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and showed the correspondence between the foot points and the RctitiouB Orbits. In ou.

problem, the winding number increases at mass ratios of the totally degenerate case aB the

centralma朗is decrea8ed･ Moreover, Simo(1989) obtained these mass ratiosvia numerical

CalCulation･ If we combine these results and the observation that the number of scallops

!ncreaBeS aS the cemtralma88 iB decreased (HM1993), We expect that the number of sectors
lnCreaSeS at the totally degenerate case･ In order to confirm thisI we attemp to fouow the

process that a new arch-Shaped block appears. Tovisualise the structure of the Poincar6

Section, we divide it according to symbol 8台quenCeB Of the points on the 8eCtion.

Near the mass ratio for totally degenerate case, triple collision curves are well Stratified

and each divided reglOn is located according to arule whichwill be explained in text.

With decreaSlng the centralmass until the next totaldegenerate case, we can Bee the

fQllowlng proceB8: a germ bifurcates from the leftmo8t arch-shaped block･ The germ

grows tO the roof and then extends to the lower right. This blockfinally reaches the
0-axis and becomes the lowest layer of the new arch-shaped block･ Other germs bifurcate

fromall arch-Shaped block･ These blocks grow to recompoBe arch-Shaped blocks. This

recomposition changes the reglmefor locating the reglOnS･ If the mass ratio of the left and

right particles becomes asymmetric, the above structure and proceSS Change a little bit.
Among the divided regions, the regions, Where the heavier l'article is temporally ejected,

Shrinks or disappears depending on the ma88 ratio as asymmetry i8 increased･ Moreover,

different from the symmetric case) the formation process of the new sector is not clear-cut.

The germalready exist at totally degenerate case･

The Schubart orbit appears as the免xed point on the Poincar占SeCtion. We consider a

Poincar6 map? which i8 a map from a point on the Poincar6 Section to another point. In

the Sclmbart reglOn) POints move around the触ed pointunder the map･ The behaviour

of the rotation is described by the averaged number of rotation per iteration, namely

the rotation number. Generally, when the rotation number at the点Ⅹed point is rationalT

periodic points bifurcate from thefiⅩed point and go outwardwith the mass ratio being

changed･ We have detected Such periodic points, and then studied their in丑uence upon

the structure of the Poincar6 section First we have found that the periodic pointswith

the rotation number (n -2)/n, where n is the naturalnumber grater than 2, dominate the

StruCture･ The periodic pointswith the rotation number (n-2)/n are composed ofn stable

one8 and nunstable one81 Second) after the periodic points leave the Sclmbart reglOnI

the unstable ones stay around the vertices of the Sclmbart region and their separatriceS

approximate the border of the Sclmbart region･ On the other hand, the stable oneS

approach toward the 0-axiswith collecting the germ-shaped blocks･ These germs become

the arch-Shaped blocks.
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and reg(4,6, 12, ･ ･ ･), respectively. It is summaxised as the rule that each CSB contains

reg(C) whose a are congruent (modul0 4)･ The modlllus, here being 4, depends on masses

and is considered to be a number that represents the basic structure of the Poincar占

section･ We thengive it nmod.

Figure 4: The division by cylinder in eqllalmass case･ The number on the reglOn is the

value of c･ If necessary, the value ofj is shown.

4　The distribution of the number of root on mass_

triangle

The puI･pOSe Of this section is to obtain the distriblltion of numbers 0f roots on the

mass-triangle･ (The reason of not `nllmber'but `nllmbers'shall be mentioned in tile

section.) This is the preparation for the Study of the structllralvariation of Poincar6

section depending on mass of the system, demonstrated in the next section.

Recall that roots are convergent point on the 0 of triple collision curves, namely are

initialpoints of orbits ending ln triple collision as R 1 0. If McGehee's variables are

introduced, equations of the motion are extended and include such orbits, Called βclitious

orbits, as ordinary solutions (McGehee, 1974)･

4･l McGehee's variables and triple collision manifold

We explain the meanlng Of McGehee)s variables in the following･ McGehee)s variables con-

sist of (r,W, a, V)･ The variable r is the square root of the inertial moment(r - ∑mtxぎ),

which represents the size of the system. The variable a ∈ト1, 1] indicates the configura-

tion of the system, and s - -1 and s - 1 correspond to the left collision (symbol `1') and
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Figure 8: (continue)

from the left, reg(3,6,9,-･), at a - 0･40. This block is distorted at a place above the

lst CSB ((e),(f) a - 0･70,0･75), a 'branch'that bifurcates from the point piles uP On

the lst CSB((g-i) a - 0178 - 0･82)･ This `branch'is still connected to the originalCSB.

Among the cases shown here, the branch separates from the originalCSB at (k) a - 0.88.

The Peg(3) appearsunder the lowest strata leg(6) of the branch, its composition becomes

the same as that of the original CSB･ For this point, we?an consider that reg(3) wa月

alreadyincluded in the branch at the bifurcation) but was Invisible, tllen grows SO aS tO

be visible at a - o･85･ From the point ofviewI we can explain the bifurcation and the

transportation of Peg(6) and other regionswith the simplerule that a block bifurcating

from a CSB contains the second and upper strata of the originalblock and appears in

tlle left-neighbouring sector to that of the originalblock (For the rightmost block, the
branch containBall regions and appears in the leftmost sector). The reg(6) stays for some

intervalof a, then piles up on the 2nd arch-shaped CSB at (n) a - 0.99. As going to

a - 1, the 3rd arch-shaped CSB becomes invisible, aJld the compositions of the rest of

CSBs becomes reg(1,3,5,7, -) and reg(2,4, 6, 8,. ･ ･). However, these two blocks axe not

completed until a - 1 (while ml/mo being finite). We can confirm at (o) a - 0.999 that

reg(4), re宅(6), and reg(8) are still germ-shaped independent block.

5･3　Asymmetric case 1: (nFOP,ni｡p) - (3,4)

Looking at area being nFOP ≠ n;｡P On the masS一七riangle shown in Fig.7, one find that

rtFOP - 2el 1 and nFOP - 2e with e ≧ 2, The areabeing (nFOP,埠.p) - (3,4), which we

take up in this section, is the main area of these. The Poincar6 secti｡nfor these area is
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(a) scllematic diagram

Figure 9: The Bifurcation and Composition Change of Arch-shaped CSB
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(b)(a,a)--(0.30,0)(nFOP,螺op)-(3,3) 
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Figure lO= The partition of the Poincar6 section(Symmetric, nF｡P - 3)
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Figure 10: (continue)
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Figure 10: (continue)







Figure ll‥ The partition of the Poincar6 section(Asymmetric, the number of roots is

diff｡r｡ntinboth side of the Poincar6 section)
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Figure 12: The partition of the Poincar6 section (Asymmetric, the dependency on the

parameter a)
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Figure 13‥ The partition of the Poincar6 section(Asymmetric, nFOP - ni｡p - 3)
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Figure 13: (Continlle)

0･1))･ The ntlmber nACS Seems tO be 2 at the limit value ofa, a - 1 - b, at which ml is

0.

6 Interpretation of Results

h the previ011S Section, We have observed the structure of the Poincar6 section Obtained

by means of its partition according to symbol sequences. The observation shows the

relation between the location of a region res(C) in the Poincar占section and the number c.

h this Section) we try to explain these relations using the丑ow oll the TCM and symbol

SeqlユenCeS.

6･l How res(C) with c> nFOP appear

If the (0, R)-plme is considered ill the McGehee's variableB, the 0-axis is connected con-
tinuous tO (0, R > 0)･ Therefore, we can expect that afictitious orbit can metamorphose

into realorbits without changing its topology･ Actually, the foot-points and segments

between foot-points on the 0-axis have symbol sequences

SF - ((21)I, (21)i20, (21)1(1)∞, (21)i(2)∞け≦ int(nF｡P/2), i ∈ Z),

and they appearalso above the segments and the foot-points･ These are Just scallops and

some triple collision curves･ The escaplng Orbits can metamorphose into ejection orbits

continuotlSly) which is analogous tO the continuity between hyperbolic and elliptic orbits.
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collision touch those for both eSCaplng and non-escaplng Orbits in isosceles thr鎗･body

system･ Now, if we let s(TOO)-0-20, 3(Wcu+) - (21)2(1)∞, and a(Wcu-) - (12)2(2)oD,

we五nd

S(0180-)-2(21)2(1)oD∈S(5,∞)　and , S(0180+)-(21)2(2)∞∈S..

Moreover, si.nee reg(C, ∞), with arbitrary c, touches reg(C) because of the continuity be-

tween escaping and ejection orbits, we find that reg(1) adjoins reg(5) via reg((5, ∞)).

If we set a(TCOトO generalSymbol sequences being able to be tlle border of reg(C)

and reg(C′) (via reg((C', ∞)))and evaluate Eq･(32) or Eq.(34), we can obtain the relation

between c and c'. We will do that in the next subsection.

Figure 14: Symbol sequences of the

triple collision curve and its neighー

bourllOO d

Triple ColllS ion Manifold

Figure 15: A triple collision orbit and orbits of its

neighbourhoo d

6･2 Interpretation for the organisation of arch-shaped CSBs

Since reg(C) are deRned by the repeating number of the word `21', only triple collisions

cur.ve with a Symbol sequence whose formis (21)ko or (21)k20 call be the border of

regions 2 reg(C)･ For Such triple collisions, Table 6.2 shows possible concatenati.A ｡f

symbol sequences and their region number. This table is separatedinto cases of (a)

nFOP - n;op and (b) nFOP ≠ n;｡p･ First, we explain elements of the table for case (a).

The column (Triple CollisionI shows a symbol sequence of a triple collision curve. The

column, (0 - 180干｡ 'shows symbol sequences of Wcuj=･ For each item of (Triple Collision

2For example, removing `0, from `2220, and concatenating any symbols after that, we obtain only

Symbol sequences belong to SI U Sl,∞ ･ Therefore, `2220'cannot be a bordemf regions re宅(C).
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Figure 25: (contin-1e)
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Figure 26‥ The PPs and the separatrix on the Poincar占section for α - 2/3














