggests that 

the existence of three types of ommatidia is a widely shared trait, but the spectral 

sensitivity of individual photoreceptors appears to be almost species-specific, and even 

sex-specific in some cases. For example, the female Small White, Pieris rapae 

(subfamily Pierinae, family Pieridae) has UV, V, B, G, R and dark-red (dR) receptors, 

while the male has double-peaked blue (dB) instead of V (Arikawa et al., 2005).  

The wide variety in spectral sensitivities of photoreceptors is of course 

partially explained by the variety of opsins they contain (Arikawa et al., 2005; Awata et 

al., 2009; Ogawa et al., 2012). In addition, the cellular organization of the ommatidia is 

known to play a crucial role (Stavenga and Arikawa, 2011). Generally, reddish pigment 

surrounding the rhabdom (the photoreceptive organelle of an ommatidium) makes 

photoreceptors expressing green-absorbing visual pigment red sensitive (Wakakuwa et 

al., 2004). The pigmentation is generally weak in the dorsal part of the eye (Arikawa et 

al., 2009; Ribi, 1979), so the shift in sensitivity is minor in this region (Ogawa et al., 
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2013). The abovementioned sexual dimorphism in spectral sensitivity is attributed to a 

difference between sexes in the distribution of fluorescent pigment (Arikawa et al., 

2005; Ogawa et al., 2013). 

 The variety and complexity of butterfly eyes is impressive, but of course, such 

a complex organization must have evolved from simpler ones. The family Pieridae 

consists of four subfamilies, Pierinae, Coliadinae, Dismorphiinae and Pseudopontiinae. 

Pierinae and Coliadinae are sister taxa, containing about 700 and 250 species, 

respectively. This lineage is sister to two other smaller sister taxa, Dismorphiinae and 

Pseudopontiinae (Braby, 2006). Dismorphiinae is a subfamily with a limited 

geographical distribution and a relatively small number of species, and therefore may be 

ancestral. We here selected the Northeast-Asian Wood White, Leptidea amurensis 

(Dismorphiinae, Pieridae) to identify their eye characteristics. We describe the external 

and internal structures of the eye at the electron-microscopic level, identifying and 

localizing opsin mRNAs and characterizing the spectral and polarization sensitivities of 

single photoreceptors. We thus identified three spectrally heterogeneous types of 

ommatidia in the Leptidea compound eye. The external morphology of the Leptidea eye 

is rather distinctive, due to its rough appearance as briefly reported previously (Yagi, 

1964). 
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Materials and Methods 
 
Animals 
We used summer form Northeast-Asian Wood White, Leptidea amurensis, captured 

around Nashigahara, Yamanashi or Sakuho, Nagano, Japan. The butterflies were fed 

with sucrose solution and kept in the laboratory for no longer than a week. For opsin 

characterization and comparison, we also used two pierinae species: Anthocharis 

scolymus were collected around the Sokendai campus, Kanagawa, Japan, and Hebomoia 

glaucippe were provided by Gunma Insect World. 

 

Anatomy 

For scanning electron microscopy, heads were fixed in 2.5% glutaraldehyde and 2% 

paraformaldehyde in 0.1 M sodium cacodylate (CB, pH 7.4) for 2 hr at room 

temperature. After a brief wash with CB, the heads were postfixed in 2% osmium 

tetroxide in CB for 2 hr at room temperature, and then dehydrated with acetone. After 

being infiltrated with propylene oxide, the heads were dried, platinum-coated and 

observed with a scanning electron microscope (JSM-6490LV, JEOL, Tokyo Japan). 

For transmission electron microscopy, isolated eyes were fixed as above. 

Following infiltration, eyes were embedded in Quetol 812. Ultrathin sections were 

stained with uranyl acetate and lead citrate, and observed with a transmission electron 

microscope (H7650, Hitachi, Tokyo Japan).  

For light microscopy, the eyes were fixed in 2.5% glutaraldehyde and 2% 

paraformaldehyde in CB and embedded in Quetol 812 without being postfixed with 

osmium tetroxide. The tissues were then cut into 5 µm sections and observed with a 

light microscope (BX60, Olympus, Tokyo, Japan). 

 

Molecular biology 
The method of molecular biology was as described previously (Awata et al., 2009), 

which was briefly as follows. We carried out RT-PCR using poly-A RNA extracted 

from retinal homogenate as the template and degenerate primers based on sequences of 

lepidopteran opsins. The full-length cDNAs were obtained using the 5’- and 3’ RACE 

methods. Phylogenetic trees based on the nucleotide sequences were reconstructed 
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using Bayesian inference (BI) and also the maximum likelihood (ML) methods. The 

reliabilities were based on 100,000 replicate analyses (for BI) or 1000 bootstrap 

replicates (for ML).  

The opsin mRNAs were localized in the retina by in situ hybridization. 

Isolated eyes were fixed in 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), 

embedded into paraffin and sectioned at 8–10 µm thickness. The sections were treated 

with 10 µg/ml proteinase K in phosphate-buffered Saline for 5 min at 37°C, and 

acetylated with 0.25% acetic acid in 0.1 M triethanolamine for 10 min prior to 

hybridization. Antisense RNA probes were synthesized from linearized plasmid 

carrying partial sequences of identified opsin mRNAs by in vitro transcription using 

digoxigenin-UTP. The probes were heat-treated and diluted at final concentration of 0.5 

µg/ml in a hybridization solution. The heat-treated probe was applied to the sections at 

55°C overnight. The hybridized probes were detected and immunohistochemically 

visualized using anti-digoxigenin. 
 

Electrophysiology 
A butterfly was mounted on a plastic stage set in a Faraday cage. A silver wire inserted 

in the head served as the reference electrode. A glass microelectrode filled with 3M KCl 

(resistance = ca. 100MΩ) was inserted into the retina through a small hole made in the 
cornea. 

 Monochromatic stimuli were delivered by a 500 W xenon arc lamp through a 

series of interference filters. The light was focused on the tip of an optical fiber that was 

attached to the perimeter device, where it provided a point light source (subtending 1° at 

the eye). The quantum flux of each monochromatic light was adjusted to a standard 

number of photons using an optical wedge.  

After penetrating a photoreceptor, the spectral type of the impaled 

photoreceptor was determined using a series of monochromatic flashes of 30 msec 

duration. The response-stimulus intensity (V-log I) function was recorded over a range 

of 4 log units at the cell’s peak wavelength (λmax). The photoreceptor was subjected to 
further analyses only if the maximal response amplitude, Vmax, exceeded 20 mV. We 

then recorded responses to a series of polarized light flashes at the receptor's λmax at an 
intensity that elicited about 50% of the Vmax. The e-vector orientation of the light 

stimulus was adjusted by rotating a polarization filter attached to the exit of the optical 
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fiber. The e-vector orientation was initially set parallel to the dorso-ventral axis, which 

was defined as 0°. Both spectral and polarization responses were converted into 

sensitivity values. The e-vector orientation at which the polarization sensitivity curve 

peaks (φpeak), and the polarization sensitivity ratio (PS = maximal sensitivity / minimal 
sensitivity) were determined from a sinusoidal curve fitted to the data using the 

least-squares method. 

We marked some photoreceptors by injecting Lucifer yellow by applying 2 

nA hyperpolarizing DC current for about 5 min after recording. The eyes were directly 

observed with a fluorescence microscope (BX60, Olympus, Tokyo Japan) under BV 

excitation to identify the ommatidium containing the dye-filled photoreceptor.  
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Results 
 
Rough eyes 
The eye of Leptidea is clearly divided into the dorsal and ventral regions (Fig. 1A and B, 

arrowheads). The surface of the ventral region is rough (Fig. 1C), the roughness being 

due to the variable sizes and shapes of the corneal facets (Fig. 1C). The dorsal region is 

smooth where the ommatidial array appears uniform (Fig. 1C inset). We measured the 

areas of 106 facets in the ventral region of an individual as well as 50 dorsal facets of 

the same individual. Figure 1D shows histograms of the facet areas in the ventral and 

dorsal regions. The ventral histogram exhibits two peaks, one at 280-320 µm2 and 

another at 640-680 µm2, while the dorsal histogram has a single peak at 360-400 µm2. 

Thus the ventral facets, unlike the dorsal, comprise two rather distinct groups: large and 

small. 

 

Rhabdom ultrastructure 
An ommatidium has a rhabdom (Fig. 2A) that consists of the rhabdomeres of nine 

photoreceptor cells, R1-9 (Fig. 2D). We could distinguish three types of ommatidia 

according to the fine structure of the rhabdom.  

 Figure 2 shows serial transverse sections of rhabdoms from three types of 

ommatidia at three different depths. The top of the pictures corresponds to the dorsal 

side (see Fig. 2A). We measured the areas of rhabdomeres at 20 µm intervals from the 

top to the bottom of the rhabdom (Fig. 3A, B, C). Figure 3d shows a diagram of the 

ommatidia with large and small facets (Fig. 3D). (The correspondence between 

ommatidial types and facet sizes is covered in the next section.) 

Type I ommatidia have the largest rhabdoms, with R1-8 contributing along its 

entire length, while R9 adds a few microvilli at the base (Fig. 2J, 2K, 3A). As shown in 

Fig. 2A, D and G, R1 of type I contains curved microvilli in two orientations, while the 

microvilli of R2 are straight and parallel to the dorso-ventral (vertical) axis. The type I 

rhabdom is triangular at a depth of 170 µm (Fig. 2D), which is due to the different 

shapes of the R1 and R2 rhabdomeres: R1’s rhabdomere is round, while R2’s is rather 

rectangular. Further proximally, the rhabdom is elongated horizontally (210 µm, Fig. 

2G) and then vertically (270 µm, Fig. 2J). The R1 photoreceptor’s microvilli end at a 
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depth of 250 µm (Fig. 2J and 3A). The microvilli of R3-8 are shorter and appear to be 

oriented either horizontally (R3 and R4) or diagonally (R5-8). The structures of R1 and 

R2 may be interchanged (see Fig. 4). 

 Type II ommatidia have smaller rhabdoms (Fig. 3B). The microvilli of both 

the R1 and R2 are straight and parallel to the vertical axis (Fig. 2B, E). The microvilli of 

R3 and R4 are aligned horizontally, and those of R5-8 are aligned diagonally (Fig. 2H). 

 The size of the rhabdom in type III ommatidia (Fig. 3C) is almost identical to 

that of type II. The microvilli of R1 and R2 curve into two directions, indicating their 

reduced polarization sensitivity. The microvilli of R3-8 are aligned either horizontally 

(R3 and R4) or diagonally (R5-8) (Fig. 3I).  

Note that the rhabdoms are not surrounded by perirhabdomal pigment at any 

depth (Fig. 2). These pigments are commonly found in pierids (Arikawa et al., 2009; 

Qiu et al., 2002; Ribi, 1978) and Papilionids (Arikawa, 2003; Awata et al., 2010), so 

this feature is peculiar to Leptidea. In addition, we found no tracheal tapetum in 

Leptidea, which is also exceptional among pierids. 

 
Three opsins and localization 
We identified three cDNAs encoding opsins in the eye of Leptidea. Based on 

phylogenetic analysis with other insect opsins (Fig. 4A), we identified these as a UV- 

(Leptidea amurensis UV, LaUV), a blue- (LaB) and a long wavelength-absorbing type 

(LaL). The arborizations agree with the phylogeny of Pieridae (Braby, 2006). The most 

conspicuous feature is that the Leptidea eyes express only one B opsin, while all other 

pierids studied to date (Pierinae and Coliadinae) have at least two opsins in the B clade. 

To confirm this, we analyzed Anthocharis scolymus and Hebomoia glaucippe (Pierinae), 

and found both to express two opsins (B and V) in the B clade. We thoroughly searched 

for additional Leptidea opsins in the B clade using degenerate primers based on the V 

opsins of other species, but found none. 

 We localized the mRNAs in the eye by in situ hybridization. Figure 4B-E 

shows four serial sections taken from an eye. Figure 4B is a section through the 

crystalline cone layer. The large and small cones correspond to the ommatidia with 

large and small facets, respectively. Figures 4C, D and E are sections labeled with 

probes specific to mRNAs of LaUV, LaB and LaL opsins, respectively. The labeling 

patterns of these probes are mutually exclusive; no photoreceptors appeared to be 
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coexpressing mRNAs of two or more opsins. 

The LaUV and LaB probes label R1 and R2 in a complementary manner, 

revealing three expression patterns (Fig. 4C, D). The ommatidia with large crystalline 

cones express one of each of the LaB and LaUV mRNAs in R1 and R2. This pattern 

most likely corresponds to the type I ommatidia where the ultrastructure of R1 and R2 

markedly differs (Fig. 2). Types II and III have both R1 and R2 labeled with the same 

probe, either LaUV or LaB. The LaL probe labeled R3-8 in all ommatidia (Fig. 4).  

 

Photoreceptor sensitivities 

Intracellular recording revealed four distinct spectral sensitivity profiles, which we term 

ultraviolet (UV), broad-blue (bB), sharp-blue (sB) and green (G) sensitivity classes (Fig. 

5, upper panels). We also measured the polarization sensitivity at the cell’ s λmax (Fig. 5, 

lower panels).  

The λmax of UV receptors is 360 nm (Fig. 5A). The average spectral 
sensitivity profile of UV receptors (n=13) reasonably matches with the absorption 

spectrum of a visual pigment peaking at 360 nm (R360) predicted using the 

Govardovski template (Govardovskii et al., 2000). The UV receptors are insensitive to 

polarization angle. 

We found 9 bB receptors (Fig. 5B). The average spectral sensitivity peaks at 

440 nm and matches well with the absorption spectrum of R450. The φpeak is 10° in this 
receptor class (Fig. 5B), and the average Ps value is 2.43. We successfully labeled one 

bB receptor with Lucifer yellow, and localized it to an ommatidium with a small facet 

(Fig. 5B, inset). 

We found 12 sB receptors (Fig. 5C). The average spectral sensitivity matches 

the template of R450 on the long wavelength side, but not in the UV region. The 

polarization sensitivity is indistinguishable from that of bB receptors: φpeak = 0°, Ps = 
2.54. 

The average spectral sensitivity of G receptors matches with the predicted 

profile of R530. The φpeak is variable: φpeak = 50° (n=9), 95° (10) or 130° (7). The Ps 
value is about 1.55 in all cases. 
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Discussion 
 

Eye roughness and spectral heterogeneity of the ommatidia 
The most conspicuous feature of the eye of Leptidea is its rough appearance. The 

roughness is confined to the ventral two-thirds of the eye, which consists of irregularly 

distributed large and small facets. The existence of facets of different sizes in Leptidea 

was reported about a half century ago (Yagi, 1964), but their internal structure has not 

been previously studied. 

Although the surface of the eye appears rough, the internal structure is 

regular: the ommatidia are hexagonally arranged as seen in transverse sections (Fig. 4). 

Accumulated evidence suggests that insect compound eyes typically consist of three 

spectrally heterogeneous types of ommatidia (Arikawa, 2003; Arikawa and Stavenga, 

1997; Briscoe et al., 2003; Sison-Mangus et al., 2006; Spaethe and Briscoe, 2005; 

Wakakuwa et al., 2005; Wakakuwa et al., 2007; White et al., 2003). As expected, the 

ommatidia of Leptidea could be divided into three types as well. We found that the 

ommatidial heterogeneity is related to the facet sizes: large facets correspond to type I 

ommatidia, while small facets correspond to type II and III ommatidia. By combining 

TEM observation (Fig. 2), in situ hybridization (Fig. 4) and electrophysiology (Fig. 5), 

we have deduced the spectral properties of each type of ommatidium (Table 1).  

 All photoreceptors express exactly one of three opsin mRNAs, LaUV, LaB or 

LaL; we found no photoreceptors coexpressing two or more opsin mRNAs. R3-8 

express the LaL mRNA in all ommatidia (Fig. 4E), and must be G sensitive. R1 and R2 

express either the LaUV or LaB mRNA, so the short wavelength (UV, bB and sB) 

receptors can be assigned to R1 and/or R2 in certain combinations. We could not obtain 

any information about the basal R9 photoreceptors. 

 A notable feature of UV receptors is their negligible polarization sensitivity. 

Polarization sensitivity is reduced when the rhabdomeral microvilli are not aligned 

(Horvath and Varju, 2004). Therefore, it is reasonable to assume that the UV receptors 

are R1 (or R2) of type I ommatidia (Fig. 2A), and both R1 and R2 of type III ommatidia 

(Fig. 2C), whose microvilli are curved and arranged in two different orientations. 

 Both types of blue receptors (bB and sB) have higher Ps values with φpeak 
around 0°, indicating that the microvilli of these receptors are straight and vertically 
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aligned. Clearly, they correspond to R2 (or R1) of type I and R1 and R2 of type II 

ommatidia, which are labeled with the LaB probe. Note that the spectral sensitivity of 

the bB receptor matches well with the predicted spectrum of a visual pigment peaking at 

450 nm. The sB receptors contain the same visual pigment, but exhibit reduced 

sensitivity in the UV wavelength region. This phenomenon can most likely be attributed 

to the lateral filtering effect (Snyder et al., 1973). In the rhabdoms where UV receptors 

and blue receptors are colocalized, absorption by the UV receptor reduces the 

proportion of UV light that is absorbed by the blue receptors. Therefore, we conclude 

that sB receptors are localized in type I ommatidia, while the bB receptors are found in 

type II ommatidia (Fig. 4). Furthermore, we successfully stained a bB receptor with 

Lucifer yellow, and found it to be located in an ommatidium with a small facet (Fig. 5B, 

inset). 

  

Evolutionary view 
According to extensive phylogenetic analyses (Braby, 2006; Braby and Trueman, 2006), 

Dismorphiinae may be an ancestral subfamily of the family Pieridae. Supporting this 

view, we have also found some primitive features in the compound eye of Leptidea.  

The first of these features is the set of visual pigment opsins. The Leptidea 

eyes express three opsins, one in each of the short (S), middle (M) and long 

wavelength-absorbing (L) clades (Fig. 4A). This is the basic set of insect opsins; it is 

also found in bees, in a similar expression pattern (Wakakuwa et al., 2005). However, 

this scheme is unusually simple for a butterfly. Amang pierids, species of the 

subfamilies Pierinae and Coliadinae have duplicated M opsins (Fig. 4A); in Pieris 

rapae (Pierinae), for example, we found two M opsins, a 450 nm-absorbing PrB and a 

420 nm-absorbing PrV (Arikawa et al., 2005). Moreover, Papilionid, nymphalid 

(Heliconius), lycaenid and riodinid species appeared to have duplicated L, UV, S and L 

opsins, respectively (Briscoe, 1998; Briscoe et al., 2010; Frentiu et al., 2007; Kitamoto 

et al., 1998; Sison-Mangus et al., 2006). 

About these Pieris M opsins, we have proposed that the amino acids at the 

positions of 116 and 177 are crucial for spectral tuning based on results of site-directed 

mutations (Wakakuwa et al., 2010). PrB has serine at 116 (Ser116) and phenylalanine at 

177 (Phe177), while PrV has alanine at 116 (Ala116) and tyrosine at 177 (Tyr177). 

Substituting Ser116 to Ala in PrB resulted in a 13 nm short-wavelength shift, and 
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Phe177 to Tyr resulted in a 4 nm short-wavelength shift. The combination of S116 and 

F177 is retained in all lepidopteran B opsins including the Leptidea LaB. On the other 

hand, the amino acids of these sites in V opsins are variable (Wakakuwa et al., 2010), 

indicating that B opsins are ancestral to V opsins. The opsin phylogeny (Fig. 4A) also 

indicates that the duplication happened after the common ancestor of the lineages of 

Pierinae and Coliadinae diverged from those of Dismorphiinae and Pseudopontinae. In 

Papilionidae, L opsins are duplicated or triplicated in all species studied so far (Papilio 

xuthus, Papilio glaucus, Parnassius glacialis) (Arikawa, 2003; Awata et al., 2010; 

Briscoe, 2000). 

Secondly, the Leptidea eye exhibits neither fluorescence nor perirhabdomal 

screening pigments, both are crucial to fine-tune photoreceptor spectral sensitivities. 

Again in Pieris rapae, fluorescent pigment is concentrated in the distal tip of the 

rhabdom only in males. The pigment absorbs violet (420 nm) light, and thus changes 

violet receptors into double-peaked blue receptors in males (Arikawa et al., 2005). 

Similarly functioning fluorescent pigment is also found in Colias (Ogawa et al., 2012). 

Reddish screening pigments surround the distal tier of the rhabdom in several species 

(Arikawa et al., 2009; Arikawa and Stavenga, 1997; Ribi, 1978). These pigments absorb 

the boundary wave of light that propagates outside the rhabdom, and thus act as spectral 

filters. In Pieris and Colias, for example, this filtering effect turns proximal 

photoreceptors expressing green-absorbing visual pigment into “red” receptors (Ogawa 

et al., 2013; Wakakuwa et al., 2004). The spectral-tuning functions of these pigments 

appear to be evolutionary elaborations enhancing the animals’ spectral discrimination 

ability. Lacking such pigments, Leptidea eyes seem quite primitive.  

The third feature is the untiered nature of rhabdoms. The rhabdoms of Pierid 

and Papilionid species are clearly tiered with four distal, four proximal and one basal 

photoreceptor. The tiering strongly modifies the spectral sensitivity of proximal 

photoreceptors together with the perirhabdomal and fluorescent pigments (Stavenga and 

Arikawa, 2011). Another possible reason for the evolution of the tiered rhabdom is the 

establishment of a channel for motion vision, which the R3 and R4 green receptor 

system may represent, at least in Papilio and Pieris (Wakakuwa et al., 2007). However, 

the rhabdoms of Leptidea exhibit little tiering (Fig. 3 and 4), in common with many 

other insects including Nymphalid butterflies (Gordon, 1977; Kolb, 1985; Matsushita et 

al., 2012), suggesting that the organization is ancestral (Matsushita et al., 2012). 
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Perspectives 
Compound eyes composed with facets of different sizes are not rare. However, most of 

them are systematically organized: the visual field in which the animal is most 

interested is covered by larger facets. The dorsal eye region of blowflies (Hateren et al., 

1989) and dragonflies are such examples (Labhart and Nilsson, 1995). For mantis 

shrimps, such a region corresponds to the “mid-band”, which consists of six rows of 

large facets specialized for color and polarization vision (Marshall et al., 1991). One 

exception is a thrips, Caliothrips phaseoli, whose rudimentary compound eyes are 

random mixtures of large and small facets (Mazza et al., 2009).  

Although most of the features of the Leptidea eyes appear to be primitive, the 

roughness due to the random array of large and small facets is unique among large and 

visual arthropods and may be evolutionarily novel. The roughness is found in the 

ventral region of male eyes only. This sexual dimorphism implies that it is related to 

some aspects of sexual behavior. Whether and how the eye roughness is biologically 

functional is an interesting issue to be addressed. 

 A hypothesis is related to sensitivity of lightness. The absolute sensitivity of 

an ommatidium is proportional to the diameters of the facet lens and the rhabdom 

(Snyder, 1979). In addition, the rhabdom is larger in type I ommatidia (with large 

facets), suggesting that the acceptance angle may be wider there. If the photoreceptor 

gain is uniform, which does in fact appear to be the case in our preliminary 

measurements, then type I ommatidia would be more sensitive than the others. The male 

eye would then be a mixture of high and low sensitivity units, expanding the dynamic 

range of the entire eye. This may be beneficial for males of this open grassland species 

to find potential mates concealed in bushes.  
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Figure legends 
 

Figure 1 The eye of male Leptidea amurensis. (A) Frontal view. Arrowheads indicate 

the border between the dorsal and ventral regions. (B) A low magnification SEM 

picture of a left eye. The dorsal region is smooth, while the ventral region appears 

rough. Dotted line indicates the border of regions. D, dorsal; A, anterior. (C) A high 

magnification SEM picture of the ventral region, showing large (L) and small (S) 

facets. Inset shows a part of the dorsal region at the same magnification. (D) 

Histogram (40 µm2 bins) of facet areas of the dorsal (blue) and the ventral (red) 

ommatidia. Scale bars = 500 µm (A), 200 µm (B), 50 µm (C). 

 

Figure 2 Transmission electron micrographs of transverse sections of the rhabdom of 

three types of ommatidia (I, II, III) at four depths; 130 (A, B, C), 170 (D, E, F), 210 

(G, H, I) and 270 µm (J, K) from the corneal surface. At 270 µm, type II and III 

ommatidia could not be distinguished (K). Scale bar = 2 µm. 

 

Figure 3 Rhabdom (diamonds) and rhabdomere areas of R1-9 in type I (A), II (B) and 

III (C) ommatidia. For R3-4 and R5-8, combined areas are plotted. (D) Schematic 

diagram of a large (left) and small (right) ommatidia with transverse views at three 

depths. 1-9, photoreceptor R1-9. 

 

Figure 4 Leptidea opsins. (A) Phylogeny of lepidopteran opsins, as determined by 

Bayesian inference analyses based on sequences of 1149 (UV), 768 (B) or 1149 (L) 

nucleotides. ML analyses produced a similar tree (not shown). The numbers at the 

nodes indicate the ML bootstrap values and Bayesian posterior probabilities. With 

the species and opsin names, the accession numbers and the peak wavelength of 

absorption are indicated wherever available. (B-E) In situ hybridization of three 

opsin mRNAs in consecutive sections of Leptidea. Solid, dotted and broken circles 

indicate type I, II and III ommatidia, respectively. (B) Section through the 

crystalline cone. (c) LaUV. Compositions of R1 and R2 in type I may be exchanged 

(I’). (D) LaB. (E) LaL. Arrowheads indicate six labeled photoreceptors. Scale bars 

= 20 µm. 
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Figure 5 Spectral (upper panels) and polarization (lower panels) sensitivities of UV (A), 

bB (B), sB (C) and G (D) receptors. Dotted lines in upper panels indicate 

absorption spectra of visual pigment predicted from the Govardovski template 

(Govardovskii et al., 2000). Solid lines in lower panels of b, c, and d are best-fit 

sinusoidal curves with the φpeak angle values. The inset picture of B is a fluorescent 

image showing a small ommatidium containing a Lucifer yellow-injected bB 

receptor. 
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Table 1. Three types of ommatidia in the ventral eye region of Leptidea amurensis 

Type Cornea Ratio 
Photoreceptor properties 

Microvilli / Spectral sensitivity / Opsin mRNA 
R1 R2 R3 & 4 R5-8 

I Large 50% 
Curved Vertical Horizontal Diagonal 

ultraviolet (UV) sharp-blue (sB) Green (G) 
LaUV LaB LaL 

II Small 25% 
Vertical Horizontal Diagonal 

broad-blue (bB) Green (G) 
LaB LaL 

III Small 25% 
Curved Horizontal Diagonal 

Ultraviolet (UV) Green (G) 
LaUV LaL 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 


