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Chapter 1

Introduction

This thesis introduces ‘Super-Sweep method’; it is a new method of sweep-signal spectrum
analysis, which give high-speed measurements. Since spectrum analyzers developed in 1960’s, they
have been improved over years, but their fundamental method of it has not changed. Especially,
sweep-signal spectrum analyzers have a property whose sweep rate is restricted, which is in
inverse proportional to the square of the frequency resolution and the restriction has not been
improved. We intended to break the restriction and made an experiment system that achieved a fast
sweep measurement.

1.1  Spectrum Analyzer

1.1.1 Background

This thesis suggests ‘Super-Sweep method’, which is a new method of a spectrum analysis,
which improved a sweep rate of the analysis drastically.

A Sweep spectrum analyzer is measurement instrument that measures electronic signals in the
frequency domain and provides spectrums. This analyzer is very useful and necessary for
developing and testing radio communication devices or instruments. Especially, it is the most
convenient instrument to measure the Radio Frequency (RF) signal. In recent years, wireless
communication technologies have progressed rapidly. In radio astronomy, a sweep spectrum
analyzer is commonly used as a receiving system. The analyzer is desired to measure a wider band,

with finer resolution, in a wider dynamic range in a time as short as possible.
Sweep spectrum analyzers have representative characteristics as follows [1][2][[3][4].

1) The measurement time (i.e. the sweep time) is inversely proportional to the square of the
resolution bandwidth (Rbw). For example, in the case that the measurement frequency band
(Span) is IMHz, Rbw is 10kHz and 1 kHz, the sweep time is 0.2sec and 20 sec, respectively.

2) The noise level of measured spectrum is proportional to the Rbw. It requires narrower Rbw to
obtain a spectrum with lower noise level, but it demands longer sweep time.

3) The analyzer has sensitivity for one frequency at one instant. The analyzer presents the spectrum
as a persistence of vision or a trace. In the case that the sweep time is long, the analyzer cannot
follow dynamical changes of the spectrum.



To overcome above characteristic, some types of the analyzers employ the ‘Digital IF filter’.
The HP3588 produced by Hewlett-Packerd Inc. is one of them and achieves the measurement speed
in maximum four times faster than a conventional analyzer by estimating and correcting distortions
of the spectrum [5].

The FFT method is another way to overcome the characteristics. The FFT method achieves a
fast measurement with fine resolution (e.g. with Rbw is narrower than 10kHz). But this method is
not suitable for measurement of wideband span and resolution (e.g. with Rbw wider than 10kHz or
30kHz). In these conditions, the sweep method is suitable at the point of measurement time, cost
and other specifications such as dynamic range [6]. In the FFT method, the frequency span of one
measurement is narrower than the Nyquist frequency of the AD/C. To measures frequency span
wider than the Nyquist frequency, we have to measure multiple times by stepping up the tuning
frequency and join the results. The number of the measurement increases in proportion to the ratio
of the span per the Nyquist frequency.

The difference of characteristics between the sweep method and FFT method is not only the
measurement rate but also some other characteristics. These methods have merit and demerit
respectively. We should use them selectively in accordance with the purpose. The relation and
difference will be described in section 2.8.

1.1.2 Properties and problems of the sweep method

A sweep spectrum analyzer is the most convenient instrument to observe a Radio Frequency
(RF) signal. But it has imperfectness as a Fourier transformer. In this method, the sweep time 7
is restricted as

T, >k, %, (1.1)

where k, is a constant value, which is 2~3 experimentally, Span is a measured frequency
bandwidth, and Rbw is a resolution bandwidth. In the case that the 7 is too short against the
restriction, the measured spectrum has some distortion (it is shown in Fig.2.8). Typically, three
types of the distortion exist,
1) Resolution expansion: An expansion of the frequency resolution (Rbw),
2) Level reduction: A reduction of the peak level,
3) Frequency shift: A shift of the spectrum toward higher frequency.

We called these phenomenon ‘over sweep-rate response’, which are described in chapter 2. And
they appear on the spectrum except when the sweep time is infinity. In some conventional spectrum
analyzers, the level reduction of 0.1dB is permitted maximally, and the value k, of Eq.(1.1) is
decided corresponding to the reduction 0.1dB [1] [2][3][4].

One example of the ‘Frequency shift’ is shown in Fig.1.1, where Span and Rbw is 20kHz and
1kHz, respectively. There are two spectrums, the sweep time of the bold line is 60msec and it of the
thin line is 10sec. The sweep time 60msec is longer 20msec than the typical value corresponding to
Eq.(1.1). We can see that the bold line, which is shifted to right side.



Sweep spectrum analyzer has a characteristic that it cannot measure without any distortion. We
have to use it finding a compromise between the accuracy and measurement time. One of the

compromises is Eq.(1.1).

Span=20kHz, Rbw=1kHz. St=60msec

Level (dB)

-100 l 1 1 1 l 1 1 l 1
-1000 -800  -g600  -400  -200 0 200 400 600 800 1000

Freq. (Hz)

Fig.1.1 Example of an over sweep-rate response
Span=20kHz, Rbw=1kHz,
The bold line: Sweep Time 60msec; typical (automatically)
The thin line : Sweep Time 10sec; very slow (manual)

1.2  History of Spectrum Analyzers

The first sweep spectrum analyzer was developed by Hewlet-Packard Co (HP). in 1960’s [7].
Until 1970’s, the sweep spectrum analyzers were made by analog circuit technology. Those displays
were CRTs, and spectrums were shown as persistence of its luminescent screen. In 1974,
M.Engelson (Tektronix, Inc.) wrote the book [1]; “Modern Spectrum Analyzer Theory and
Applications”. In this book, M.Engelson systematized technologies of spectrum analyzers.

In 1978, HP Co produced the spectrum analyzer HP8568A, whose operation was controlled with
microprocessors. HP8568A had a digital storage display.

In the first half of 1980’s, other factories (such as ADVANTEST and Tektronix Inc.) produced
spectrum analyzers that were controlled with microprocessors and had digital storage display. These
analyzers had A/D converter that digitized the final spectrum signal into the digital data, and we
could obtain the average of the spectrum. In this decade, “GP-IB” (called “HP-IB” too) became
popular for most measurement instruments. Then most spectrum analyzers could communicate with
a computer by these interfaces and we could include spectrum analyzers in automatic measurement



system. In these years, spectrum analyzers of FFT method became popular. The FFT method uses to
measure a low frequency signal such as 100kHz or under. They were made by almost digital signal
processing technologies.

From the second half of 1980’s, the technologies of the digital signal processing were introduced
into sweep spectrum analyzers. The HP8560 series (produced by HP. Co.) and the R3265 series
(produced by ADVANTEST Co.) had digital resolution filter that were narrower than 300Hz or
100Hz. They were some application of the FFT method and these operations were done by regular
microprocessors such as 68000.

In the last of 1980°, HP. Co. produced the analyzer HP3588 [8]. This analyzer was epoch-making
instrument. It was the first analyzer which had an LSI of a digital filter and digital signal processor
in a sweep spectrum analyzers. But characteristics of operation and performance differed a lot from
those of other sweep spectrum analyzer. HP3588 was considered not to be accepted by many RF
and analog engineers.

Since 1990’s, the primary technology of a radio communication became digital, and technologies
of spectrum analyzers were forced to adapt itself to the technology. Many spectrum analyzers had
functions of digital modulation analyses. Technologies of digital signal processing were introduced
into spectrum analyzers actively in these years.

In the middle of 1990's, Tektronix Inc. produced the “Real Time Spectrum Analyzer
series”, which had powerful processor and measured spectrums by the FFT method. This
analyzer made a new category of spectrum analyzer.

In 2000’s, Agilent Technology Co. produced PSA series spectrum analyzers. It was a
sweep spectrum analyzer. All of their RBW filters were made by digital filters.

As described above paragraphs, in the history of spectrum analyzers, the technology
of the digital signal processing have been introduced from its backend to the front-end.
At present, the highest classes of spectrum analyzers are mainly made by digital signal
processing technology such as PSA series [9]. In this kind of analyzers, the method to
achieve first measurement of fine RBW was FFT method, and the principle of sweep
method was not changed from the appearance of the analyzers. The FFT method has
some demerits against the sweep method, and most spectrum analyzers to measure RF
signal are made by the sweep method at present.



1.3  Purposes of this Research

We investigated the process of the sweep spectrum analysis and the FFT method. And research
the optimized application of these methods.

This thesis suggested the ‘Super Sweep method’ to improve the characteristics described in
section 1.1. This method intends to make the analyzer operate with faster sweep rate arbitrarily than
a conventional method in principal.

The new method is the third way to measure spectrums following the sweep and the FFT, and
has eliminated the demerit of the sweep method and has several merits as compared with the sweep
and the FFT method.

Practically, we cannot obtain the Fourir transform perfectly using any of those methods. The
conventional sweep spectrum analysis and FFT method are artificial methods to observe the
spectrum. The new method may be one of the artificial methods, but at least it eliminated some
restriction of the sweep method and has some merit that the FFT method does not have.

1.4 Method

We analyzed the new method, and made a model of the system, which was implemented the
new method. We researched the fundamental model and designed the experimental system that
achieved the new method.

1. We analyzed the sweep method and the FFT method as a conventional way and represented the
sweep method as a mathematical model. It was fundamental research to invent the new method.
We investigated that the cause of the over sweep-rate response was the chirp phase factor in the
IF signal (see section 2.5).

2. We considered the mathematical model of the super sweep method, which improved the sweep
method. The new method achieved the fast sweep using the negative chirp filter, which
canceled the chirp phase factor of the IF signal and rejected the almost case of the over
sweep-rate response.

3.  We researched the model of the signal processing of the new method and what devices were
suitable to implement the new method.

4. We designed and implemented the experimental system, which achieved the new method. This
thesis reported the description of the process. The experimental system included the
conventional spectrum analyzer as a RF down converter. We designed and made a digital
signal processing (DSP) unit, which processed the IF signal that is one output of the spectrum
analyzer (see section 4.2). The back-end system, which displays a spectrum and worked as a
man-machine interface, was build with a PC. We measured the peak level and to observed
resolution bandwidth by changing the normalized sweep rate (see Eq.(1.3)), and plotted the
result.

5. We reported the result of the experiments and verified that the new method achieved the fast
measurement against the conventional method.



6. There were many topics about the new method such as devices to operate the new method, the
analysis the chain of the filter and relation between the Chirp Z-transform etc. In Chapter 6,
these topics were discussed.

7. The comparison among the three methods of merit and demerit is described in this thesis.

1.5 Representative result
We verified the theory of the new method, in which the sweep rate o is
o < Rbwx (Flt/ y), (1.2

where FIt is the bandwidth that we could process on the resolution filter, and x is a
constant value from 2.5 to 4.0. In the case that the F7¢is enough wider than the Rbw,
we can obtain a fast sweep rate as we desire. The sweep rate of the new method against
the normalized sweep rate 1/kis shown in Fig.1.2. The value 7/kis defined in Chapter 2
as

Span o

1/k= > = >
Tg xRbw™  Rbw

(1.3

The sweep rate of the sweep method is in inversely proportion to the square of the
Rbw. In the new method, it is in proportion of the product of Rbw and FJt. Especially, at
the narrower Rbw the new method had large advantages.
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Fig.1.2 Comparison of a sweep rate between the sweep method and the super sweep

method



The unit of o and Rbw is Hz
1.6 The Composition of this thesis

In Chapter 2, we summarized the characteristics of a sweep spectrum analyzer and analyzed the
mathematical model of the analyzer, and the digital IF method is described which was a base of the
new method. And we described about the FFT method too.

In Chapter 3, we described the theory and the implementation of the ‘Super Sweep method’.
We invented a ‘negative chirp filter’ with a complex digital filter, and examined that the filter
allowed the spectrum analyzer to measure any times faster in principle.

In Chapter 4, we reported a development of the experiment system to prove the theory of the
Super Sweep method, and got the results that achieved 30 times faster measurements than
traditional sweep spectrum analyzer.

In Chapter 5, we discuss the result, and improve that the new method allowed a sweep
spectrum analyzer to operate faster in accordance with system condition in theoretically.

In Chapter 6, the additional discussion is done. The new method has several interesting
property.

In Chapter 7, Applications in the radio astronomy are reported. Some characteristics are
investigated. One of them was the SNR when the analyzer measure low power signal as measured
signals in radio astronomy. Author observed radio signals of some astronomical body using radio
telescopes, our experimental system, sweep spectrum analyzers and the built-in FFT system of the
telescope. And we compared the SNR of the three methods.

Chapter 8 are the conclusions.

1.7  Glossary

English

S (©) Input (measured) signal

S 4@ The analytic signal of [, (¢)

fs i The Sampling frequency of the Analog Digital Converter (AD/C)
g(t) The impulse response of the Gaussian filter
G(w) The frequency response of the Gaussian filter
I In-phase factor

Log AMP Logarithmic amplifier

Sp(t) Base band signal

Ss rew (0 Base band signal through the RBW filter

S, (1) Intermediate Frequency (IF) signal

S 4 The analytic signal of S, (¢)



S, () 1st local IF signal

R, The rate of the sweep rate against a traditional sweep method,
Defined by Eq.(3.35).

T Sweep time as a parameter

T S min The minimum sweep time

P(w) Power spectrum

Q Quadrate factor

k, A coefficient decided by the impulse response of the resolution filter.

It decided from the response time of the resolution filter such as

k/Rbw.

I’k Normalized sweep rate. Defined by Eq.(2.40)
Greek
0] Radian frequency
o Radian frequency of the base band signal S, ()
W Radian frequency of the IF signal f,.(¢)
@ Radian frequency of the input signal f, (¢)
@, Radian center (at t=0) frequency of the local oscillator
o, Radian frequency of the signal generated by the local oscillator /()
o Sweep rate (Hz/sec)

_k Span

Rbw’
max Maximum sweep rate
/ frequency difference
Acronyms
AD/C Analog to digital converter
ATT Attenuator
CZT Chirp-Z Transform
CTS Chirp-Z Transform Spectrometer
IF Intermediate Frequency
IF BPF IF band pass filter
LPF Low pass filter
RBW Resolution bandwidth described in section 2.5.6
As a condition of conventional spectrum analyzer

REbw RBW as a parameter



RBW filter The IF BPF whose bandwidth is narrowest and decides the frequency

resolution of the spectrum.

Rbw’ observed KEbw as a parameter

SPAN Frequency span; the frequency range that we desire as a spectrum.
Span SPAN as a parameter

St Sweep Time

Name of conventional instruments:

FSU: The spectrum analyzer produced by Rhode-Schwartz Inc.
R3264: The spectrum analyzer produced by ADVANTEST Co.
PSA: The spectrum analyzer produced by Agilent Technology Co.

1.8

Technical Terms on the Spectrum Analyzer

An example of a spectrum analyzer’s display is shown in Fig.1.3. There are some

special terms used in a spectrum analyzer corresponding to the parameter on the

display of the spectrum, which are indicated by numbers with a circle

@
@

@7

Center frequency ,(CF) indicates the center frequency of the display scale.

Span (SPAN) is the frequency bandwidth of the measurement, corresponding to the
difference between Start (left end of the scale: @) and the Stop (right end of the
scale: @).

Start (START or STT). It is the start frequency of the scale, the frequency of the
left end of the scale.

@ Stop (STOP or STP). It is the stop frequency of the scale, the frequency of the right

®

@

®

®

end of the scale.

Reference Level. (RL). It is the level top of the scale, usually indicated by the unit
dBm.

Level per division; It is the level difference of each vertical scale grid, usually
indicated such as “**dB/.

Marker,(MK or MKR). It is a mark that indicates the frequency and the level of the
position of the spectrum that selected by the operator of the analyzer.

Video Bandwidth (VBW). It is the bandwidth of the filter that is set up after the

power detector of the spectrum.

@

Sweep Time (ST or Ts). It is the time that the sweep needs the from Start to Stop

frequency.

C)

Attenuator (ATT). It is a attenuator that is implemented RF front end.
Resolution bandwidth (RBW or Rbw). It is the frequency resolution bandwidth that
decides the resolution of the spectrum.
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Fig. 1.3 Samples of display of a spectrum analyzer
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Chapter 2
Review of Sweep-Signal Method

2.1 Introduction

The theoretical backgrounds of the sweep spectrum analyzer are well summarized in the
references [1][2][3]. In this chapter, we present detailed analysis of the method on the signal
processing.

Section 2.2 shows the outline of the sweep spectrum analyzer. Section 2.3 describes the
principal theory of the sweep method. Section 2.4 describes the digital IF method as an
improvement of the sweep method. Section 2.5 shows the mechanism of the sweep method as the
digital signal processing. Section 2.6 describes a few important characteristics of the sweep
method. Section 2.7 investigates the property of the resolution filter in case of measuring the FM
modulated signal. Section 2.8 describes the some characteristics of the FFT method. And section
2.9 concludes this section.

The description of this chapter introduces the fundamental of the new method, which is
described in chapter 3.

-13-



2.2 Principle of Sweep-Signal Spectrum Analyzers

This section describes the structure and the properties of the conventional sweep
spectrum analyzer. Section 2.2.1 describes the outline, section 2.2.2 will describe
about a frequency down converter, and section 2.2.3 describe the function of the LPF.

2.2.1 Outline of Spectrum Analyzers
A simplified block diagram of a traditional sweep spectrum analyzer is shown in Figure 2.1.

This kind of analyzers consists of many components as follows [1].

- LPF

+ ATT & Pre-AMP

 Frequency Converters

+ Log AMP

* Detector

+ Video Filter

- AD/C

«‘LPF’ (low pass filter) prevents the mixer from receiving higher frequency signal than

the system cannot process. A function of the LPF is described in section 2.2.3.

 'ATT’ (attenuator) is used to degrease the power of the input signal, in the case that the power of
the input signal is too large. And ATT is used to reduce the noise power of the input.

- Usually sweep spectrum analyzers have multiple ‘Frequency converters’. They consist of a mixer,
a local oscillator and a band pass filter and output of IF (Intermediate Frequency) signal
“S,e (t) . Itis described in section 2.2.2.

- The ‘Log Amp’ converts the amplitude of the S, (t) logarithmically.

» The ‘Detector’ detects the output of the Log Amp with AM detection.

- The “Video Filter’ limits the bandwidth of the detected signal and outputs the envelope of the
S (). In the classic sweep spectrum analyzer with analog displays, this signal was used to
drive the vertical deflection plate of the CRT directly. Hence the signal is called ‘Video signal’.
Most spectrum analyzers since 1980s digitizes the Video signal with the *AD/C’, AD converter,
and the spectrum is displayed by a digitized display.

- The digitized data is put into memory of the ‘Display system’, which is controlled by a
microcomputer or other control devices. The Display shows the Video signal as the ‘Power
Spectrum: P(w)’.

-14 -
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Figure 2.1 Block Diagram of Classic Sweep Spectrum Analyzer
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2.2.2 Frequency Converter *)

A block diagram of the Frequency converter is shown in Fig.2.2, which consists of three
elements, a mixer, a local oscillator and an IF BPF (IF Band Pass Filter). The most important
element is the mixer, which operates as a multiplier and makes the products of the input signal and
the local oscillator as an analog circuit.

In the case that the frequency of the input signal and the local oscillator is «,, and ,,
respectively, the mixer produce the two signals whose frequency are w,, + @, and |w, — o, |.
This operation corresponds to Eq.(2.1), which is one of the formulas about the trigonometric
function [4].

cos(A) xcos(B) = %[cos(A+ B) + cos(A - B)]. (2.1)

And the output of the mixer includes two feed through factor of @, and «,. These frequencies
around the mixer are shown in Fig.2.3.

The ‘IF BPF’ permits only one signal, usually @, +®, or |w, —®,| to be outputted
from the converter. The output of the IF BPF is called ‘IF (Intermediate Frequency) signal’.

In the case that the input signal £, (t) is explained as;

fin (1) = A(t)cos( w,, t+ (1)), (2.2)
the output will be
S (t)=A(t)cos( (@, +w,)t+0(t)) (2.3-8)
or S-(t)=A@M)cos( |w, —o, |t+06(1)), (2.3-b)

where A(t) is the amplitude and ¢ (t) is the phase factor. The Frequency
converter transform frequency only, and influences on other factors such as A(t) and Z(t).
Equation (2.3-a) and (2.3-b) can be explained by

S () =Re[A{M)exp[j((a + ) )t+OO)]]  (24-3)

or S (t) =Re[A(M)exp[j((@ —ay )t+OM)].  (24-b)

The frequency w, +®, O |w, —®,| is generally called ‘Intermediate frequency’ or

simply “IF’.

*) note: Sometimes a frequency converter is called another name such as down converter,
frequency down converter, RF down converter and converter.
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2.2.3 Input LPF

The discussion of last section has the assumption that the frequency of the input signal is
under the frequency w,, ..,Which is lower than the lowest frequency of the local oscillator
®, ..+ In the case that another signal exists and its frequency ' satisfies the following
eql]ation

O '=0 = 0~ Oy (2.5)

we cannot distinguish the frequency o, from ,,'. To avoid this trouble, the input signal is
passed through the LPF shown in Fig.2.1. The frequency w,, ... is the cut-off frequency of the
LPF.

S @) mixer IF BPF 5 ll)
L .©) ouTPUT
Sl

Local Osc.

Figure 2.2 Block Diagram of a Frequency Converter

Power

Frg.

Fig. 2.3 Frequency around a mixer
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2.3 Analog signal processing with swept local oscillator

The qualitative discussion on the frequency converters with swept local oscillator is given in
this section.

2.3.1 Frequency converter with Swept Local Oscillator
In the condition that the local oscillator does not sweep and generate a CW signal, the system
shown in Fig.2.2 operates as a general radio receiver. On the other hand, a sweep spectrum
analyzer is provided with a characteristic that the local oscillator generates a sweeping signal.
The frequency of output signal of the frequency converter is shown in Fig.2.4.
We assumed the system that is under the condition itemized as follows.
+ The input is CW signal for simplification.
+ The maximum and minimum frequency of the input signal is @,y .., and @y i -
» The minimum and maximum frequencies of the local oscillator, go, max  and a); mn Which is
defined as; ) )
O oy 2O 2@ i (2.6)
D max D) _min = O\N_max (27)
+ The frequency of the input signal is restricted by the input LPF as
O max 2 Dy - (2.8)
+ The frequency of the local oscillator is higher than the frequency of the input.

O in Z O max (2.9)
‘T * is defined as the sweep time. The local oscillator generates the signal @, within the
sweep time periodically. The time ‘t” is considered periodically as
T, >2t>0. (2.10)
Then the converter generates two signals, o, +w,, and o, —®,, , Which are indicated in
blue and red square in Fig. 2.4, respectively.

In the case that @,y equals to @, ., oy +o, and o -o, are same frequency, and
traced by the line ‘@’ in Fig.2.4. Simila_rly, @, equalsto @, . they are traced by ‘@’ and
‘@’ respectively. i

In the case of @,y =@, i, the frequency o, +o, equalsto o, ., at t=Tg, whichis
indicated as the point ‘L’ in Fi_g.2—4. i

In the case that @, = @,y s the frequency o, + w,, equalsto @, ., at t=0, whichis
indicated as the point ‘H’ in blue. In the case that @ 1S (O max +a)|N_ min )/ 2, the frequency
o, +w, equals @ .. at t=Tg/2, whichisindicated as the_point ‘M in blue. In the case that
O =OnN min» O J;a),N equals @, ., at t=Tg, whichisindicated by ‘L’ in blue.

Similarly for the signal @, — O , the points corresponding to o, -0, =0, ,, areindicated
as ‘L’,’M” and “H’ in red which are arranged in reverse order to those of , + a;, :
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In the case that we configure the IF BPF whose center frequency equals @, ., OF @ .,
we can obtain the power corresponding to the any frequency of @, , and we can know the time
when the power come in corresponds to the frequency @,y .

Frequency

a)l + a)IN_max -

o +oy|----

a)l_min _a)IN_max""

0 T /2 T,

Fig. 2.4 Frequencies of signals around a mixer with the swept local
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2.3.2 Output of IF BPF

The time-frequency diagram of the signal around the frequency converter with the swept local
oscillator (see Fig.2.2) is shown in Fig.2.5. Where, the input signal is assumed as a single CW
signal, the condition of the system is similar to that in the last section, and the center frequency of
the IF BPF: @, issetto @, ., (seeFig.2.4).

When the frequency of the mixer’s output is around @, ., the output of the IF BPF has a
power. The frequency . is generally called as ‘Intermediate Frequency’ or ‘IF frequency’.

The abscissa of Fig2.5 indicates the time and the ordinate indicates the frequency. The each
graphs of the Fig.2.5 is itemized as follows.

- (@) shows the frequency of the input signal ®,, against time. The input signal is f (t),

which is assumed a single CW signal.
In his figure and (b) and (c), the ordinate indicates frequency.

- (b) shows the frequency of the local oscillator whose frequency is swept from @, ¢, 10
These parameters satisfy the next equation. i

O max Z D) stop > O start = D) _in

- (c) shows the frequency of the mixer’s output, w_, .. =@ —®, *) and the pass band of
the IF BPF which is o, =w, ;- ‘h(t)" is the impulse response of the IF BPF. The
frequency response of IF BPF is drawn as a graduated horizontal bar. By selecting the
frequency o, gy aNd @, g0 adequately, the line of clothes the path band of
the IF BPF around the time t =Ts/2.

- (d) shows the output of the IF BPF as S, (t). In this figure, the ordinate indicates a voltage.
The horizontal line indicates a voltage 0 V. Where S _(t) has a significant value around
thetime t=T,/2.

- () shows the power of the s _(t). The unit of ordinate is dBm. We can consider S (t) is

a spectrum of the input signal  f (t).

@) stop-

mix_ out

In the case that the input signal f  (t) is another type of signal, such as modulated or
multi CW signal etc, we can observe the spectrum of f, (t) as a distribution of the spectrum.

In summary, for a sweep spectrum analyzer we should chose the IF frequency higher than
the maximum frequency of the input signal ,, .. Which corresponds to the cut-off of the
LPF front of the mixer. The frequency of the local oscillator should be tuned from the IF
frequency to the ‘IF frequency+w ...~ [1].

Note *): The most sweep spectrum analyzers employ the frequency of the mixer’s output to be

@) — Wy -
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@ STA"’TE
A t=T,/2 _
@ _stop ~ D Oy ot = O, — O Output signal
N G - of the mixer
| < h(t)
IF BPF
ov
(e) T
Time

Fig. 2.5 Time-Frequency diagram around a mixer with the swept local
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2.3.3 Multi Conversion

Usually, spectrum analyzers have multiple frequency converters. Usually, they are called 1%,
2" and 3" converter from the front end of the input side. This section describes why spectrum
analyzers have multiple down converters.

The frequency of the 1% local oscillator in the most modern spectrum analyzer is
approximately 4GHz to measure wide frequency range. The frequency resolution of the spectrum,
which is obtained by the system in Fig.2.5, is decided by the bandwidth of the IF BPF. Some
spectrum analyzer have the resolution 1kHz; others, 10Hz; still others, 1Hz. It is difficult to
achieve such a narrow filter at the center frequency 4GHz. Therefore most spectrum analyzers
typically have three or four stages of frequency converters [1]. The example of a multi stage of the
frequency converter is shown in Fig.2.6. This example has three stages and the 3rd IF frequency is
21.4 MHz. Most spectrum analyzers have this IF frequency, 21.4 MHz and has the IF BPF as a
resolution filter on this frequency.

Usually, the IF BPF on the 21.4MHz IF is called ‘Resolution Bandwidth Filter’, ‘RBW BPF’ or
‘RBW filter’, which decides the frequency resolution of the measure spectrum [1][2].

Note) The IF frequency of many FM radio receivers are 21.4MHz, and we can get the filter
whose band pass is 21.4MHz with reasonable price. It is one of the reasons that the IF frequency
of spectrum analyzers are 21.4MHz.

3 GHz Ist 3921460z 2Nd 304MHz  3rd 214MHz  Envelope
T gy detector
R X
X N N\ AN, o
Y oV, RS X
39-7.0 GHz
36 GHz 300 MHz +
Sweep
generatt]r D;splay

Fig. 2.6 Multi frequency converter (Referred Figure 2.5 of [1])
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2.3.4 Restriction of Sweep time

A response of a RBW filter is illustrated in Figure 2.7, where the horizontal axis indicates
both time and frequency. The measured signal is a CW, ‘Rbw’ is the 3dB bandwidth of the RBW
filter; *T, " is the sweep time; ‘Span’ is the measurement frequency range which equals
@, stop — @, starr > aNd © AT is the time corresponding to the response of the RBW filter, which is
explained as

Rbw
Span

A sweep spectrum analyzer obtains the spectrum from the response of the RBW filter. Any
filters require a finite time to charge and discharge, and the time length are inversely proportional
to its bandwidth [1]. Then AT has a restriction explained by next equation.

AT > Rkb° , (2.12)
W

AT =Tg x

(2.11)

where K, is a constant of proportionality. Equation (2.12) can be modified by replacing AT as

the right side of Eq.(2.11).

Rbw _ Kk,
s X > . (2.13)
Span  Rbw
It is modified as
Span
T 2k, ——. 2.14

In the most sweep spectrum analyzers, the value of ‘K, are in the range from two to three.

In the case that T is shorter than the time of Eq.(2.14), the peak-level of the spectrum will
be reduced as shown in Fig.2.8, where Span and Rbw of the all spectrums equal to 50 kHz and 300
Hz respectively. The sweep times T, of ‘A’ to ‘F’ is 2.0sec, 1.2sec, 500msec, 100msec, 50msec
and 20msec, respectively. Especially, ‘B’ is a ‘AUTO’ which is configured by Eq.(2.14). The peak
level is reduced and the width of the peak is expanded corresponding to the sweep rate, Span/Ts.
We call this phenomenon ‘over sweep-rate response’.

In the most conventional sweep spectrum analyzers, the value of K, is decided by a
condition that the level reduction is about 0.1dB [2]. Actually, the difference level of peaks
between A and B in Fig.2.8 was 0.13dB.

In summary, sweep spectrum analyzer has a restriction on its sweep time and sweep rate.
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N

Span

Fig 2.7 Response of an RBW filter measuring CW signal

2.3.5 Permissible distortion

The theory of level reduction is described in section 2.5. By the theory, we cannot measure a
spectrum without any reduction. We have to use the analyzer permitting the level reduction, which
is about 0.1dB [1][2].

Sweep spectrum analyzers have a property that the spectrum is shifted to the right side
corresponding to the charge and discharge time of the RBW filter. Figure 2.8 shows the shifts that
corresponds to the frequencies of the peaks as follows

Shift time = T, X{(frequency of the peak)- (center frequency)}/Span .
As the results, all of the shift times were approximately 2.2msec, which are 0.66 of the inverse of
the Rbw= 300Hz.

In the case that the sweep time is longer than the condition of Eq.(2.14), as far as we observe
the spectrum with our eyes, the shift and the level reduction is negligible obstruction.
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Fig 2.8 Examples of over sweep-rate responses
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2.4 Digital IF

The qualitative property of the sweep spectrum analyzer is described in section 2.2. The
systems described in section 2.2 and 2.3 were analog type only. This section describes a ‘digital IF
method’. We considered that introducing the digital IF method is appropriate to describe the
property of the analyzers mathematically.

2.4.1 Digital IF method

The block diagram of Fig.2.9 suggests an example of the spectrum analyzer which has both
analog and digital IF method. In the both method, the spectrum is measured as a changing power
of the signal, *S. (t)’, which is called as 'Intermediate frequency signal’, or simply 'IF signal'. It is
passed through the ‘IF BPF’ of the 3" down converter whose center of the pass band is fixed, as
described in section 2.3.

In analog IF method, the IF signal is passed through the ‘LOG AMP’ and the power is
detected by the ‘Detector’, and the ‘Video Filter’ reduced the bandwidth of the detected power,
they are described in section 2.2. The ‘Peak Detector’ and the ‘Sampler’ pick up the extracted
power at each interval, which is 1/500~1/4000 of the sweep time synchronized with the ‘Ramp
signal’. The AD/C digitized the sampled power. Then the sampling frequency is satisfied 10kHz or
50kHz to detect the power.

In digital IF method, the AD/C digitizes the IF signal directory. In some early type of this
method, the frequency of the IF signal were configured as the range under 10kHz and the sampling
frequency were 20k or 30kHz. And a calculation of FFT (Fast Fourier transform) is used to obtain
a spectrum [1].

In recent years (such as since 2000s), we can use high-speed AD/C with 14bit and digitize the
21.4MHz IF signal directly. In this thesis, the early type is not discussed. We will discuss about
the type that has high-speed AD/C and signal processing devises. Figure 2.10 shows one example
of a digital IF section which has high-speed AD/C and DDC (Digital Down converter described in
chapter 4) and the DSP (may be any computer device). The details of the digital-1F method will be
described, in following sections.
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Fig. 2.10 Detail of digital IF section
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2.4.2 Quadrature Detection

The digital IF section of Fig.2.10 has some stages, (a), (b), and (c). The signal of (a) is the

output of the AD/C and the digitized signal of final analog IF and explained as a real signal,

S, (t)=A(t)cos(w,. t+0(1)), (2.15)
where A4(t) is the amplitude, ¢ (?) is the phase factor and @, is the IF frequency. The spectrum
of this signal is shown in (a) of Fig.2.11.

The signal §,.(¢) is inputted into the DDC (Digital Down Converter) drawn in Fig.2.10 and
enclosed by the dotted square. The DDC operates as a ‘Quadrature detector’ for the input, and
output a ‘Base Band Signal’. The ‘NCO’, numerical controlled oscillator generates two signals,
cos( @, t) and —sin( @, t). The two mixers make the product of the signal S, (¢)
multiplied cos( @, t) and —sin( @, t) digitally. The signal line whose mixer is linked with
cos( @, t) is called ‘I-ch’, ‘I part’ or ‘I’ simply. Similarly, the part linked with sin( @, ¢) is
called ‘Q-ch’, ‘Q part’ or ‘Q’.

The I part at the point (b) is given by

1,(2) = A(t) cos( @, t + 0(1)) x cos(@, 1), (2.16-a)
it is modified as
1,(t) =+ At){cos2 . t + O(t)) + cos(0(1)}.  (2.16-b)
Similarly, the Q part is
Q, () = A1) cos( @,y t + 0(1)) x (=sin(@y 1))

' ‘ . (2.16%0)
= 1 A(t){sin(2w,, £ + 6(t)) + sin(6(2))

We can consider that the signal 7 (¢) and Q, () asacomplex signal,
S,O=1,0+,0,) , 2.17)
where j is an imaginary unit. We can consider a negative frequency in the signal S g ().

A system that generates the signal S, (¢) is called a ‘quadrature detector’. We call sometimes
the quadrature detector that includes the LPF of the DDC.

In Fig.2.11 the sampling frequency of the AD/C is f,, and the frequency of the IF signal is
regarded around f, /4. Then, the angular frequency 2@, is a Nyquist frequency (equals to
27 f,/2) at the stage of (a) and (b). The spectrum of the signal whose frequency is higher than the
Nyquist frequency turns around to the negative Nyquist frequency such as the ‘Image’ of (b) in
Fig.2.11.

The signal S (¢) is inputted into the LPF, which consists of CIC and FIR filters as shown in
Fig.2.10. The characteristic about the CIC and FIR are described in chapter 4 and [5]. In the case
that the image factor is rejected by the LPF, the passed through signals S, (7) is given by

S,(t) = %A(t) {cosO(t)+ jsiné(t) }. (2.18-a)
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This signal S,(¢#) can be considered an analytic signal, whose real part and imaginary part is a
pair of Hilbert transform [6], and it can be written as

S, (1) = %A(f) expl/6(1)]
= 1,()+ O, (1)

(2.18-b)

This signal has the amplitude A(#) and phase factor @(¢) of the input signal Eq.(2.2),
f]N (1) =A(t)cos(w,y t + o(1)),
and the IF signal Eq.(2.15)
S, (t)=A(t)cos(w,- t +0(t))
The analog and digital down-converters, discussed in the above section, rejects the carrier
frequency from the input signals, and output the type of the signal S, (¢) that is generally called
a base band signal.

We can consider that the signal f, () and §,.(¢) are real parts of an analytic signal. And we
can define the analytic signals as

Siv 4@)=A@t)xexp[j(@, t+06(1)] (2.19-a)
S 4(1) = A(t) xexp[j( @,  + 0(1))]. (2.19-b)
The base band signal is made by rejecting the carrier frequency from f,, ,(#) and S, ,(?).

The frequency range of S,(z) is limited by the LPF, and we can reduce the sampling

frequency. Usually, the DDC has a function to reduce the rate, which is called decimation and the
rate of decimation is usually integer. The CIC and FIR filter has the function whose decimation
rate is N and N,,, independently. The total decimation rate N,,.is sum of them,
Nppe = Nee + Ngg -
The decimation of (c) from (b) of Fig.2.11 is two, where the Nyquist frequency is f, /4.
If any signal whose frequency is from f,/4 to f,/2 or from - f /4 to —f /2, some
aliasing signals appear in the signal S,(¢) [6]. These aliasing signals are drawn as
the gray area and linked by the dotted arrow lines in (b). Usually the LPF reduces the
level of the signal whose frequency is higher than its cut off frequency, and output the
signal whose frequency area is around OHz reducing the aliasing signal, and the area
is shown as ‘FJ¢ in (c). In the case that the DDC is used as a radio receiver, the FJ¢t
should be wider than the bandwidth of the received signal.
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Fig. 2.11 Quadrature Detection in Frequency Domain

2.4.3 Digitized IF Signal with Swept Local oscillator

The local oscillator of sweep spectrum analyzers generates the sweep signal /(z), which is

(2.20)

explained as
1(t) =explj(z-0t> + oyt +6,)),

~Ty/2<t<T,/2
where, ¢ is a time, o is the sweep rate, @, is the frequency at =0, 6, is an initial phase, and

T is the sweep time. The sweep rate o is decided by Span and the Sweep time.

o = Span 2.21)
TS

In the case that the input signal is explained as Eq.(2.2),
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S (@) = A(r)cos(wyy 1 +0(1)) ,
the output of the 1¥ down converter S,(#) (see Fig.2.9) can be considered as next equation by the
discussion of section 2.2.2 and 2.2.3.

S,(t) = ax A(t) x Re[exp[ j(— @yt + 6())]x ()]

(2.22)
= ax A(t)x Relexp[j(z o 1> + (@, — @y )t +0(1) + 6,)]]

where ‘a’ is a gain that is adequate vale which is decided by the system condition.
The IF signal, input of the AD/C is a same signal with the input signal except for the carrier
frequency.
S, () = ax A(t) x Relexp[ j(z o 1% + oy t + 0(1) + 6,)]]. (2.23-a)

where a’ is a constant which corresponds to the gain of the down converters, and @, is assumed
as W=, — 0 .

In equation 2.23-a, it is assumed that the bandwidths of the IF BPF of all down converters (e.g.
Fig. 2.11) are sufficiently wider than the bandwidth of the signal. Practically, the effect of the IF
BPF should be consider and Eq.(2.23-a) is rewritten as

S, (1) = h(t) * fax A1) x Relexplj(z 61> + o,y £ + 6(1) + 6,1} (2.23-b)

where A(t) is the impulse response of the all IF BPF, and ®,. is the center frequency of IF
BPF. Actually, the /(¢) is almost the response of the narrowest IF BPF, usually it is an IF BPF
of the last down converter. In Fig.2.9, it is BPF of the 3" down converter. In Equation (2.23-b), as
the absolute value of the ¢ becomes larger, value of the frequency becomes higher. And the
amplitude of S,.(¢) is reduced when |t| is larger.

Figure 2.12 is the example of a digitized IF signal, which is computed from Eq.(2.23-b),
where @, equals to 21.4MHz, 6(t) and 6,equal to zero for simplification, Span equals
8MHz and Sweep time equals 0.2msec. The abscissa indicates not only time, but also frequency.
The current frequency @ of §,.(f) is define as the differential of the phase of Eq.(2.23-b),
which can be explained as

w=0;;+2r0t, (2.24)

where o is decided by Eq.(2.21).

The amplitude of the signal is reduced around the left and right side corresponding to the
frequency response of the filter /4(¢).

In Fig.2.12, the bandwidth of A(f) was approximately 8MHz. We can obtain the spectrum
of f,(¢) by detecting the power of this signal with this bandwidth. But, it need narrower band
pass filter to obtain higher resolution spectrum. It can be achieved by the signal processing on the
digitized IF signal, which is described on the following sections.
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Fig. 2.12 Digitized IF signal with swept local oscillator: S, (¢)
Measured signal was CW, Span=8MHz, T;=0.2msec, IF Bandwidth=8MHz

2.4.4 Base Band Signal

In the spectrum analyzer with a digital IF system such as shown in Fig.2.9 or 2.10, the IF
signal S,.(¢) is passed through the AD/C and DDC, and converted into the base band signal,
which is represented as S, (¢), Eq.(2.18-b). The example of the base band signal S,(¢) is shown
in Fig.2.13, which is converted from the IF signal S, (¢), Eq.(2.23-b) and Fig.2.12.

The NCO of the DDC generates cos( @, t) and —sin( @, t). The IF frequency factor @,
is rejected, and the signal S,(¢) is explained as

S,(t)=hppe (1) * {a"xA(t) x expl j(mr o t> +6(t)+ 0, )]}, (2.25)

where a” is a constant corresponds to a gain of the system, #,,.(¢) is a impulse response of the
LPF implemented in the DDC. Usually, the bandwidth of £, .(f) is narrower than A(1) in
Eq.(2.23-b). The frequency response of £, .(¢) is drawn in Fig.2.11 (c) as H,,.(w). Where, the
3dB bandwidth of the H,,  .(®), h,,.(t) is configured as 4MHz.

The frequency of S,(¢) is a differentiation of the phase factor of Eq.(2.25), it is explained as

W, =2r0ot+ % o(t). (2.26-a)

In Figure 2.13, O(¢) and 6,(¢) are assumed to be zero for a simplification, and the time ¢ equals
zero at the center. Equation (2.26-a) is rewritten as

Wy =2not. (2.26-b)
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Fig. 2.13 Quadrature Detected IF Signal through a wide band LPF: S, ()
Measured signal was CW, Span=8MHz, T,=0.2msec, Bandwidth=4MHz

The frequency @, is OHz when t equals zero. If we convolute the narrower LPF on the
signal S, (f), we can extract the part around OHz as shaper impulse, as shown in Fig.2.14. Now,
we define that the narrow LPF is a ‘RBW filter’ and the output signal is S, ,,, (¢). In the case
that the frequency of the input signal is w,, + dw, the frequency of the base band signal is

Wys =2m0tLOW. (2.27-a)
The time £, at whichw,;equals zero can be explained as
_ O
t, =722 (2.27-b)
2rot

This time ¢, 1is corresponding to the frequency ow, and Jdw can be explained as
ow=Frot,. (2.27-)

Whether plus or minus of the double sign, depends on the system configuration described in
section 2.2.

The abscissa of Fig.2.13 and 2.14 indicates both time and frequency. We can obtain the
power spectrum by computing the square sum of the real part and the imaginary part of S, ... (¢),
whose example is shown in Fig.2.15. )

The spectrum is obtained by following equation.

F(@)=10log(S, y (6))=10log(1(1)* + 0(1)?) (2.28)
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where /(2) and Q(2) is the real part and imaginary part of Sy g (¢).
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Fig. 2.14 Quadrature Detected IF Signal through a RBW Filter : S, ,, (1)

Measured signal was CW, Span=8MHz, T;=0.2msec, Rbw=300kHz
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Fig. 2.15 Spectrum Extracted from a Signal S, ., (?)

Measured signal was CW, Span=8MHz, T;=0.2msec, Rbw=300kHz
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The deformed signal flow of the sweep spectrum analyzer that includes the digital IF system
is shown in Fig.2.16, where the all signals are assumed analytic signals. The down converter
indicates as the total function of all analog and all digital.

The input signal f,,,. . ,(t) includes the carrier frequency factor exp[j(w,y )], which is
removed by the down converter. The down converter attaches the chirp factor exp[j(ot*)]on the
signal. The base band signal keep the factor A(¢) and &(¢). The RBW filter extracts the part of
the signal whose frequency is around OHz. The spectrum is obtained as the square sum of real part
and imaginary part of Sy Lz, (£).

In conventional sweelg spectrum analyzer, the [F BPF: RBW filter, extracts the spectrum. It is
not efficient to replace this processing in a digital. In this case we must keep the sampling
frequency corresponding to the IF frequency. On the other hand, in the case we convert the IF
signal into the base band signal, we can reduce the sampling frequency according to the pass band
of the LPF. The reduction of the sampling frequency is called decimation [5]. We can obtain the
spectrum with minimum size of the data by the decimation.

More consideration about the signal processing to obtain the spectrum will be done in section
2.5.

Down Converter | . |
- SO < |  RBW Filter

. LPF
Q= owiti

BW:100kHz
1 (@ et a(t
4’ (r)ej[ i 5 ))

¢

51 ot? —@ )

:_ Spectrum

b ey

F(@)=10log,, (I(2)" + O()")

Fig. 2.16 Signal Flow of a Sweep Spectrum analyzers with Digital IF system
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2.5 Analysis of Sweep Spectrum analyzer

The fundamental and qualitative analysis was given in section 2.2~2.4. This section describes

the mathematical analysis of the sweep spectrum analyzer.

2.5.1 Spectrum Analyzer as Pseudo Fourier Transformer

A simplified block diagram of a sweep spectrum analyzer is shown in Fig.2-17 [2][3].
Actually, sweep spectrum analyzers have two or three down converters with a mixer, a local
oscillator and an IF BPF. In this section, the down converters are figured as one for a
simplification. By the discussion, section 2.2 and 2.3, we can down convert the input signal £, (¢)
(whose frequency is ®,, ) to the base band signal (0Hz), and we can express the signals as
analytic signals.

0] @—>—{ BPF {50

g(t)

Fig. 2.17 Simplified Block Diagram of a Sweep Spectrum Analyzers with Digital IF

The ‘Down Converter’ converts the input signal f(z) to the base band signal. The frequency
of the local oscillator swept over the frequency band, ‘Span’ with some sweep rate. The Span is a
frequency band we desire to measure for the spectrum. Mathematical expressions of the f(¢) and
S(t) are given with the following equations,

f@)=a(t)expl jo,t] (2.29-a)
S()=g@)={f()xI@)}, (2.29-b)
where a(?) is time variations in amplitude and phase of a signal under the measurement, which is
often called ‘a base band signal’. And @, is the angular frequency. We assume f(?) is a band

limited complex signal. The impulse response of the 'IF BPF' is expressed by g(?), which is not a
complex but a real function. The *' denotes the operation of a convolution. The /(?) is a signal

-36 -



generated by a local oscillator of which frequency is swept at the sweep rate denoted by o . It can
be expressed as
I(t) =expl- j (701> + @t +6,)),
} (2.30-a)
-T,/2<t<Ty/2,

where ‘¢’ is time, ‘¢, is the initial phase, ‘¢, is the angular frequency of the oscillator at /=0 and

the o is the sweep rate (Hz/sec). The sweep in the frequency is repeated every cycle with the

duration, 7, seconds over the SPAN band, Span, so that the sweep rate can be written as
o=Span/T;. (2.30-b)

In every sweep cycle, the measured power spectrum is shown on a display, repeatedly.
By substituting Eq.(2.30-a) into Eq.(2.29-b), we can derive a complete expression for S(?) as

S(0) = g) * { fixexpl — j(z - o 1> + @yt +6,)] |, (2.31-a)
and rewrite as
S(t) = T g(@) f(t-t)xexpl j(z-o(t—1) + @, (t—1)+6, )| dr (2.31-b)

It is modified as

S(t) = expl[-j(zot’ + w,t +6, )]Tg(r) xa(t—71)x exp{j(a)S (t—7)—(no ©* =270t t — a)or))}dr

= exp[-j(wot’ + wt +0,)]-exp[jo,t] Tg(r)a(t —7)X exp{— j(;ra ? =2r0 tr+ (o, - a)o)r)}dr

—00

where f(t) is substituted with Eq.(2.29-a). In the case that the sweep rate =0, Eq.(2.31-c) is
written as

Sy(0) =explji(, o) ~0,}]= [g@) (D) xexpl- j(@, ~wp)r}dz,  (232)

where S,(¢) is a signal of S() with =0, and the time ¢ is a independent variable to the
integration, and r(z) is defined as
r(t)=a(t—r1) (2.33)
The integral in Eq.(2.32) is a Fourier transform against the tona product of g(r) and r(z),
and S,(¢) is written as

So(t)=exp[ j((a)s_wo)t_go)] } (2.34)
x{G(w, —w,)* R(@, - »,)}, '
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where G(w) and R(w) 1is the Fourier transform of g(r) and r(z). It is possible to express
the R(w) by a theory of the Fourier transform as follows [7].

R(w) =exp[—jot]x A(—w) (2.35)
where A(w) is the Fourier transforms of a( ¢ ), and Eq.(2.34) is modified as
Sy (1) =exp[-jO,]1x{G(w, —o,) * Ao, —w,)}. (2.36-a)

The function g(z) is a real signal. Then G(-w)=G (»w) and |G(w, —w,)|= G(w, - ®,) |, Where
G’ (w) is the complex conjugate of G(w).
In the case that we focus the magnitude of Eq.(2.36-a) only, Eq.(2.36-a) can be rewritten as
S, () F G (@ -@,) % A(@, -,) | (2.36-b)

and can be considered as an amplitude spectrum  A(w,) which is convolved with G(w,).

In the case that the sweep rate o is sufficiently small that can be assumed zero, the frequency
w, —®, canbe replacedby o as

o(t)=2rot+w, - o (2.36-¢)

where 270t +w, is the differential of the phase factor of Eq.(2.30-a). Then Eq.(2.36-b) is
replaced by
S, () H G ((1)) * A(e0(2)) |- (2.36-d)

From Equation (2.29) we can see the relation F(aw(t))= A(o(t)—w,) and

Alot))=F(o(t)+w,), (2.36-¢)
where F(w) 1is the Fourier transform of f{z). Then Eq.(2.36-d) is modified as

|S,() = G () * F(a(t) + @,) |- (2.36-)
This equation stands only for the o sufficiently small. The restriction on the sweep rate is
discussed in the next section.

The above equations represent that a sweep spectrum analyzer is a Fourier transformer which
gives the Fourier components at any frequency o as the convolution of F(w) and G(w).
Theoretically, if G(w) was the delta function o(w), Eq. (2.36-f) was the true Fourier transform
of f{t). Most spectrum analyzers have G(w) defined by RBW filters, instead of J(®). And they
measure spectrum with a limited sweep rate.

The RBW is a significant parameter of a spectrum analyzer and is defined as a half power (3dB)
bandwidth of a RBW filter. The RBW filter decides the frequency resolution of the measurements
as expressed in Eq.(2.36-¢).
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2.5.2 Restriction of sweep rate

The sweep spectrum analyzer measures spectrum by a restricted sweep rate which is
theoretically given in [3][7][8], and summarized in this section.

Usually, the characteristic of the RBW filter, g(f) can be expressed as a Gaussian function
whose frequency response is G( w ), shown in the following equation,

G(C())Z eXp {—mwz}, (237)

where Rbw is the 3dB bandwidth of G(w) expressed in Hz, whereas  in radians. Next two
equations show the restriction of sweep rate and sweep time corresponds to the Rbw.

2
O max = Span = Rbw [HZ/SeC] > (238)
7Tximin 0
S -k
Ty = 200 = P Ko ey (2.39)
B o Rbw

max

is the minimum sweep time, ‘Span’ is a
frequency SPAN, and k, is constant which is defined experimentally 2~3 [3][2]. Here we
defined the variable ’//k’ as the ‘Normalized sweep rate’, which is explained by following
equation [8].

where o, is the maximum sweep rate, T

max min

1__Span _ o (2.40)
k TyxRbw’> Rbw?’

with the restricted of 1/k<1/k,.

The characteristic G(w) can be observed as a frequency response of §,(¢), Eq.(2.36-f) in
the case that F(w) is 0 function (f(¢) is a CW signal). The example of G(w) is shown in
Fig.2.18, where the abscissa indicates both time and frequency. The time AT corresponds to
Rbwas AT =T, -Rbw/Span .

In the case that //k is larger than 1/k, the value o in Eq.(2.31-c) becomes so large that it can
no more be disregarded as zero and Eq(2.32)~(2.36-f) could not be established. In the case that the
sweep rate is too high beyond the limit, so that the peak level of the measured spectrum is reduced
and the bandwidth is broadened. This property is called ‘over swept-rate response’ [10]. Several
authors [3][2][11] have investigated the phenomenon theoretically and experimentally. This thesis
describes only the results as following three topics.
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Rbw

b E——

AT =1, - Rbw/ Spar

Fig. 2.18 Conceptual diagram of sweep time and rate

1) The peak level reduction:

A {1+[2—ln 2) [l_j } YL e
A T k

where A4 is the amplitude of the signal at 1/k equals to zero, and 4’ is the measured amplitude of
the signal. In most conventional sweep spectrum analyzer, the value of k, is decided to make the
reduction 0.1dB [1]-[3].
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2) The broadening of the resolution bandwidth:

Rbw " _ {1 + (lln zj (Lj } (2.42)
Rbw V4 k

where Rbw is configured value and Rhw’ is the observed value.

An example of the over swept-rate response is shown in Fig.2-19. The solid and dashed lines
indicate the response of the resolution filter for the //k equals 0.5 and 5.0. Some kinds of spectrum
analyzers have RBW filters implemented by the digital IF method. They estimate and correct the
distortion of Eq.(2.41) and (2.42), and achieve its sweep rate 2~4 times faster than the
conventional one [10].

Spectrum of a CW Signal : Span=10kHz, Rbw=1kHz
10
1 L 1 T l

1/=0.5, St=20msec
5| — — — 1/k=5.0, 5t= 2msec

ot Rbw .

Level (dB)

-10 | -

15 F s

.20 5 ! ! 1 i 1",
-5000 -3000 -1000 1000 3000 5000

Freq (Hz)

Fig. 2.19  Example of over swept-rate response
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3) The Peak shift:

In the case that the RBW filter is an analog filter. The measured spectrum has frequency shift,
/lo by the latency of the filter response [11].

Aw =2rx(1/k)x Rbw * x At , (2.43)
where o is shifted radian frequency of the peak, and Jt is the delay of the RBW filter

response.
Figure 2.20 shows the samples of spectrum whose 1/k equals 0.5, 10 and 50. The over
sweep-rate response occurs on 1/k=10 and 50. The response of digital filter is symmetrical

on the frequency axis, and we can forecast and correct this latency.

SPAN 10kHz Frequency [Hz]
T T I I T

: A
RBW 100Hz .
-20
—20s
— swt |—100meec :
% 40 — 2 0msec I
— 60 t
Q |
= I
9 -0 — ,
i (I |
o = — ‘*‘L—"-*.

[ I
_1 2 |:| 1 | 1

w0, ' oy’

1/k=0.5 1/k=10 1/k=50

Fig. 2.20 Power spectrum under over-sweep
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2.5.3 Gauss Function as Resolution Filter

Usually, Gauss filter is chosen as the characteristics of the resolution filter in a sweep
spectrum analyzer by the reason as follows [1][11].

1. Well distinction for two signals (well shape factor)

2. Quick response for the sweep signal

In this thesis, the impulse response of a Gaussian filter is explained by g(¢) whose frequency

response is G(w), they are expressed by [12]

t2
g(t) =exp [— —+ ja)lF} , (2.44-a)
a

G(w) = ax/;exp{—%az(a)—a)m )2} (2.44-b)
When Rbw is the 3dB bandwidth, G(w) is given by
G(a),F + Rlz’wj - é Gay) - (2.45)

From this equation, ‘a’ is introduced as follows.

) 2In2

__2m2 2.46
Tz Rbw) (2.46)

In the sweep spectrum analyzer, the Gaussian filter receive the chirp signal as expressed in
Eq.(2.31-a) (see section 2.5.1).

S@) = Z(t)_Tg(r)f(t —T)Xexp {j(ﬂ'o‘ t? =270 t1 - a)or)}d‘r 5

where S(?) is the output of the Gaussian filter, /(z) is the output of the local oscillator, f{?) is the
input signal.
When f{?) is CW signal, such as

J(#)=exp[—jwyt], (2.47-a)

S(¢t) and its magnitude are explained as next equations by modifying Eq.(2.31-c).

S(t) =g * {f(t) xexpl j(m -0t +o,t+8,)] } (2.47-b)

g) *{expl j(z-ot>+6,)]}
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Texp[—rz/az]x expl jw,(t —7)] x exp{j(ﬂa t? =270 tr — wor)}dr

—0

S| =

Texp[—rz/az]x expl jw,t] x exp{j(ﬁa r? - 2710 tr)}dr

—0

, (2.47-¢)

Texp[—rz/az]x exp {j(ﬂ'G * =270 tr)}dz'

—00

It is very difficult to solve this integration analytically. We simulated this equation
as shown in Fig. 2.21(a) and (b). In the figures, the red and blue lines is /(¢) and Q(t)
that is real and imaginary part of

) xexpl j(m-ot’ +o,t+6,)]=exp[ j(zot’)]. (2.48)
Each of them is one part of the convolution of Eq.(2.47-b). The green line indicates g(¢) that is
another part of the convolution. For these three signals, the ordinate is 1 to -1 for the full vertical
scale. The black line indicates | S(¢)| whose ordinate is 0 to —100dB in the full vertical scale.

In Figure 2.21, the abscissa indicates both time and frequency, time corresponds to the sweep
time that is 20msec in (a) and 4msec in (b), frequency corresponds to the Span that is commonly
10kHz. And both of the Rbw are 1kHz. The peak level of S(¢) in (a) and (b) is —0.10dB and
—1.73dB, respectively. The observed RBW, Rbw’ is 1.0kHz and 1.6kHz, respectively. But, the
figures of S(¢) are both parabolic lines, i.e. they are Gauss function.

Figure 2.21(c) is corresponding to the part of Fig.(a), which is magnified around the center (t
=0sec and frequency = OHz). Its Span equals 1kHz. And the sweep time equals 2msec, which
corresponds to 2/Rbw. This relation among Span, Rbw, and sweep time is corresponding to
Eq.(2.40) whose k equals 2.0.

A(t) of (c) indicates ‘atan(Q/I)’. @(¢) is zero at the center and — 7 /2 at the start point and
stop point of (¢). The differentiation of the phase factor of Eq.(2.48) is the frequency, 2 = ot The
changing of the phase and frequency within the period of (c) is very slow, and the integration of
Eq.(2.47-b) and (2.47-c) almost same as the case that o equals zero. But the integration is
reduced against the o which is non zero. If the o 1is larger and larger, the value of the integral
will be reduced.

We can consider that the cause of the reduction (the over sweep-rate response) is the operation
of the filter against the chirp signal.
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 20l0g(1S() )

Fig.2.21 (b) Base Band signal and Spectrum:
SPAN=10kHz, RBW=1kHz, 7;=4msec, Peak level =-1.73dB, 1/k=2.5



0dB

<«— -3dB

—7/2 I 1 —7z/2

sin(zot*)

d
—O0@t)=2n0t
— O]

- ].OOdB - ] ] - 1 1 I l 1 |" i

Af = Rbw, At=2/Rbw
1kHz , 2msec

Fig.2.21 (¢) SPAN=1kHz, RBW=1kHz,
T, =2msec, Peak level = -0.1dB, 1/k=0.5

Fig.2.21 Simulation of the integral Eq.(2.47-b) :

Response of Gaussian filter against chirped base band signal
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2.5.4 Simulation of Over Swep-Rate response

The plotted peak level reduction against the normalized sweep rate //k is shown in Fig.2.22
and Table 2.1, where 1/k is defined by Eq.(2.40). The line of ‘Theory’ was the plot of Eq.(2.41),
and the line ‘R3264” was obtained by using a spectrum analyzer R3264, produced by Advantest
Co. We got these data by measuring a CW signal and plotting the peak level. The Span and Rbw of
All plots were 2kHz and 30Hz, respectively. We changed the 1/k by changing the sweep time 7,
which is shown in Table2.1. The line of ‘Siml’ was obtained by the numeric analysis, which
operated the integral of Eq.(2.47-c) and detected the peak levels. Figure 2.21 is the one example of
the analysis.

The plotted broadening of the Rbw against the 1/k is shown in Fig.2.23 and Tabl 2-2. The line
of ‘Theory’ was the plot of Eq.(2.42). The line of ‘Siml’ was obtained by the same analysis of
Fig.2.21 and 2.22 by measuring the observed Rbw, RBw’ as shown in Fig.2.19. In Figure 2.23, we
did not plot the line ‘R3264°, for the large distortion of the spectrum and insufficient resolution of
the display with R3264.

The line ‘R3264° in Fig.2-22 is lower than the simulation and model, for the reason that the
RBW filter of R3264 is not ideal Gaussian filter.

The both lines ‘Siml’ in Fig.2.22 and 2.23 almost correspond to ‘Theory’. Then we confirmed
that the over sweep-rate response exist in the digital IF method as Eq.(2.41) and (2.42).

By the result of Fig.2.22, the value of 1/k that made the reduction 0.1dB was 0.5. And the
reduction at k=2 was 0.14dB. The general permitted peak reduction is 0.1dB [1]. The value %, in
Eq.2.12 to Eq.2.14 is decided that make the reduction 0.1dB.

——— Theory

— = R3264

——s—— Siml

-10 I ]
10-1 10¢ 101 102

1k Normalized Sweep Rate

Fig. 2.22 Peak Level Reduction vs. Normalized Sweep Rate
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Fig. 2.23 Broadening of Rbw vs 1/k
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Table 2.1 Peak Level Reduction vs. Normalized Sweep Rate

1/k Theory R3264 Siml T,
0.100 0.00 0.000 -0.004 22.2
0.126 -0.01 -0.016 -0.007 17.7
0.158 -0.01 -0.032 -0.011 14.0
0.200 -0.02 -0.042 -0.017 11.1
0.251 -0.03 -0.077 -0.027 8.85
0.316 -0.04 -0.097 -0.042 7.03
0.398 -0.07 -0.142 -0.066 9.58
0.501 -0.10 -0.197 -0.10 443
0.631 -0.16 -0.273 -0.16 3.52
0.794 -0.25 -0.404 -0.25 2.80
1.00 -0.39 -0.504 -0.39 222
1.26 -0.58 -0.722 -0.58 1.78
1.58 -0.86 -0.918 -0.87 1.40
2.00 -1.25 -1.25 -1.25 1.11
2.51 -1.74 -1.80 -1.74 0.885
3.16 -2.35 -2.33 -2.35 0.703
3.98 -3.06 -3.05 -3.06 0.558
5.01 -3.85 -3.91 -3.85 0.443
6.31 -4.71 -4.84 -4.71 0.352
7.94 -5.62 -6.01 -5.62 0.280
10.0 —6.56 -7.04 -6.56 0.222
12.6 -7.52 -8.25 -7.52 0.177
15.8 -8.49 -9.14 -8.49 0.140
20.0 -9.47 -10.21 -9.48 0.111
25.1 -10.46 -11.58 -10.47 0.88
31.6 -11.46 -12.18 -11.46 0.070
39.8 -12.45 -13.52 -12.46 0.056
50.1 -13.45 -14.50 -13.45 0.044
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Table 2.2  Broadening of Rbw against Normalized Sweep Rate

1/k Siml Theory
0.1 1 1
0.14 0.98 1
0.2 1 1
0.28 0.98 1.01
0.4 1 1.02
0.56 1.01 1.03
0.79 1.05 1.06
0.89 1.06 1.07
1 1.08 1.09
1.12 1.1 1.12
1.58 1.22 1.22
2.24 1.41 1.41
3.16 1.72 1.72
447 2.24 2.21
6.31 3.04 2.96
8.91 4.11 4.06
12.59 5.78 5.64
17.78 8.21 7.91
25.12 11.79 11.13
35.48 16.07 15.69
50.12 22.11 22.14

2.5.5 Analog Gaussian Filter

In the case that the RBW filter is digital filter, the response of the filter keeps the property as
a Gauss function. But when the filter is an analog filter, the response does not keep in a fast sweep
as shown in Fig.2.8. Many analog-Gaussian filters are designed by Bessel method in 4™ or 5"
order; these are not ideal Gauss filter [11]. The peak reductions of them are generally larger than
the theory as shown in Fig.2.22 and Table 2.1.

By the result of ‘R3264’ in Fig.2.22, the value of &, which made the peak reduction 0.1dB,
was about 3.1 (1/k=0.32). And the reduction at k=2 was 0.2dB.

Many conventional spectrum analyzer which has analog RBW filters configure is
configured whose k, is larger than 2 (see Eq.(2.28) and (2.29)).
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2.5.6 Resolution Bandwidth

In a spectrum analyzer, a resolution bandwidth (RBW) is defined by the minimum frequency
that distinguishes two signals as two signals on a measured spectrum.

In the case that the frequency between the two signals is larger than the RBW, the peaks of the
spectrum are observed distinctively as shown in Fig.2.24 (a), where the difference of two signals is
1.5XRBW. On the other hand, in the case that the difference is narrower than the RBW, the two
signals are observed as one peak, it is shown in Fig.2.24(b), where the frequency difference is 0.9
XRBW.

For a single CW signal, the spectrum is observed as a figure of an RBW filter explained by
Eq.(2.36-c). For two CW signals whose level are equal and the frequency are @,+A and
®, — A, the Fourier transform of the signal F'(w) is explained by

F(w)=0(w,+A)+6(w,—A), (2.49)
and the measured spectrum S(w) is explained as
S(w) = F(w)*G(w)

(2.50)
=G(w-w,+A)+G(o-w,—-A).

To distinguish the signals, S(w) must have a dip between two signals, and its differentiation
dS(w,)/dw must be zero at ®=@,, and the second differentiation, d’S(w,)/dw’ must be
larger than zero, i.e. S(w) must have a minimum value at @ = @, .

It is assumed for a simplification that @, is zero, and

G(w) =exp[-a’w’]. (2.51)
Then, Equation (2.50) can be rewrote as
S(w)=exp[—a’(@+A)*]+exp[-a’(w-A)]. (2.52)

The differentiation of S(w) is explained as

dS (o) _

y “2a[(@+ A)xexp[—a’ (0 +A) ]+ (@ - A)xexp[-a (@ -A)?]]  (253)
w

Substitute zero for w, and take it zero as follows.

—di’(O) = 2qa° [A x exp[ —a*A*]— A xexp[ a 2Az]]z 0. (2.54)
o

And second differentiation is

d;S(f) ) _ g2 {(1-2a*(w+ A xexp[-a’ (@ + A)*]
(4]

(2.55)
+(1-2a(w—A)) xexp[-a*(w—A)*]}

By substituting zero for ,
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ddS(ZO) =—2a2[(1—ZaZAz)xexp[—a2A2]+(l—2a2A)2)xexp[—azAz]] } (2.56)
0]

= —4a’[(1-20°A) exp[ —a*A’]]

To keep Eq.(2.56) larger than zero, A must be

As__. (2.57-a)

a2

From Eq.(2.44-b), (2.46) and (2.51),
, 1, In2

_Llpo M2 2.57b
T2 T rowy (2570

then « 1is substituted as

AIn2

- Rrow)

(2.57-)

In the case that the unit of the frequency of Rbw is Hz, Eq.(2.57-c) is divided by 2 =, and then

2VIn2

a= . 2.57-c
Rbw ( )
Therefore Eq.(2.55) is rewritten as
Rbw
A> =~ 0.425 Rbw, (2.58-a
V8In2 )
2A > 0.85Rbw. (2.58-b)

In the case that the difference of the two signals is larger than 0.85Rbw, we can distinguish
the two signals. Figure 2.24(c) was obtained by the simulation, where 2A =1.0Rbw . There are
tree arrows, the center arrow indicates S(0) and both side arrows indicate S(A),S(—A). The
wave around the center was caused by the beat note between the two signals. In the case that /]
was wider than 0.85Rbw, the peak level of the center was lower than the both sides and we can
distinguish two signals. The description of the simulation is described in the next section.
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Fig.2.24 Spectrums of two Tone signals
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2.5.7 Response against two tone Signals

Last section describes the response of the Gauss filter against a two-tone signal in frequency
domain. This section describes it in time domain by a simulation.
We simulated the two-tone signal explained by

S = %(exp[ —j(@t + A xt+6,)]+exp[—j(@,t + A x1)]), (2.59)

where Ais the difference of the frequency between the two-tone.
We can obtain the spectrum S(?) by substituting Eq.(2.59) for f{?) in Eq.(2.47-b) as follows.

S(t) = g) = { fit) xexpl j(x -0 1> + o] |

(2.60)
= g(0)* (1/2){expl j(x -0 17 + At +60,)]+expl j(x - o 1> — AD)]

The signal explained in the ‘{}’ and the spectrum, /0log|S(?)| is shown in (a)~(d) of Fig.2.25.

The conditions of each Fig.2.25 were as follows. The sampling frequency was 200kHz. The
abscissa of each figure indicates both time and frequency. The full scale of the Span is 10kHz and
the sweep time was 20msec. The RBW was 1kHz.

In all Figures ((a) to (d)), the green lines indicate the Gauss filter. The red lines indicate I part,
and the blue lines indicate Q part of the base band signal of Eq.(2.59), respectively. The bold black
lines indicate the spectrums S(¢) that are indicated with dB unit as 201og(S(¢)). The top level
of each screen is 0dB, which corresponds to S(¢) equals 1.0, and the bottom corresponds to
—100dB. S(¢) is indicated as two lines. 6, of one line is zero and 6, of another is 7. The
wave of S(¢) around the center was caused by the beat note, and the phase of the beat
corresponds to 6.

Each figure from (a) to (d) had different A. In (a) and (b) Af was 1500Hz and 1330Hz,
respectively. There were two peaks on S(¢), which was marked with arrows. In (¢c) A was
1000Hz that was equal RBW. There were not obvious peak. Two arrows indicate the signal
frequency, where the levels were almost flat. In (d) A was 800Hz, there were not obvious peak.
The maximum peak existed around the center. In the case that Af was narrower than RBW, two
signals were not resolved.

In the case that the initial phase 6, was zero, we had a peak at the center, but when 6, was
7, we had deep dip at the center. We could not get the obvious threshold of the A to distinct the
two-tone peaks, but the threshold exists between Rbw and 1.33Rbw.
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2.6  Other Properties of Sweep Spectrum Analyzers

Until last section, fundamental theories of a spectrum analyzer have described. It may be
simple, but the whole system of a spectrum analyzer consists of many parts. The properties of each
part have significant influence on the result of measurements. This thesis does not describe the all,
but this section describes about some properties that has large relationship with the theme of this
thesis.

2.6.1 Shape Factor

In last section, some analyses were described haw the RBW filter distinct the two signals of
same level. In the case to distinct two signals unequal in their level, not only resolution but also the
shape of the filter decides the resolution that distinct the two signals. To detect the lower signal,
the filter skirts must be under the lower signal [1].

Many corporations who product spectrum analyzers use a parameter, ‘shape factor’ to
indicate the shape of the resolution filter [1]. The shape factor is defined as the ratio of 60dB and
3dB bandwidth of the filter. It is also called bandwidth selectivity.

An example for the comparison between an analog and digital resolution filter is shown in
Fig.2-26. They were spectrums measured CW signal, where a and b indicated the shape of the
analog and the digital filter. The shape factor of the analog filter was 12.7. The shape of digital
filter is 4.47 and it is almost a parabola for it is a logarithm of the Gauss function. And the shape
factor was almost same to a mathematical calculation as follows.

The frequency response of Gaussian filter is explained as [4][8],

G(w) =-aw’. (2.61)
The shape factor R, is explained as

R, =L NV _ 673447, (2.62)

@, - Bl

where @, and @ ,are the value of w at G(w) was —3dB and —60dB. It is a special future
of a digital Gaussin filter whose R, is independent from o and constantly 4.47. Digital IF
methods are excellent in a shape factor against an analog method.
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2.6.2 Time Domain measurement

The abscissas of sweep spectrum analyzers indicate not only frequency but also time as
described in section 2.3 and 2.4. In the case that its span equals zero, the abscissa indicate only a
time.

A sample screen of an oscilloscope is shown in Fig.2-27 (a), whose ordinate indicate a voltage.
Figure 2-27(b) shows a zero span measurement of a spectrum analyzer. Its ordinate of (b)
indicates a power (Watt). These may be like together, but the substances of the measurement are
different.

These screens measured same signal, A(¢)cos(w¢?), where A is a amplitude and o 1is the
radial frequency. The oscilloscope shows it as instantaneous figure. But in (b), we watch it as only
A(t). In many case, the carrier frequency o 1is not significant information to analyze the signal. It
is reasonable to measure the signal with removed the carrier frequency.
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Fig 2.27 Time domain measurement

In the case that the RBW is relatively larger against the SPAN, or the SPAN is narrower, the
spectrum is more similar to it obtained by a zero span measurement. One sample of a spectrum
that observed a TDMA (Time Domain Multi Access) signal is shown in Figure 2.28, which is PDC
(digital mobile phone: second generation of mobile phones) signal. The power envelope the signal
is intermittent signal with some interval. The bandwidth of the signal is 21kHz. In Figure 2.28 (a),
the RBW is 10kHz, and the spectrum represents the TDMA burst. By changing the sweep time we
can observe the interval of the burst. A wideband RBW has sharp resolution in the time domain.

In Figure 2.28 (b), the RBW is 1kHz, the spectrum does not represents the burst, because the
RBW is too narrow to response the burst signal.

By above discussion, the relation between the resolution of frequency and time is a trade-off.
The relation is a kind of the ‘uncertainty principle’.

The ratio of RBW to SPAN decides which property of the abscissa is significant time or
frequency. In the case that the ratio of RBW/SPAN is larger, the abscissa mainly time. On the
other hand, in the case that the ratio is smaller, it is mainly frequency.

A sweep spectrum analyzer can configure the ratio, RBW/SPAN with fine step by changing
the Span and the sweep time. By changing the ratio we can obtain many information from the

measured signal.
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2.6.3 Noise level and Resolution Bandwidth

A spectrum analyzer has a noise on its several stage, and we cannot measure a signal whose
level is under the noise. In some case, the noise is an interference of the measurement. In another
case, the noise is an object of the measurement. Sometimes we measure a signal like noise such as
CDMA (Code Domain Multiple Access) signal.

We observe a spectrum as a convolution of F(w) and G(w), which is explained by
Eq.(2.36-c),

|So (D) = F(@)* G(w)|.

If F(w) isanideal white-nose, S,(¢) is assumed as [1][2],

1S,(H) =N, j: G(w)dw, (2.63)

where N (Watt/Hz) is the noise power density per one Hz. The noise is included in the input
signal and generated within the spectrum analyzer itself. The integral can be replaced by

Gy Bogy = || Gle)do (2.64)

where G, is the gain and B,,, is the equivalent noise bandwidth of the resolution filter,
respectively. Figure 2.29 shows the relation between G(@) and By, .
S,(¢) is assumed ‘observed noise power’ , P, . Then Equation (2.63) can be replaced by
P, =8,(t)=N,-G, Bz (2.65)

O

@,

Fig.2.29 Equivalent Noise Bandwidth (ENBW) of a resolution filter
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The observed noise power P, is in proportion of resolution bandwidth Rbw. In the case we
measure the noise by different bandwidth, the ratio of the observed noise level F, (dB) is
B, =10log(Rbw, / Rbw,) (2.67)

where Rbw, and Rbw, isthe Rbw of each measurement.

The example of the noise level variance is shown in Figure 2.30-(a). The one spectrum is
measure by RBW=1MHz and another is 100kHz. The difference of the noise level is
approximately 10dB. For continuous wave (CW) signal, we can get better S/NR (signal to noise
ratio) using the narrower resolution bandwidth.

An example measuring low-level signal is shown in Fig.2.30-(b). The level of the measured
signal is -90dBm. The RBW of the upper line is IMHz and lower one is 10kHz. The VBW* (video
bandwidth: see 2.2.1) of upper line is 1kHz and it of lower one is 3kHz. The upper line has
narrower deviation of the noise by narrower VBW. The peak of the signal is shown at the center of
lower line. In the upper line, the peak is not shown.

The RBW decides the noise level and the VBW decrease the deviation of the noise. We
should select the bandwidth of these filters corresponding to the characteristics of the measured
signal.

‘Pre-detection filter’ is a filter whose bandwidth is narrowest before the power detector [2].
Usually, it is the RBW filter. ‘Post-detection filter’ is implemented after the detector [2], it
decides the deviation of the detected power.

In the FFT method (see section 2.8), pre-detection filter is according with the window
function and post-detection filter is according with the averaging of the spectrum.

* Note : VBW?* (video bandwidth)

The VBW is the cutoff frequency (3 dB point) of on adjustable low pass filter, which is
implemented after the detector. In digital IF method, it accords with the LPF processing after the
detecting power by computing the square sum of the real part and the imaginary part of the signal

S(t). In the case that the video filter does not exist, the VBW equals to the RBW.

-62 -



Fri 2006 Jun 23 10:33

REF -10.0 dBm
10 dB/ *4_View Posi B_View Posi

Rbw = 1MHz
/

N

Rbw =100 kHz

CENTER 30.00 HMHz SPAN 50.00 HHz
*RBYW 1 HHz VBW 1 MHz SWP 20 ms ATT 10 dB

(a) Observed noise level changes as 10log(Rbw, / Rbw,)

REF -50.0 dBm
10 dB/ #*4_View Smpl B_View Smpl

Signal level : -90dBm
SPAN: 1MHz

Upper : RBW 1MHz, VBW 1kHz

Lower : RBW 10kHz, VBW=3kHz

CENTER 800.000 MHz SPAN 1.000 MHz
*RBYW 1 MHz *VBYW 1 kHz *SWP 200 ms  *ATT 10 dB

(b) low level signal and RBW

Fig.2.30 Relation between noise level and RBW

-63 -



2.6.4 Zero Carrier

Sweep spectrum analyzers cannot measure a signal whose frequency is lower than an RBW.
By the discussion of section 2.3.2, the 1* IF frequency of the most sweep-spectrum analyzers is
lowest frequency of the local oscillator @, |, , and the frequency of the 1* mixer’s output is
o, — @, . (@, is the frequency of the local oscillator, @, . is the minimum frequency of the
local oscillator and ), is the frequency of the input (measilred) signal.)

Even if we have no input signal, the mixer output a signal whose frequency is @,, which is
called ‘local feed thorough’. We observe the peak whose frequency was zero at any time. In the
case that the frequency of the input signal is zero (@, =0), we cannot distinguish whether the
signal is not exist or the frequency is zero. The peak is called ‘DC response’ or ‘Zero Carrier’ [2]

The figure of the peak of the Zero Carrier accords with the Rbw filter. We cannot observe the
signal whose frequency is lower than the Rhbw. This is one demerit of a sweep spectrum analyzer.
The example of the Zero Carrier is shown in Fig.2.31.

*) Actually, the input signal is accepted through an AC connection at the RF front-end of analyzers.
Then, the analyzers have not a sensibility to DC signals.

Mon 2007 May 7 10:12
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Fig.2.31 Zero Carrier
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2.7 Bandwidth of Signals and Resolution Filters

We cannot obtain an ideal Fourier transform of any signals without infinite acquisition time.
Therefore, spectrum analyzers have resolution filter and measures spectrum with restricted sweep
rate. Until last section, we assumed the measured signal was CW for simplify. In this section, we
examine measurements of wideband signals.

2.7.1 Signal under the measurement

Figure 2.32~2.35 are samples of wideband signals measured by a sweep spectrum analyzer.
The signal is frequency modulated (FM) signal generated by a manufactured signal generator (SG),
and the signal is explained as follows,

f(H)=4, sin(wcr —ﬂcos(wmz)j . @68
w

m

where A, is the amplitude of the signal, @, is the carrier frequency , A@ is the frequency
deviation, ®,, is the modulation frequency [13], and these parameters are shown in Table 2.3.
The bandwidth of the modulated signal was approximately 1.1MHz.

Table2.3  Specification of signal in Fig.2.32~2.35

Symbol Value Description
A, 0.224 Volt Amplitude, in 50 Q circuit. The power is -60dBm
@, 860.945 MHz Carrier frequency
Aw 530 kHz Frequency deviation
w, 10 kHz Modulation frequency,

2.7.2 Observed signal

The all (a) of Fig.2.32~2.34 show the shapes of the RBW filters, they were obtained by
measuring a CW signal whose level were —60dBm. Their power was the same to the modulated
signals. The all (b) show the spectrum with each RBW, and (c) show the trace measured by
zero-span mode. The all figures show the spectrums measured with RBW 30kHz for the reference.
The bandwidth of the measured signal is approximately 1.1MHz.

Figure 2.32 (a) shows the figure of the RBW filter IMHz, and the span was 2MHz. The
difference of the level between the center and the both side right and left was approximately 10dB.

Figure.2.32 (b) shows the spectrum with the span was 2MHz and the sweep time was
200msec. The frequency resolution was very coarse and the trace was similar to the wave of the
zero-span. The trace had many ripples that were cased by a response of both time domain and
frequency domain. The peak power of (b) was almost —60dBm. The level down was approximately
3dB on the both side start and stop of the scale.
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Figure (c) shows the trace by zero-span mode whose sweep time was 200 u sec. The interval
of the ripple was 50 u sec that was according with the twice of the modulation frequency 10kHz.

Figure 2.33 shows the results measured with RBW 100kHz whose bandwidth is
approximately 10% against the measured signal as shown in Figure (a).

Figure (b) is the spectrum, whose envelope is simile to the spectrum of RBW 30kHz. The
level of the spectrum was higher than the spectrum measured by RBW 30kHz. The spectrum
seems to have many sideband lobs; they were not side lobes but the response of the power in time
domain. The frequency interval of each side lobes was 10kHz as shown in Fig.2.35, but the RBW
100kHz was not enough to resolve them.

Figure (c) shows the trace of zero-span by the same condition with Fig.2.32 except for the
RBW. The interval of the ripple was 50 u sec, and the level deviation was larger than it of Fig.2-32,
whose bottom was almost the noise floor. The peak level is corresponding to the level of center in
Fig.(b), which is —64dBm.

Figure 2.34 shows the results measured with RBW 1kHz whose bandwidth is approximately
0.1% against the measured signal as shown in Fig. (a).

Figure (b) is the spectrum, which is observed asymmetrically. The reason of the asymmetry
considered for the insufficient resolution of digitizing on the display. In the measurement of
narrower span, the levels of the sideband lobes ware symmetrically as shown in Fig.2.35 (b). This
spectrum consists of many side lobes. Their level and frequency ware static. Each interval of them
was 10kHz, which accords with modulation frequency of the FM.

Figure (c) shows the trace of zero-span whose level is —83dBm, almost flat and approximately
20dB lower than the peak level of Fig.2.33 (c). The ratio 20dB is considered as the rate of RBW
between Fig.2.33 and 2.34.

Figure 2.35 are results measured the signal of Fig.2.33~2.35 with span equals 200kHz. Each
figure (a), (b-1) and (c) has different RBW, which are 100kHz, 10kHz and 1kHz, respectively.

The level of the trace (a) was dynamically changed. It was the response of the time domain as
shown in Fig.2.33 (¢). On the other hand, the trace (c) was static. The frequency resolution (RBW)
of (c) was enough fine to show the side lobes. In the case that the RBW was narrower than 3kHz,
the level of each lobes did not change. The level in (a) were approximately 20dB higher than (b-1)
and (c).

The spaces between each lobe were filled with beat notes, and the period of the beats were
100 u second as shown in (b-2). But in the case that the RBW was wider than 30kHz, the period
was 50 u sec as shown in Fig.2.33(c).
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2.7.3 Discussion:

Sweep spectrum analyzers show a spectrum of the signal, f{?) as a trace which is explained by
S, (ZX =| F(®)* G(w)|. It can be explained as
S,(e) =1 F () * G(o)|

the Eq.(2.36-¢),

@ (2.69)
= j F()G(w-7)dr

The FM signal measured in this section, Eq.(2.68) can be rewrote as [14],
f(t)=A. an (m)cos(a)c +nw, )t (2.70-a)

where m is a modulation index,

A
m=22 (2.70-b)
a)Wl
J,(m) is the Bessel function of the first kind of order n and argument m. The signal f(z)
was a set of some CW signals whose frequency interval was ,,, 10kHz. The bandwidth was

approximately 1.1MHz and the number of the sideband lobes is about 110.
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The concept of the convolution of the FM signal and the RBW filter, which is explained by
Eq.(2.69) is shown in Fig. 2.36. In the case that the bandwidth of the RBW filter is narrower than
10kHz, the RBW filters accepts one side lobe and the integral of Eq.(2.69) took same level. On the
other hand, in the case that the bandwidth was wider than 10kHz, the number of the side lobes
accepted by the filter was in proportion to the RBW.

-50 T T

| RBW100kH:

RBW10kHz

RBWI1kHz

Level (dB)

\
FM Modulated Signal
RBW300Hz

-100 -50 0 s 100
SPAN 200kHz

Fig.2.36 Convolution of FM signal and RBW filter

Although the model explained by Eq.(2.69) is a static model, we can consider the FM
modulation as a dynamical model, which is shown in Fig.2.37. The instantaneous frequency of an
FM modulated signal such as Eq.(2.68) dynamically changes. In the condition Table 2.1, the
frequency changes 10,000 times in one second.

The spectrum under side of Fig.2.37 shows the concept of the instantaneous and the max-hold
spectrum of the signal. The upper side figure shows the dynamical change of the frequency of the
signal against the time. The time length of the graph is 2m second (-0.001sec to 0.001sec). And in
the upper left side, the impulse responses of the RBW filters, RBW 100kHz and 1kHz, are shown.

The time length of the impulse response of RBW 100kHz and 1kHz was 0.02msec and 2msec
(see section 2.5.3), respectively. The time length of RBW filter, 100kHz is shorter than the period
of the modulation frequency (10kHz), then the filter can response the instantaneous frequency of
the signal. It is fact that the instantaneous frequency always lies in the range 1.06MHz, which is
indicated as a frequency deviation in the Fig.2.37. In the case that RBW is 100kHz, we could
observe that the RBW filter responded the instantaneous frequency as shown in Fig.2.33 (c).
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On the other hand, the time length of RBW 1kHz filter is very long than the period. The filter
cannot response against the instantaneous changing of the frequency. The output of the filter is
almost static. And the spectrum obtained by RBW 1kHz has only energy at all specific frequency
explained by Eq.(2.70-a) and has no energy at any where else.

The all spectrums obtained by different RBW are correct, but they measured by different
conditions. A wide RBW has low frequency resolution, but has high resolution in time. And a
narrow RBW has high frequency resolution and has low resolution in time. It is one kind of the
uncertainty principle as next equation.

Af x At = constant (2.71)

where Af and At are resolution of each domain of RBW filters.

2.7.4 Conclusion

This section described that spectrums show different result corresponding to different
conditions. An RBW is the most significant parameter to decide the condition. The abscissa of a
sweep spectrum analyzer has a property that indicates a time. In the case that the RBW is wider
against the span, the trace indicates the instantaneous response rather than frequency. A narrow
RBW give us static spectrum, which are more similar to the Fourier transform of the
signal.
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2.8 Sweep method and FFT method
This section describes properties of FFT method and differences between the sweep method

and the FFT method.

2.8.1 Digital IF method

Low frequency signal

- ﬂ—w— AD/C [+ DDC |54 DSP [+ Display

Fig.2.38 Example of Block diagram of an FFT method

There are two kinds of the spectrum analyzer that employs the FFT (Fast Fourier Transform)
method. One has the ‘down-converter’, which converts an RF signal into an IF signal, which is
digitized by an AD/C. Another has not the down-converter, the AD/C accept the input signal
directly. The concepts of both types are shown in Figure 2.38. To measure the signal whose
frequency is under the Nyquist frequency the down-converter is not needed.

In the method with the down converter, the local oscillator of the down converter is fixed
tuned (not sweeping). The band-pass filter (BPF) does not decide the resolution of the spectrum,
but limit the bandwidth of the signal. This band limitation prevents the aliasing (the folding of
out-of-band signals into the AD/C sampled data). The Fourier transform is done by the FFT
prosessing, which is computed in the DSP.

2.8.2 FFT
The description about the FFT is given by [7][15] and other many documents. The principle

form of Fourier transform is expressed following equation.
F(o)= [ f(t)-e7"dt 2.72)

This equation requires the integration time to take from minis infinite to infinite, but it is
impossible. In the FFT method, the integration time is limited as a window function, g(z). The
measured signal f{?) is multiplied by g(#) and f{#) Xg(t), which is called ‘windowed function’. The

measured signal is assumed to repeat infinitely as the windowed function.
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The outline of the FFT method is shown in Fig.2.39, where f(¢) and g(¢) is a measured
signal and the window function, and 7;, is the time length of the window function. By the theory,
the Fourier transform of a product of two functions is a convolution of the transforms of the two
functions in the frequency domain as follows [7].

s(t)=f()xg() (2.73-a)
S(w) = F(w) * G(w) (2.73-b)
f(t) measured signal g
o 1T \ ] [ E ;.4
f,i]/ fl J{ I i \“ | I /\ \/‘ FFT — - \\\
i:\m } } ] J], A B = SNED
g ;] ] u\, M f ]‘ T
- o | ‘\M\ A r
o, @@=
| 10 .
£() X (1) =
\ 10Z0g(F(®) * G(®))

g(t) Window function

Fig.2.39 Concept of FFT

The FFT is a kind of discrete Fourier transform. In this method, f(¢) and g(¢) is

transformed into discrete forms as,
flil= fixAb), (2.74-a)
glil=g(ix At). (2.74-b)
Swlil= flilx gli], (2.74-c)
At=1/f,, i=0~N-1,

where f; is the sampling frequency, N is the size of the window. And the Fourier

transform, S(@) is expressed as,
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N-1

Stk1=Y" f,y[n]-exp[—j(27 / N)nk] (2.75-a)
w=21\f -k, Af=f,/(2N), (2.75-b)

where k is a desecrated frequency as a number of bin (display sample). The spectrum S[k] is
statistical which is averaged within the time 7, . The abscissa has no factor of a time. The
resolution of the time corresponds to 7}, , which is defined by

T, = Lovon (2.75-c)

s

2.8.3 Frequency resolution (RBW) in FFT

In the FFT method, the window function operates as a resolution filter. The frequency resolution
is dependent on the window function as Eq.(2.73-b). Table 2.2 gives the specifications of typical
window functions [15]. In the sweep spectrum analyzer, the 3dB bandwidth (Rbw) is given as a
number of bins.

An example of enlarged peak of a spectrum is shown in Figure 2.40, where the small circles
indicate sample points of desecrated spectrum such as expressed Eq.(2.75-a) and (2.75-b), and the
solid line indicates the continuous spectrum S(@). In Figure 2.40 (a), one sample of S[k]
corresponds to the peak of S(@) . On the other hand, in (b), S[k] has no sample at the peak and
we observe the peak level lower than the true peak. The ‘Scallop Loss’ of Table 2.4 indicates the
worst loss.

Some solution to prevent the Scallop Loss is suggested. One solution is a employing a
flat top window and other is interpolation of the spectrum S[k] [16].

Table 2.4 Characteristics of Windows (referred by [15])

Window Operation 3.0 dB Bandwidth, Scallop Loss Highest side lobe
function Mathematical formula RBW (bin) (dB) Level (dB)
(i I, i=0~N-1
weli]l= .
Rectangle R 0. i<O,N<i 0.89 3.92 13
Hanning w,[i]=w,[i](1—cos27 j/ N)) 1.20~1.86 0.86~2.1 -23 ~-47
w,[i]= m[i]-exp[—i2 /a2]
Gauss 1.33~1.79 0.94~1.69 -42~-59
a* =4In2/(f, 7 - Rbw)*
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Fig. 2.40 Example of Scallop Loss

2.8.4 Bandwidth of the processed signal and dynamic range

In the sweep spectrum analyzer, the RBW filter limits the bandwidth of the input signal
finally. In the FFT method, the bandwidth corresponds to the Nyquist frequency of the AD/C,
which is generally enough wider than the frequency resolution (Rbw). The difference of the two

methods is shown in Figure 2.41.
In the case that the measured signal is multi tone such as

Lo (@)= ,i a, - cos(a)it + 0,.), (2.76)
i=0

where a; is a amplitude of each tone, and 6. is the initial phase, the maximum instantaneous
amplitude A __ 1is expressed by

n—1
A <D 4, (2.77)
i=0

This value A4, is dependent on the each phase &,. The gain in front of the ADC should be
controlled to prevent the clipping corresponding to the maximum amplitude. Generally, this
amplitude becomes larger according with the bandwidth of the signal. On the other hand, in the
sweep method, the signal in front of the AD/C, is band limited, and we take the gain in front of the
ADC take larger than the FFT method. At the point of the bandwidth of signal that is received by
an AD/C, the sweep method has an advantage against the FFT method.
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Fig.2.41 Bandwidth of processed signal in seep method and FFT method

2.8.5 Ripple on the spectrum

The spectrum measured by the FFT method that has a down converter (as shown Fig.2.38)
may include a ripple that is caused by a frequency response of the IF BPF. An example of
frequency response of an IF filter is shown in Figure 2.42 (a), which is obtained by a chirped
signal passed thorough the one of the IF filters in R3264 (produced by ADVANTEST Co.). And
the figure (b) illustrates the spectrum, which is assumed obtained from the signal (a).

Although, in the sweep method, the frequency response of the IF filter is observed as a
convolution factor against the spectrum F(@). In the FFT method, the frequency response of the
IF filter, R(w) is observed as the ripple of the spectrum given by

S(w) = R(w)- {F(0)* G(w)}. (2.78)
We considered that this phenomenon was cased by the non-sweep of the local oscillator.
We must correct the ripple or design the IF BPF have low ripple to obtain a exact spectrum, or

approve the ripple.
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Fig 2.42 Ripples on Spectrums in FFT method

2.8.6 DC Response in FFT method

In the FFT method with the down converter, the DC response (see 2.6.4) exists by the same
reason with the sweep method. But in the FFT method without the down converter, the DC
response caused by the local feed thorough does not exist, but the spectrum of the DC is observed
as the peak at OHz that is true value of the spectrum. The FFT method is the most popular method

to measure low frequency signals.
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2.9 Multiple-FFT Measurement

2.9.1 Outline of the measurement

The frequency span obtained by the FFT method with down converter is narrower than the
bandwidth of the IF BPF. The block diagram of the FFT method is shown in Fig.2.43 (a). The
bandwidth is defined as ‘FI#’ that is shown in Fig.2.42. In the case that the desired frequency span
is wider than the Flt, some spectrum analyzers employ the ‘Step sweep method’ or ‘Multiple-FFT
Measurement’ [19], which is described as follows.

(1) The frequency of the local oscillator is increased with an interval time 7, (second) or
more by a step. The frequency is explained as

@, =, +kxFlt (2.79)

where k is the number of the step, @, is the frequency of k-th step and @, is the first
frequency of the local oscillator. The transition of the frequency against the time is shown in
Fig.2.43 (b).

(2) The IF signal (output of the BPF) whose interval is 7, , is digitized by the A/D converter
‘AD/C’ and stored in the memory ‘MEM’. The signal is transformed into the spectrum by
the FFT processing.

(3) The part of the spectrum obtained by (2) whose frequency range corresponds to the Flf is
extracted, see Fig.2-43 (b) and (c).

(4) The operation (1) to (3) is repeated until that the desired span of the spectrum is obtained.
The results of multiple FFT are concatenated to provide the spectra for a desired span, see
Fig.2.34 (d).

By this method, we can measure a spectrum with any span, as we desire. This method is

called ‘multiple FFT method’.

2.9.2 Sweep Rate

The sweep rate of the multiple-FFT measurement was considered as follows.

In this method, the local oscillator does not sweep and we considered the sweep rate as the
span band that obtained within one second. To consider the sweep rate, we did not consider the
operation time of the DSP, response time of the oscillator, and other factor which dependent on the
condition of the system.

The acquisition time of one FFT, 7;, corresponds to the time length of the window function.
It is given by

T, = Lk, =2.5~35,  (2.80)
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where the window function is assumed Gauss. The value of £, is experimentally decided by [16]
or [17]. The span obtained by one FFT is Flt. Then the sweep rate is assumed as

Fit 1
O =

—W:EFlt-wa. (2.81)
Input BPF » A/D ~MEM DSP
(a) f(1)
FFT
Wy
Frq.
N

©

@ l L Concatenated
4 Spectra

b
[E—
[\
(98]
B~

Fig 2.43 Jointed Spectra by Step Sweep method
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The rate between Flt and Rbw will be known by section 4.2.5 as follows.
Flt>5.8x Rbw (2.82)

We considered the relation between the sampling frequency F; and Flt as follows (section
6.2.4 will describe a discussion about this).

Fy > (Flt+ Bwd), (2.83-a)

where Bwd is the bandwidth of desired dynamic range such as 100dB down bandwidth. In the case
that the filter is digital, the Bwd is assumed roughly twice of the Flt. Then Eq.(2.83-a) can be

rewrote as

F, >3xFlt, (2.83-b)
and Flt S%, (2.83-¢)

The relation between F and Rbw is considered by Eq.(2.82) and (2.83-a~c).
F;>174xRbw,or Rbw<F/17.4 (2.84)

The sweep rate is explained by substituting Eq.(2.83-c) in to Eq.(2.81) as

aZkLFlt-wa=ki%wa=0.095-FS -Rbw, (2.85)

/4 w

where £k, is3.5. As aresult, the sweep rate is in proportion to the product of F; and Rbw.

2.9.3 Actual Measurement Time

The sweep rate against the Rbw with the sampling frequency 100MHz and 200kHz, which is
computed by Eq.(2.85), is shown in Fig.2.44. The rate of sweep method is drawn in the figure for a
comparison.

In actual system, the overall measurement time is including a processing time, local switching
time and other several factors [19]. Therefore, the actual sweep rate is given by

Span

O =
Total Processing Time

2.86
Span (2.86)

" (int(Span/ Flt) + 1) x {max(T,, k, / Rbw+ Ty, )}’

where 7, is the processing time of the FFT, 7§, , is the local switching time. If the processing
time is shorter than the acquisition time, it has almost no influence to the measurement time.
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Fig 2.44 Sweep rate Against Rbw
FFT: Computed by Eq.(2.85)
Sweep: Computed by Eq.(2.38)
x : Indicate the point that Rbow=(Sampling frequency)/17.4
We cannot achieve the FFT with the Rbw by the sampling frequency.

The sweep rate of the sweep method is in inverse proportion to square of Rbw, but the rate of
the FFT method, Eq.(2.86) is in inverse proportion to Rbw. It is expected that the FFT method can
achieve faster sweep rate at narrower Rbw. But the wider Rbw requires faster sampling rate,
shorter the window time 7}, , and shorter operation time. The symbols ‘x’ in Fig.2.44 indicates the
value of Rbw that is ‘(Sampling frequency)/17.4’. By the discussion of Eq.(2.84), we cannot achieve
the FFT with the Rbw larger than the point of ‘x’. We have a point that the processing time 7,
becomes larger than the window time 7}, . And we have the point of Rbw that the FFT method is
not faster than the sweep method.

We investigated the measurement time of two conventional types of spectrum analyzers. We
measured the measurement time including operation time or other all-processing against each Rbw
using a stopwatch, where the span was set enough wider than the Rbw.

The result of type A is shown in Table 2.5-a. This type of analyzer has the FFT method of
Rbw from 1Hz to 10kHz. It was until Rbw 1kHz that the sweep rate was faster than the sweep
method. The result of type B is shown in Table 2.5-b. It was until Rbw 100Hz that the sweep rate
was faster than the sweep method. The difference of achieved sweep rate of the two types was
approximately 7 times. The two types assumed to have different processor.
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Table 2.5-a:

Results of Type A (Rohde&Schwaltz FSU in 2006)

o : Sweep Method . Ratio against the
RBW (for Reference) o : FFT method sweep method
1Hz 0.5Hz/sec 3.75kHz/s 7500
10Hz 50Hz/sec 37.5kHz/s 750
100Hz 5kHz/sec 375kHz/s 75
1kHz 0.5MHz/sec 3MHz/s 6
10kHz 50MHz/sec 10MHz/s 0.2
Table 2.5-b: Results of Type B (Agilent ESA in 2006)
o : Sweep Method . Ratio against the
RBW (for Reference) o : FFT method sweep method
1Hz 0.5Hz/sec 500Hz/s 1000
10Hz 50Hz/sec 500Hz/s 100
100Hz 5kHz/sec 50kHz/s 10
300Hz 45kHz/sec 27kHz/s 0.6

By the result of above discussion, it considered that the maximum Rbw that achieves faster
sweep rate than the analog method is dependent on the performance of the signal processor. It is
important to take optimized configuration that takes a balance between the performances AD/C,
DSP and other parts of the system.

2.9.4 Demerit of the FFT Method

As described in section 2.8.5 and Fig.2.42, the spectrum obtained by the FFT method has
some ripple corresponding to the characteristic of the IF BPF. In the step sweep (multiple-FFT)
method, the ripple will appear on the each spectrum as shown in Fig.2.45. It is difficult to make
the IF BPF that has perfectly flat pass band. It is more realistic to take an equalization of the IF
BPF than to make it with flat pass band.

There are not continuities on the time between each result of the FFT. In the case we measure

a dynamic signal, some gaps may exist between the each result of the FFT.
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2.10 Summary

This chapter described the theory and property of the sweep spectrum analyzer. It is a kind of
pseudo-Fourier transformer. In sweep method, the spectrum S(w) is obtained as a convolution of
Fourier transform of the signal F(w) and frequency response of the resolution filter G(w),
which is given by

S(w) =F(w)*G(w).

The sweep time is in proportional to the Span and in inversely proportional to the square of
resolution bandwidth (Rbw) as next equation.

T, >k, % ,
where k, is 2~3 experimentally.

The abscissa of spectrums obtained by sweep spectrum analyzer indicates not only frequency
but also time. The resolution of the frequency and the time is under a binding of the uncertainty
principal.

Af X At=constant (2.87)

The sweep spectrum analyzer can change the condition of the measurement such as the Rbw and
the sweep time. We can obtain variable result by changing the condition, and we can estimate the
Fourier transform of the signal F'(®). On the other hand, in the FFT method, the abscissa has not
factor of time. The sweep method has an advantage at the point of variety measurement condition
against the FFT method.

The sweep spectrum analyzer is a narrowband system as described in section 2.8. It is

conformity to measure with wider dynamic range.

Table 2.6 concludes the characteristic of each method.
Some report about the FFT method is described in [1][2][17][18].
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Table 2.6

Characteristics of each methods

Category Merit Demerit
* Measuring RF signal, up to 1 wave
- Wideband measurin + Slow speed at narrow RBW
Sweep Method & * Around DC (0Hz) is observed

3GHz to 8GHz
* Wide dynamic range

as Zero carrier

FFT method With
no down converter

* Low frequency from OHz

* Time domain measurement by
same instrument system

* Transient phenomenon

* The dynamic range is dependent

on the AD/C

+ System performance is dependent

on the processor

FFT method With
down converter

* High speed with narrow RBW
+ Well shaping factor of RBW filter

+ Wide band measurement over 100MHz
* The IF filter response appears

on the spectrum.

Digital Oscilloscope
(Time domain)

* Transient phenomenon

+ Difficult to measure multi tone signal

Digital Oscilloscope
(Frequency domain)

* Low cost

* Low dynamic range
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Chapter 3

Theory and System of Super Sweep Method

3.1 Introduction

Chapter 2 described the reason why sweep spectrum analyzers have the restriction of the
sweep rate. This chapter describes the principle of the super sweep method that was introduced in
[5]. This method made a breakthrough in the restriction of the sweep method, which is described
in section 2.5.2.

Section 3.2 described the mathematical description of the super sweep method and the
fundamental concept of the implementation.

Section 3.3 describes the signal processing of the super sweep method using the model, which
is described in section 3.2. In this section we inspect the negative chirp operation by numerical
analyses, and describe the Gaussian filter as the negative chirp filter and analyze the maximum
sweep rate of the method.

In section 3.4, an implementation of the complex filter is considered.

3.2  Theory of super sweep method

3.2.1 Back ground of super sweep method

In this chapter or later, we assumed that the described system was made by the digital IF
method, which was illustrated by Fig.2-10, 2-11 and 2-12 in section 2.4.

In section 2.5, we investigated the restriction and ‘over sweep-rate response’ of the sweep
rate in sweep spectrum analyzers. The phenomenon is caused because the resolution filter accepts
the chirped IF signal. The over sweep-rate response exists whenever the sweep rate o was not
zero. Figure 2.21 (a) and (¢) show the reduction 0.1dB, which was permitted condition generally.

In Fig.2.21(c), the transition of the phase against the Gaussian filter was so small that the
transition was assumed almost stop within the time length of the Gaussian filter. In a hypothesis
that we set up, we could obtain the spectrum without the peak level reduction by canceling the
phase factor of the base band signal before the resolution filter process.

3.2.2 Mathematical model of super sweep method

In this section, we assumed that the measured signal was a CW signal for simplification. The
super sweep method was one of methods to approximate the Fourier transform. By the theory of
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linearity on Fourier transform, we could apply the result, which was proved for a CW signal, to a
general signal as a sum of CW signals.

In the system described in Fig.2.17, the IF signal S(?) had a chirped phase factor: zo?, which
was described in Eq.(2.31a)~(2.31c). This factor caused the imperfect of the Fourier transform.
We intended to cancel the chirped phase factor using a complex filter as follows. The super sweep
method introduced a complex filter that had a negative chirp factor. The impulse response of the
filter was expressed by

g,(t)=g(t)expl jzot’]. 3.1
By replacing g(#) withabove g, (¢) in Eq.(2.31-a), Eq.(2.29-b) is modified as
S, (=g, *{f (O x10}, (3.2)

where §, (¢) is modified IF signal. This equation can be modified as
8,0 = lg@expl jro e 1}x{f () xexpl=j(ro? + o +0)1f )
= [ {g(0)-expljror’ ]}

< {f(t=)exp[—j(zo(t—1) +@,(t - 1)+ 6, )}dr ) (3.3)
= exp[—j(ﬂat2 +a)ot+6’0)]

><Tg(r)f(t—r)xexp[j(2ﬁ0t+a)0)r)]dr )

There are no terms that included 7> in the exponential function. The filter g (¢), ‘a negative
chirp filter’ cancels the terms. Equation (3.3) is now modified as

S, (1) =1(t) T 2(0) f(t-1)xexpljo(t)r]dr, (34)
where o (t) is defined as

o(t)=2rct+®,. (3.5)
Then, Eq.(3.4) can be written by substituting /(¢ —7) with Eq.(2.29).

S, (6) = () expl joo,t]x [ g(D)a(t =) x exp[- j(o, - w())r]dz

(3.6)
=[(t)exp[ jo,t]x .[g(r) -r(r)x exp[— j(o, — a)(t))r]dr s

where r(7) is a(t—71).

It is possible to replace the integration of Eq.(3.4) with the product of the Fourier transforms of
g(t) and r(r) as follows.

S, () =1l(t)expl jo, t]x{G(o, —w(t)) * R(o, —w(t))}, (3.7)
where G(w) and R(w) is a Fourier transform of g(z) and r(z). By the characteristic of the

Fourier transform, R(w) can be expressed as follows [1].
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R(aw(1)) = exp[ — jo(t)t]x A(-aw (1)), (3.8)
where A( @) is the Fourier transform of a(z). Thus Eq.(3.7) is modified as
S, () =1l)xexp[ jo(t)t]x{G(o, —w(t))* A(w(t) - ®,)}. (3.9-a)

By Eq(2.36-¢),
A1) = F(()+o,), (3.9-b)
and g(t) is a real signal. Then
G(-0)=G (@), (3.9-¢)

where G”(w) is the complex conjugate of G(w). The Eq.(3.9-a) can be written as

S, () = 1(t)xexp[ jo()]x{G" (o(t) — ®,) * F(o(1))} . (3.9-d)
In the case that we focus the magnitude of Eq.(3.9-d), it can be written as
1S, () 1=l G™(@(t) — w,) * F(e(1)) |- (3.10)

Although, the conventional sweep method requires that the sweep rate equals to zero to obtain
spectrum as a convolution with RBW filter (see section 2.5.1 and Eq.(2.36-¢)). But Eq.(3.10)
indicates that we can obtain a spectrum even if the sweep rate o is not zero. It is an effect of the

filter represented by Eq.(3.1) that have the negative chirp factor. We named the filter represented

by Eq.(3.1) ‘negative chirp filter’. And we named the new method, in which this filer is used,

‘super sweep method’.
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3.2.3 Implementation of Super Sweep method

In this section, we introduce the hardware in which the super sweep method was implemented.
The super sweep method inversed the chirp factor of the signal, and was a complex signal
processing system.

An example of a diagram, implemented the super sweep method, is shown in Fig.3.1. It was
almost similar to the system described in section 2.4 “Digital IF”. It was exactly the same as the
system that excludes the ‘Analog IF method’ from Fig.2.9. The ‘RF Down Converter’ had a local
oscillator that generated a sweep signal /(?), Eq.(2.30),

(1) =explj (- 01> + m,t +6,)], (3.11)

and had the mixer and the IF BPF as shown in Fig.2.9. It converted the ‘INPUT’ signal into the ‘IF
Signal’, S(¢). The A/D converter: ‘AD/C’ digitized the IF Signal which had efficient sampling
frequency corresponding to the bandwidth of the IF signal. The output of the AD/C was
transferred to the Digital Down Converter (DDC).

The overview of the DDC is shown in Fig.3.2. The DDC converted the digitized IF signal into
the ‘Base Band Signals’,

Sp(t) =1,(t)+ jO, (1) - (3.12)

The function of the DDC is described in section 2.4. In Figure 3.2, the decimation rate of the
‘Decimation LPF’ was N, . This rate was decided corresponding to the resolution bandwidth
(Rbw); the decision-making process is described in the later section. The outputs of the decimation
LPF were the ‘Base Band Signal’, S,(¢), which were inputted into the ‘Complex Filter’. The
negative chirp filter was implemented as this filter. The output of this filter was the signal § (1)
which was described in section 3.2.2. S (¢) was transferred into the ‘Display’. The Display was
a sub-system which displays the S (z) as a spectrum. The detail of signal processing and the
each part is described in the following sections.
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Fig. 3.2 Overview of Digital Down Converter (DDC)
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3.3 Signal Processing of Super Sweep Method

This section inspected the theory of the super sweep method, which was introduced in section
3.2. This section described the signal processing of the system shown in Fig.3.1. The measured
signal in this section was considered to be a CW, for simplification.

3.3.1 Inspection of Super Sweep Method
The Base Band Signal, output of the DDC, in Fig.3.2 has the same formula with Eq.(2.31-a).
S, () =h(@)*{f(t)xexpl j(z-c 1> + ot +0,)]}, (3.13)
where A(?) is the total impulse response of the RF Down converter and the DDC, and @ is the

center frequency of the local oscillator in the RF down converter.
In the case that f(z) isa CW signal, f(¢) is given by

f(t)=axexp| jot], (3.14)
where ‘a’ is the amplitude and  1is the angular frequency. Then the signal §,(r) is written as
Sy o (O)=h(1)*{ax explj(zo 1> +6,)]}, (3.15)

An example of §, ., () is shown in Fig.3.3. The two lines of the figure are a real and an
imaginary part of the signal, 7,(z) and Q,(¢), respectively. The envelope of §, ., (t) is
5 on (@) “at =0 is
0H:z. The time, at which the frequency equals to OHz, generally changes corresponding to .
In the case that the frequency of the f(r) equalsto @ + A@ , Eq.(3.15) is written as
Sy an () =h(0)*{axexpl j(xo 1 +Awi+6,)]}.  (3.16)
And when the frequency equals to zero, the time 4t is given by
At=-Aw/2r o). (3.17)

corresponding to the frequency response of A(¢). In Fig.3.3, the frequency of §

It is modified as;
Aw=-2nmoxAt. (3.18)

We can obtain the frequency of f(¢) from this equation. The abscissa of Fig.3.3 indicates the
time progress and also indicates the frequency.
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3.3.2 Inspection of negative chirp filter

An example of the base band signal prior to the negative chirp filter is shown in Figure 3.3. In
Fig.3.3, Span was 40kHz, Rbw was 300Hz, sweep time was 40msec, amplitude ‘a’ was one, and
the plotting sampling frequency was 10kHz. The signal was computed by Eq.(3.15) with the
following process.

The sweeprate ¢ was,

o =Span/T; =40-10°/(40-107) =10°, (3.19)
and h(t) was so designed that the 3dB bandwidth was 20kHz. Equation (3.15) was modified as
Sy e (1) = h(2)* {expl jzo 121}, (3.20)

where a and 6, were assumed to be one and zero for simplification. §
chirp signal. In traditional method, o should be,

chw(t) was band limited

g=Span  Span 1o o 4s5.00° (3.21)
T, i Span
Rbw*

where T is given by Eq.(2.14) and k is 2.0. The rate Eq.(3.19) was 22.25 times faster than a
conventional method.

The signals shown in Fig.3.3 are typical base band signal of sweep spectrum analyzers, whose
frequency is chirped. The signals are digitized; therefore we can cancel the chirp factor by
computing.

If the bandwidth of /(#) is wide enough, it can be assumed to be 0 function, and S, -, (¢):
Eq.(3.20) can be assumed to be as the following equation. )

Sy cw (1) =exp[ jzo t*] (3.22-a)
We defined a function u(¢) as

| ¢ [>Smsec

u(t) = o :
exp[—jrmot’] |t|<5Smsec

(3.22-b)

And we defined the product of u(z) and Sj; ( (f) withtimelag <, S, (¢) as,
S, () =u()xSy o (t—7)
=exp[—jrot’]xexpl jro (t—1)*] (3.22-¢)
=exp[ jro(=2tT +17)].
When [t>5msec, S, (¢)=0.

The frequency of S (r) is dependent on the time lag t. When t=8msec, Omsec and
-8msec, S, (t)was @O, @ and @ of Fig.3.4, respectively. These were corresponding to (D, @
and @ of Fig.3.3. The frequency of O and 3 were constant and @ was a small change
which could be assumed in the range of a quantum error of the digitizing.

Through the above discussion, we inspected that the chirp factor of the signal
Sy ow(t) could be canceled.
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Figure 3.5 shows the impulse response of the Gaussian filter g(¢) at RBW 300Hz.
The abscissa scale is fitted to Fig.3.4. g(¢) is expressed by the following equation (see
section 2.5.3).

g(t)= exp{—%tz} (3.23)

We defined the integral for the product of g(¢) and S, (¢#) as ‘P’ which is a spectrum

of f(t), given by
0.005

P= j g(1)- S, (r)dt
—-0.005
0.005

= J‘g(t)'u(t)SBicw(t_T)dt (324)
—0.005
=g,0)*S, _CW()
=g, {f(O)-10)}:
Where P can be assumed as a spectrum S, (¢), Eq.(3.2). Equation (3.24) means that P

equals the convolution of negative chirp filter and chirped base band signal, Eq.(3.2).
The operation of the super sweep method is represented by Eq.(3.24).

1
0.9+

st The impulse response of

the Gaussian Filter
for RBW=300Hz

07k
[N
(I

04 L

b=~ g(t) = exp{_Mﬂ}

03l 2In2
0zl

0.1

i

-0.005-0.004 -0.003 -0.002 -0.001 I n.ool 000z 0003 0.004  0.005

Tme (sec)

Fig.3.5 Gaussian Filter: RBW=300Hz
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3.3.3 Gauss function as negative chirp filter
The negative chirp filter g (¢), Eq.(3.1) is a kind of low pass filter. We can extract the time
At , Eq.(3.17) and the peak power of the base band signal §,(¢), Eq.(3.13) from the convolution
of g (t) and S,(¢).And we can obtain the frequency and power of the signal f(¢).
The Gaussian filter is usually chosen for the RBW filter of a spectrum analyzer [2][3][4]. The
following equation shows an example of a negative chirp filter modified from Eq.(3.1).

(7 - Rbw)*t?

Y :|><eXp[j(—7Z0t2)]. (3.25)

g,()= CXp{—

The relation between Rbw and the above function is described in [3][5]. In the case that o
equals to zero, the Fourier transform of g, (#) correspondsto G(w) of Eq.(2.37).

1 2
G(a)) = €Xp {—mw :|9

An example of the negative chirp filter is shown in Fig.3.6 whose condition is fitted with
Fig.3.3~3.5 (RBW=300Hz, Span=20kHz, Sweep time=40msec). It is a complex function and
consists of the real part and imaginary part as follows.

1,(t)=Re[g,(t)] (3.26-a)
0,(n=1Im[g, )] (3.26b)

In Figure 3.6, Gauss function g(¢) is added as an envelope of g, (7).

-1 ! ! ! 1 I ! ! ! !
-0.005-0.004 -0.003 -0.002 -0.001 0 0.001 0002 0003 0004 0.005

10m sec

Fig.3.6 Gaussian Filter( RBW=300Hz) g, (f) as a Negative chirp filter
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3.3.4 Practical negative chirp filter

The time in the Eq.(3.25) has no limit, therefore it is defined from minus infinity to infinity.
The amplitude of Eq.(3.25) approaches zero when |¢| is infinity. Actually, the |¢ is limited as a
digital filter. We defined the time limit 7, as follows.

T, = y/Rbw , (3.27)
where x is a constant. The filter function g, (¢) is defined within the specified time as follows.
|[tIST./2 (3.28)

We defined the time-limited function g, (¢), which is product of g, (¢) and the function of
Rect(t) shown in Fig.3.7, and it is represented as follows.

g, (t)=g, (t)xRect(t), (3.29)
where
O---|t>T-./2
Rect(t) = 1P T : (3.30)
1 t|<T, /2
12
06 / \ i
04 F -
0 / 1 | | | I \"‘\-._L
-0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005
Time (sec)

Fig. 3.7 Time limited Gausian filter

The Fourier transform of Rect(t) is known as sinc function and Dirichelet kernel D(w)

6],
. [ N6
0 Sm(2j @
D(0) = exp[j;}— ,0=21r—, 0, =27 f§, (3.31-a)

sin(gj Ws
2
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where f is the sampling frequency of input signal of the negative chirp filter, N is the tap
number of the filter and # is the normalized frequency. We modified Eq. (3.31-a) by scaling ¢
with w.

.a)}sin(Na)/Z) (3.31-b)

D(@) = eXp{]E sin(a)/2)

The Fourier transform of g, (¢), G,,(®) isconvolution of g, (#) and Rect(t) .
G, () =G(w)*D(w) (3.32)

The Fourier transform of a Gauss function is also Gauss function itself. Figure 3.8 shows the
examples of frequency responses of these filters, in which  equals 2.6 and 3.0. In the case that
2z is smaller, the frequency response has larger side lobes. It requires  to be 2.6~3.0 and above,
to reduce the side lobe level -75 ~ -100 dB from its peak level, as shown in Fig.3.8. Practically, the
level of side lobes is decided by the combination of the  and the sampling rate.

We should inspect the property of the filter for each measurement condition.

<— 100dB —

—10Rbw Frequency 10RbwW —10RbwW Frequency 10Rbw
(a) T, =2.6/Rbw (b) T, =3.0/Rbw

Fig. 3.8 Frequency response for y=2.6and 3.0

3.3.5 Maximum Sweep rate
In the case that the sweep rate is o, the negative chirp filer sweeps the frequency Af within
the time 7, as shown in Fig.3.9.
Af =oc-T, =0 -y /Rbw . (3.33)
In Figure 3.9, the bandwidth of the base band signal is denoted as ‘FIt’, which is defined 3dB

bandwidth of the /(2) described in Eq.(3.13). If the Flt is narrower than the Af', the integration of
Eq.(3.4) does not operate completely. Then the Fi¢ should be wider than the Af as follows.

Fit > Af =0 -y /Rbw . (3.34-a)
From this inequality, the maximum sweep rate, O s CaN be written as the next equation.
T x5 = ROW X (Flt [ ) . (3.34-b)
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Dividing Eq.(3.34-b) by Eq.(2.38) that is maximum sweep rate in the conventional method, we
define a new parameter R_ as follows.

5k Pl

(3.35)
o ¥ Rbw

This parameter R_ indicates the fastness of the super sweep method against the conventional
method. And it is in proportion to F/#/Rbw, because k, and x are constants.

SB_CW (t)=1,(t)+ jO,)

Span—lékH‘ St=16msec

il /\\}\ ”

|
||| ”||| |\|I 1T

s
(e
—8msec’ 7 TREET R = RERR SO 8msec
Fir
Af
F g(f) _J{f\gz(f) 1
80 l 7y e
/ \ : o\'\s i Rbw
\J | \\,.-{
20

«—— y/Rbw =10msec——— ) = 2710t

Fig. 3.9 Response time and the frequency range of a negative chirp filter
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3.4 Complex filter and Display

Figure 3.10 is rewritten diagram of Fig.3.1, in which ‘Complex filter’ and ’Display’ are
emphasized in the details. The base band signal S,(¢), Eq.(3.13) is inputted into the complex
filter. This filter (which is enclosed by the dotted square) has four convolutions, two additions and
one subtraction and produces the signal: “ /,(t) + O, (¢) * as follows

I +jQS ZSB(t)*gn(t)
=1, +JO,)* (g, + jgo) (3.36)
=L, *g—0,*8y)+j(Q,*g, +1,*g,),

where g,(¢) and g, (¢) is the real part and imaginary part of g, (¢).

The output is the complex spectrum signal and followed by the ‘Display’. Square-sum of
I,(t) and Q. (¢) is the power spectrum, usually expressed in unit dB. The power spectrum
S 5(t) 1s finally processed and obtained in the Display as follows.

S (1) =10 -log,, (I4(t)> + Q4 (1)*) (3.37)
The parameter ‘¢’ (time) is translated into the frequency by Eq.(3.5).

IF Signal @
| [ Complex Filter

AD/C ; 4

h

DDC

10log, (23 +02)| |

Fig. 3.10 Signal Flow of a Complex filter

We can design several ways to implement the complex filter, such as

Ng-1

I[k]+ jOs[k] = Y (U, [k +i]+ jO, [k +i]) * (g,[i]+ jg,[i])
P (3.38)

= YUk +i1 g i1 O, [k +11- goli) + JQ,[k +i1- g,[i) + 1,[k +1)- g,li)

where N is the tap number. Equation (3.38) produces one sample of 7 (¢)+ jQq(¢) as a sum
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of the product. Generally, it is efficient for a digital signal processor (DSP) to implement the
operation in Fig.3.10 by four FIR filters. And we can implement the ‘DSP’ of Fig.3.10 into the
circuit of FPGA.

Some discussion about the implementation and the performance of the filter are done in
Chapter-6.

3.5 Summary

This chapter describes the theory of the super sweep method, inspects the operation of the
negative chirp, and discusses the concept of the implementation of this method.

Through the discussion, we investigated that the sweep rate was in proportion to the rate

Flt/ Rbw.
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Chapter 4

Experiments of new method

4.1 Introduction

This chapter describes the experimental system, set up to examine the theory of the super
sweep method. We employed a conventional sweep spectrum analyzer as a RF down converter,
which has 21.4MHZ IF output. We made a ‘DSP unit’, which has A/D converter, DDC and DSP.
The operation of the new method is almost done on the DSP. This chapter describes the method
and the condition of the experiment, and the result will be described in Chapter-5. Section 4.2
describe the overview of the experiment system and the implementation of the signal processing.
Section 4.3 describes the digital filter in the DDC. Section 4.4 shows the essential specification of
the experimental system.

4.2 Experimental system

4.2.1 Overview of the system

We set up the experimental system to examine the theory of the super sweep method. The
system was designed based on the diagrams Fig.3.1, 3.2 and 3.10. The copy of Fig.3.1 is shown in
Fig.4.1-(a). To realize the diagram, we employed a sweep spectrum analyzer as an RF down
converter. The spectrum analyzer was R3264 produced by ADVANTEST Co. We made the DSP
unit which took the operation from the AD/C to Complex filter in Fig.4.1-(a), and employed a
conventional PC as a display system. The overview of the system is shown in Fig.4.1-(b).

By the concept of Fig.4.1, we designed the concept of the signal flow of the system, which is
shown in Fig.4.3. This system was almost the same as the system of the sweep spectrum analyzer
which has digital IF method, although this system had negative chirp filters.

The spectrum analyzer, R3264 has a local oscillator that generates sweep signal, mixers, IF
band pass filters and output of ‘21.4MHz IF signal’. The architecture is shown in Fig.2-1, and
described in section 2.2 and 2.3. The 21.4MHz IF signal is passed through the RBW filter of the
R3264. The RBW filters can be changed by panel operation or GPIB operation. In Figure 4.3, the
‘SWP’ signal is made by the ‘Sweep Generator’. And the voltage of SWP is corresponding to the
frequency of the local oscillator, and the ‘start to stop’ frequency is corresponding to 0-5 Volt.

R3264 has output of 10MHz Reference clock signal. We used this signal as a reference clock
of the DSP unit, which is duplicated into 80MHz, and it drives the AD/C, DDC, DSP and all
circuit of the DSP unit. R3264 has BNC connectors, 21.4MHZ IF, SWP and 10MHz reference
clock output from them. These connectors on the Real-Panel of R3264 are shown in Fig.4.2.
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Fig. 4.1 Overview of Our Experimental System

Fig. 4.2 Real Panel view of our Experimental System

Three signals are connected with the SPA to the DSP Unit
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4.2.2 Signal flow of the system

The overview of the signal flow from input to the display of our experimental system is shown
in Fig.4.3. The measured signal is inputted into the spectrum analyzer. The input signal is
converted into the 21.4MHz IF signal. The condition of the spectrum analyzer was set to be
adapted for our experiments, which is described in later sections.

21.4MHz IF Signal y "
- DSP Unit
Spectrum Analyzer
— DSP
RF Down Converter .*_E
f ‘®_' P el
MIX TFEEF g = I'+0
INPUT L | - T HOr S
Signal Cr—» ]b —» AD/C }-b ------- 5
Under the test ? bp, DDC E

b o[ Dety | 101og(I* + 0%)
local SOMTLz Delay =

i

AN -
0 SWP
Sweep Generator .

5V

' 10MHz Ref. Clock

Display Block (PC)

Fig. 4.3 Over view of Signal Flow of our Experimental System

We connected the 21.4MHz IF, the SWP signal, and the 10 MHz Reference clock of the
analyzer to the inputs of the DSP unit. The IF and the SWP signal were digitized by the AD/C. We
employed AD6645 produced by Analog Devices Co. as the AD/C of the DSP unit. They were
operated by 80 MHz clock with 14-bit quantization. The digitized IF signal was finally converted
into the spectrum data, and the SWP signal was used to synchronize the abscissa of the display
with the sweep of the spectrum analyzer.

The DDC (digital down converter) was implemented using GC4016 supplied from the Texas
Instrument Inc., which has CIC (Cascaded Integrator Com) and FIR digital filters to reduce the
bandwidth and the sampling frequency. The description about the DDC is written in section 4.3.

The Complex Filter was composed of four independent numerical filters programmed on a
DSP as the negative chirp filter. It is described in section 3.4. The DSP was TMS-320C6711,
which is supplied from the Texas Instruments Inc. The output from the DSP was transferred to the
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PC through the USB2.0 interface and the Display was figured on the PC. The PC controlled whole
experimental system as well.

The SWP signal was passed thorough the same process with the IF signal to have the same
latency with the IF signal, and it was registered with the IF signal. It gave the frequency value for
each sample of the result as a spectrum data.

4.2.3 External view of the system
The external view of the experiment system is shown in Fig.4.4. The spectrum analyzer
R3264 is shown at the left side. The black box above R3264 is the DSP unit. A spectrum is shown
in the display of the PC in the right side.
Figure 4.5 is the internal view of the DSP unit. The power unit is shown in the upper side. The
left lower side the AD/C board exists, and in the right side the DSP board which has DDC, MEM,
DSP, and other logic circuits exits. The hardware diagram of the DSP unit is shown in Fig. 4.6.

DSP Unit

1111111

Fig.4.4 Over view of the Experimental System
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Fig.4.6 Internal block diagram of the DSP Unit
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4.2.4 Chain of filters

The essence of the system is presented in Fig.4.7. The most important functions of the system

are filters that are drawn in Fig.4.7. The function of this system is itemized as follows.

1.

Input signal was mixed with the output of the sweeping local oscillator and transformed
into the chirped IF signal by a few down-converters. In Figure 4.7, the down converters
are drawn as single for a simplification.

The chirped IF signal was band limited by a few IF-BPFs. The narrowest BPF of the
Spectrum analyzer (SPA) was the RBW filter, which should be selected adequately
corresponding to the bandwidth of the negative chirp Gaussian filter, Rbw.

The DDC converted the digitized IF signal into the base band signal and limited the
bandwidth of the signal. The bandwidth of output of the DDC is explained as * Flz,, .’
(See Fig.3.9 and section 3.3.5). The DDC, GC4016 has the CIC filter whose decimation
rate is controllable, and the FIR filter whose coefficient can be re-wrote. The sampling
frequency of the input signal, f, and the decimation rate, N, specifies the output rate
f, and the bandwidth FIt

DDC *
fs=/1o/Np. 4.1)
In our system the configuration of the DDC was fixed except for the decimation of the
CIC. Flt is the bandwidth of input signal of the negative chirp Gaussian filter, which is
minimum bandwidth between RBW and Flt

DDC *

Flt =min(RBW , Flt,,.) (4.2

Note ) The detail of the DDC is shown in section 4.3.

The negative chirp Gaussian filter extracted the time when the frequency of the signal is 0
Hz. The bandwidth of the filter is Rbw, which is resolution bandwidth of the system as
the spectrum analyzer. The coefficient of the negative chirp filter was calculated
corresponding to the Rbw and o , which is described in next section as Eq.(4.4).

S, (t) was a signal according with the spectrum as a convolution of the spectrum and
resolution filter, Eq.(3.10), | S, (?) |=| F (@) * G(w) |.

We assumed the experimental system to be a chain of the band-limit filters. The process of the

band-limiting extracted the spectrum.
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Fig.4.7 Chain of Band Limit Filters

4.2.5 Implementation of the Gaussian filter

The figure of the Gaussian filter (in dB scale) in frequency domain is shown in Fig.4.8. We
designed the filter to have a dynamic range 100dB. The figure is a parabola and can be explained
as

10log(G(w)) = —a’ @’ (4.3)

For the Rbw is 3dB down-bandwidth of the filter, the 100dB down-bandwidth is calculated as
approximately 5.8 times as wider as the Rbw.

To achieve the high-speed sweep, the bandwidth of the input signal of the filter, the £/t have
to be wider than the Rbw. The wider Flt is, the faster we can sweep. The sampling frequency of the
input signal must be faster than the Flz. The configuration of the DDC specified the Flt.

The mathematical formula of the Gaussian filter is explain by Eq.(3.25).

2.2
g,(0) = exp| — F RO ol j—zore?)] (3.25)
2In2
The coefficients of g, () were computed with the discrete time as follows.
2
g [i]=exp [_%(ixAt)z}xexp[—jﬂa(ixAt)z] , (4.4)
n

where i=—-N,/2,---,0,---,N./2 and At=1/f,. f; is the sampling frequency of the input
signal, which is given by Eq.(4.1). N, was the sample (Tap) number, it was decided as

NG=TfoS=$xfs . .5)

T, and x were described in section 3.3.4.
Please note that Eq. (4.4) is independent of F/t.
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Fig.4.8 Figure of a Gauss filter (dB) and Minimum Sampling Rate

4.2.6 Sampling in the frequency domain

The example of discrete spectrum S [i] is shown in Fig.4.9, and the mathematical formula is
described in section 4.2.10. The abscissa indicates both frequency and time. Af is the difference
of the frequency between the sample. Af is the period of the sampling as a time domain.

Af is estimated by the following equation, which is modified from Eq(3.18).

AN =0-At (4.6)

The two value, Af and Ar are independent each other principally. We considered that Af

should be narrower than Rbw/2 to keep the shape of the resolution filter.

A =0 ar =L < ROV (4.7-a)
fs 2
This inequality can be modified as
o< ? fs (4.7-b)

This inequality explains the relation among the three parameters. It needs higher sampling
frequency to achieve faster sweep for same Rbw.

In the case that o is slower than half of Eq.(4.7-b), we can decimate the spectrum data, and
we can configure the Af by choosing the adequate decimation rate.
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Fig.4.9 Sampling Rate of a spectrum data

4.2.7 Setting Up Parameters

This section describes the condition and parameters of our experiments. We made the system
not only for experiment but also for practical use. The specification of the system is shown in
section 4.4.

In the experimentation, the input-signal was a CW signal generated by a manufactured signal
generator (SQG), the frequency was 500 MHz and the power level was -10dBm.

The principal parameters are shown in Table 4.1. We made two configurations of the new
method, ‘S7° and ‘S2’. The ‘Cnv.’ is the configuration of the conventional method, the R3264
spectrum analyzer, for reference. In the case of S7 and S2, the sampling frequency of the AD/C,
f, was 80MHz, and the resolution bandwidth of the complex filter: Rbw was 300Hz. The
‘RBW(SPA)> was the RBW (resolution bandwidth) of R3264. And the Flt,,. was the bandwidth
of output signal of the DDC. The N, was the total decimation rate of the DDC. f, was the
decimated sampling frequency, which was the input signal rate of the complex filter and was given
by Eq.4.1. N, was the sample (Tap) number of the negative chirp filter g (), it was decided by
Eq.(4.4) with parameter x and N, as follows.

X 80MH:z

NG:TGXfS:RbW N
D

, (4.8)

where »was 2.6.

And finally, Ry was defined by the following equation.
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R = (3.35)
We measured the input signal, and obtained the spectrums, which were averaged with over ten
measurements. Then we obtained the peak level of the signals, and observed resolution bandwidth

as ‘ Rbw'’, see Fig.2.19.
We obtained these data by changing the normalized sweep rate 1/k, which was defined by

Eq.(2.40) to compare with conventional method. In our experiment, the //k were set as 0.1 to 75.0
as follows.

1/k=0.1x10""%, (4.9)
where ‘n’ is an integer from 0 to 23, the all steps of 1/k are shown in Table 4.2. For the given 1/k
we controlled the R3264 whose Span and the T, (sweep time) was proper value, by referring to
the Eq.(2.40).

Table 4.1 Principal parameters under the experiments

Measurement configuration
Cny S1 S2
INPUT Frequency 500MHz
INPUT Level -10dBm
Rbw 300Hz
fo - 80MHz
RBW(SPA) 300Hz 1.0MHz 1.0MHz
‘g Fly(DDC) - 2.44kHz 7.32kHz
g?* Ny - 24756 8192
S - 3.255kHz 9.765kHz
N, - 29 85
X - 2.6
Flt/Rbw - 8.1 24.4
R - 6.2 18.7
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4.2.8 Coefficients of Negative Chirp Gaussianl Filters
The coefficient of the negative chirp filter is calculated by Eq.(4.4), where
o=Span/T, or o =Rbw x(1/k). (4.10)

The coefficient of the Gaussian filter of S/ and S2 is shown in Fig.4.10-a and 4.10-b, where
the o were 4x10° (Hz/sec) and 1.33x10° (Hz/sec), respectively. There are three lines in each
figure, the absolute value:| g, [i]], the real part: Re[g,[i]], and the imaginary part: Im[g,[i]]-
Each coefficient consists of two data array, Re[g,[i]] and Im[g,[/]].

The value of |g,[i]| does not change against //k, but Re[g,[i/]] and Im[g, [i]] have

different value corresponding to I/k. We developed the system to calculate the value, g [i]
corresponding to //k automatically. Figure 4.10-a and 4.10-b show the samples of these g, [i].

4.2.9 Span and Sweep time Corresponding to Plotted 1/k

We made conditions of the system corresponding to the plotted 1/k, which is calculated by
Eq.(4.9). Table 4.2 shows the important parameters of the measurement. These parameters were
calculated by the following process.

(D: Calculated the ideal 1/k using Eq.(4.9).
@ Decided the SPAN arbitrarily.
(®: Estimated the rate, SPAN/RBW, which is decided to be under 3000.
(If this value was over 3000, it was difficult to observe the figure of the peak of a
spectrum.)
@ Calculated the ideal sweep time 7T, by modified Eq.(2.40).

- —Sf AN (4.11)
Rbw? x (1/k)

S _ideal

(® Confirmed the sweep time of R3264. The significant figure of the value is only two.
6 Calculated the 1/k with the value ®).
(@ Estimated the error of ®.

®-0
@

The maximum error of J (1/k) was 4.1%. We considered this error is small enough for

51/ k) =100 (%) (4.12)

our experiment.
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Table 4.2 Normalized sweep rate 1/k and the SPAN and Sweep time

RBW of all conditions are 300Hz

) @ ® @ ® ® @

n 1/k ideal SPAN |SPAN/RBW| T, ideal | T, actual | 1/k result | §(1/k) %
0 0.1000 30000 100 3.3333 3.3 0.1010 1.01
1 0.1334 30000 100 2.4996 2.5 0.1333 -0.01
2 0.1778 30000 100 1.8745 1.9 0.1754 -1.34
3 0.2371 30000 100 1.4057 1.4 0.2381 0.40
4 0.3162 30000 100 1.0541 1.1 0.3030 -4.17
5 0.4217 30000 100 0.7905 0.79 0.4219 0.06
6 0.5623 30000 100 0.5928 0.59 0.5621 -0.04
7 0.7499 30000 100 0.4445 0.45 0.7491 -0.11
8 1.0000 30000 100 0.3333 0.33 1.0101 1.01
9 1.3335 30000 100 0.2500 0.25 1.3333 -0.01
10 1.7783 55300 100 0.3455 0.35 1.7556 -1.28
11 23714 100700 500 0.4718 0.47 2.3806 0.39
12 3.1623 150000 500 0.5270 0.53 3.1447 -0.56
13 42170 150000 500 0.3952 04 4.2194 0.06
14 5.6234 150000 500 0.2964 0.3 5.6306 0.13
15 7.4989 150000 500 0.2223 0.22 7.5075 0.11
16 10.0000 300000 2500 0.3333 0.33 10.1010 1.01
17 13.3352 300000 2500 0.2500 0.25 13.3333 -0.01
18 17.7828 300000 2500 0.1874 0.19 17.5439 -1.34
19 23.7137 450000 2500 0.2108 0.21 23.8095 0.40
20 31.6228 450000 2500 0.1581 0.16 31.2500 -1.18
21 421697 450000 2500 0.1186 0.12 42.0168 -0.36
22 56.2341 600000 2500 0.1186 0.12 56.0224 -0.38
23 74.9894 750000 2500 0.1111 0.11 75.0751 0.11
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4.2.10 Discrete Integral to obtain a Spectrum
In the super sweep method, the spectrum was extracted by the algorithm of Eq.(3.2) or other
equation in the section 3.22, such as

S, (0=g,O*{f()x 10} (3.2)

Actually, in our experimentation, the integral is achieved by a discrete integral. The concept
of the integral is shown in Fig.4.11. The discrete form of the g, () was presented by Eq.(4.4). In
Figure 4.4, N, is the tap number of g (¢), which was presented by Eq.(4.5). And S,(¢) is the
base band signal, which was a output of the DDC and explained by Eq.(3.12) and (3.13) or some
other equation. At this stage, we operated the signal S,(¢) as a discrete complex signal,

S,lil=1,[i1+ O, [i]. (4.13)
We defined N, as the size of S,[i] at this stage which is shown in the upper side of
Fig.4-11 as ‘i =0, N, —1’. And it is corresponding to the product of the sampling rate
fs and the sweep time 7,

Ny, =T, x fg, (4.14)

where f; is defined by Eq.(4.1).

We obtained the spectrum as output of the discrete convolution of S,[i] and g [i].
The filter g [i] has to be filled up by signal §,[i] to output the spectrum without the
transitional response of the start and stop edge. Then, the size of the output was
N, -N,, as shown in Fig.4.11. N is the tap number of g, [i] defined by Eq.(4.5).

Through the above considerations, the spectrum was explained by the next
equation.

S,k 1= g,[i1%S,[i]
= Nilgn[i]x{l{nkf +%} +jQ[i+kf +%}

In Eq.(4.15), the parameter k, corresponded to the frequency of each sample of
S,[k,]. When the center frequency is f., the frequency corresponding to k, is given

by,

(4.15)

f[kf]:fCF"'Afx(kf_%j, (4.16)

where Af is the difference of the frequency between each sample defined by Eq.(4.6) or
(4.7), and (N;—N;)/2 was the sample number at the center.
We could obtain the spectrum discretely by the above two equations.
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4.3 Property and Configuration of DDC (GC4016)

The property and the configuration of the DDC that we employed in our experimental system are

described in this section.

We employed GC4016 as the DDC supplied from Texas Instrument Inc. It was one of the most

important devices in our system. Actually, we made the several conditions of measurement by

changing the configuration of GC4016.

4.3.1 Outline of Digital Down Converter Channels

GC4016 has four down converter channels on a chip. The one channel is shown in Fig.4.12. The

description of this chip is given in [7]. This section describes the essential function and our application

on this chip as follows.

ol w = E
o = =z £ 3
z « E wE 2
o L o Z W =L =
MIXER 5 > ° B e
- | l | 1+ 111
=z ¢ {(X) _ = o g N2
o e \« B . E%a F R N -
N — 220 g2zo S T=s E=s 2\ 2 QUTPUT
E<E G2k 53 e O r O =\ 2 CIRCUIT
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o N o oo — C2 |—d = —N £ &\—+0Q
= 20 24 20 20 24
12,16, 20 or 24 bits
2 21TAP 63TAP Passed
TUNING
FREQUENCY ~ I~
PHASE :
OFFSET
Onco
Fig.4.12 Down Converter Channels; from [7]
1. The input signal is band limited such as
S ()= A(t)-expl joyt + 0(1)], (4.17)

where A4(1) is an amplitude, @, is an IF frequency and @(¢) is a phase factor.

2. The NCO generates the signal cos(@,,f) and sin(@,,t) whose frequency is controllable.

We tuned the frequency as @y, =@, .

3. The two mixers generates the signal as follows.
Jnie_ou(®) = A1) -explj (@ £ @y )t +6(2)]

There are two frequency factors, 2w,. and zero. The three stages of filters reject the factor

‘2w, and pass the factor ‘zero’ frequency (base band).
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4.  The CIC filter of GC4016 can decimate by arbitrary rate from 8 to 4096. But the pass band has a

significant ripple.

5. The CIC filter has a gain that is adjusted coarsely by the ‘COARSE GAIN’ stage. It is usually set

by [7]

COARSE GAIN =N (4.19)
where N is the decimation rate of the CIC.

6. The CFIR filter is a FIR filter of 21TAP whose coefficient is programmable. The pass band of
CIC is not flat, which is equalized by the CFIR filter. The decimation rate of CFIR is two
unchangeably.

7. The PFIR filter is a FIR filter of 63 TAP whose coefficient is programmable. The decimation rate
of PFIR is two which is unchangeable.

8. We did not use the ‘RESAMPLER’ stage.

4.3.2 CIC Filter
A CIC (Cascade In Comb) filter is a kind of digital filter whose function is both decimation and
interpolation. The description about a CIC filter was presented by Hogenauer [9]. The structure of the
CIC filter in GC4016 is shown in Fig.4.13. Essentially, the CIC filter is constructed with an addition
and a division. The division is realized by a bit-shifter. The frequency response of the CIC filter has
many side lobes, which are called ‘comb’. The sample of the response referred from [8] is shown in
Fig.4.14. The abscissa of Fig.4.14 is a relative frequency with the sampling frequency (after a
decimation) which is corresponding to one. The response has null zone around the frequency which is
a multiple of the sampling frequency. After the decimation, these null points will move around the
zero frequency by an aliasing (imaging). And the area around zero frequency can escape the
disturbance of an imaging noise. The CIC filter of GC4016 can decimate by arbitrary rate from 8 to
4096.
An example of the frequency response of a CIC filter around zero frequency is shown in Fig.4.15.
Usually, the response has some possibility to have aliasing noise on the side of Nyquist frequency
= f,/2). The filters on the next stage reject the aliasing noise, which is shown as ‘Frequency
Response of FIR’ in the figure.

UPPER I I I I I 24B\Tq
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w
s
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o
6]

DECIMATE
BY FACTOR
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Fig.4.13 CIC Decimation Filter [8]
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Fig.4.15 Frequency Response of CIC Filter around zero frequency [8]
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4.3.3 Distribution Arithmetic (DA) method FIR Filter
The algorithm of the FIR filter is a product sum, which is illustrated in Fig.4.16. If we designed

the FIR filter by this figure, it had many multipliers and the size of the circuit became very large. The
GC4016 or other DDC, actually, employs another method. It is called “Distribution Arithmetic”,
which is shown in Fig.4.17. It uses a look up table to operate the product sum instead of the many
multipliers. The description about the Distribution Arithmetic method is written in [10] and [11].

This method has almost no time to process a product sum, but it has tiny latency. The latency of the
PFIR (63tap) filter of GC4016 is corresponding to 63-clock of the PFIR’s input signal.

X(I"I) ! Z-1 2-1 2-1 Z-1 — Z-1

a(0) a(1) a(2) a(3) a(4) a(N-1)

Fig.4.16 Illustrated algorithm of an FIR filter [8]

Partial Scali
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i[[] word A Ly(Nn
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Time Skew|Buffer (TSB
B ey A Shift Registers Add/SUb
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Parallel-to.Serial B-bit Shift Registers sequgnce 9

Converter

Fig.4.17 Concept of an FIR filter in DA method [8]
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4.3.4 Apportionment of Decimation

The apportionment of the decimation in the DDC channel is described in this section.

GC4016 achieves the decimation by the three filters, CIC, CFIR and PFIR. The decimation rate
of the two FIR filters is two which is unchangeable. We controlled the total decimation rate of
GC4016 by the rate of CIC. The decimation rates of each stage in the mode S7 and $2 in Table 4.1 are
given in Table 4.3. In the mode S, we added a decimation stage in the software of the DSP, which
was done by a fir filter of 27 TAP.

We were able to control the bandwidth of the output signal by changing the decimation rate of the
DDC.

Table 4.3 Apportionment of Decimation

Mode
S1 S2

CIC 3072 2048

CFIR 2 2

Stage PFIR 2 2
DDC total 12288 8192

DSP 2 1
Total (N,) 24576 8192

4.3.5 Coefficients of FIR filters

The coefficients of the CFIR and the PFIR, which are implemented by us, are shown in Table 4.4
and 4-5, and Figure 4.18 and 19 shows them graphically. These coefficients, ‘cfir 68’ and ‘pfir 68’
are supplied by Texas Instruments Inc., and are given in the data sheet [7].

The set of ‘cfir 68° and ‘pfir 68’, in the data sheet, provided the frequency response which is
shown in Fig.4.20. The pass bandwidth of this set of filters was 68% of the output sample rate of the
DDC channel [7]. And the 3dB bandwidth was 75% experimentally. The FI¢f of Table 4.1 are 75% of
fs.

This filter set is used not only for S7 and S2 but also for the rest of conditions in the experimental
system.
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Table 4.4 Coefficients of the CFPR filter ‘cfir_68’ (21TAP) from [7]

i CFIR[i] i CFIR[i]
-10 12 0 32767
-9 -93 1 24823
-8 -62 2 8332
-7 804 3 -3512
-6 1283 4 -5197
-5 -1273 5 -1273
-4 -5197 6 1283
-3 -3512 7 804
-2 8332 8 -62
-1 24823 9 -93

10 12

Table 4.5 The Coefficient of the PFPR filter ‘pfir_68’ (63TAP) from [7]

i PFIR[i] i PFIR[i] i PFIR[i] i PFIR[i]
-31 2 -15 358 0 32767 16 579
-30 1 -14 -601 1 24277 17 26
-29 -11 -13 -918 2 6574 18 -375
-28 -23 -12 248 3 -5506 19 -189
-27 -2 -11 1469 4 -5354 20 155
-26 45 -10 618 5 845 21 191
-25 43 -9 -1680 6 3690 22 -8
-24 -48 -8 -1995 7 1104 23 -117
-23 -117 -7 1104 8 -1995 24 —-48
-22 -8 —6 3690 9 -1680 25 43
-21 191 -5 845 10 618 26 45
-20 155 -4 -5354 11 1469 27 -2
-19 -189 -3 -5506 12 248 28 -23
-18 -375 -2 6574 13 -918 29 -11
-17 26 -1 24277 14 -601 30 1
-16 579 15 358 31 2
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4.4  Specification of the experimental system

The rearranged essential parameters of our experimental system are given in Tables 4.6. Other
specifications as a spectrum analyzer are dependent on the employed spectrum analyzer, R3264.

Table 4.6  Primary specification of the experimental system

Input of DSP Unit

IF 21.4MHz, 50Q, BNC
Reference Clock 10MHz, 50Q, BNC
SWP -5~5V, 1kQ, BNC (adjustable)
Frequency
Frequency range Dependent on the attached spectrum analyzer
Maximum frequency Span Dependent on the attached spectrum analyzer
Resolution bandwidth 1Hz ~ 100kHz, Digital Gaussian
Level

Display range 10~150dB, 10,5,2,1dB/div
Maximum Dynamic Rage 130dB (at RBW=1Hz)

Output/Interface of the DSP Unit
USB 2.0 Spectrum data with specialized format

Hard ware of the DSP Unit
AD/C ADS6645S (Analog devices), Driven by SOMHz
DDC GC4016 (Texas Instruments) ,Driven by SOMHz
DSP TMS6711, Driven by S0MHz
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4.5 Summary

It needed a complicated system to achieve the super sweep method, which was described in this
chapter. We employed the conventional sweep spectrum analyzer as a RF down converter. We
developed the DSP unit included in the digital signal processing system that had an A/DC, a DDC and
a DSP. We achieved the super sweep method in the DSP unit. The algorithm of the super sweep
method was achieved on the DDC and the DSP. There were so many parameters that were concerned
in the system, and they should be harmonized each other to achieve the super sweep method. This
chapter described the samples of the parameters. We took the parameter 1/k to estimate the new
method. We intended to estimated the over sweep-rate response against the 1/k. The result is given in
Chapter 5.
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4.7 Appendix: Latency:

GC4016 has a value of latency with filter: CIC, CFIR, and PFIR. Each value of latency is
given in the following table.

Filter Latency ; clocks (N is the CIC decimation)
CIC 2.5N

CFIR 0.5N X Ctap

PFIR N X Ptap

Total N X (2.5+0.5Ctap+Ptap)

Our system | 76 X (N=8~3600)=7.6 1 sec~3.89msec
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Chapter 5

Result and Discussion

5.1 Introduction

This section reported the result of our experiment and verified the theory of the super sweep
method. The experiment was achieved by measuring the peak level and observed resolution
bandwidth (Rbw’) against the normalized sweep rate I/k, which is plotted from 0.1 to 75. We
estimated the spectrum as two parameters, one was the peak level reduction and another was the
broadening of the RBW. Section 5.2 shows the over view of the measured spectrum of the new
method and the way to estimate the spectrum. Section 5.3 describes the result of the experiment as
the peak level reduction and the broadening of the RBW. Section 5.4 discussed the result and
analyzed the result.

5.2 Measured Spectrums

5.2.1 Sample of measurements

The results of spectrums corresponding to the condition that was described in section
4.2.7~4.2.9 is shown in Fig.5.1 (a) and 5.1 (b). We measured the CW signal, which was generated by
a manufactured signal generator (SG), whose frequency was 500MHz, and the level was —10dBm, by
changing the sweep rate I/k from 0.1 to 74.0 with 24 steps. Figure 5.1 (a) and 5.1 (b) were the results
of that 1/k were 0.562, 5.62 and 56.2 and the Span was 30kHz, 150kHz and 600kHz.

The spectrums in Fig.5.1 (a) were measured by conventional sweep spectrum analyzer, R3264.
The peaks of the spectrum of 1/k=5.62 and 1/k=56.2 had large level reduction and frequency shift.
These phenomenons were called ‘over sweep-rate response’ (see section 2.5.2). The spectrums in
Fig.5.1 (b) were samples measured by the conditions of $7 and $2 (described in section 4.2.7), where
the over sweep-rate response were shown in the spectrums of 1/k=56.2.

The noise floor of Fig.5.1 (b) were higher than them of Fig.5.1 (a), this problem was finally
resolved and will be discussed in Chapter 6.

- 131 -



R3264

Mon 2007 Feb 5 15:23

REF -10.0 dBm
10 di

B/ * View Smpl B Write Smpl
SWP
598 ms
i
i
I 1/k=0.562
[ SPAN=30kHz
/ \ St=590msec
R RBW300Hz
Wmmm\i \WM«/ \W,\'ﬁ Iwmwwmw

Tue 2007 Feb 6 11:22

REF -10.0 dBm
o

dB/ *A_View Smpl  B_Write Smpl
SWP,
302 _ms
|
|
ll 1/k=5.62
\ SPAN=150kHz
J \ St=300msec
/ nUJ” \\,ﬂn RBW300Hz
L,V,J‘lﬂn"" wmuﬂ Wﬂ | | L\N M\uﬂ]ﬂ \'AW&L mu Wm/m
EESF gogoﬂéoooovgazaoo Hz  *SWP 300 ms *ATSrPSNdéSO'O s UNCAL

Mon 2007 Feb 5 15:25

REF -10.0 dBm
10 dB/ *_View Smpl B _Write Smpl
SWP
128 ms
!
\ 1/k=56.2
\ SPAN=600kHz
‘ St=120msec
J \\ RBW300Hz
WMMWMMWJ i WIS AR P R,
CENTER 500.0000 Hiiz SPAN 500.0 kilz
#RBY 300 Hz  VBW 300 Hz  *SWP 120 ms *ATT O dB UNCAL

Figure 5.1 (a) Spectrums with various 1/k of sweep method
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Figure 5.1 (b) Spectrums with various 1/k of Super Sweep method
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5.2.2 Verification of Over sweep-rate response

Generally, the over sweep-rate response is estimated as a peak level reduction and the
broadening of the resolution bandwidth. These response are explained by following equation (see
section 2.5.2).

4 {1 (2 2)(}{—)} T ean
];bbvvvv'—{H(%lnzjz(;—jz}; (2.42)

We did not take the peak shift as a subject, which is forecasted and corrected in the super sweep
method.

We took the amplitude ‘A’ as a peak level, and ‘Rbw’ as an indicated 3dB bandwidth of the peak
when 1/k=0.1, respectively. The indicated amplitude ¢ A'’ was the peak level of the each
measurement, simply. The indicated resolution bandwidth ¢ Rbw'’ is estimated by the method
described in next section.

5.2.3 Estimation of 3dB bandwidth of peaks

We conceived the way to estimate the observed 3dB bandwidth, Rbw’, which is described in this
section.

1. The condition

We assumed that the figure of the peak was a parabolic corresponding to the Gauss function as
the resolution filter. And we assumed that we could estimate the quadric function when we got level
and frequency value of three points.

We took the difference of level between peak and other point as 2~10dB. It was better to take the
distance larger to reduce the error of result.

2. The equation
We defined the coordinates of the three points around a peak as shown in Fig.5.2. The coordinate
of the peak, the left side point of the peak, and the right side are (x,,y,), (x_,,»y_,;) and
(x,,»,),respectively. ‘x” and ‘)’ corresponds to the frequency (Hz) and the level (dB), respectively.
The quadric function corresponding to the three points is assumed
y=ax’+bx+c. (5.1

The three points are explained by
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y =ax +bx_ +c

—ax.>+b
Yo =axy +0x,+c (5.2)
y, =ax,’ +bx, +c.

Following matrix explains these equations.

2
V., x, x,; 1|a
v |=| x x, 1|b (5.3)
3 x12 x 1)\e

Equation (5.3) is modified as

2
a xyoxg 1) (g
bl=| x> x, 1| |, (5.4)
c xl2 x 1 Y

Fig.5.2 Three point data that decide the 3dB bandwidth, Rbw’

We can estimate a, b and ¢ uniformly by Eq.(5.4). The three points can be selected arbitrarily,
theoretically.

Equation (5.4) needs much complicated calculation. In the case that (x,, »,) is the peak, we
can assume (X, »,)=(0,0), and another two points assume relative coordinate as follows.

X =X =X

Ya=Ya=Xo
X=X =X,
i=Yi=

Then, Eq.(5.2) is modified
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2
y,=ax_ +bx
) } (5.5)
¥y, =ax,” +bx,
From Eq.(5.5), a and b is solved,
q= VX =XV (5.6)
XX (xl - x—l)
2
p=Pa "M (5.7)

X 1
The quadric function whose peak is origin point (0,0), which is explained
y =ax’ (5.8)

3. The observed resolution bandwidth, Rbw’
In the case that the unit of y is dB, the y value of the 3dB down point from the peak is —3, and
Eq.(5.8) is modified that —3 = ax” . Then the x value is given by
-3

x=,—. (5.9)
a

The 3dB bandwidth is twice of Eq.(5.9).

Rbw'=3dB BW =2.|—> (5.10)
a

The observed resolution bandwidth Rbw’ is dependent on ‘a’, which is estimated by Eq.(5.6).

5.2.4 Estimation of peak Level

The spectrum obtained by digital signal processing such as the FFT method has a scallop loss of
the peak level as described in section 2.8.3. The super sweep method cased same loss on the
spectrum. We assumed it was a not exact peak level to measure maximum level simply.

We conceived the way to estimate the peak level of the spectrum from the three points around
the maximum level sample, which is described in this section.

We defined the coordinates of the three points around a peak as shown in Fig.5.3. We took tha
three points whose differences of x value were same. And the coordinate of the three points were
same to section 5.2.3, but x_, x,, x; were assumed it —1, 0, and 1. The quadric function was
assumes as y = ax” + bx + c, similarly to last section.

The coordinates give following three equations.

y,=a-bx+c
Yo =¢C (5.11)

yy=a+bx+c
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Equation (5.11) give a, b, and ¢ as follows.

_1 1
a=3—Yot+tan

b=5y =30 (5.12)

c=X
By the way, the differential at the peak point is zero that gave following equation.

0=2ax,+b. (5.13)
Then the x value of the peak point x, 1is given by

-b
Xp=—" (5.14)
" 2a

And the y value of the peak y, is given by replacing the a, b, and ¢ with Eq.(5.11) as

2

=——+c 5.15
Yp 4a ( )

We estimated the peak level by Eq.(5.15), which is independent on the x value.

I ©.5)

(-L.y.) i
(L yl)

Fig.5.3 Three points around the peak
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5.3 Result

5.3.1 Numerical result

Table 5.1, 5.2, and 5.3 show the numerical results of the condition S/, S2, and conventional

spectrum analyzer (Cnv) R3264, respectively. These conditions are described in section 4.2. The

normalized sweep rate I/k : Span per Sweep time of each row is according with Table 4.2.
Table 5.1,5.2, and 5.3 show the frequency and level of the three points, Peak (x,,y,),
L(x_,,»_,),R(x,,»,) and the indicated resolution bandwidth, Rbw’, which were calculated by

Eq.(5.10). The normalized peak value shown in the column ‘Peak (x,, 3, ) : Nmlzd dB’ is difference

of the level of n=0 in dB unit. The normalized Rbw’ shown in the column, ‘Rbw’: Nmlzd’ , is the

ratio of each value and it of n=0.

Table 5.1  Results of S/
(The unit of frequency is Hz and level is dB)
Peak (x4, ¥q) L (Xx_,y.y) R (x,),) Rbw’ (Hz)
1/k Level | Nmlzd Level Level
n Freq.(Hz) Freq (Hz) Freq (Hz) RBW’ | Nmlzd
(dBm) | (dB) (dBm) (dBm)
0 0.100 | 799999895 -12.36 0 799990709 -21.63 799991187 -21.86 270.3 1.00
1 0.133 | 799999897 -12.36 0 799990711 -21.66 799991190 -21.69 2718 1.01
2 0.178 | 799999900 -12.36 0 799990705 -22.34 799991222 -24.25 2711 1.00
3 0.237 | 799999902 -12.36 0 799990709 -21.96 799991196 -22.25 270.2 1.00
4 0.316 | 799999903 -12.36 0 799990709 -21.88 799991195 -22.15 270.9 1.00
5 0.422 | 799999906 -12.36 0 799990708 -22.19 799991194 -22.15 268.8 0.99
6 0.562 | 799999911 -12.36 0 799990708 -22.18 799991194 -22.02 269.7 1.00
7 0.750 | 799999914 -12.36 0 799990707 -22.08 799991193 -22.03 270.3 1.00
8 1.000 | 799999922 -12.35 0.01 799990716 -21.6 799991194 -21.48 2731 1.01
9 1.33 | 799999931 -12.35 0.01 799990716 -21.72 799991202 -21.86 2740 1.01
10 1.78 | 800000023 -12.39 | -0.03 799990810 -21.69 799991286 -21.82 269.4 1.00
11 2.37 | 800000188 | -12.39 | -0.03 799990950 -20.45 | 799991396 -20.11 275.0 1.02
12 3.16 | 800000360 -12.38 | -0.02 799991117 -21.36 799991584 -21.51 268.6 0.99
13 | 4.22 | 800000392 | -12.38 | -0.02 799991128 -21.26 | 799991594 | -21.65 | 267.9 0.99
14 | 562 | 800000423 | -12.42 | -0.06 799991138 -21.18 | 799991604 | -21.33 | 2715 1.00
15 7.50 | 800000470 -1255 | -0.19 799991206 -17.55 799991571 -17.7 280.5 1.04
16 10 800001009 -12.49 -0.13 799991654 -18.01 799992014 -17.81 267.8 0.99
17 13.3 | 800001098 -1437 | -2.01 799991706 -18.07 799992022 -17.35 2991 1.11
18 17.8 | 800001218 -1593 | -3.57 799991765 -17.92 799992022 -17.81 320.0 1.18
19 23.7 800001856 -18.42 —-6.06 799992172 -20.93 799992641 -20.6 5220 1.93
20 31.6 | 800002045 -20.32 | -7.96 799992220 -23.03 799992756 -23.26 550.7 2.04
21 42.2 | 800002356 -22.89 |-10.53 799992212 -25.19 799992966 -25.45 833.3 3.08
22 | 56.2 | 800003341 | -2542 |-13.06| 799992901 -27.37 | 799993639 -2797 | 8522 3.15
23 75.0 | 800004629 -28.07 |-15.71 799993824 -29.77 799996857 -30.56 | 3631.1 13.44
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Table 5.2  Results of 2
Peck_(x,. ;) L Geyy) | R Gy) | A ow
1/k Level | Nmizd Level
n Freq.(Hz) (dBm) (dB) Freq (Hz) (dBm) Freq (Hz) |Level (dBm)| RBW’ | Nmlzd
0 0.100 |799991657 | —12.61 799991377 | —24.99 | 799991922 -23.99 2739 1.00
1 0.133 |799991656 | —12.61 0 799991400 | -23.18 | 799991907 -22.8 272.6 1.00
2 0.178 |799991658 | —12.61 0 799991382 | —24.84 | 799991913 -23.24 272.2 0.99
3 0.237 |799991656 | —12.61 0 799991384 | —24.76 | 799991928 -24.5 2718 0.99
4 0.316 |799991657 | —12.61 0 799991385 | —24.64 | 799991929 —24.43 2729 1.00
5 0.422 |799991658 | —12.61 0 799991383 | -25.01 | 799991934 -24.78 2723 0.99
6 0.562 |799991664 | —12.66 -0.05 | 799991397 | —24.23 | 799991931 -23.98 2734 1.00
7 0.750 |799991667 | —12.66 -0.05 799991400 | —23.92 | 799991934 -24.01 2751 1.00
8 1.000 |799991671| —-12.67 —-0.06 799991406 | —23.68 | 799991934 -23.61 276.1 1.01
9 1.33 | 799991675 | -12.67 -0.06 799991404 | —-24.25 | 799991943 -24.32 2739 1.00
10 1.78 | 799991675 | -12.66 -0.05 799991404 | -24.61 | 799991943 -2413 272.8 1.00
11 237 |799992070 | -12.65 -0.04 799991780 | —26.58 | 799992360 -26.89 267.7 0.98
12 3.16 | 799992071 | —-12.65 —0.04 | 799991869 | —19.33 | 799992274 -19.14 2734 1.00
13 422 799992078 | -12.65 —0.04 | 799991885 | —18.69 | 799992289 -19.96 271.1 0.99
14 562 |799992081 | -12.64 -0.03 799991898 | —18.36 | 799992265 -17.85 2719 0.99
15 7.50 |799992096 | -12.64 -0.03 799991884 | —19.89 | 799992309 -20.25 270.1 0.99
16 10 799992271 | -12.66 -0.05 799992077 | —-18.72 | 799992464 -18.78 2716 0.99
17 13.3 |799992601 | -12.66 -0.05 799992398 | —19.39 | 799992804 -19.34 271.6 0.99
18 17.8 |799992619 | -12.72 -0.11 799992356 | —23.76 | 799992882 -23.85 273.6 1.00
19 23.7 799992671 | -1292 -0.31 799992424 | -22.34 | 799992914 -22.58 2748 1.00
20 31.6 |799992709 | -13.51 -0.9 799992436 | —22.69 | 799992981 -22.87 3100 1.13
21 42.2 799993104 | -14.64 -2.03 799992886 | —19.32 | 799993307 -19.17 339.7 1.24
22 56.2 |799993872| -16.78 -4.17 799993607 | —21.06 | 799994152 -21.76 439.0 1.60
23 75.0 |799993975| -18.86 —6.25 799993668 | —23.15 | 799994318 -23.49 532.8 1.95
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Table 5.3 Results of conventional spectrum analyzer (Cnv), R3264
Peak (x,,y,) L(x,,y,) R (x,)) Rbow' (Hz)
n 1k Freq.(Hz) Level Nmizd Freq (Hz) Level Freq (Hz) Level RBW’ | Nmlzd
(dBm) (dB) (dBm) (dBm)

0 0.100 | 799999892 | -10.95 0.00 799999823 -16.03 [799999970 | -17.16 107.3 1.0
1 0.133 | 799999894 | -10.97 -0.02 799999824 -16.09 |799999984 | -18.85 109.3 1.0
2 0.178 | 799999904 | -10.93 0.02 799999816 -17.38 [799999979 | -17.73 109.2 1.0
3 0.237 | 799999907 | -10.96 -0.01 799999815 -18.04 799999994 | -19.42 111.0 1.0
4 0.316 | 799999912 | -10.96 -0.01 799999826 -17.16 [799999991 | -18.15 110.2 1.0
5 0.422 | 799999923 | -11.05 -0.10 | 799999829 -17.69 [799999997 | -18.21 109.7 1.0
6 0.562 | 799999931 -11.16 -0.21 799999830 —-18.57 |800000003 | -17.64 112.7 1.1
7 0.750 | 799999946 | -11.34 -0.39 | 799999853 -17.2 | 800000021 | -18.48 1129 1.1
8 1.000 | 799999964 | -11.49 -0.54 | 799999868 -17.27 |800000036 | -—18.05 1154 1.1
9 1.33 | 799999982 | -11.83 -0.88 | 799999894 -16.57 | 800000059 | —18.39 1193 1.1
10 1.78 | 800000021 -12.23 -1.28 799999915 -17.04 | 800000091 | -18.55 1248 1.2
11 2.37 800000049 | -12.91 -1.96 799999948 -17.46 |800000130| -17.7 1448 1.3
12 3.16 | 800000088 | -13.62 —-2.67 | 799999984 -17.93 |800000173| -17.29 163.7 1.5
13 422 800000162 | -14.61 —-3.66 | 800000024 -19.13 | 800000254 | -18.38 1935 1.8
14 562 | 800000247 | -15.91 -4.96 | 800000076 -20.86 |800000385| -—19.83 2543 24
15 7.50 | 800000352 | -17.25 —6.30 | 800000120 —23.57 |800000551 | -21.17 331.9 31
16 10 800000485 | —18.61 -7.66 | 800000275 -27.36 |800000735| -21.56 3213 3.0
17 13.3 | 800000700 | -19.98 -9.03 | 800000360 -25.55 |800001054 | -23.48 563.0 52
18 17.8 | 800000960 | -21.32 | —10.37 | 800000516 —27.62 |800001414| -24.37 717.9 6.7
19 23.7 | 800001380 | -22.69 | —11.74 | 800000880 -26.48 |800001850 | —24.95 969.3 9.0
20 31.6 800001876 | -24.07 | —13.12 | 800001192 —28.73 |800002450 | -25.95 1223.3 114
21 42.2 | 800002640 | -25.52 | —14.57 | 800001710 -29.61 |800003350 | —27.52 1651.6 154
22 56.2 800003510 | -26.97 | —16.02 | 800002420 -30.59 |800004580| -29.19 2191.7 204
23 75.0 | 800005160 | —-28.63 | —17.68 | 800003720 -31.41 |800007120| -32.18 3302.1 30.8
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5.3.2 Result of the Peak level reduction

The normalized peak level reductions against the 1/k of each measurement mode are shown in
Table 5.4 and Fig.5.4. These data ware pick upped from Table 5.1~5.3. The data named ‘Th#’
corresponds to the theory, Eq.(2.41).

The values of 1/k at 0.1 dB reductions in each configuration are listed in Table 5.5. The data
named ‘Ratio vs. Thr.” are the value normalized by the ‘Thr’. We assumed this ratio was a parameter
that corresponded to the fastness of the super sweep method against the conventional sweep method.

Table 5.4 Peak Level Reduction vs. Normalized sweep rate

n 1/k Thr. Cnv. S1 S2

0 0.10 0.00 0.00 0.00 0.00
1 0.13 -0.01 -0.02 0.01 0.00
2 0.18 -0.01 0.02 0.01 0.00
3 0.24 -0.02 -0.01 0.01 0.00
4 0.30 -0.04 -0.01 0.00 0.00
5 0.42 -0.07 -0.10 0.01 0.00
6 0.56 -0.13 -0.21 0.01 -0.05
7 0.75 -0.22 -0.39 0.01 -0.05
8 1.01 -0.39 -0.54 0.01 -0.06
9 1.33 -0.62 -0.88 0.01 -0.06
10 1.76 -1.02 -1.28 0.01 -0.05
11 2.38 -1.62 -1.96 0.01 -0.04
12 3.14 -2.30 -2.67 0.01 -0.04
13 4.22 -3.20 -3.66 0.01 -0.04
14 5.63 -4.17 -4.96 -0.03 -0.03
15 7.51 -5.29 -6.30 -0.17 -0.03
16 10.1 —-6.46 -7.66 -0.96 -0.05
17 13.3 -7.65 -9.03 -1.72 -0.05
18 17.5 -8.92 -10.37 -3.57 -0.11
19 238 -10.18 -11.74 -5.82 -0.31
20 31.3 -11.18 -13.12 -1.97 -0.90
21 42.0 -12.42 -14.57 -10.62 -2.03
22 56.0 -13.82 -16.02 -12.94 -4.17
23 751 -15.00 -17.68 -15.81 -6.25
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Peak Level Reduction (dB)

Fig.5.4 Peak Level Reduction vs. Normalized sweep rate

1k

Table 5.5  1/k : Peak Level reduction corresponds to -0.1dB
Thr. | Cnv.| SI S2
1/k - -0.1dB 0.5 [0.42]| 6.9 17.1
Ratiovs. Thr.| 1.0 |0.84| 13.8 | 34.2
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5.3.3 Result of the broadening of RBW

The < Rbw'’ were observed as the 3dB bandwidth of the measured spectrum, and the configured
Rbw was constantly 300Hz. The increase of the ratio * Rbw!//Rbw * against the //k is shown in Table
5.6 and Fig.5.5. The column and line ‘747’ is theoretically calculated by Eq.(2.42).

In Table 5.7, *1/k: 1.1’ is the value of the 1/k, which gives the 1.7 times broadening. The ‘ Ratio
vs. Thr. 'is the values normalized by the 7hr. We assumed this ration was the parameter that
corresponded to the fastness of the new method against a conventional sweep method.

Table 5.6 Broadening of RBW vs. Normalized sweep rate 1/k

n 1/k Thr. Cnv. S1 S2
0 0.1 0 1 1 1

1 0.13 —-0.01 1 1.01 1

2 0.18 -0.01 1 1 0.99
3 0.24 —-0.02 1 1 0.99
4 0.3 —-0.04 1 1 1

5 0.42 -0.07 1 0.99 0.99
6 0.56 -0.13 11 1 1

7 0.75 -0.22 1.1 1 1

8 1.01 -0.39 1.1 1.01 1.01
9 1.33 —-0.62 11 1.01 1
10 1.76 -1.02 1.2 1 1
11 2.38 -1.62 1.3 1.02 0.98
12 3.14 -2.3 1.5 0.99 1
13 422 -3.2 1.8 0.99 0.99
14 5.63 -4.17 24 1 0.99
15 7.51 -5.29 3.1 1.04 0.99
16 10.1 -6.46 3 0.99 0.99
17 13.3 —-7.65 52 1.11 0.99
18 17.5 -8.92 6.7 1.18 1
19 23.8 -10.18 9 1.93 1
20 31.3 -11.18 114 204 1.13
21 42 -12.42 15.4 3.08 1.24
22 56 -13.82 204 3.15 1.6
23 75.1 -15 30.8 13.44 1.95
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Rbw'/Rbw

1k

Fig.5.5 Broadening of the RBW vs. 1/k

Table 5.7  1/k corresponds to Rbw’/Rbw=1.1

Thr. Cnv. ST S2

1k: 1.1 1.0 1.2 9.0 29

Ratio vs. Thr. 1.0 1.2 9.0 29
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5.4 Discussion

A sweep spectrum analyzer has a property that is called ‘over sweep-rate response’. This
property was mentioned by many authors [1][2][3] and expressed by Eq.(2.41) and (2.42). In the
super sweep method, the IF signal was digitized and converted into the base band signal whose
bandwidth was wider than the resolution bandwidth, Rbw. The base band signal was inputted into the
negative chirp filter. We expected that the negative chirp filter reduced the over sweep-rate response
even in the faster sweep rate than the sweep method. In our experiment, we confirmed that the over
sweep-rate response was reduced with changing the normalized weep rate 1/k.

5.4.1 Peaklevel Reduction

The permissible limit of the peak level reduction of the conventional spectrum analyzer is
generally 0.1dB [3]. By considering the second line of Table 5.5, 'Ratio vs. Thr.’, we confirmed that
the maximum sweep rate achieved of 13.8 and 34.2 times faster than the conventional theory, in the
cases of S7 and S2, respectively. And we calculated the following ratio.

Ratio vs Thr ; §2  34.2
Ratio vs Thr ; §1  13.8

=2.48. (5.16)

The theoretical estimation of this ratio was given by the ratio of R, between the cases of S2 and
S1 in Table 4.1, that was 18.7/6.2=3.0. And this was the ratio of the Fit (see Fig.3.9) between the
cases of S2 and S1.

5.4.2 Broadening of the resolution bandwidth

The typical permissible difference of the RBW for a conventional spectrum analyzer is
+15~20% (by R3264). We measured the maximum sweep rate as the normalized sweep rate 1/k
which gave the resolution broadening of 1.1. By considering the second line of Table 5.7, 'Ratio vs.
Thr.’, we confirmed that the maximum sweep rate was 9.0 and 29 times faster than the conventional
theory, in the cases of S/ and S2, respectively. And we calculated the following ratio.

Ratio vs Thr ;8§2 29
Ratio vs Thr .; §1 9.0

3.2. (5.17)

The theoretical estimation of this ratio was 3.0, similar to the case of Eq.(5.16).

5.4.3 Total consideration of the maximum sweep rate:

We studied the maximum sweep rate by focusing the two points, peak level reduction and
broadening of the Rhbw. We estimated that the level reduction was more critical than the broadening
of the Rhbw. By considering the Eq.(5.16) and (5.17), we confirmed that the maximum sweep rate was
proportional to the ratio of Filt/Rbw.
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The condition, which we estimated the o, ¢ (maximum sweep rate in the new method) by
Eq.(3.34-b),

o = Rbw x (Flt /y),

max §

intended the integration of Eq.(3.4),
S,(0)=1() [g(0) f (¢ -7)xexp|- joor]dr,

to operate perfectly. But the result of our experiments gave that o had a margin for the peak

max_ S

level reduction reaching 0.1 dB. Equation (3.35),
o

RE&—SZEXF_Z[
‘o ¥ Rbw

max
where o, 1s the maximum sweep rate of the sweep method. And R, can be rewritten as

k, Flt _ _ Flt

Lo = , (5.18)
¥ Rbw Rbw

True R, =2 a-Rg=«a
where True R was given as the second line of Table 5.5, « is an unknown constant, and Fit/Rbw
was given in Table 4.1. Then the value of /4 were 1.4 and 1.7 in the case of S7 and S2, respectively.

If we make the system, Fig.3-10, and configured it to have wider Fi/t and Rbw, we could obtain
more fast sweep and wider Rbw measurement.

5.5 Summary

The result and discussion verified that the super sweep method achieved the first sweep
measurement on the sweep spectrum analyzer. We argue that we made the break-through in the
restriction of the sweep rate of a spectrum analyzer by using the super sweep method. Our further
work is to study the over sweep-rate response of the new method in further detail.

5.6 Reference

[1] Morris Engelson, “Spectrum Analyzer Theory and Applications” Artech House publishers Oct.
1974

[2] George D. Tsakiris, “Resolution of a spectrum analyzer under dynamic operations” Rev. Sci.
Instrum., Vol.48, No.11, Nov. 1977 pp.1414-1419

[3] R.A.Witte, “Spectrum and Network measurement”, 1993 Prentice-Hall,Inc
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Chapter 6

Additional discussions

6.1 Introduction

Until last chapter, we investigated the theory of the super sweep method. In this chapter, the
additional discussion about the method is described.

Our experimental system needed many processes to achieve its function. About 30
parameters (such as sampling frequency, data size etc.) played a role in the system. We had to
configure these parameters optimally. Section 6.2 and 6.4 describe a few theory of the
optimization. Section 6.2 describes the characteristics of the display system.

The super sweep method had a merit against not only the sweep method but also the FFT
method. The merit was the property about the appearance of the IF filter response, which is
described in section 6.5.

We had an attention about the similarity between the Chirp Z-transform and the new method.
Section 6.6 describes the discussion about the similarity.

In section 2.5, we have some numerical analysis about the two-tone response of the
spectrum on the sweep method. In section 6.7, we investigated the same analysis on the super
sweep method,

In actual measurement system, there are several sources of a noise, and the results are under
the influence of the noise. Section 6.8 discuss about the noise and the influence.

In section 6.9, we presented some samples of spectrum that was obtained by the super
sweep method, and we described the merit of the method.

In section 6.10, we investigated the ‘view of spurious peaks’ in the new method. It is one
characteristic of the new method.

In section 6.11, we discussed the characteristics of some methods of spectrum measurement.

6.2 Required condition for fast sweep

In this section, we analysis and discusses the processing time and the requirements to achieve
fast sweep.

6.2.1 Operation time

Table 6.1 shows the relations between sweep time and operation time against the three
conditions of the super sweep method.

- 147 -



In the measurements which gave the result of Table 6.1, the complex filter (see section 3.4
and Fig.3.10) were processed by the DSP, TMS3206711 80MHz; produced by Texas Instruments
Inc. The sweep times of the measurements were 22.2, 16.7 and 7.7 times faster than the traditional
sweep method. But the all processing times of the DSP were longer than the sweep times. R,
are the ratio between the processing times and the sweep times. R, became as larger as wider
the Rbw. The ratio R ,, explains the practical fastness of the new method. When Rbw was
100kHz, R .
Ts -

s op Was 0.7 and the processing time was longer than the traditional sweep time,

Table 6.1 Operation time of the experimental system (DSP complex filter)

A B C A/B A/C C/B
Rbw (kHz) Span Ts Ts o T,p R, Rs op R,
(MHz) (msec) (msec) (msec)
10 100 2000 90 344 22.2 5.8 3.8
30 200 500 30 218 16.7 23 7.3
100 1000 230 30 309 7.7 0.7 10.3
Ty ,,: A=The sweep time in a traditional sweep method
T S:Spr : B =The sweep time in the super sweep method

Thsp: C = The operation time of the DSP (TMS320C6711 80MHz)
s A/B=Theratio T ,,/T.

s spr» Ratio of the sweep time.

0. C/B=Theration T, /T,

R
R op:A/C=Theratio T ,,/T)qp , Ration of the sweep time and the operation time
R S_spr>

Ratio between the processing time and the sweep time

If the DSP had enough performance, the new method could sweep in the time 7
considering R, , it assumed that the DSP required faster processing with wider Rbw.

By

spr*

Note: In our experiment system, the design of the DSP system did not optimized and the
memories on the circuit were not so fast.

6.2.2 Operation time of each sample of a spectrum

This section analyzes the processing time that achieves the real time operation.

We investigated the operation time to obtain one sample of the spectrum. Figure 6.1 shows
the simplified spectrum that is obtained by digital IF method, where Afand At is the frequency
and time between each sample of the spectrum. We had not any precise rules to decide the 4/ But
we considered that Af had to be equal or narrower than Rbw/2 to obtain the exact spectrum,
experimentally.

Af < Rbw/2
Af. =Rbw/2

(6.1-a)
(6.1-b)
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Usually Af  equals Af, .  to achieve a fast measurement.

The relation between Afand At is given by

A =0-At . (6.2)
The maximum sweep rate o is explained by Eq.(3.34-b) as
O, =Rbw-Flt/ y. (6.3)

By above three equations, Eq.(6.1-b)~(6.3), the minimum Af is explained as follows.

Af My RBW/2 y
" g Rbw-Flt/ y 2-Flt

max

(6.4)

At . is in inversely proportion to the Flz.

min

We tried to replace the Flt of Eq.(6.4) by Rbw and other parameter. We can know the relation
between Flt and Rbw by Eq.(3.35).

Gmax_S _ﬁx Flt
o 7 Rbw

max

R = (3.35)

where R is the rate of sweep rate against a traditional sweep method. By modifying this
equation Flt is given by

Flt=R,-RBw-y/k,. (6.5)
Eq.(6.4) can be modified as

P S X ky _ ky
™ 2.Flt 2-R;-Rbw-y 2-R,-Rbw’

(6.6)

At ., is in inversely proportional to the product of R, and Rbw.

min

he
measurement time is dependent on the sweep time, which is product of Af and the

In the case that the operation time of each sample of the spectrum is shorter than Af_, ,t

sample-number. But in the case the operation time is longer than Af . , the measurement time is

min *

dependent on the processing time.

Rbw

{ASf |
At

Fig.6.1 Interval of frequency and time between each sample of a spectrum
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6.2.3 Required performance of the operation

We considered that the negative chirp (complex) filter was the most significant factor of the
operation and the amount of the operation was in proportion to the number of the tap. We
considered how the number of tap of the filter is decided.

N is the tap number, it was already given by Eq.(4.5).

NGzTfoszﬁfo . 4.5)

where £, is the sampling frequency of the input signal of the filter. The relation of f; and Flit
is described in next section, [1], and [2]. Practically, Ft is in proportional to  f .

Flt=y- f, (6.7)

The constant vy is decided by the property of the IF filter, usually v is 0.5~0.8.
The relation between Flt and R is given by Eq.(3.35) and (5.13).

O-maxiS _E Flt :ak Flt ﬂ Flt (68)
‘o ¥ Rbw ¥ Rbw Rbw '

max

R

From Eq.(6.7) and (6.8), f; canbe explainedas f, = Fit ,and Flt is in proportion to Ry, as,
e

R, -Rb
Flt=STW. Then f, is given by

Flt R wa
Sfs= (6.9
/4 rB

By substituting f; with Eq.(6.9) into Eq.(4.5), N isexplained as
R R
_X s X bw _ X g

N.=_4_
GwafS Rbw y-pB 7ﬂ

By Eq.(6.10-a), N is in proportion to R,. In our experiment system, x=2.6, vy =0.68
(see section 4.3.4) ,and B =1.5 (see section 5.4.3), and N, was approximately
N;=2.6-R;. (6.10-b)
We defined the rate R, as the number of complex product sum to be operated within one
second to obtain a spectrum within the sweep time. It is given by

(6.10-a)

4
I )
Ro=Ne - v B _ 2X pyyp? (6.11-a)
Al‘max L 07ﬂ
2-Rg-Rbw

In the case that k,=2.0,
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R, =2.6xRbw-R’. (6.11-b)

R, isin proportion to product of Rbw and square of R .

6.2.4 Relation between the IF bandwidth and the sampling frequency

This section is base on the argument of section 2.4 and investigates the relation between the IF
filter and the sampling frequency. An example of the relation is shown in Fig.6.2, where the
abscissa indicates frequency and the ordinate indicates a power, and a spectrum of base band
signal is shown in this figure.

The large trapezoid represents the simplified frequency response of the low pass filters (LPF),
which generates the base band signal. We can observe a spectrum of minus frequency as an
analytic signal. In the figure, ‘D (dB)’ is the desired dynamic range of the signal passed thorough
the LPF. ‘Fit* is the flat pass band of the LPF. The slanting slopes of the both side is the
transitional area of the LPF. The frequency f, is the sampling frequency, and + f/2 is the
Nyquist frequency. The tail ends of the transitional areas are extended out of the Nyquist
frequency.

In the case that Bwd is the D dB down bandwidth of the LPF and the sampling frequency is
given by

fs=(Flt+Bwd)/2, (6.12)
we can obtain the pass bandwidth F/t without the aliasing of transitional band [2][3].

_f 12 f g 2
.. LPF
D
: A
il N (11
< Transitiomal - 0HZ & Trapsitional &  Tred:
band . Flpow  band
(Flt+Bwd)/ 2 = %
Bwd
LPF: Pass band of the low pass filter before base band signal

D(dB) : Desired Dynamic range

Bwd: DdB down Bandwidth of the LPF

Gray zone: Frequency area that might has alias signal
fs: Sampling frequency of I and Q signal

Fig.6.2 Relation between IF filter and sampling frequency
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6.2.5 Implementation of the fast complex filter

This section investigates the implementation of the negative chirp filter. The architecture of
the complex filter is presented in Fig.3.10. We implemented the complex filter as an operation of
the DSP, which is described in chapter 4.

By the argument of Chapter 5, the required performance of the DSP was explained by
Eq.(6.11-a) and (6.11-b). And the required operation rate is in proportion to the product of Rbw
and square of R, . In the case that the Rbw was narrower than 1kHz, the DSP of our experimental
system could operate it within a sweep time. Table 6.1 shows the result of larger RBW than 1kHz.
If the DSP had larger performance, the operation time was shorter than the result.

The operation of the complex filter is explained by

I+ jOs =1, + jO,)*(g, +jgy) (3.36)

(1, *8,-0, *80)+ (0, *g, +1,%8)
where [+ jO; is the output of the filter, 7, + 0O, is input signal, and g, + jg, is the
coefficients of the complex (Gaussian negative chirp) filter. Equation (3.36) consists of four
multiplexes, one subtraction and one addition. We implemented the system by modifying the
system of chapter 4. It is shown in Fig.6.3, where the four multiplex were replaced by the four
‘PFIR’ filters.

Digital Down Converter Chip
AD GC4016 DSP Operation
I."l“\ FIFO

T

Input Signal =

T [Re[STEIF + Tl ST4TF) -;E

b A

-Q i
B Channel . & ™,
cIo cFIR H PFIR P » . ¥ 1
— - - e L Skip
»| Q.detec . b T, 1/1~1/256
cIC CFIR 4 PFIR B » » Q
. | | II -
/

In 12" .

T MEM :
1 : CIC Decimation 8~4096 63 Tap Work MEM

Fig.6.3 Complex filter using DA FIR filter of DDC: GC4016
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We used the GC4016 (see section 4.3) as the Digital Down Converter (DDC), which has four
channels of down converter. Each channel has two programmable FIR filter (PFIR), whose
coefficient are common and 63 taps. We used two channels of GC4016, A and B, and configured
the coefficient of PFIR of A and B channel with real and imaginary part and of the complex filter,
respectively. We implemented the real part of the complex filter g, in the PFIR of A channel,
and the imaginary part g, is implemented into the B channel.

We configured the sign of the ‘I” and ‘Q’ of the each channel by setting the initial phase, 6,
of the NCO, of which A and B channel was 0 and /2. In the case that the output of NCO in B
Channel was

{cos(w+7/2),sin(w+7/2)} = {— sin(w), cos(ca)}, (6.13)

the I and Q channel of B Channel operated as —Q and I, and the four output of the PFIR were the
four convolutions of the right side of Eq.(3.36). The DSP operated the two additions only. The
amount operation of the DSP was reduced from the method of chapter 4 drastically. Table 6.2
shows the result of this configuration.

Table 6.2 Operation time of the experimental system (complex filter of the DDC)

A B C A/B A/C C/B
Rbw Span T S_wd T S _spr Thsp R; RSﬁOP Ry
(kHz) (MHz) (msec) (msec) (msec)
10 100 2000 90 170 22.2 11.8 1.9
30 200 500 30 98 16.7 5.1 33
100 1000 230 30 139 7.7 1.7 4.6
T s yqa- A =Thesweep time in a traditional sweep method
T S: o B = The sweep time in the super sweep method
TDSP : C = The operation time of the DSP (TMS320C6711 80MHz)
RS :  A/B=The ratio TSer /TSJPV , Ratio of the sweep time.
R s op : AJC = The ratio T s wa! T psp » Ration of the sweep time and the operation time
R Sg : C/B=Theration 7, I;SP /T S spro Ratio between the processing time and the sweep time

The filters included in the DDC (CIC, CFIR, and PFIR) have no operation time but a little
latency time, from 7.6 1 sec to 3.9msec (see section 4.3). The operation time 7., was reduced

approximately half of the Table 6.1, and the ratio R and R, were improved. But the

S_OP
improvement was not corresponding to the reduction of the oi)eration. We considered that the operation
time was dependent on not only operation but also the accessing time of the memory.

The outputs signals of the four PFIR were sent to the DSP through a memory, and the DSP
red the signals from the external memory. We considered that these accessing spent so much
processing time. The design of the circuit of our experiment system was not optimized. The DSP

was forced to spend so much accessing time for the memories. We expect that we can make the
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operation time 7, to be shorter by optimization of the circuit design. On the other hand, we can
design the circuit corresponding to the ‘DSP Operation’ in the Fig.6.3 using a FPGA. It is not
difficult to make the circuit that has no operation time but some latency.

If we had optimized circuit, the operation time 7,,, would not be more than the sweep time

T, and therate R; ,,, (A/C) would accord with Ry (A/B).

S_spr?

6.3 Display of new method

Many conventional spectrum analyzers have only one display and the spectrum is displayed
with 1000 points (may be smaller or larger a little).

In the super sweep method, the spectrum analyzer can treat large data size of a spectrum and
measure spectrum 10 or 30 times faster. We used a PC for the display as a Windows application,
the example of a display is shown in Fig.6.4. The left side trace is ‘Main trace’ whose trace data
was 4000 points, and the right side trace is ‘Sub trace’ which is extended trace of part of the Main
trace whose area is indicated by orange colored cursor on the bottom of the Main trace.

Figure 6.5 shows the ‘Artificial Analog display’ of the R3264 (conventional), which displays
32times trace on a trace and each sample is displayed by a dot. The spectrum is displayed as light
and shade, which corresponds to the probability of the spectrum. This trace takes 32time longer
than the normal trace, but the new method will be able to display almost same time as traditional
one trace. (We have not implement this function in the experiment system.)
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CENTER 200 000000 hHz SPAN 200.000000 MHz CENTER 170.064000 MH2
REWY 30,000 kHz SWP 40 ms REY 30.000 kHz SYWP 40 ms
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Fig.6.4 Multi trace Display on PC
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Fig.6.5 Artificial Analog trace Display of R3264
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6.4 Filter margin and synchronization of frequency

The discussion of this section is standing on the system of Fig.6.6.

6.4.1 Over view of latency and synchronization of the system

A sweep spectrum analyzer (including a super sweep method) is a cyclic system as shown in
Fig.2.5. Our experimental system consisted of the filter chain described in section 4.2.4. We had to
consider the margin of the filters to obtain the spectrum with exact frequency.

We took the margin of the span and the sweep-time corresponding to the responses of the
chain of the filters. And we achieved the synchronization between the spectrum and the ramp
signal. The concept of the synchronization is shown in Fig.6.6, which shows the chain of the filter

in the super sweep method and the position of the ramp signal.

Sweep Spectrum Analyzer

DSP Unit

Analog Down Converter

Input 4GHz

_\r o vy

BPE1. =250 BPFn

A T

Span,,. @‘7

Sweeping
Local
Qscillator

Ramp Generator

Digital Down Converter

Afss

. ATD'. o2 ATG
IF ; i
ap - \H \H )

! cIC CFIR Negative

| Chirp

. DDC Filter
SWP E‘ DDC

B
I Spectmm
|(x.3) = (X[11.5[D) |

Fig. 6.6 Chain of Filters and its Latency

6.4.2 Margin corresponding to chain of filters

Most traditional sweep spectrum analyzers have no difference between Span, and

Spann » and TSJN

and TS o

sweep time was too short to ignore the difference.

In Fig.6.6, the signal of the spectrum is S[i] (in the right square indicated as ‘PC”), which is
passed thorough the several filters in the system. Each filter has latency, which is according to its

SpanD

where the sweep time is enough slow. In the super sweep method,

bandwidth. The bandwidth of the filters is wider at the left (input) side and narrower at the right

(output) side. The narrowest filter has the longest latency; it is the ‘Negative chirp’ filter (in the

center square).
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An illustrated example of impulse response of a filter, input signal, and output signal is shown
in Figure 6.7, where A ¢ is the length of the impulse response, and 7, ,and 7}, is the time

length of the input and output. 7, is given by
T 2T, +A7, (6.13)

which provide the output without a transient response affected by the start and end of the input
signal. T, is sum of the impulse response and time length of the output. We can consider that

A7 is a margin and latency.

T

L

A AAAAAAAAANAAARR
UvVUVVVJUUVUUVUU

é. 5
:. —————————————————————————— Toar ey prw

VAVAVAVAVAVIVAVAVAVAVAVAVAVA

Fig. 6.7 Latency and Margin for a Filter

The total latency of the system figured by Fig.6.6 is given by

r= ZAT,. = (AT + AT+ + AT, )+ (AT, +--+ AT,)- (6.14)

The most critical latency depends on the filter whose bandwidth is narrowest; usually it is
negative chirp (resolution) filter. But in the case that the video filter is implemented after the
resolution filter, the most critical latency depends on the video filters. On the other hand, the
latency of the BPF in the RF down converters is very short (usually, under one micro second), we
can ignore it.

When we measure a spectrum whose span is SpanD (Hz), the sweep time is T s the span

and sweep time of the local oscillator (see Fig.6.6) is given by following equations.
T +h
Span_ = Span,, S;

S D

(6.15)

T =T +h (6.16)

S_IN S_D
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6.4.3 Synchronization between spectrums and ramp signals

In the case that we control the local oscillator in the system of Fig.6.6 exactly, the element
number ‘i’ of the signal S[i] has to correspond to the measured frequency. In our experiment
system, we were not able to control the local oscillator directly. And we made the synchronization
of the abscissa (frequency) by measuring the ‘SWP’ signal, X[i] as shown in dot square of ‘PC’
in Fig.6.6.

The SWP (Sweep out) signal is one output signal of the spectrum analyzer R3264 (see section
4.2, especially Fig.4.2). The SWP is a nearly DC (Direct Current) signal whose voltage
corresponds to the instantaneous frequency of the local oscillator. As shown in Fig.6.6, the SWP
signal was digitized by the AD/C in the DSP Unit and passed through the digital filters whose
properties were same to the filters that the IF signal were passed through. Then the latency was
same to it of the IF signal, and we could obtain the spectrum as the pair of array, X[i] and S[i].

Figure 6.8 shows the illustration of our method how we made the synchronization. The upper
side square is a simplified spectrum, the middle stage shows the SWP signal, and the bottom
square shows the spectrum on the PC.

We made the three tone signals using a signal generator whose frequencies were as follows.

4
Sna = fcf —ESPCII’I]N

f.; = Center Frequency , (6.17)

4
fp4 = .fcf +ESpanlN

where Span,, and f, were the conditions of the sweep spectrum analyzer.
We received the signal (XTi],S[i]) by the PC. The three signals were detected as peaks. The
value of XTi] corresponding to the three peaks were given by
X,,=X[i,], X,=X[i,] and X ,=X[i,],

where i,,, i,
sample of S[i] as F/i] by following equation.
(X[i]-X,)x0.8-Span,,

Xp4_Xm4

and i, were the element number. We could estimate the frequency of each

Flil=f, +

(6.18)

The values of X, ,, X,
Even if the center frequency and span are any other value, we can calculate the frequency FJi].

and X, were not change for the span and center frequency.
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Fig. 6.8 Synchronization on abscissa
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6.5 Response of IF filters

A diagram of the FFT method system is shown in Fig.6.9. The spectrum obtained by the
FFT method is observed as a product of the true spectrum F(®) and the frequency response of
the system H (@) as shown in Fig.6.10, where F(w) and H(w) are the Fourier transform of
the measured signal and the impulse response of the system before A/D converter (especially the
IF filter after the RF down converter) [4]. Usually, the pass band of the H (@) is not completely
flat and has some slope or ripple. The signal passed the outside of the pass-band is not suitable for
measuring a spectrum. And we have to equalize the spectrum corresponding to the H(w) to
obtain an exact spectrum.

Input IF Filter Spectrum
RF Down
S@) - Converter h(t) —>| AD/C FFT |

Fig. 6.9 Signal flow of Spectrum analyzers by FFT method

A 4
v

F(o)x H(w)

N

>

Frq.
Fig. 6.10 Spectrum of FFT method with IF frequency response

The frequency resolution of the spectrum is decided by the window function of the FFT.
The spectrum S(w) is explained as following equation.

S(w) = (F(w)x H(w))* W (w), (6.19)

where W (w) is the Fourier transform of the window function.
In the super sweep method, the spectrum is obtained as a convolution of F(®) and
H(w), as Eq.(3.10) (see section 3.2).

S(w) =F(w)* Hw), (6.20)
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where, H(w) is a convolution of the total frequency response of the several stages of the system.
H(w) is dependent on the narrowest filter, usually it is the resolution filter. The spectrum is
assumed as

S(w) = F(w)*G(w) (6.21)

where G(w) is the frequency response of the resolution filter. In the super sweep method, we
can obtain the spectrum with almost no influence of H(w), it is one of the merit against the FFT
method.

6.6 Super Sweep Method and Chirp Z-Transform

The super sweep method has a similarity between the Chirp Z-transform. This section
discusses about the characteristics.

6.6.1 Theoretical Background
The chirp Z-transform is defined by following equation [3][6] (see Fig.6.11).

X (k)= c"l(k)NZ_:ly(n)-c(k—n) (6.22)

where k is a discrete frequency, n is a discrete time. The function c(n) is called ‘chirp signal’
defined as

nZ

c(n)y=w 2, (6.23)
where W is a ‘phase rotation factor’ defined as
W =W, -exp|-j2ro], (6.24)

where W, is aconstantand o is a chirp factor for quantified time », which is corresponding to
the sweep rate in a sweep spectrum analyzer. And y(n) is a product of x(n) and A™"-c”'(n),

y(n)=x(n)-A"-c”'(n), (6.25)
where x(n) is discrete measured signal, and ‘A’ is defined by
A=A4,exp[-jb,]. (6.26)

The Chirp-Z transform of x(n) is X(k) defined by Eq.(6.22). The concept of the Chirp-Z

transform is drawn as a diagram of Fig.6.11.
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W(n)
x(n) —» - xeln) | X (k)

O <'®
A"\ (n)
Fig.6.11 Concept of Chirp Z-Transform

The signal A™"c'(n) of Eq.(6.25) is corresponds to a output of the local oscillator of a

sweep spectrum analyzer, /(¢), which is explained by

A7"c ™ (n)= A," exp[—j-n-6,]x Wf -exp[ jron’]

= exp[%n2 In(W,)—n ln(AO)]- explj-(m-c-n’—n-6,)] (6.27)

= M(n)-explj-(x-0-n*—n-6,)],
where M(n) is the amplitude factor. The phase factor is a chirp signal, which has a frequency offset
6, . In the case that J¥, is less than one, the magnitude takes a form of Gauss function, which has
an offset on the time. In the case that 4, =1 and W, =1, this signal has constant magnitude.

The signal y(n) corresponds to the IF signal, which is chirped signal; 4"c”'(n). The

summation of Eq.(6.22) is assumed as a discrete convolution of y(n) and c(n), and the internal
of the summation is explained by

y(n)-c(k—n)=x(n)A™" ¢ (n)-c(k —n)

— x(n)- M (n)-expl j(z0 - n* = n6,)]- W, 2" expl= 270 (k —n)’ /2]
= x(n)exp(Ln® In(W,) — nIn(4,) + (=L (n — k)*) In(,))
X exXp [j(mf n’ - nﬁo)— J(mo (k - n)z)]
= x(n)- exp(— nln(4,) + (nk — kz)ln(WO))- exp[j(— nb,+2ro -k-n- zrakz)]
= exp[—k” In(W,)]exp[—jzo - k*]x x(n) exp(— nln(A4,) + nk ln(WO))
x exp[ —jn(2zok + 6,)]
=c(k)-M,(n) x(n)-exp[—jn(2rok + 6,)] .

The factor dependent on not n but £ is just replaced by c(k), which is modified by Eq.(6.23) and
(6.24) as

c(k) = exp |- Lk In(W,) |- exp|- jzok? . (6.29)
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In Eq.(6.22), the factor Eq.(6.29) is rejected by ¢ (k), and the magnitude dependent on # is
replaced by

M, (n) = exp[-nln(4,) + nk In(W,)]. (6.30)
By above discussion, Eq.(6.22) can be rewritten as
N-1
X(k)=Y M (n)-x(n)-exp[—j-nQ2z-c -k +6,)] (6.31)
n=0

This equation is a discrete Fourier transform of M, (n)-x(n), which has frequency offset 6,,
and we could assume M, (n) to be weighting function. The frequency corresponding to k is o'k .
In the case that o=1I/N, X (k) is corresponding to the result of FFT. In the FFT method, the
difference between each sample of a frequency is dependent on N, and it is //N. In the Chirp
Z-transform, the difference is not dependent on N. We can decide the difference corresponding to
the condition of the system such as the sampling frequency and sweep rate. This ability is one of a
merit of the Chirp Z-Transform against the FFT method.

Our experimental system described in chapter 4 was assumed the modified system of Fig.6.11
except for the product of ¢™'(k). In the experimental system, the mixer and the signal
A™"c”(n) were implemented as an analog mixer and a local oscillator. The convolution of
y(n)*c(n) corresponded to the negative chirp filter. The result of the super sweep method had
chirp phase factor as shown in Eq.(3.9), which corresponded to the lack of the product with
¢! (k) . But it is no problem to estimate amplitude of the spectrum. In the most case of measuring
a spectrum, the phase factor is not object of the consideration.

We considered that the super sweep method was a derivative processing of the Chirp
Z-Transform.
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6.6.2 Numerical Analysis

We made a numerical analysis about the phase, Figure 6.12(a) to (e) are the results. The
spectrum and I and Q part of the base band signal are shown in Fig.6.12 (a), which corresponds to
a CW signal whose frequency was the center of the figure. The vertical full scale is 100dB for the
spectrum, and from —1.0 to 1.0 for I and Q part. The measuring condition were SPAN=10kHz,
Sweep Time=2msec, and RBW=1kHz.

The I and Q part of the output of the resolution filter (Gaussian negative chirp filter) is
shown in Fig.6.12 (b) whose significant level is remained around the center. We obtained the
phase factor of (b) by

O(t) =tan™ (O, (t)/ 1,(1)) . (6.32)
This phase factor is shown in the figure (¢). The line describes a parabola.

The differentiation of the phase is drawn in Fig.(d), it is nearly a line.

The 2™ differentiation of the phase is shown in Fig.(e). It was SMHz/sec at the center that
corresponded to the sweep rate, Span/Sweep _time. It was —4.95MHz at the both sides, which was
1% reduction of the sweep rate. We considered the reduction caused by a computing error, because
I 'and Q had not enough accuracy without a error at the both side to operate Eq.(6.32).

By the discussion section 3.2.2 especially Eq.(3.9), we investigated that the phase of the
spectrum measure by the new method was chirped, which was caused by the sweep of the local

oscillator.

SPAN=10kHz, Ts=2msec

0dB !

08
0é
04 H

0z

-2 5dB0

-04

-06 |

-08 L

-100dB |

Fig.6.12 (a) Spectrum by Super Sweep Method (SdB),
Gaussian Filter (g) And Base Band signal (I and Q)
Measuring condition:
SPAN=10kHz, Sweep Time=2msec, RBW=1kHz
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Fig.6.12 (b) I and Q part of the Spectrum in (a)

SPAN=10kHz, Ts=2msec, Phase of the Spectrum, 1->90deg

Tl2 - ‘ ; . : ‘ : : .

-1 I I I 1 I i i i I
7[/2 -200 -160 -120 -80 40 0 40 80 120 160 200

Fig.6.12 (¢) Transition of phase of Spectrum in (a)
tan"'(Q/1) of (b)
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Fig.6.12 (d) Differentiation of phase in (b)
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Fig.6.12 (e) Second differentiation of phase in (b)
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6.6.3 Numerical Analysis of a Sweep Method

In a conventional sweep method, the spectrum is assumed to have chirp factor as shown in
Eq.(2.31-c).

S(t) = exp[j(7mt2 + @yt +6,)] % Tg(r)f(t —7T)x exp{j(ﬂa ? =270 t— a)or)}dr
-0 (2.31-¢)

=1(r) Tg(r)f(t—r)x eXp{j(ﬂ'G r? =210 tr— a)or)}dr

We achieved a numerical analysis for the sweep method and verified the existence of the chirp
factor as shown in Fig.6.13(a) to (c¢). The second differentiation of the phase is obtained by the
same processing of Fig.6.12 (e), it was 500kHz per one second and it accorded with the sweep rate

o,

oo span _1OKHz _ 5600 (6.33)
Sweep Time 2msec

The property of spectrum of two method, sweep and super method were similar, such as phase
factor and the parabolic figure. While the sweep method has a restriction on the sweep rate, the

I
| |l i UUNHII Jl

=========

-2000 -1600 -1200 -500 -400 0 400 800 1200 1600 ZUUU

super sweep method has not it.

i

Span=10kHz, St=20msec, Sweep method

0dB !

0s i

‘l
0.é

SdB0

-0

Fig.6.13 (a) Spectrum by Sweep Method (SdB),
Gaussian Filter (g) and Base Band signal (I and Q)
Measuring condition:
SPAN=10kHz, Sweep Time=20msec, RBW=1kHz
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Span=10kHz, St=20msec, Sweep method
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Fig.6.13 (b)
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Transition of phase of Spectrum of (a)

Span=10kHz, $t=20msec, Sweep method

Fig.6.13 (c)

' L
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Second differentiation of phase in (b)
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6.7 Response against two-tone signals

The analysis of the spectrum of two-tone signals in the sweep method is described in section
2.5.7. This section describe the result of the experiment whose condition were same to section 2.5.7
except for measurements by the super sweep method.

The experiments were done by a numerical analysis. The measured signals were assumed as
Eq.(2.59).

f(@) = %(exp[ —Jj(@gt +7A fxt+6,)]+expl —j(w,t + 7A fx t)]) (2.59)

where the frequency differences of the two-tone signal were Af(Hz), @, was the carrier
frequency. The spectrum were obtained as

S, (=g, *{f )< 1)}, (3.2)
where /(2) is the swept signal, which is given by
I(1) = exp[ j(7o -1* + @,1)]
Then Eq.(3.2) is explained by
S, (1) =g, () *(1/2)fexp[ j(z-ot* + 7Af t+6,)]+ expl j(r-ot* — 7L 1)]} (6.34)

The experiment conditions of Fig.6.14 are shown in Table 6.3.

Table 6.3 Experimental conditions of Fig.6.12

Sweep Time Frequency differences of Span Rbw
two tone signals
(a) 2 msec 1500Hz
(b) 2 msec 1000Hz L0kHz |kHz
(c) 10 msec 1500Hz
(d) 10 msec 1000Hz

We computed two spectrums for each figure. The spectrums are indicated by two bold black
lines whose difference of initial phase between the two tones are 0 and 7 radian, they are indicated
as “SdB 0” and “SdB 17, respectively. The most part of two lines are overlapped together except
around the center. The real part and imaginary part of the measured signal, which is corresponding to
Eq.(6.34) are indicated in red and blue lines, and they correspond to “SdB1”. The green lines indicate
the impulse response of Gaussian filters (RBW=1kHz).

In a traditional sweep method, the sweep rate is restricted and the sweep time was 20msec in the
condition of Fig.2.25. In the condition of Table 6.3 and Fig 6.14, the sweep rate were 10 times faster
in (a) and (b), and 2 times faster in (c) and (d) than the cases of Fig.2.25, respectively. In Fig.6.14, we
obtained same spectrums with Fig.2.25. The frequency of the beat note in Fig.6.14 is fewer as faster
as the sweep rate faster. We observed the same spectrums with the different sweep rates. The results
of Fig.6.14 verify the new method that broke the restriction of the sweep rate.
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Fig.6.14 (a) Spectrums of two signals, /If=1500Hz
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Fig.6.14 (b) Spectrums of two signals, 1f=1000Hz

Sweep Time 2msec
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6.8 Influence of the noise

6.8.1 Noise in Spectrum analyzers

In a spectrum analyzer, the signal before the A/D converter thorough passes several analog
circuits such as mixers (MIX), amplifiers (AMP) and some filters. These analog circuits produce
noise, which appears on the spectrum. The concept of the noise produced in the analyzer is shown in
Figure 6.15, which shows the signal process from the input to the RBW BPF. The phase noise
produced by the local oscillator is a one of the representative noise. The influences upon the
spectrum were difference corresponding to the sources of the noise; local oscillator, before or after
the mixer, and before or after the Amplifier etc.

1% Down Converter Nth D.C.

(©r LpF —D~ s /_\ y

RBW BPF

[\ro

L 4

el ol se i

Phase | 1%t local
noise

Sweep
Generator

Fig.6.15  Model of noise of spectrum analyzers

6.8.2 Phase Noise of the local oscillator

In some measurement conditions of sweep spectrum analyzers, we can observe the phase noise
of local oscillator on the sideband of the peak. One example is shown in Fig.6.16. The mathematical
model of spectrum measured by a sweep spectrum analyzer is Eq.(2.31-b).

S@) = Ig(z')f(t —T)X exp{— j(ﬂ o(t—-1)° +w,(t-1)+6, )}dz’ (2.31-b)
We can make the noise as @(f) instead of 6, . The spectrum with the noise is explained by
S()= [ f(t-1)x explj(7-o(t—7)" + 0, (t - 1)+ 0() )}dr  (6.35-2)

This equation can be modified as

S@t)= Tg(z')f(t — 1) xexp[ jO(t)] x exp{j(ﬂ' o(t—1)° + ,(t— z‘))}dz- (6.35-b)
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We cannot distinct whether the phase noise is including in the local oscillator or the signal f{?) by
watching the spectrum.

The two overlaid spectrums are shown in Fig.6.16, one is obtained by SPAN=60kHz,
and another is obtained by SPAN=59.9kHz whose noise-level is lower. The level of the
phase noise of local oscillator was changed corresponding to the configuration of the
oscillator [8]. The super sweep method has high sensitivity for the phase noise. The
system that employs the super sweep method should be configured to have a lower
phase noise.

Tue 2007 Apr 17 10:02

REF -10.0 dBm
10 dB/ *A_View Posi B_Write Posi

SPAN
60.00 kH=z

CENTER 100.00000 MHz SPAN 50.00 kHz
#RBY 100 Hz VBYW 100 Hz SWP 12 s ATT 10 dB

Fig.6.16 Phase noise of Sweep Spectrum Analyzers
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6.8.3 Noise in the IF signal

This section reports and discusses about the noise of the IF signal. The deformed diagram of our
experimental system is shown in Fig.6.17, which was described in chapter 4, where a few examples

of the measurement are shown.

Spectrum Analvzer: R3264

e - DSP Unit and PC
:") \": B R R R R R R B R R R R R R R R R "-\\
i | RF.Down i i
INPUT | Converter ] /\— 21 AMHzIF 1;—3— ADVC /\ — Spectrum i
i IF BW i i Resolution i
! (RBW) i ! Filter System i
1\\ ;,' l\‘ l’_RbH) ,’I

__________________________________________________________________________

Fig.6.17 Deformed diagram of our experimental system

In Figure 6.18, the SPAN was 3MHz. In Fig.6.18 (a) and (b) the RBW was 3kHz. In Fig. (c) the
RBW was 30kHz. The IF-bandwidth (RBW of R3264) was 30kHz in (a), 300kHz in (b) and (c),
respectively. The sweep time of (a) and (b) were 70msec and it of (c) was 20msec.

In the case that the IF-bandwidth was 300kHz, the spectrum had high level of noise around its
peak. The bandwidth and figure of these noise were according with the IF band pass filter (RBW of
the R3264). If the noise was caused by a phase noise of the local oscillator, the figure of the noise
was not dependent the IF band pass filter.

We considered that some very wide band noise existed in the IF-signal front of the IF band pass
(RBW) filter, and the IF-signal included the wideband noise. The negative chirp filter pass the part of
signal whose frequency was under the pass band. If the SNR of the IF signal was not enough for the
dynamic range required on the measurement, the noise would remain in the spectrum as shown in
Fig.6.19. This discussion has not been verified. It is our task for the future.

By the above discussion, we considered that we should choose the IF-bandwidth (RBW of the
spectrum analyzer R3264) as narrower as we can to reduce the noise around the peak. But it needs
wider IF-bandwidth to obtain faster sweep rate but the noise would enlarge. It is essential solution to
develop the signal pass with satisfactory SNR.

In our experimental system, the pass band of the DDC was configured to be wider than the
IF-bandwidth and the Flt was decided by the IF-bandwidth.
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(b) SPAN=3MHz, RBW=3kHz, IF-Bandwidth=300kHz, St=70msec
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(¢) SPAN=3MHz, RBW=30kHz, IF-Bandwidth=300kHz, St=20msec

Fig.6.18 Obtained Spectrums using Super Sweep Method
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Fig.6.19 Noise of IF signal and Spectrum
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6.9 Examples of Spectrums

To demonstrate the special feature of the new method, some result of measurements are
presented in Fig.6.20~6.23(b). These results were obtained as the numerical data from the
experimental system. We took four samples of the RBW were 1Hz, 100Hz, 1kHz and 100kHz and
describes their futures in following sections.

6.9.1 RBW 1Hz

It is difficult to make the RBW filter of 1Hz by analog circuit. We achieved the filter as a digital
filter of the new method. In traditional sweep method, the sweep time of the conditions, whose Span
is 500Hz and Rbw is 1Hz, are approximately 1000 sec. In the super sweep method it was 2.88sec,
which is about 350 times faster than the sweep method. The one result of measurement is shown in
Fig.6.20.

In Fig.6.20, three spectrums, A, B, and C are results of measuring a CW signal. The spectrum A
has some spurious peaks called ‘Ham noise’, which was caused by the frequency 50Hz of the AC
power supply. The spectrum B is the result of no input, which shows the noise floor of the system.
The spectrum C is the averaged (32 times) data of B. The data C indicated the noise floor
approximately —124dBm. The to level the scale was 0dBm. This result investigated that the dynamic
rage of the system was larger than 120dB.

It needs large margin of the sweep time and span to achieve the fast sweep (see section 6.4.2).
The span and sweep time of the local oscillator was approximately twice for the result of the

spectrum.
RBW 1Hz, SPAN 500Hz, St 2888msec

20 | c

40k |

60 b _|

dBm

a0 B

= >

-100 q

W

-120

',,__uh. b ba g ket i\ ST Moo b bty ol

1- ; rTq,.-" *1| I'"‘- ‘ ‘” i |‘| ﬂr,mr e |”"'1Ir’ f -ia h .HI""JFTL I"ll"

7140-250 -260 -1;0 -IED =50 6 50 160 I;D 260 250
Hz

Fig.6.20 Spectrum with RBW 1Hz

SPAN=500Hz, St=2888msec, IF-bandwidth=300Hz,
( R3264 Set up: SPAN=1kHz, RBW=300Hz, St=5.8sec, CF=500MHz )
In a traditional method, it needs approximately 1000sec of the sweep time.

b“u1h
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6.9.2 RBW 100Hz

This section shows the improvement of the dynamic range. In Figure 6.21, four spectrums are
shown. The spectrum (D~ were the result of measuring a CW signal, @ was result with no input
signal. The spectrums (D and @ were measured by the spectrum analyzer R3264 with RBW 1kHz
and 100Hz, respectively. The sweep time of (D and @ was 0.2sec and 20sec. The spectrum (3
and @ were measured by the super sweep method, whose RBW was 100Hz and the sweep time was
665msec. In the case that RBW was 100Hz, the new method achieved 30 times faster than R3264.

These spectrums were obtained with average mode (32 times) to get a comparison of the noise
level. In the super sweep method, level of the noise were —100dBm or under. The noise floor of @
is limited at —97dBm.

When the reference level was -10dBm, the noise floor of R3264 were larger than —97dBm. It
corresponded to specification of the LOG amplifier included in the R3264. The new method
improved the limit of noise floor by the digital signal processing. The level of @ indicated the noise
floor with RBW 100Hz. It was approximately —112dBm.

Note) Unfortunately, it seemed there were non-Gaussian noise, which caused a cyclic noise
waves on (3 and @.

REW 1kHz 0.2sec
REW 100Hz 20sec
55 100Hz 66 5msec
58 Mo Input

ClSICIS)

Level (dBm)

Frequency (kHz)
Fig.6.21 Spectrum with RBW 100Hz and 1kHz, SPAN100kHz
(R3264 Set up of @and @ : SPAN=111.1kHz, RBW=3kHz, St=740msec, CF=500MHz )
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6.9.3 RBW 1kHz

Figure 6.22 (a) shows a spectrum of a FM signal; the deviation was 2MHz and the modulation
frequency was 30kHz, the Span was 4MHz, RBW was 1kHz, and the sweep time was 693msec. The
sweep time of R3264 for same SPAN and RBW is 8.4sec. New method was 12 times faster than
R3264.

The signal consisted of many side lobes whose intervals were 30kHz. The spectrum shown in
Fig.6.22 (b) is an extended spectrum of Fig.6.22 (a), whose span was 400kHz. The sweep time of (a)
was 693msec.

In a traditional spectrum analyzer, the condition RBW 1kHz is too fine for SPAN 4MHz,
because the displays of these analyzers are usually 1001 points. Our experimental system was
designed that the display point were 30,000 point in maximum. The spectrum of (a) was given
enough size of data and the resolution to drew the spectrum (b), which is drawn from the data of (a).
We were able to observe the two spectrums in one measurement (see section 6.3). Traditional
spectrum analyzers cannot measurements of (a) and (b) in one time.

Note: The setup of R3264 for Fig.6.22 is shown in the supplementation. The Span and Sweep Time
had a margin, which were about 5 percent wider and longer than Fig.6.22(a). See section 6.4.2.

RBW 1kHz, SPAN 4MHz, St 693msec
-10 T T T T T T T T

a0 b 2

a0k -

40 L -

S50 1 |

ok ]

dBm

70 b -

-50 B -

90k -

-100 | I

Freq. Mz
Fig.6.22 (a) Spectrum with RBW 1kHz , SPAN4MHz

St=693msec, IF-bandwidth=10kHz,
(R3264 Set up: SPAN=4.176MHz, RBW=10kHz, St=730msec, CF=500MHz )
The sweep time of R3264 for same SPAN and RBW is 8.4sec.
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EBW 1kHz, SPAN 400kHz, St 69msec
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Fig.6.22 (b) Spectrum with RBW 1kHz , SPAN400kHz

Around the center of Fig.6.21(a)

6.9.4 RBW 100kHz

The maximum RBW of our experimental system was 100kHz. An example of spectrums
measured with RBW 100kHz is shown in Fig.6.23 (a) and (b). The sweep time of (a) was 14msec. In
the same condition, the sweep time of R3264 is 200msec. The new method achieved the sweep 10
times faster than the conventional way.

In the FFT method described in section 2.9, it needs several times of stepping up the local
oscillator to measure for such a wide span, and it needs the so long setting time and operation time of
the DSP. Some spectrum analyzers implemented the FFT method using a DSP, such as FSU series
produced by R&S Co., achieves the fast sweep up to RBW 1kHz or 3kHz. For wider RBW than
3kHz, the measurement rate is not faster than the sweep method.

Our experimental system achieved not only a fast sweep rate with RBW 100kHz but also
obtained the sufficient and seamless information of the spectrum. Figure 6.23 (b) shows the part of
(a), whose span is 100MHz and the center frequency is 500MHz. In Figure (b), the sample points are
indicated by small dots. We can see the spectrum with the resolution of 100kHz as any part of (a).
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Fig.6.23 (a) Spectrum with RBW 100kHz , SPAN 1GHz

St=34msec, IF-bandwidth=1MHz,

1100

(R3264 Set up: SPAN=1.18GHz, RBW=1MHz, St=40msec, CF=500MHz )
The sweep time of R3264 for same SPAN and RBW is 200msec.
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6.10 View of spurious peaks

The spectrum analyzer used in our experiment had some spurious peaks at the condition as
shown in Fig.6.24 (a). In the super sweep method the spurious peaks existed too, but the levels were
lower and the observed bandwidth were broader than the peaks of Fig. (a) as shown in Fig. (b).

Figure 6.24 (c) shows the overlapping spectrums as a part of (a) and (b). The start frequency is
—1kHz, and stop frequency is 13 kHz, where the spectrum of (b) is drawn as bold line and (a) is
drawn as thin line.

The peaks at the center frequency of (a) and (b) had no broadening of the resolution and had no
level reduction. But the spurious peaks of (b) were broadened and the levels were reduced. These
figure of the spurious peaks are similar to the over sweep-rate response.

We hypothesized that the input signal or the output of the local oscillator had some harmonics
and the frequency of them were given by
=n-@,+m-o,, (6.36)

spurious
where @, was the frequency of the local oscillator, «,, was the frequency of input signal, and n
and m are arbitrary whole numbers. In the model of Fig.2.5, n was one and m was minus one. The
new method worked on the assumption that the value n and m were known. Especially in our
experiment, n and m were one and minus one. In the case that any signal produced by another value
of n and m, the negative chirp filter could not cancel the chirp factor of the input signal and the Eq.
(3.10);
S, = G (@(t) @) * F(o(t) | (3.10)

could not be accomplished.
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Fig.6.24 (a) Spectrum measured by R3264
CF 30MHz, RBW 100Hz, SPAN 70kHz, T, 14sec
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Fig.6.24 (b) Spectrum measured by Super sweep method
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Fig.6.24 (¢) Over lay of Spectrums of (a) and (b)

The expanded spectrum around the spurious peaks
whose frequency was —1kHz to 13kHz (Span 14kHz) of (a) and (b)
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We assumed that # of the spurious signal in Eq.(6.36) was —1 and the frequency was given by
=—@,+m-w, . (6.37)

Spurious
And the signal, f.(r) which corresponds to this frequency, is explained by

fop () = Agp (1) -explj(=0 -1 +m-wp1)], (6.38)
where o-t* = @,. The time-frequency diagram of the signal is shown in Fig.6.25. There are two types
of the chirp signals, a normal chirp and an inversed chirp. In a sweep method, both signals give same
response thorough the RBW filter, because the chirp rates of both signals are same. In the super

sweep method, we obtained the spectrum S, (r) from the signal £, (f) as the convolution of f,,(#)
and the negative chirp filter, g (f). And the convolution is explained by

Ssp(t)=2,(O)* f5p(0)
S5 (1) = {g(t) expl—jz0 * 1 {Ay, (1) x expl (-0 1 + mavy )]}
=[ (8@ -expl~jzor’};
x { Ay, (t = ) expl (- 70 (t = 1) + mo (¢ — 7)) }d

= exp[j(— rot’ — ma),Nt)]

~

> (6.39)

X Tg(z')ASP (t—71)x exp[j(— 2rot’ + (2rot —mao,, )r)]dr .

Where the amplitude of the term of 7% is twice in comparison with Eq.(2.31-c). These terms
were causes of the over sweep-rate response. As a result, in the super sweep method, we were able to
distinguish the spurious peaks. This characteristic does not exist in a traditional sweep method.

'III?\ /” a)mixiout - a)l a)IN
a)zfsmP — Wy :
1
i
O = /’l(f )
IF BPF
wlﬁSTART — W
dBm
\ A~ L Time

Fig.6.25 Time/Frequency Diagram of IF signal and resolution filter
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6.11 Comparison of the methods

This thesis describes the three methods to measure a spectrum, the FFT, the sweep, and the super
sweep. Chapter 2 described about the sweep method. Some sub-sections of Chapter 2 described about
the FFT method. Chapter 3 and the following chapters described the future of the super sweep
method. Some representative features of the methods are shown in Table 6.4. This table compares the
parameters of columns on the assumption that the RBW is same.

Table 6.4 Comparisons of spectrum measurement methods

Final Influence
Measurement Time
Analog IF
B mtiog'dth Of the IF Abscissa
andwi )
(a>1) | NarrowSPAN | Wide SPAN Filter
Sweep
RBW
Analog IF SPAN/ o
2 SPAN/ o Frequency
Sweep o < RBW . None .
Digital IF (Single Sweep) and Time
igita
Super Sweep a-RBW
FFT SPAN/ o
. Span/o + 8 Ripple on
With RF o <« RBW ) Frequency
D ¢ (Multi Sweep) Spectrums
own-converter

Final Analog IF Bandwidth and Dynamic Range: *1)

At the points of the dynamic range, the three sweep methods of Table 6.4 (Analog IF, Digital IF,
Super Sweep) have an advantageous against the FFT method [9][10]. In these sweep methods,
signals are passed thorough IF band pass filters, and the power of the spectrum are detected as
narrow band signals.

Generally, the FFT method digitizes the input signal using high speed A/D converter to achieve
the high-speed measurement, and the bandwidth of the input signal is configured sufficiently wider
than the RBW. In the case that the signal is wideband and wider than the RBW, the total power of the
signal is inputted into the A/D converter, and the full range level of the converter must be fit for the
total power. A low power signal inputted with such a signal may be behind under the noise floor of
the A/D converter. On the other hand, in the three sweep method, the input signal of the A/D
converter is band limited by the narrow IF filter and we can take the full range level lower than it if
the FFT method. But, in the case that the bandwidth of the IF bandwidth of the Digital IF and Super
Sweep method are same to the FFT method, the full range level should be same, and the dynamic
range become same to the FFT method.

*1 ) In this section, ‘Dynamic range’ means the difference of the level between full range of the
system (i.e. A/D converter) and the noise floor of the system.

- 185 -



Measurement Time (Narrow SPAN):

In the analog and digital sweep methods, the sweep time is inversely proportional to the square
of the RBW. The maximum sweep rate o is shown in Eq.(2.38)

On the other hand, in the FFT method, o is inversely proportional to the RBW as shown in
Eq.(2.81). In the Super Sweep method, o is inversely proportional to the RBW too, as shown in
Eq.(3.34-b). In the case that both bandwidth of the final IF of these two methods are same, the
maximum sweep rate became almost same.

As narrower as the RBW, the difference of the measurement time between them becomes larger.

Measurement Time (Wide SPAN):

In the FFT method, the frequency span of one measurement obtained by one FFT operation
depends on the sampling frequency [4]. In the case that the span is wider than the Nyquist frequency,
we can step up the receiving frequency band and joint the result of the multiple measurements. In this
case, ‘blanking time” is added to the measurement time. The blanking time is needed between
sweep-end and the start of the next sweep. It is usually Smsec to 100msec that is different
corresponding with specification of each analyzer. When the SPAN is wider and the large number of
times of the sweep is needed, sum of the blanking time becomes significant and the control of the
system will be complicated.

On the other hand, in the sweep methods, we can measure 3 or 4 GHz Span in one sweep *2).
Generally, for wide span measurement, sweep methods have an advantage at the point of
measurement time.

*2) In 2006, Anritsu Co. produced the spectrum analyzer whose measurement bandwidth was 8 GHz.

Influence of the IF Filter:

This feature is described in section 6.5. In the FFT method, a spectrum is obtained as a product
of the Fourier transform of the signal and the frequency response of the IF BPF. This response is
mostly dependent on the characteristic of the narrowest IF filter. It is not easy to make IF filter which
has flat pass band of wide bandwidth. Then some ripples of the IF filter appear on the spectrum as
sown in Fig.2.45.

On the other hand, in the three sweep methods, the spectrum is obtained as not the product, but
the convolution of them. Usually, the bandwidth of the IF filter is sufficiently wider than the RBW
filter, therefore influence of the IF filter almost do not appear on the spectrum.

Abscissa :

In section 2.6, it is described that the abscissa of the sweep method has a factor of time. By

changing the sweep time, we can obtain useful and various information from the spectrum.
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On the other hand, in the FFT method the abscissa has not a factor of time. The frequency
difference of the each sample of the spectrum: A f is dependent on the sampling frequency and the
time length of the window function (see Eq.2.75-b). To shorten A f we must take the time length
of the window function long. The long window function gives a fine RBW. And we have no
arbitrariness for the ratio between A f and RBW. But in the sweep methods, we have the
arbitrariness by changing the sweep time.

This section describes the some feature of the methods as shown in Table 6.4. Each of the
method has some merits and demerits against each other. We have not any methods that have no
demerit. We should select the method corresponding to the purposes of the measurement and
properties of the signal.
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Chapter 7

Application in Radio Astronomy

7.1 Introduction

In radio astronomy, the power of the observed signal is very low, and the signal is observed
almost as a noise. Therefore, in many case we cannot observe these signals from one time
measurement of FFT processes and sweep spectrum analyzers. The signals are detected through a
correlation processes such as XF, FX and FFX algorithm [1]. In these methods, on the assumption
that the signal is observed under an ergodic process, and spectrums are obtained from a time average
of many results of FFT operations.

On the other hand, it is an accepted view that a sweep spectrum analyzer is not suitable for
observations of radio astronomy for its slow speed of measurements. But conventional spectrum
analyzer is used to tune and maintain the system indispensably. One of the reasons is that the
spectrum analyzer has tunable down-converter and can measure variable measurement conditions. If
sweep spectrum analyzer can measure faster, it will be useful in radio astronomy.

In section 7.2, author investigated the SNR (signal noise ratio) against a measurement time for
super sweep and sweep method, and reported the result.

In section 7.3, author reported the observation of radio astronomical body W49N, which is
measured by author’s experimental system and the built-in FFT system in VERA-Mizusawa
observatory.

In section 7.4, author reported the results of the observation of radio astronomical body
G9.62+0.20.

In section 7.5, some discussions for the observations of section 7.2,7.3 and 7.4 are reported.

In section 7.6, author reviewed a papers which is reported about a radio telescope which is applied
CZT (chirp Z transform) as a spectrometer. And author reported the relation to the super sweep
method and CZT.

In section 7.7, under the discussion of section 7.2 to 7.6, author considered the product of
receptive bandwidth and acquisition-time.

Section 7.8 is the conclusion.
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7.2 Improvement of SNR against sweep method

In radio astronomy, signal from an astronomical object is recognized as a weak peak from the
noise floor in the measured spectrum, where an SNR is defined as follows.

P _
Ry, (PT”) (7.1)

n

where P is a peak level of the signal, 1, is an averaged noise level and 0o, is a standard deviation
of the noise, the unit of these parameters are watt (W).

Author simulated the observation of astronomical object using the system as shown in Fig.7.1,
and the conditions of the measurement are shown in Table 7.1. Author observed the spectrums using
sweep spectrum analyzer; R3264, ‘SPA’ in Fig.7.1, and the super sweep system, and estimated the
SNR by changing the average times, which is according with the measurement times.

The two spectrums of Fig.7.2(a) and (b) were obtained using the sweep spectrum analyzer. Figure
7.2 is the result of three sweeps average, three-second integral time, where the peak of the signal
(should be in the center) is covered in the noise floor. Figure 7.2 (b) shows the spectrum with 30
sweeps average, 30-second measurement, where the peak of the signal is clearly shown from the

noise floor.
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Fig. 7.2 (a) Measured Spectrum using sweep spectrum analyzer with AVG 3
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AVG 30 (30sec) RBW=1kHz, ~105dBm
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-105dBm | 500kHz | 1kHz | 1kHz | 1.0sec | 30 30sec 1.63 | 1.24E-12

Figure 7.2 (b)

Spectrum measured with AVG 30

The spectrums measured through the super sweep method, which were configured 30 times faster

than the sweep method, are shown in Fig.7.3 (a) and Fig.7.3(b), they were measured same integral

time of average with Fig.7.2 (a) and (b), respectively. In these cases, the sweep time of one sweep

were 41 msec and the average time were 73 and 732 (the integral time were 3 and 30 sec), the SNR

R, is so much greater than Fig.7.2 and the deviation o, is so smaller. The transition of SNR and

the deviation is shown in Fig.7.4, Fig.7.5, Table 7.2 and Table 7.3. The parameters R, and o,

are not dependent on the integral time but the average times, then the fast sweep of the super sweep

improved the Ry, and o, in the same integral time.
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Fig. 7.3 (a) Spectrum measured using Super sweep method with AVG 73

[ 2003411/11 12:00
REF -70.0 dBm MIKR 977.700000 MHz
2,000000 dB/ [AIW AVG [BJB_[C]B -137.23 dBim

. =1302,227..

CENTER 977.700000 MHz SPAN 500000 kHz

REW 1.000 kHz SWP # ms
[ Capture Open Sub Trace TraceFunc MeasFune Marker
Ready

Input Power SPAN RBW | VBW ST AVG Integral time RSN o

n

-105dBm 500kHz 1kHz 1kHz | 41msec 732 30 sec 94 0.00779

Fig. 7.3 (b) Spectrum measured using Super sweep method with AVG 732
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Fig. 7.4 SNR against Integral time
Table 7.2 SNR against Integral time
Sweep Super Sweep
A:-113dBm | A’:-105dBm | B:-113dBm | B’:~105dBm B/A B /A
1 sec -0.129 0.36 45 25 — 69.4
3 0.493 1.60 7.23 35 147 21.9
10 0.900 3.20 9.97 65 1.1 20.3
Ti
30 1.63 5.28 134 115 8.2 21.78
100 3.00 7.96 22.1 250 7.37 314
300 6.71 9.96 — — - —
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Fig. 7.5 Standard deviations against Integral times
Table 7.3  Standard deviations against Integral times
Ti  |A:AVG -113dBm|A’: AVG -105dBm|B: SSDI -113dBm B’ : SSDI —105dBm B/A B’ /A
1 9.59E-12 1.0197E-11 0.15 0.04 1.56E+10 3.92E+9
3 3.30E-12 3.91058E-12 0.063 0.023 1.91E+10 5.88E+9
10 2.02E-12 2.19366E-12 0.045 0015 2.23E+10 6.84E+9
30 1.24E-12 1.34483E-12 0.033 0.0078 2.66E+10 5.80E+9
100 7.01224E-13 9.08595E-13 0.016 0.0035 2.28E+10 3.85E+9
300 3.16E-13 7.27233E-13 - - - -
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7.3 Observation of W49N

On 27™ Dec. 2007, author’s group observed the hydrogen maser of an astronomical body W49N
using the 22m ¢ radio telescope of VERA-Mizusawa observatory. The spectrum of Fig.7.6 was
measured using the built-in FFT, and the condition of the measurement is shown below the spectrum.
This spectrum is the result of the correlation, which was 31250 times average. The slopes of noise
floor around right and left sides were caused through the digital filter, which is implemented before
the FFT operation. The difference of the level between the maximum peak and the noise floor was
12.1dB.

0.00E+00
64 128 192 h56 320 384 448 512
~2.00E+00 |
~400E+00 |
12.1dB U
~6.00E+00 |
& -800E+00 |
Z ' A
)
o J“A \/\/}\}}’ ‘ w JW“ \/\-v\ll
~1.20E+01 ﬂ'\ M

=

/ o o
-1.40E+01 /
-1.60E+01

s
~1.80E+01
Relative Frequency (SPAN 16 MHz)
Center Frequency 5437MHz
Frequency-SPAN 16MHz
Size of the spectrum and FFT 512
Af 31.25kHz
Integral time 1.0sec (31,250 times average)
M, -11.8dB
o, 0.0024
Ry 392
WindownFunction Hamming
RBW 1.3bin, 40.6kHz

Fig. 7.6  Spectrum of Hydrogen Maser of W49N
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Author observed the spectrum using the super sweep system and the results are shown in
Fig.7.7(a) ~ Fig.7.7(c). The integral time of Fig.7.7(a) was 1.0 sec that is same to Fig.7.6. The figure
of this spectrum was almost same to Fig.7.6. The difference of the level between the maximum peak
and the noise floor was approximately 13.2dB, which is 1.1dB better than Fig.7.6, and the SNR was
approximately 2/3 of Fig.7.6.

The sweep rate of Fig.7.7(a) was only 3.1 times faster than the sweep method. Author measured
spectra with another two condition as shown in Fig.7.7(b) and Fig.7.7(c). They are approximately 30
times faster than the sweep method.

[3 Eile Edit View GConfieuration
D =

Window  Help
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2000000 dB/

CENTER 6437000000 hHz
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Capture
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Reary

[AW AVG [BIB [CIB

2003/11/11 12:00
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Frequency-SPAN 16MHz
Bbw 30kHz
Integral time 1.0sec (73 times average)
St 14msec
St of sweep method 44msec
M, -13.3dB *)
o, 0.00392 *)
Rgy 243 *)

Fig 7.7 (a) Spectrum measured using Super sweep method

*) These parameters were estimated from the circled part of the figure.
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The resolution bandwidth (Rbw) of Fig.7.7(b) was 10kHz, the integral time was 3.4 sec, the
average time was 244, the sweep rate was 30 times faster than the sweep method, the level difference
between the peak and noise was 14.0dB, and the SNR was 80% of Fig.7.6. If we took the integral
time so longer, the deviation of the noise floor should be so narrower and obtain better SNR.

. Akiba — [ss212]

[53 Eile Edit View Configuration Window Help RS

D d S 7
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2000000 dEf [AIW AVG BB [CIB

CENTER 5437.000000 MHz SPAN 16.000000 WHz
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Integral time 3.4sec (244 times average)
Sweep time 14msec
Sweep time
of sweep method 400msec
M, -13.75dB *)
o, 0.00263 *)
Roy 364 *)

Fig 7.7 (b) Spectrum measure with 3.4 sec integral

*) These parameters were estimated from the circled part of the figure
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The resolution bandwidth (Rbw) of Fig.6.7-c was 3kHz, the integral time was 29.4 sec, the average
time was 200, the sweep rate was 30 times faster than the sweep method, the level difference
between the peak and noise was 14.0dB, and the SNR 497 was superior to it of Fig. 7.6.
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Roy 497 *)

Fig 7.7 (¢) Spectrum measured with 29.4 sec integral

*) These parameters were estimated from the circled part of the figure
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The relation SNR and measurement integral time is shown in Fig.7.8, where the plotted data is
obtained from Fig.7.6~7.7(c). It is assumed from Fig.7.8 that our experimental system could achieve
same SNR with approximately 5.3 times long integral time. If our experimental system could
measure 5.3 times faster, it was superior to the FFT system. By the discussion of section 6.2, it is
possible to make the system whose performance is superior the FFT system by the super sweep
method.
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500 |
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400‘
350
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300
250
200
150
100
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Fig A f/RBW SNR | Integral Time
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@ | 7.7(a) | RBW=30kHz | 243 1.0sec
® | 7.7(b) | RBW=10kHz | 364 3.4sec
@ | 7.7(c) | RBW=3kHz | 497 29.4sec

Fig 7.8 SNR against Average time length
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7.4 Observation of Methanol Maser at Yamaguchi

On 13th Oct 2007, we observed a methanol (CH;OH) maser signal of the radio astronomical body
‘G9.62+0.20° at the satellite relay center of KDDI that is located in Yamaguchi Prefecture. We used
the 32m ¢ radio telescope parabola antenna, where the spectrum analyzer ESA, provided by Agilent
Technology Co, was used as a monitor. Figure 7.9 show the spectrum measured by the ESA analyzer.
The measuring conditions were Center Frequency=9.67GHz, SPAN=4MHz, RBW=10kHz,
VBW=100Hz and Sweep Time=3.3sec. The ratio between the peak level and the noise floor was
approximately 4.7dB and the SNR was 11.3.

G9.62+0.20 Spectrum

Power [dBm]
4
N

-84
1.66E+08 1.67E+08 1.67E+08 1.68E+08 1.68E+08 1.69E+08 1.69E+08 1.70E+08 1.70E+08
Frequency [Hz]

Center Frequency 9.67GHz
Frequency-SPAN 4MHz
Bbw 10kHz
VBW 100Hz

Integral time 3.3sec (no average)

St 3.3sec

M, -4.72dB

o, 0.0586
Roy 11.3

Fig. 7.9 Signal raised by methanol maser of 9.67GHz.
This signal is measured by using the sweep spectrum analyzer ESA
(produced by Agilent Technology Co).
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We measure the signal using our experimental system described in Chapter 4. In this case, we used
an average function of the system instead of using the video filter (VBW). The average times was
100, and it was according to the video bandwidth 100Hz. We intended to set up the same condition
with Fig.7.9, measured by the ESA analyzer. The measure spectrum is shown in Fig.7.10.

The sweep time was 14msec which is approximately 200times faster that the sweep time of the
ESA. Even if we considered the average time 100, it was two times faster. The level difference
between the peak and the noise floor was approximately 6.0dB, and the SNR was 17.2.

REF -64.0 dBm
2.000000 4B/ [AMW AVG [EB [CIB

Center Frequency 9.67GHz
Frequency-SPAN 4MHz
Bbw 10kHz
Integral time 1.4sec (100times average)
St 14msec
M, -6.00dB (from the peak)
o, 0.0435
Roy 17.2

Fig 7.10 Same signal with Fig.7.9 measure by Super sweep method
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7.5 Discussion about Observations of 7.2, 7.3 and 7.4

In section 7.2, author estimated the SNR against some condition, where the measured signals were
obtained using the signal generator. Author obtained the result under weaker external disturbances. In
the results of the section, the SNR were in proportion to the square root of the integral time and the
number of the sweeps as shown in Fig.7.4.

The numerical results are shown in Table 7.2. The two columns in the right side show the ratio of
the SNR of super sweep method to the sweep method as “B/A” and “B’/A”. The average value of
“B/A” was approximately 10, and “B’/A’ “ was 24. In the measurements in section 7.2, the sweep
time of the sweep method were 1.0 sec, and the sweep time of the super sweep were 41msec. The
ratio of the sweep time was 24.4 that is corresponds to the result of “B’/A’ * of Table 7.2. Author
thought that the result of the signals whose level was —113dBm were not exact, where it was difficult
to measure exact peak level.

The result of section 7.3 is shown in Fig.7.8, where the SNR of the super sweep method was
almost proportional to the square root of the integral time. In the case that the RBW was narrower,
the sweep time was longer and the SNR became larger corresponding to the RBW. The SNR of the
built-in FFT system of VERA-Mizusawa observatory was 392. This SNR 392 is corresponds to the
integral time 5.4sen as shown in Fig.7.8. If we made the experimental system to be 5.4 times faster,
the system achieved same SNR with the FFT system. It is possible to make the system using recent
AD/C and other devices such as a FPGA. Although, the results of super sweep method were not
superior it of the FFT system in the same measurement time. The level difference between peak and
noise floor were larger than the FFT method, and the SNR measured with longer integral time was
better than the FFT result.

Section 7.4 shows the comparison of the SNR between sweep method and the super sweep method
by measuring the maser signal from the real celestial body. The two results of Fig.7.9 and Fig.7.10
were stood on same condition except the sweep time on the assumption that the VBW corresponds to
the average. The integral time of Fig.7.10 was 100times of the sweep time 14msec. On the principal
of the super sweep method, the sweep time should be shorter than 14msec. But the sweep time was
restricted by the minimum sweep time of the spectrum analyzer R3265, which is used in the
experimental system. Although the two SNR should be same, the SNR of the super sweep method
was 1.52 times larger. The reason of this advantage was assumed that the resolution filter of the super
sweep method was digital and the grade of the R3265 was superior against the analyzer ESA.

In conclusion, it was verified that the super sweep method could obtain better SNR of a measured
signal against the sweep method, and had a possibility to obtain better SNR more than the result of
the FFT method.
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7.6 Chirp Z-Transform System of GREAT

In Chapter 6, author described that the super sweep method is a kind of the Chirp
Z-transform (CZT) [4]. This algorithm has been already applied on radio astronomy. The
spectrometer applied CZT is a part of the GREAT (German REceiver for Astronomy at Terahertz
frequencies) instrument onboard SOFIA, the Stratospheric Observatory For Infrared Astronomy
[3][5]. In the system GREAT, CZT is used as a high-resolution spectrometer as shown in Fig.7.11.
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Fig 7.11 Astronomical requirements on spectral resolution
and bandwidth (Referred from [5])
AACS: Wideband analog Auto-correlator
AOS: Acoustics Optical Spectrometoer
CTS: Chirp Z-Transform Spectorometer

The simplified block diagram of SOFIA-GREAT-CTS is shown in Fig.7.12 [3][5]. In [5], the
‘Chirp Generator’ of Fig.7.12 is constructed with SAW device. In [3], the Generator is implemented
as ‘Adaptive Digital Chirp Processor (ADCP)’. In the Fig7.12, ‘SAW Compressor’ corresponds to
the negative chirp filter of the super sweep method. The configuration of this system is fixed, which
corresponds to the SAW Compressor.
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The duty of useful part of the output signal from the SAW Compressor is 50%. The other part,
50% is the transitional response of the compressor as shown in Fig.7.13.

CF=4501Hz=
SPAN=215NHz=
St=22 4 sec
IF 2100MHz Mizer AMP
z I-1a.. J ) ¥ X ¥ Tor
IF Sienal . SAW > Quadh ahuc Detector
i Compressor Digitizer
0% L
ANP .
Post-Computing
g;;fﬁ%ﬁ;{ Correlation etc.
= z
BPF igi
St=44 M osec D‘1g1tal
" [ Signal
| p I
: Frequency Expander (> 3) rocessing Measured
I
: | Spectium
CEF=550MHz Chirp
P AN=143MHz B -
SiAl gee Jenerator

Fig 7.12 Diagram of SOFIA-GREAT-CTS spectrometer [3][5]

Input signal of the Compressor: 44 U sec

Eesponse of the Compressor

s 5_

!

e ® oo

Cutput of the Compressor 1 22 U sec
Fig 7.13 Output of SAW compressor of SOFIA-GREAT-CTS spectrometer [3][5]

The fundamental algorithm of SOFIA-GREAT-CTS is same to it of the super sweep method. But
the configuration of the system is fixed; it is adapted to the SAW compressor. This system measure
spectrum whose span is 215MHz every 22 u sec. It is very high-speed measurement as a
spectrometer. But there is not any flexibility for variable measurement condition.
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Author considered it is important that a measurement system had flexibility. The system described
in Chapter 4 and other chapters was designed to have flexibility that can be configured corresponding
to any measurement condition which was allowed by the sweep spectrum analyzer (SPA) as shown
in Fig.7.14. There were many parameters over 30 (‘Processing condition in Fig7.14), which were
decided automatically to drive the system with best condition through the software included in the
PC. Author developed the software, which was the core part of the experimental system, and it was
the most difficult work through the development of the system. For instance, the software computed
the coefficients of the negative chirp filter g [N,], which were corresponded to all conditions of the
system and a measurement. The SOFIA-GREAT-CTS system has no flexibility what our
experimental system had.

Measurement Condition

Center Frequency

SPAN

RBW

Sweep Time ~e el
N N Ty IR

INPUT Sweep | AD N(e:gha'ltlve Post- Measured
SPA and p Processing Spectrum
DDC Filter
:gtg:émem f. > fIN, g,[N;] } Processing Condition

Fig 7.14 Adaptive Configuration Corresponding to the Measurement Condition

7.7 Characteristic of each method

The FFT method is the best way to measure spectrum with higher rate. But the super sweep
method and chirp z-transform spectrometer (CTS) has some merit against the FFT method.

7.7.1 Maximum sweep rate

The discussion of section 2.9.2 and 3.3.5 the sweep rate of FFT method and super sweep method is
explained as Eq.(2.81) and (3.34-b) as follows.

FFT: o o =20 L Row, 281)
B vk
SuperSweep : o s =Rbw x(Flt/y), (3.34-b)

where o is the sweep rate Hz/second, Flt is the bandwidth of the IF signal, 7, is time length of the
window function, &, and x are constants defined by Eq.(2.80) and (3.27). In the case that the
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resolution filter and windows function are same function such as Gauss, kW and x are same value
such as 2.0~3.0.

Theoretically, the super weep method can achieve the same sweep rate with the FFT method.
Practically, in some case, the sweep rate is dependent on the performance of the local oscillator. For
example, when Fit = 1GHz, Rbw=10kHz and x»=2.5, o, is 4000GHz/sec, which is according
to the sweep time 250 u sec. Until 1980’s, many spectrum analyzers achieved this speed sweep
without a PLL system, but local oscillators of most recent analyzers after 1980’s are controlled by
PLL synthesizer whose minimum sweep time are 1~20mse *).

In the case that we record the digitized signal continuously, the efficiency of the data acquisition
of the FFT method is perfect and ideal. The super sweep method cannot be superior to it, but can
approach it almost same to it.

In the FFT method, the SPAN bandwidth is limited under the Fit or the Nyquist frequency. But the
Super sweep method and CTS has no limitation. In the case that we use same A/D converter and
signal processing system, the super sweep method and CTS can measure wider span-bandwidth than
the FFT method with same sweep (measurement) rate.

*) note: The minimum sweep time of R3273 (produced by ADVANTEST Co.) is 20msec, and it of
PSA series, ESA4440 made by Agilent Co, is 1msec.

7.7.2 Sample data on a spectrum

The some characteristics of the FFT method are already described in section 2.8. The significant
difference between the FFT method and the super sweep method included the CTS is the frequency
difference between each sample of a spectrum.

In the super sweep method and CTS, the frequency difference is explained by Eq.(6.2).

A =0 At

where At is the inverse of the sampling rate f,, and o is the sweep rate. This parameter Af is
independent against the resolution: RBW.

On the other hand, in the FFT method Af" is decided by Eq.(2.75-c).

Af = fy [2N),
where N is the size of the FFT. The RBW is dependent on the sample rate and the window function
as shown in Table 2.4 (in section 2.8.3). In the case that N is increased to improve the resolution, the
3dB bandwidth (RBW) become narrower and the relation of Table 2.4 is not changed.

Author considers it is significant disadvantage of the FFT method, which has the ‘scallop loss [9]’
as shown in Table 2.4. Especially the rectangle window has the loss of 3.92dB. It should be corrected
by some post-processing. In the super sweep method and CTS, this loss can be avoided to take Af
enough smaller than the RBW.
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7.7.3  Product of Receptive Bandwidth and Aquisition-Time
In a radio astronomy, the value of the SNR is defined by Eq.(7.1).

P _
R, (PT”) (7.1)

n

In radio astronomy, it is very important matter to observe a signal with larger SNR and measure
it as fast as we can. There are three ways to obtain better SNR.

1. Reduce the o, ( standard deviation of the noise)

2. Increase the level P ( peak level of the signal)

3. Decrease the level 1, (averaged noise level)

In the most case that P, is increased, the noise level would be up and the value x4, and o,
would increase. In radio astronomy, many observation systems take the FFT method and obtain
spectrum data as fast as they can to reduce the value 1, and o,.

Figure 7.15 shows a diagram, which indicates a condition of spectrums on the frequency-time
diagram. In a FFT method which is so called ‘Real-Time FFT’, the measured signal is recorded
without discontinuance, and the data is translated into the spectrum. In Figure 7.15, the Flt is
assumed as 1MHz, and the data acquisition time is assumed 20msec. Where 7}, is the time length of
the window function to obtain the resolution the RBW. In the case that the RBW equals 10kHz,
T,, is approximately 0.2msec. We can obtain 100 independent spectrums within the time 20msec.
There are no data that do not take a part to make the spectrums as shown in the figure ‘Non Response
Area: 0%’. As described in section 7.5.1, the FFT method is a perfect and ideal method that has no
response area.

On the other hand, the bandwidth of the acquisition data in the sweep method equals to RBW.
Figure 7.16 shows the frequency-time diagram, which corresponds to Fig.7.15. In this case, the
minimum sweep time is 20msec by Eq.(2.14), and we obtain only one spectrum.

We can consider a parameter that is product of a receptive bandwidth and acquisition time,
‘bandwidth-time product’ as following equation.

Sy = FltxT, (7.2)

In the FFT method of Fig.7.15, the product is approximately 200 (IMHzX0.02sec). In the sweep
method of Fig.7.16, the product is approximately 200 (10kHz<20msec). In both method, (FFT and
sweep), the bandwidth-time product takes same value.

One sample of the time frequency diagram in the super sweep method is shown in Fig.7.17.
Where the Fit is assumed 100kHz, and RBW is assumed 10kHz. The maximum sweep rate is given

by Eq.(3.34-b), and the sweep time 7, ,, is givenas
S S
Y pan _ PN~ dmsec (7.3)
- o Rbw-Flt/ y

max_ s
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Fig.7.15 Time Frequency Diagram of Measured Spectrum
and Processing Bandwidth: Real-Time FFT Method
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Fig.7.16 Time Frequency Diagram of Measured Spectrum
and Processing Bandwidth: Sweep Method
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The sweep time is 1/10 of the sweep method in Fig.7.15. The bandwidth-time product is given by
Eq.(7.2) and it is 200 (100kHz X 2msec).

time Non Response Area: 90%

: —. 20 m sec
———=====:::::::::::::::= il o
o T =2msec
___—————_—ﬁ—_——_-______________A_______;____ﬂ__V .........
P—— = ; /E\ Freg
Fir=100kHz

Non Response Area : 90%

Fig.7.17 Time Frequency Diagram of Measured Spectrum

and Processing Bandwidth: Super Sweep Method

By above discussion, author investigated as follows. In the case that the RBW and SPAN are
common to the three methods, the bandwidth-time product is constant. Then by taking the Fir wider
we can achieve the sweep time shorter.

On the point of efficiency of the data acquisition, the sweep method of Fig.7.16 has very low
efficient. The non-response area of Fig.7.16 is shows as yellow zone, which is 99% of the area,
frequency-time product of the SPAN and the sweep time. In the super sweep method of Fig.7.17, the
non-response area is reduced into 90%. This efficiency is 1/10 to the FFT method.

By taking the Flt as wider and wider, we can obtain better efficiency acquisition. Figure 7.18 (a)
and (b) is a sample of a time frequency diagram. In the figure (a), the Fit equals the Span, and the
non-response area is 25%. In the figure (b), the Fli¢ is twice as the Span, and the non-response area is
0%. It is possible to make the efficiency 100% by this way. But in this case, the sampling frequency
of the AD/C should be four times wider than the SPAN, which is twice of the FFT method. At the
point of efficiency in all systems, the efficiency is half of the FFT method.
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Fig.7.18 Super Sweep with very wide-band Flit

Author suggest the suitable configuration of the super sweep method as follows.

1) The measurement SPAN is sufficiently wider than the Nyquist frequency of the AD/C.

2) The Flit should be as wider as the Nyquist frequency.
In this condition, the system could measure wider SPAN of a spectrum than the FFT method, and the
efficiency of the data acquisition would be half to the FFT method.

The receptive bandwidth of a conventional sweep spectrum analyzer is fixed as its RBW. The
super sweep method broke the restriction, and gave the sweep method a freedom to change the
receptive bandwidth independently from an RBW. By this freedom, the sweep spectrum analyzer
(including the super sweep method) became not only to be able to measure high-speed measurement
with narrow RBW but also obtain a variety of a measurement condition.

7.8 Conclusion

We confirmed that it needs larger number of average to obtain better SNR in spectrum
measurements. Although author’s system could not be superior the optimized FFT system in
Mizusawa, the level differences between peak and noise floor were better than the FFT system.

The super sweep method has characteristics as follows.

a) In theoretically, the super sweep method can measure as fast as the FFT method .
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b) No restriction between RBW and bin on the frequency domain
c) Better dynamic range because of a narrow band system

By the discussion of this chapter, author suggests application of super sweep method in radio
astronomy as follows.
1) As a high performance monitor:
Sometimes, the monitor may be used as a spectrometer for the observation.
2) In the case that the spectrometer is demanded lightweight, high resolution or a low-cost:
Generally, a high-speed FFT system demands much large size of memory. In the super
sweep method, the sampling frequency of the acquisition data is decimated appropriately, and
the size of the memory can be reduced corresponding to the sampling rate.
3) As avery wideband spectrometer:
It measure wideband spectrum, which is wider than the Nyquist frequency of the fastest
AD/C.
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Chapter 8
Conclusions

8.1 Conclusions

A conventional sweep spectrum analyzer has the property that is called ‘over sweep-rate
response’. This property was mentioned by many authors [1][2][3] and expressed in Eq.(2.41) and
(2.42). In the super sweep method, the IF signal was digitized and converted into the base band signal
whose bandwidth was wider than the resolution bandwidth (RBW). The base band signal is inputted
into the negative chirp filter. Author expected that the negative chirp filter would reduce the over
sweep-rate response even in the case of the faster sweep rate than that of the conventional method. In
our experiment, author confirmed that the over sweep-rate response was reduced.

In Chapter 1, the outline of spectrum analyzers is summarized. The purpose of this thesis
described here is to reduce the over sweep-rate response and achieve faster measurement.

In Chapter 2, author investigated the signal processing and mathematical model of the sweep
method of spectrum analyzers. Author described the cause of the over sweep-rate response. The
analysis of this chapter introduces the idea of the super sweep method. Some characteristics of the
FFT method were mentioned in this chapter.

In Chapter 3, the theory and the signal processing system of the super sweep method are
described. Author employed the negative chirp filter as the resolution filter, which reduced and
canceled the over sweep-rate response.

In Chapter 4, author described the experiment system. In the system, author used a conventional
spectrum analyzer as the RF down converter, and designed and made the DSP unit, and used the PC
as a display and a controller. Author provided the optimized environment to drive the negative chirp
filter, and measured the spectrum of CW signal by changing the normalized sweep rate 1/k.

In Chapter 5, the results of the experiment produced from chapter 4 were described. The results
plotted the peak level and the broadening of the resolution bandwidth against the //k. Author verified
that the new method reduced the over sweep-rate response, and achieved the fast sweep rate 10 or 30
times faster than traditional sweep methods. Author confirmed that the sweep rate was proportional
to the bandwidth Flt, which is the bandwidth of the IF signal just front of the resolution filter.

In Chapter 6, several interesting properties and characteristics of the new method were described.
Author verified that the new method was a derivation of the Chirp Z-transform. A comparison of
spectrum measurement methods is described at the end of this chapter.

In Chapter 7, author investigated the characteristics of the super sweep method as a spectrometer
used in a radio telescope. Author observed some radio astronomical body using the experimental
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system, and described result and discussion. Author suggested that the super sweep method has a
possibility of a spectrometer in a radio astronomy.

In conclusion, author and his group made break through in the restriction of the sweep rate of a
spectrum analyzer using the super sweep method. Our further work is to study the characteristics of
the new method in further detail.

8.2 The representative contributions

Author invented and verified the architecture of the super sweep method, which is a method to
measure spectrum of a signal. The new method kept the merits of the sweep method and achieved the
fast measurement. The measurement rate (sweep rate) was proportional to the IF bandwidth, Fiz.

The abscissa of the spectrum obtained through the new method showed not only a frequency but
also a time. This property is a merit of the sweep method against the FFT method, and it can provide
operators more information of measured signals changing conditions such as sweep time and the
RBW.

The dynamic range of the experimental system was superior to the conventional spectrum
analyzer R3264. The level of the noise floor was —120dBm or under at RBW 1Hz. The new method
did not reduce the performance of the system, but improved them.

Author suggested the system to achieve the fast operation in section 6.2.5. We took attention to
the noise of the system to achieve the performance of the system in section 6.8.3. In the super sweep
method, we need to reduce the noise of IF signal. In traditional analog IF method, the noise does not
remain on the spectrums.

Author expect that the super sweep method should be used to measure spectrum for test of EMI
(Electro Magnetic Interference), detecting unlicensed radio stations and tests of a spurious of radio
set, which demands to measure a wideband spectrum and an adequate resolution. In conventional
sweep method, these measurements would need long measurement time. The new method is suitable
to measure a purity of CW oscillators, which need fine resolution such as RBW=1Hz.

Author used the experimental system to observe the radio signal of W49N and G9.67+2.0 as the
radio telescope spectrometer, and verified the advantage against a sweep spectrum analyzer. The
SNR of the results were approximately half of the built-in FFT system at the integral time, one sec.
These were satisfied as a monitor.

A spectrum of a signal is presented by Fourier transform of the signal. But we cannot escape
from the principle of the ‘uncertainty principle’. The Fourier transform of the signal exists as an ideal
and imaginary measurement. Although we can never observe the spectrum of the signal, we can
observe it under the restriction of the uncertainty principle; the product of the resolution and
measurement time is constant; Af x At = constant .

We have several methods using digital signal processing to obtain a spectrum such as FFT,
Chirp Z-Transform, MEM etc. A sweep method is popular to measure radio frequency signal. But the

214 -



sweep method has the restriction which is called the over sweep-rate response described in Chapter2.
This restriction is not cased by the uncertainty principle. Therefore, the sweep method needs longer
measurement time than the FFT method and other methods at fine frequency resolution.

By the super sweep method, we can cancel the over sweep-rate response and approach the
restriction of the measurement to the uncertainty principle.

Finally, the idea and architecture is under the protection of the patent [4]. This patent was applied
to U.S.A and other primary nations.
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