
  

 - i - 

 

 

 

 

 

Theory and Experimental Evaluation of Theory and Experimental Evaluation of Theory and Experimental Evaluation of Theory and Experimental Evaluation of 

the Super Sweep Spectrum Analyzerthe Super Sweep Spectrum Analyzerthe Super Sweep Spectrum Analyzerthe Super Sweep Spectrum Analyzer    
 

 

 

Masao Nagano 
 
 

 
 

Mar. 31, 2008 
 

 
 

Supervisor: Prof. Koh-ichiroh Morita 
 

The Graduate University for Advanced  
 



  

 - ii - 

Contents 

 

 

1 1 Introduction       1 

1.1 Spectrum Analyzer ・・・・・・・・・・・・・・・・・ 1 

1.1.1 Backgroun ・・・・・・・・・・・・・・・・・・・・・ 1 

1.1.2  The properties and problems of the sweep method・・・・・ 2 

1.2 History of Spectrum Analyzers ・・・・・・・・・・・・・ 3 

1.3 Purposes of this Research ・・・・・・・・・・・・・・・・・ 5 

1.4 Method  ・・・・・・・・・・・・・・・・・・・・・ 5 

1.5 Representative result ・・・・・・・・・・・・・・・・・ 6 

1.6 Composition of this thesis ・・・・・・・・・・・・・・・・・ 7 

1.7 Glossary  ・・・・・・・・・・・・・・・・・・・・ 7 

1.8 Technical Terms on Spectrum Analyzers ・・・・・・・・・ 9 

1.9  Reference ・・・・・・・・・・・・・・・・・・・・ 11 

 

2 Review of Sweep-Signal Method ・・・・・・・・・ 13 

2.1 Introduction ・・・・・・・・・・・・・・・・・・ 13 

2.2 Principle of Sweep-Signal Spectrum Analyzers ・・・・ 14 

2.2.1 Outline of Spectrum Analyzers ・・・・・・・・ 14 

2.2.2 Frequency Converter *) ・・・・・・・・・・・・ 16 

2.2.3 Input LPF ・・・・・・・・・・・・・・・・ 17 

2.3 Analog signal processing with swept local oscillator  ・・・ 18 

2.3.1 Frequency converter with Swept Local Oscillator ・・・ 18 

2.3.2 Output of IF BPF ・・・・・・・・・・・・・・・・ 20 

2.3.3 Multi Conversion ・・・・・・・・・・・・・・・・ 22 

2.3.4 Restriction of Sweep time ・・・・・・・・・・・・ 23 

2.3.5 Permissible distortion ・・・・・・・・・・・・ 25 

2.4 Digital IF ・・・・・・・・・・・・・・・・・・ 26 

2.4.1 Digital IF method ・・・・・・・・・・・・・・・・ 27 

2.4.2 Quadrature Detection ・・・・・・・・・・・・ 28 

2.4.3 Digitized IF Signal with Swept Local oscillator ・・・・ 30 

2.4.4 Base Band Signal ・・・・・・・・・・・・・・・・ 32 

2.5 Analysis of Sweep Spectrum analyzer ・・・・・・・・ 36 

2.5.1 Spectrum Analyzer as Pseudo Fourier Transformer ・・・ 36 

2.5.2 Restriction of sweep rate ・・・・・・・・・・・・・ 39 



  

 - iii - 

2.5.3 Gauss Function as Resolution Filter ・・・・・・・・・ 43 

2.5.4 Simulation of Over-Swept response ・・・・・・・・・ 47 

2.5.5 Analog Gaussian Filter ・・・・・・・・・・・・・ 50 

2.5.6 Resolution Bandwidth ・・・・・・・・・・・・・ 51 

2.5.7 Response against two tone Signals ・・・・・・・・・ 54 

2.6 Other Properties of Sweep Spectrum Analyzers ・・・・・ 57 

2.6.1 Shape Factor ・・・・・・・・・・・・・・・・・ 57 

2.6.2 Time Domain measurement  ・・・・・・・・・・・・ 58 

2.6.3 Noise level and Resolution Bandwidth  ・・・・・・・ 61 

2.6.4 Zero Carrier ・・・・・・・・・・・・・・・・・ 64 

2.7 Bandwidth of Signals and Resolution Filters ・・・・・・・ 65 

2.7.1 Signal under the measurement ・・・・・・・・・・・ 65 

2.7.2  Observed signal  ・・・・・・・・・・・・・・・・ 65 

2.7.3 Discussion:  ・・・・・・・・・・・・・・・・・・ 71 

2.7.4 Conclusion  ・・・・・・・・・・・・・・・・・・ 73 

2.8 Sweep method and FFT method ・・・・・・・・・・・・ 75 

2.8.1 Digital IF method ・・・・・・・・・・・・・・・・ 75 

2.8.2 FFT  ・・・・・・・・・・・・・・・・・・・・ 75 

2.8.3 Frequency resolution (RBW) in FFT ・・・・・・・・ 77 

2.8.4 Bandwidth of the processed signal and dynamic range ・・ 78 

2.8.5 Ripple on the spectrum ・・・・・・・・・・・・・ 79 

2.8.6 DC Response in FFT method ・・・・・・・・・ 80 

2.9 Multiple-FFT Measurement ・・・・・・・・・・・・ 81 

2.9.1 Outline of the measurement  ・・・・・・・・・ 81 

2.9.2  Sweep Rate ・・・・・・・・・・・・・・・・・ 81 

2.9.3 Actual Measurement Time ・・・・・・・・・・・・・ 83 

2.9.4  Demerit of the FFT Method  ・・・・・・・・・ 85 

2.10 Summary ・・・・・・・・・・・・・・・・・・・・・ 86 

2.11   Reference ・・・・・・・・・・・・・・・・・・・・・ 88 

 

3 Theory and System of Super Sweep Method   ・・・ 89 

3.1 Introduction ・・・・・・・・・・・・・・・・・・・・・・ 88 

3.2 Theory of super sweep method   ・・・・・・・・・・・・ 88 

3.2.1 Back ground of super sweep method ・・・・・・・・・・ 88 

3.2.2 Mathematical model of super sweep method  ・・・・・ 88 

3.2.3 Implementation of Super Sweep method ・・・・・・ 92 

3.3  Signal Processing of Super Sweep Method  ・・・・・・ 94 

3.3.1  Inspection of Super Sweep Method  ・・・・・・ 94 



  

 - iv - 

3.3.2  Inspection of negative chirp filter  ・・・・・・ 95 

3.3.3 Gauss function as negative chirp filter  ・・・・・・ 99 

3.3.4 Practical negative chirp filter  ・・・・・・・・・・ 100 

3.3.5 Maximum Sweep rate ・・・・・・・・・・・・・・ 101 

3.4  Complex filter and Display ・・・・・・・・・・・・・・ 103 

3.5  Summary ・・・・・・・・・・・・・・・・・・・・・ 104 

3.6  Reference ・・・・・・・・・・・・・・・・・・・・・ 104 

 

4 Experiments of new method  ・・・・・・・・・・ 105 

4.1 Introduction ・・・・・・・・・・・・・・・・・・・・・・ 105 

4.2 Experimental system ・・・・・・・・・・・・・・・・・・ 105 

4.2.1  Overview of the system ・・・・・・・・・・・・・・・・・・ 105 

4.2.2  Signal flow of the system   ・・・・・・・・・・・・・・・・ 107 

4.2.3  External view of the system   ・・・・・・・・・・・・・ 108 

4.2.4  Chain of filters  ・・・・・・・・・・・・・・ 110 

4.2.5 Implementation of the Gaussian filter   ・・・・・・・・ 111 

4.2.6  Sampling in the frequency domain   ・・・・・・・・ 112 

4.2.7  Setting Up Parameters ・・・・・・・・・・・・・・ 113 

4.2.8 Coefficients of Negative Chirp Gaussianl Filters  ・・・ 115 

4.2.9  Span and Sweep time Corresponding to Plotted 1/k ・・・ 115 

4.2.10 Discrete Integral to obtain a Spectrum  ・・・・・・ 118 

4.3 Property and Configuration of DDC (GC4016)   ・・・・・・ 120 

4.3.1 Outline of Digital Down Converter Channels  ・・・・・ 120 

4.3.2 CIC Filter ・・・・・・・・・・・・・・・・・・ 121 

4.3.3 Distribution Arithmetic (DA) method FIR Filter  ・・・・ 123 

4.3.4 Apportionment of Decimation   ・・・・・・・・・ 124 

4.3.5 Coefficients of FIR filters ・・・・・・・・・・・・・・ 124 

4.4 Specification of the experimental system ・・・・・・・・・・ 128 

4.5 Summary ・・・・・・・・・・・・・・・・・・・・・・ 129 

4.6 Reference ・・・・・・・・・・・・・・・・・・・・・・ 129 

4.7 Appendix: Latency:  ・・・・・・・・・・・・・・ 129 

 

5 Result and Discussion ・・・・・・・・・・・・・・ 131 

5.1 Introduction ・・・・・・・・・・・・・・・・・・・ 131 

5.2 Measured Spectrums ・・・・・・・・・・・・・・・・ 131 

5.2.1 Sample of measurements  ・・・・・・・・・・ 131 

5.2.2 The way to verify the over sweep response ・・・・・・ 134 

5.2.3 The way to estimate the 3dB bandwidth of a peak  ・・・・ 134 



  

 - v - 

5.2.4 Estimation of the peak Level ・・・・・・・・・・ 134 

5.3 Result  ・・・・・・・・・・・・・・・・・・・・・・・ 138 

5.3.1 Numerical result ・・・・・・・・・・・・・・・・・・ 138 

5.3.2 Result of the Peak level reduction ・・・・・・・・・・ 141 

5.3.3 Result of the broadening of RBW ・・・・・・・・・・ 143 

5.4 Discussion ・・・・・・・・・・・・・・・・・・・・・・ 135 

5.4.1 Peak level Reduction ・・・・・・・・・・・・・ 145 

5.4.2 Broadening of the resolution bandwidth ・・・・・・ 145 

5.4.3  Total consideration of the maximum sweep rate ・・・・・ 145 

5.5 Summary ・・・・・・・・・・・・・・・・・・・ 146 

5.6 Reference ・・・・・・・・・・・・・・・・・・・ 146 

 

6 Additional discussions ・・・・・・・・・・・・・・ 147 

6.1 Introduction  ・・・・・・・・・・・・・・・・・・ 147 

6.2 Required condition for fast sweep  ・・・・・・・・・・ 147 

6.2.1 Operation time  ・・・・・・・・・・・・・・・・・・ 147 

6.2.2 Operation time of each sample of a spectrum ・・・・・・ 148 

6.2.3 Required performance of the operation ・・・・・・ 150 

6.2.4 Relation between the IF bandwidth and the sampling frequency 151 

6.2.5 Implementation of the fast complex filter ・・・・・・ 152 

6.3 Display of new method ・・・・・・・・・・・・・・ 154 

6.4  Filter margin and synchronization of frequency ・・ 156 

6.4.1 Over view of latency and synchronization of the system ・・ 156 

6.4.2 Margin corresponding to chain of filters ・・・・・・ 156 

6.4.3 Synchronization between spectrums and ramp signals ・・ 158 

6.5  Response of the IF filter ・・・・・・・・・・・・・・・・・・ 160 

6.6  Super Sweep Method and Chirp Z-Transform ・・・・・・ 161 

6.6.1  Theoretical Background ・・・・・・・・・・・・・・ 161 

6.6.2 Numerical Analysis ・・・・・・・・・・・・・・ 164 

6.6.3 Numerical Analysis of a Sweep Method ・・・・・・ 167 

6.7  Response against two-tone signals ・・・・・・・・・・ 169 

6.8 Influence of the noise  ・・・・・・・・・・・・・・ 172 

6.8.1 Noise in Spectrum Analyzers  ・・・・・・・・・・・ 172 

6.8.2 Phase Noise of the local oscillator ・・・・・・・・・・ 172 

6.8.3 Noise in the IF signal ・・・・・・・・・・・・・・ 174 

6.9 Examples of Spectrums  ・・・・・・・・・・・・・・ 177 

6.9.1 RBW 1Hz ・・・・・・・・・・・・・・・・・・ 177 

6.9.2 RBW 100Hz ・・・・・・・・・・・・・・・・・・ 178 



  

 - vi - 

6.9.3 RBW 1kHz ・・・・・・・・・・・・・・・・・・ 179 

6.9.4 RBW 100kHz ・・・・・・・・・・・・・・・・・・ 180 

6.10 View of spurious peaks  ・・・・・・・・・・・・・・ 182 

6.11 Comparison of the methods ・・・・・・・・・・・・・・ 185 

6.12   Reference  ・・・・・・・・・・・・・・・・・・ 187 

 

7 Application in Radio Astronomy ・・・・・・・・・・・ 189 

7.1 Introduction  ・・・・・・・・・・・・・・・・・・・ 189 

7.2 Improvement of SNR against sweep method   ・・・・・・・ 190 

7.3 Observation of W49N ・・・・・・・・・・・・・・・・・・・ 196 

7.3 Comparison against FFT method , Observation of W49N ・・・ 196 

7.4 Observation of Methanol Maser at Yamaguchi  ・・・・・・ 201 

7.5 Discussion for Observations of 7.2, 7.3 and 7.4 ・・・・・・ 203 

7.6 Chirp Z-Transform System of GREAT   ・・・・・・ 204 

7.7 Characteristic of each method  ・・・・・・・・・・ 206 

7.7.1 Maximum sweep rate ・・・・・・・・・・・・・・ 206 

7.7.2 Sample data on a spectrum   ・・・・・・・・・・・・・ 207 

7.7.3 Product of Receptive Bandwidth and Aquisition-Time ・・・ 208 

7.8 Conclusion  ・・・・・・・・・・・・・・・・・ 211 

7.9  Reference  ・・・・・・・・・・・・・・・・・ 212 

 

 

8 Conclusions  ・・・・・・・・・・・・・・・・・ 213 

8.1 Conclusion ・・・・・・・・・・・・・・・・・・・・・ 213 

8.2 The representative contributions  ・・・・・・・・・ 214 

8.3  Reference ・・・・・・・・・・・・・・・・・・・・ 215 

 

9 List of Publications  ・・・・・・・・・・・・・ 216 

 



  

 - vii - 

List of Tables 

2.1  Peak Level Reduction vs. Normalized Sweep Rate ・・・・・・・・・ 49 

2.2  Broadening of Rbw against Normalized Sweep Rate  ・・・・・・・・・ 50 

2.3  Specification of signal in Fig.2.32~2.35    ・・・・・・・・・・・・・ 65 

2.4  Characteristics of Windows  ・・・・・・・・・・・・・・・・・ 77 

2.5-a:  Results of Type A (Rohde&Schwaltz FSU in 2006) ・・・・・・・・・ 85 

2.5-b:  Results of Type B (Agilent ESA in 2006) ・・・・・・・・・・・・・ 85 

2.6 Characteristics of each methods ・・・・・・・・・・・・・・・・・ 87 

 

4.1 Principal parameters under the experiments  ・・・・・・・・・・ 114 

4.2 Normalized sweep rate 1/k and the SPAN and Sweep time 

RBW of all conditions are 300Hz  ・・・・ 117 

4.3  Apportionment of Decimation  ・・・・・・・・・・・ 124 

4.4 Coefficient of CFPR filters ‘cfir_68’ (21TAP) ・・・・・・・・ 125 

4.5  The Coefficient of the PFPR filter ‘pfir_68’ (63TAP)  ・・・・・ 125 

4.6  Primary specification of the experimental system ・・・・・・・・ 128 

 

5.1 Results of S1  ・・・・・・・・・・・・・・・・・・・ 138 

5.2 Results of S2  ・・・・・・・・・・・・・・・・・・・ 139 

5.3 Results of conventional spectrum analyzer (Cnv), R3264 ・・・・・ 140 

5.4 Peak Level Reduction vs. Normalized sweep rate ・・・・・・・・・ 141 

5.5 1/k : Peak Level reduction corresponds to -0.1dB ・・・・・・・・・ 142 

5.6 Broadening of RBW vs. Normalized sweep rate 1/k   ・・・・・・・・ 143 

5.7 1/k corresponds to Rbw’/Rbw=1.1  ・・・・・・・・・・・・・ 144 

 

6.1 Operation time of the experimental system (DSP complex filter)  ・・・ 148 

6.2 Operation time of the experimental system (complex filter of the DDC) 153 

6.3 Experimental conditions of Fig.6.12 ・・・・・・・・・・・・ 169 

6.4 Comparisons of spectrum measurement methods   ・・・・・・・ 185 

7.1 Conditions of Measurements ・・・・・・・・・・・・・・・ 191 

7.2 SNR against Integral time  ・・・・・・・・・・・・・・・ 194 

7.3 Standard deviations against Integral times  ・・・・・・・・・・ 169 



  

 - viii - 

List of Figures 

1.1 Example of a over sweep-rate response ・・・・・・・・・・・・ 3 

1.2 Comparison of a sweep rate  

between the sweep method and the super sweep method ・・ 6 

1.3 Samples of display of a spectrum analyzer ・・・・・・・・・・・・・ 10 

 

2.1 Block Diagram of a Classic Sweep Spectrum Analyzer ・・・・・・ 15 

2.2 Block Diagram of a Frequency Converter ・・・・・・・・・・・・・ 17 

2.3 Frequency around a mixer ・・・・・・・・・・・・・・・・ 17 

2.4 Frequencies of signals around a mixer with the swept local ・・・・・・ 19 

2.5 Time-Frequency diagram around a mixer with the swept local  ・・・ 21 

2.6 Multi frequency converter ・・・・・・・・・・・・・・・・・・・ 22 

2.7 Response of an RBW filter measuring CW signal   ・・・・・・・・ 24 

2.8 Examples of over sweep-rate responses ・・・・・・・・・・・・・ 25 

2.9 Block Diagram of sweep spectrum analyzers with digital IF ・・・・・・ 15 

2.10 Detail of digital IF section ・・・・・・・・・・・・・・・・ 27 

2.11 Quadrature Detection in Frequency Domain ・・・・・・・・・ 30 

2.12 Digitized IF signal with swept local oscillator: )(tS IF  ・・・・・・ 32 

2.13 Quadrature Detected IF Signal through a wide band LPF: )(tSB  ・・ 33 

2.14 Quadrature Detected IF Signal through a RBW Filter： )(_ tS RBWB  ・・ 34 

2.15 Spectrum Extracted from a Signal )(_ tS RBWB  ・・・・・・・・・ 34 

2.16 Signal Flow of Sweep Spectrum analyzers with Digital IF system ・・ 35 

2.17 Simplified Block Diagram of Sweep Spectrum Analyzers with Digital IF 36 

2.18 Conceptual diagram of sweep time and rate ・・・・・・・・・・・ 40 

2.19 Example of over swept-rate response ・・・・・・・・・・・ 41 

2.20 Power spectrum under over-sweep ・・・・・・・・・・・・・・・ 42 

2.21 Simulation of the integral Eq.(2.47-b) :  

Response of Gaussian filter against chirped base band signal 

(a) SPAN=10kHz, RBW=1kHz, ST =20msec ,Peak level = -0.10dB, 1/k=0.5      45 

(b) SPAN=10kHz,RBW=1kHz, ST =4msec, Peak level = -1.73dB, 1/k=2.5   45 

(c) SPAN=1ｋHz, RBW=1ｋHz, ST =2msec, Peak level = -0.1dB, 1/k=0.5  46 

2.22 Peak Level Reduction vs. Normalized Sweep Rate ・・・・・・・・ 47 

2.23 Broadening of Rbw vs 1/k ・・・・・・・・・・・・・・・ 48 



  

 - ix - 

2.24 Spectrums of two Tone signals ・・・・・・・・・・・・・・・ 53 

2.25 Base Band Signals and Spectrum against two-tone Signal 

Span=10kHz, Rbw=1kHz, Sweep Time=20mse 

    (a) Spectrums of two signals, ⊿f=1500Hz ・・・・・・・・・・・・ 55 

(b) Spectrums of two signals, ⊿f=1330Hz ・・・・・・・・・・・・ 55 

 (c) Spectrums of two signals, ⊿f=1000Hz ・・・・・・・・・・・・ 56 

 (d) Spectrums of two signals, ⊿f=800Hz ・・・・・・・・・・・・ 56 

2.26 Shape factor (Bandwidth selectivity) ratio of 60dB and 3dB bandwidth 58 

2.27 Time domain measurement ・・・・・・・・・・・・・・・・ 59 

2.28 Spectrum of Dynamical Signal ・・・・・・・・・・・・・・・ 60 

2.29 Equivalent Noise Bandwidth (ENBW) of a resolution filter ・・・・・・ 61 

2.30 Relation between noise level and RBW 

 (a) Observed noise level changes as )/log(10 01 RbwRbw   ・・・・・ 63 

 (b) low level signal and RBW  ・・・・・・・・・・・・ 63 

2.31 Zero Carrier ・・・・・・・・・・・・・・・・・・・・・・ 64 

2.32 Measurement of wideband signals with RBW 1MHz ・・・・・・ 67 

2.33 Measurement of wideband signals with RBW 100kHz ・・・・・・ 68 

2.34 Measurement of wideband signals with RBW 1kHz  ・・・・・・ 69 

2.35 Measurement of wideband signals with SPAN 200kHz   ・・・・・・ 71 

2.36 Convolution of FM signal and RBW filter  ・・・・・・・・・ 72 

2.37 Dynamics of FM modulation and the RBW filters ・・・・・・・・・ 74 

2.38 Example of Block diagram of an FFT method ・・・・・・・・・ 75 

2.39 Concept of FFT ・・・・・・・・・・・・・・・・・・・・・・・ 76 

2.40 Example of a Scallop Loss ・・・・・・・・・・・・・・・・ 78 

2.41 Bandwidth of processed signal in seep method and FFT method ・・ 79 

2.42 Ripples on Spectrums in FFT method ・・・・・・・・・・・・・ 80 

2.43 Jointed Spectra by Step Sweep method ・・・・・・・・・・・・ 82 

2.44 Sweep rate Against Rbw  ・・・・・・・・・・・・・・・・ 84 

2.45 Ripple on a Spectrum by Step Sweep method ・・・・・・・・・ 86 

 

3.1 Diagram of our Experimental System  ・・・・・・・・・・ 93 

3.2 Overview of Digital Down Converter (DDC) ・・・・・・・・・・ 93 

3.3 Base band signal in sweep method  ・・・・・・・・・・・・ 95 

3.4 Product of Chirped base band signal and negative chirp function ・・・ 97 



  

 - x - 

3.5 Gaussian Filter: RBW=300Hz ・・・・・・・・・・・・・・・・ 98 

3.6 Gaussian Filter( RBW=300Hz) )(tg n  as a Negative chirp filter ・・・・・ 99 

3.7 Time limited Gausian filter  ・・・・・・・・・・・・・ 100 

3.8 Frequency response for χ=2.6 and 3.0 ・・・・・・・・・・・・ 101 

3.9 Response time and the frequency range of a negative chirp filter ・・・・ 102 

3.10 Signal Flow of a Complex filter ・・・・・・・・・・・・・・・ 103 

 

4.1 Overview of Our Experimental System ・・・・・・・・・・・・ 106 

4.2 Real Panel view of our Experimental System  ・・・・・・ 106 

4.3 Over view of Signal Flow of our Experimental System ・・・・・・ 107 

4.4 Over view of the Experimental System ・・・・・・・・・・・・ 108 

4.5 Internal view of DSP Unit ・・・・・・・・・・・・・・・・ 109 

4.6 Internal block diagram of the DSP Unit ・・・・・・・・・・・・ 109 

4.7 Chain of Band Limit Filters  ・・・・・・・・・・・・・ 111 

4.8 Figure of a Gauss filter (dB) and Minimum Sampling Rate ・・・・・・ 112 

4.9 Sampling Rate of a spectrum data  ・・・・・・・・・・・・・・・・ 113 

4.10-a Coefficients of the Gaussianl Filter of S1  
53 1041.0/1040/ ⋅=⋅== STSpanσ     ・・・・・・・・・・・・・・・ 113 

4.10-b Coefficients of the Gaussianl Filter of S2  
63 1033.103.0/1040/ ⋅=⋅== STSpanσ  ・・・・・・・・・・・・ 113 

4.11 Discrete Integral to extract a Spectrum ・・・・・・・・・・・・ 119 

4.12 Down Converter Channels ・・・・・・・・・・・・・・・・ 120 

4.13 CIC Decimation Filter ・・・・・・・・・・・・・・・・・・・ 121 

4.14 CIC Filter Frequency Response for N=4,M=1,R=7 and fc=1/8 ・・・・・ 122 

4.15 Frequency Response of CIC Filter around zero frequency ・・・・・ 122 

4.16 Illustrated algorithm of an FIR filter   ・・・・・・・・・・・・ 123 

4.17 Concept of FIR filter in DA method  ・・・・・・・・・・・・ 123 

4.18 Figure of ‘cfir_68’ (21TAP)   ・・・・・・・・・・・・・・・ 126 

4.19 Figure of ‘pfir_68’ (63TAP)   ・・・・・・・・・・・・・・・ 126 

4.20 Frequency response of CFIR with PFPR ・・・・・・・・・・・・ 127 

 

5.1 (a) Spectrums with various 1/k of Sweep method ・・・・・・・・ 132 

5.1 (2) Spectrums with various 1/k of Super Sweep method   ・・・・・・・ 133 

5.2 Three point data that decide the 3dB bandwidth, Rbw’ ・・・・・ 135 

5.3 Three points around the peak ・・・・・・・・・・・・・・・ 137 



  

 - xi - 

5.4 Peak Level Reduction vs. Normalized sweep rate   ・・・・・・・ 142 

5.5 Broadening of the RBW vs. 1/k ・・・・・・・・・・・・・・・ 144 

 

6.1 Interval of frequency and time between each sample of a spectrum  149 

6.2 Relation between IF filter and sampling frequency   ・・・・・・・・ 151 

6.3 Complex filter using DA FIR filter of DDC:GC4016  ・・・・・・・・・

 152 

6.4 Multi trace Display on PC ・・・・・・・・・・・・・・・・ 155 

6.5 Artificial Analog trace Display of R3264  ・・・・・・・・・ 155 

6.6 Chain of Filters and its Latency ・・・・・・・・・・・・・・・ 156 

6.7 Latency and Margin for a Filter ・・・・・・・・・・・・・・・ 157 

6.8 Synchronization on abscissa ・・・・・・・・・・・・・・・ 159 

6.9 Signal flow of Spectrum analyzers by FFT method   ・・・・・・・ 160 

6.10 Spectrum of FFT method with IF frequency response ・・・・・ 160 

6.11 Concept of Chirp Z-Transform ・・・・・・・・・・・・・・・ 162 

6.12 (a)  Spectrum by Super Sweep Method (SdB), 

Gaussian Filter (g) And Base Band signal (I and Q)  ・・・・ 164 

6.12 (b)  I and Q part of the Spectrum in (a) ・・・・・・・・・・・・ 165 

6.12 (c)   Transition of phase of Spectrum in (a) : )/(tan 1 IQ−  of (b)  ・・・・ 165 

6.12 (d)   Differentiation of phase in (b)    ・・・・・・・・・・・・・・ 166 

6.12 (e)  Second differentiation of phase in (b) ・・・・・・・・・・・・ 166 

6.13 (a)  Spectrum by Sweep Method (SdB), 

Gaussian Filter (g) and Base Band signal (I and Q) ・・・・・ 167 

6.13 (b)   Transition of phase of Spectrum of (a)  ・・・・・・・・・ 168 

6.13 (c)  Second differentiation of phase in (b)  ・・・・・・・・・ 168 

6.14 (a)  Spectrums of two signals, ⊿f=1500Hz, Sweep Time 2msec ・・・・ 170 

6.14 (b)   Spectrums of two signals, ⊿f=1000Hz, Sweep Time 2msec  ・・・・ 170 

6.14 (c)   Spectrums of two signals, ⊿f=1500Hz, Sweep Time 10msec ・・・・ 171 

6.14 (d)   Spectrums of two signals, ⊿f=1000Hz, Sweep Time 10msec  ・・・ 171 

6.15 Model of noise of spectrum analyzers ・・・・・・・・・・・・ 172 

6.16 Phase noise of Sweep Spectrum Analyzers  ・・・・・・・・・・・ 173 

6.17 Deformed diagram of our experimental system ・・・・・・・・・ 174 

6.18 Obtained Spectrums using Super Sweep Method ・・・・・・・・・ 175 

6.19 Noise of IF signal and Spectrum ・・・・・・・・・・・・・・・・ 176 



  

 - xii - 

6.20 Spectrum with RBW 1Hz  ・・・・・・・・・・・・・・・・ 177 

6.21 Spectrum with RBW 100Hz and 1kHz, SPAN100kHz ・・・・・ 178 

6.22 (a)   Spectrum with RBW 1kHz , SPAN4MHz ・・・・・・・・・ 179 

6.22 (b)   Spectrum with RBW 1kHz , SPAN400kHz ・・・・・・・・・ 180 

6.23 (a)   Spectrum with RBW 100kHz , SPAN 1GHz ・・・・・・・・・ 181 

6.23 (b)   Spectrum with RBW 100kHz , SPAN 100MHz  ・・・・・・・・・ 181 

6.24 (a)   Spectrum measured by R3264      ・・・・・・・・・・・・ 182 

6.24 (b)   Spectrum measured by Super sweep method ・・・・・・・・・ 183 

6.24 (c)   Over lay of Spectrums of (a) and (b) ・・・・・・・・・・・・ 183 

6.25 Time/Frequency Diagram of IF signal and resolution filter  ・・・・・ 184 

 

7.1 System for estimating SNR ・・・・・・・・・・・・・・・ 191 

7.2 (a) Measured Spectrum using sweep spectrum analyzer with AVG 3  191 

7.2 (b) Spectrum measured with AVG 30 ・・・・・・・・・・・・・・・ 192 

7.3 (a) Spectrum measured using the super sweep method with AVG 73  ・・ 193 

7.3 (b) Spectrum measured using Super sweep method with AVG 732  ・・・ 193 

7.4 SNR against Integral time ・・・・・・・・・・・・・・・・・・・ 194 

7.5 Standard deviations against Integral times ・・・・・・・・・・・・ 195 

7.6 Spectrum of Hydrogen Maser of W49N ・・・・・・・・・・・・ 196 

7.7 (a) Spectrum measured using Super sweep method ・・・・・・・・・ 197 

7.7 (b) Spectrum measure with 3.4 sec integral ・・・・・・・・・・・・ 198 

7.7 (c) Spectrum measured with 29.4 sec integral ・・・・・・・・・・・・ 199 

7.8 SNR against Average time length  ・・・・・・・・・・・・ 200 

7.9 Signal raised by methanol maser of 9.67GHz. ・・・・・・・・・ 201 

7.10 Same signal with Fig.7.9 measure by Super sweep method  ・・・・・ 202 

7.11 Astronomical requirements  

on spectral resolution and bandwidth  ・・・・・ 204 

7.12 Diagram of SOFIA-GREAT-CTS spectrometer ・・・・・・・・・ 205 

7.13 Output of SAW compressor of SOFIA-GREAT-CTS spectrometer  ・・・・ 205 

7.14 Adaptive Configuration Corresponding to the Measurement Condition 206 

7.15 Time Frequency Diagram of Measured Spectrum  

and Processing Bandwidth: Real-Time FFT Method  ・・・・・ 209 

7.16 Time Frequency Diagram of Measured Spectrum  

and Processing Bandwidth: Sweep Method  ・・・・・・・・ 209 



  

 - xiii - 

7.17 Time Frequency Diagram of Measured Spectrum  

and Processing Bandwidth: Super Sweep Method ・・・・・・・・ 210 

7.18 Super Sweep with very wide-band Flt ・・・・・・・・・・・・ 211 

 

 

 

 

 

Acknowledgements 

I express my appreciation to Prof. Noriyuki Kawaguchi for kind consulting, for his 

encouragement and efforts to introduce this thesis to PhD justification stage of Graduate University 

of Advanced Studies. I acknowledge Prof. Koh-ichiro Morita, who gave me precious advices. Pof. 

Yoshihiro Chikada gave me important suggestion, which recommended me to clear up the 

relationship between the methods of chirp-Z transform and the super sweep. Due to this suggestion, 

I could upgrade a quality of this thesis. I thank Prof. M.Fujishita, who was a student of doctor class 

when I was an undergraduate student (G4) of A-Lab. of Nagoya University, and taught me 

fundamentals of Fourier transform and interferometer. I requested Prof. Fujishita to be a member of 

judging committee. I thank him for accepting the request. I thank to Dr. S.Iguchi, Dr. H.Hanada and 

Dr. S.Tuboshita for gracious advices. I also thank Mr.Hara and Mr.Kijima for their support; they are 

members of Mizusawa VELA Observatory of NAOJ. I would like to thank Dr.K.Fujisawa and 

Dr.K.Wajima for their supports to use 32m antenna of Yamaguchi. 

I thank Dr.M.Sone for supporting this research from the early stage. I could not start this 

research without a support from him. I also thank Mr.T.Onodera, who had been my partner until he 

finished his master course. 

I should thank all the people of SKY-Ware Co, President T.Shinhama, Mr.H.Motomatsu, 

Mr.K.Kamii and Mr.H.Mikami. This research work was made using the measurement instrument 

system ‘Algo-Chest’. It was produced by SKY-Ware Co. under my plan. 

Author thank President K.Tanaka Micronix Co. for giving an opportunity to develop spectrum 

analyzers and to apply the new method. 

 

 



 - 1 - 

Chapter 1 

Introduction 
 

This thesis introduces ‘Super-Sweep method’; it is a new method of sweep-signal spectrum 

analysis, which give high-speed measurements. Since spectrum analyzers developed in 1960’s, they 

have been improved over years, but their fundamental method of it has not changed. Especially, 

sweep-signal spectrum analyzers have a property whose sweep rate is restricted, which is in 

inverse proportional to the square of the frequency resolution and the restriction has not been 

improved. We intended to break the restriction and made an experiment system that achieved a fast 

sweep measurement.  

 

1.1 Spectrum Analyzer 
 

1.1.1 Background 

This thesis suggests ‘Super-Sweep method’, which is a new method of a spectrum analysis, 

which improved a sweep rate of the analysis drastically. 

A Sweep spectrum analyzer is measurement instrument that measures electronic signals in the 

frequency domain and provides spectrums. This analyzer is very useful and necessary for 

developing and testing radio communication devices or instruments. Especially, it is the most 

convenient instrument to measure the Radio Frequency (RF) signal. In recent years, wireless 

communication technologies have progressed rapidly. In radio astronomy, a sweep spectrum 

analyzer is commonly used as a receiving system. The analyzer is desired to measure a wider band, 

with finer resolution, in a wider dynamic range in a time as short as possible. 

 

Sweep spectrum analyzers have representative characteristics as follows [1][2][[3][4].  

 

1)  The measurement time (i.e. the sweep time) is inversely proportional to the square of the 

resolution bandwidth (Rbw). For example, in the case that the measurement frequency band 

(Span) is 1MHz, Rbw is 10kHz and 1 kHz, the sweep time is 0.2sec and 20 sec, respectively. 

 

2)  The noise level of measured spectrum is proportional to the Rbw. It requires narrower Rbw to 

obtain a spectrum with lower noise level, but it demands longer sweep time. 

 

3) The analyzer has sensitivity for one frequency at one instant. The analyzer presents the spectrum 

as a persistence of vision or a trace. In the case that the sweep time is long, the analyzer cannot 

follow dynamical changes of the spectrum. 
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To overcome above characteristic, some types of the analyzers employ the ‘Digital IF filter’. 

The HP3588 produced by Hewlett-Packerd Inc. is one of them and achieves the measurement speed 

in maximum four times faster than a conventional analyzer by estimating and correcting distortions 

of the spectrum [5].  

The FFT method is another way to overcome the characteristics. The FFT method achieves a 

fast measurement with fine resolution (e.g. with Rbw is narrower than 10kHz). But this method is 

not suitable for measurement of wideband span and resolution (e.g. with Rbw wider than 10kHz or 

30kHz). In these conditions, the sweep method is suitable at the point of measurement time, cost 

and other specifications such as dynamic range [6]. In the FFT method, the frequency span of one 

measurement is narrower than the Nyquist frequency of the AD/C. To measures frequency span 

wider than the Nyquist frequency, we have to measure multiple times by stepping up the tuning 

frequency and join the results. The number of the measurement increases in proportion to the ratio 

of the span per the Nyquist frequency. 

The difference of characteristics between the sweep method and FFT method is not only the 

measurement rate but also some other characteristics. These methods have merit and demerit 

respectively. We should use them selectively in accordance with the purpose. The relation and 

difference will be described in section 2.8. 

 

1.1.2  Properties and problems of the sweep method 

A sweep spectrum analyzer is the most convenient instrument to observe a Radio Frequency 

(RF) signal. But it has imperfectness as a Fourier transformer. In this method, the sweep time ST  

is restricted as 

20
Rbw

Span
kTS ≥ ,  (1.1) 

where 0k  is a constant value, which is 2~3 experimentally, Span is a measured frequency 

bandwidth, and Rbw is a resolution bandwidth. In the case that the ST  is too short against the 

restriction, the measured spectrum has some distortion (it is shown in Fig.2.8). Typically, three 

types of the distortion exist,  

1) Resolution expansion:  An expansion of the frequency resolution (Rbw), 

2) Level reduction:  A reduction of the peak level, 

3) Frequency shift:  A shift of the spectrum toward higher frequency. 

We called these phenomenon ‘over sweep-rate response’, which are described in chapter 2. And 

they appear on the spectrum except when the sweep time is infinity. In some conventional spectrum 

analyzers, the level reduction of 0.1dB is permitted maximally, and the value 0k  of Eq.(1.1) is 

decided corresponding to the reduction 0.1dB [1] [2][3][4]. 

One example of the ‘Frequency shift’ is shown in Fig.1.1, where Span and Rbw is 20kHz and 

1kHz, respectively. There are two spectrums, the sweep time of the bold line is 60msec and it of the 

thin line is 10sec. The sweep time 60msec is longer 20msec than the typical value corresponding to 

Eq.(1.1). We can see that the bold line, which is shifted to right side.  
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Sweep spectrum analyzer has a characteristic that it cannot measure without any distortion. We 

have to use it finding a compromise between the accuracy and measurement time. One of the 

compromises is Eq.(1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1 Example of an over sweep-rate response 

Span=20kHz, Rbw=1kHz,  

The bold line: Sweep Time 60msec; typical (automatically) 

The thin line : Sweep Time 10sec; very slow (manual) 

 

1.2 History of Spectrum Analyzers 

  The first sweep spectrum analyzer was developed by Hewlet-Packard Co (HP). in 1960’s [7]. 

Until 1970’s, the sweep spectrum analyzers were made by analog circuit technology. Those displays 

were CRTs, and spectrums were shown as persistence of its luminescent screen. In 1974, 

M.Engelson (Tektronix, Inc.) wrote the book [1]; “Modern Spectrum Analyzer Theory and 

Applications”. In this book, M.Engelson systematized technologies of spectrum analyzers. 

In 1978, HP Co produced the spectrum analyzer HP8568A, whose operation was controlled with 

microprocessors. HP8568A had a digital storage display. 

In the first half of 1980’s, other factories (such as ADVANTEST and Tektronix Inc.) produced 

spectrum analyzers that were controlled with microprocessors and had digital storage display. These 

analyzers had A/D converter that digitized the final spectrum signal into the digital data, and we 

could obtain the average of the spectrum. In this decade, “GP-IB” (called “HP-IB” too) became 

popular for most measurement instruments. Then most spectrum analyzers could communicate with 

a computer by these interfaces and we could include spectrum analyzers in automatic measurement 
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system. In these years, spectrum analyzers of FFT method became popular. The FFT method uses to 

measure a low frequency signal such as 100kHz or under. They were made by almost digital signal 

processing technologies. 

From the second half of 1980’s, the technologies of the digital signal processing were introduced 

into sweep spectrum analyzers. The HP8560 series (produced by HP. Co.) and the R3265 series 

(produced by ADVANTEST Co.) had digital resolution filter that were narrower than 300Hz or 

100Hz. They were some application of the FFT method and these operations were done by regular 

microprocessors such as 68000. 

In the last of 1980’, HP. Co. produced the analyzer HP3588 [8]. This analyzer was epoch-making 

instrument. It was the first analyzer which had an LSI of a digital filter and digital signal processor 

in a sweep spectrum analyzers. But characteristics of operation and performance differed a lot from 

those of other sweep spectrum analyzer. HP3588 was considered not to be accepted by many RF 

and analog engineers. 

Since 1990’s, the primary technology of a radio communication became digital, and technologies 

of spectrum analyzers were forced to adapt itself to the technology. Many spectrum analyzers had 

functions of digital modulation analyses. Technologies of digital signal processing were introduced 

into spectrum analyzers actively in these years. 

In the middle of 1990's, Tektronix Inc. produced the “Real Time Spectrum Analyzer 

series”, which had powerful processor and measured spectrums by the FFT method. This 

analyzer made a new category of spectrum analyzer. 

In 2000’s, Agilent Technology Co. produced PSA series spectrum analyzers. It was a 

sweep spectrum analyzer. All of their RBW filters were made by digital filters. 

As described above paragraphs, in the history of spectrum analyzers, the technology 

of the digital signal processing have been introduced from its backend to the front-end. 

At present, the highest classes of spectrum analyzers are mainly made by digital signal 

processing technology such as PSA series [9]. In this kind of analyzers, the method to 

achieve first measurement of fine RBW was FFT method, and the principle of sweep 

method was not changed from the appearance of the analyzers. The FFT method has 

some demerits against the sweep method, and most spectrum analyzers to measure RF 

signal are made by the sweep method at present. 
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1.3 Purposes of this Research 
We investigated the process of the sweep spectrum analysis and the FFT method. And research 

the optimized application of these methods.  

This thesis suggested the ‘Super Sweep method’ to improve the characteristics described in 

section 1.1. This method intends to make the analyzer operate with faster sweep rate arbitrarily than 

a conventional method in principal. 

The new method is the third way to measure spectrums following the sweep and the FFT, and 

has eliminated the demerit of the sweep method and has several merits as compared with the sweep 

and the FFT method. 

Practically, we cannot obtain the Fourir transform perfectly using any of those methods. The 

conventional sweep spectrum analysis and FFT method are artificial methods to observe the 

spectrum. The new method may be one of the artificial methods, but at least it eliminated some 

restriction of the sweep method and has some merit that the FFT method does not have. 

 

1.4 Method 

We analyzed the new method, and made a model of the system, which was implemented the 

new method. We researched the fundamental model and designed the experimental system that 

achieved the new method. 

 

1. We analyzed the sweep method and the FFT method as a conventional way and represented the 

sweep method as a mathematical model. It was fundamental research to invent the new method. 

We investigated that the cause of the over sweep-rate response was the chirp phase factor in the 

IF signal (see section 2.5). 

2. We considered the mathematical model of the super sweep method, which improved the sweep 

method. The new method achieved the fast sweep using the negative chirp filter, which 

canceled the chirp phase factor of the IF signal and rejected the almost case of the over 

sweep-rate response. 

3. We researched the model of the signal processing of the new method and what devices were 

suitable to implement the new method. 

4. We designed and implemented the experimental system, which achieved the new method. This 

thesis reported the description of the process. The experimental system included the 

conventional spectrum analyzer as a RF down converter. We designed and made a digital 

signal processing (DSP) unit, which processed the IF signal that is one output of the spectrum 

analyzer (see section 4.2). The back-end system, which displays a spectrum and worked as a 

man-machine interface, was build with a PC. We measured the peak level and to observed 

resolution bandwidth by changing the normalized sweep rate (see Eq.(1.3)), and plotted the 

result. 

5. We reported the result of the experiments and verified that the new method achieved the fast 

measurement against the conventional method.  
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6. There were many topics about the new method such as devices to operate the new method, the 

analysis the chain of the filter and relation between the Chirp Z-transform etc. In Chapter 6, 

these topics were discussed. 

7. The comparison among the three methods of merit and demerit is described in this thesis. 

 

1.5 Representative result 
We verified the theory of the new method, in which the sweep rate σis 

)/( χσ FltRbw×≤ ,  (1.2) 

where Flt is the bandwidth that we could process on the resolution filter, and χ is a 

constant value from 2.5 to 4.0. In the case that the Flt is enough wider than the Rbw, 
we can obtain a fast sweep rate as we desire. The sweep rate of the new method against 

the normalized sweep rate 1/k is shown in Fig.1.2. The value 1/k is defined in Chapter 2 
as 

22
/1

RbwRbwT

Span
k

S

σ
=

×
=  . (1.3) 

The sweep rate of the sweep method is in inversely proportion to the square of the 

Rbw. In the new method, it is in proportion of the product of Rbw and Flt. Especially, at 
the narrower Rbw the new method had large advantages. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1.2  Comparison of a sweep rate between the sweep method and the super sweep 

method 

)(10log Rbw

Super Sweep Method: 
k

RbwFlt ×
=σ

)(10log σ

kHzFlt 10=

kHzFlt 100=

MHzFlt 1=

Sweep Method： 
k

Rbw 2

=σ
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The unit of σ and Rbw is Hz 

1.6 The Composition of this thesis 

In Chapter 2, we summarized the characteristics of a sweep spectrum analyzer and analyzed the 

mathematical model of the analyzer, and the digital IF method is described which was a base of the 

new method. And we described about the FFT method too. 

In Chapter 3, we described the theory and the implementation of the ‘Super Sweep method’. 

We invented a ‘negative chirp filter’ with a complex digital filter, and examined that the filter 

allowed the spectrum analyzer to measure any times faster in principle.  

In Chapter 4, we reported a development of the experiment system to prove the theory of the 

Super Sweep method, and got the results that achieved 30 times faster measurements than 

traditional sweep spectrum analyzer.  

In Chapter 5, we discuss the result, and improve that the new method allowed a sweep 

spectrum analyzer to operate faster in accordance with system condition in theoretically. 

In Chapter 6, the additional discussion is done. The new method has several interesting 

property.  

In Chapter 7, Applications in the radio astronomy are reported. Some characteristics are 

investigated. One of them was the SNR when the analyzer measure low power signal as measured 

signals in radio astronomy. Author observed radio signals of some astronomical body using radio 

telescopes, our experimental system, sweep spectrum analyzers and the built-in FFT system of the 

telescope. And we compared the SNR of the three methods. 

Chapter 8 are the conclusions. 

 
 

1.7 Glossary 
 

EnglishEnglishEnglishEnglish    

)(tf IN    Input (measured) signal 

)(_ tf AIN  The analytic signal of )(tf IN  

Sf    The Sampling frequency of the Analog Digital Converter (AD/C) 

)(tg    The impulse response of the Gaussian filter 

)(ωG    The frequency response of the Gaussian filter 

I   In-phase factor 

Log AMP Logarithmic amplifier  

)(tSB   Base band signal 

)(_ tS RBWB  Base band signal through the RBW filter 

)(tS IF    Intermediate Frequency (IF) signal 

)(_ tS AIF   The analytic signal of )(tS IF  
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)(1 tS    1st local IF signal 

SR    The rate of the sweep rate against a traditional sweep method, 

   Defined by Eq.(3.35). 

ST    Sweep time as a parameter 

min_ST    The minimum sweep time 

)(ωP    Power spectrum 

Q   Quadrate factor 

0k   A coefficient decided by the impulse response of the resolution filter. 

  It decided from the response time of the resolution filter such as 

k/Rbw. 

1/k  Normalized sweep rate. Defined by Eq.(2.40) 

 

GreekGreekGreekGreek    

ω   Radian frequency 

Bω   Radian frequency of the base band signal )(tSB  

IFω   Radian frequency of the IF signal )(tf IF  

INω   Radian frequency of the input signal )(tf IN  

0ω   Radian center (at t=0) frequency of the local oscillator 

lω   Radian frequency of the signal generated by the local oscillator )(tl  

σ  Sweep rate (Hz/sec) 

2Rbw

Span
k=σ  

maxσ   Maximum sweep rate 

⊿  frequency difference 

 

AcronymsAcronymsAcronymsAcronyms    

AD/C  Analog to digital converter  

ATT  Attenuator 

CZT  Chirp-Z Transform 

CTS  Chirp-Z Transform Spectrometer 

IF  Intermediate Frequency 

IF BPF  IF band pass filter 

LPF  Low pass filter 

RBW   Resolution bandwidth described in section 2.5.6 

   As a condition of conventional spectrum analyzer 

Rbw   RBW as a parameter 



 - 9 - 

RBW filter The IF BPF whose bandwidth is narrowest and decides the frequency 

resolution of the spectrum. 

Rbw’   observed Rbw as a parameter 

SPAN   Frequency span; the frequency range that we desire as a spectrum. 

Span   SPAN as a parameter 

St   Sweep Time 

 

Name of conventional instruments:Name of conventional instruments:Name of conventional instruments:Name of conventional instruments:    

FSU:   The spectrum analyzer produced by Rhode-Schwartz Inc. 

R3264: The spectrum analyzer produced by ADVANTEST Co. 

PSA:   The spectrum analyzer produced by Agilent Technology Co. 

 

1.81.81.81.8    Technical Terms on theTechnical Terms on theTechnical Terms on theTechnical Terms on the Spectrum Analyzer Spectrum Analyzer Spectrum Analyzer Spectrum Analyzer    
An example of a spectrum analyzer’s display is shown in Fig.1.3. There are some 

special terms used in a spectrum analyzer corresponding to the parameter on the 

display of the spectrum, which are indicated by numbers with a circle  

 

① CenCenCenCenter frequencyter frequencyter frequencyter frequency ,(CFCFCFCF) indicates the center frequency of the display scale.  

② SpanSpanSpanSpan (SPANSPANSPANSPAN) is the frequency bandwidth of the measurement, corresponding to the 

difference between StartStartStartStart (left end of the scale: ②’) and the StopStopStopStop (right end of the 

scale: ②”). 

②’  Start (START or STT). It is the start frequency of the scale, the frequency of the 

left end of the scale. 

②” Stop (STOP or STP). It is the stop frequency of the scale, the frequency of the right 

end of the scale. 

③ Reference LevelReference LevelReference LevelReference Level. (RLRLRLRL).  It is the level top of the scale, usually indicated by the unit 

dBm. 

④ Level per division;  It is the level difference of each vertical scale grid, usually 

indicated such as ‘**dB/**dB/**dB/**dB/’. 

⑤ MarkerMarkerMarkerMarker,(MK MK MK MK or MKRMKRMKRMKR). It is a mark that indicates the frequency and the level of the 

position of the spectrum that selected by the operator of the analyzer. 

⑥ Video BandwidthVideo BandwidthVideo BandwidthVideo Bandwidth (VBWVBWVBWVBW). It is the bandwidth of the filter that is set up after the 

power detector of the spectrum. 

⑦ Sweep TimeSweep TimeSweep TimeSweep Time (STSTSTST or TsTsTsTs).  It is the time that the sweep needs the from Start to Stop 

frequency. 

⑧  AttenuatorAttenuatorAttenuatorAttenuator (ATTATTATTATT). It is a attenuator that is implemented RF front end. 

⑨  Resolution bandwidthResolution bandwidthResolution bandwidthResolution bandwidth (RBWRBWRBWRBW or Rbw). It is the frequency resolution bandwidth that 

decides the resolution of the spectrum. 
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Fig. 1.3  Samples of display of a spectrum analyzerFig. 1.3  Samples of display of a spectrum analyzerFig. 1.3  Samples of display of a spectrum analyzerFig. 1.3  Samples of display of a spectrum analyzer    
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Chapter 2 

 Review of Sweep-Signal Method 

2.1 Introduction 

The theoretical backgrounds of the sweep spectrum analyzer are well summarized in the 
references [1][2][3]. In this chapter, we present detailed analysis of the method on the signal 
processing. 

Section 2.2 shows the outline of the sweep spectrum analyzer. Section 2.3 describes the 
principal theory of the sweep method. Section 2.4 describes the digital IF method as an 
improvement of the sweep method. Section 2.5 shows the mechanism of the sweep method as the 
digital signal processing. Section 2.6 describes a few important characteristics of the sweep 
method. Section 2.7 investigates the property of the resolution filter in case of measuring the FM 
modulated signal. Section 2.8 describes the some characteristics of the FFT method. And section 
2.9 concludes this section. 

The description of this chapter introduces the fundamental of the new method, which is 
described in chapter 3. 
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2.2  Principle of Sweep-Signal Spectrum Analyzers 
This section describes the structure and the properties of the conventional sweep 

spectrum analyzer. Section 2.2.1 describes the outline, section 2.2.2 will describe 
about a frequency down converter, and section 2.2.3 describe the function of the LPF. 
 
2.2.1 Outline of Spectrum Analyzers 

A simplified block diagram of a traditional sweep spectrum analyzer is shown in Figure 2.1. 
This kind of analyzers consists of many components as follows [1]. 
・LPF 
・ATT & Pre-AMP 
・Frequency Converters 
・Log AMP 
・Detector 
・Video Filter 
・AD/C 
 
 
・‘LPF’ (low pass filter) prevents the mixer from receiving higher frequency signal than 

the system cannot process. A function of the LPF is described in section 2.2.3. 
・’ATT’ (attenuator) is used to degrease the power of the input signal, in the case that the power of 

the input signal is too large. And ATT is used to reduce the noise power of the input. 
・Usually sweep spectrum analyzers have multiple ‘Frequency converters’. They consist of a mixer, 

a local oscillator and a band pass filter and output of IF (Intermediate Frequency) signal 
‘ ’. It is described in section 2.2.2. )(tSIF

・The ‘Log Amp’ converts the amplitude of the  logarithmically.  )(tSIF

・The ‘Detector’ detects the output of the Log Amp with AM detection.  
・The ‘Video Filter’ limits the bandwidth of the detected signal and outputs the envelope of the 

. In the classic sweep spectrum analyzer with analog displays, this signal was used to 
drive the vertical deflection plate of the CRT directly. Hence the signal is called ‘Video signal’. 
Most spectrum analyzers since 1980s digitizes the Video signal with the ‘AD/C’, AD converter, 
and the spectrum is displayed by a digitized display. 

)(tSIF

・The digitized data is put into memory of the ‘Display system’, which is controlled by a 
microcomputer or other control devices. The Display shows the Video signal as the ‘Power 
Spectrum: P(ω)’. 
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Figure 2.1 Block Diagram of Classic Sweep Spectrum Analyzer 
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2.2.2 Frequency Converter *) 
A block diagram of the Frequency converter is shown in Fig.2.2, which consists of three 

elements, a mixer, a local oscillator and an IF BPF (IF Band Pass Filter). The most important 
element is the mixer, which operates as a multiplier and makes the products of the input signal and 
the local oscillator as an analog circuit. 

In the case that the frequency of the input signal and the local oscillator is INω  and lω , 
respectively, the mixer produce the two signals whose frequency are lIN ωω +  and || lIN ωω − . 
This operation corresponds to Eq.(2.1), which is one of the formulas about the trigonometric 
function [4]. 

[ ])cos()cos(
2
1)cos()cos( BABABA −++=× .  (2.1) 

And the output of the mixer includes two feed through factor of INω  and lω . These frequencies 
around the mixer are shown in Fig.2.3. 

The ‘IF BPF’ permits only one signal, usually lIN ωω +  or || lIN ωω −  to be outputted 
from the converter. The output of the IF BPF is called ‘IF (Intermediate Frequency) signal’.  

In the case that the input signal  is explained as; )(tf IN

))(cos()()( tttAtf ININ θω += ,  (2.2) 
the output will be  
     ))()(cos()()( tttAtS lINIF θωω ++=   (2.3-a) 

or ))(||cos()()( tttAtS lINIF θωω +−= ,  (2.3-b) 
where A(t) is the amplitude and θ (t) is the phase factor. The Frequency               
converter transform frequency only, and influences on other factors such as A(t) and θ(t). 
Equation (2.3-a) and (2.3-b) can be explained by 

   ))]]()((exp[)(Re[)( ttjtAtS INlIF θωω ++=  (2.4-a) 

or ))]]()((exp[)(Re[)( ttjtAtS INlIF θωω +−= . (2.4-b) 

The frequency lIN ωω +  or || lIN ωω −  is generally called ‘Intermediate frequency’ or 

simply ‘IF’. 

 
*) note: Sometimes a frequency converter is called another name such as down converter, 
frequency down converter, RF down converter and converter. 
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2.2.3 Input LPF 
The discussion of last section has the assumption that the frequency of the input signal is 

under the frequency max_INω which is lower than the lowest frequency of the local oscillator 

mnl _ω . In the case that another signal exists and its frequency 'INω  satisfies the following 
equation 

INllIN ωωωω −=−' ,    (2.5) 
we cannot distinguish the frequency INω  from 'INω . To avoid this trouble, the input signal is 
passed through the LPF shown in Fig.2.1. The frequency max_INω  is the cut-off frequency of the 
LPF. 

 

INω IFω

lω

Figure 2.2 Block Diagram of a Frequency Converter 
 

 
 

fin=2GHz, fl=6GHz,  fl-fin=4GHz, fl+fin=8GHz 

Fig. 2.3  Frequency around a mixer 
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2.3 Analog signal processing with swept local oscillator 
  The qualitative discussion on the frequency converters with swept local oscillator is given in 
this section. 
 
2.3.1 Frequency converter with Swept Local Oscillator 

In the condition that the local oscillator does not sweep and generate a CW signal, the system 
shown in Fig.2.2 operates as a general radio receiver. On the other hand, a sweep spectrum 
analyzer is provided with a characteristic that the local oscillator generates a sweeping signal. 
The frequency of output signal of the frequency converter is shown in Fig.2.4.  

We assumed the system that is under the condition itemized as follows. 
・The input is CW signal for simplification. 
・The maximum and minimum frequency of the input signal is max_INω  and min_INω . 
・The minimum and maximum frequencies of the local oscillator, max_lω  and min_lω  which is 

defined as; 

min_max_ lll ωωω ≥≥   (2.6) 

max_min_max_ INll ωωω =− . (2.7) 
・The frequency of the input signal is restricted by the input LPF as 

ININ ωω ≥max_ .        (2.8) 
・The frequency of the local oscillator is higher than the frequency of the input. 

max_min_ INl ωω ≥       (2.9) 
・ ‘ ’ is defined as the sweep time. The local oscillator generates the signal ST lω  within the 

sweep time periodically. The time ‘t’ is considered periodically as 
0≥≥ tTS . (2.10) 

Then the converter generates two signals, INl ωω +  and INl ωω − , which are indicated in 
blue and red square in Fig. 2.4, respectively.  

In the case that INω  equals to min_INω , lIN ωω +  and INl ωω −  are same frequency, and 
traced by the line ‘①’ in Fig.2.4. Similarly, INω  equals to max_INω they are traced by ‘②’ and 
‘③’ respectively. 
   In the case of min_ININ ωω = , the frequency lIN ωω +  equals to max_lω  at , which is 
indicated as the point ‘L’ in Fig.2-4. 

STt =

   In the case that max_ININ ωω = , the frequency INl ωω +  equals to max_lω  at , which is 
indicated as the point ‘H’ in blue. In the case that 

0=t
INω  is 2/)( min_max_ ININ ωω + , the frequency 

INl ωω +  equals max_lω  at , which is indicated as the point ‘M’ in blue. In the case that 2/STt =
min_ININ ωω = , INl ωω +  equals max_lω  at STt = , which is indicated by ‘L’ in blue. 

Similarly for the signal INl ωω − , the points corresponding to min_lINl ωωω =−  are indicated 
as ‘L’,’M’ and ‘H’ in red which are arranged in reverse order to those of lIN ωω + . 
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   In the case that we configure the IF BPF whose center frequency equals min_lω  or max_lω , 
we can obtain the power corresponding to the any frequency of INω , and we can know the time 
when the power come in corresponds to the frequency INω . 

 
 
 Frequency 

 
 
 

max_max_ INl ωω + 
 
 ② 

max_INl ωω +
 
 
 min_max_ INlω +ω

H             M          L 
max_lω 

min_max_ INlω −ω
 

INl ωω +
min_INl ωω − 

① 
min_INl ωω +

INl ωω − 
 L M H

min_lω
 

max_max_ INl ωω −max_INω
 
 

max_INl ωω − ③ 
 
 

max_min_ INl ωω −
 Time 

2/ST0 ST 
 

Fig. 2.4  Frequencies of signals around a mixer with the swept local 
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2.3.2 Output of IF BPF 
The time-frequency diagram of the signal around the frequency converter with the swept local 

oscillator (see Fig.2.2) is shown in Fig.2.5. Where, the input signal is assumed as a single CW 
signal, the condition of the system is similar to that in the last section, and the center frequency of 
the IF BPF: IFω  is set to min_lω  (see Fig.2.4).  

When the frequency of the mixer’s output is around min_lω , the output of the IF BPF has a 
power. The frequency IFω  is generally called as ‘Intermediate Frequency’ or ‘IF frequency’. 

The abscissa of Fig2.5 indicates the time and the ordinate indicates the frequency. The each 
graphs of the Fig.2.5 is itemized as follows. 

- (a) shows the frequency of the input signal INω  against time. The input signal is , 
which is assumed a single CW signal. 

)(tf IN

In his figure and (b) and (c), the ordinate indicates frequency. 
- (b) shows the frequency of the local oscillator whose frequency is swept from STARTl _ω  to 

STOPl _ω . These parameters satisfy the next equation. 
min___max_ lSTARTlSTOPll ωωωω ≥>≥  

- (c) shows the frequency of the mixer’s output, INloutmix ωωω −=_  *) and the pass band of 
the IF BPF which is min_lIF ωω = . ‘h(t)’ is the impulse response of the IF BPF. The 
frequency response of IF BPF is drawn as a graduated horizontal bar. By selecting the 
frequency STARTl _ω  and STOPl _ω  adequately, the line of outmix _ω  clothes the path band of 
the IF BPF around the time . 2/STt =

- (d) shows the output of the IF BPF as . In this figure, the ordinate indicates a voltage. 
The horizontal line indicates a voltage 0 V. Where  has a significant value around 
the time . 

)(tSIF

)(tSIF

2/STt =
- (e) shows the power of the . The unit of ordinate is dBm. We can consider  is 

a spectrum of the input signal . 
)(tSIF )(tS IF

)(tf IN

 
 In the case that the input signal  is another type of signal, such as modulated or 

multi CW signal etc, we can observe the spectrum of  as a distribution of the spectrum.  
)(tf IN

)(tf IN

 
In summary, for a sweep spectrum analyzer we should chose the IF frequency higher than 

the maximum frequency of the input signal max_INω  which corresponds to the cut-off of the 
LPF front of the mixer. The frequency of the local oscillator should be tuned from the IF 
frequency to the ‘IF frequency+ max_INω ’ [1].  

 
Note *): The most sweep spectrum analyzers employ the frequency of the mixer’s output to be 

INl ωω − . 
2007.03.14  1 回目推敲, 2007.04.26, 2007.08.19 
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Fig. 2.5  Time-Frequency diagram around a mixer with the swept local 
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2.3.3 Multi Conversion 
  Usually, spectrum analyzers have multiple frequency converters. Usually, they are called 1st, 

2nd, and 3rd converter from the front end of the input side. This section describes why spectrum 
analyzers have multiple down converters. 

The frequency of the 1st local oscillator in the most modern spectrum analyzer is 
approximately 4GHz to measure wide frequency range. The frequency resolution of the spectrum, 
which is obtained by the system in Fig.2.5, is decided by the bandwidth of the IF BPF. Some 
spectrum analyzer have the resolution 1kHz; others, 10Hz; still others, 1Hz. It is difficult to 
achieve such a narrow filter at the center frequency 4GHz. Therefore most spectrum analyzers 
typically have three or four stages of frequency converters [1]. The example of a multi stage of the 
frequency converter is shown in Fig.2.6. This example has three stages and the 3rd IF frequency is 
21.4 MHz. Most spectrum analyzers have this IF frequency, 21.4 MHz and has the IF BPF as a 
resolution filter on this frequency. 
  Usually, the IF BPF on the 21.4MHz IF is called ‘Resolution Bandwidth Filter’, ‘RBW BPF’ or 
‘RBW filter’, which decides the frequency resolution of the measure spectrum [1][2]. 
 
Note)  The IF frequency of many FM radio receivers are 21.4MHz, and we can get the filter 
whose band pass is 21.4MHz with reasonable price. It is one of the reasons that the IF frequency 
of spectrum analyzers are 21.4MHz. 
 

 

 

2nd 1st 3rd 

Fig. 2.6 Multi frequency converter (Referred Figure 2.5 of [1]) 
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2.3.4 Restriction of Sweep time 
A response of a RBW filter is illustrated in Figure 2.7, where the horizontal axis indicates 

both time and frequency. The measured signal is a CW, ‘Rbw’ is the 3dB bandwidth of the RBW 
filter; ‘ ’ is the sweep time; ‘Span’ is the measurement frequency range which equals ST

STARTlSTOPl __ ωω − ; and ‘ΔT’ is the time corresponding to the response of the RBW filter, which is 
explained as 

Span
RbwTT S ×=Δ .  (2.11) 

A sweep spectrum analyzer obtains the spectrum from the response of the RBW filter. Any 
filters require a finite time to charge and discharge, and the time length are inversely proportional 
to its bandwidth [1]. Then ΔT has a restriction explained by next equation. 

Rbw
kT 0≥Δ ,  (2.12) 

where  is a constant of proportionality. Equation (2.12) can be modified by replacing 0k TΔ  as 

the right side of Eq.(2.11). 

Rbw
k

Span
RbwTS

0≥× . (2.13) 

It is modified as 

20 Rbw
SpankTS ≥ .  (2.14) 

In the most sweep spectrum analyzers, the value of ‘ ’ are in the range from two to three. 0k
In the case that  is shorter than the time of Eq.(2.14), the peak-level of the spectrum will 

be reduced as shown in Fig.2.8, where Span and Rbw of the all spectrums equal to 50 kHz and 300 
Hz respectively. The sweep times  of ‘A’ to ‘F’ is 2.0sec, 1.2sec, 500msec, 100msec, 50msec 
and 20msec, respectively. Especially, ‘B’ is a ‘AUTO’ which is configured by Eq.(2.14). The peak 
level is reduced and the width of the peak is expanded corresponding to the sweep rate, . 
We call this phenomenon ‘over sweep-rate response’. 

ST

ST

STSpan/

In the most conventional sweep spectrum analyzers, the value of  is decided by a 
condition that the level reduction is about 0.1dB [2]. Actually, the difference level of peaks 
between A and B in Fig.2.8 was 0.13dB. 

0k

In summary, sweep spectrum analyzer has a restriction on its sweep time and sweep rate. 
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Fig 2.7   Response of an RBW filter measuring CW signal 
 

2.3.5 Permissible distortion 
The theory of level reduction is described in section 2.5. By the theory, we cannot measure a 

spectrum without any reduction. We have to use the analyzer permitting the level reduction, which 
is about 0.1dB [1][2]. 

Sweep spectrum analyzers have a property that the spectrum is shifted to the right side 
corresponding to the charge and discharge time of the RBW filter. Figure 2.8 shows the shifts that 
corresponds to the frequencies of the peaks as follows 

Shift time = ×{(frequency of the peak)- (center frequency)}/Span . ST
As the results, all of the shift times were approximately 2.2msec, which are 0.66 of the inverse of 
the Rbw= 300Hz. 

In the case that the sweep time is longer than the condition of Eq.(2.14), as far as we observe 
the spectrum with our eyes, the shift and the level reduction is negligible obstruction. 

2007.04.26, 2008.08.19 
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Fig 2.8  Examples of over sweep-rate responses 
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2.4 Digital IF 
The qualitative property of the sweep spectrum analyzer is described in section 2.2. The 

systems described in section 2.2 and 2.3 were analog type only. This section describes a ‘digital IF 
method’. We considered that introducing the digital IF method is appropriate to describe the 
property of the analyzers mathematically. 

 
2.4.1 Digital IF method 

The block diagram of Fig.2.9 suggests an example of the spectrum analyzer which has both 
analog and digital IF method. In the both method, the spectrum is measured as a changing power 
of the signal, ‘ ’, which is called as 'Intermediate frequency signal', or simply 'IF signal'. It is 
passed through the ‘IF BPF’ of the 3

)(tSIF
rd down converter whose center of the pass band is fixed, as 

described in section 2.3.  
In analog IF method, the IF signal is passed through the ‘LOG AMP’ and the power is 

detected by the ‘Detector’, and the ‘Video Filter’ reduced the bandwidth of the detected power, 
they are described in section 2.2. The ‘Peak Detector’ and the ‘Sampler’ pick up the extracted 
power at each interval, which is 1/500~1/4000 of the sweep time synchronized with the ‘Ramp 
signal’. The AD/C digitized the sampled power. Then the sampling frequency is satisfied 10kHz or 
50kHz to detect the power. 

In digital IF method, the AD/C digitizes the IF signal directory. In some early type of this 
method, the frequency of the IF signal were configured as the range under 10kHz and the sampling 
frequency were 20k or 30kHz. And a calculation of FFT (Fast Fourier transform) is used to obtain 
a spectrum [1]. 

In recent years (such as since 2000s), we can use high-speed AD/C with 14bit and digitize the 
21.4MHz IF signal directly. In this thesis, the early type is not discussed. We will discuss about 
the type that has high-speed AD/C and signal processing devises. Figure 2.10 shows one example 
of a digital IF section which has high-speed AD/C and DDC (Digital Down converter described in 
chapter 4) and the DSP (may be any computer device). The details of the digital-IF method will be 
described, in following sections. 
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Fig. 2.9     Block Diagram of sweep spectrum analyzers with digital IF 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10  Detail of digital IF section 

 

 

)(tS IF

Sf

INPUT )(1 tS

)(: thBPFIF

(b) 

(a) 

(c) 

CICN/1↓

FIRCICDDC NNN +=
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2.4.2 Quadrature Detection 

The digital IF section of Fig.2.10 has some stages, (a), (b), and (c). The signal of (a) is the 

output of the AD/C and the digitized signal of final analog IF and explained as a real signal, 

))(cos()()( tttAtS IFIF θω += ,  (2.15) 

where A(t) is the amplitude, θ(t) is the phase factor and IFω  is the IF frequency. The spectrum 

of this signal is shown in (a) of Fig.2.11. 

The signal )(tS IF
 is inputted into the DDC (Digital Down Converter) drawn in Fig.2.10 and 

enclosed by the dotted square. The DDC operates as a ‘Quadrature detector’ for the input, and 

output a ‘Base Band Signal’. The ‘NCO’, numerical controlled oscillator generates two signals, 

)cos( tIFω  and )sin( tIFω− . The two mixers make the product of the signal )(tS IF  

multiplied )cos( tIFω  and )sin( tIFω−  digitally. The signal line whose mixer is linked with 

)cos( tIFω  is called ‘I-ch’, ‘I part’ or ‘I’ simply. Similarly, the part linked with )sin( tIFω  is 

called ‘Q-ch’, ‘Q part’ or ‘Q’.  

The I part at the point (b) is given by 

)cos())(cos()()( ttttAtI IFIFq ωθω ×+= , (2.16-a) 

it is modified as 

{ }))(cos())(2cos()()(
2
1 ttttAtI IFq θθω ++= . (2.16-b) 

Similarly, the Q part is  

{ }))(sin())(2sin()(

))sin(())(cos()()(

2
1 ttttA

ttttAtQ

IF

IFIFq

θθω

ωθω

++=

−×+=
. (2.16-c) 

We can consider that the signal )(tI q  and )(tQq  as a complex signal, 

)()()( tjQtItS qqq +=  ,         (2.17) 

where j is an imaginary unit. We can consider a negative frequency in the signal )(tSq . 

  A system that generates the signal )(tSq  is called a ‘quadrature detector’. We call sometimes 

the quadrature detector that includes the LPF of the DDC. 

In Fig.2.11 the sampling frequency of the AD/C is 
sf , and the frequency of the IF signal is 

regarded around 4/sf . Then, the angular frequency 
IFω2  is a Nyquist frequency (equals to 

2/2 sfπ ) at the stage of (a) and (b). The spectrum of the signal whose frequency is higher than the 

Nyquist frequency turns around to the negative Nyquist frequency such as the ‘Image’ of (b) in 

Fig.2.11.  

The signal )(tSq
 is inputted into the LPF, which consists of CIC and FIR filters as shown in 

Fig.2.10. The characteristic about the CIC and FIR are described in chapter 4 and [5]. In the case 

that the image factor is rejected by the LPF, the passed through signals )(tSB
 is given by 

{ })(sin)(cos)(
2

1
)( tjttAtSB θθ += .  (2.18-a) 
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This signal )(tSB  can be considered an analytic signal, whose real part and imaginary part is a 

pair of Hilbert transform [6], and it can be written as 

)()(

)](exp[)(
2

1
)(

tjQtI

tjtAtS

BB

B

+=

= θ
  (2.18-b) 

This signal has the amplitude )(tA  and phase factor )(tθ  of the input signal Eq.(2.2), 

))(cos()()( tttAtf ININ θω += , 

and the IF signal Eq.(2.15) 

))(cos()()( tttAtS IFIF θω +=  

The analog and digital down-converters, discussed in the above section, rejects the carrier 

frequency from the input signals, and output the type of the signal )(tSB  that is generally called 

a base band signal. 

We can consider that the signal )(tf IN
 and )(tSIF

 are real parts of an analytic signal. And we 

can define the analytic signals as 

)]((exp[)()(_ ttjtAtf INAIN θω +×=   (2.19-a) 

))]((exp[)()(_ ttjtAtS IFAIF θω +×= .  (2.19-b) 

The base band signal is made by rejecting the carrier frequency from )(_ tf AIN
 and )(_ tS AIF

. 

The frequency range of )(tSB
 is limited by the LPF, and we can reduce the sampling 

frequency. Usually, the DDC has a function to reduce the rate, which is called decimation and the 

rate of decimation is usually integer. The CIC and FIR filter has the function whose decimation 

rate is CICN  and FIRN , independently. The total decimation rate DDCN is sum of them, 

FIRCICDDC NNN += . 

The decimation of (c) from (b) of Fig.2.11 is two, where the Nyquist frequency is 4/sf . 

If any signal whose frequency is from 4/sf  to 2/sf  or from 4/sf−  to 2/sf− , some 

aliasing signals appear in the signal )(tSB
 [6]. These aliasing signals are drawn as 

the gray area and linked by the dotted arrow lines in (b). Usually the LPF reduces the 

level of the signal whose frequency is higher than its cut off frequency, and output the 

signal whose frequency area is around 0Hz reducing the aliasing signal, and the area 

is shown as ‘Flt’ in (c). In the case that the DDC is used as a radio receiver, the Flt 

should be wider than the bandwidth of the received signal. 

 

。 
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Fig. 2.11  Quadrature Detection in Frequency Domain 

 

 

  

2.4.3 Digitized IF Signal with Swept Local oscillator 

The local oscillator of sweep spectrum analyzers generates the sweep signal l(t), which is 

explained as 

[ ])(exp)( 00

2 θωσπ ++⋅= ttjtl ,  (2.20) 

22 SS TtT ≤≤−  

where, t is a time, σ is the sweep rate, 
0ω  is the frequency at t=0, 0θ is an initial phase, and 

ST  is the sweep time. The sweep rateσis decided by Span and the Sweep time. 

ST

Span
=σ  (2.21) 

In the case that the input signal is explained as Eq.(2.2), 

(a) Real IF signal 

(b) Base Band signal with 

    image-factors 

(c) Decimated Base Band 

signal without image-factor 

4

Sf

4

Sf−

)(tSB

)(tSq

)(tS IF

)(ωDDCH

IF
Sf ω=
4
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))(cos()()( tttAtf ININ θω += , 

the output of the 1
st
 down converter )(1 tS  (see Fig.2.9) can be considered as next equation by the 

discussion of section 2.2.2 and 2.2.3. 

[ ]
[ ])])()((exp[Re)(

)())]((exp[Re)()(

0

2

1

θθωωσπ

θω

++−+××=

×+−××=

tttjtAa

tlttjtAatS

INl

IN
  (2.22) 

where ‘a’ is a gain that is adequate vale which is decided by the system condition.  

The IF signal, input of the AD/C is a same signal with the input signal except for the carrier 

frequency. 

[ ])])((exp[Re)(')( 0

2 θθωσπ +++××= tttjtAatS IFIF ,  (2.23-a) 

where a’ is a constant which corresponds to the gain of the down converters, and IFω  is assumed 

as IFω = INl ωω − . 

In equation 2.23-a, it is assumed that the bandwidths of the IF BPF of all down converters (e.g. 

Fig. 2.11) are sufficiently wider than the bandwidth of the signal. Practically, the effect of the IF 

BPF should be consider and Eq.(2.23-a) is rewritten as 

[ ]{ })])((exp[Re)(')()( 0

2 θθωσπ +++××∗= tttjtAathtS IFIF , (2.23-b) 

where )(th  is the impulse response of the all IF BPF, and IFω  is the center frequency of IF 

BPF. Actually, the )(th  is almost the response of the narrowest IF BPF, usually it is an IF BPF 

of the last down converter. In Fig.2.9, it is BPF of the 3
rd
 down converter. In Equation (2.23-b), as 

the absolute value of the t becomes larger, value of the frequency becomes higher. And the 

amplitude of )(tS IF  is reduced when |t| is larger.  

Figure 2.12 is the example of a digitized IF signal, which is computed from Eq.(2.23-b), 

where IFω  equals to 21.4MHz, )(tθ  and 0θ equal to zero for simplification, Span equals 

8MHz and Sweep time equals 0.2msec. The abscissa indicates not only time, but also frequency. 

The current frequency ω  of )(tS IF  is define as the differential of the phase of Eq.(2.23-b), 

which can be explained as 

tIF πσωω 2+= ,  (2.24) 

where σ is decided by Eq.(2.21). 

The amplitude of the signal is reduced around the left and right side corresponding to the 

frequency response of the filter )(th . 

In Fig.2.12, the bandwidth of )(th  was approximately 8MHz. We can obtain the spectrum 

of )(tf IN
 by detecting the power of this signal with this bandwidth. But, it need narrower band 

pass filter to obtain higher resolution spectrum. It can be achieved by the signal processing on the 

digitized IF signal, which is described on the following sections. 
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Fig. 2.12 Digitized IF signal with swept local oscillator: )(tS IF  

Measured signal was CW, Span=8MHz, ST =0.2msec, IF Bandwidth≒8MHz 

 

2.4.4 Base Band Signal 
In the spectrum analyzer with a digital IF system such as shown in Fig.2.9 or 2.10, the IF 

signal )(tS IF
 is passed through the AD/C and DDC, and converted into the base band signal, 

which is represented as )(tSB
, Eq.(2.18-b). The example of the base band signal )(tSB

 is shown 

in Fig.2.13, which is converted from the IF signal )(tS IF
, Eq.(2.23-b) and Fig.2.12.  

The NCO of the DDC generates )cos( tIFω  and )sin( tIFω− . The IF frequency factor IFω  

is rejected, and the signal )(tSB
 is explained as 

{ })])((exp[)(")()( 0

2 θθσπ ++××∗= ttjtAathtS DDCB
,  (2.25) 

where a” is a constant corresponds to a gain of the system, )(thDDC
 is a impulse response of the 

LPF implemented in the DDC. Usually, the bandwidth of )(thDDC
 is narrower than h(t) in 

Eq.(2.23-b). The frequency response of )(thDDC
 is drawn in Fig.2.11 (c) as )(ωDDCH . Where, the 

3dB bandwidth of the )(ωDDCH , )(thDDC
 is configured as 4MHz. 

The frequency of )(tSB
 is a differentiation of the phase factor of Eq.(2.25), it is explained as 

)(2 t
dt

d
tB θσπω += . (2.26-a) 

In Figure 2.13, )(tθ  and )(0 tθ are assumed to be zero for a simplification, and the time t equals 

zero at the center. Equation (2.26-a) is rewritten as 

tB σπω 2= .  (2.26-b) 

MHz8
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Fig. 2.13  Quadrature Detected IF Signal through a wide band LPF: )(tSB  

Measured signal was CW, Span=8MHz, ST =0.2msec, Bandwidth≒4MHz 

 

The frequency Bω  is 0Hz when t equals zero. If we convolute the narrower LPF on the 

signal )(tSB , we can extract the part around 0Hz as shaper impulse, as shown in Fig.2.14. Now, 

we define that the narrow LPF is a ‘RBW filter’ and the output signal is )(_ tS RBWB
. In the case 

that the frequency of the input signal is δωω ±IN
, the frequency of the base band signal is 

 δωσπω δ ±= tB 2 .  (2.27-a) 

The time 0t  at which δωB equals zero can be explained as 

t
t

σπ
δω

2
0 m= . (2.27-b) 

This time 0t  is corresponding to the frequency δω , and δω  can be explained as 

02 tσπδω m= . (2.27-c) 

Whether plus or minus of the double sign, depends on the system configuration described in 

section 2.2. 

The abscissa of Fig.2.13 and 2.14 indicates both time and frequency. We can obtain the 

power spectrum by computing the square sum of the real part and the imaginary part of )(_ tS RBWB
, 

whose example is shown in Fig.2.15. 

The spectrum is obtained by following equation. 

( ) ( )22

_ )()(log10)(log10)( tQtItSF RBWB +==ω  (2.28) 

MHz8
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where I(t) and Q(t) is the real part and imaginary part of )(_ tS RBWB . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14  Quadrature Detected IF Signal through a RBW Filter：：：： )(_ tS RBWB  

Measured signal was CW, Span=8MHz, ST =0.2msec, Rbw=300kHz 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15  Spectrum Extracted from a Signal )(_ tS RBWB  

Measured signal was CW, Span=8MHz, ST =0.2msec, Rbw=300kHz 

sec2.0 m

sec2.0 m

dB0

dB100−
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The deformed signal flow of the sweep spectrum analyzer that includes the digital IF system 

is shown in Fig.2.16, where the all signals are assumed analytic signals. The down converter 

indicates as the total function of all analog and all digital.  

The input signal )(_ tf AINPUT
 includes the carrier frequency factor )](exp[ tj INω , which is 

removed by the down converter. The down converter attaches the chirp factor )](exp[ 2tj σ on the 

signal. The base band signal keep the factor )(tA  and )(tθ . The RBW filter extracts the part of 

the signal whose frequency is around 0Hz. The spectrum is obtained as the square sum of real part 

and imaginary part of )(_ tS RBWB . 

In conventional sweep spectrum analyzer, the IF BPF: RBW filter, extracts the spectrum. It is 

not efficient to replace this processing in a digital. In this case we must keep the sampling 

frequency corresponding to the IF frequency. On the other hand, in the case we convert the IF 

signal into the base band signal, we can reduce the sampling frequency according to the pass band 

of the LPF. The reduction of the sampling frequency is called decimation [5]. We can obtain the 

spectrum with minimum size of the data by the decimation.  

More consideration about the signal processing to obtain the spectrum will be done in section 

2.5. 

 

 

 

Fig. 2.16  Signal Flow of a Sweep Spectrum analyzers with Digital IF system 

 

RBW Filter 
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2.5 Analysis of Sweep Spectrum analyzer 

The fundamental and qualitative analysis was given in section 2.2~2.4. This section describes 

the mathematical analysis of the sweep spectrum analyzer. 

 

2.5.1 Spectrum Analyzer as Pseudo Fourier Transformer 

A simplified block diagram of a sweep spectrum analyzer is shown in Fig.2-17 [2][3]. 

Actually, sweep spectrum analyzers have two or three down converters with a mixer, a local 

oscillator and an IF BPF. In this section, the down converters are figured as one for a 

simplification. By the discussion, section 2.2 and 2.3, we can down convert the input signal )(tf IN
 

(whose frequency is 
INω ) to the base band signal (0Hz), and we can express the signals as 

analytic signals. 

 

 

 

Fig. 2.17  Simplified Block Diagram of a Sweep Spectrum Analyzers with Digital IF 

 

 

The ‘Down Converter’ converts the input signal )(tf  to the base band signal. The frequency 

of the local oscillator swept over the frequency band, ‘Span’ with some sweep rate. The Span is a 

frequency band we desire to measure for the spectrum. Mathematical expressions of the )(tf  and 

)(tS  are given with the following equations, 

]exp[)()( tjtatf sω=   (2.29-a) 

)}()({)()( tltftgtS ×∗= ,  (2.29-b) 

where a(t) is time variations in amplitude and phase of a signal under the measurement, which is 

often called ‘a base band signal’. And 
sω  is the angular frequency. We assume f(t) is a band 

limited complex signal. The impulse response of the 'IF BPF' is expressed by g(t), which is not a 

complex but a real function. The '*' denotes the operation of a convolution. The l(t) is a signal 

)(tg
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generated by a local oscillator of which frequency is swept at the sweep rate denoted by σ. It can 

be expressed as 

[ ])(exp)( 00

2 θωσπ ++⋅−= ttjtl ,   

22 SS TtT ≤≤− ,  

where ‘t’ is time, ‘
0θ ’ is the initial phase, ‘

0ω ’ is the angular frequency of the oscillator at t=0 and 

the σ is the sweep rate (Hz/sec). The sweep in the frequency is repeated every cycle with the 

duration, 
sT  seconds over the SPAN band, Span, so that the sweep rate can be written as 

STSpan /=σ .  (2.30-b) 

In every sweep cycle, the measured power spectrum is shown on a display, repeatedly. 

By substituting Eq.(2.30-a) into Eq.(2.29-b), we can derive a complete expression for S(t) as 

{ })]t(exp[)( 00

2 θωσπ ++⋅−×∗= tjf(t)g(t)tS ,    (2.31-a) 

and rewrite as 

( ){ }∫
∞

∞−

+−+−⋅−×−= τθτωτσπττ dttjtfgtS 00

2 )()(exp)()()(  (2.31-b) 

It is modified as 

( ){ } ττωττθωπσ dτωtπσττπσtjtagttjtS s )2()(exp)()()]([-exp)( 0

2

-

00

2 −−−−×−×++= ∫
∞

∞

 

( ){ } ττωωτπστπσττσ dtjtagtjωθtωtπ-j ss )(2exp)()(]exp[)](exp[ 0

2

00

2 −+−−×−⋅++= ∫
∞

∞−

 

･･･････････････(2.31-c) 

where f(t) is substituted with Eq.(2.29-a). In the case that the sweep rate 0=σ , Eq.(2.31-c) is 

written as 

{ } ,)(exp)()(]}){(exp[)( 0000 ∫
∞

∞−

−−×=−−= ττωωττ djrgθtωωjtS ss
      (2.32) 

where )(0 tS  is a signal of S(t) with 0=σ , and the time t is a independent variable to the 

integration, and )(τr  is defined as 

. )()( ττ −≡ tar    (2.33) 

The integral in Eq.(2.32) is a Fourier transform against the τon a  product of )(τg  and )(τr , 

and )(0 tS  is written as 

,})()({

)])((exp[)(

00

000

ωRωG

θtωωjtS

ss

s

−∗−×

−−=

ωω
       (2.34) 

(2.30-a) 
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where 　)(ωG  and )(ωR  is the Fourier transform of  )(τg  and )(τr .  It is possible to express 

the )(ωR  by a theory of the Fourier transform as follows [7]. 

)(]exp[)( ωωω −×−= AtjR   (2.35) 

where A(ω ) is the Fourier transforms of  a(τ), and Eq.(2.34) is modified as 

})()({]exp[-)( 0000 ωAωGjtS ss −∗−×= ωωθ .     (2.36-a) 

The function g(t) is a real signal. Then )()( * ωω GG =−  and |)-(||)(| s00 ωωωω GG s =− , where 

)(
* ωG  is the complex conjugate of )(ωG .  

In the case that we focus the magnitude of Eq.(2.36-a) only, Eq.(2.36-a) can be rewritten as 

|)-()-(||)(| s0s0

*

0 ωωωω AGtS ∗= , (2.36-b) 

and can be considered as an amplitude spectrum )( 0ωA  which is convolved with )( 0ωG . 

In the case that the sweep rate σ is sufficiently small that can be assumed zero, the frequency  

sωω −0  can be replaced by ω as 

stt ωωπσω −+= 02)( ,   (2.36-c) 

where 
02 ωπσ +t  is the differential of the phase factor of Eq.(2.30-a). Then Eq.(2.36-b) is 

replaced by 

|))(())((||)(| *

0 tAtGtS ωω ∗= .      (2.36-d) 

From Equation (2.29) we can see the relation ))(())(( stAtF ωωω −=  and 

))(())(( stFtA ωωω += ,  (2.36-e) 

where )(ωF  is the Fourier transform of f(t). Then Eq.(2.36-d) is modified as 

|))((*))((||)(| *

0 stFtGtS ωωω += . (2.36-f) 

This equation stands only for the σ sufficiently small. The restriction on the sweep rate is 

discussed in the next section. 

The above equations represent that a sweep spectrum analyzer is a Fourier transformer which 

gives the Fourier components at any frequency ω as the convolution of )(ωF  and )(ωG . 

Theoretically, if )(ωG  was the delta function )(ωδ , Eq. (2.36-f) was the true Fourier transform 

of f(t). Most spectrum analyzers have )(ωG  defined by RBW filters, instead of )(ωδ . And they 

measure spectrum with a limited sweep rate.  

The RBW is a significant parameter of a spectrum analyzer and is defined as a half power (3dB) 

bandwidth of a RBW filter. The RBW filter decides the frequency resolution of the measurements 

as expressed in Eq.(2.36-e).  
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2.5.2 Restriction of sweep rate 

The sweep spectrum analyzer measures spectrum by a restricted sweep rate which is 

theoretically given in [3][7][8], and summarized in this section. 

Usually, the characteristic of the RBW filter, g(t) can be expressed as a Gaussian function 

whose frequency response is G(ω), shown in the following equation, 

( ) 








⋅
−= 2

2

2ln
exp)( ω

π
ω

Rbw
G ,  (2.37) 

where Rbw is the 3dB bandwidth of G(ω) expressed in Hz, whereas ω in radians. Next two 
equations show the restriction of sweep rate and sweep time corresponds to the Rbw.  

sec]/[
0

2

min_

max Hz
k

Rbw

T

Span

s

==σ ,      (2.38) 

[sec]
2

0

max

min_
Rbw

kSpanSpan
TS

⋅
==

σ
,  (2.39) 

where maxσ  is the maximum sweep rate, min_ST  is the minimum sweep time, ‘Span’ is a 

frequency SPAN, and 0k  is constant which is defined experimentally 2~3 [3][2]. Here we 

defined the variable ’1/k’ as the ‘Normalized sweep rate’, which is explained by following 

equation [8].  

22

1

RbwRbwT

Span

k S

σ
=

×
= ,  (2.40) 

with the restricted of 0/1/1 kk ≤ . 

The characteristic )(ωG  can be observed as a frequency response of )(0 tS , Eq.(2.36-f) in 

the case that )(ωF  is δfunction (f(t) is a CW signal). The example of )(ωG  is shown in 

Fig.2.18, where the abscissa indicates both time and frequency. The time T∆  corresponds to 

Rbw as SpanRbwTT S /⋅=∆ . 

In the case that 1/k is larger than 
0/1 k , the value σ in Eq.(2.31-c) becomes so large that it can 

no more be disregarded as zero and Eq(2.32)~(2.36-f) could not be established. In the case that the 

sweep rate is too high beyond the limit, so that the peak level of the measured spectrum is reduced 

and the bandwidth is broadened. This property is called ‘over swept-rate response’ [10]. Several 

authors [3][2][11] have investigated the phenomenon theoretically and experimentally. This thesis 

describes only the results as following three topics. 
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Fig. 2.18 Conceptual diagram of sweep time and rate 

 

 

1) The peak level reduction: 

4

1
22

1
2ln

2
1

'
−




























+=
kA

A

π
, (2.41) 

where A is the amplitude of the signal at 1/k equals to zero, and A’ is the measured amplitude of 

the signal. In most conventional sweep spectrum analyzer, the value of 0k  is decided to make the 

reduction 0.1dB [1]-[3]. 
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2) The broadening of the resolution bandwidth: 

2

1
22

1
2ln

2
1

'




























+=
kRbw

Rbw

π
,  (2.42) 

where Rbw is configured value and Rbw’ is the observed value. 

An example of the over swept-rate response is shown in Fig.2-19. The solid and dashed lines 

indicate the response of the resolution filter for the 1/k equals 0.5 and 5.0. Some kinds of spectrum 

analyzers have RBW filters implemented by the digital IF method. They estimate and correct the 

distortion of Eq.(2.41) and (2.42), and achieve its sweep rate 2~4 times faster than the 

conventional one [10]. 

 

 

 

 

Fig. 2.19   Example of over swept-rate response 
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3) The Peak shift: 

In the case that the RBW filter is an analog filter. The measured spectrum has frequency shift, 

⊿ω by the latency of the filter response [11]. 

tRbwk ∆×××=∆ 2)/1(2πω ,  (2.43) 

where ⊿ω is shifted radian frequency of the peak, and ⊿t is the delay of the RBW filter 

response.  

Figure 2.20 shows the samples of spectrum whose 1/k equals 0.5, 10 and 50. The over 

sweep-rate response occurs on 1/k=10 and 50. The response of digital filter is symmetrical 

on the frequency axis, and we can forecast and correct this latency. 

 

 

 

 

 

Fig. 2.20   Power spectrum under over-sweep 

 

 

1/k=0.5  1/k=10      1/k=501/k=0.5  1/k=10      1/k=501/k=0.5  1/k=10      1/k=501/k=0.5  1/k=10      1/k=50    
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2.5.3 Gauss Function as Resolution Filter 
Usually, Gauss filter is chosen as the characteristics of the resolution filter in a sweep 

spectrum analyzer by the reason as follows [1][11]. 

1. Well distinction for two signals (well shape factor) 

2. Quick response for the sweep signal 

In this thesis, the impulse response of a Gaussian filter is explained by )(tg  whose frequency 

response is )(ωG , they are expressed by [12] 









+−= IFj

a

t
tg ω

2

2

exp)( ,   (2.44-a) 

( ) 




 −−= 22

2

1
exp)( IFaaG ωωπω . (2.44-b) 

When Rbw is the 3dB bandwidth, )(ωG  is given by 

)(
2

1

2
IFIF G

Rbw
G ωω =







 ± .  (2.45) 

From this equation, ‘a’ is introduced as follows. 

2

2

)(

2ln2

Rbw
a

⋅
=

π
.   (2.46) 

In the sweep spectrum analyzer, the Gaussian filter receive the chirp signal as expressed in 

Eq.(2.31-a) (see section 2.5.1).  

( ){ }∫
∞

∞−

−−×−= ττωτπστπσττ dtjtfgtltS 0

2
2exp)()()()( , 

where S(t) is the output of the Gaussian filter, l(t) is the output of the local oscillator, f(t) is the 

input signal. 

When f(t) is CW signal, such as  

]exp[)( 0tjtf ω−= , (2.47-a) 

S(t)  and its magnitude are explained as next equations by modifying Eq.(2.31-c). 

{ }
{ }])(exp[

)]t(exp[)(

0

2

00

2

θσπ

θωσπ

+⋅∗=

++⋅×∗=

tjg(t)

tjf(t)g(t)tS
  (2.47-b) 
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( ){ }

( ){ }

( ){ }∫

∫

∫

∞

∞−

∞

∞−

∞

∞−

−×=

−××=

−−×−×=

ττπστπστ

ττπστπσωτ

ττωτπστπστωτ

dtj/a-

dtjtj/a-

dtjtj/a-tS

2exp][exp

2exp]exp[][exp

2exp)](exp[][exp|)(|

222

2

0

22

0

2

0

22

, (2.47-c) 

It is very difficult to solve this integration analytically. We simulated this equation 

as shown in Fig. 2.21(a) and (b). In the figures, the red and blue lines is I(t) and Q(t) 

that is real and imaginary part of 

)](exp[)]t(exp[ 2

00

2 tπσjtjf(t) =++⋅× θωσπ .  (2.48) 

Each of them is one part of the convolution of Eq.(2.47-b). The green line indicates )(tg  that is 

another part of the convolution. For these three signals, the ordinate is 1 to -1 for the full vertical 

scale. The black line indicates |)(| tS  whose ordinate is 0 to –100dB in the full vertical scale. 

In Figure 2.21, the abscissa indicates both time and frequency, time corresponds to the sweep 

time that is 20msec in (a) and 4msec in (b), frequency corresponds to the Span that is commonly 

10kHz. And both of the Rbw are 1kHz. The peak level of )(tS  in (a) and (b) is –0.10dB and 

–1.73dB, respectively. The observed RBW, Rbw’ is 1.0kHz and 1.6kHz, respectively. But, the 

figures of )(tS  are both parabolic lines, i.e. they are Gauss function. 

Figure 2.21(c) is corresponding to the part of Fig.(a), which is magnified around the center (t 

=0sec and frequency = 0Hz). Its Span equals 1kHz. And the sweep time equals 2msec, which 

corresponds to 2/Rbw. This relation among Span, Rbw, and sweep time is corresponding to 

Eq.(2.40) whose k equals 2.0.  

   )(tθ  of (c) indicates ‘atan(Q/I)’. )(tθ  is zero at the center and –π/2 at the start point and 

stop point of (c). The differentiation of the phase factor of Eq.(2.48) is the frequency, 2πσt. The 

changing of the phase and frequency within the period of (c) is very slow, and the integration of 

Eq.(2.47-b) and (2.47-c) almost same as the case that σ equals zero. But the integration is 

reduced against the σwhich is non zero. If the σ is larger and larger, the value of the integral 

will be reduced. 

   We can consider that the cause of the reduction (the over sweep-rate response) is the operation 

of the filter against the chirp signal. 
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Fig. 2.21 (a)  Base Band signal and Base Band signal and Base Band signal and Base Band signal and SpectrumSpectrumSpectrumSpectrum    

 SPAN=10kHz,    RBW=1kHz,    ST =20msec ,Peak level = -0.10dB, 1/k=0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.21 (b) Fig.2.21 (b) Fig.2.21 (b) Fig.2.21 (b)     Base Band Base Band Base Band Base Band signal and signal and signal and signal and SpectrumSpectrumSpectrumSpectrum: : : :     

SPAN=10SPAN=10SPAN=10SPAN=10kkkkHz,Hz,Hz,Hz,    RBW=1kHz,RBW=1kHz,RBW=1kHz,RBW=1kHz,    ST =4msec=4msec=4msec=4msec, Peak level = , Peak level = , Peak level = , Peak level = ----1.73dB, 1/k=2.51.73dB, 1/k=2.51.73dB, 1/k=2.51.73dB, 1/k=2.5    
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Fig.2.21 (c)  SPAN=1ｋｋｋｋHz,    RBW=1ｋｋｋｋHz,     

ST =2msec, Peak level = -0.1dB, 1/k=0.5 

 

 

Fig. 2.21  Simulation of the integral Eq.(2.47-b) :  

Response of Gaussian filter against chirped base band signal 
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2.5.4 Simulation of Over Swep-Rate response 

The plotted peak level reduction against the normalized sweep rate 1/k is shown in Fig.2.22 

and Table 2.1, where 1/k is defined by Eq.(2.40). The line of ‘Theory’ was the plot of Eq.(2.41), 

and the line ‘R3264’ was obtained by using a spectrum analyzer R3264, produced by Advantest 

Co. We got these data by measuring a CW signal and plotting the peak level. The Span and Rbw of 

All plots were 2kHz and 30Hz, respectively. We changed the 1/k by changing the sweep time ST , 

which is shown in Table2.1. The line of ‘Siml’ was obtained by the numeric analysis, which 

operated the integral of Eq.(2.47-c) and detected the peak levels. Figure 2.21 is the one example of 

the analysis. 

The plotted broadening of the Rbw against the 1/k is shown in Fig.2.23 and Tabl 2-2. The line 

of ‘Theory’ was the plot of Eq.(2.42). The line of ‘Siml’ was obtained by the same analysis of 

Fig.2.21 and 2.22 by measuring the observed Rbw, RBw’ as shown in Fig.2.19. In Figure 2.23, we 

did not plot the line ‘R3264’, for the large distortion of the spectrum and insufficient resolution of 

the display with R3264. 

The line ‘R3264’ in Fig.2-22 is lower than the simulation and model, for the reason that the 

RBW filter of R3264 is not ideal Gaussian filter.  

The both lines ‘Siml’ in Fig.2.22 and 2.23 almost correspond to ‘Theory’. Then we confirmed 

that the over sweep-rate response exist in the digital IF method as Eq.(2.41) and (2.42).  

By the result of Fig.2.22, the value of 1/k that made the reduction 0.1dB was 0.5. And the 

reduction at k=2 was 0.14dB. The general permitted peak reduction is 0.1dB [1]. The value 0k  in 

Eq.2.12 to Eq.2.14 is decided that make the reduction 0.1dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.22  Peak Level Reduction vs. Normalized Sweep Rate 

Theory
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Fig. 2.23  Broadening of Rbw vs 1/k 
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Table 2.1  Peak Level Reduction vs. Normalized Sweep Rate 

 

1/k Theory R3264 Siml ST  

0.100 0.00 0.000 -0.004 22.2 

0.126 -0.01 -0.016 -0.007 17.7 

0.158 -0.01 -0.032 -0.011 14.0 

0.200 -0.02 -0.042 -0.017 11.1 

0.251 -0.03 -0.077 -0.027 8.85 

0.316 -0.04 -0.097 -0.042 7.03 

0.398 -0.07 -0.142 -0.066 5.58 

0.501 -0.10 -0.197 -0.10 4.43 

0.631 -0.16 -0.273 -0.16 3.52 

0.794 -0.25 -0.404 -0.25 2.80 

1.00 -0.39 -0.504 -0.39 2.22 

1.26 -0.58 -0.722 -0.58 1.78 

1.58 -0.86 -0.918 -0.87 1.40 

2.00 -1.25 -1.25 -1.25 1.11 

2.51 -1.74 -1.80 -1.74 0.885 

3.16 -2.35 -2.33 -2.35 0.703 

3.98 -3.06 -3.05 -3.06 0.558 

5.01 -3.85 -3.91 -3.85 0.443 

6.31 -4.71 -4.84 -4.71 0.352 

7.94 -5.62 -6.01 -5.62 0.280 

10.0 -6.56 -7.04 -6.56 0.222 

12.6 -7.52 -8.25 -7.52 0.177 

15.8 -8.49 -9.14 -8.49 0.140 

20.0 -9.47 -10.21 -9.48 0.111 

25.1 -10.46 -11.58 -10.47 0.88 

31.6 -11.46 -12.18 -11.46 0.070 

39.8 -12.45 -13.52 -12.46 0.056 

50.1 -13.45 -14.50 -13.45 0.044 
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Table 2.2   Broadening of Rbw against Normalized Sweep RateTable 2.2   Broadening of Rbw against Normalized Sweep RateTable 2.2   Broadening of Rbw against Normalized Sweep RateTable 2.2   Broadening of Rbw against Normalized Sweep Rate 
 

1/k Siml Theory 

0.1 1 1 

0.14 0.98 1 

0.2 1 1 

0.28 0.98 1.01 

0.4 1 1.02 

0.56 1.01 1.03 

0.79 1.05 1.06 

0.89 1.06 1.07 

1 1.08 1.09 

1.12 1.1 1.12 

1.58 1.22 1.22 

2.24 1.41 1.41 

3.16 1.72 1.72 

4.47 2.24 2.21 

6.31 3.04 2.96 

8.91 4.11 4.06 

12.59 5.78 5.64 

17.78 8.21 7.91 

25.12 11.79 11.13 

35.48 16.07 15.69 

50.12 22.11 22.14 

 

2.5.5 Analog Gaussian Filter 

    In the case that the RBW filter is digital filter, the response of the filter keeps the property as 

a Gauss function. But when the filter is an analog filter, the response does not keep in a fast sweep 

as shown in Fig.2.8. Many analog-Gaussian filters are designed by Bessel method in 4
th
 or 5

th
 

order; these are not ideal Gauss filter [11]. The peak reductions of them are generally larger than 

the theory as shown in Fig.2.22 and Table 2.1. 

By the result of ‘R3264’ in Fig.2.22, the value of k, which made the peak reduction 0.1dB, 

was about 3.1 (1/k=0.32). And the reduction at k=2 was 0.2dB. 

Many conventional spectrum analyzer which has analog RBW filters configure is 

configured whose 0k  is larger than 2 (see Eq.(2.28) and (2.29)). 
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2.5.6 Resolution Bandwidth 

In a spectrum analyzer, a resolution bandwidth (RBW) is defined by the minimum frequency 

that distinguishes two signals as two signals on a measured spectrum. 

In the case that the frequency between the two signals is larger than the RBW, the peaks of the 

spectrum are observed distinctively as shown in Fig.2.24 (a), where the difference of two signals is 

1.5×RBW. On the other hand, in the case that the difference is narrower than the RBW, the two 

signals are observed as one peak, it is shown in Fig.2.24(b), where the frequency difference is 0.9

×RBW. 

For a single CW signal, the spectrum is observed as a figure of an RBW filter explained by 

Eq.(2.36-c). For two CW signals whose level are equal and the frequency are ∆+0ω  and 

∆−0ω , the Fourier transform of the signal )(ωF  is explained by 

)()()( 00 ∆−+∆+= ωδωδωF ,  (2.49) 

and the measured spectrum )(ωS  is explained as 

).()(

)()()(

00 ∆−−+∆+−=

∗=

ωωωω
ωωω

GG

GFS
  (2.50) 

To distinguish the signals, )(ωS  must have a dip between two signals, and its differentiation 

ωω ddS /)( 0
 must be zero at 0ωω = , and the second differentiation, 2

0

2 /)( ωω dSd  must be 

larger than zero, i.e. )(ωS  must have a minimum value at 0ωω = . 

It is assumed for a simplification that 0ω  is zero, and 

]exp[)( 22ωαω −=G .   (2.51) 

Then, Equation (2.50) can be rewrote as 

])(exp[])(exp[)(
2222 ∆−−+∆+−= ωαωαωS . (2.52) 

The differentiation of )(ωS  is explained as 

[ ]])(exp[)(])(exp[)(2
)( 22222 ∆−−×∆−+∆+−×∆+−= ωαωωαωα

ω
ω

d

dS .    (2.53) 

Substitute zero for ω, and take it zero as follows. 

[ ] 0]exp[]exp[2
)0( 22222 =∆×∆−∆−×∆−= ααα

ωd

dS
.  (2.54) 

And second differentiation is 

]})(exp[))(21(

])(exp[))(21{(2
)(

2222

22222

2

2

∆−−×∆−−+

∆+−×∆+−−=

ωαωα

ωαωαα
ω
ω

d

Sd

 (2.55) 

By substituting zero for ω,  
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[ ]
[ ]]exp[)21(4

]exp[))21(]exp[)21(2
)0(

22222

222222222

2

2

∆−∆−−=

∆−×∆−+∆−×∆−−=

ααα

ααααα
ωd

Sd
 (2.56) 

To keep Eq.(2.56) larger than zero, Δ must be 

2

1

α
>∆ .  (2.57-a) 

From Eq.(2.44-b), (2.46) and (2.51),  

( )2
22 2ln

2

1

Rbw
a

⋅
==

π
α ,  (2.57-b) 

then α is substituted as 

( )Rbw⋅
=

π
α

2ln
.  (2.57-c) 

In the case that the unit of the frequency of Rbw is Hz, Eq.(2.57-c) is divided by 2π, and then 

Rbw

2ln2
=α .  (2.57-c) 

Therefore Eq.(2.55) is rewritten as 

Rbw
Rbw

425.0
2ln8
≅>∆ , (2.58-a) 

Rbw85.02 ≥∆ .  (2.58-b) 

In the case that the difference of the two signals is larger than 0.85Rbw, we can distinguish 

the two signals. Figure 2.24(c) was obtained by the simulation, where Rbw0.12 =∆ . There are 

tree arrows, the center arrow indicates )0(S  and both side arrows indicate )(∆S , )( ∆−S . The 

wave around the center was caused by the beat note between the two signals. In the case that ⊿ 

was wider than 0.85Rbw, the peak level of the center was lower than the both sides and we can 

distinguish two signals. The description of the simulation is described in the next section. 
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Fig.2.24  Spectrums of two Tone signals 
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2.5.7 Response against two tone Signals 

Last section describes the response of the Gauss filter against a two-tone signal in frequency 

domain. This section describes it in time domain by a simulation. 

We simulated the two-tone signal explained by 

( ))](exp[)](exp[
2

1
)( 000 ttjttjtf ×∆+−++×∆+−= ωθω ,  (2.59) 

where ∆ is the difference of the frequency between the two-tone.  

We can obtain the spectrum S(t) by substituting Eq.(2.59) for f(t) in Eq.(2.47-b) as follows. 

{ }
{ }])(exp[])(exp[)2/1()(

t)](exp[)(

2

0

2

0

2

ttjttjtg

tjf(t)g(t)tS

∆−⋅++∆+⋅∗=

+⋅×∗=

σπθσπ

ωσπ
   (2.60) 

The signal explained in the ‘{}’ and the spectrum, 10log|S(t)| is shown in (a)~(d) of Fig.2.25. 

The conditions of each Fig.2.25 were as follows. The sampling frequency was 200kHz. The 

abscissa of each figure indicates both time and frequency. The full scale of the Span is 10kHz and 

the sweep time was 20msec. The RBW was 1kHz.  

In all Figures ((a) to (d)), the green lines indicate the Gauss filter. The red lines indicate I part, 

and the blue lines indicate Q part of the base band signal of Eq.(2.59), respectively. The bold black 

lines indicate the spectrums )(tS  that are indicated with dB unit as ))(log(20 tS . The top level 

of each screen is 0dB, which corresponds to )(tS  equals 1.0, and the bottom corresponds to 

–100dB. )(tS  is indicated as two lines. 0θ  of one line is zero and 0θ of another is π. The 

wave of )(tS  around the center was caused by the beat note, and the phase of the beat 

corresponds to 0θ . 

   Each figure from (a) to (d) had different ∆ . In (a) and (b) f∆  was 1500Hz and 1330Hz, 

respectively. There were two peaks on )(tS , which was marked with arrows. In (c) ∆  was 

1000Hz that was equal RBW. There were not obvious peak. Two arrows indicate the signal 

frequency, where the levels were almost flat. In (d) ∆  was 800Hz, there were not obvious peak. 

The maximum peak existed around the center. In the case that f∆  was narrower than RBW, two 

signals were not resolved. 

In the case that the initial phase 0θ  was zero, we had a peak at the center, but when 0θ  was 

π, we had deep dip at the center. We could not get the obvious threshold of the Δ to distinct the 

two-tone peaks, but the threshold exists between Rbw and 1.33Rbw. 

 

2007.04.29 
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Fig.2.25 (a)  Spectrums of two signals, ⊿⊿⊿⊿f=1500Hz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.25 (b)  Spectrums of two signals, ⊿⊿⊿⊿f=1330Hz 
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Fig.2.25 (c)  Spectrums of two signals, ⊿⊿⊿⊿f=1000Hz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.25 (d)  Spectrums of two signals, ⊿⊿⊿⊿f=800Hz 

Fig.2.25 Base Band Signals and Spectrum against twoFig.2.25 Base Band Signals and Spectrum against twoFig.2.25 Base Band Signals and Spectrum against twoFig.2.25 Base Band Signals and Spectrum against two----tone Signaltone Signaltone Signaltone Signal    

Span=10kHz, Rbw=1kHz, Sweep Time=20msecSpan=10kHz, Rbw=1kHz, Sweep Time=20msecSpan=10kHz, Rbw=1kHz, Sweep Time=20msecSpan=10kHz, Rbw=1kHz, Sweep Time=20msec 
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2.6 Other Properties of Sweep Spectrum Analyzers 
Until last section, fundamental theories of a spectrum analyzer have described. It may be 

simple, but the whole system of a spectrum analyzer consists of many parts. The properties of each 

part have significant influence on the result of measurements. This thesis does not describe the all, 

but this section describes about some properties that has large relationship with the theme of this 

thesis. 

 

2.6.1 Shape Factor 

In last section, some analyses were described haw the RBW filter distinct the two signals of 

same level. In the case to distinct two signals unequal in their level, not only resolution but also the 

shape of the filter decides the resolution that distinct the two signals. To detect the lower signal, 

the filter skirts must be under the lower signal [1]. 

Many corporations who product spectrum analyzers use a parameter, ‘shape factor’ to 

indicate the shape of the resolution filter [1]. The shape factor is defined as the ratio of 60dB and 

3dB bandwidth of the filter. It is also called bandwidth selectivity.  

An example for the comparison between an analog and digital resolution filter is shown in 

Fig.2-26. They were spectrums measured CW signal, where a and b indicated the shape of the 

analog and the digital filter. The shape factor of the analog filter was 12.7. The shape of digital 

filter is 4.47 and it is almost a parabola for it is a logarithm of the Gauss function. And the shape 

factor was almost same to a mathematical calculation as follows. 

The frequency response of Gaussian filter is explained as [4][8], 
2)( αωω −=G .  (2.61) 

The shape factor SFR  is explained as 

47.43/60
/3

/60

3

60 ====
−

−

α
α

ω
ω

SFR ,  (2.62) 

where 3−ω  and 60−ω are the value of ω at )(ωG  was –3dB and –60dB. It is a special future 

of a digital Gaussin filter whose SFR  is independent from α and constantly 4.47. Digital IF 

methods are excellent in a shape factor against an analog method. 

 

 

 

 

 

 

 

 

 

 



  

 - 58 - 

 

 

Fig. 2.26 Shape factor (Bandwidth selectivity)  

ratio of 60dB and 3dB bandwidth 

 

 

2.6.2 Time Domain measurement 

The abscissas of sweep spectrum analyzers indicate not only frequency but also time as 

described in section 2.3 and 2.4. In the case that its span equals zero, the abscissa indicate only a 

time. 

A sample screen of an oscilloscope is shown in Fig.2-27 (a), whose ordinate indicate a voltage. 

Figure 2-27(b) shows a zero span measurement of a spectrum analyzer. Its ordinate of (b) 

indicates a power (Watt). These may be like together, but the substances of the measurement are 

different. 

These screens measured same signal, )cos()( ttA ω , where A is a amplitude and ω is the 

radial frequency. The oscilloscope shows it as instantaneous figure. But in (b), we watch it as only 

A(t). In many case, the carrier frequency ω is not significant information to analyze the signal. It 

is reasonable to measure the signal with removed the carrier frequency. 

SPAN 200Hz 

RBW 10Hz 
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Fig 2.27 Time domain measurement 

 

In the case that the RBW is relatively larger against the SPAN, or the SPAN is narrower, the 

spectrum is more similar to it obtained by a zero span measurement. One sample of a spectrum 

that observed a TDMA (Time Domain Multi Access) signal is shown in Figure 2.28, which is PDC 

(digital mobile phone: second generation of mobile phones) signal. The power envelope the signal 

is intermittent signal with some interval. The bandwidth of the signal is 21kHz. In Figure 2.28 (a), 

the RBW is 10kHz, and the spectrum represents the TDMA burst. By changing the sweep time we 

can observe the interval of the burst. A wideband RBW has sharp resolution in the time domain. 

In Figure 2.28 (b), the RBW is 1kHz, the spectrum does not represents the burst, because the 

RBW is too narrow to response the burst signal. 

By above discussion, the relation between the resolution of frequency and time is a trade-off. 

The relation is a kind of the ‘uncertainty principle’.  

The ratio of RBW to SPAN decides which property of the abscissa is significant time or 

frequency. In the case that the ratio of RBW/SPAN is larger, the abscissa mainly time. On the 

other hand, in the case that the ratio is smaller, it is mainly frequency.  

A sweep spectrum analyzer can configure the ratio, RBW/SPAN with fine step by changing 

the Span and the sweep time. By changing the ratio we can obtain many information from the 

measured signal. 

 

 

 

(a) Oscilloscope (b) Zero SPAN of a SPA 

)cos()( ttA ω )(tA
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Fig.28 Spectrum of Dynamical Signal 

(a)(a)(a)(a) Wide RBWWide RBWWide RBWWide RBW    

SPAN 50kHz 

RBW 10kHz 

Swp Time 100msec 

(b)(b)(b)(b) Narrow RBWNarrow RBWNarrow RBWNarrow RBW    

SPAN 50kHz 

RBW  1kHz 

Swp Time 130msec 
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0G

ω

)(ωG

2.6.3 Noise level and Resolution Bandwidth 

A spectrum analyzer has a noise on its several stage, and we cannot measure a signal whose 

level is under the noise. In some case, the noise is an interference of the measurement. In another 

case, the noise is an object of the measurement. Sometimes we measure a signal like noise such as 

CDMA (Code Domain Multiple Access) signal. 

We observe a spectrum as a convolution of )(ωF  and )(ωG , which is explained by 

Eq.(2.36-c), 

|)()(||)(| 0 ωω GFtS ∗= . 

If )(ωF  is an ideal white-nose, )(0 tS  is assumed as [1][2], 

ωω dGNtS ∫
∞

=
0

00 )(|)(| ,  (2.63) 

where 
0N (Watt/Hz) is the noise power density per one Hz. The noise is included in the input 

signal and generated within the spectrum analyzer itself. The integral can be replaced by 

ωω dGBG ENBW ∫
∞

=⋅
0

0 )(   (2.64) 

where 
0G  is the gain and 

ENBWB  is the equivalent noise bandwidth of the resolution filter, 

respectively. Figure 2.29 shows the relation between )(ωG  and ENBWB .  

)(0 tS  is assumed ‘observed noise power’ , NP . Then Equation (2.63) can be replaced by 

ENBWN BGNtSP ⋅⋅== 000 )(  (2.65) 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.29  Equivalent Noise Fig.2.29  Equivalent Noise Fig.2.29  Equivalent Noise Fig.2.29  Equivalent Noise BandwidthBandwidthBandwidthBandwidth (ENBW) of a resolution filter (ENBW) of a resolution filter (ENBW) of a resolution filter (ENBW) of a resolution filter    

0ω

ENBWB
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The observed noise power NP  is in proportion of resolution bandwidth Rbw. In the case we 

measure the noise by different bandwidth, the ratio of the observed noise level VP (dB) is  

)/log(10 01 RbwRbwPV =   (2.67) 

where 1Rbw  and 0Rbw  is the Rbw of each measurement. 

The example of the noise level variance is shown in Figure 2.30-(a). The one spectrum is 

measure by RBW=1MHz and another is 100kHz. The difference of the noise level is 

approximately 10dB. For continuous wave (CW) signal, we can get better S/NR (signal to noise 

ratio) using the narrower resolution bandwidth.  

An example measuring low-level signal is shown in Fig.2.30-(b). The level of the measured 

signal is -90dBm. The RBW of the upper line is 1MHz and lower one is 10kHz. The VBW* (video 

bandwidth: see 2.2.1) of upper line is 1kHz and it of lower one is 3kHz. The upper line has 

narrower deviation of the noise by narrower VBW. The peak of the signal is shown at the center of 

lower line. In the upper line, the peak is not shown.   

The RBW decides the noise level and the VBW decrease the deviation of the noise. We 

should select the bandwidth of these filters corresponding to the characteristics of the measured 

signal.  

‘Pre-detection filter’ is a filter whose bandwidth is narrowest before the power detector [2]. 

Usually, it is the RBW filter. ‘Post-detection filter’ is implemented after the detector [2], it 

decides the deviation of the detected power.  

In the FFT method (see section 2.8), pre-detection filter is according with the window 

function and post-detection filter is according with the averaging of the spectrum. 

    

* Note :  VBW* (video bandwidth)* Note :  VBW* (video bandwidth)* Note :  VBW* (video bandwidth)* Note :  VBW* (video bandwidth)    

   The VBW is the cutoff frequency (3 dB point) of on adjustable low pass filter, which is 

implemented after the detector. In digital IF method, it accords with the LPF processing after the 

detecting power by computing the square sum of the real part and the imaginary part of the signal 

S(t). In the case that the video filter does not exist, the VBW equals to the RBW.  
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Signal level : -90dBm 
SPAN:  1MHz 
 
Upper : RBW 1MHz, VBW 1kHz 
 
 
Lower : RBW 10kHz, VBW=3kHz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Observed noise level changes as (a) Observed noise level changes as (a) Observed noise level changes as (a) Observed noise level changes as )/log(10 01 RbwRbw     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) low level signal and RBW(b) low level signal and RBW(b) low level signal and RBW(b) low level signal and RBW    

 

Fig.2.30  Relation between noise level and RBW 

MHzRbw 1=

kHzRbw 100=
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2.6.4 Zero Carrier 

Sweep spectrum analyzers cannot measure a signal whose frequency is lower than an RBW. 

By the discussion of section 2.3.2, the 1
st
 IF frequency of the most sweep-spectrum analyzers is 

lowest frequency of the local oscillator min_lω , and the frequency of the 1
st
 mixer’s output is 

INl ωω − . ( lω  is the frequency of the local oscillator, min_lω is the minimum frequency of the 

local oscillator and INω  is the frequency of the input (measured) signal.) 

Even if we have no input signal, the mixer output a signal whose frequency is lω , which is 

called ‘local feed thorough’. We observe the peak whose frequency was zero at any time. In the 

case that the frequency of the input signal is zero ( 0=INω ), we cannot distinguish whether the 

signal is not exist or the frequency is zero. The peak is called ‘DC response’ or ‘Zero Carrier’ [2] 

*). 

The figure of the peak of the Zero Carrier accords with the Rbw filter. We cannot observe the 

signal whose frequency is lower than the Rbw. This is one demerit of a sweep spectrum analyzer. 

The example of the Zero Carrier is shown in Fig.2.31.  

 

*) Actually, the input signal is accepted through an AC connection at the RF front-end of analyzers. 

Then, the analyzers have not a sensibility to DC signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.31  Zero CarrierFig.2.31  Zero CarrierFig.2.31  Zero CarrierFig.2.31  Zero Carrier    
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2.7 Bandwidth of Signals and Resolution Filters 
We cannot obtain an ideal Fourier transform of any signals without infinite acquisition time. 

Therefore, spectrum analyzers have resolution filter and measures spectrum with restricted sweep 

rate. Until last section, we assumed the measured signal was CW for simplify. In this section, we 

examine measurements of wideband signals. 

 

2.7.1 Signal under the measurement 
Figure 2.32~2.35 are samples of wideband signals measured by a sweep spectrum analyzer. 

The signal is frequency modulated (FM) signal generated by a manufactured signal generator (SG), 

and the signal is explained as follows, 








 ∆
−= )cos(sin)( ttAtf m

m

cc ω
ω
ω

ω , (2.68) 

where cA  is the amplitude of the signal, cω  is the carrier frequency , ω∆  is the frequency 

deviation, mω  is the modulation frequency [13], and these parameters are shown in Table 2.3. 

The bandwidth of the modulated signal was approximately 1.1MHz. 

 

Table2.3 Specification of signal in Fig.2.32~2.35 

Symbol Value Description 

cA  0.224 Volt Amplitude, in 50Ω circuit. The power is –60dBm 

cω  860.945 MHz Carrier frequency 

ω∆  530 kHz Frequency deviation 

mω  10 kHz Modulation frequency, 

 

2.7.2  Observed signal 
 The all (a) of Fig.2.32~2.34 show the shapes of the RBW filters, they were obtained by 

measuring a CW signal whose level were –60dBm. Their power was the same to the modulated 

signals. The all (b) show the spectrum with each RBW, and (c) show the trace measured by 

zero-span mode. The all figures show the spectrums measured with RBW 30kHz for the reference. 

The bandwidth of the measured signal is approximately 1.1MHz. 

 

Figure 2.32 (a) shows the figure of the RBW filter 1MHz, and the span was 2MHz. The 

difference of the level between the center and the both side right and left was approximately 10dB.  

Figure.2.32 (b) shows the spectrum with the span was 2MHz and the sweep time was 

200msec. The frequency resolution was very coarse and the trace was similar to the wave of the 

zero-span. The trace had many ripples that were cased by a response of both time domain and 

frequency domain. The peak power of (b) was almost –60dBm. The level down was approximately 

3dB on the both side start and stop of the scale. 
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Figure (c) shows the trace by zero-span mode whose sweep time was 200μsec. The interval 

of the ripple was 50μsec that was according with the twice of the modulation frequency 10kHz.  

 

Figure 2.33 shows the results measured with RBW 100kHz whose bandwidth is 

approximately 10% against the measured signal as shown in Figure (a).  

Figure (b) is the spectrum, whose envelope is simile to the spectrum of RBW 30kHz. The 

level of the spectrum was higher than the spectrum measured by RBW 30kHz. The spectrum 

seems to have many sideband lobs; they were not side lobes but the response of the power in time 

domain. The frequency interval of each side lobes was 10kHz as shown in Fig.2.35, but the RBW 

100kHz was not enough to resolve them. 

Figure (c) shows the trace of zero-span by the same condition with Fig.2.32 except for the 

RBW. The interval of the ripple was 50μsec, and the level deviation was larger than it of Fig.2-32, 

whose bottom was almost the noise floor. The peak level is corresponding to the level of center in 

Fig.(b), which is –64dBm. 

 

Figure 2.34 shows the results measured with RBW 1kHz whose bandwidth is approximately 

0.1% against the measured signal as shown in Fig. (a).  

Figure (b) is the spectrum, which is observed asymmetrically. The reason of the asymmetry 

considered for the insufficient resolution of digitizing on the display. In the measurement of 

narrower span, the levels of the sideband lobes ware symmetrically as shown in Fig.2.35 (b). This 

spectrum consists of many side lobes. Their level and frequency ware static. Each interval of them 

was 10kHz, which accords with modulation frequency of the FM. 

Figure (c) shows the trace of zero-span whose level is –83dBm, almost flat and approximately 

20dB lower than the peak level of Fig.2.33 (c). The ratio 20dB is considered as the rate of RBW 

between Fig.2.33 and 2.34. 

 

Figure 2.35 are results measured the signal of Fig.2.33~2.35 with span equals 200kHz. Each 

figure (a), (b-1) and (c) has different RBW, which are 100kHz, 10kHz and 1kHz, respectively. 

The level of the trace (a) was dynamically changed. It was the response of the time domain as 

shown in Fig.2.33 (c). On the other hand, the trace (c) was static. The frequency resolution (RBW) 

of (c) was enough fine to show the side lobes. In the case that the RBW was narrower than 3kHz, 

the level of each lobes did not change. The level in (a) were approximately 20dB higher than (b-1) 

and (c). 

The spaces between each lobe were filled with beat notes, and the period of the beats were 

100μsecond as shown in (b-2). But in the case that the RBW was wider than 30kHz, the period 

was 50μsec as shown in Fig.2.33(c). 
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Spectrum measured with RBW 30kHz 

Figure of RBW 1MHz 

Spectrum measured with RBW 30kHz 

Spectrum measured with RBW 30kHz 

Spectrum by RBW 1MHz 

Zero span trace by RBW 1MHz 

The cycle of the ripple was 50μsec 

(a) 

(b) 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.32 Measurement of wideband signals with RBW 1MHz 
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Spectrum measured with RBW 30kHz 

Figure of RBW 100kHz 

(a) 

(b) 

Spectrum by RBW 100kHz 

Zero span trace by RBW 100kHz 

The cycle of the ripple was 50μsec 

Spectrum measured with RBW 30kHz 

(c) 

The spectrum measured with RBW 

 30kHz is behind the front spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.33 Measurement of wideband signals with RBW 100kHz 
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Spectrum measured with RBW 30kHz 

Figure of RBW 1kHz 

(a) 

(b) 

Spectrum by RBW 1kHz 

Zero span trace by RBW 1kHz 

Spectrum measured with RBW 30kHz 

Spectrum measured with RBW 30kHz 

(c) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.34 Measurement of wideband signals with RBW 1kHz 
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(a)  RBW 100kHz 

  The trace is shown as many teeth of a 

saw. Their level and frequency are 

dynamically changing with the cycle of 50

μsec as shown Fig.2-33(c). 

(b-1)  RBW 10kHz 

  Gently undulating sideband lobs are shown. 

Each interval of them are 10kHz which is 

modulation frequency. 

(b-2)  

The spaces between each 

lobes are filled with beat 

notes. The period of the 

beats  were 100μsec. 
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Fig.2.35  Measurement of wideband signals with SPAN 200kHz 

 

 

 

2.7.3 Discussion: 

Sweep spectrum analyzers show a spectrum of the signal, f(t) as a trace which is explained by 

the Eq.(2.36-c), ( ) |)()(|0 ωω GFtS ∗= . It can be explained as 

( )

∫
∞

∞

=

∗=

-

0

)d-)G(F(

|)()(|

ττωτ

ωω GFtS

   (2.69) 

The FM signal measured in this section, Eq.(2.68) can be rewrote as [14], 

( ) ( )tnmJAtf mc

n

nc ωω += ∑
∞

−∞=

cos)( ,  (2.70-a) 

where m is a modulation index, 

m

m
ω
ω∆

= ,   (2.70-b) 

)(mJ n
 is the Bessel function of the first kind of order n and argument m. The signal )(tf  

was a set of some CW signals whose frequency interval was mω , 10kHz. The bandwidth was 

approximately 1.1MHz and the number of the sideband lobes is about 110.  

 

(c)  RBW 1kHz 

  Many sideband lobs are shown. 

Their level and frequency are static. Each 

interval of them are 10kHz. 
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The concept of the convolution of the FM signal and the RBW filter, which is explained by 

Eq.(2.69) is shown in Fig. 2.36. In the case that the bandwidth of the RBW filter is narrower than 

10kHz, the RBW filters accepts one side lobe and the integral of Eq.(2.69) took same level. On the 

other hand, in the case that the bandwidth was wider than 10kHz, the number of the side lobes 

accepted by the filter was in proportion to the RBW. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.36  Convolution of FM signal and RBW filter 

 
 

Although the model explained by Eq.(2.69) is a static model, we can consider the FM 

modulation as a dynamical model, which is shown in Fig.2.37. The instantaneous frequency of an 

FM modulated signal such as Eq.(2.68) dynamically changes. In the condition Table 2.1, the 

frequency changes 10,000 times in one second. 

The spectrum under side of Fig.2.37 shows the concept of the instantaneous and the max-hold 

spectrum of the signal. The upper side figure shows the dynamical change of the frequency of the 

signal against the time. The time length of the graph is 2m second (-0.001sec to 0.001sec). And in 

the upper left side, the impulse responses of the RBW filters, RBW 100kHz and 1kHz, are shown. 

The time length of the impulse response of RBW 100kHz and 1kHz was 0.02msec and 2msec 

(see section 2.5.3), respectively. The time length of RBW filter, 100kHz is shorter than the period 

of the modulation frequency (10kHz), then the filter can response the instantaneous frequency of 

the signal. It is fact that the instantaneous frequency always lies in the range 1.06MHz, which is 

indicated as a frequency deviation in the Fig.2.37. In the case that RBW is 100kHz, we could 

observe that the RBW filter responded the instantaneous frequency as shown in Fig.2.33 (c). 

kHzRBW100

kHzRBW10

kHzRBW1

FM Modulated Signal 
RBW 300Hz 
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On the other hand, the time length of RBW 1kHz filter is very long than the period. The filter 

cannot response against the instantaneous changing of the frequency. The output of the filter is 

almost static. And the spectrum obtained by RBW 1kHz has only energy at all specific frequency 

explained by Eq.(2.70-a) and has no energy at any where else.  

The all spectrums obtained by different RBW are correct, but they measured by different 

conditions. A wide RBW has low frequency resolution, but has high resolution in time. And a 

narrow RBW has high frequency resolution and has low resolution in time. It is one kind of the 

uncertainty principle as next equation. 

constant=∆×∆ tf    (2.71) 

where f∆  and t∆  are resolution of each domain of RBW filters. 

 

 

2.7.4 Conclusion 

   This section described that spectrums show different result corresponding to different 

conditions. An RBW is the most significant parameter to decide the condition. The abscissa of a 

sweep spectrum analyzer has a property that indicates a time. In the case that the RBW is wider 

against the span, the trace indicates the instantaneous response rather than frequency. A narrow 

RBW give us static spectrum, which are more similar to the Fourier transform of the 

signal. 
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Fig.2.37  Dynamics of FM modulation and the RBW filters 
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2.8 Sweep method and FFT method 
This section describes properties of FFT method and differences between the sweep method 

and the FFT method. 

 

2.8.1 Digital IF method 

 

 

 

 

 

 

 

 

 

Fig.2.38  Example of Block diagram ofFig.2.38  Example of Block diagram ofFig.2.38  Example of Block diagram ofFig.2.38  Example of Block diagram of    an an an an FFT methodFFT methodFFT methodFFT method 

 

   There are two kinds of the spectrum analyzer that employs the FFT (Fast Fourier Transform) 

method. One has the ‘down-converter’, which converts an RF signal into an IF signal, which is 

digitized by an AD/C. Another has not the down-converter, the AD/C accept the input signal 

directly. The concepts of both types are shown in Figure 2.38. To measure the signal whose 

frequency is under the Nyquist frequency the down-converter is not needed. 

   In the method with the down converter, the local oscillator of the down converter is fixed 

tuned (not sweeping). The band-pass filter (BPF) does not decide the resolution of the spectrum, 

but limit the bandwidth of the signal. This band limitation prevents the aliasing (the folding of 

out-of-band signals into the AD/C sampled data). The Fourier transform is done by the FFT 

prosessing, which is computed in the DSP. 

 

2.8.2 FFT 

   The description about the FFT is given by [7][15] and other many documents. The principle 

form of Fourier transform is expressed following equation. 

∫
∞

∞−

−⋅= dtetfF tjωω )()(   (2.72) 

This equation requires the integration time to take from minis infinite to infinite, but it is 

impossible. In the FFT method, the integration time is limited as a window function, g(t). The 

measured signal f(t) is multiplied by g(t) and f(t)×g(t), which is called ‘windowed function’. The 

measured signal is assumed to repeat infinitely as the windowed function. 

Low frequency signal 

Local osc. 



  

 - 76 - 

The outline of the FFT method is shown in Fig.2.39, where )(tf  and )(tg  is a measured 

signal and the window function, and 
WT  is the time length of the window function. By the theory, 

the Fourier transform of a product of two functions is a convolution of the transforms of the two 

functions in the frequency domain as follows [7]. 

)()()( tgtfts ×=   (2.73-a) 

)()()( ωωω GFS ∗=   (2.73-b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.39  Concept ofFig.2.39  Concept ofFig.2.39  Concept ofFig.2.39  Concept of FF FF FF FFTTTT 

 

The FFT is a kind of discrete Fourier transform. In this method, )(tf  and )(tg  is 

transformed into discrete forms as, 

)(][ tifif ∆×= ,  (2.74-a) 

)(][ tigig ∆×= .  (2.74-b) 

][][][ igififW ×=  , (2.74-c) 

sft /1=∆ , 1~0 −= Ni , 

 

where 
Sf  is the sampling frequency, N is the size of the window. And the Fourier 

transform, )(ωS  is expressed as, 

f(t)  measured signal 

g(t) Window function 

f(t)×g(t) 

FFT 

FFT 

( ))()(10 ωω GFLog ∗

WT
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∑
−

=

−⋅=
1

0

])/2(exp[][][
N

n

W nkNjnfkS π ,  (2.75-a) 

)2/(,2 Nffkf S=∆⋅∆= πω ,  (2.75-b) 

where k is a desecrated frequency as a number of bin (display sample). The spectrum ][kS  is 

statistical which is averaged within the time WT . The abscissa has no factor of a time. The 

resolution of the time corresponds to WT , which is defined by 

)1(
1

−= N
f

T
s

W    (2.75-c) 

 

2.8.3 Frequency resolution (RBW) in FFT 

  In the FFT method, the window function operates as a resolution filter. The frequency resolution 

is dependent on the window function as Eq.(2.73-b). Table 2.2 gives the specifications of typical 

window functions [15]. In the sweep spectrum analyzer, the 3dB bandwidth (Rbw) is given as a 

number of bins.  

An example of enlarged peak of a spectrum is shown in Figure 2.40, where the small circles 

indicate sample points of desecrated spectrum such as expressed Eq.(2.75-a) and (2.75-b), and the 

solid line indicates the continuous spectrum )(ωS . In Figure 2.40 (a), one sample of ][kS  

corresponds to the peak of )(ωS . On the other hand, in (b), ][kS  has no sample at the peak and 

we observe the peak level lower than the true peak. The ‘Scallop Loss’ of Table 2.4 indicates the 

worst loss.  

Some solution to prevent the Scallop Loss is suggested. One solution is a employing a 

flat top window and other is interpolation of the spectrum ][kS  [16].  

 

Table 2.4  Characteristics of Windows    (referred by [15]) 

Window 

function 

Operation 

Mathematical formula 

3.0 dB Bandwidth, 

RBW  (bin) 

Scallop Loss 

(dB) 

Highest side lobe 

Level (dB) 

Rectangle 








≤<

−=
=

iNi

Ni
iwR

,0,0

1~0,1
][  

0.89 3.92 -13 

Hanning ))/2cos(1]([][ Njiwiw rh π−=  1.20~1.86 0.86~2.1 -23 ~ -47 

Gauss 
[ ]

22

22

)/(2ln4

/exp][][

Rbwfa

aiiwiw

s

rg

⋅≡

−⋅=

π
 

1.33~1.79 0.94~1.69 -42~ -59 
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Fig. 2.40  Example of Scallop Loss 

 

 

 

2.8.4 Bandwidth of the processed signal and dynamic range 

In the sweep spectrum analyzer, the RBW filter limits the bandwidth of the input signal 

finally. In the FFT method, the bandwidth corresponds to the Nyquist frequency of the AD/C, 

which is generally enough wider than the frequency resolution (Rbw). The difference of the two 

methods is shown in Figure 2.41. 

In the case that the measured signal is multi tone such as 

( )∑
−

=

+⋅=
1

0

cos)(
n

i

iiimlt tatf θω ,  (2.76) 

where ia  is a amplitude of each tone, and iθ  is the initial phase, the maximum instantaneous 

amplitude 
maxA  is expressed by 

∑
−

=

≤
1

0

max

n

i

iaA .  (2.77) 

This value maxA  is dependent on the each phase iθ .  The gain in front of the ADC should be 

controlled to prevent the clipping corresponding to the maximum amplitude. Generally, this 

amplitude becomes larger according with the bandwidth of the signal. On the other hand, in the 

sweep method, the signal in front of the AD/C, is band limited, and we take the gain in front of the 

ADC take larger than the FFT method. At the point of the bandwidth of signal that is received by 

an AD/C, the sweep method has an advantage against the FFT method. 

 

Scallop 
Loss 

f∆

(a) Catching the peak (b) Causing the Scallop 

][kS

)(ωS
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Fig.2.41   Fig.2.41   Fig.2.41   Fig.2.41   Bandwidth of processed signal in seep method and FFT methodBandwidth of processed signal in seep method and FFT methodBandwidth of processed signal in seep method and FFT methodBandwidth of processed signal in seep method and FFT method 

 

2.8.5 Ripple on the spectrum 

The spectrum measured by the FFT method that has a down converter (as shown Fig.2.38) 

may include a ripple that is caused by a frequency response of the IF BPF. An example of 

frequency response of an IF filter is shown in Figure 2.42 (a), which is obtained by a chirped 

signal passed thorough the one of the IF filters in R3264 (produced by ADVANTEST Co.). And 

the figure (b) illustrates the spectrum, which is assumed obtained from the signal (a). 

Although, in the sweep method, the frequency response of the IF filter is observed as a 

convolution factor against the spectrum )(ωF . In the FFT method, the frequency response of the 

IF filter, )(ωR  is observed as the ripple of the spectrum given by 

{ })()()()( ωωωω GFRS ∗⋅= .   (2.78) 

We considered that this phenomenon was cased by the non-sweep of the local oscillator. 

  We must correct the ripple or design the IF BPF have low ripple to obtain a exact spectrum, or 

approve the ripple. 

All band signal 
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(a)(a)(a)(a)    Frequency response of an IF filterFrequency response of an IF filterFrequency response of an IF filterFrequency response of an IF filter    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) The spectrum with a ripple(b) The spectrum with a ripple(b) The spectrum with a ripple(b) The spectrum with a ripple    

    

Fig 2.42  Ripples on Spectrums in FFT method 

 

    

2.8.62.8.62.8.62.8.6    DC Response in FFT methodDC Response in FFT methodDC Response in FFT methodDC Response in FFT method    

In the FFT method with the down converter, the DC response (see 2.6.4) exists by the same 

reason with the sweep method. But in the FFT method without the down converter, the DC 

response caused by the local feed thorough does not exist, but the spectrum of the DC is observed 

as the peak at 0Hz that is true value of the spectrum. The FFT method is the most popular method 

to measure low frequency signals. 

Chirped signal passed thorough the IF BPF 
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2.9 Multiple-FFT Measurement 

    

2.9.1 Outline of the measurement2.9.1 Outline of the measurement2.9.1 Outline of the measurement2.9.1 Outline of the measurement    

The frequency span obtained by the FFT method with down converter is narrower than the 

bandwidth of the IF BPF. The block diagram of the FFT method is shown in Fig.2.43 (a). The 

bandwidth is defined as ‘Flt’ that is shown in Fig.2.42. In the case that the desired frequency span 

is wider than the Flt, some spectrum analyzers employ the ‘Step sweep method’ or ‘Multiple-FFT 

Measurement’ [19], which is described as follows. 

(1) The frequency of the local oscillator is increased with an interval time WT (second) or 

more by a step. The frequency is explained as  

Fltkllk ×+= 1ωω   (2.79) 

where k is the number of the step, lkω  is the frequency of k-th step and 1lω  is the first 

frequency of the local oscillator. The transition of the frequency against the time is shown in 

Fig.2.43 (b). 

(2) The IF signal (output of the BPF) whose interval is WT , is digitized by the A/D converter 

‘AD/C’ and stored in the memory ‘MEM’. The signal is transformed into the spectrum by 

the FFT processing. 

(3) The part of the spectrum obtained by (2) whose frequency range corresponds to the Flt is 

extracted, see Fig.2-43 (b) and (c). 

(4) The operation (1) to (3) is repeated until that the desired span of the spectrum is obtained. 

The results of multiple FFT are concatenated to provide the spectra for a desired span, see 

Fig.2.34 (d). 

 

By this method, we can measure a spectrum with any span, as we desire. This method is 

called ‘multiple FFT method’. 

    

2.9.2 2.9.2 2.9.2 2.9.2     Sweep RateSweep RateSweep RateSweep Rate    

The sweep rate of the multiple-FFT measurement was considered as follows.  

In this method, the local oscillator does not sweep and we considered the sweep rate as the 

span band that obtained within one second. To consider the sweep rate, we did not consider the 

operation time of the DSP, response time of the oscillator, and other factor which dependent on the 

condition of the system. 

The acquisition time of one FFT, WT  corresponds to the time length of the window function. 

It is given by 

Rbw

k
T W

W =   , 5.3~5.2=Wk , (2.80) 
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where the window function is assumed Gauss. The value of Wk is experimentally decided by [16] 

or [17]. The span obtained by one FFT is Flt. Then the sweep rate is assumed as 

RbwFlt
kT

Flt

WW

⋅==
1

σ . (2.81) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.43  Jointed Spectra by Step Sweep method 

lkω

4321:k

(a) 

 

 

 

 

(b) 

 

 

 

(c) 

 

 

 

 

(d) 
Concatenated 
Spectra 

k: 0   1      2      3      4 

.Frq



  

 - 83 - 

The rate between Flt and Rbw will be known by section 4.2.5 as follows. 

RbwFlt ×≥ 8.5   (2.82) 

We considered the relation between the sampling frequency 
SF  and Flt as follows (section 

6.2.4 will describe a discussion about this). 

)( BwdFltFS +≥ ,  (2.83-a) 

where Bwd is the bandwidth of desired dynamic range such as 100dB down bandwidth. In the case 

that the filter is digital, the Bwd is assumed roughly twice of the Flt. Then Eq.(2.83-a) can be 

rewrote as 

FltFS ×≥ 3 ,   (2.83-b) 

and     
3

SFFlt ≤ ,   (2.83-c) 

The relation between SF  and Rbw is considered by Eq.(2.82) and (2.83-a~c). 

RbwFS ×≥ 4.17 , or  4.17/SFRbw ≤   (2.84) 

The sweep rate is explained by substituting Eq.(2.83-c) in to Eq.(2.81) as 

RbwFRbw
F

k
RbwFlt

k
S

S

WW

⋅⋅==⋅≥ 095.0
3

11
σ , (2.85) 

where Wk  is 3.5. As a result, the sweep rate is in proportion to the product of SF  and Rbw. 

 

2.9.3 Actual Measurement Time2.9.3 Actual Measurement Time2.9.3 Actual Measurement Time2.9.3 Actual Measurement Time    

The sweep rate against the Rbw with the sampling frequency 100MHz and 200kHz, which is 

computed by Eq.(2.85), is shown in Fig.2.44. The rate of sweep method is drawn in the figure for a 

comparison.  

In actual system, the overall measurement time is including a processing time, local switching 

time and other several factors [19]. Therefore, the actual sweep rate is given by 

,
)}/,{max()1)/(int(

TimeProcessingTotal

SLOWP TRbwkTFltSpan

Span

Span

+×+
=

=σ

 (2.86) 

where PT  is the processing time of the FFT, SLOT  is the local switching time. If the processing 

time is shorter than the acquisition time, it has almost no influence to the measurement time. 
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Fig 2.44  Sweep rate Against Rbw 

FFT:  Computed by Eq.(2.85) 

Sweep: Computed by Eq.(2.38) 

ｘ：Indicate the point that Rbw=(Sampling frequency)/17.4 

We cannot achieve the FFT with the Rbw by the sampling frequency. 

 

 

The sweep rate of the sweep method is in inverse proportion to square of Rbw, but the rate of  

the FFT method, Eq.(2.86) is in inverse proportion to Rbw. It is expected that the FFT method can 

achieve faster sweep rate at narrower Rbw. But the wider Rbw requires faster sampling rate, 

shorter the window time WT , and shorter operation time. The symbols ‘x’ in Fig.2.44 indicates the 

value of Rbw that is ‘(Sampling frequency)/17.4’. By the discussion of Eq.(2.84), we cannot achieve 

the FFT with the Rbw larger than the point of ‘x’. We have a point that the processing time PT  

becomes larger than the window time WT . And we have the point of Rbw that the FFT method is 

not faster than the sweep method. 

We investigated the measurement time of two conventional types of spectrum analyzers. We 

measured the measurement time including operation time or other all-processing against each Rbw 

using a stopwatch, where the span was set enough wider than the Rbw.  

The result of type A is shown in Table 2.5-a. This type of analyzer has the FFT method of 

Rbw from 1Hz to 10kHz. It was until Rbw 1kHz that the sweep rate was faster than the sweep 

method. The result of type B is shown in Table 2.5-b. It was until Rbw 100Hz that the sweep rate 

was faster than the sweep method. The difference of achieved sweep rate of the two types was 

approximately 7 times. The two types assumed to have different processor. 

)(HzRbw

sec)/(Hzσ

××××    

××××    
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Table 2.5Table 2.5Table 2.5Table 2.5----a:  Results of Type A (Rohde&Schwaltz FSU in 2006)a:  Results of Type A (Rohde&Schwaltz FSU in 2006)a:  Results of Type A (Rohde&Schwaltz FSU in 2006)a:  Results of Type A (Rohde&Schwaltz FSU in 2006)    

RBW 
σ: Sweep Method 
(for Reference) 

σ: FFT method 
Ratio against the 
sweep method 

1Hz 0.5Hz/sec 3.75kHz/s 7500 

10Hz 50Hz/sec 37.5kHz/s 750 

100Hz 5kHz/sec 375kHz/s 75 

1kHz 0.5MHz/sec 3MHz/s 6 

10kHz 50MHz/sec 10MHz/s 0.2 

    

    

Table 2.5Table 2.5Table 2.5Table 2.5----b:  Results of Type B (Ab:  Results of Type B (Ab:  Results of Type B (Ab:  Results of Type B (Agilent ESA in 2006)gilent ESA in 2006)gilent ESA in 2006)gilent ESA in 2006)    

RBW 
σ: Sweep Method 
(for Reference) 

σ: FFT method 
Ratio against the 
sweep method 

1Hz 0.5Hz/sec 500Hz/s 1000 

10Hz 50Hz/sec 500Hz/s 100 

100Hz 5kHz/sec 50kHz/s 10 

300Hz 45kHz/sec 27kHz/s 0.6 

    

By the result of above discussion, it considered that the maximum Rbw that achieves faster 

sweep rate than the analog method is dependent on the performance of the signal processor. It is 

important to take optimized configuration that takes a balance between the performances AD/C, 

DSP and other parts of the system.  

    

2.9.4 Demerit of the FFT Method2.9.4 Demerit of the FFT Method2.9.4 Demerit of the FFT Method2.9.4 Demerit of the FFT Method    

As described in section 2.8.5 and Fig.2.42, the spectrum obtained by the FFT method has 

some ripple corresponding to the characteristic of the IF BPF. In the step sweep (multiple-FFT) 

method, the ripple will appear on the each spectrum as shown in Fig.2.45. It is difficult to make 

the IF BPF that has perfectly flat pass band. It is more realistic to take an equalization of the IF 

BPF than to make it with flat pass band. 

There are not continuities on the time between each result of the FFT. In the case we measure 

a dynamic signal, some gaps may exist between the each result of the FFT. 
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Fig 2.45  Ripple on a Spectrum by Step Sweep method 

 

 

2.10 Summary 

This chapter described the theory and property of the sweep spectrum analyzer. It is a kind of 

pseudo-Fourier transformer. In sweep method, the spectrum )(ωS  is obtained as a convolution of 

Fourier transform of the signal )(ωF  and frequency response of the resolution filter )(ωG , 

which is given by 

)()()( ωωω GFS ∗= . 

The sweep time is in proportional to the Span and in inversely proportional to the square of 

resolution bandwidth (Rbw) as next equation. 

20
Rbw

Span
kTS ≥ , 

where 
0k  is 2~3 experimentally. 

  The abscissa of spectrums obtained by sweep spectrum analyzer indicates not only frequency 

but also time. The resolution of the frequency and the time is under a binding of the uncertainty 

principal. 

Δf×Δt=constant (2.87) 

The sweep spectrum analyzer can change the condition of the measurement such as the Rbw and 

the sweep time. We can obtain variable result by changing the condition, and we can estimate the 

Fourier transform of the signal )(ωF . On the other hand, in the FFT method, the abscissa has not 

factor of time. The sweep method has an advantage at the point of variety measurement condition 

against the FFT method. 

 The sweep spectrum analyzer is a narrowband system as described in section 2.8. It is 

conformity to measure with wider dynamic range. 

 

  Table 2.6 concludes the characteristic of each method. 

 Some report about the FFT method is described in [1][2][17][18].  

One FFT 
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Table 2.6     Characteristics of each methods 

Category Merit Demerit 

Sweep Method 

・Measuring RF signal, up to μwave 

･Wideband measuring 

 3GHz to 8GHz 

・Wide dynamic range 

・Slow speed at narrow RBW 

・Around DC (0Hz) is observed  

as Zero carrier  

FFT method With 

no down converter 

・Low frequency from 0Hz 

・Time domain measurement by 

 same instrument system 

・Transient phenomenon 

・The dynamic range is dependent 

 on the AD/C 

・System performance is dependent 

 on the processor 

FFT method With 

down converter 

・High speed with narrow RBW 

・Well shaping factor of RBW filter 

・Wide band measurement over 100MHz 

・The IF filter response appears 

 on the spectrum. 

Digital Oscilloscope 

(Time domain) 
・Transient phenomenon ・Difficult to measure multi tone signal 

Digital Oscilloscope 

(Frequency domain) 
・Low cost ・Low dynamic range 
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Chapter 3 

Theory and System of Super Sweep Method 

 

3.1    Introduction 

Chapter 2 described the reason why sweep spectrum analyzers have the restriction of the 

sweep rate. This chapter describes the principle of the super sweep method that was introduced in 

[5]. This method made a breakthrough in the restriction of the sweep method, which is described 

in section 2.5.2. 

Section 3.2 described the mathematical description of the super sweep method and the 

fundamental concept of the implementation.  

Section 3.3 describes the signal processing of the super sweep method using the model, which 

is described in section 3.2. In this section we inspect the negative chirp operation by numerical 

analyses, and describe the Gaussian filter as the negative chirp filter and analyze the maximum 

sweep rate of the method. 

In section 3.4, an implementation of the complex filter is considered. 

 

3.2     Theory of super sweep method 
 

3.2.1 Back ground of super sweep method  

In this chapter or later, we assumed that the described system was made by the digital IF 

method, which was illustrated by Fig.2-10, 2-11 and 2-12 in section 2.4. 

In section 2.5, we investigated the restriction and ‘over sweep-rate response’ of the sweep 

rate in sweep spectrum analyzers. The phenomenon is caused because the resolution filter accepts 

the chirped IF signal. The over sweep-rate response exists whenever the sweep rate σ was not 

zero. Figure 2.21 (a) and (c) show the reduction 0.1dB, which was permitted condition generally.  

In Fig.2.21(c), the transition of the phase against the Gaussian filter was so small that the 

transition was assumed almost stop within the time length of the Gaussian filter. In a hypothesis 

that we set up, we could obtain the spectrum without the peak level reduction by canceling the 

phase factor of the base band signal before the resolution filter process. 

 

3.2.2 Mathematical model of super sweep method 

In this section, we assumed that the measured signal was a CW signal for simplification. The 

super sweep method was one of methods to approximate the Fourier transform. By the theory of 
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linearity on Fourier transform, we could apply the result, which was proved for a CW signal, to a 

general signal as a sum of CW signals. 

In the system described in Fig.2.17, the IF signal S(t) had a chirped phase factor: 2tπσ , which 

was described in Eq.(2.31a)~(2.31c). This factor caused the imperfect of the Fourier transform. 

We intended to cancel the chirped phase factor using a complex filter as follows. The super sweep 

method introduced a complex filter that had a negative chirp factor. The impulse response of the 

filter was expressed by 

]exp[)()(
2
tjtgtg n πσ= .    (3.1) 

By replacing )(tg  with above )(tgn  in Eq.(2.31-a), Eq.(2.29-b) is modified as 

{ })()()()( tltftgtS nn ×∗= ,  (3.2) 

where )(tS n  is modified IF signal. This equation can be modified as 
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There are no terms that included 2τ  in the exponential function. The filter )(tg n , ‘a negative 

chirp filter’ cancels the terms. Equation (3.3) is now modified as 

[ ] ,)(exp)()()()( ττωττ dtjtfgtltSn ∫
∞

∞−

×−=         (3.4) 

where ω(t) is defined as 

02)( ωπσω += tt .    (3.5) 

Then, Eq.(3.4) can be written by substituting )( τ−tf  with Eq.(2.29). 

[ ] ττωωττω dtjtagtjtltS ssn ∫
∞

∞−

−−×−×= ))((exp)()(]exp[)()(  

[ ] ,))((exp)()(]exp[)( ττωωττω dtjrgtjtl ss ∫
∞

∞−

−−×⋅×=  

where )(τr  is )( τ−ta . 

It is possible to replace the integration of Eq.(3.4) with the product of the Fourier transforms of 

)(tg  and )(τr  as follows. 

))}(())(({]exp[)()( tRtGtjtltS sssn ωωωωω −∗−×= ,  (3.7) 

where 　)(ωG and )(ωR  is a Fourier transform of )(τg  and )(τr .  By the characteristic of the 

Fourier transform, )(ωR  can be expressed as follows [1]. 

(3.3) 

(3.6) 



   

 - 91 - 

))((])(exp[))(( tAttjtR ωωω −×−= ,       (3.8) 

where A(ω) is the Fourier transform of )(τa . Thus Eq.(3.7) is modified as 

)}.)(())(({])(exp[)()( ssn tAtGttjtltS ωωωωω −∗−××=       (3.9-a) 

By Eq(2.36-e),  

))(())(( stFtA ωωω += , (3.9-b) 

 and g(t) is a real signal. Then 

)()(
* ωω GG =− , (3.9-c) 

 where )(* ωG  is the complex conjugate of )(ωG . The Eq.(3.9-a) can be written as 

))}(())(({])(exp[)()( * tFtGttjtltS sn ωωωω ∗−××= .   (3.9-d) 

In the case that we focus the magnitude of Eq.(3.9-d), it can be written as 

.|))(())((||)(| * tFtGtS sn ωωω ∗−=   (3.10) 

 

Although, the conventional sweep method requires that the sweep rate equals to zero to obtain 

spectrum as a convolution with RBW filter (see section 2.5.1 and Eq.(2.36-c)). But Eq.(3.10) 

indicates that we can obtain a spectrum even if the sweep rateσis not zero. It is an effect of the 

filter represented by Eq.(3.1) that have the negative chirp factor. We named the filter represented 

by Eq.(3.1) ‘negative chirp filter’. And we named the new method, in which this filer is used, 

‘super sweep method’. 
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3.2.3   Implementation of Super Sweep method 

In this section, we introduce the hardware in which the super sweep method was implemented. 

The super sweep method inversed the chirp factor of the signal, and was a complex signal 

processing system. 

An example of a diagram, implemented the super sweep method, is shown in Fig.3.1. It was 

almost similar to the system described in section 2.4 “Digital IF”. It was exactly the same as the 

system that excludes the ‘Analog IF method’ from Fig.2.9. The ‘RF Down Converter’ had a local 

oscillator that generated a sweep signal l(t), Eq.(2.30), 

[ ])(exp)( 00

2 θωσπ ++⋅= ttjtl , (3.11) 

and had the mixer and the IF BPF as shown in Fig.2.9. It converted the ‘INPUT’ signal into the ‘IF 

Signal’, S(t). The A/D converter: ‘AD/C’ digitized the IF Signal which had efficient sampling 

frequency corresponding to the bandwidth of the IF signal. The output of the AD/C was 

transferred to the Digital Down Converter (DDC).  

The overview of the DDC is shown in Fig.3.2. The DDC converted the digitized IF signal into 

the ‘Base Band Signals’,  

)()()( tjQtItS bbB += .   (3.12) 

The function of the DDC is described in section 2.4. In Figure 3.2, the decimation rate of the 

‘Decimation LPF’ was 
DN . This rate was decided corresponding to the resolution bandwidth 

(Rbw); the decision-making process is described in the later section. The outputs of the decimation 

LPF were the ‘Base Band Signal’, )(tS B , which were inputted into the ‘Complex Filter’. The 

negative chirp filter was implemented as this filter. The output of this filter was the signal )(tS n  

which was described in section 3.2.2. )(tS n  was transferred into the ‘Display’. The Display was 

a sub-system which displays the )(tS n  as a spectrum. The detail of signal processing and the 

each part is described in the following sections. 
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Fig. Fig. Fig. Fig. 3.1  Diagram of our Experimental System3.1  Diagram of our Experimental System3.1  Diagram of our Experimental System3.1  Diagram of our Experimental System    

 

 

 

Fig. 3.2 Overview of Digital Down Converter (DDC)Fig. 3.2 Overview of Digital Down Converter (DDC)Fig. 3.2 Overview of Digital Down Converter (DDC)Fig. 3.2 Overview of Digital Down Converter (DDC)    
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3.3  Signal Processing of Super Sweep Method 

This section inspected the theory of the super sweep method, which was introduced in section 

3.2. This section described the signal processing of the system shown in Fig.3.1. The measured 

signal in this section was considered to be a CW, for simplification. 

 

3.3.1   Inspection of Super Sweep Method 

The Base Band Signal, output of the DDC, in Fig.3.2 has the same formula with Eq.(2.31-a). 

{ })]t(exp[)()()( 0

2 θωσπ ++⋅×∗= tjtfthtS B ,     (3.13) 

where h(t) is the total impulse response of the RF Down converter and the DDC, and ω  is the 

center frequency of the local oscillator in the RF down converter. 

In the case that )(tf  is a CW signal, )(tf  is given by 

]exp[)( tjatf ω×= ,    (3.14) 

where ‘a’ is the amplitude and ω  is the angular frequency. Then the signal )(tSB  is written as 

{ })](exp[)()( 0

2

_ θπσ +×∗= tjathtS CWB
,        (3.15) 

An example of )(_ tS CWB
 is shown in Fig.3.3. The two lines of the figure are a real and an 

imaginary part of the signal, )(tI b  and )(tQ b
, respectively. The envelope of )(_ tS CWB

 is 

corresponding to the frequency response of )(th . In Fig.3.3, the frequency of )(_ tS CWB
 at t=0 is 

0Hz. The time, at which the frequency equals to 0Hz, generally changes corresponding to ω. 

In the case that the frequency of the )(tf  equals to ωω ∆+ , Eq.(3.15) is written as 

{ })](exp[)()( 0

2

_ θωπσ +∆+×∗= ttjathtS CWB
.   (3.16) 

And when the frequency equals to zero, the time Δt is given by 

)2/( σπω∆−=∆t .  (3.17) 

It is modified as; 

t∆×−=∆ σπω 2 .  (3.18) 

We can obtain the frequency of )(tf  from this equation.  The abscissa of Fig.3.3 indicates the 

time progress and also indicates the frequency. 
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Fig. 3.3  Base band signal in sweep methodFig. 3.3  Base band signal in sweep methodFig. 3.3  Base band signal in sweep methodFig. 3.3  Base band signal in sweep method    

① 
-13~-3msec ② 

-5~5msec 

③ 
3~13msec 
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3.3.2   Inspection of negative chirp filter 
An example of the base band signal prior to the negative chirp filter is shown in Figure 3.3. In 

Fig.3.3, Span was 40kHz, Rbw was 300Hz, sweep time was 40msec, amplitude ‘a’ was one, and 

the plotting sampling frequency was 10kHz. The signal was computed by Eq.(3.15) with the 

following process. 

The sweep rate σ was, 
633 10)1040/(1040/ =⋅⋅== −

STSpanσ ,  (3.19) 

and )(th  was so designed that the 3dB bandwidth was 20kHz. Equation (3.15) was modified as 

{ }]exp[)()( 2

_ tjthtS CWB πσ∗= ,  (3.20) 

where a and 0θ were assumed to be one and zero for simplification. )(_ tS CWB
 was band limited 

chirp signal. In traditional method, σ should be, 

42

2

105.4
1

⋅==≤= Rbw
k

Rbw

Span
k

Span

T

Span

S

σ , (3.21) 

where 
ST  is given by Eq.(2.14) and k is 2.0. The rate Eq.(3.19) was 22.25 times faster than a 

conventional method. 

The signals shown in Fig.3.3 are typical base band signal of sweep spectrum analyzers, whose 

frequency is chirped. The signals are digitized; therefore we can cancel the chirp factor by 

computing.  

If the bandwidth of )(th  is wide enough, it can be assumed to be δfunction, and )(_ tS CWB : 

Eq.(3.20) can be assumed to be as the following equation. 

]exp[)( 2

_ tjtS CWB πσ=    (3.22-a) 

We defined a function )(tu  as 





≤−

>
=

sec5||]exp[

sec5||0
)(

2 mttj

mt
tu

πσ
.  (3.22-b) 

And we defined the product of )(tu  and )(_ tS CWB  with time lag τ, )(tSu  as, 

.)]2(exp[

])(exp[]exp[

)()()(

2

22

_

ττπσ

τπσπσ

τ

+−=

−×−=

−×=

tj

tjtj

tStutS CWBu

  (3.22-c) 

When |t|>5msec, )(tSu =0.  

The frequency of )(tSu  is dependent on the time lag τ. When τ=8msec, 0msec and 

-8msec, )(tSu was ①, ② and ③ of Fig.3.4, respectively. These were corresponding to ①, ② 

and ③ of Fig.3.3. The frequency of ① and ③ were constant and ② was a small change 

which could be assumed in the range of a quantum error of the digitizing. 

Through the above discussion, we inspected that the chirp factor of the signal 

)(_ tS CWB
 could be canceled. 
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Fig.3.4  Product of Chirped base band signal and negative chirp function 

① τ=-8 msec 

② τ= 0 msec 

③ τ= 8 msec 

The phase is changed from -1/5π
(-36deg) to 1/5 π (36deg). The 
frequency is 0.002Hz. 

The frequency is -8kHz. 

The frequency is 8kHz. 
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Figure 3.5 shows the impulse response of the Gaussian filter )(tg  at RBW 300Hz. 

The abscissa scale is fitted to Fig.3.4. )(tg  is expressed by the following equation (see 

section 2.5.3). 








 ⋅
−= 2

2

2ln2

)(
exp)( t

Rbw
tg

π
  (3.23) 

We defined the integral for the product of )(tg  and )(tSu  as ‘P’ which is a spectrum 

of )(tf , given by 

{ }.)()()(
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−

τ   (3.24) 

Where P can be assumed as a spectrum )(tSn , Eq.(3.2). Equation (3.24) means that P 

equals the convolution of negative chirp filter and chirped base band signal, Eq.(3.2).  

The operation of the super sweep method is represented by Eq.(3.24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.5 Gaussian Filter: RBW=300Hz 

 

The impulse response of  
the Gaussian Filter 
 for RBW=300Hz 
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3.3.33.3.33.3.33.3.3    Gauss function as negative chirp filterGauss function as negative chirp filterGauss function as negative chirp filterGauss function as negative chirp filter    
The negative chirp filter )(tg n , Eq.(3.1) is a kind of low pass filter. We can extract the time 

t∆ , Eq.(3.17) and the peak power of the base band signal )(tSB , Eq.(3.13) from the convolution 

of )(tg n  and )(tSB . And we can obtain the frequency and power of the signal )(tf . 

The Gaussian filter is usually chosen for the RBW filter of a spectrum analyzer [2][3][4]. The 

following equation shows an example of a negative chirp filter modified from Eq.(3.1). 

)](exp[
2ln2

)(
exp)( 2

22

tj
tRbw

tgn πσ
π

−×






 ⋅
−= .    (3.25) 

The relation between Rbw and the above function is described in [3][5]. In the case that σ 

equals to zero, the Fourier transform of )(tg n  corresponds to )(ωG  of Eq.(2.37).  

( ) 








⋅
−= 2

2

2ln
exp)( ω

π
ω

Rbw
G ,   

An example of the negative chirp filter is shown in Fig.3.6 whose condition is fitted with 

Fig.3.3~3.5 (RBW=300Hz, Span=20kHz, Sweep time=40msec). It is a complex function and 

consists of the real part and imaginary part as follows. 

)](Re[)( tgtI ng =    (3.26-a) 

)](Im[)( tgtQ ng =    (3.26-b) 

In Figure 3.6, Gauss function )(tg  is added as an envelope of )(tg n . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.6  Gaussian Filter( RBW=300Hz) )(tg n  as a Negative chirp filter 

sec10m

)(tg
)](Re[)( tgtI ng =

)](Im[)( tgtQ ng =
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3.3.4 Practical negative chirp filter  

The time in the Eq.(3.25) has no limit, therefore it is defined from minus infinity to infinity. 

The amplitude of Eq.(3.25) approaches zero when || t  is infinity. Actually, the |t| is limited as a 

digital filter. We defined the time limit 
GT as follows. 

RbwTG /χ=  ,  (3.27) 

where χ is a constant. The filter function )(tgn  is defined within the specified time as follows. 

2/|| GTt ≤     (3.28) 

We defined the time-limited function )(tgnL , which is product of )(tgn  and the function of 

Rect(t)  shown in Fig.3.7, and it is represented as follows. 

Rect(t))()( ×= tgtg nnL , (3.29) 

where 
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Fig. 3.7Fig. 3.7Fig. 3.7Fig. 3.7    Time limited Gausian filterTime limited Gausian filterTime limited Gausian filterTime limited Gausian filter    

 

The Fourier transform of Rect(t)  is known as sinc function and Dirichelet kernel )D(ω  

[6]. 
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where Sf  is the sampling frequency of input signal of the negative chirp filter, N is the tap 

number of the filter and θ is the normalized frequency. We modified Eq. (3.31-a) by scaling θ 

with ω. 

( )
( )2/sin

2/sin

2
exp)D(

ω
ωω

ω
N

j 




=  .  (3.31-b) 

 The Fourier transform of )(tgnL , )(ωnLG  is convolution of )(tgn  and Rect(t) . 

)()()( ωωω DGGnL ∗=    (3.32) 

The Fourier transform of a Gauss function is also Gauss function itself. Figure 3.8 shows the 

examples of frequency responses of these filters, in which χ equals 2.6 and 3.0. In the case that 

χ is smaller, the frequency response has larger side lobes. It requires χ to be 2.6~3.0 and above, 

to reduce the side lobe level -75 ~ -100 dB from its peak level, as shown in Fig.3.8. Practically, the 

level of side lobes is decided by the combination of the χ and the sampling rate.  

We should inspect the property of the filter for each measurement condition. 

 

 
 

 

 

 

 

 

 

 

   (a) RbwTG /6.2=           (b) RbwTG /0.3=  
 

Fig. 3.8Fig. 3.8Fig. 3.8Fig. 3.8    Frequency response for Frequency response for Frequency response for Frequency response for χχχχ=2=2=2=2.6.6.6.6 and  and  and  and 3.03.03.03.0    

 

3.3.5 Maximum Sweep rate 

In the case that the sweep rate is σ, the negative chirp filer sweeps the frequency f∆  within 

the time 
GT , as shown in Fig.3.9. 

RbwTf G χσσ ⋅=⋅=∆ .  (3.33) 

In Figure 3.9, the bandwidth of the base band signal is denoted as ‘Flt’, which is defined 3dB 

bandwidth of the h(t) described in Eq.(3.13). If the Flt is narrower than the f∆ , the integration of 

Eq.(3.4) does not operate completely. Then the Flt should be wider than the f∆  as follows. 

RbwfFlt χσ ⋅=∆≥ .  (3.34-a) 

From this inequality, the maximum sweep rate, 
smax_σ  can be written as the next equation. 

)(max χσ FltRbwS ×= .  (3.34-b) 

Frequency

1
0
0
d
B

 

Rbw10− Rbw10FrequencyRbw10− Rbw10
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Dividing Eq.(3.34-b) by Eq.(2.38) that is maximum sweep rate in the conventional method, we 

define a new parameter 
sR  as follows. 

Rbw

Fltk
R

S

s ×=≡
χσ

σ
0

max

max_  (3.35) 

This parameter 
sR  indicates the fastness of the super sweep method against the conventional 

method. And it is in proportion to Flt/Rbw, because 
0k  and χ are constants. 

 

 

 

Fig. 3.9  Response time and the frequency range of a negative chirp filterFig. 3.9  Response time and the frequency range of a negative chirp filterFig. 3.9  Response time and the frequency range of a negative chirp filterFig. 3.9  Response time and the frequency range of a negative chirp filter    

 

f∆
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3.4  Complex filter and Display 
Figure 3.10 is rewritten diagram of Fig.3.1, in which ‘Complex filter’ and ’Display’ are 

emphasized in the details. The base band signal )(tSB , Eq.(3.13) is inputted into the complex 

filter. This filter (which is enclosed by the dotted square) has four convolutions, two additions and 

one subtraction and produces the signal: ‘ )(tIS + )(tQS ’ as follows 

,)()(

)()(

)()(

I QbIbQbb

QIbb

nBSS

gIgQjgQgI

jggjQI

tgtSjQI

∗+∗+∗−∗=

+∗+=

∗=+
     (3.36) 

where )(tg I  and )(tgQ  is the real part and imaginary part of )(tg n . 

 

The output is the complex spectrum signal and followed by the ‘Display’. Square-sum of 

)(tIS  and )(tQS  is the power spectrum, usually expressed in unit dB. The power spectrum 

)(tSdB  is finally processed and obtained in the Display as follows. 

))()((log10)( 22

10 tQtItS SSdB +⋅=   (3.37) 

The parameter ‘t’ (time) is translated into the frequency by Eq.(3.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10  Signal Flow of a Complex filterFig. 3.10  Signal Flow of a Complex filterFig. 3.10  Signal Flow of a Complex filterFig. 3.10  Signal Flow of a Complex filter    

 

We can design several ways to implement the complex filter, such as 

∑
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−

=
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])[][][][(])[][][][(

[i])][(i])[k][(][][

G

G

N

i

QbIbQbb

N

i

QIbbSS

igikIigikQjigikQigikI

jgigjQikIkjQkI
 (3.38) 

where GN  is the tap number. Equation (3.38) produces one sample of )()( tjQtI SS +  as a sum 

)(tSB
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of the product. Generally, it is efficient for a digital signal processor (DSP) to implement the 

operation in Fig.3.10 by four FIR filters. And we can implement the ‘DSP’ of Fig.3.10 into the 

circuit of FPGA. 

 Some discussion about the implementation and the performance of the filter are done in 

Chapter-6. 

 

 

3.5  Summary    

This chapter describes the theory of the super sweep method, inspects the operation of the 

negative chirp, and discusses the concept of the implementation of this method. 

Through the discussion, we investigated that the sweep rate was in proportion to the rate 

./ RbwFlt   
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Chapter 4 

Experiments of new method 

 

4.1    Introduction 
This chapter describes the experimental system, set up to examine the theory of the super 

sweep method. We employed a conventional sweep spectrum analyzer as a RF down converter, 

which has 21.4MHZ IF output. We made a ‘DSP unit’, which has A/D converter, DDC and DSP. 

The operation of the new method is almost done on the DSP. This chapter describes the method 

and the condition of the experiment, and the result will be described in Chapter-5. Section 4.2 

describe the overview of the experiment system and the implementation of the signal processing. 

Section 4.3 describes the digital filter in the DDC. Section 4.4 shows the essential specification of 

the experimental system. 

 

4.2     ExperimentExperimentExperimentExperimental systemal systemal systemal system 
 

4.2.1  Overview of the system 

We set up the experimental system to examine the theory of the super sweep method. The 

system was designed based on the diagrams Fig.3.1, 3.2 and 3.10. The copy of Fig.3.1 is shown in 

Fig.4.1-(a). To realize the diagram, we employed a sweep spectrum analyzer as an RF down 

converter. The spectrum analyzer was R3264 produced by ADVANTEST Co. We made the DSP 

unit which took the operation from the AD/C to Complex filter in Fig.4.1-(a), and employed a 

conventional PC as a display system. The overview of the system is shown in Fig.4.1-(b). 

By the concept of Fig.4.1, we designed the concept of the signal flow of the system, which is 

shown in Fig.4.3. This system was almost the same as the system of the sweep spectrum analyzer 

which has digital IF method, although this system had negative chirp filters. 

The spectrum analyzer, R3264 has a local oscillator that generates sweep signal, mixers, IF 

band pass filters and output of ‘21.4MHz IF signal’. The architecture is shown in Fig.2-1, and 

described in section 2.2 and 2.3. The 21.4MHz IF signal is passed through the RBW filter of the 

R3264. The RBW filters can be changed by panel operation or GPIB operation. In Figure 4.3, the 

‘SWP’ signal is made by the ‘Sweep Generator’. And the voltage of SWP is corresponding to the 

frequency of the local oscillator, and the ‘start to stop’ frequency is corresponding to 0-5 Volt.  

R3264 has output of 10MHz Reference clock signal. We used this signal as a reference clock 

of the DSP unit, which is duplicated into 80MHz, and it drives the AD/C, DDC, DSP and all 

circuit of the DSP unit. R3264 has BNC connectors, 21.4MHZ IF, SWP and 10MHz reference 

clock output from them. These connectors on the Real-Panel of R3264 are shown in Fig.4.2. 
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(a) The concept (Fig.3.1)(a) The concept (Fig.3.1)(a) The concept (Fig.3.1)(a) The concept (Fig.3.1)    

 

 

((((b) Practical system, for a minimum development period and cost.b) Practical system, for a minimum development period and cost.b) Practical system, for a minimum development period and cost.b) Practical system, for a minimum development period and cost.    
    

Fig. 4.1  Overview of Our Experimental SystemFig. 4.1  Overview of Our Experimental SystemFig. 4.1  Overview of Our Experimental SystemFig. 4.1  Overview of Our Experimental System    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Real Panel view of our Experimental System 

Three signals are connected with the SPA to the DSP Unit 

 

10MHz Clock10MHz Clock10MHz Clock10MHz Clock    

21.4MHz IF21.4MHz IF21.4MHz IF21.4MHz IF    

SWPSWPSWPSWP    

GPIBGPIBGPIBGPIB    
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4.2.2  Signal flow of the system 

The overview of the signal flow from input to the display of our experimental system is shown 

in Fig.4.3. The measured signal is inputted into the spectrum analyzer. The input signal is 

converted into the 21.4MHz IF signal. The condition of the spectrum analyzer was set to be 

adapted for our experiments, which is described in later sections.  

 

 

 

Fig. 4.3  Over view of Signal Flow of our Experimental SystemFig. 4.3  Over view of Signal Flow of our Experimental SystemFig. 4.3  Over view of Signal Flow of our Experimental SystemFig. 4.3  Over view of Signal Flow of our Experimental System    

 

 

We connected the 21.4MHz IF, the SWP signal, and the 10 MHz Reference clock of the 

analyzer to the inputs of the DSP unit. The IF and the SWP signal were digitized by the AD/C. We 

employed AD6645 produced by Analog Devices Co. as the AD/C of the DSP unit. They were 

operated by 80 MHz clock with 14-bit quantization. The digitized IF signal was finally converted 

into the spectrum data, and the SWP signal was used to synchronize the abscissa of the display 

with the sweep of the spectrum analyzer. 

The DDC (digital down converter) was implemented using GC4016 supplied from the Texas 

Instrument Inc., which has CIC (Cascaded Integrator Com) and FIR digital filters to reduce the 

bandwidth and the sampling frequency. The description about the DDC is written in section 4.3. 

The Complex Filter was composed of four independent numerical filters programmed on a 

DSP as the negative chirp filter. It is described in section 3.4. The DSP was TMS-320C6711, 

which is supplied from the Texas Instruments Inc. The output from the DSP was transferred to the 

INPUTINPUTINPUTINPUT    
(Rbw) 
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PC through the USB2.0 interface and the Display was figured on the PC. The PC controlled whole 

experimental system as well. 

The SWP signal was passed thorough the same process with the IF signal to have the same 

latency with the IF signal, and it was registered with the IF signal. It gave the frequency value for 

each sample of the result as a spectrum data. 

 

4.2.3 External view of the system 

The external view of the experiment system is shown in Fig.4.4. The spectrum analyzer 

R3264 is shown at the left side. The black box above R3264 is the DSP unit. A spectrum is shown 

in the display of the PC in the right side. 

Figure 4.5 is the internal view of the DSP unit. The power unit is shown in the upper side. The 

left lower side the AD/C board exists, and in the right side the DSP board which has DDC, MEM, 

DSP, and other logic circuits exits. The hardware diagram of the DSP unit is shown in Fig. 4.6.  

 

 

 

 

Fig.4.4    Over view of the Experimental System 

 

 

 

 

 

 

 

 

 

DSP Unit 
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Fig.4.5    Internal view of DSP Unit 

 

  

 

 

Fig.4.6    Internal block diagram of the DSP Unit 

 

Power Unit 

AD/C Board 
DDC, DSP, MEM 
And other digital 
circuits 

FPGAFPGAFPGAFPGA    
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4.2.4  Chain of filters 

The essence of the system is presented in Fig.4.7. The most important functions of the system 

are filters that are drawn in Fig.4.7. The function of this system is itemized as follows. 

1. Input signal was mixed with the output of the sweeping local oscillator and transformed 

into the chirped IF signal by a few down-converters. In Figure 4.7, the down converters 

are drawn as single for a simplification. 

2. The chirped IF signal was band limited by a few IF-BPFs. The narrowest BPF of the 

Spectrum analyzer (SPA) was the RBW filter, which should be selected adequately 

corresponding to the bandwidth of the negative chirp Gaussian filter, Rbw. 

3. The DDC converted the digitized IF signal into the base band signal and limited the 

bandwidth of the signal. The bandwidth of output of the DDC is explained as ‘
DDCFlt ’ 

(See Fig.3.9 and section 3.3.5). The DDC, GC4016 has the CIC filter whose decimation 

rate is controllable, and the FIR filter whose coefficient can be re-wrote. The sampling 

frequency of the input signal, 
0f  and the decimation rate, DN  specifies the output rate 

Sf  and the bandwidth DDCFlt . 

DS Nff /0= .   (4.1) 

In our system the configuration of the DDC was fixed except for the decimation of the 

CIC. Flt is the bandwidth of input signal of the negative chirp Gaussian filter, which is 

minimum bandwidth between RBW and 
DDCFlt . 

),min( DDCFltRBWFlt =  (4.2) 

Note ) The detail of the DDC is shown in section 4.3. 

4. The negative chirp Gaussian filter extracted the time when the frequency of the signal is 0 

Hz. The bandwidth of the filter is Rbw, which is resolution bandwidth of the system as 

the spectrum analyzer. The coefficient of the negative chirp filter was calculated 

corresponding to the Rbw and σ, which is described in next section as Eq.(4.4). 

5. )(tSn
 was a signal according with the spectrum as a convolution of the spectrum and 

resolution filter, Eq.(3.10), .|)()(||)(| ωω GFtS n ∗=  

 

We assumed the experimental system to be a chain of the band-limit filters. The process of the 

band-limiting extracted the spectrum. 
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Fig.4.7   Chain of Band Limit FiltersFig.4.7   Chain of Band Limit FiltersFig.4.7   Chain of Band Limit FiltersFig.4.7   Chain of Band Limit Filters 

 

 

4.2.5 Implementation of the Gaussian filter 

The figure of the Gaussian filter (in dB scale) in frequency domain is shown in Fig.4.8. We 

designed the filter to have a dynamic range 100dB. The figure is a parabola and can be explained 

as 

22))(log(10 ωω aG −=   (4.3) 

For the Rbw is 3dB down-bandwidth of the filter, the 100dB down-bandwidth is calculated as 

approximately 5.8 times as wider as the Rbw.  

To achieve the high-speed sweep, the bandwidth of the input signal of the filter, the Flt have 

to be wider than the Rbw. The wider Flt is, the faster we can sweep. The sampling frequency of the 

input signal must be faster than the Flt. The configuration of the DDC specified the Flt. 

The mathematical formula of the Gaussian filter is explain by Eq.(3.25).  

)](exp[
2ln2

)(
exp)( 2

22

tj
tRbw

tgn πσ
π

−×






 ⋅
−=   (3.25) 

The coefficients of )(tgn
 were computed with the discrete time as follows. 

[ ]22
2

)(exp)(
2ln2

)(
exp][ tijti

Rbw
ign ∆×−×








∆×

⋅
−= πσ

π
 ,     (4.4) 

where 2,,0,,2 GG NNi LL−=  and 
Sft /1=∆ . 

Sf  is the sampling frequency of the input 

signal, which is given by Eq.(4.1). 
GN  was the sample (Tap) number, it was decided as 

SSGG f
Rbw

fTN ×=×=
χ

 .    (4.5) 

GT  and χ were described in section 3.3.4.  

Please note that Eq. (4.4) is independent of Flt. 

 

),min( DDCFltRBWFlt =

Rbw
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Fig.4.Fig.4.Fig.4.Fig.4.8888            Figure of a Gauss filter (dB) and Minimum Sampling RateFigure of a Gauss filter (dB) and Minimum Sampling RateFigure of a Gauss filter (dB) and Minimum Sampling RateFigure of a Gauss filter (dB) and Minimum Sampling Rate 
 

 

4.2.6 Sampling in the frequency domain 

The example of discrete spectrum ][iSn
 is shown in Fig.4.9, and the mathematical formula is 

described in section 4.2.10. The abscissa indicates both frequency and time. f∆  is the difference 

of the frequency between the sample. t∆  is the period of the sampling as a time domain. 

f∆  is estimated by the following equation, which is modified from Eq(3.18). 

tf ∆⋅=∆ σ    (4.6) 

The two value, f∆  and t∆  are independent each other principally. We considered that f∆  

should be narrower than Rbw/2 to keep the shape of the resolution filter. 

2

Rbw

f
tf

S

≤=∆⋅=∆
σ

σ   (4.7-a) 

This inequality can be modified as 

Sf
Rbw

2
≤σ    (4.7-b) 

This inequality explains the relation among the three parameters. It needs higher sampling 

frequency to achieve faster sweep for same Rbw. 

In the case that σ is slower than half of Eq.(4.7-b), we can decimate the spectrum data, and 

we can configure the f∆  by choosing the adequate decimation rate. 
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Fig.4.Fig.4.Fig.4.Fig.4.9999            Sampling Rate of a spectrum dataSampling Rate of a spectrum dataSampling Rate of a spectrum dataSampling Rate of a spectrum data 
 

 
 

4.2.7 Setting Up Parameters 

This section describes the condition and parameters of our experiments. We made the system 

not only for experiment but also for practical use. The specification of the system is shown in 

section 4.4. 

In the experimentation, the input-signal was a CW signal generated by a manufactured signal 

generator (SG), the frequency was 500 MHz and the power level was -10dBm. 

The principal parameters are shown in Table 4.1. We made two configurations of the new 

method, ‘S1’ and ‘S2’. The ‘Cnv.’ is the configuration of the conventional method, the R3264 

spectrum analyzer, for reference. In the case of S1 and S2, the sampling frequency of the AD/C, 

0f  was 80MHz, and the resolution bandwidth of the complex filter: Rbw was 300Hz. The 

‘RBW(SPA)’ was the RBW (resolution bandwidth) of R3264. And the 
DDCFlt  was the bandwidth 

of output signal of the DDC. The DN  was the total decimation rate of the DDC. 
Sf  was the 

decimated sampling frequency, which was the input signal rate of the complex filter and was given 

by Eq.4.1. 
GN  was the sample (Tap) number of the negative chirp filter )(tgn

, it was decided by 

Eq.(4.4) with parameter χ and 
DN  as follows. 

D

SGG
N

MHz

Rbw
fTN

80
×=×=

χ
 ,    (4.8) 

where χwas 2.6.  

 And finally, SR  was defined by the following equation. 
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Rbw

Fltk
R

S

s ×=≡
χσ

σ
0

max

max_
 (3.35) 

We measured the input signal, and obtained the spectrums, which were averaged with over ten 

measurements. Then we obtained the peak level of the signals, and observed resolution bandwidth 

as ‘ 'Rbw ’, see Fig.2.19. 

We obtained these data by changing the normalized sweep rate 1/k, which was defined by 

Eq.(2.40) to compare with conventional method. In our experiment, the 1/k were set as 0.1 to 75.0 

as follows. 

8/101.01 nk ×= ,  (4.9) 

where ‘n’ is an integer from 0 to 23, the all steps of 1/k are shown in Table 4.2. For the given 1/k 

we controlled the R3264 whose Span and the 
ST  (sweep time) was proper value, by referring to 

the Eq.(2.40). 

 

Table 4.1  Principal parameters under the experiments 

Measurement configuration  

Cnv S1 S2 

INPUT Frequency 500MHz 

INPUT Level -10dBm 

Rbw 300Hz 

0f  - 80MHz 

RBW(SPA) 300Hz 1.0MHz 1.0MHz 

Flt(DDC) - 2.44kHz 7.32kHz 

DN  - 24756 8192 

Sf  - 3.255kHz 9.765kHz 

GN  - 29 85 

χ - 2.6 

Flt/Rbw - 8.1 24.4 

P
aram

eter 

SR  - 6.2 18.7 
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4.2.8     Coefficients of Negative Chirp Gaussianl Filters 

The coefficient of the negative chirp filter is calculated by Eq.(4.4), where 

STSpan /=σ  or )/1(2 kRbw ×=σ .  (4.10) 

The coefficient of the Gaussian filter of S1 and S2 is shown in Fig.4.10-a and 4.10-b, where 

the σ were 
5104× (Hz/sec) and 

61033.1 × (Hz/sec), respectively. There are three lines in each 

figure, the absolute value: |][| ign
, the real part: ]][Re[ ign

, and the imaginary part: ]][Im[ ign
. 

Each coefficient consists of two data array, ]][Re[ ign
 and ]][Im[ ign

. 

The value of |][| ign
 does not change against 1/k, but ]][Re[ ign

 and ]][Im[ ign
 have 

different value corresponding to 1/k. We developed the system to calculate the value, ][ign
 

corresponding to 1/k automatically. Figure 4.10-a and 4.10-b show the samples of these ][ign
. 

 

4.2.9    Span and Sweep time Corresponding to Plotted 1/k 

We made conditions of the system corresponding to the plotted 1/k, which is calculated by 

Eq.(4.9). Table 4.2 shows the important parameters of the measurement. These parameters were 

calculated by the following process. 

 

①: Calculated the ideal 1/k using Eq.(4.9). 

②: Decided the SPAN arbitrarily. 

③: Estimated the rate, SPAN/RBW, which is decided to be under 3000. 

（If this value was over 3000, it was difficult to observe the figure of the peak of a 

spectrum.） 

④ Calculated the ideal sweep time 
ST  by modified Eq.(2.40). 

  
)/1(2_

kRbw

SPAN
T idealS ×

=   (4.11) 

⑤ Confirmed the sweep time of R3264. The significant figure of the value is only two. 

⑥ Calculated the 1/k with the value ⑤. 

⑦ Estimated the error of ⑥.  

 
①

①⑥ −
=100)/1( kδ  (%)  (4.12) 

The maximum error of δ(1/k) was 4.1%. We considered this error is small enough for 

our experiment. 
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Fig.4.Fig.4.Fig.4.Fig.4.10101010----aaaa   C   C   C   Coefficients of the Gaussianl Filtoefficients of the Gaussianl Filtoefficients of the Gaussianl Filtoefficients of the Gaussianl Filter of er of er of er of S1S1S1S1        
53 1041.0/1040/ ⋅=⋅== STSpanσ     

 

 

 

Fig.4.Fig.4.Fig.4.Fig.4.10101010----bbbb            Coefficient of the Gaussianl Filter of Coefficient of the Gaussianl Filter of Coefficient of the Gaussianl Filter of Coefficient of the Gaussianl Filter of S2S2S2S2 
63 1033.103.0/1040/ ⋅=⋅== STSpanσ  
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]][Re[ ign
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Table 4.2  Normalized sweep rate 1/k and the SPAN and Sweep time 

RBW of all conditions are 300Hz 

 ① ② ③ ④ ⑤ ⑥ ⑦ 

n 1/k ideal SPAN SPAN/RBW 
ST  ideal 

ST  actual 1/k result δ(1/k) % 

0 0.1000  30000 100 3.3333  3.3 0.1010  1.01  

1 0.1334  30000 100 2.4996  2.5 0.1333  -0.01  

2 0.1778  30000 100 1.8745  1.9 0.1754  -1.34  

3 0.2371  30000 100 1.4057  1.4 0.2381  0.40  

4 0.3162  30000 100 1.0541  1.1 0.3030  -4.17  

5 0.4217  30000 100 0.7905  0.79 0.4219  0.06  

6 0.5623  30000 100 0.5928  0.59 0.5621  -0.04  

7 0.7499  30000 100 0.4445  0.45 0.7491  -0.11  

8 1.0000  30000 100 0.3333  0.33 1.0101  1.01  

9 1.3335  30000 100 0.2500  0.25 1.3333  -0.01  

10 1.7783  55300 100 0.3455  0.35 1.7556  -1.28  

11 2.3714  100700 500 0.4718  0.47 2.3806  0.39  

12 3.1623  150000 500 0.5270  0.53 3.1447  -0.56  

13 4.2170  150000 500 0.3952  0.4 4.2194  0.06  

14 5.6234  150000 500 0.2964  0.3 5.6306  0.13  

15 7.4989  150000 500 0.2223  0.22 7.5075  0.11  

16 10.0000  300000 2500 0.3333  0.33 10.1010  1.01  

17 13.3352  300000 2500 0.2500  0.25 13.3333  -0.01  

18 17.7828  300000 2500 0.1874  0.19 17.5439  -1.34  

19 23.7137  450000 2500 0.2108  0.21 23.8095  0.40  

20 31.6228  450000 2500 0.1581  0.16 31.2500  -1.18  

21 42.1697  450000 2500 0.1186  0.12 42.0168  -0.36  

22 56.2341  600000 2500 0.1186  0.12 56.0224  -0.38  

23 74.9894  750000 2500 0.1111  0.11 75.0751  0.11  
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4.2.10    Discrete Integral to obtain a Spectrum 

In the super sweep method, the spectrum was extracted by the algorithm of Eq.(3.2) or other 

equation in the section 3.22, such as  

{ })()()()( tltftgtS nn ×∗= .  (3.2) 

Actually, in our experimentation, the integral is achieved by a discrete integral. The concept 

of the integral is shown in Fig.4.11. The discrete form of the )(tgn
 was presented by Eq.(4.4). In 

Figure 4.4, 
GN  is the tap number of )(tgn

, which was presented by Eq.(4.5). And )(tSB  is the 

base band signal, which was a output of the DDC and explained by Eq.(3.12) and (3.13) or some 

other equation. At this stage, we operated the signal )(tSB
 as a discrete complex signal,  

][][][ iQiIiS bbB += .  (4.13) 

We defined 
BN  as the size of ][iSB

 at this stage which is shown in the upper side of 

Fig.4-11 as ‘ 1,0 −= BNi ’. And it is corresponding to the product of the sampling rate 

Sf  and the sweep time 
ST , 

SSB fTN ×= ,   (4.14) 

where Sf  is defined by Eq.(4.1). 

We obtained the spectrum as output of the discrete convolution of ][iSB
 and ][ign

. 

The filter ][ign
 has to be filled up by signal ][iSB

 to output the spectrum without the 

transitional response of the start and stop edge. Then, the size of the output was 

GB NN − , as shown in Fig.4.11.  GN  is the tap number of ][ign
 defined by Eq.(4.5). 

Through the above considerations, the spectrum was explained by the next 

equation. 

∑
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  (4.15) 

In Eq.(4.15), the parameter fk  corresponded to the frequency of each sample of 

][ fn kS . When the center frequency is CFf , the frequency corresponding to fk  is given 

by, 








 −
−×∆+=

2
][ GB

fCFf

NN
kffkf ,  (4.16) 

where f∆  is the difference of the frequency between each sample defined by Eq.(4.6) or 

(4.7), and 2/)( GB NN −  was the sample number at the center. 

We could obtain the spectrum discretely by the above two equations.  
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Fig.4.Fig.4.Fig.4.Fig.4.11111111            Discrete Integral to extract a SpectrumDiscrete Integral to extract a SpectrumDiscrete Integral to extract a SpectrumDiscrete Integral to extract a Spectrum    

 

 

 

CFf

STSpan,

',' STSpan



   

 - 120 - 

4.3 Property and Configuration of DDC (GC4016)  

The property and the configuration of the DDC that we employed in our experimental system are 

described in this section. 

We employed GC4016 as the DDC supplied from Texas Instrument Inc. It was one of the most 

important devices in our system. Actually, we made the several conditions of measurement by 

changing the configuration of GC4016. 

 

4.3.1 Outline of Digital Down Converter Channels 

GC4016 has four down converter channels on a chip. The one channel is shown in Fig.4.12. The 

description of this chip is given in [7]. This section describes the essential function and our application 

on this chip as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.12  Down Converter Channels; from [7] 

 

 

 

1.   The input signal is band limited such as 

)](exp[)()( ttjtAtf IF θω +⋅= ,   (4.17) 

   where A(t) is an amplitude, IFω  is an IF frequency and )(tθ  is a phase factor. 

2.   The NCO generates the signal )cos( tNCOω  and )sin( tNCOω whose frequency is controllable. 

We tuned the frequency as NCOω = IFω . 

3.   The two mixers generates the signal as follows. 

)]()(exp[)()(_ ttjtAtf IFIFoutmix θωω +±⋅=  (4.18) 

There are two frequency factors, IFω2  and zero. The three stages of filters reject the factor 

‘ IFω2 ’ and pass the factor ‘zero’ frequency (base band). 

TAP21 TAP63 Passed

MIXER

NCOω
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4.   The CIC filter of GC4016 can decimate by arbitrary rate from 8 to 4096. But the pass band has a 

significant ripple. 

5.   The CIC filter has a gain that is adjusted coarsely by the ‘COARSE GAIN’ stage. It is usually set 

by [7] 

NGAINCOARSE =   (4.19) 

   where N is the decimation rate of the CIC. 

6.  The CFIR filter is a FIR filter of 21TAP whose coefficient is programmable. The pass band of 

CIC is not flat, which is equalized by the CFIR filter. The decimation rate of CFIR is two 

unchangeably. 

7.  The PFIR filter is a FIR filter of 63 TAP whose coefficient is programmable. The decimation rate 

of PFIR is two which is unchangeable. 

8.  We did not use the ‘RESAMPLER’ stage. 

 

4.3.2 CIC Filter 

A CIC (Cascade In Comb) filter is a kind of digital filter whose function is both decimation and 

interpolation. The description about a CIC filter was presented by Hogenauer [9]. The structure of the 

CIC filter in GC4016 is shown in Fig.4.13. Essentially, the CIC filter is constructed with an addition 

and a division. The division is realized by a bit-shifter. The frequency response of the CIC filter has 

many side lobes, which are called ‘comb’. The sample of the response referred from [8] is shown in 

Fig.4.14. The abscissa of Fig.4.14 is a relative frequency with the sampling frequency (after a 

decimation) which is corresponding to one. The response has null zone around the frequency which is 

a multiple of the sampling frequency. After the decimation, these null points will move around the 

zero frequency by an aliasing (imaging). And the area around zero frequency can escape the 

disturbance of an imaging noise. The CIC filter of GC4016 can decimate by arbitrary rate from 8 to 

4096. 

An example of the frequency response of a CIC filter around zero frequency is shown in Fig.4.15.  

Usually, the response has some possibility to have aliasing noise on the side of Nyquist frequency 

( 2/Sf=π ). The filters on the next stage reject the aliasing noise, which is shown as ‘Frequency 

Response of FIR’ in the figure. 

 

 

 

 

 

 

Fig.4.13  CIC Decimation Filter [8] 
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Fig.4.14  CIC Filter Frequency Response for N=4,M=1,R=7 and fc=1/8 [8]Fig.4.14  CIC Filter Frequency Response for N=4,M=1,R=7 and fc=1/8 [8]Fig.4.14  CIC Filter Frequency Response for N=4,M=1,R=7 and fc=1/8 [8]Fig.4.14  CIC Filter Frequency Response for N=4,M=1,R=7 and fc=1/8 [8]    

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.15 Frequency Response of CIC Filter around zero frequency [8]Fig.4.15 Frequency Response of CIC Filter around zero frequency [8]Fig.4.15 Frequency Response of CIC Filter around zero frequency [8]Fig.4.15 Frequency Response of CIC Filter around zero frequency [8]    

 

2/Sf=π
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4.3.3 Distribution Arithmetic (DA) method FIR Filter 
The algorithm of the FIR filter is a product sum, which is illustrated in Fig.4.16. If we designed 

the FIR filter by this figure, it had many multipliers and the size of the circuit became very large. The 

GC4016 or other DDC, actually, employs another method. It is called “Distribution Arithmetic”, 

which is shown in Fig.4.17. It uses a look up table to operate the product sum instead of the many 

multipliers. The description about the Distribution Arithmetic method is written in [10] and [11]. 

  This method has almost no time to process a product sum, but it has tiny latency. The latency of the 

PFIR (63tap) filter of GC4016 is corresponding to 63-clock of the PFIR’s input signal. 

 

 

Fig.4.16  Illustrated algorithm of Fig.4.16  Illustrated algorithm of Fig.4.16  Illustrated algorithm of Fig.4.16  Illustrated algorithm of an FIR filteran FIR filteran FIR filteran FIR filter  [8]  [8]  [8]  [8]    

 

 

Fig.4.17Fig.4.17Fig.4.17Fig.4.17     Co Co Co Concept of an ncept of an ncept of an ncept of an FIR filterFIR filterFIR filterFIR filter in DA method [8] in DA method [8] in DA method [8] in DA method [8]    
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4.3.4 Apportionment of Decimation (--の配分) 

The apportionment of the decimation in the DDC channel is described in this section. 

GC4016 achieves the decimation by the three filters, CIC, CFIR and PFIR. The decimation rate 

of the two FIR filters is two which is unchangeable. We controlled the total decimation rate of 

GC4016 by the rate of CIC. The decimation rates of each stage in the mode S1 and S2 in Table 4.1 are 

given in Table 4.3. In the mode S1, we added a decimation stage in the software of the DSP, which 

was done by a fir filter of 27 TAP. 

We were able to control the bandwidth of the output signal by changing the decimation rate of the 

DDC. 

 

 

Table 4.3  Apportionment of Decimation 

Mode  

S1 S2 

CIC 3072 2048 

CFIR 2 2 

PFIR 2 2 

DDC total 12288 8192 

Stage 

DSP 2 1 

 Total (
DN ) 24576 8192 

 

 

4.3.5 Coefficients of FIR filters 

The coefficients of the CFIR and the PFIR, which are implemented by us, are shown in Table 4.4 

and 4-5, and Figure 4.18 and 19 shows them graphically. These coefficients, ‘cfir_68’ and ‘pfir_68’ 

are supplied by Texas Instruments Inc., and are given in the data sheet [7]. 

The set of ‘cfir_68’ and ‘pfir_68’, in the data sheet, provided the frequency response which is 

shown in Fig.4.20. The pass bandwidth of this set of filters was 68% of the output sample rate of the 

DDC channel [7]. And the 3dB bandwidth was 75% experimentally. The Flt of Table 4.1 are 75% of 

Sf . 

This filter set is used not only for S1 and S2 but also for the rest of conditions in the experimental 

system. 



   

 - 125 - 

 

Table 4.4  Coefficients of the CFPR filter ‘cfir_68’ (21TAP) from [7] 

i CFIR[i]  i CFIR[i] 

-10 12  0 32767 

-9 -93  1 24823 

-8 -62  2 8332 

-7 804  3 -3512 

-6 1283  4 -5197 

-5 -1273  5 -1273 

-4 -5197  6 1283 

-3 -3512  7 804 

-2 8332  8 -62 

-1 24823  9 -93 

   10 12 

 

 

Table 4.5  The Coefficient of the PFPR filter ‘pfir_68’ (63TAP) from [7] 

i PFIR[i]  i PFIR[i]  i PFIR[i]  i PFIR[i] 

-31 2  -15 358  0 32767  16 579 

-30 1  -14 -601  1 24277  17 26 

-29 -11  -13 -918  2 6574  18 -375 

-28 -23  -12 248  3 -5506  19 -189 

-27 -2  -11 1469  4 -5354  20 155 

-26 45  -10 618  5 845  21 191 

-25 43  -9 -1680  6 3690  22 -8 

-24 -48  -8 -1995  7 1104  23 -117 

-23 -117  -7 1104  8 -1995  24 -48 

-22 -8  -6 3690  9 -1680  25 43 

-21 191  -5 845  10 618  26 45 

-20 155  -4 -5354  11 1469  27 -2 

-19 -189  -3 -5506  12 248  28 -23 

-18 -375  -2 6574  13 -918  29 -11 

-17 26  -1 24277  14 -601  30 1 

-16 579     15 358  31 2 
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Fig.4.18  Figure of ‘cfir_68’ (21TAP)  from[7] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.19  Figure of ‘pfir_68’ (63TAP)  from[7] 

 

 

 

 



   

 - 127 - 

    

 

    

Fig.4.20 Fig.4.20 Fig.4.20 Fig.4.20  Frequency response of CFIR with PFPR :  Frequency response of CFIR with PFPR :  Frequency response of CFIR with PFPR :  Frequency response of CFIR with PFPR :  from[7] from[7] from[7] from[7]    
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4.44.44.44.4    Specification of the experimental systemSpecification of the experimental systemSpecification of the experimental systemSpecification of the experimental system    

The rearranged essential parameters of our experimental system are given in Tables 4.6. Other 

specifications as a spectrum analyzer are dependent on the employed spectrum analyzer, R3264. 

 

Table 4.6   Primary specification of the experimental systemTable 4.6   Primary specification of the experimental systemTable 4.6   Primary specification of the experimental systemTable 4.6   Primary specification of the experimental system    

Input of DSP Unit 

IF  21.4MHz, 50Ω, BNC 

Reference Clock 10MHz, 50Ω, BNC 

SWP -5~5V, 1kΩ, BNC  (adjustable) 

  Frequency 

Frequency range Dependent on the attached spectrum analyzer 

Maximum frequency Span Dependent on the attached spectrum analyzer 

Resolution bandwidth 1Hz ~ 100kHz, Digital Gaussian 

 Level 

Display range 10~150dB, 10,5,2,1dB/div 

Maximum Dynamic Rage 130dB (at RBW=1Hz) 

Output/Interface of the DSP Unit 

USB 2.0 Spectrum data with specialized format 

Hard ware of the DSP Unit 

AD/C ADS6645S (Analog devices), Driven by 80MHz 

DDC GC4016 (Texas Instruments) ,Driven by 80MHz 

DSP TMS6711, Driven by 80MHz 

2007.02.02, 2007.04.08, 5.08, 10.07 
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4.54.54.54.5    SummarySummarySummarySummary 

It needed a complicated system to achieve the super sweep method, which was described in this 

chapter. We employed the conventional sweep spectrum analyzer as a RF down converter. We 

developed the DSP unit included in the digital signal processing system that had an A/DC, a DDC and 

a DSP. We achieved the super sweep method in the DSP unit. The algorithm of the super sweep 

method was achieved on the DDC and the DSP. There were so many parameters that were concerned 

in the system, and they should be harmonized each other to achieve the super sweep method. This 

chapter described the samples of the parameters. We took the parameter 1/k to estimate the new 

method. We intended to estimated the over sweep-rate response against the 1/k. The result is given in 

Chapter 5. 
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4.74.74.74.7    AAAAppendix:ppendix:ppendix:ppendix:    Latency:Latency:Latency:Latency:    
 

GC4016 has a value of latency with filter: CIC, CFIR, and PFIR. Each value of latency is 

given in the following table. 

 

Filter Latency ; clocks (N is the CIC decimation) 

CIC 2.5N 

CFIR 0.5N×Ctap 

PFIR N×Ptap 

Total N×(2.5+0.5Ctap+Ptap) 

Our system 76×(N=8~3600)=7.6μsec~3.89msec 
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Chapter 5 

Result and Discussion 
 

5.1    Introduction 
This section reported the result of our experiment and verified the theory of the super sweep 

method. The experiment was achieved by measuring the peak level and observed resolution 

bandwidth (Rbw’) against the normalized sweep rate 1/k, which is plotted from 0.1 to 75. We 

estimated the spectrum as two parameters, one was the peak level reduction and another was the 

broadening of the RBW. Section 5.2 shows the over view of the measured spectrum of the new 

method and the way to estimate the spectrum. Section 5.3 describes the result of the experiment as 

the peak level reduction and the broadening of the RBW. Section 5.4 discussed the result and 

analyzed the result.  

 

 

5.2    Measured Spectrums 

 

5.2.1    Sample of measurements 

The results of spectrums corresponding to the condition that was described in section 

4.2.7~4.2.9 is shown in Fig.5.1 (a) and 5.1 (b). We measured the CW signal, which was generated by 

a manufactured signal generator (SG), whose frequency was 500MHz, and the level was –10dBm, by 

changing the sweep rate 1/k from 0.1 to 74.0 with 24 steps. Figure 5.1 (a) and 5.1 (b) were the results 

of that 1/k were 0.562, 5.62 and 56.2 and the Span was 30kHz, 150kHz and 600kHz. 

The spectrums in Fig.5.1 (a) were measured by conventional sweep spectrum analyzer, R3264. 

The peaks of the spectrum of 1/k=5.62 and 1/k=56.2 had large level reduction and frequency shift. 

These phenomenons were called ‘over sweep-rate response’ (see section 2.5.2). The spectrums in 

Fig.5.1 (b) were samples measured by the conditions of S1 and S2 (described in section 4.2.7), where 

the over sweep-rate response were shown in the spectrums of 1/k=56.2. 

The noise floor of Fig.5.1 (b) were higher than them of Fig.5.1 (a), this problem was finally 

resolved and will be discussed in Chapter 6. 

 



   

 - 132 - 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 (a)  Spectrums with various 1/k of sweep method    
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Figure 5.1 (b)  Spectrums with various 1/k of Super Sweep method 

S1  S2 

1/k=0.562 

SPAN=30kHz 

St=590msec 

RBW300Hz 

1/k=5.62 

SPAN=150kHz 

St=300msec 

RBW300Hz 

1/k=56.2 

SPAN=600kHz 

St=120msec 

RBW300Hz 

 



   

 - 134 - 

5.2.2    Verification of Over sweep-rate response 

Generally, the over sweep-rate response is estimated as a peak level reduction and the 

broadening of the resolution bandwidth. These response are explained by following equation (see 

section 2.5.2). 

4
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   We did not take the peak shift as a subject, which is forecasted and corrected in the super sweep 

method. 

 

We took the amplitude ‘A’ as a peak level, and ‘Rbw’ as an indicated 3dB bandwidth of the peak 

when 1/k=0.1, respectively. The indicated amplitude ‘ 'A ’ was the peak level of the each 

measurement, simply. The indicated resolution bandwidth ‘ 'Rbw ’ is estimated by the method 

described in next section. 

 

5.2.3     Estimation of 3dB bandwidth of peaks 

We conceived the way to estimate the observed 3dB bandwidth, Rbw’, which is described in this 

section. 

 

1.  The condition 

We assumed that the figure of the peak was a parabolic corresponding to the Gauss function as 

the resolution filter. And we assumed that we could estimate the quadric function when we got level 

and frequency value of three points. 

We took the difference of level between peak and other point as 2~10dB. It was better to take the 

distance larger to reduce the error of result. 

 

2. The equation 

We defined the coordinates of the three points around a peak as shown in Fig.5.2. The coordinate 

of the peak, the left side point of the peak, and the right side are ),( 00 yx , ),( 11 −− yx  and 

),( 11 yx , respectively. ‘x’ and ‘y’ corresponds to the frequency (Hz) and the level (dB), respectively. 

The quadric function corresponding to the three points is assumed  

cbxaxy ++= 2
.  (5.1) 

The three points are explained by 
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Equation (5.3) is modified as 
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   (5.4) 

 

 

 

 

 

 

 

 

 

 

Fig.5.2  Three point data that decide the 3dB bandwidth, Rbw’ 

 

 

We can estimate a, b and c uniformly by Eq.(5.4). The three points can be selected arbitrarily, 

theoretically. 

Equation (5.4) needs much complicated calculation. In the case that ),( 00 yx  is the peak, we 

can assume ),( 00 yx =(0,0), and another two points assume relative coordinate as follows. 

011
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Then, Eq.(5.2) is modified 

cbxaxy ++= 2

),( 11 −− yx

),( 00 yx

),( 11 yx

dB3dB10~2

(5.2) 
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From Eq.(5.5), a and b is solved, 
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−− −
=

x
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b   (5.7) 

The quadric function whose peak is origin point (0,0), which is explained  

2axy =   (5.8) 

 

3. The observed resolution bandwidth, Rbw’ 

In the case that the unit of y is dB, the y value of the 3dB down point from the peak is –3, and 

Eq.(5.8) is modified that 
23 ax=− . Then the x value is given by 

a
x

3−
= .   (5.9) 

The 3dB bandwidth is twice of Eq.(5.9). 

a
BWdBRbw

3
2_3'

−
=≡ 　   (5.10) 

The observed resolution bandwidth Rbw’ is dependent on ‘a’, which is estimated by Eq.(5.6). 

 

5.2.4 Estimation of peak Level 

The spectrum obtained by digital signal processing such as the FFT method has a scallop loss of 

the peak level as described in section 2.8.3. The super sweep method cased same loss on the 

spectrum. We assumed it was a not exact peak level to measure maximum level simply. 

We conceived the way to estimate the peak level of the spectrum from the three points around 

the maximum level sample, which is described in this section. 

We defined the coordinates of the three points around a peak as shown in Fig.5.3. We took tha 

three points whose differences of x value were same. And the coordinate of the three points were 

same to section 5.2.3, but 1−x , 0x , 1x  were assumed it –1, 0, and 1. The quadric function was 

assumes as cbxaxy ++= 2
, similarly to last section. 

The coordinates give following three equations. 

cbxay +−=−1    

cy =0     (5.11) 

cbxay ++=1    
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Equation (5.11) give a, b, and c as follows. 

12
1

012
1 yyya +−=    

12
1

12
1 yyb −=          (5.12) 

0yc =          

By the way, the differential at the peak point is zero that gave following equation. 

baxP += 20 .   (5.13) 

Then the x value of the peak point Px  is given by 

a

b
xP

2

−
=   (5.14) 

And the y value of the peak Py  is given by replacing the a, b, and c with Eq.(5.11) as 

c
a

b
yP +−=

4

2

 (5.15) 

We estimated the peak level by Eq.(5.15), which is independent on the x value. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.3  Three points around the peak 

 

2007.5.08, 2007.09.16 
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5.3    Result 
 

5.3.1 Numerical result 

Table 5.1, 5.2, and 5.3 show the numerical results of the condition S1, S2, and conventional 

spectrum analyzer (Cnv) R3264, respectively. These conditions are described in section 4.2. The 

normalized sweep rate 1/k : Span per Sweep time of each row is according with Table 4.2.  

Table 5.1,5.2, and 5.3 show the frequency and level of the three points, Peak ),( 00 yx , 

L ),( 11 −− yx , R ),( 11 yx  and the indicated resolution bandwidth, Rbw’, which were calculated by 

Eq.(5.10). The normalized peak value shown in the column ‘Peak ),( 00 yx : Nmlzd dB’ is difference 

of the level of n=0 in dB unit. The normalized Rbw’ shown in the column, ‘Rbw’: Nmlzd’, is the 

ratio of each value and it of n=0. 

 

Table 5.1 Results of S1 

(The unit of frequency is Hz and level is dB) 

 Peak ),( 00 yx  L ),( 11 −− yx  R ),( 11 yx  Rbw' (Hz) 

n 
1/k 

Freq.(Hz) 
Level 

(dBm) 

Nmlzd 

(dB) 
Freq (Hz) 

Level 

(dBm) 
Freq (Hz) 

Level 

(dBm) 
ＲＢＷ' Nmlzd 

0 0.100 799999895 -12.36 0 799990709 -21.63 799991187 -21.86 270.3 1.00 

1 0.133 799999897 -12.36 0 799990711 -21.66 799991190 -21.69 271.8 1.01 

2 0.178 799999900 -12.36 0 799990705 -22.34 799991222 -24.25 271.1 1.00 

3 0.237 799999902 -12.36 0 799990709 -21.96 799991196 -22.25 270.2 1.00 

4 0.316 799999903 -12.36 0 799990709 -21.88 799991195 -22.15 270.9 1.00 

5 0.422 799999906 -12.36 0 799990708 -22.19 799991194 -22.15 268.8 0.99 

6 0.562 799999911 -12.36 0 799990708 -22.18 799991194 -22.02 269.7 1.00 

7 0.750 799999914 -12.36 0 799990707 -22.08 799991193 -22.03 270.3 1.00 

8 1.000 799999922 -12.35 0.01 799990716 -21.6 799991194 -21.48 273.1 1.01 

9 1.33 799999931 -12.35 0.01 799990716 -21.72 799991202 -21.86 274.0 1.01 

10 1.78 800000023 -12.39 -0.03 799990810 -21.69 799991286 -21.82 269.4 1.00 

11 2.37 800000188 -12.39 -0.03 799990950 -20.45 799991396 -20.11 275.0 1.02 

12 3.16 800000360 -12.38 -0.02 799991117 -21.36 799991584 -21.51 268.6 0.99 

13 4.22 800000392 -12.38 -0.02 799991128 -21.26 799991594 -21.65 267.9 0.99 

14 5.62 800000423 -12.42 -0.06 799991138 -21.18 799991604 -21.33 271.5 1.00 

15 7.50 800000470 -12.55 -0.19 799991206 -17.55 799991571 -17.7 280.5 1.04 

16 10 800001009 -12.49 -0.13 799991654 -18.01 799992014 -17.81 267.8 0.99 

17 13.3 800001098 -14.37 -2.01 799991706 -18.07 799992022 -17.35 299.1 1.11 

18 17.8 800001218 -15.93 -3.57 799991765 -17.92 799992022 -17.81 320.0 1.18 

19 23.7 800001856 -18.42 -6.06 799992172 -20.93 799992641 -20.6 522.0 1.93 

20 31.6 800002045 -20.32 -7.96 799992220 -23.03 799992756 -23.26 550.7 2.04 

21 42.2 800002356 -22.89 -10.53 799992212 -25.19 799992966 -25.45 833.3 3.08 

22 56.2 800003341 -25.42 -13.06 799992901 -27.37 799993639 -27.97 852.2 3.15 

23 75.0 800004629 -28.07 -15.71 799993824 -29.77 799996857 -30.56 3631.1 13.44 
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Table 5.2 Results of S2 

 Peak ),( 00 yx  L ),( 11 −− yx  R ),( 11 yx  Rbw' (Hz) 

n 
1/k 

Freq.(Hz) 
Level 

(dBm) 

Nmlzd 

(dB) 
Freq (Hz) 

Level 

(dBm) 
Freq (Hz) Level (dBm) ＲＢＷ' Nmlzd 

0 0.100 799991657 -12.61  799991377 -24.99 799991922 -23.99 273.9 1.00 

1 0.133 799991656 -12.61 0 799991400 -23.18 799991907 -22.8 272.6 1.00 

2 0.178 799991658 -12.61 0 799991382 -24.84 799991913 -23.24 272.2 0.99 

3 0.237 799991656 -12.61 0 799991384 -24.76 799991928 -24.5 271.8 0.99 

4 0.316 799991657 -12.61 0 799991385 -24.64 799991929 -24.43 272.9 1.00 

5 0.422 799991658 -12.61 0 799991383 -25.01 799991934 -24.78 272.3 0.99 

6 0.562 799991664 -12.66 -0.05 799991397 -24.23 799991931 -23.98 273.4 1.00 

7 0.750 799991667 -12.66 -0.05 799991400 -23.92 799991934 -24.01 275.1 1.00 

8 1.000 799991671 -12.67 -0.06 799991406 -23.68 799991934 -23.61 276.1 1.01 

9 1.33 799991675 -12.67 -0.06 799991404 -24.25 799991943 -24.32 273.9 1.00 

10 1.78 799991675 -12.66 -0.05 799991404 -24.61 799991943 -24.13 272.8 1.00 

11 2.37 799992070 -12.65 -0.04 799991780 -26.58 799992360 -26.89 267.7 0.98 

12 3.16 799992071 -12.65 -0.04 799991869 -19.33 799992274 -19.14 273.4 1.00 

13 4.22 799992078 -12.65 -0.04 799991885 -18.69 799992289 -19.96 271.1 0.99 

14 5.62 799992081 -12.64 -0.03 799991898 -18.36 799992265 -17.85 271.9 0.99 

15 7.50 799992096 -12.64 -0.03 799991884 -19.89 799992309 -20.25 270.1 0.99 

16 10 799992271 -12.66 -0.05 799992077 -18.72 799992464 -18.78 271.6 0.99 

17 13.3 799992601 -12.66 -0.05 799992398 -19.39 799992804 -19.34 271.6 0.99 

18 17.8 799992619 -12.72 -0.11 799992356 -23.76 799992882 -23.85 273.6 1.00 

19 23.7 799992671 -12.92 -0.31 799992424 -22.34 799992914 -22.58 274.8 1.00 

20 31.6 799992709 -13.51 -0.9 799992436 -22.69 799992981 -22.87 310.0 1.13 

21 42.2 799993104 -14.64 -2.03 799992886 -19.32 799993307 -19.17 339.7 1.24 

22 56.2 799993872 -16.78 -4.17 799993607 -21.06 799994152 -21.76 439.0 1.60 

23 75.0 799993975 -18.86 -6.25 799993668 -23.15 799994318 -23.49 532.8 1.95 
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Table 5.3 Results of conventional spectrum analyzer (Cnv), R3264 

 Peak ),( 00 yx  L ),( 11 −− yx  R ),( 11 yx  Rbw' (Hz) 

n 
1/k 

Freq.(Hz) 
Level 

(dBm) 

Nmlzd 

(dB) 
Freq (Hz) 

Level 

(dBm) 
Freq (Hz) 

Level 

(dBm) 
ＲＢＷ' Nmlzd 

0 0.100 799999892 -10.95 0.00 799999823 -16.03 799999970 -17.16 107.3 1.0 

1 0.133 799999894 -10.97 -0.02 799999824 -16.09 799999984 -18.85 109.3 1.0 

2 0.178 799999904 -10.93 0.02 799999816 -17.38 799999979 -17.73 109.2 1.0 

3 0.237 799999907 -10.96 -0.01 799999815 -18.04 799999994 -19.42 111.0 1.0 

4 0.316 799999912 -10.96 -0.01 799999826 -17.16 799999991 -18.15 110.2 1.0 

5 0.422 799999923 -11.05 -0.10 799999829 -17.69 799999997 -18.21 109.7 1.0 

6 0.562 799999931 -11.16 -0.21 799999830 -18.57 800000003 -17.64 112.7 1.1 

7 0.750 799999946 -11.34 -0.39 799999853 -17.2 800000021 -18.48 112.9 1.1 

8 1.000 799999964 -11.49 -0.54 799999868 -17.27 800000036 -18.05 115.4 1.1 

9 1.33 799999982 -11.83 -0.88 799999894 -16.57 800000059 -18.39 119.3 1.1 

10 1.78 800000021 -12.23 -1.28 799999915 -17.04 800000091 -18.55 124.8 1.2 

11 2.37 800000049 -12.91 -1.96 799999948 -17.46 800000130 -17.7 144.8 1.3 

12 3.16 800000088 -13.62 -2.67 799999984 -17.93 800000173 -17.29 163.7 1.5 

13 4.22 800000162 -14.61 -3.66 800000024 -19.13 800000254 -18.38 193.5 1.8 

14 5.62 800000247 -15.91 -4.96 800000076 -20.86 800000385 -19.83 254.3 2.4 

15 7.50 800000352 -17.25 -6.30 800000120 -23.57 800000551 -21.17 331.9 3.1 

16 10 800000485 -18.61 -7.66 800000275 -27.36 800000735 -21.56 321.3 3.0 

17 13.3 800000700 -19.98 -9.03 800000360 -25.55 800001054 -23.48 563.0 5.2 

18 17.8 800000960 -21.32 -10.37 800000516 -27.62 800001414 -24.37 717.9 6.7 

19 23.7 800001380 -22.69 -11.74 800000880 -26.48 800001850 -24.95 969.3 9.0 

20 31.6 800001876 -24.07 -13.12 800001192 -28.73 800002450 -25.95 1223.3 11.4 

21 42.2 800002640 -25.52 -14.57 800001710 -29.61 800003350 -27.52 1651.6 15.4 

22 56.2 800003510 -26.97 -16.02 800002420 -30.59 800004580 -29.19 2191.7 20.4 

23 75.0 800005160 -28.63 -17.68 800003720 -31.41 800007120 -32.18 3302.1 30.8 
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5.3.2 Result of the Peak level reduction 

The normalized peak level reductions against the 1/k of each measurement mode are shown in 

Table 5.4 and Fig.5.4. These data ware pick upped from Table 5.1~5.3. The data named ‘Thr’ 

corresponds to the theory, Eq.(2.41).  

The values of 1/k at 0.1 dB reductions in each configuration are listed in Table 5.5. The data 

named ‘Ratio vs. Thr.’ are the value normalized by the ‘Thr’. We assumed this ratio was a parameter 

that corresponded to the fastness of the super sweep method against the conventional sweep method. 

 

 

Table 5.4  Peak Level Reduction vs. Normalized sweep rate 

 

n 1/k Thr. Cnv. S1 S2 

0 0.10  0.00  0.00  0.00  0.00  

1 0.13  -0.01  -0.02  0.01  0.00  

2 0.18  -0.01  0.02  0.01  0.00  

3 0.24  -0.02  -0.01  0.01  0.00  

4 0.30  -0.04  -0.01  0.00  0.00  

5 0.42  -0.07  -0.10  0.01  0.00  

6 0.56  -0.13  -0.21  0.01  -0.05  

7 0.75  -0.22  -0.39  0.01  -0.05  

8 1.01  -0.39  -0.54  0.01  -0.06  

9 1.33  -0.62  -0.88  0.01  -0.06  

10 1.76  -1.02  -1.28  0.01  -0.05  

11 2.38  -1.62  -1.96  0.01  -0.04  

12 3.14  -2.30  -2.67  0.01  -0.04  

13 4.22  -3.20  -3.66  0.01  -0.04  

14 5.63  -4.17  -4.96  -0.03  -0.03  

15 7.51  -5.29  -6.30  -0.17  -0.03  

16 10.1  -6.46  -7.66  -0.96  -0.05  

17 13.3  -7.65  -9.03  -1.72  -0.05  

18 17.5  -8.92  -10.37  -3.57  -0.11  

19 23.8  -10.18  -11.74  -5.82  -0.31  

20 31.3  -11.18  -13.12  -7.97  -0.90  

21 42.0  -12.42  -14.57  -10.62  -2.03  

22 56.0  -13.82  -16.02  -12.94  -4.17  

23 75.1  -15.00  -17.68  -15.81  -6.25  
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Fig.5.4  Peak Level Reduction vs. Normalized sweep rate 

 

 

 

Table 5.5   1/k : Peak Level reduction corresponds to -0.1dB 

  Thr.Thr.Thr.Thr.    Cnv.Cnv.Cnv.Cnv.    S1S1S1S1    S2S2S2S2    

1/k : -0.1dB 0.5 0.42 6.9 17.1 

Ratio vs. Thr. 1.0 0.84 13.8 34.2 
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5.3.3 Result of the broadening of RBW 

The ‘ 'Rbw ’ were observed as the 3dB bandwidth of the measured spectrum, and the configured 

Rbw was constantly 300Hz. The increase of the ratio ‘ RbwRbw' ‘ against the 1/k is shown in Table 

5.6 and Fig.5.5. The column and line ‘Thr’ is theoretically calculated by Eq.(2.42).  

In Table 5.7, ‘1/k: 1.1’ is the value of the 1/k, which gives the 1.1 times broadening. The ‘Ratio 

vs. Thr. ’is the values normalized by the Thr. We assumed this ration was the parameter that 

corresponded to the fastness of the new method against a conventional sweep method. 

 

 

Table 5.6  Broadening of RBW vs. Normalized sweep rate 1/k 

 

n 1/k Thr. Cnv. S1 S2 

0 0.1 0 1 1 1 

1 0.13 -0.01 1 1.01 1 

2 0.18 -0.01 1 1 0.99 

3 0.24 -0.02 1 1 0.99 

4 0.3 -0.04 1 1 1 

5 0.42 -0.07 1 0.99 0.99 

6 0.56 -0.13 1.1 1 1 

7 0.75 -0.22 1.1 1 1 

8 1.01 -0.39 1.1 1.01 1.01 

9 1.33 -0.62 1.1 1.01 1 

10 1.76 -1.02 1.2 1 1 

11 2.38 -1.62 1.3 1.02 0.98 

12 3.14 -2.3 1.5 0.99 1 

13 4.22 -3.2 1.8 0.99 0.99 

14 5.63 -4.17 2.4 1 0.99 

15 7.51 -5.29 3.1 1.04 0.99 

16 10.1 -6.46 3 0.99 0.99 

17 13.3 -7.65 5.2 1.11 0.99 

18 17.5 -8.92 6.7 1.18 1 

19 23.8 -10.18 9 1.93 1 

20 31.3 -11.18 11.4 2.04 1.13 

21 42 -12.42 15.4 3.08 1.24 

22 56 -13.82 20.4 3.15 1.6 

23 75.1 -15 30.8 13.44 1.95 

 

 

 



   

 - 144 - 

    

 

Fig.5.5  Broadening of the RBW vs. 1/k 

    

    

Table 5.7   1/k corresponds to Rbw’/Rbw=1.1 

 

 Thr.Thr.Thr.Thr.    Cnv.Cnv.Cnv.Cnv.    S1S1S1S1    S2S2S2S2    

1/k： 1.1 1.0 1.2 9.0 29 

Ratio vs. Thr. 1.0 1.2 9.0 29 
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5.4    Discussion 
A sweep spectrum analyzer has a property that is called ‘over sweep-rate response’. This 

property was mentioned by many authors [1][2][3] and expressed by Eq.(2.41) and (2.42). In the 

super sweep method, the IF signal was digitized and converted into the base band signal whose 

bandwidth was wider than the resolution bandwidth, Rbw. The base band signal was inputted into the 

negative chirp filter. We expected that the negative chirp filter reduced the over sweep-rate response 

even in the faster sweep rate than the sweep method. In our experiment, we confirmed that the over 

sweep-rate response was reduced with changing the normalized weep rate 1/k.  

    

5.4.1 Peak level Reduction 

The permissible limit of the peak level reduction of the conventional spectrum analyzer is 

generally 0.1dB [3]. By considering the second line of Table 5.5, ’Ratio vs. Thr.’, we confirmed that 

the maximum sweep rate achieved of 13.8 and 34.2 times faster than the conventional theory, in the 

cases of S1 and S2, respectively. And we calculated the following ratio. 

48.2
8.13

2.34

1.;

2.;
==

SThrvsRatio

SThrvsRatio
.   (5.16) 

The theoretical estimation of this ratio was given by the ratio of 
SR between the cases of S2 and 

S1 in Table 4.1, that was 18.7/6.2≒3.0. And this was the ratio of the Flt (see Fig.3.9) between the 

cases of S2 and S1. 

 

5.4.2 Broadening of the resolution bandwidth 

The typical permissible difference of the RBW for a conventional spectrum analyzer is 

%20~15± (by R3264). We measured the maximum sweep rate as the normalized sweep rate 1/k 

which gave the resolution broadening of 1.1. By considering the second line of Table 5.7, ’Ratio vs. 

Thr.’, we confirmed that the maximum sweep rate was 9.0 and 29 times faster than the conventional 

theory, in the cases of S1 and S2, respectively. And we calculated the following ratio. 

2.3
0.9

29

1.;

2.;
==

SThrvsRatio

SThrvsRatio
.   (5.17) 

The theoretical estimation of this ratio was 3.0, similar to the case of Eq.(5.16). 

    

5.4.3  Total consideration of the maximum sweep rate: 

We studied the maximum sweep rate by focusing the two points, peak level reduction and 

broadening of the Rbw. We estimated that the level reduction was more critical than the broadening 

of the Rbw. By considering the Eq.(5.16) and (5.17), we confirmed that the maximum sweep rate was 

proportional to the ratio of Flt/Rbw.  
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The condition, which we estimated the Smax_σ  (maximum sweep rate in the new method) by 

Eq.(3.34-b), 

)(max χσ FltRbwS ×= ,   

intended the integration of Eq.(3.4), 

[ ] ,exp)()()()( τωτττ djtfgtltSn ∫
∞

∞−

−×−=         

to operate perfectly. But the result of our experiments gave that 
Smax_σ  had a margin for the peak 

level reduction reaching 0.1 dB.  Equation (3.35), 

Rbw

Fltk
R

S

s ×=≡
χσ

σ
0

max

max_
  ,   

where 
maxσ  is the maximum sweep rate of the sweep method. And 

SR  can be rewritten as 

Rbw

Flt

Rbw

Fltk
RRTrue Ss β

χ
αα ==⋅≅ 0 ,  (5.18) 

where 
sRTrue was given as the second line of Table 5.5, α is an unknown constant, and Flt/Rbw 

was given in Table 4.1. Then the value of β were 1.4 and 1.7 in the case of S1 and S2, respectively.  

If we make the system, Fig.3-10, and configured it to have wider Flt and Rbw, we could obtain 

more fast sweep and wider Rbw measurement. 

 

5.5 Summary 

The result and discussion verified that the super sweep method achieved the first sweep 

measurement on the sweep spectrum analyzer. We argue that we made the break-through in the 

restriction of the sweep rate of a spectrum analyzer by using the super sweep method. Our further 

work is to study the over sweep-rate response of the new method in further detail. 
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Chapter 6 

Additional discussions 

 

6.1    Introduction 
Until last chapter, we investigated the theory of the super sweep method. In this chapter, the 

additional discussion about the method is described. 

Our experimental system needed many processes to achieve its function. About 30 

parameters (such as sampling frequency, data size etc.) played a role in the system. We had to 

configure these parameters optimally. Section 6.2 and 6.4 describe a few theory of the 

optimization. Section 6.2 describes the characteristics of the display system. 

The super sweep method had a merit against not only the sweep method but also the FFT 

method. The merit was the property about the appearance of the IF filter response, which is 

described in section 6.5.  

We had an attention about the similarity between the Chirp Z-transform and the new method. 

Section 6.6 describes the discussion about the similarity. 

In section 2.5, we have some numerical analysis about the two-tone response of the 

spectrum on the sweep method. In section 6.7, we investigated the same analysis on the super 

sweep method,  

In actual measurement system, there are several sources of a noise, and the results are under 

the influence of the noise. Section 6.8 discuss about the noise and the influence. 

In section 6.9, we presented some samples of spectrum that was obtained by the super 

sweep method, and we described the merit of the method. 

In section 6.10, we investigated the ‘view of spurious peaks’ in the new method. It is one 

characteristic of the new method. 

In section 6.11, we discussed the characteristics of some methods of spectrum measurement. 

 

6.2    Required condition for fast sweep 
In this section, we analysis and discusses the processing time and the requirements to achieve 

fast sweep. 

 

6.2.1 Operation time 

Table 6.1 shows the relations between sweep time and operation time against the three 

conditions of the super sweep method.  
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In the measurements which gave the result of Table 6.1, the complex filter (see section 3.4 

and Fig.3.10) were processed by the DSP, TMS3206711 80MHz; produced by Texas Instruments 

Inc. The sweep times of the measurements were 22.2, 16.7 and 7.7 times faster than the traditional 

sweep method. But the all processing times of the DSP were longer than the sweep times. SOR  

are the ratio between the processing times and the sweep times. SOR  became as larger as wider 

the Rbw. The ratio 
OPSR _

 explains the practical fastness of the new method. When Rbw was 

100kHz, 
OPSR _

 was 0.7 and the processing time was longer than the traditional sweep time, 

trdST _ . 

 

Table 6.1  Operation time of the experimental system (DSP complex filter) 

  A B C A/B A/C C/B 

Rbw (kHz) Span 

(MHz) 

trdST _  

(msec) 

sprST _  

(msec) 

DSPT  

(msec) 

SR  OPSR _  SOR  

10 100 2000 90 344 22.2 5.8 3.8 

30 200 500 30 218 16.7 2.3 7.3 

100 1000 230 30 309 7.7 0.7 10.3 

trdST _ :   A = The sweep time in a traditional sweep method 

sprST _ :   B = The sweep time in the super sweep method 

DSPT :    C = The operation time of the DSP (TMS320C6711 80MHz) 

SR :   A/B = The ratio trdST _ / sprST _ , Ratio of the sweep time. 

OPSR _ : A/C = The ratio trdST _ / DSPT , Ration of the sweep time and the operation time 

SOR :   C/B= The ration DSPT / sprST _ , Ratio between the processing time and the sweep time 

 

If the DSP had enough performance, the new method could sweep in the time sprST _ . By 

considering SOR , it assumed that the DSP required faster processing with wider Rbw.  

 

Note:  In our experiment system, the design of the DSP system did not optimized and the 

memories on the circuit were not so fast. 

 

6.2.2 Operation time of each sample of a spectrum 

This section analyzes the processing time that achieves the real time operation. 
We investigated the operation time to obtain one sample of the spectrum. Figure 6.1 shows 

the simplified spectrum that is obtained by digital IF method, where Δf and Δt is the frequency 

and time between each sample of the spectrum. We had not any precise rules to decide theΔf. But 

we considered that Δf had to be equal or narrower than Rbw/2 to obtain the exact spectrum, 

experimentally. 

2/Rbwf ≤∆       (6.1-a) 

2/max Rbwf =∆       (6.1-b) 
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Usually f∆  equals maxf∆  to achieve a fast measurement. 

The relation betweenΔf and Δt is given by 

tf ∆⋅=∆ σ .   (6.2) 

The maximum sweep rate σ is explained by Eq.(3.34-b) as 

χσ /max FltRbw ⋅= .  (6.3) 

By above three equations, Eq.(6.1-b)~(6.3), the minimum t∆  is explained as follows. 

FltFltRbw

Rbwf
t

⋅
=

⋅
=

∆
=∆

2/

2/

max

max
min

χ
χσ

 (6.4) 

mint∆  is in inversely proportion to the Flt.  

We tried to replace the Flt of Eq.(6.4) by Rbw and other parameter. We can know the relation 

between Flt and Rbw by Eq.(3.35). 

Rbw

Fltk
R

S

s ×=≡
χσ

σ
0

max

max_
. (3.35) 

where SR  is the rate of sweep rate against a traditional sweep method. By modifying this 

equation Flt is given by 

0/ kRBwRFlt S χ⋅⋅= .  (6.5) 

Eq.(6.4) can be modified as 

RbwR

k

RbwR

k

Flt
t

SS ⋅⋅
=

⋅⋅⋅
⋅

=
⋅

=∆
222

00
min χ

χχ
.  (6.6) 

mint∆  is in inversely proportional to the product of SR  and Rbw. 

In the case that the operation time of each sample of the spectrum is shorter than mint∆ , the 

measurement time is dependent on the sweep time, which is product of t∆  and the 

sample-number. But in the case the operation time is longer than mint∆ , the measurement time is 

dependent on the processing time. 

 

 

 

 

 

 

 

 

Fig.6.1  Interval of frequency and time between each sample of a spectrum 
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6.2.3 Required performance of the operation 

We considered that the negative chirp (complex) filter was the most significant factor of the 

operation and the amount of the operation was in proportion to the number of the tap. We 

considered how the number of tap of the filter is decided.  

GN  is the tap number, it was already given by Eq.(4.5). 

SSGG f
Rbw

fTN ×=×=
χ

 .   (4.5) 

where 
Sf  is the sampling frequency of the input signal of the filter. The relation of Sf  and Flt 

is described in next section, [1], and [2]. Practically, Flt is in proportional to 
Sf . 

SfFlt ⋅= γ   (6.7) 

The constant γ is decided by the property of the IF filter, usually γ is 0.5~0.8. 

The relation between Flt and SR  is given by Eq.(3.35) and (5.13). 
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≡≅×=≡ 00
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   (6.8) 

From Eq.(6.7) and (6.8), 
Sf  can be explained as 

γ
Flt

f S = , and Flt is in proportion to SR , as, 

β
RbwR

Flt S ⋅= . Then 
Sf  is given by 

βγγ ⋅

⋅
==

RbwRFlt
f S
S   (6.9) 

By substituting 
Sf  with Eq.(6.9) into Eq.(4.5), GN  is explained as 

S
S

SG R
RbwR

Rbw
f

Rbw
N

βγ
χ

βγ
χχ

⋅
=

⋅

⋅
=×= .  (6.10-a) 

By Eq.(6.10-a), GN  is in proportion to SR . In our experiment system, χ=2.6, γ=0.68 

(see section 4.3.4) , and β=1.5 (see section 5.4.3), and GN  was approximately 

SG RN ⋅= 6.2 .  (6.10-b) 

We defined the rate OR  as the number of complex product sum to be operated within one 

second to obtain a spectrum within the sweep time. It is given by 

2
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⋅
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⋅
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χβγ

χ

.  (6.11-a) 

In the case that 0k =2.0, 
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2
6.2 SO RRbwR ⋅×= .  (6.11-b) 

OR  is in proportion to product of Rbw and square of SR . 

 
6.2.4 Relation between the IF bandwidth and the sampling frequency 

This section is base on the argument of section 2.4 and investigates the relation between the IF 

filter and the sampling frequency. An example of the relation is shown in Fig.6.2, where the 

abscissa indicates frequency and the ordinate indicates a power, and a spectrum of base band 

signal is shown in this figure.  

The large trapezoid represents the simplified frequency response of the low pass filters (LPF), 

which generates the base band signal. We can observe a spectrum of minus frequency as an 

analytic signal. In the figure, ‘D (dB)’ is the desired dynamic range of the signal passed thorough 

the LPF. ‘Flt‘ is the flat pass band of the LPF. The slanting slopes of the both side is the 

transitional area of the LPF. The frequency Sf  is the sampling frequency, and 2/Sf±  is the 

Nyquist frequency. The tail ends of the transitional areas are extended out of the Nyquist 

frequency.  

In the case that Bwd  is the D dB down bandwidth of the LPF and the sampling frequency is 

given by  

2/)( BwdFltfS += ,  (6.12) 

we can obtain the pass bandwidth Flt without the aliasing of transitional band [2][3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LPF:   Pass band of the low pass filter before base band signal 

D(dB) :    Desired Dynamic range 

Bwd:      DdB down Bandwidth of the LPF 

Gray zone: Frequency area that might has alias signal 

Sf :       Sampling frequency of I and Q signal 

Fig.6.2  Relation between IF filter and sampling frequency 

 

Freq. 
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6.2.5 Implementation of the fast complex filter 

This section investigates the implementation of the negative chirp filter. The architecture of 

the complex filter is presented in Fig.3.10. We implemented the complex filter as an operation of 

the DSP, which is described in chapter 4. 

By the argument of Chapter 5, the required performance of the DSP was explained by 

Eq.(6.11-a) and (6.11-b). And the required operation rate is in proportion to the product of Rbw 

and square of 
SR . In the case that the Rbw was narrower than 1kHz, the DSP of our experimental 

system could operate it within a sweep time. Table 6.1 shows the result of larger RBW than 1kHz. 

If the DSP had larger performance, the operation time was shorter than the result. 

The operation of the complex filter is explained by 

)()(

)()(

I QbIbQbb

QIbbSS

gIgQjgQgI

jggjQIjQI

∗+∗+∗−∗=

+∗+=+
  ,  (3.36) 

where 
SS jQI +  is the output of the filter, 

bb jQI +  is input signal, and 
QI jgg +  is the 

coefficients of the complex (Gaussian negative chirp) filter. Equation (3.36) consists of four 

multiplexes, one subtraction and one addition. We implemented the system by modifying the 

system of chapter 4. It is shown in Fig.6.3, where the four multiplex were replaced by the four 

‘PFIR’ filters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.3  Complex filter using DA FIR filter of DDC: GC4016 
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We used the GC4016 (see section 4.3) as the Digital Down Converter (DDC), which has four 

channels of down converter. Each channel has two programmable FIR filter (PFIR), whose 

coefficient are common and 63 taps. We used two channels of GC4016, A and B, and configured 

the coefficient of PFIR of A and B channel with real and imaginary part and of the complex filter, 

respectively. We implemented the real part of the complex filter 
Ig  in the PFIR of A channel, 

and the imaginary part 
Qg  is implemented into the B channel. 

We configured the sign of the ‘I’ and ‘Q’ of the each channel by setting the initial phase, 0θ  

of the NCO, of which A and B channel was 0 and 2/π . In the case that the output of NCO in B 

Channel was 

{ })cos(),sin()}2/sin(),2/{cos( ωωπωπω −=++ ,  (6.13) 

the I and Q channel of B Channel operated as –Q and I, and the four output of the PFIR were the 

four convolutions of the right side of Eq.(3.36). The DSP operated the two additions only. The 

amount operation of the DSP was reduced from the method of chapter 4 drastically. Table 6.2 

shows the result of this configuration. 

 

Table 6.2  Operation time of the experimental system (complex filter of the DDC) 

  A B C A/B A/C C/B 

Rbw 

 (kHz) 

Span 

 (MHz) 

trdST _  

(msec) 

sprST _  

(msec) 

DSPT  

(msec) 

SR  OPSR _  SOR  

10 100 2000 90 170 22.2 11.8 1.9 

30 200 500 30 98 16.7 5.1 3.3 

100 1000 230 30 139 7.7 1.7 4.6 

trdST _ :   A = The sweep time in a traditional sweep method 

sprST _ :   B = The sweep time in the super sweep method 

DSPT :    C = The operation time of the DSP (TMS320C6711 80MHz) 

SR :   A/B = The ratio trdST _ / sprST _ , Ratio of the sweep time. 

OPSR _ : A/C = The ratio trdST _ / DSPT , Ration of the sweep time and the operation time 

SOR :   C/B= The ration DSPT / sprST _ , Ratio between the processing time and the sweep time 

 

 

The filters included in the DDC (CIC, CFIR, and PFIR) have no operation time but a little 

latency time, from 7.6μsec to 3.9msec (see section 4.3). The operation time 
DSPT  was reduced 

approximately half of the Table 6.1, and the ratio 
OPSR _
 and 

SOR  were improved. But the 

improvement was not corresponding to the reduction of the operation. We considered that the operation 

time was dependent on not only operation but also the accessing time of the memory. 

The outputs signals of the four PFIR were sent to the DSP through a memory, and the DSP 

red the signals from the external memory. We considered that these accessing spent so much 

processing time. The design of the circuit of our experiment system was not optimized. The DSP 

was forced to spend so much accessing time for the memories. We expect that we can make the 
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operation time 
DSPT  to be shorter by optimization of the circuit design. On the other hand, we can 

design the circuit corresponding to the ‘DSP Operation’ in the Fig.6.3 using a FPGA. It is not 

difficult to make the circuit that has no operation time but some latency. 

If we had optimized circuit, the operation time 
DSPT  would not be more than the sweep time 

sprST _
, and the rate 

OPSR _
 (A/C) would accord with 

SR  (A/B). 

 

 

6.3    Display of new method 
Many conventional spectrum analyzers have only one display and the spectrum is displayed 

with 1000 points (may be smaller or larger a little). 

In the super sweep method, the spectrum analyzer can treat large data size of a spectrum and 

measure spectrum 10 or 30 times faster. We used a PC for the display as a Windows application, 

the example of a display is shown in Fig.6.4. The left side trace is ‘Main trace’ whose trace data 

was 4000 points, and the right side trace is ‘Sub trace’ which is extended trace of part of the Main 

trace whose area is indicated by orange colored cursor on the bottom of the Main trace. 

   Figure 6.5 shows the ‘Artificial Analog display’ of the R3264 (conventional), which displays 

32times trace on a trace and each sample is displayed by a dot. The spectrum is displayed as light 

and shade, which corresponds to the probability of the spectrum. This trace takes 32time longer 

than the normal trace, but the new method will be able to display almost same time as traditional 

one trace. (We have not implement this function in the experiment system.) 
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Fig.6.4  Multi trace Display on PC 

 

 

 

Fig.6.5  Artificial Analog trace Display of R3264 
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6.4    Filter margin and synchronization of frequency 
The discussion of this section is standing on the system of Fig.6.6. 

 

6.4.1 Over view of latency and synchronization of the system 

A sweep spectrum analyzer (including a super sweep method) is a cyclic system as shown in 

Fig.2.5. Our experimental system consisted of the filter chain described in section 4.2.4. We had to 

consider the margin of the filters to obtain the spectrum with exact frequency. 

We took the margin of the span and the sweep-time corresponding to the responses of the 

chain of the filters. And we achieved the synchronization between the spectrum and the ramp 

signal. The concept of the synchronization is shown in Fig.6.6, which shows the chain of the filter 

in the super sweep method and the position of the ramp signal. 

 

 

Fig. 6.6  Chain of Filters and its Latency 

 

 

 

6.4.2 Margin corresponding to chain of filters 

  Most traditional sweep spectrum analyzers have no difference between 
INSpan  and 

D
Span , and 

INS
T

_
 and 

DS
T

_
, where the sweep time is enough slow. In the super sweep method, 

sweep time was too short to ignore the difference. 

In Fig.6.6, the signal of the spectrum is ][iS  (in the right square indicated as ‘PC’), which is 

passed thorough the several filters in the system. Each filter has latency, which is according to its 

bandwidth. The bandwidth of the filters is wider at the left (input) side and narrower at the right 

(output) side. The narrowest filter has the longest latency; it is the ‘Negative chirp’ filter (in the 

center square). 
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An illustrated example of impulse response of a filter, input signal, and output signal is shown 

in Figure 6.7, where Δτ is the length of the impulse response, and outT and INT is the time 

length of the input and output. INT  is given by 

τ∆+≥ OUTIN TT ,  (6.13) 

which provide the output without a transient response affected by the start and end of the input 

signal. INT  is sum of the impulse response and time length of the output. We can consider that 

τ∆  is a margin and latency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7  Latency and Margin for a Filter 

 

The total latency of the system figured by Fig.6.6 is given by 

∑ ∆++∆+∆++∆+∆=∆=
i

GDAnAAi )()( 110 τττττττ LL .  (6.14) 

The most critical latency depends on the filter whose bandwidth is narrowest; usually it is 

negative chirp (resolution) filter. But in the case that the video filter is implemented after the 

resolution filter, the most critical latency depends on the video filters. On the other hand, the 

latency of the BPF in the RF down converters is very short (usually, under one micro second), we 

can ignore it.  

When we measure a spectrum whose span is 
D

Span  (Hz), the sweep time is 
DS

T
_
, the span 

and sweep time of the local oscillator (see Fig.6.6) is given by following equations. 

DS

D
T

hT
SpanSpan

DS

IN

_

_
+

=   (6.15) 

hTT
DSINS
+=

__
   (6.16) 
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6.4.3 Synchronization between spectrums and ramp signals 

In the case that we control the local oscillator in the system of Fig.6.6 exactly, the element 

number ‘i’ of the signal ][iS  has to correspond to the measured frequency. In our experiment 

system, we were not able to control the local oscillator directly. And we made the synchronization 

of the abscissa (frequency) by measuring the ‘SWP’ signal, ][iX  as shown in dot square of ‘PC’ 

in Fig.6.6.  

The SWP (Sweep out) signal is one output signal of the spectrum analyzer R3264 (see section 

4.2, especially Fig.4.2). The SWP is a nearly DC (Direct Current) signal whose voltage 

corresponds to the instantaneous frequency of the local oscillator. As shown in Fig.6.6, the SWP 

signal was digitized by the AD/C in the DSP Unit and passed through the digital filters whose 

properties were same to the filters that the IF signal were passed through. Then the latency was 

same to it of the IF signal, and we could obtain the spectrum as the pair of array, ][iX  and ][iS . 

Figure 6.8 shows the illustration of our method how we made the synchronization. The upper 

side square is a simplified spectrum, the middle stage shows the SWP signal, and the bottom 

square shows the spectrum on the PC. 

We made the three tone signals using a signal generator whose frequencies were as follows. 

INcfp

cf

INcfm

Spanff

FrequencyCenterf

Spanff

10

4

10

4

4

4

+=

=

−=

 , (6.17) 

where 
INSpan  and 

cff  were the conditions of the sweep spectrum analyzer. 

We received the signal ])[],[( iSiX  by the PC. The three signals were detected as peaks. The 

value of ][iX  corresponding to the three peaks were given by 

][ 44 mm iXX = , ][ cfcf iXX =  and ][ 44 pp iXX = , 

where 
4mi , 

cfi  and 
4pi  were the element number. We could estimate the frequency of each 

sample of ][iS  as F[i] by following equation. 

44

8.0)][(
][

mp

INcf

cf
XX

SpanXiX
fiF

−

⋅×−
+=   (6.18) 

The values of 
4mX , 

cfX , and 
4pX  were not change for the span and center frequency. 

Even if the center frequency and span are any other value, we can calculate the frequency F[i]. 
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Fig. 6.8  Synchronization on abscissa 
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6.5 Response of IF filters 

A diagram of the FFT method system is shown in Fig.6.9. The spectrum obtained by the 

FFT method is observed as a product of the true spectrum )(ωF  and the frequency response of 

the system )(ωH  as shown in Fig.6.10, where )(ωF  and )(ωH  are the Fourier transform of 

the measured signal and the impulse response of the system before A/D converter (especially the 

IF filter after the RF down converter) [4]. Usually, the pass band of the )(ωH  is not completely 

flat and has some slope or ripple. The signal passed the outside of the pass-band is not suitable for 

measuring a spectrum. And we have to equalize the spectrum corresponding to the )(ωH  to 

obtain an exact spectrum.  

 

 

 

 

 

 

Fig. 6.9  Signal flow of Spectrum analyzers by FFT method 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.10  Spectrum of FFT method with IF frequency response 

 

 

The frequency resolution of the spectrum is decided by the window function of the FFT. 

The spectrum )(ωS  is explained as following equation. 

( ) )()()()( ωωωω WHFS ∗×= ,  (6.19) 

where )(ωW  is the Fourier transform of the window function. 

In the super sweep method, the spectrum is obtained as a convolution of )(ωF  and 

)(ωH , as Eq.(3.10) (see section 3.2).  

)()()( ωωω HFS ∗= ,  (6.20) 
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where, )(ωH  is a convolution of the total frequency response of the several stages of the system. 

)(ωH  is dependent on the narrowest filter, usually it is the resolution filter. The spectrum is 

assumed as 

)()()( ωωω GFS ∗=   (6.21) 

where )(ωG  is the frequency response of the resolution filter. In the super sweep method, we 

can obtain the spectrum with almost no influence of )(ωH , it is one of the merit against the FFT 

method. 

 

 

 

6.6  Super Sweep Method and Chirp Z-Transform 

The super sweep method has a similarity between the Chirp Z-transform. This section 

discusses about the characteristics. 

 

6.6.1  Theoretical Background 

The chirp Z-transform is defined by following equation [3][6] (see Fig.6.11). 

∑
−

=

− −⋅=
1

0

1 )()()()(
N

n

nkcnykckX   (6.22) 

where k is a discrete frequency, n is a discrete time. The function c(n) is called ‘chirp signal’ 

defined as 

2

2

)(

n

Wnc
−

= ,   (6.23) 

where W is a ‘phase rotation factor’ defined as 

]2exp[0 πσjWW −⋅= ,  (6.24) 

where 0W  is a constant and σ  is a chirp factor for quantified time n, which is corresponding to 

the sweep rate in a sweep spectrum analyzer. And y(n) is a product of x(n) and )(1 ncA n −− ⋅ , 

)()()( 1 ncAnxny n −− ⋅⋅= ,  (6.25) 

where x(n) is discrete measured signal, and ‘A’ is defined by 

]exp[ 00 θjAA −= .  (6.26) 

The Chirp-Z transform of x(n) is X(k) defined by Eq.(6.22). The concept of the Chirp-Z 

transform is drawn as a diagram of Fig.6.11. 
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Fig.6.11    Concept of Chirp Z-Transform 

 

 

The signal )(1 ncA n −−
 of Eq.(6.25) is corresponds to a output of the local oscillator of a 

sweep spectrum analyzer, l(t), which is explained by 

[ ]
)],(exp[)(

)](exp[)ln()ln(exp

]exp[]exp[)(

0

2

0

2

00

2

2
1

22
000

1

2

θσπ

θσπ

πσθ

⋅−⋅⋅⋅⋅=

⋅−⋅⋅⋅⋅−=

⋅×⋅⋅−= −−−

nnjnM

nnjAnWn

njWnjAncA

n

nn

  (6.27) 

where M(n) is the amplitude factor. The phase factor is a chirp signal, which has a frequency offset 

0θ . In the case that 0W  is less than one, the magnitude takes a form of Gauss function, which has 

an offset on the time. In the case that 10 =A  and 10 =W , this signal has constant magnitude.  

The signal )(ny  corresponds to the IF signal, which is chirped signal; )(1 ncA n −−
. The 

summation of Eq.(6.22) is assumed as a discrete convolution of )(ny  and )(nc , and the internal 

of the summation is explained by 
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The factor dependent on not n but k is just replaced by )(kc , which is modified by Eq.(6.23) and 

(6.24) as  

[ ] [ ]20

2

2
1 exp)ln(exp)( kjWkkc πσ−⋅−= .  (6.29) 
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In Eq.(6.22), the factor Eq.(6.29) is rejected by )(1 kc− , and the magnitude dependent on n is 

replaced by  

[ ])ln()ln(exp)( 001 WnkAnnM +−= .  (6.30) 

By above discussion, Eq.(6.22) can be rewritten as 

∑
−

=

+⋅⋅⋅−⋅⋅=
1

0

01 )]2(exp[)()()(
N

n

knjnxnMkX θσπ   (6.31) 

This equation is a discrete Fourier transform of )()(1 nxnM ⋅ , which has frequency offset 0θ , 

and we could assume )(1 nM  to be weighting function. The frequency corresponding to k isσk . 

In the case that σ=1/N, )(kX  is corresponding to the result of FFT. In the FFT method, the 

difference between each sample of a frequency is dependent on N, and it is 1/N. In the Chirp 

Z-transform, the difference is not dependent on N. We can decide the difference corresponding to 

the condition of the system such as the sampling frequency and sweep rate. This ability is one of a 

merit of the Chirp Z-Transform against the FFT method. 

Our experimental system described in chapter 4 was assumed the modified system of Fig.6.11 

except for the product of )(1 kc− . In the experimental system, the mixer and the signal 

)(1 ncA n −−
 were implemented as an analog mixer and a local oscillator. The convolution of 

)()( ncny ∗  corresponded to the negative chirp filter. The result of the super sweep method had 

chirp phase factor as shown in Eq.(3.9), which corresponded to the lack of the product with 

)(1 kc− . But it is no problem to estimate amplitude of the spectrum. In the most case of measuring 

a spectrum, the phase factor is not object of the consideration. 

We considered that the super sweep method was a derivative processing of the Chirp 

Z-Transform.  
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6.6.2 Numerical Analysis 

We made a numerical analysis about the phase, Figure 6.12(a) to (e) are the results. The 

spectrum and I and Q part of the base band signal are shown in Fig.6.12 (a), which corresponds to 

a CW signal whose frequency was the center of the figure. The vertical full scale is 100dB for the 

spectrum, and from –1.0 to 1.0 for I and Q part. The measuring condition were SPAN=10kHz, 

Sweep Time=2msec, and RBW=1kHz. 

The I and Q part of the output of the resolution filter (Gaussian negative chirp filter) is 

shown in Fig.6.12 (b) whose significant level is remained around the center. We obtained the 

phase factor of (b) by 

))(/)((tan)( 1 tItQt gg

−=θ  . (6.32) 

This phase factor is shown in the figure (c). The line describes a parabola. 

The differentiation of the phase is drawn in Fig.(d), it is nearly a line.  

The 2
nd
 differentiation of the phase is shown in Fig.(e). It was 5MHz/sec at the center that 

corresponded to the sweep rate, Span/Sweep_time. It was –4.95MHz at the both sides, which was 

1% reduction of the sweep rate. We considered the reduction caused by a computing error, because 

I and Q had not enough accuracy without a error at the both side to operate Eq.(6.32). 

By the discussion section 3.2.2 especially Eq.(3.9), we investigated that the phase of the 

spectrum measure by the new method was chirped, which was caused by the sweep of the local 

oscillator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.12 (a)  Spectrum by Super Sweep Method (SdB), 

Gaussian Filter (g) And Base Band signal (I and Q) 

  Measuring condition: 

   SPAN=10kHz, Sweep Time=2msec, RBW=1kHz 

0dB 

-100dB 
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Fig.6.12 (b)  I and Q part of the Spectrum in (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.12 (c)  Transition of phase of Spectrum in (a) 

)/(tan 1 IQ−  of (b) 
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Fig.6.12 (d)  Differentiation of phase in (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.12 (e)  Second differentiation of phase in (b) 
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6.6.3 Numerical Analysis of a Sweep Method 

  In a conventional sweep method, the spectrum is assumed to have chirp factor as shown in 

Eq.(2.31-c).  

( ){ }

( ){ }∫

∫
∞

∞−
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∞−

−−×−=
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00

2

2exp)()()(

2exp)()()]([exp)(

 (2.31-c) 

We achieved a numerical analysis for the sweep method and verified the existence of the chirp 

factor as shown in Fig.6.13(a) to (c). The second differentiation of the phase is obtained by the 

same processing of Fig.6.12 (e), it was 500kHz per one second and it accorded with the sweep rate 

σ, 

kHz
m

kHz

TimeSweep

Span
500

sec2

10
===σ .  (6.33) 

The property of spectrum of two method, sweep and super method were similar, such as phase 

factor and the parabolic figure. While the sweep method has a restriction on the sweep rate, the 

super sweep method has not it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.13 (a)  Spectrum by Sweep Method (SdB), 

Gaussian Filter (g) and Base Band signal (I and Q) 

  Measuring condition: 

   SPAN=10kHz, Sweep Time=20msec, RBW=1kHz 

dB0

dB100−
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Fig.6.13 (b)  Transition of phase of Spectrum of (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.13 (c)  Second differentiation of phase in (b) 
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6.7  Response against two-tone signals 

The analysis of the spectrum of two-tone signals in the sweep method is described in section 

2.5.7. This section describe the result of the experiment whose condition were same to section 2.5.7 

except for measurements by the super sweep method. 

The experiments were done by a numerical analysis. The measured signals were assumed as 

Eq.(2.59). 

( ))](exp[)](exp[
2

1
)( 000 tftjtftjtf ×∆+−++×∆+−= πωθπω  (2.59) 

where the frequency differences of the two-tone signal were )(Hzf∆ , 0ω  was the carrier 

frequency. The spectrum were obtained as 

{ })()()()( tltftgtS nn ×∗= ,  (3.2) 

where l(t) is the swept signal, which is given by 

)](exp[)( 0

2 ttjtl ωπσ +⋅=    

Then Eq.(3.2) is explained by 

{ }])(exp[])(exp[)2/1()()( 2

0

2 tftjtftjtgtS nn ∆−⋅++∆+⋅∗= πσπθπσπ   (6.34) 

The experiment conditions of Fig.6.14 are shown in Table 6.3. 

 

Table 6.3  Experimental conditions of Fig.6.12 

 Sweep Time Frequency differences of 

two tone signals 

Span Rbw 

(a) 2 msec 1500Hz 

(b) 2 msec 1000Hz 

(c)  10 msec 1500Hz 

(d)  10 msec 1000Hz 

10kHz 1kHz 

 

We computed two spectrums for each figure. The spectrums are indicated by two bold black 

lines whose difference of initial phase between the two tones are 0 and π radian, they are indicated 

as “SdB 0” and “SdB 1”, respectively. The most part of two lines are overlapped together except 

around the center. The real part and imaginary part of the measured signal, which is corresponding to 

Eq.(6.34) are indicated in red and blue lines, and they correspond to “SdB1”. The green lines indicate 

the impulse response of Gaussian filters (RBW=1kHz). 

In a traditional sweep method, the sweep rate is restricted and the sweep time was 20msec in the 

condition of Fig.2.25. In the condition of Table 6.3 and Fig 6.14, the sweep rate were 10 times faster 

in (a) and (b), and 2 times faster in (c) and (d) than the cases of Fig.2.25, respectively. In Fig.6.14, we 

obtained same spectrums with Fig.2.25. The frequency of the beat note in Fig.6.14 is fewer as faster 

as the sweep rate faster. We observed the same spectrums with the different sweep rates. The results 

of Fig.6.14 verify the new method that broke the restriction of the sweep rate. 
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Fig.6.14 (a)  Spectrums of two signals, ⊿⊿⊿⊿f=1500Hz 

Sweep Time 2msec 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.14 (b)  Spectrums of two signals, ⊿⊿⊿⊿f=1000Hz 

Sweep Time 2msec 
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-100dB 

0dB 
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Fig.6.14 (c)  Spectrums of two signals, ⊿⊿⊿⊿f=1500Hz 

Sweep Time 10msec 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.14 (d)  Spectrums of two signals, ⊿⊿⊿⊿f=1000Hz 

Sweep Time 10msec 

0dB 

-100dB 
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6.8 Influence of the noise 
 

6.8.1 Noise in Spectrum analyzers 

In a spectrum analyzer, the signal before the A/D converter thorough passes several analog 

circuits such as mixers (MIX), amplifiers (AMP) and some filters. These analog circuits produce 

noise, which appears on the spectrum. The concept of the noise produced in the analyzer is shown in 

Figure 6.15, which shows the signal process from the input to the RBW BPF. The phase noise 

produced by the local oscillator is a one of the representative noise. The influences upon the 

spectrum were difference corresponding to the sources of the noise; local oscillator, before or after 

the mixer, and before or after the Amplifier etc.  

 

    
    
    
    
    
    
    
    
    
    
    

Fig.6.15     Model of noise of spectrum analyzers 

 

6.8.2 Phase Noise of the local oscillator 

In some measurement conditions of sweep spectrum analyzers, we can observe the phase noise 

of local oscillator on the sideband of the peak. One example is shown in Fig.6.16. The mathematical 

model of spectrum measured by a sweep spectrum analyzer is Eq.(2.31-b). 

( ){ }∫
∞

∞−

+−+−⋅−×−= τθτωτσπττ dttjtfgtS 00

2 )()(exp)()()(  (2.31-b) 

We can make the noise as )(tθ  instead of 0θ . The spectrum with the noise is explained by 

( ){ }∫
∞

∞−

+−+−⋅×−= τθτωτσπττ dtttjtfgtS )()()(exp)()()( 0

2   (6.35-a) 

This equation can be modified as 

( ){ }∫
∞

∞−

−+−⋅××−= ττωτσπθττ dttjjtfgtS )()(exp(t)]exp[)()()( 0

2   (6.35-b) 
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We cannot distinct whether the phase noise is including in the local oscillator or the signal f(t) by 

watching the spectrum. 

The two overlaid spectrums are shown in Fig.6.16, one is obtained by SPAN=60kHz, 

and another is obtained by SPAN=59.9kHz whose noise-level is lower. The level of the 

phase noise of local oscillator was changed corresponding to the configuration of the 

oscillator [8]. The super sweep method has high sensitivity for the phase noise. The 

system that employs the super sweep method should be configured to have a lower 

phase noise. 

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

Fig.6.16  Phase noise of Sweep Spectrum Analyzers    
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6.8.3 Noise in the IF signal 

This section reports and discusses about the noise of the IF signal. The deformed diagram of our 

experimental system is shown in Fig.6.17, which was described in chapter 4, where a few examples 

of the measurement are shown. 

 

 

 

 

 

 

 

 

 

Fig.6.17  Deformed diagram of our experimental system    

 

In Figure 6.18, the SPAN was 3MHz. In Fig.6.18 (a) and (b) the RBW was 3kHz. In Fig. (c) the 

RBW was 30kHz. The IF-bandwidth (RBW of R3264) was 30kHz in (a), 300kHz in (b) and (c), 

respectively. The sweep time of (a) and (b) were 70msec and it of (c) was 20msec. 

In the case that the IF-bandwidth was 300kHz, the spectrum had high level of noise around its 

peak. The bandwidth and figure of these noise were according with the IF band pass filter (RBW of 

the R3264). If the noise was caused by a phase noise of the local oscillator, the figure of the noise 

was not dependent the IF band pass filter.  

We considered that some very wide band noise existed in the IF-signal front of the IF band pass 

(RBW) filter, and the IF-signal included the wideband noise. The negative chirp filter pass the part of 

signal whose frequency was under the pass band. If the SNR of the IF signal was not enough for the 

dynamic range required on the measurement, the noise would remain in the spectrum as shown in 

Fig.6.19. This discussion has not been verified. It is our task for the future. 

By the above discussion, we considered that we should choose the IF-bandwidth (RBW of the 

spectrum analyzer R3264) as narrower as we can to reduce the noise around the peak. But it needs 

wider IF-bandwidth to obtain faster sweep rate but the noise would enlarge. It is essential solution to 

develop the signal pass with satisfactory SNR. 

In our experimental system, the pass band of the DDC was configured to be wider than the 

IF-bandwidth and the Flt was decided by the IF-bandwidth. 
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(a) SPAN=3MHz, RBW=3kHz, IF-Bandwidth=30kHz, St=70msec 

    
    
    
    
    
    
    
    
    
    
    
    

(b) SPAN=3MHz, RBW=3kHz, IF-Bandwidth=300kHz, St=70msec 

    
    
    
    
    
    
    
    
    
    
    
    
    

(c) SPAN=3MHz, RBW=30kHz, IF-Bandwidth=300kHz, St=20msec 

 

Fig.6.18  Obtained Spectrums using Super Sweep Method 



  

 - 176 - 

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

Fig.6.19  Noise of IF signal and Spectrum    

    
 

IF Signal 

Convolution 

Negative Chirp Filter Extracted Spectrum 

Wideband noise 



  

 - 177 - 

6.9    Examples of Spectrums 

To demonstrate the special feature of the new method, some result of measurements are 

presented in Fig.6.20～6.23(b). These results were obtained as the numerical data from the 

experimental system. We took four samples of the RBW were 1Hz, 100Hz, 1kHz and 100kHz and 

describes their futures in following sections. 

 

6.9.1 RBW 1Hz 

It is difficult to make the RBW filter of 1Hz by analog circuit. We achieved the filter as a digital 

filter of the new method. In traditional sweep method, the sweep time of the conditions, whose Span 

is 500Hz and Rbw is 1Hz, are approximately 1000 sec. In the super sweep method it was 2.88sec, 

which is about 350 times faster than the sweep method. The one result of measurement is shown in 

Fig.6.20.  

In Fig.6.20, three spectrums, A, B, and C are results of measuring a CW signal. The spectrum A 

has some spurious peaks called ‘Ham noise’, which was caused by the frequency 50Hz of the AC 

power supply. The spectrum B is the result of no input, which shows the noise floor of the system. 

The spectrum C is the averaged (32 times) data of B. The data C indicated the noise floor 

approximately –124dBm. The to level the scale was 0dBm. This result investigated that the dynamic 

rage of the system was larger than 120dB. 

It needs large margin of the sweep time and span to achieve the fast sweep (see section 6.4.2). 

The span and sweep time of the local oscillator was approximately twice for the result of the 

spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.20  Spectrum with RBW 1Hz 

SPAN=500Hz, St=2888msec, IF-bandwidth=300Hz, 

 ( R3264 Set up: SPAN=1kHz, RBW=300Hz, St=5.8sec, CF=500MHz ) 
In a traditional method, it needs approximately 1000sec of the sweep time. 

A 
 
B 
 
C 
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6.9.2 RBW 100Hz 

This section shows the improvement of the dynamic range. In Figure 6.21, four spectrums are 

shown. The spectrum ①~③ were the result of measuring a CW signal, ④ was result with no input 

signal. The spectrums ① and ② were measured by the spectrum analyzer R3264 with RBW 1kHz 

and 100Hz, respectively. The sweep time of ① and ② was 0.2sec and 20sec. The spectrum ③ 

and ④ were measured by the super sweep method, whose RBW was 100Hz and the sweep time was 

665msec. In the case that RBW was 100Hz, the new method achieved 30 times faster than R3264.  

These spectrums were obtained with average mode (32 times) to get a comparison of the noise 

level. In the super sweep method, level of the noise were –100dBm or under. The noise floor of ② 

is limited at –97dBm.  

When the reference level was -10dBm, the noise floor of R3264 were larger than –97dBm. It 

corresponded to specification of the LOG amplifier included in the R3264. The new method 

improved the limit of noise floor by the digital signal processing. The level of ③ indicated the noise 

floor with RBW 100Hz. It was approximately –112dBm.  

 

Note) Unfortunately, it seemed there were non-Gaussian noise, which caused a cyclic noise 

waves on ③ and ④. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.21  Spectrum with RBW 100Hz and 1kHz, SPAN100kHz 

( R3264 Set up of ③and ④ : SPAN=111.1kHz, RBW=3kHz, St=740msec, CF=500MHz ) 
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6.9.3 RBW 1kHz 

Figure 6.22 (a) shows a spectrum of a FM signal; the deviation was 2MHz and the modulation 

frequency was 30kHz, the Span was 4MHz, RBW was 1kHz, and the sweep time was 693msec. The 

sweep time of R3264 for same SPAN and RBW is 8.4sec. New method was 12 times faster than 

R3264.  

The signal consisted of many side lobes whose intervals were 30kHz. The spectrum shown in 

Fig.6.22 (b) is an extended spectrum of Fig.6.22 (a), whose span was 400kHz. The sweep time of (a) 

was 693msec. 

 In a traditional spectrum analyzer, the condition RBW 1kHz is too fine for SPAN 4MHz, 

because the displays of these analyzers are usually 1001 points. Our experimental system was 

designed that the display point were 30,000 point in maximum. The spectrum of (a) was given 

enough size of data and the resolution to drew the spectrum (b), which is drawn from the data of (a). 

We were able to observe the two spectrums in one measurement (see section 6.3). Traditional 

spectrum analyzers cannot measurements of (a) and (b) in one time. 

 

Note: The setup of R3264 for Fig.6.22 is shown in the supplementation. The Span and Sweep Time 

had a margin, which were about 5 percent wider and longer than Fig.6.22(a). See section 6.4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.22 (a)  Spectrum with RBW 1kHz , SPAN4MHz 

St=693msec, IF-bandwidth=10kHz, 

 ( R3264 Set up: SPAN=4.176MHz, RBW=10kHz, St=730msec, CF=500MHz ) 
The sweep time of R3264 for same SPAN and RBW is 8.4sec. 
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Fig.6.22 (b)  Spectrum with RBW 1kHz , SPAN400kHz 

Around the center of Fig.6.21(a) 

 

6.9.4 RBW 100kHz 

The maximum RBW of our experimental system was 100kHz. An example of spectrums 

measured with RBW 100kHz is shown in Fig.6.23 (a) and (b). The sweep time of (a) was 14msec. In 

the same condition, the sweep time of R3264 is 200msec. The new method achieved the sweep 10 

times faster than the conventional way.  

In the FFT method described in section 2.9, it needs several times of stepping up the local 

oscillator to measure for such a wide span, and it needs the so long setting time and operation time of 

the DSP. Some spectrum analyzers implemented the FFT method using a DSP, such as FSU series 

produced by R&S Co., achieves the fast sweep up to RBW 1kHz or 3kHz. For wider RBW than 

3kHz, the measurement rate is not faster than the sweep method.  

Our experimental system achieved not only a fast sweep rate with RBW 100kHz but also 

obtained the sufficient and seamless information of the spectrum. Figure 6.23 (b) shows the part of 

(a), whose span is 100MHz and the center frequency is 500MHz. In Figure (b), the sample points are 

indicated by small dots. We can see the spectrum with the resolution of 100kHz as any part of (a). 
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Fig.6.23 (a)  Spectrum with RBW 100kHz , SPAN 1GHz 

St=34msec, IF-bandwidth=1MHz, 

 ( R3264 Set up: SPAN=1.18GHz, RBW=1MHz, St=40msec, CF=500MHz ) 
The sweep time of R3264 for same SPAN and RBW is 200msec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.23 (b)  Spectrum with RBW 100kHz , SPAN 100MHz 
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6.10    View of spurious peaks 

The spectrum analyzer used in our experiment had some spurious peaks at the condition as 

shown in Fig.6.24 (a). In the super sweep method the spurious peaks existed too, but the levels were 

lower and the observed bandwidth were broader than the peaks of Fig. (a) as shown in Fig. (b). 

Figure 6.24 (c) shows the overlapping spectrums as a part of (a) and (b). The start frequency is 

–1kHz, and stop frequency is 13 kHz, where the spectrum of (b) is drawn as bold line and (a) is 

drawn as thin line.  

The peaks at the center frequency of (a) and (b) had no broadening of the resolution and had no 

level reduction. But the spurious peaks of (b) were broadened and the levels were reduced. These 

figure of the spurious peaks are similar to the over sweep-rate response. 

We hypothesized that the input signal or the output of the local oscillator had some harmonics 

and the frequency of them were given by 

INlspurious mn ωωω ⋅+⋅= ,  (6.36) 

where 
lω  was the frequency of the local oscillator, 

INω  was the frequency of input signal, and n 

and m are arbitrary whole numbers. In the model of Fig.2.5, n was one and m was minus one. The 

new method worked on the assumption that the value n and m were known. Especially in our 

experiment, n and m were one and minus one. In the case that any signal produced by another value 

of n and m, the negative chirp filter could not cancel the chirp factor of the input signal and the Eq. 

(3.10); 

|))(())((||)(| * tFtGtS sn ωωω ∗−=  ; (3.10) 

could not be accomplished.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.24 (a)  Spectrum measured by R3264 

CF 30MHz, RBW 100Hz, SPAN 70kHz, 
ST 14sec 
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Fig.6.24 (b)  Spectrum measured by Super sweep method 

CF 30MHz, RBW 100Hz, SPAN 70kHz, 
ST  465msec 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.24 (c)  Over lay of Spectrums of (a) and (b) 

The expanded spectrum around the spurious peaks  

whose frequency was –1kHz to 13kHz (Span 14kHz) of (a) and (b) 

この件に関しての厳密な分析は行っておりません。使用する高価なスペアナの内部を改造しないと検証できないので現実

には不可能。こういう場合どのように記述すべきなのか。あるいは書かざるべきか。 
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We assumed that n of the spurious signal in Eq.(6.36) was –1 and the frequency was given by 

INlSpurious m ωωω ⋅+−=  .   (6.37) 

And the signal, )(tfSP  which corresponds to this frequency, is explained by 

)](exp[)()( 2

` tmtjtAtf INSPSP ωσ ⋅+⋅−⋅= ,  (6.38) 

where 
lt ωσ =⋅ 2
. The time-frequency diagram of the signal is shown in Fig.6.25. There are two types 

of the chirp signals, a normal chirp and an inversed chirp. In a sweep method, both signals give same 

response thorough the RBW filter, because the chirp rates of both signals are same. In the super 

sweep method, we obtained the spectrum )(tSSP
 from the signal )(tfSP  as the convolution of )(tfSP  

and the negative chirp filter, )(tgn
. And the convolution is explained by 

)()()( tftgtS SPnSP ∗=  

{ } { }

( )
( )[ ]

( )[ ] .)2(2exp)()(

exp

]})()(exp[)({

}]exp[)({

)](exp[)(]exp[)()(

2

2

2

2

22

ττωπσπστττ

ωπσ

ττωτπστ

πσττ

ωπσπσ

dmtjtAg

tmtj

dtmtjtA

jg

tmtjtAtjtgtS

INSP

IN

INSP

INSPSP

∫

∫

∞

∞−

∞

∞−

−+−×−×

−−=

−+−−−×

−⋅=

+−×∗−=

  (6.39) 

Where the amplitude of the term of 
2τ  is twice in comparison with Eq.(2.31-c). These terms 

were causes of the over sweep-rate response. As a result, in the super sweep method, we were able to 

distinguish the spurious peaks. This characteristic does not exist in a traditional sweep method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.25 Time/Frequency Diagram of IF signal and resolution filter 
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6.11    Comparison of the methods 

This thesis describes the three methods to measure a spectrum, the FFT, the sweep, and the super 

sweep. Chapter 2 described about the sweep method. Some sub-sections of Chapter 2 described about 

the FFT method. Chapter 3 and the following chapters described the future of the super sweep 

method. Some representative features of the methods are shown in Table 6.4. This table compares the 

parameters of columns on the assumption that the RBW is same. 

 

Table 6.4  Comparisons of spectrum measurement methods 

Measurement Time 
 

Final 

Analog IF 

Bandwidth 

(αααα>1) Narrow SPAN Wide SPAN 

Influence 

Of the IF 

Filter 

Abscissa 

Sweep 

Analog IF 
RBW  

Sweep 

Digital IF 

SPAN/σσσσ 
2RBW∝σ  

Super Sweep 

SPAN/σσσσ 

(Single Sweep) 
None 

Frequency 

and Time 

FFT 

With RF 

Down-converter 

RBW⋅α  

 SPAN/σσσσ 

RBW∝σ  
Span/σσσσ＋＋＋＋ββββ 

(Multi Sweep) 

Ripple on 

Spectrums 
Frequency 

 

Final Analog IF Bandwidth and Dynamic Range: *1) 

At the points of the dynamic range, the three sweep methods of Table 6.4 (Analog IF, Digital IF, 

Super Sweep) have an advantageous against the FFT method [9][10]. In these sweep methods, 

signals are passed thorough IF band pass filters, and the power of the spectrum are detected as 

narrow band signals. 

Generally, the FFT method digitizes the input signal using high speed A/D converter to achieve 

the high-speed measurement, and the bandwidth of the input signal is configured sufficiently wider 

than the RBW. In the case that the signal is wideband and wider than the RBW, the total power of the 

signal is inputted into the A/D converter, and the full range level of the converter must be fit for the 

total power. A low power signal inputted with such a signal may be behind under the noise floor of 

the A/D converter. On the other hand, in the three sweep method, the input signal of the A/D 

converter is band limited by the narrow IF filter and we can take the full range level lower than it if 

the FFT method. But, in the case that the bandwidth of the IF bandwidth of the Digital IF and Super 

Sweep method are same to the FFT method, the full range level should be same, and the dynamic 

range become same to the FFT method. 

 

*1 ) In this section, ‘Dynamic range’ means the difference of the level between full range of the 

system (i.e. A/D converter) and the noise floor of the system. 
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Measurement Time (Narrow SPAN): 

In the analog and digital sweep methods, the sweep time is inversely proportional to the square 

of the RBW. The maximum sweep rate σ is shown in Eq.(2.38) 

On the other hand, in the FFT method, σ is inversely proportional to the RBW as shown in 

Eq.(2.81). In the Super Sweep method, σ is inversely proportional to the RBW too, as shown in 

Eq.(3.34-b). In the case that both bandwidth of the final IF of these two methods are same, the 

maximum sweep rate became almost same. 

As narrower as the RBW, the difference of the measurement time between them becomes larger.  

 

Measurement Time (Wide SPAN): 

In the FFT method, the frequency span of one measurement obtained by one FFT operation 

depends on the sampling frequency [4]. In the case that the span is wider than the Nyquist frequency, 

we can step up the receiving frequency band and joint the result of the multiple measurements. In this 

case, ‘blanking time” is added to the measurement time. The blanking time is needed between 

sweep-end and the start of the next sweep. It is usually 5msec to 100msec that is different 

corresponding with specification of each analyzer. When the SPAN is wider and the large number of 

times of the sweep is needed, sum of the blanking time becomes significant and the control of the 

system will be complicated.  

On the other hand, in the sweep methods, we can measure 3 or 4 GHz Span in one sweep *2). 

Generally, for wide span measurement, sweep methods have an advantage at the point of 

measurement time.  

 

*2) In 2006, Anritsu Co. produced the spectrum analyzer whose measurement bandwidth was 8GHz. 

 

Influence of the IF Filter: 

This feature is described in section 6.5. In the FFT method, a spectrum is obtained as a product 

of the Fourier transform of the signal and the frequency response of the IF BPF. This response is 

mostly dependent on the characteristic of the narrowest IF filter. It is not easy to make IF filter which 

has flat pass band of wide bandwidth. Then some ripples of the IF filter appear on the spectrum as 

sown in Fig.2.45. 

On the other hand, in the three sweep methods, the spectrum is obtained as not the product, but 

the convolution of them. Usually, the bandwidth of the IF filter is sufficiently wider than the RBW 

filter, therefore influence of the IF filter almost do not appear on the spectrum.  

 

Abscissa：：：： 

In section 2.6, it is described that the abscissa of the sweep method has a factor of time. By 

changing the sweep time, we can obtain useful and various information from the spectrum. 
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On the other hand, in the FFT method the abscissa has not a factor of time. The frequency 

difference of the each sample of the spectrum: f∆  is dependent on the sampling frequency and the 

time length of the window function (see Eq.2.75-b). To shorten f∆  we must take the time length 

of the window function long. The long window function gives a fine RBW. And we have no 

arbitrariness for the ratio between f∆  and RBW. But in the sweep methods, we have the 

arbitrariness by changing the sweep time. 

 

This section describes the some feature of the methods as shown in Table 6.4. Each of the 

method has some merits and demerits against each other. We have not any methods that have no 

demerit. We should select the method corresponding to the purposes of the measurement and 

properties of the signal. 

 

 

6.12 Reference 

[1] Masao Nagano, “The fundamental of the signal processing in a digital radio communications”, 

Interface Sep 2002, CQ Pub. Tokyo Japan 

[2] Masao Nagano, “The theory and fundamentals of digital modulations and demodulations”, Interface 

Sep 2004, CQ Pub. Tokyo Japan 

[3] Masao Nagano “Spectrum Analyzer of Super Sweep IF Filter” S
2
PATJ vol.4, No.2,  June 2001 

pp23-30 

[4] E.Oran Brigham, “The Fast Fourier Transform”, Prentice-Hall,Inc.,1974 

[5] N.Kojima, T.Shinozaki, “Introduction to the Z-Transform”, Tokai University Publish, Tokyo Japan, 

1983. 

[6] Oppenheim, Schafer, “Digital Signal Processig”, Prentice-Hall,Inc. New Jersey, USA. 

[7] L.R.Rabiner R.W.Schafer, “The Chirp z=Transform Algorithm”, IEEE Transaction on Audio and 

Electroacpustics, Vol.Au-17, No.2, pp86-92, JUNE 1969. 

[8] Agilent Technologies, Spectrum Analysis Basics, Application Note 150, August 2,2006 

[9] Agilent Technologies, Spectrum Analyzer Measurements and Noise Application Note 1303, Dec.16 

2006. 

[10] Agilent Performance Spectrum Analyzer Series Swept and FFT Analysis Application 

Note, 2004-1-19 

 



  

 - 188 - 

 

 

 



   

 - 189 - 

Chapter 7  

Application in Radio Astronomy 
 

7.1    Introduction 

In radio astronomy, the power of the observed signal is very low, and the signal is observed 

almost as a noise. Therefore, in many case we cannot observe these signals from one time 

measurement of FFT processes and sweep spectrum analyzers. The signals are detected through a 

correlation processes such as XF, FX and FFX algorithm [1]. In these methods, on the assumption 

that the signal is observed under an ergodic process, and spectrums are obtained from a time average 

of many results of FFT operations.  

On the other hand, it is an accepted view that a sweep spectrum analyzer is not suitable for 

observations of radio astronomy for its slow speed of measurements. But conventional spectrum 

analyzer is used to tune and maintain the system indispensably. One of the reasons is that the 

spectrum analyzer has tunable down-converter and can measure variable measurement conditions. If 

sweep spectrum analyzer can measure faster, it will be useful in radio astronomy. 

In section 7.2, author investigated the SNR (signal noise ratio) against a measurement time for 

super sweep and sweep method, and reported the result.  

In section 7.3, author reported the observation of radio astronomical body W49N, which is 

measured by author’s experimental system and the built-in FFT system in VERA-Mizusawa 

observatory.  

In section 7.4, author reported the results of the observation of radio astronomical body 

G9.62+0.20. 

In section 7.5, some discussions for the observations of section 7.2,7.3 and 7.4 are reported. 

In section 7.6, author reviewed a papers which is reported about a radio telescope which is applied 

CZT (chirp Z transform) as a spectrometer. And author reported the relation to the super sweep 

method and CZT. 

In section 7.7, under the discussion of section 7.2 to 7.6, author considered the product of 

receptive bandwidth and acquisition-time. 

  Section 7.8 is the conclusion. 
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7.2    Improvement of SNR against sweep method 

In radio astronomy, signal from an astronomical object is recognized as a weak peak from the 

noise floor in the measured spectrum, where an SNR is defined as follows. 

n

np

SN

P
R

σ

µ )( −
≡  , (7.1) 

where pP is a peak level of the signal, nµ is an averaged noise level and nσ is a standard deviation 

of the noise, the unit of these parameters are watt (W). 

  Author simulated the observation of astronomical object using the system as shown in Fig.7.1, 

and the conditions of the measurement are shown in Table 7.1. Author observed the spectrums using 

sweep spectrum analyzer; R3264, ‘SPA’ in Fig.7.1, and the super sweep system, and estimated the 

SNR by changing the average times, which is according with the measurement times. 

The two spectrums of Fig.7.2(a) and (b) were obtained using the sweep spectrum analyzer. Figure 

7.2 is the result of three sweeps average, three-second integral time, where the peak of the signal 

(should be in the center) is covered in the noise floor. Figure 7.2 (b) shows the spectrum with 30 

sweeps average, 30-second measurement, where the peak of the signal is clearly shown from the 

noise floor.  
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Figure 7.1   System for estimating SNR    

 

 

Table 7.1   Conditions of Measurements 

Input Signal Level -113dBm -105dBm 

SPAN 500kHz 

RBW 1kHz 

Sweep Time (Sweep) 1sec 

Sweep Time (Super Sweep) 41msec 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Power SPAN RBW VBW ST AVG 
Integral 
time SNR  nσ  

-105dBm 500kHz 1kHz 1kHz 1.0 sec 3 3 sec 0.493 3.30E-12 

 

Fig. 7.2 (a)  Measured Spectrum using sweep spectrum analyzer with AVG 3    
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Input Power SPAN RBW VBW ST AVG 
Integral 
time SNR  nσ  

-105dBm 500kHz 1kHz 1kHz 1.0 sec 30 30sec 1.63 1.24E-12 

 

Figure 7.2 (b)   Spectrum measured with AVG 30    

 

The spectrums measured through the super sweep method, which were configured 30 times faster 

than the sweep method, are shown in Fig.7.3 (a) and Fig.7.3(b), they were measured same integral 

time of average with Fig.7.2 (a) and (b), respectively. In these cases, the sweep time of one sweep 

were 41 msec and the average time were 73 and 732 (the integral time were 3 and 30 sec), the SNR 

SNR  is so much greater than Fig.7.2 and the deviation nσ  is so smaller. The transition of SNR and 

the deviation is shown in Fig.7.4, Fig.7.5, Table 7.2 and Table 7.3. The parameters SNR  and 
nσ  

are not dependent on the integral time but the average times, then the fast sweep of the super sweep 

improved the SNR  and nσ  in the same integral time. 
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Input Power SPAN RBW VBW ST AVG Integral time SNR  nσ  

-105dBm 500kHz 1kHz 1kHz 41msec 73 3 sec 35 0.023 

 

Fig. 7.3 (a)  Spectrum measured using Super sweep method with AVG 73    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Power SPAN RBW VBW ST AVG Integral time 
SNR  

nσ  

-105dBm 500kHz 1kHz 1kHz 41msec 732 30 sec 94 0.00779 

 

Fig. 7.3 (b)  Spectrum measured using Super sweep method with AVG 732    
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SN vs Integration time
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Fig. 7.4  SNR against Integral time    

 

 

Table 7.2   SNR against Integral time 

Sweep Super Sweep   

A: -113dBm A’: -105dBm B: -113dBm B’:-105dBm B/A B’/A’ 

1 sec -0.129 0.36 4.5 25 -- 69.4 

3 0.493 1.60 7.23 35 14.7 21.9 

10 0.900 3.20 9.97 65 11.1 20.3 

30 1.63 5.28 13.4 115 8.2 21.78 

100 3.00 7.96 22.1 250 7.37 31.4 

Ti 

300 6.71 9.96 -- -- -- -- 
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σ　vs　Integration time
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Fig. 7.5  Standard deviations against Integral times    

 

 

Table 7.3  Standard deviations against Integral times 

 

Ti A: AVG -113dBm A’: AVG -105dBm B: SSDI -113dBm B’: SSDI -105dBm B/A B’/A 

1 9.59E-12 1.0197E-11 0.15 0.04 1.56E+10 3.92E+9 

3 3.30E-12 3.91058E-12 0.063 0.023 1.91E+10 5.88E+9 

10 2.02E-12 2.19366E-12 0.045 0.015 2.23E+10 6.84E+9 

30 1.24E-12 1.34483E-12 0.033 0.0078 2.66E+10 5.80E+9 

100 7.01224E-13 9.08595E-13 0.016 0.0035 2.28E+10 3.85E+9 

300 3.16E-13 7.27233E-13 -- -- -- -- 
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7.3    Observation of W49N 

  On 27
th
 Dec. 2007, author’s group observed the hydrogen maser of an astronomical body W49N 

using the 22mφ radio telescope of VERA-Mizusawa observatory. The spectrum of Fig.7.6 was 

measured using the built-in FFT, and the condition of the measurement is shown below the spectrum. 

This spectrum is the result of the correlation, which was 31250 times average. The slopes of noise 

floor around right and left sides were caused through the digital filter, which is implemented before 

the FFT operation. The difference of the level between the maximum peak and the noise floor was 

12.1dB. 
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Center Frequency 5437MHz 

Frequency-SPAN 16MHz 

Size of the spectrum and FFT 512 

Δf 31.25kHz 

Integral time 1.0sec (31,250 times average) 

nµ  -11.8dB 

nσ  0.0024 

SNR  392 

WindownFunction Hamming 

RBW 1.3bin, 40.6kHz 

 

Fig. 7.6   Spectrum of Hydrogen Maser of W49N  
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Author observed the spectrum using the super sweep system and the results are shown in 

Fig.7.7(a) ~ Fig.7.7(c). The integral time of Fig.7.7(a) was 1.0 sec that is same to Fig.7.6. The figure 

of this spectrum was almost same to Fig.7.6. The difference of the level between the maximum peak 

and the noise floor was approximately 13.2dB, which is 1.1dB better than Fig.7.6, and the SNR was 

approximately 2/3 of Fig.7.6. 

The sweep rate of Fig.7.7(a) was only 3.1 times faster than the sweep method. Author measured 

spectra with another two condition as shown in Fig.7.7(b) and Fig.7.7(c). They are approximately 30 

times faster than the sweep method. 

 

 

Center Frequency 5437MHz 

Frequency-SPAN 16MHz 

Bbw 30kHz 

Integral time 1.0sec (73 times average) 

St 14msec 

St of sweep method 44msec 

nµ  -13.3dB *) 

nσ  0.00392 *) 

SNR  243 *) 

Fig 7.7 (a)  Spectrum measured using Super sweep method 

*) These parameters were estimated from the circled part of the figure. 

13.2dB 
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  The resolution bandwidth (Rbw) of Fig.7.7(b) was 10kHz, the integral time was 3.4 sec, the 

average time was 244, the sweep rate was 30 times faster than the sweep method, the level difference 

between the peak and noise was 14.0dB, and the SNR was 80% of Fig.7.6. If we took the integral 

time so longer, the deviation of the noise floor should be so narrower and obtain better SNR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Center Frequency 5437MHz 

Frequency-SPAN 16MHz 

Bbw 10kHz 

Integral time 3.4sec (244 times average) 

Sweep time 14msec 

Sweep time  

of sweep method 
400msec 

nµ  -13.75dB *) 

nσ  0.00263 *) 

SNR  364 *) 

Fig 7.7 (b)  Spectrum measure with 3.4 sec integral 

*) These parameters were estimated from the circled part of the figure 

 

 

 

14.0dB 
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  The resolution bandwidth (Rbw) of Fig.6.7-c was 3kHz, the integral time was 29.4 sec, the average 

time was 200, the sweep rate was 30 times faster than the sweep method, the level difference 

between the peak and noise was 14.0dB, and the SNR 497 was superior to it of Fig. 7.6. 

 

 

 

 

Center Frequency 5438MHz 

Frequency-SPAN 16MHz 

Bbw 3kHz 

Integral time 29.4sec (200 times average) 

St 147msec 

St of Sweep method 4.44 sec 

nµ  -14.1dB *) 

nσ  0.0019 *) 

SNR  497 *) 

  

Fig 7.7 (c)  Spectrum measured with 29.4 sec integral 

*) These parameters were estimated from the circled part of the figure 

14.0dB 
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  The relation SNR and measurement integral time is shown in Fig.7.8, where the plotted data is 

obtained from Fig.7.6～7.7(c). It is assumed from Fig.7.8 that our experimental system could achieve 

same SNR with approximately 5.3 times long integral time. If our experimental system could 

measure 5.3 times faster, it was superior to the FFT system. By the discussion of section 6.2, it is 

possible to make the system whose performance is superior the FFT system by the super sweep 

method. 
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 Fig Δf/RBW SNR Integral Time 

① 7.6 Δｆ=31.25kHz 392 1.0 sec 

② 7.7(a) RBW=30kHz 243 1.0sec 

③ 7.7(b) RBW=10kHz 364 3.4sec 

④ 7.7(c) RBW=3kHz 497 29.4sec 

 

Fig 7.8  SNR against Average time length 
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7.4    Observation of Methanol Maser at Yamaguchi 

 On 13th Oct 2007, we observed a methanol (CH3OH) maser signal of the radio astronomical body 

‘G9.62+0.20’ at the satellite relay center of KDDI that is located in Yamaguchi Prefecture. We used 

the 32mφ radio telescope parabola antenna, where the spectrum analyzer ESA, provided by Agilent 

Technology Co, was used as a monitor. Figure 7.9 show the spectrum measured by the ESA analyzer. 

The measuring conditions were Center Frequency=9.67GHz, SPAN=4MHz, RBW=10kHz, 

VBW=100Hz and Sweep Time=3.3sec. The ratio between the peak level and the noise floor was 

approximately 4.7dB and the SNR was 11.3. 
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Center Frequency 9.67GHz 

Frequency-SPAN 4MHz 

Bbw 10kHz 

VBW 100Hz 

Integral time 3.3sec (no average) 

St 3.3sec 

nµ  -4.72dB 

nσ   0.0586 

SNR   11.3 

 

Fig. 7.9  Signal raised by methanol maser of 9.67GHz.  

This signal is measured by using the sweep spectrum analyzer ESA 

(produced by Agilent Technology Co). 
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We measure the signal using our experimental system described in Chapter 4. In this case, we used 

an average function of the system instead of using the video filter (VBW). The average times was 

100, and it was according to the video bandwidth 100Hz. We intended to set up the same condition 

with Fig.7.9, measured by the ESA analyzer. The measure spectrum is shown in Fig.7.10. 

The sweep time was 14msec which is approximately 200times faster that the sweep time of the 

ESA. Even if we considered the average time 100, it was two times faster. The level difference 

between the peak and the noise floor was approximately 6.0dB, and the SNR was 17.2. 

 

 

 

Center Frequency 9.67GHz 

Frequency-SPAN 4MHz 

Bbw 10kHz 

Integral time 1.4sec (100times average) 

St 14msec 

nµ  -6.00dB (from the peak) 

nσ   0.0435 

SNR   17.2 

 

Fig 7.10  Same signal with Fig.7.9 measure by Super sweep method 
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7.57.57.57.5    Discussion about Observations of 7.2, 7.3 and 7.4Discussion about Observations of 7.2, 7.3 and 7.4Discussion about Observations of 7.2, 7.3 and 7.4Discussion about Observations of 7.2, 7.3 and 7.4    
In section 7.2, author estimated the SNR against some condition, where the measured signals were 

obtained using the signal generator. Author obtained the result under weaker external disturbances. In 

the results of the section, the SNR were in proportion to the square root of the integral time and the 

number of the sweeps as shown in Fig.7.4.  

The numerical results are shown in Table 7.2. The two columns in the right side show the ratio of 

the SNR of super sweep method to the sweep method as “B/A” and “B’/A”. The average value of 

“B/A” was approximately 10, and “B’/A’ “ was 24. In the measurements in section 7.2, the sweep 

time of the sweep method were 1.0 sec, and the sweep time of the super sweep were 41msec. The 

ratio of the sweep time was 24.4 that is corresponds to the result of “B’/A’ “ of Table 7.2. Author 

thought that the result of the signals whose level was –113dBm were not exact, where it was difficult 

to measure exact peak level. 

The result of section 7.3 is shown in Fig.7.8, where the SNR of the super sweep method was 

almost proportional to the square root of the integral time. In the case that the RBW was narrower, 

the sweep time was longer and the SNR became larger corresponding to the RBW. The SNR of the 

built-in FFT system of VERA-Mizusawa observatory was 392. This SNR 392 is corresponds to the 

integral time 5.4sen as shown in Fig.7.8. If we made the experimental system to be 5.4 times faster, 

the system achieved same SNR with the FFT system. It is possible to make the system using recent 

AD/C and other devices such as a FPGA. Although, the results of super sweep method were not 

superior it of the FFT system in the same measurement time. The level difference between peak and 

noise floor were larger than the FFT method, and the SNR measured with longer integral time was 

better than the FFT result. 

Section 7.4 shows the comparison of the SNR between sweep method and the super sweep method 

by measuring the maser signal from the real celestial body. The two results of Fig.7.9 and Fig.7.10 

were stood on same condition except the sweep time on the assumption that the VBW corresponds to 

the average. The integral time of Fig.7.10 was 100times of the sweep time 14msec. On the principal 

of the super sweep method, the sweep time should be shorter than 14msec. But the sweep time was 

restricted by the minimum sweep time of the spectrum analyzer R3265, which is used in the 

experimental system. Although the two SNR should be same, the SNR of the super sweep method 

was 1.52 times larger. The reason of this advantage was assumed that the resolution filter of the super 

sweep method was digital and the grade of the R3265 was superior against the analyzer ESA.  

  In conclusion, it was verified that the super sweep method could obtain better SNR of a measured 

signal against the sweep method, and had a possibility to obtain better SNR more than the result of 

the FFT method. 
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7.6    Chirp Z-Transform System of GREAT  

In Chapter 6, author described that the super sweep method is a kind of the Chirp 

Z-transform (CZT) [4]. This algorithm has been already applied on radio astronomy. The 

spectrometer applied CZT is a part of the GREAT (German REceiver for Astronomy at Terahertz 

frequencies) instrument onboard SOFIA, the Stratospheric Observatory For Infrared Astronomy 

[3][5]. In the system GREAT, CZT is used as a high-resolution spectrometer as shown in Fig.7.11. 

 

 

 

Fig 7.11  Fig 7.11  Fig 7.11  Fig 7.11  Astronomical requirementsAstronomical requirementsAstronomical requirementsAstronomical requirements    on spectral resolutionon spectral resolutionon spectral resolutionon spectral resolution    
 and bandwidth and bandwidth and bandwidth and bandwidth ( ( ( (ReferredReferredReferredReferred from [5]) from [5]) from [5]) from [5])    
AACS: Wideband analog Auto-correlator 

AOS: Acoustics Optical Spectrometoer 

CTS: Chirp Z-Transform Spectorometer  

 

 

  The simplified block diagram of SOFIA-GREAT-CTS is shown in Fig.7.12 [3][5]. In [5], the 

‘Chirp Generator’ of Fig.7.12 is constructed with SAW device. In [3], the Generator is implemented 

as ‘Adaptive Digital Chirp Processor (ADCP)’.  In the Fig7.12, ‘SAW Compressor’ corresponds to 

the negative chirp filter of the super sweep method. The configuration of this system is fixed, which 

corresponds to the SAW Compressor. 
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  The duty of useful part of the output signal from the SAW Compressor is 50%. The other part, 

50% is the transitional response of the compressor as shown in Fig.7.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.12  Diagram of SOFIA-GREAT-CTS spectrometer [3][5] 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.13  Output of SAW compressor of SOFIA-GREAT-CTS spectrometer [3][5] 

 

  The fundamental algorithm of SOFIA-GREAT-CTS is same to it of the super sweep method. But 

the configuration of the system is fixed; it is adapted to the SAW compressor. This system measure 

spectrum whose span is 215MHz every 22μ sec. It is very high-speed measurement as a 

spectrometer. But there is not any flexibility for variable measurement condition. 
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  Author considered it is important that a measurement system had flexibility. The system described 

in Chapter 4 and other chapters was designed to have flexibility that can be configured corresponding 

to any measurement condition which was allowed by the sweep spectrum analyzer (SPA) as shown 

in Fig.7.14. There were many parameters over 30 (‘Processing condition in Fig7.14), which were 

decided automatically to drive the system with best condition through the software included in the 

PC. Author developed the software, which was the core part of the experimental system, and it was 

the most difficult work through the development of the system. For instance, the software computed 

the coefficients of the negative chirp filter ][ Gn Ng , which were corresponded to all conditions of the 

system and a measurement. The SOFIA-GREAT-CTS system has no flexibility what our 

experimental system had. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.14  Adaptive Configuration Corresponding to the Measurement Condition 

 

 

7.7    Characteristic of each method 
The FFT method is the best way to measure spectrum with higher rate. But the super sweep 

method and chirp z-transform spectrometer (CTS) has some merit against the FFT method. 

 

7.7.1    Maximum sweep rate 

The discussion of section 2.9.2 and 3.3.5 the sweep rate of FFT method and super sweep method is 

explained as Eq.(2.81) and (3.34-b) as follows. 
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)(: max χσ FltRbwSuperSweep S ×= , (3.34-b) 

where σ is the sweep rate Hz/second, Flt is the bandwidth of the IF signal, WT is time length of the 

window function, Wk  and χ are constants defined by Eq.(2.80) and (3.27). In the case that the 
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resolution filter and windows function are same function such as Gauss, Wk  and χ are same value 

such as 2.0～3.0.  

  Theoretically, the super weep method can achieve the same sweep rate with the FFT method. 

Practically, in some case, the sweep rate is dependent on the performance of the local oscillator. For 

example, when Flt = 1GHz, Rbw=10kHz and χ=2.5, 
Smaxσ  is 4000GHz/sec, which is according 

to the sweep time 250μsec. Until 1980’s, many spectrum analyzers achieved this speed sweep 

without a PLL system, but local oscillators of most recent analyzers after 1980’s are controlled by 

PLL synthesizer whose minimum sweep time are 1~20mse *). 

In the case that we record the digitized signal continuously, the efficiency of the data acquisition 

of the FFT method is perfect and ideal. The super sweep method cannot be superior to it, but can 

approach it almost same to it. 

In the FFT method, the SPAN bandwidth is limited under the Flt or the Nyquist frequency. But the 

Super sweep method and CTS has no limitation. In the case that we use same A/D converter and 

signal processing system, the super sweep method and CTS can measure wider span-bandwidth than 

the FFT method with same sweep (measurement) rate. 

 

*) note: The minimum sweep time of R3273 (produced by ADVANTEST Co.) is 20msec, and it of 

PSA series, ESA4440 made by Agilent Co, is 1msec. 

 

7.7.2    Sample data on a spectrum 

The some characteristics of the FFT method are already described in section 2.8. The significant 

difference between the FFT method and the super sweep method included the CTS is the frequency 

difference between each sample of a spectrum. 

  In the super sweep method and CTS, the frequency difference is explained by Eq.(6.2). 

tf ∆⋅=∆ σ ,   

where Δt is the inverse of the sampling rate sf , and σ is the sweep rate. This parameter f∆  is 

independent against the resolution: RBW. 

On the other hand, in the FFT method f∆  is decided by Eq.(2.75-c). 

)2/( Nff S=∆ , 

where N is the size of the FFT. The RBW is dependent on the sample rate and the window function 

as shown in Table 2.4 (in section 2.8.3). In the case that N is increased to improve the resolution, the 

3dB bandwidth (RBW) become narrower and the relation of Table 2.4 is not changed. 

  Author considers it is significant disadvantage of the FFT method, which has the ‘scallop loss [9]’ 

as shown in Table 2.4. Especially the rectangle window has the loss of 3.92dB. It should be corrected 

by some post-processing. In the super sweep method and CTS, this loss can be avoided to take f∆  

enough smaller than the RBW. 
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7.7.3     Product of Receptive Bandwidth and Aquisition-Time  

In a radio astronomy, the value of the SNR is defined by Eq.(7.1). 

n

np

SN

P
R

σ

µ )( −
≡  , (7.1) 

In radio astronomy, it is very important matter to observe a signal with larger SNR and measure 

it as fast as we can. There are three ways to obtain better SNR. 

1. Reduce the nσ ( standard deviation of the noise) 

2. Increase the level pP ( peak level of the signal) 

3. Decrease the level nµ ( averaged noise level) 

In the most case that pP  is increased, the noise level would be up and the value nµ  and nσ  

would increase. In radio astronomy, many observation systems take the FFT method and obtain 

spectrum data as fast as they can to reduce the value nµ  and nσ . 

Figure 7.15 shows a diagram, which indicates a condition of spectrums on the frequency-time 

diagram. In a FFT method which is so called ‘Real-Time FFT’, the measured signal is recorded 

without discontinuance, and the data is translated into the spectrum. In Figure 7.15, the Flt is 

assumed as 1MHz, and the data acquisition time is assumed 20msec. Where WT is the time length of 

the window function to obtain the resolution the RBW. In the case that the RBW equals 10kHz, 

WT is approximately 0.2msec. We can obtain 100 independent spectrums within the time 20msec. 

There are no data that do not take a part to make the spectrums as shown in the figure ‘Non Response 

Area: 0%’. As described in section 7.5.1, the FFT method is a perfect and ideal method that has no 

response area. 

On the other hand, the bandwidth of the acquisition data in the sweep method equals to RBW. 

Figure 7.16 shows the frequency-time diagram, which corresponds to Fig.7.15. In this case, the 

minimum sweep time is 20msec by Eq.(2.14), and we obtain only one spectrum.  

We can consider a parameter that is product of a receptive bandwidth and acquisition time, 

‘bandwidth-time product’ as following equation. 

WBT TFltS ×≡   (7.2) 

In the FFT method of Fig.7.15, the product is approximately 200 (1MHz×0.02sec). In the sweep 

method of Fig.7.16, the product is approximately 200 (10kHz×20msec). In both method, (FFT and 

sweep), the bandwidth-time product takes same value. 

 

One sample of the time frequency diagram in the super sweep method is shown in Fig.7.17. 

Where the Flt is assumed 100kHz, and RBW is assumed 10kHz. The maximum sweep rate is given 

by Eq.(3.34-b), and the sweep time min_ST  is given as 

sec2
/max_

min_ m
FltRbw

SpanSpan
T

s
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⋅

==
χσ

 (7.3) 
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Fig.7.15  Time Frequency Diagram of Measured Spectrum  

and Processing Bandwidth: Real-Time FFT Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7.16  Time Frequency Diagram of Measured Spectrum  

and Processing Bandwidth: Sweep Method 
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The sweep time is 1/10 of the sweep method in Fig.7.15. The bandwidth-time product is given by 

Eq.(7.2) and it is 200 (100kHz×2msec). 

 

 

 

Fig.7.17  Time Frequency Diagram of Measured Spectrum  

and Processing Bandwidth: Super Sweep Method 

 

By above discussion, author investigated as follows. In the case that the RBW and SPAN are 

common to the three methods, the bandwidth-time product is constant. Then by taking the Flt wider 

we can achieve the sweep time shorter.  

On the point of efficiency of the data acquisition, the sweep method of Fig.7.16 has very low 

efficient. The non-response area of Fig.7.16 is shows as yellow zone, which is 99% of the area, 

frequency-time product of the SPAN and the sweep time. In the super sweep method of Fig.7.17, the 

non-response area is reduced into 90%. This efficiency is 1/10 to the FFT method. 

By taking the Flt as wider and wider, we can obtain better efficiency acquisition. Figure 7.18 (a) 

and (b) is a sample of a time frequency diagram. In the figure (a), the Flt equals the Span, and the 

non-response area is 25%. In the figure (b), the Flt is twice as the Span, and the non-response area is 

0%. It is possible to make the efficiency 100% by this way. But in this case, the sampling frequency 

of the AD/C should be four times wider than the SPAN, which is twice of the FFT method. At the 

point of efficiency in all systems, the efficiency is half of the FFT method. 

 

 

sec2mTS =

sec20 m
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Fig.7.18  Super Sweep with very wide-band Flt 

 
Author suggest the suitable configuration of the super sweep method as follows.  

1) The measurement SPAN is sufficiently wider than the Nyquist frequency of the AD/C. 

2) The Flt should be as wider as the Nyquist frequency.  

In this condition, the system could measure wider SPAN of a spectrum than the FFT method, and the 

efficiency of the data acquisition would be half to the FFT method. 

 

The receptive bandwidth of a conventional sweep spectrum analyzer is fixed as its RBW. The 

super sweep method broke the restriction, and gave the sweep method a freedom to change the 

receptive bandwidth independently from an RBW. By this freedom, the sweep spectrum analyzer 

(including the super sweep method) became not only to be able to measure high-speed measurement 

with narrow RBW but also obtain a variety of a measurement condition. 

 

7.8    Conclusion 
We confirmed that it needs larger number of average to obtain better SNR in spectrum 

measurements. Although author’s system could not be superior the optimized FFT system in 

Mizusawa, the level differences between peak and noise floor were better than the FFT system. 

The super sweep method has characteristics as follows. 

 

a)  In theoretically, the super sweep method can measure as fast as the FFT method .  

Flt 

Span 

Non Response Area : 25% 

Span 

Flt 

(a) 

(b) 

Non Response Area : 0% 

ST
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b)  No restriction between RBW and bin on the frequency domain 

c)  Better dynamic range because of a narrow band system 

 

   By the discussion of this chapter, author suggests application of super sweep method in radio 

astronomy as follows. 

1) As a high performance monitor: 

Sometimes, the monitor may be used as a spectrometer for the observation. 

2) In the case that the spectrometer is demanded lightweight, high resolution or a low-cost: 

  Generally, a high-speed FFT system demands much large size of memory. In the super 

sweep method, the sampling frequency of the acquisition data is decimated appropriately, and 

the size of the memory can be reduced corresponding to the sampling rate. 

3) As a very wideband spectrometer: 

It measure wideband spectrum, which is wider than the Nyquist frequency of the fastest 

AD/C. 
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Chapter 8  

Conclusions 
 

8.1  Conclusions 

A conventional sweep spectrum analyzer has the property that is called ‘over sweep-rate 

response’. This property was mentioned by many authors [1][2][3] and expressed in Eq.(2.41) and 

(2.42). In the super sweep method, the IF signal was digitized and converted into the base band signal 

whose bandwidth was wider than the resolution bandwidth (RBW). The base band signal is inputted 

into the negative chirp filter. Author expected that the negative chirp filter would reduce the over 

sweep-rate response even in the case of the faster sweep rate than that of the conventional method. In 

our experiment, author confirmed that the over sweep-rate response was reduced.  

In Chapter 1, the outline of spectrum analyzers is summarized. The purpose of this thesis 

described here is to reduce the over sweep-rate response and achieve faster measurement. 

In Chapter 2, author investigated the signal processing and mathematical model of the sweep 

method of spectrum analyzers. Author described the cause of the over sweep-rate response. The 

analysis of this chapter introduces the idea of the super sweep method. Some characteristics of the 

FFT method were mentioned in this chapter. 

In Chapter 3, the theory and the signal processing system of the super sweep method are 

described. Author employed the negative chirp filter as the resolution filter, which reduced and 

canceled the over sweep-rate response. 

In Chapter 4, author described the experiment system. In the system, author used a conventional 

spectrum analyzer as the RF down converter, and designed and made the DSP unit, and used the PC 

as a display and a controller. Author provided the optimized environment to drive the negative chirp 

filter, and measured the spectrum of CW signal by changing the normalized sweep rate 1/k. 

In Chapter 5, the results of the experiment produced from chapter 4 were described. The results 

plotted the peak level and the broadening of the resolution bandwidth against the 1/k. Author verified 

that the new method reduced the over sweep-rate response, and achieved the fast sweep rate 10 or 30 

times faster than traditional sweep methods. Author confirmed that the sweep rate was proportional 

to the bandwidth Flt, which is the bandwidth of the IF signal just front of the resolution filter. 

In Chapter 6, several interesting properties and characteristics of the new method were described. 

Author verified that the new method was a derivation of the Chirp Z-transform. A comparison of 

spectrum measurement methods is described at the end of this chapter. 

In Chapter 7, author investigated the characteristics of the super sweep method as a spectrometer 

used in a radio telescope. Author observed some radio astronomical body using the experimental 
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system, and described result and discussion. Author suggested that the super sweep method has a 

possibility of a spectrometer in a radio astronomy. 

In conclusion, author and his group made break through in the restriction of the sweep rate of a 

spectrum analyzer using the super sweep method. Our further work is to study the characteristics of 

the new method in further detail. 

   

 

8.2    The representative contributions 

Author invented and verified the architecture of the super sweep method, which is a method to 

measure spectrum of a signal. The new method kept the merits of the sweep method and achieved the 

fast measurement. The measurement rate (sweep rate) was proportional to the IF bandwidth, Flt. 

The abscissa of the spectrum obtained through the new method showed not only a frequency but 

also a time. This property is a merit of the sweep method against the FFT method, and it can provide 

operators more information of measured signals changing conditions such as sweep time and the 

RBW. 

The dynamic range of the experimental system was superior to the conventional spectrum 

analyzer R3264. The level of the noise floor was –120dBm or under at RBW 1Hz. The new method 

did not reduce the performance of the system, but improved them. 

Author suggested the system to achieve the fast operation in section 6.2.5. We took attention to 

the noise of the system to achieve the performance of the system in section 6.8.3. In the super sweep 

method, we need to reduce the noise of IF signal. In traditional analog IF method, the noise does not 

remain on the spectrums. 

Author expect that the super sweep method should be used to measure spectrum for test of EMI 

(Electro Magnetic Interference), detecting unlicensed radio stations and tests of a spurious of radio 

set, which demands to measure a wideband spectrum and an adequate resolution. In conventional 

sweep method, these measurements would need long measurement time. The new method is suitable 

to measure a purity of CW oscillators, which need fine resolution such as RBW=1Hz. 

Author used the experimental system to observe the radio signal of W49N and G9.67+2.0 as the 

radio telescope spectrometer, and verified the advantage against a sweep spectrum analyzer. The 

SNR of the results were approximately half of the built-in FFT system at the integral time, one sec. 

These were satisfied as a monitor. 

 

A spectrum of a signal is presented by Fourier transform of the signal. But we cannot escape 

from the principle of the ‘uncertainty principle’. The Fourier transform of the signal exists as an ideal 

and imaginary measurement. Although we can never observe the spectrum of the signal, we can 

observe it under the restriction of the uncertainty principle; the product of the resolution and 

measurement time is constant; constant=∆×∆ tf . 

We have several methods using digital signal processing to obtain a spectrum such as FFT, 

Chirp Z-Transform, MEM etc. A sweep method is popular to measure radio frequency signal. But the 
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sweep method has the restriction which is called the over sweep-rate response described in Chapter2. 

This restriction is not cased by the uncertainty principle. Therefore, the sweep method needs longer 

measurement time than the FFT method and other methods at fine frequency resolution. 

By the super sweep method, we can cancel the over sweep-rate response and approach the 

restriction of the measurement to the uncertainty principle. 

 

  Finally, the idea and architecture is under the protection of the patent [4]. This patent was applied 

to U.S.A and other primary nations. 
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