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Abstract

The concept of a field-reversed configuration (FRC) is attractive for fusion plasmas he-
cause the magnetic configuration is very simple and a high beta plasma is confined inside
the magnetic separatrix. The physics of FRC’s has so far been studied from both theo-
retical and experimental points of view. An ideal MHD theory predicts that compact tori
become unstable against an internal tilt mode. On the other hand, many experimental
observations show that FRC plasmas remain stable much longer than the MHD growth
time.

Until now, theoretical and numerical studies have examined various physical effects
which have not been taken into account in an ideal MHD theory. They are roughly
classified into the following three effects: (A) the finite ion Larmor radius effect, (B) the
profile control effect, and (C) the ion beam effect. However, this contradiction remains
unsolved up to the present. For example, the kinetic simulations with the particle orbit
effect have disclosed that the tilt mode can be stabilized for a kinetic plasma of §~ 1 (3
: the dimensionless parameter associated with the ion Larmor radius), but it tends to be
unstable for a moderately kinetic plasma of 2 < § < 5. On the other hand, in experiments,
it is reported that the tilt mode is stable over a wide range of 3 (1 < § < 8). This fact
means that the tilt stability is not determined only by a single parameter 5. The numerical

simulation by using an extended MHD model with Hall terms was carried out to verify



the profile control effect and found that a FRC with a hollow current profile becomes
stable for a high enough separatrix beta value. In this model, however, § decreases as the
current profile becomes hollow and the stable configuration is realized in kinetic plasmas
of § ~ 1. Therefore, this model cannot distinguish the profile control effect from the finite
ion Larmor radius effect. In considering which of various effects is a key process leading
to the tilt stabilization of FRC plasmas, it is important to develop the physical model
which can control each effect independently and deal with them simultaneously. We carry
out the three-dimensional macroscale electromagnetic particle simulation based on such
a physical model.

We consider a FRC plasma confined by a uniform external magnetic field within a
cylindrical conducting vessel. The plasma consists of thermal ions, thermal electrons,
and cold beam ions which are treated as superparticles. The simulation starts from two-
dimensional equilibrium. The temporal evolution of the system is given by solving both
the equations of motion and the Maxwell equations in a self-consistent manner. In the
present model, three kinds of parameters can be controlled independently. The first is the
kinetic parameter § which controls the finite ion Larmor radius effect. The second are the
profile control parameters J,, and D which determine the pressure at the separatrix, and
the hollowness of the current profile, respectively. The third are the number ratio of the
beam ions to the thermal ions N,/N;, and the current ratio of the beam ions to the thermal
plasma I,/I,, which control the ion beam effect. We carry out several simulation runs
for a moderately kinetic plasma of 2 < 5 < 5 to clarify the tilt stabilization mechanism
in this region. In the first place, we examine the dependences of tilt instability on both
the finite ion Larmor radius effect and the profile control effect by carrying out several

simulation runs with different values of f,,, 3, and D. The result is that it is effective



against the tilt instability to increase the separatrix beta value (5,;) and the tilt mode
can be stabilized for a high f,, ( > 0.2). On the other hand, the stabilization of tilt
mode can be scarcely altered by changing the 5 value and the current profile for low 3,
( <£0.1) and moderately kinetic plasmas. The detailed analysis reveals that the number
flux of the ions crossing the magnetic separatrix repeatedly (“cycling ions™) increases in
proportion to fy, and the tilt stability is realized for a large number flux of cycling ions.

The stabilization mechanism by cycling ions is as follows. Tilt instability is triggered by
the internal mode, i.e., the collective motion of plasma is generated inside the magnetic
separatrix. The typical cycling ions execute a gradient-B drift in the vicinity of 1he
separatrix, and so they exist outside the separatrix as long as they do inside the separatrix
on the average. The ions which make a cyclic motion across the separatrix are not able
to follow the collective motion when they are moving outside the separatrix. The phase
difference between the collective motions of cycling ions and non-cycling ions is created
in proportion to the period during which cycling ions exist outside the separatrix. When
cycling ions come back inside the separatrix, the internal tilting motion is disturbed by
the motion of cycling ions. In other words, they play a role to suppress the tilting motion
because their motion is out of phase with the tilting motion. The number of cycling
ions increase as (J;, increase and thus the tilt mode is stabilized for a high fs. One
can speculate that the cycling ions executing a gradient-B drift play a role as “chain”
to connect the internal plasma with the external plasma and stabilize the tilting motion
through their “chain” effect.

In the second place, we examine the dependences of tilt instability on the ion beam
effect by carrying out two types of simulation runs. The first type is the case when the

beam velocity varies while keeping the total number of beam ions for each run. The



second type is the case when the total number of beam ion varies while keeping the beam
velocity for each run. For both cases, the growth rate remains almost unchanged until the
current ratio I/ I, reaches the critical value of 0.03. However, the growth rate gradually
decreases as the ratio increases above the critical value. The detailed examination reveals
that this phenomena can be explained in terms of the effective § value, 3,47, which is
obtained by using the average velocity of all ions in place of the ion thermal velocity. The
Sefs value is almost the same as § when I,/I, < 0.03. However, the derivation of 3,s
from 3 becomes distinct for I/I, > 0.03 and 3,57 becomes smaller as I, /I, increases. We
have the relation 5,57 ~ 1 for /I, ~ 0.5. It is concluded that the tilt stabilization by the
energetic ion beam is realized for the small value of 5.5;. By comparing the above two
cases, we examine the relation between the tilt growth rate and the kinetic energy ratio
of total beam ions to total thermal plasma. In the case the velocity of beam ions varies,
the ion beam needs 40% of the kinetic energy of thermal ions to reduce the growth rate
below a half of that for the case without beam ions. On the other hand, in the case the
total number of beam ions varies, only 10% of the kinetic energy of thermal ions is needed
for the beam ions to get the same growth rate. Thus, the tilt mode can be suppressed

more effectively by increasing the number ratio N,/N;.



Chapter 1

Introduction

1.1 Particle simulation study on tilt mode

1.1.1 Field-reversed configuration

The compact torus [1] is attractive for a fusion reactor because it has some superior
features compared with the representative nominated reactor, e.g., tokamak. Since the
diamagnetic toroidal current creates the poloidal magnetic field, it does not need the
toroidal coil inherently, then the size of the compact torus reactor tends to be smaller.
Furthermore, since there is no structure intersecting plasma torus, it is easy to transfer
the plasma in the axial direction. A field-reversed configuration (FRC) is grouped into
the compact tori. Figure 1.1 shows the magnetic field structure in a FRC plasma in
the poloidal cross section. The toroidal current reverses the direction of the externally
applied axial magnetic field in the vicinity of the structural symmetrical axis. Therefore,
the magnetic field lines are divided into two types, i.e., open one and closed one. The
dividing line represents the magnetic separatrix. Most of the plasma are mainly confined

within the separatrix. FRC plasmas were observed experimentally at the first time by



Green [2] by using a field-reversed theta pinch method. This method is generally used to
form the FRC plasma [3-6].

We begin with considering some of the characteristics of FRC plasmas in detail. There
exist two kinds of field-null points in FRC’s. One is what is called O-point (or field-null
line) on the midplane. This singular point comes from two characteristic features, i.e.,
no toroidal field and reversal of the magnetic field. The other singular points exist on
the z axis, so called X-point, in the vicinity of which particles execute the stochastic
behavior [10]. Since the pressure of plasmas confined within the separatrix reaches its
maximum value in the vicinity of the O-point, the averaged plasma beta () tends to be
high in FRC plasmas ({#) ~ 1). For the case of FRC’s, j is defined by the ratio of the
thermal pressure to the external magnetic pressure.

P

g = m (1.1)

It is well known in the two-dimensional model that the averaged f-value within the

separatrix is approximately expressed by [7]
1
(8) =1~ X2, (12)

where X, is the ratio of the separatrix radius to the radius of the conducting wall, which
is defined on the midplane. This relation is derived under a few conditions, e.g., the
conservation of magnetic flux between the midplane and the end region, and the pressure
balance in axial and radial directions. The FRC plasma with high temperature can be
sustained by the smaller external magnetic field than that of low § device, then this
configuration is especially expected for a D-*He fusion reactor [8,9]. In order to apply the
FRC plasma to a fusion reactor, its features (e.g., stability, equilibrium, and confinement)

should be investigated sufficiently.



The studies on FRC equilibria have been carried out from both theoretical analy-
ses and experiments. MHD equilibrium solutions of FRC’s can be derived from Grad-
Shafranov equation in principle (see Section 2.2). The important point in solving the
Grad-Shafranov equation is to determine the functional form of pressure profile [12-14]
and the boundary condition [15-18]. Experimental observation showed many features of
an equilibrium state of a FRC plasma, for example, the separatrix shape is elliptical, the
density at the separatrix is 0.5 ~ 0.6 of its maximum value at the field-null line, and the
width of the plasma layer outside the separatrix is 2 ~ 6 ion gyroradii [19]. Comparison
between numerical solutions and experimental equilibria has also been carried out and
good agreement is obtained [20]. A considerable number of studies have been made on
the stability of FRC’s. This thesis is focused on the filt stabilization mechanism. The tilt
instability predicted by the MHD theory has not been observed in the actual experiment.
We will be able to understand the characteristics of the FRC plasma in detail through

the research on the tilt stabilization mechanism.

1.1.2 Tilt instability

Many unstable modes in FRC plasmas have been predicted until now. Table 1.1 summa-
rizes the features of the principal modes and whether or not they have been observed in
experiments [11]. Our concern in this thesis is to examine the stabilization mechanism of
the tilt mode, which is predicted to be unstable from the MHD analyses. The tilt mode is
known as one of the most dangerous instabilities to disrupt the configuration completely.
Although the analysis based on the ideal MHD theory predicts that the tilt mode will be
unstable, many experimental observations show that FRC plasmas remain stable longer

than the tilt growth time. Until now, various models with physical effects which are not
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taken into account in an ideal MHD theory have been studied in order to explain this
contradiction. The historical review of these models is described in Section 1.2. Many
effects have been proposed, but none of them have given the satisfactory explanation as
vet. There are many characteristic physical quantities in considering tilt stabilization,
e.g., separatrix elongation, separatrix shape, ratio of the averaged ion Larmor radius to
the separatrix radius, ratio of the separatrix radius to the conducting wall radius, pressure
profile, averaged fJ-value, and so on. We cannot change only one quantity with keeping
all the other quantities fixed because several quantities are complicatedly related to each
other. Thus, in principle, it is impossible to extract only one of these effects without any
influence of other effects.

We will examine the three effects (finite ion Larmor radius effect, profile control effect,
and ion beam effect) in this thesis. Although these three effects has been investigated
until now, it has not been indicated clearly whether each effect contributes to the tilt
stabilization independently or the synergistic effect of these effects is of the essence. Al-
though a large number of studies have been made on these effects, a complete conclusion
is not obtained. In order to evaluate each effect, the physical model which can treat
these three effects simultaneously and control them independently is needed (see Chapter
2). Furthermore, since the ion Larmor radius is not so small in FRC’s compared with
the confinement scale, the method based on the MHD theory seems to be unsuitable for
describing the exact behavior of particles. In order to investigate the kinetic effects such
as finite ion Larmor radius effect and ion beam effect, we carry out the three-dimensional

electromagnetic particle simulation, in which the plasmas are treated as particles.



Table 1.1: FRC Stability: MHD theory versus experiment (from Table VI. in [11])

n m Mode Mode Experimental
(toroidal) (poloidal) character name observation
Local ideal modes
00 0 Interchange no
00 LR Axial or Co-interchange no
radial (ballooning)
Global ideal modes
No rotation
0 1 Axial Roman candle no
1 1 Radial Sideway shift no
>1 1 Axial Tilt no
Rotation
1 1 Radial Wobble yes®
2 1 Radial n=2 yes®
> 2 I Radial n>2 no
Resistive modes
0 2 Radial Tearing yes®
and axial

c

Saturates at finite amplitude.
b Stabilized by multipole fields.

Disappeared in modern experiments.

10



1.2 Historical review of tilt instability

There are two dangerous modes in FRC plasmas which lead to the disruption of plasma
confinement. One is the tilt mode (n = 1, = 1) and another is the rotational mode
(n = 2,m = 1), where n and m represent the toroidal and poloidal mode numbers, re-
spectively. The rotational instability is observed experimentally [7]. This macroscopic
instability caused by plasma rotation in the azimuthal (toroidal) direction results in ellip-
tical deformation of the plasma density profile. The growth rate of this mode is the order
of a reciprocal number of axial Alfvén transit time. The deformed plasma reaches the
conducting wall in a final state. In the recent research, it is shown that rotational made
can be controlled by external multipole fields [21,22] or injection of ion beams [23, 24].
Turning now to the tilt instability, we are confronted by the contradiction between the-
oretical studies and experimental observations. The analyses based on the MHD theory
predict the growth time of tilt instability to be of the order of axial Alfvén transit time.
However, this instability has not been observed in experiments.

Although a large number of studies have been made on tilt instability until now, the
whole picture of tilt mode is not made clear completely. The purpose of this section is
to provide a concise overview of historical studies and experiments of tilt instability in a

FRC plasma.

1.2.1 Theoretical prediction

The study on the tilt instability has been brought to light by Bartoli and Green [25]. It
has been observed in the theta pinch experiment that the plasma rotated around the axis

orthogonal to the structural symmetrical axis. They first called the unstable phenomena
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observed in the theta pinch flip instability. The point is that the plasma rotate around
the axis orthogonal to the structural symmetrical axis. They approached this problem
by treating it as a pure dynamics. That is to say, they replaced the plasma by the bar
magnet laid in the opposite direction to the external magnetic field. But the situation is
not so simple in real FRC plasmas.

MHD stability analysis for tilt mode in spheromak was first given by Rosenbluth
and Bussac [26]. They investigated the stability of spheromak plasma at the minimum
magnetic energy states under the constraint that the magnetic helicity K is invariant,
where K is defined by

K:LA-BGI%, (1.3)

where V' represents the total volume of plasma, and A is the vector potential. They
found that an internal tilt mode becomes unstable for a prolate configuration, but stable
for an oblate one. There is no toroidal field in FRC, and hence no helical winding of
magnetic field line exists, i.e., K = 0 in FRC. Furthermore, a FRC plasma is far from
the minimum energy state what is called Taylor state [27] because high § plasmas are
confined inside the magnetic separatrix. This means that their results is not applicable
to the FRC plasma directly.

Clemente and Milovich [28] extended Rosenbluth and Bussac’s theory to the FRC
plasma. For a moment, let us look closely at their analysis. Hill’s vortex solution is used

for this study, in which the equilibrium is expressed in cylindrical coordinates (1, ¢, z) by

0 0,.2 P g
'i,i" (T,.Z) = sBr (1 — ; ool F) 3 (14:]
B r1 4y
P2 = o5 (z+=)9" (15)
1
Bz = *%f% x V¢°) , (1.6)

12



where ¥°(r, z), P%(r, z), and B°(r, 2) are the equilibrium quantities for poloidal magnetic
flux, plasma pressure, and the magnetic field, respectively. B° is a constant which ex-
presses the axial magnetic field at the separatrix on the midplane, and a and b are the
radius and the half length of separatrix, respectively. Equation 1.4 indicates that the sep-
aratrix shape is elliptic. Let us discuss the stability of this equilibrium from the viewpoint
of the energy principle. Denote the displacement vector by £, then, the potential energy
is given by [29]

W = —%[frg . F{e}, (1.7)

F{¢} = V(E-VP'+TP'V.-¢)
+ (Vx BY x [V x (¢ x BY)]

+ (Vx[Vx(¢&x B")]) x B°,

where I' denotes the ratio of specific heats. If §W is negative, the system appears to
be unstable [30]. Let us consider two interesting cases with different functional forms of
£. First, we assume the special divergence-free perturbation that induces a rotation of
plasma around the axis z = 0, ¢ = 0, 7 without deformation of the separatrix,

z
2

po z ro.
E:e(e,b—sme}+ e,;g,?cosd:-—e;?smq;&), (1.8)
where € is an infinitesimal. That is to say. this means an internal displacement. By using

this form of the displacement vector €, we can obtain the expression of SW

3¢2B2 (a?
W = 8 Sy .
w = 38 (bg 1) (19)

This expression leads to the conclusion that the prolate FRC (b > a) is unstable to the

tilt mode. Note that this conclusion is the same as that for a spheromak plasma. Second,

13



we assume the another perturbation &,
€ =c(e,zsing + egrcos ¢ — e,rsing). (1.10)

This means the rigid rotation of a plasma around the axis z = 0, ¢ = 0, 7, i.e., an external
displacement. It is straightforward to integrate the expression 6W in this case and we
can see it must be zero. Thus we arrive at the conclusion that the FRC plasma is stable
to the external tilt motion. Clemente and Grillo [31] also investigated the same problem
with using the Maschke-Hernegger solution and reached at the similar conclusion. On the
other hand, Hammer [32] extended the Rosenbluth and Bussac’s idea to the equilibrium
with the arbitrary plasma pressure, but the nearly spherical separatrix shape. All these
analyses are based on the ideal MHD theory and their common conclusion is that the

internal tilt mode is always unstable in the prolate FRC plasma.

1.2.2 MHD simulation

The number of equilibrium solutions which can be treated analytically is limited and it
is difficult to express concisely the actual configurations of experiments. Schwarzmeier et
al. [33] investigated the numerical solutions of Grad-Shafranov equation. They adopted
the hyperbolic tangent form as the pressure shape function and explored the equilibrium
which reproduces the actual configurations of some experiments. Their result was that the
equilibrium solution exists only in the limited region of the (Xj, f,) space. The notation
X represents the ratio of the radius of the separatrix to the radius of the conducting

confinement vessel r, on the midplane, namely

Xe=Tep/ts (1.11)
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and f,, means the normalized pressure value at the separatrix,

where P4 is the maximum value of the pressure on the midplane. Furthermore, they used
a time-dependent linearized MHD code [34] and investigated whether these equilibrium
are stable against the tilt mode. Although the shape of separatrix of their solution changed
variously from ellipse to racetrack-shape, it was found that all equilibrium are unstable
to the internal tilt mode.

On the other hand, though the mode is linearly unstable, there is the possibility that
the tilt amplitude may saturate at a low level due to the nonlinear effect in the framework
of the ideal MHD model. Horiuchi and Sato [35] investigated this problem by means of
a three-dimensional full magnetohydrodynamic simulation. They came to the conclusion
that the internal tilt mode cannot stay at a low amplitude and leads to the disruption of
the configurations except for a spinning plasma with a high velocity. At the same time,
this study leads to the conclusion that the growth rate of the tilt mode for the uniform

external field case is represented by

Va
Zap ;

ur =0 (1.13)

where Z,, is the separatrix half-length along the z axis, and Vj is the average Alfvén
velocity associated with the volume-averaged magnetic field and the ion density at the
field-null line. The coefficient C, which is of the order of unity, depends on the elongation
of the magnetic separatrix.

Milroy et al. [36] also studied the nonlinear evolution of the tilt instability by using
the three-dimensional resistive MHD code with the Hall effect. Their numerical studies

indicated that the Hall term does not suppress the tilt mode effectively in the range of
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the parameters used in most of experiments.

1.2.3 Finite ion Larmor radius effect

The finite ion Larmor radius effect is characterized by the kinetic parameter § [38] which
is defined by

Tap

§= (1.14)

R Tephs'
where 7, is the separatrix radius, R is the radius of the field-null line, and JA; is the local
ion gyroradius at the midplane. Roughly speaking, this parameter indicates the ratio of
the plasma radius to the ion Larmor radius.

Barnes et al. [39-42] evaluated numerically the finite ion Larmor radius effect by using
a Vlasov-fluid theory, in which ions are treated as collisionless species and electrons are
assumed to be cold and massless. By this research, they found that the tilt mode can
be stabilized for a kinetic plasma of § < 2, but it tends to be unstable for a moderately
kinetic plasma of 2 < § < 10 and the growth rate increases as the s-value increases.
But it is necessary to note the following points [43]. First of all, although they used the
finite Larmor radius model based on the assumption that the Larmor radius of ions are
small everywhere compared with the confinement scale, the radii of ions in the vicinity
of the field-null line become considerable large. Therefore, this theory is doubtful at the
application to the FRC plasma. Secondly, the magnetic moment u is not conserved at the
tips of the flux surfaces in an equilibrium configuration under the experimentally realistic
parameters, thus their numerical model with the assumption that p is conserved is not
able to explain the experimental results strictly.

In order to avoid these problems, Horiuchi and Sato [44] executed the particle simula-

tion which treated both ions and electrons as particles, In their investigation, the concrete
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orbits of ions are shown and the specific orbits across the field-null line, “meandering or-
bits,” are discussed in detail. The number of particles which execute the meandering
motion increases as the 5-value decreases. Since the results of this particle simulation
indicate the tilt mode to be stable for a kinetic plasma of § < 2, it seems reasonable
to conclude that this specific behavior of ions contributes to the suppression of the tilt
instability. But this simulation adopted the rigid rotor model in which average ion veloc-
ity along the azimuthal direction increases as the radial location moves outwards and 5
decreases, then, the stabilization by the ions with a high rotational velocity may be more

efficient with decreasing s.

1.2.4 Profile control effect

Steinhauer and Ishida [45] analyzed the experimental measurements of several devices
and pointed out the correlation between current profile and X,. To classify the current

profiles, they introduced the current profile parameter h, which is defined by

h = [(js/7)r=r]/{s/T) , (1.15)

where jy is the toroidal current density and the average (j,/r) is taken over the cross
section inside the separatrix on the midplane. The equilibrium current profile with A = 1
denotes “flat” profile, h < 1 and h > 1 correspond to “hollow” and “peaked” profiles,
respectively (See Fig.1 in Ref. [45]). The relation between the current profile parameter

h and X, was found to be expressed by
h =~ 0.05+ 1.7X, . (1.16)

Many experimental data show that the parameter X, takes the value between 0.3 and

0.65, and the current profile parameter h exists between 0.5 and 1.0. That is, most

17



experimental equilibrium configurations tend to take the “hollow” current profile.

Cobb et al. [46] verified the profile stabilization of the tilt mode by the extended MHD
simulation. In this study, they included the Hall term in the MHD equations and found
that the equilibrium with “hollow” current profile is stable against the tilt mode if the
beta value at the separatrix f,, is enough large. In their model, however, 3 decreases
as the current profile becomes hollow, and the stable configuration is realized in kinetic
plasmas of § ~ 1. Therefore, their model cannot distinguish the profile control effect from
the finite ion Larmor radius effect or the Hall effect strictly. In addition, the effect of
the separatrix shape has been discussed by Steinhauer et al. [47] and Kanno et al. [48].
Steinhauer et al. [47] suggested that the equilibrium which are stable to the tilt mode
exists in the ideal MHD theory if the current profile is hollow and the separatrix shape is
racetrackness. Kanno et al. [48] argued this idea in detail. Since the stable equilibrium
measured in the experiments must always include the kinetic effects, it is difficult to

ascertain this effect in actual experiments.

1.2.5 Plasma rotation effect

The rotation of a FRC plasma has been observed, and consequently it causes a rotational
instability, where plasma rotates azimuthally while being suffering from the n = 2 profile
deformation. This rotational instability was observed in many experiments actually, but
it can be suppressed by applying multipole field in general. The origin of rotation itself
remains unclear up to the present [49-51]. Clemente and Milovich [52] investigated the
rotational effect in the tilt instability with a simple fluid model. Their result indicated
that this effect does not appear to be significant in the stabilization of the tilt mode in

a FRC since the measured angular velocities in the experiments are a factor of 5 lower
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than required for the tilt stabilization by their analysis.

In order to illustrate this effect from the different point of view, the studies on the
tilt stabilization by the beam injection into the unstable FRC plasma have been made.
There have been many studies [53] on the stabilization of the MHD unstable system
by injecting the energetic particles until now and the stabilizing effects actually have
been observed in bumpy torus, mirror, and tokamak experiments. Finn and Sudan [34]
summarized a review paper about the FRC with a component of energetic particles, in
which a detailed discussion was given in terms of the energy principle. Nomura [55]
studied this problem analytically with using the Hill’s vortex solution and found that
the tilt instability is suppressed if the circulation frequency of beam ions is close to the
axial betatron frequency. But the beam current is assumed not to disturb the equilibrinm
configuration of background plasma in this analysis. On the other hand, Barnes and
Milroy [56] investigated the same problem numerically. They used the three-dimensional
code, in which the beam ion and the background plasma are treated as a particle and MHD
fluid, respectively. The equations of motion of beam particles and the MHD equations are
advanced in time self—cpnsistent]y. The beam ions are injected gradually into the plasma
at the initial equilibrium state, then the configuration of background plasma is changed
markedly after a few Alfvén times. These simulation results lead to the conclusion that
the tilt instability can be stabilized if kinetic energy of beam particles exceeds 40 % of

the kinetic energies of both the total plasma and beam particles.

1.2.6 Experimental observation

Until now, the tilt instability has not been observed in most of experiments [57]. The

parameter § in early experiments are estimated to be less than 2 (5 < 2). Therefore, this
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fact suggests that the finite ion Larmor radius effect seems to suppress the tilt instability
in these cases.

In recent years, one large experimental device was constructed, which is commonly
called LSX (abbreviation of “large s experiment”) [58,59], in which § can be changed over
a wide range (1 < 3 < 8) (see Table.1.2). In this device, it was expected that the tilt mode
turns out to be unstable if 3 becomes greater than 2. It is generally difficult to diagnose
the internal tilt mode because it does not cause the deformation of the separatrix. The
problem is how to detect the evidence of the tilt instability. In the equilibrium state, there
is no toroidal field By in a FRC plasma, then one way to find the evidence of instability
is to measure the toroidal components of magnetic field. An array of external By pickup
loops are used for this measurement [61,62]. Since these probes are settled along the
quartz tube, they cannot directly measure the field within the separatrix. They can sense
only the distortions of the separatrix shape. The result of this experiment is that the tilt
instability is seldom observed.

On the other hand, the result measured in the FRX-C/LSM (abbreviation of “ field-
reversed experiments-C / large source modification”) device [63,64] shows the observations
of internal tilt instability [62,65]. Since they also use an array of external By pickup loops,
they cannot measure the internal tilt mode in the strict sense of the word. Although they
determined the limit of unstable region (5/E; < 0.2 ~ 0.3 is a regime of gross stability,
where Ey = Z,, /1,y is the separatrix elongation), stable FRC’s have been observed beyond

this limit actually [58].
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1.2.7 Purpose of this study

The purpose of this study is to make clear the whole story of the tilt stabilization in a
FRC plasma. The following three effects are discussed in this study: (A) the finite ion
Larmor radius effect, (B) the profile control effect, and (C) the ion beam effect. In a real
plasma various effects appear simultaneously, which makes the phenomena complex. For
example, let us consider a hollow current profile in which particles with a high velocity
are localized near a magnetic separatrix. The finite ion Larmor radius effect creates the
plasma leakage outside the separatrix and makes the pressure finite there. An electric field
is also generated there due to the finite ion Larmor radius effect. The existence of a firite
pressure at the separatrix and the electric field, in turn, alters an original equilibrium
profile to the different one. In considering which of various effects is a key process leading
to the tilt stabilization of FRC plasmas, it is important to develop the physical model
which can control each effect independently and dealt with them simultaneously. We carry
out the three-dimensional macroscale electromagnetic (EM) particle simulation based on

such a physical model.



Table 1.2: Average FRC life-times and plasma conditions on LSX (From [59]).

Fill pressure (mTorr) 1.25 ~ 20
Liftoff flux (mWb) 12 ~ 45
Magnetic field (kG) 43~ 7.7
Separatrix radius (cm) 15.0 ~ 21.5
Separatrix length (cm) 140 ~ 385
Elongation 4.7~ 9.0
Electron density (x10' /em?) 1.1~35
Electron temperature (eV) 80 ~ 400
Ion temperature (eV) 80 ~ 900
X, = 1op/Ts 0.33 ~ 0.48
Poloidal flux (mWb) 5.5 ~ 11
5-value 1~8
Flux life-time 7, (us) 115 ~ 490
Particle life-time 7y (1s) 160 ~ 650
Energy life-time 7 (us) 90 ~ 300
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Chapter 2

Simulation model

In this chapter, we describe the model for the particle simulation in detail. This chapter
is composed of four sections. First section is devoted to introduction of normalized basic
equations, which are the equations of motion and the Maxwell equations. We consider the
FRC plasma confined by a uniform external magnetic field within the cylindrical vessel.
We use a MHD equilibrium solution with a beam component as an initial condition of
particle simulation. The method how to obtfain the equilibrium solution is described in
second section. MHD equilibrium solution without a beam component can be given by
solving the Grad-Shafranov equation. Because we consider the three component plasma
(thermal ion, thermal electron, and beam ion), the method to get the equilibrium solu-
tion becomes more complicated. The boundary condition for the particles and the field
quantities are described in third section. The fourth section is devoted to the discussion

of the numerical scheme used for particle simulation.
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2.1 Basic equations

2.1.1 Normalized equations

The equations to be solved are the equations of motion

d%"f—) = %[E + ZxB], (2.1)
% = v, (2.2)
and the Maxwell equations
%%—? = —-VxXE, (2.3)
%%—f = VxB — 4nj, (2.4)
V-E = dmp, (2.5)

where «;(t), v;(t), m; and g; are the position, the velocity, the rest mass and the charge
of the j-th particle, c is the light velocity in vacuum, and the relativistic y-factor of the

j-th particle is defined by

= 1/y/1— (vj-v;)/c®. (2.6)
The current density j(x,t) and the charge density p(x, ) are obtained by summing over

all the particles, namely,

j(@t) = Z 5050 g zy(0), (27)
Nt-t
pad) = g Sle -0, (2.8

where Ny, is the total number of particles and S(z) is the form function [67] of parti-
cles which are expressed by a triangle with the base length equal to 2.0 times the grid

separation [68]. The detailed explanation of superparticle will be given in Section 2.4.



We have to express the basic equations (2.1)~(2.5) by dimensionless quantities in
carrying out the numerical simulation. For this, we introduce the fundamental physical

quantities as

charge = gy,
velocity = ¢,
mass = My,

field = By,

where By is the vacuum external magnetic field which confines the FRC plasma, ¢, and
M, mean the charge and mass of superparticle electron, respectively. If one superparticle
consists of N real electrons, the relations gy = Ne and My = Nm, hold, where e and m,
is the charge and mass of real electron, respectively.

By using these four quantities, we can constitute the units of time,

Mye
= 9
(= ) (29)
and of length,
Myc®
b (= Ry) . (2.10)

This means that we adopt the inverse of non-relativistic electron cyclotron frequency in
the vacuum external magnetic field as a unit of time.
Let us normalize the equations of motion and Maxwell equations by using these units.

(In the following equations, the tilde denotes the normalized quantities.)

d(;v;) % v;
—d 4L = IR J B
dt m_?-[ ¥ ¢ =Bl
c d#0;)  axBnx @ 1z |, ~ Uz
pubaid . bt TP LR xB
T i di M, " T OB



dm_-;
dt

10E
c Ot

where we define the coupling constant Cj as,

1B,0E By.- A7 gye X _
———=—VxB - — ;5|2 — &
c tN at RN RSN }ZIQJ'UJ [ .?I
oF ..z dmgy X . .
ik = 5
57 VxB BNR?.;E%UJ [@ — &)
OE - - .
—=VxB-0C,j,
at -
d7p(z,t)
By Bl q—”fj@ﬂ[m—:z]
Ry R} o :
ﬁ E=Csp,

_ dmgy

C; = BoRZ
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2.2 Initial condition

2.2.1 Equilibrium solution of thermal plasmas

‘We consider the case when the FRC plasma is composed of three components, i.e., thermal
ion, thermal electron, and beam ion and pursue the time development by means of three-
dimensional particle simulation. It is necessary to determine the position and velocity of
each particle, and electromagnetic fields as initial conditions for particle simulation. For
this purpose, we use two-dimensional MHD equilibrium solution. In this subsection, we
consider the MHD equilibrium of thermal plasma without beam component.

In the stationary state, each fluid equation of thermal ion and electron is given by
V; ..
mjnj(VJ- . V)Vj = —=VP; +qn; | E+ Y x B (J=14,e); (2.17)

where V' and n represent the fluid velocity and the number density, respectively, and the
subscripts 7 and e denote the quantities for ions and electrons, respectively. Let us assume
that the ion flow is zero everywhere, V; = 0 because of large inertia (m;/m, > 1). This
means that an electric current is carried only by electrons. Then the equation of ion fluid

is reduced to

0=~-VPF+qguE. (2.18}

Let us evaluate the electron inertia term [left-hand side of Eq.(2.17)] roughly. We have

two relations as

1 _ 1, ,
mgngvpe E'E"Te ; (ELQ)
1
(VE : v)Ve e E"f 3 [:22[])

where L is the characteristic length of this system. If the electron fluid velocity is much

(L]
==l



smaller than the electron thermal velocity, i.e.,
vp, > Ve, (2.21)
the electron inertia term can be neglected because the relation
|VFe| > men. |(Ve- V)Vl (2.22)
holds. Then, two fluid equations are reduced to,

~VPi+qnE =0, (2.23)

~VP.+gen. (B+ %V, x B)=0. (2.24)
By adding Eq.(2.23) to Eq.(2.24), the force balance equation for one flnid is given by
— V(P + P) + (ani + gene) B+ Sqen.Ve x B=0. (2.25)
Here we introduce the diamagnetic current density,
Ji=qeneVe (2.26)

and the total pressure

P=P+P,. (2.27)

Furthermore, we assume the quasineutrality of FRC plasmas, i.e.,
Ty RS Tl (2.28)
After all, the following balance equation is obtained:
1.

This equation is the usual MHD balance equation, then it is possible to obtain this relation

directly from MHD equations. But we should notice the several assumptions introduced
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in this process. These assumptions should be taken into account for determining the
position and velocity of each particle later. We will obtain the equilibrium quantities (the
toroidal current density, the magnetic field, and the pressure profile) by using both this

MHD balance equation and the Ampere’s law.

2.2.2 Cobb’s pressure model for Grad-Shafranov equation

The equilibrium solution of a FRC is obtained from Eq.(2.29) and the Maxwell equations.
These equations can be reduced to the Grad-Shafranov equation. First, let us explain
how to derive the Grad-Shafranov equation. We can introduce the poloidal magnetic flux

function ¥ which satisfies a following relation as B,

B-V¥=0. (2.30)
A magnetic field must be divergence-free, i.e.,

V.-B=0. (2.31)

We use a cylindrical coordinate system (r, ¢, z) and assume the two-dimensional axisym-
metric profile (/08¢ = 0). Then Eqgs. (2.30) and (2.31) give rise to the following relations

as

10¥

100
Bz = ;E s (233)
By = 0. (2.34)

From the force balance equation (2.29), we have

B-VP=0. (2.35)
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Solution of P satisfying Eq.(2.35) is given by an arbitrary function of ¥, i.e.,
P = P(¥). (2.36)

It is assumed that there is no toroidal field (B, = 0) and the diamagnetic current density

J4 has only ¢ component, i.e., 5, = (0, j4,0). Then, the r component of Eq.(2.29) reduces

to
dP(¥)0¥ 1. 10¥ .
I o o 91
or,
dP(WV
je=cr dEI, ) (2.38)
The Ampere’s law (47 /c)j, = V x B becomes
4T a (10¥ 10%*¥
=5 (FE—") “roe )
This equation is rewritten by using Eq.(2.38)
dP
AT = —4arl— | ;
L (2.40)
where A* is the operator defined by
d (10 o*
* — — — — — ;
Bs "or (réi‘r) T o (241

Eq.(2.40) represents the Grad-Shafranov equation in axisymmetric cylindrical coordinate
system.

We need to determine the functional form of P(¥) to get the solution of this equation.
Until now, various forms has been investigated to bring them close to realistic configu-
ration. Here we adopt the Cobb’s pressure model, which can control both the current

profile and the beta value at the separatrix easily [46],
Po(Ko — x — $Dx?) for x €0 ; inside separatrix

P(¥) = (2.42)
PyKye~x/Ko for x > 0 ; outside separatrix ,
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where y = /| W z|, Uy is the value of ¥ at the field null (x = —1), and F is constant.

K, is represented by two important parameters, J;, and D as

Ko= b (52). (2.13)

The parameter f;, is the normalized pressure value at the magnetic separatrix on the

midplane and also represents roughly the plasma beta value at the separatrix,

P(x =0)
o = Pl=—D
P(x =0) .

The last equality comes from the pressure balance in the radial direction on the mid-
plane. D is the hollowness parameter which control the current distribution in the radial
direction. That is to say, the current profile of the equilibrium state becomes peaked for
D < 0, flat for D = 0, and hollow for D > 0 (see Fig.2.1). The hollowness parameter was
first introduced by Steinhauer and Ishida [45], though their definition is a little different
from that of D [see Eq.(1.15)]. We will solve the Grad-Shafranov equation with using this

Cobb’s pressure model later.

2.2.3 Modified equilibrium with beam ions

In the case where the beam ions exists, we cannot adopt the solution of the Grad-Shafranov

equation directly. We must solve the following equations numerically instead.
1 =
- VP+ Ejde:U. (2.43)

4T . ’
VxB= = Kla £3%) s (2.46)

where j, is the beam current density, the subscripts b denotes the beam component. In

order to solve Eq.(2.45) and (2.46), we need the information of beam ions, i.e., their
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positions z and velocities v,. The force balance equation of a beam ion in the stationary

state is given by
v
my(ve V)ve = @ (E(mbj + ?b X B(:cb)) i (2.47)

We assume that the only azimuthal component of beam velocity is not zero [v, = (0,2, 0)].
Then, the radial component of Eq.(2.47) is reduced to

2
- mbv? = qE, + %’UB; . (2.48)

From Eq.(2.23), the electric field is expressed by the ion pressure as

1 aF;
gin; Or

1 k,T OPF;
qi B dr
.IL‘BT 3

B, =

where we assumed the equation of state for an ideal gas, i.c., P, = nksT (I; =T, =T,
where subscript ¢ and e denotes the quantities for ions and electrons, respectively, and
temperature is spatially uniform). Substituting Eq.(2.49) into Eq.(2.48), we can obtain

the following expression,

v? i =
SR k,gT-——(luP) - ‘UB; ; (2.50)

where we consider beam ions to be the same kind of background ions (i.e., m; = m; and
@ = ¢i)- The current density of beam ions j, is determined by the position and the
velocity which satisfies Eq.(2.50). For an example, the current density of concentrated

beam is expressed by the Delta function as,

il e BB oxaray (2.51)

27 1
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where 73 is the radial position, v, is the azimuthal velocity, ¢; is the ion charge, and Nj is
the total number of beam ions. However, this expression is not practical in performing the
numerical simulation because the current density becomes infinite at the beam position.

In order to avoid this difficulty, we adopt the Gaussian distribution as,

Y [—xﬁ {("“ ;”’)2 4 (%)g}] , (2.52)

where 1y = (rop — R)/2, 21 = Er1,(E = Zyp/rsp). the dimensionless parameter x de-

termines the beam concentration. For simplicity, we fix the parameter x to 2 in this
thesis. The proportional constant in Eq.(2.52) is determined so as to satisfy the relation
Iy = [ ju(r, 2)drdz for a given value of I,, where the integration is executed on the poloidal
cross section.

A set of Eqs.(2.45), (2.46), and (2.50) determines the initial equilibrium profile of a
FRC with beam ions. Let us consider how to solve these equations numerically. Eqgs.(2.45),

(2.46), and (2.50) reduce to

jd: (..“Tj—-;- ; (253)

o BRI LEWY i (2.54)
Er\Brror 18R ) Tl 5
v’ 9 i e i

m;? + kag(ln P;) -+ E'UB; = U . (2.35]

First of all, we normalize the physical quantities, in Eq.(2.33),(2.54), the following quan-

tities are introduced,



-

U = UpnvU,

where the double tilde means the normalized quantity, rp is the conducting wall radius,

and By is the vacuum magnetic field. By using these fundamental physical quantities, we

have =
= -P =
Ja= T = 1 (2'&6)
o
a10% 18°% = =
e i T ] -+ y 2.57
=2
U 3 = l == -
%+ —=(nP;) + =(3B:) =0, (2.38)
T or X

where \; = ¥r /W, Wei = ¢:By/mic. By solving Egs.(2.56),(2.57), and (2.58) seli-
consistently we get the initial profile [P(r,2), B(r,z), 34(7,2), and g,(r, z)] for particle

simulation.

2.2.4 Numerical solutions

Let us solve a set of Eqgs.(2.56),(2.57) and (2.58) with an iteration method. The main
procedure of the numerical calculation is as follows [66]. First, we put the trial form of
the current density into the r.h.s. of Eq.(2.57). Then, Eq.(2.57) is solved numerically in
terms of ¥(r,z). Then, we get the solution of the first iteration ¥), Second, since the
functional form of pressure is given by Cobb’s model, the diamagnetic current 7 fi” (r,2) can
be determined by substituting the obtained solution ¥(* into Eq.(2.56). The stable orbit
of a beam ion in the given field B™ can be calculated from Eq.(2.58), which determines

the beam current ;,-'E,”. Thus we can obtain the total current density as

i8N r2) =iV )+ 3800, 2) . (2.59)
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Substitute Eq.(2.59) into Eq.(2.57) and solve it again, then we get the solution of the sec-
ond iteration (). We must repeat this process until the solution satisfies the convergence
condition [ — ¥("-1)| < ¢ (¢ : small number).

Let us now show the several examples of the equilibrium solution obtained by this
method. The equilibrium profile are altered markedly as the profile control parameters,
Bsp and D, are changed. By examining the parameter dependence of the equilibrium
solution we find three important features in it. Figure 2.2 shows the contour plots of the
pressure in the poloidal cross section for the six cases with different values of D and 3,
where the top line indicates the vessel wall, the bottom line indicates the symmetrical
axis, and the right line corresponds to the midplane on each figure. The dependence of
the profile on f, for peaked current profile (D = —0.6) are shown in the left three panels.
The first feature is that the spatial distribution tends to spread over the outer region of the
separatrix as s, increases. The second important feature is the shape of the separatrix.
The contours of the poloidal flux function are shown in Fig. 2.3 for the same cases as Fig.
2.2. The shape is the racetrackness for small f,, case (s = 0.02) and elliptical for large
Bsp case (fBsp = 0.20). The third important point is that the radial distribution of J;/r
changes according to the value of the hollowness parameter D, as is shown in Fig.2.4. We
use these solutions as the initial conditions of the particle simulation.

Finally, it is necessary, at this point, to explain the representation of the kinetic
parameters § in connection with the MHD equilibrium configuration. We may recall that

the parameter 5 is defined by Eq.(1.14)

)
Il

f’sp rdr . (2.50)

R Tsphi



In this expression, the local ion Larmor radius A; is given by

V- ksTi mac

™ f}e'Bz(T']
kBT{ my;c 1
V m; ¢:Bx f}‘z(r)
1_ 1
B,(r)
= N/Bi(r), (2.61)

= Unly

where ) is the ion Larmor radius defined by the external magnetic field By, and B,(r) is
the magnetic field component at the midplane. By using these quantities, the parameter

§ is reduced to

Tap rézdr

Tgpl:llu

ol
I
5

- 1 f:"’%ﬁ’;d%
Tsp)tg s

= — [¥) - ¥R

?sp)*ﬂ
= —U(R)/Fsplo, (2.62)

where the relations ¥(r,,) = 0 and T = constant are used. Equation (2.62) is rewritten

as

foo B

0= (2.63)

=3

§Tsp
When the MHD equilibrium configuration is solved and the 3-value is designated, Eq.(2.63)

determines the particle temperature which is needed for the particle initial distribution.
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2.3 Boundary condition

We consider the FRC plasma confined by a uniform external magnetic field within the
cylindrical conducting vessel. Thus, the suitable boundary condition should be imposed
to both the field quantities, electric field E and the magnetic field B, and the particle
quantities, position z; and velocity v;. The boundary conditions for these quantities are

explained in this section.

2.3.1 Field quantities

It is assumed that the physical quantities are periodic at the boundary of z axis and the
vessel wall is a rigid perfect conductor. Therefore, the field quantities should satisfy the

following conditions at the cylindrical wall (r = r,),
n-Bl, =0, (2.64)

nXE|ep =0, (2.65)

where n denotes the unit vector pointing inward along r. The tangential component of
the magnetic field and the perpendicular component of the electric field at the conducting

wall are given by solving the Maxwell equations.

2.3.2 Particle quantities

It is assumed that the particles are elastically reflected at the vessel wall and are imposed
the periodic boundary condition in the axial direction. That is, if a particle comes outside
the conducting wall, its radial position r; and radial velocity v;, are replaced by the

following rules,



Ujr = —Vjr, (2.66)

ri = Tp-— {?‘j - TD] . (ZGT]
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2.4 Numerical scheme

We consider a FRC plasma which consists of ions and electrons which are treated as
superparticles. To get the time evolution of a FRC plasma, the equations of motion of all
particles and the Maxwell equations should be solved simultaneously. The outline of the

numerical scheme is explained in this section.

2.4.1 Numerical modeling

The total number of thermal particles is fixed to 10°, The number of beam ions can be
changed freely in this simulation. The FRC plasma is confined by a uniform external
magnetic field within the cylindrical conducting vessel. The height of this vessel Z, is
always fixed to 3 times the vessel radius r,, in this thesis. The ratio of ion to electron
mass m;/m.(= 50) and the frequency ratio wy./we.(= 5.0) are kept unchanged for all cases,
where wee (= goBuyan/mec) is the electron cyclotron frequency defined by the magnetic field
of the vessel wall on the midplane B,,;. Particle pusher and gather processes are carried
out in the rectangular coordinates (z,y, z) where the simulation domain is implemented
on a (49 x 49 x 32) point grid and its volume is given by (27, X 2rp X 2Z;). On the other
hand, the electromagnetic field is solved in the cylindrical coordinates (r, ¢, 2) so that the
boundary condition on the conducting wall can be satisfied with a high precision. The
cylindrical vessel is embedded inside the rectangular simulation box so as to contact its
surface with four sides of the rectangular box. The (33 x 32 x 32) space grids are used in

this calculation.
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2.4.2 Superparticle

Here let us describe a numerical model of superparticles used for the present particle
simulation. We adopt the second order model as a shape function of superparticles [68].
The shape function plays a role to transfer the particle informations given at the particle
position (z;) to the fluid quantities such as the current density and the charge density
which are defined at the space grids. The form of a superparticle is expressed by a triangle
with the base length equal to 2.0 times the grid separation AX (Fig.2.5) [68]. When we
consider a particle at £ = z;, the position of the nearest space grid is represented by X;
and two neighboring space grids are X;4;. The term “quadratic spline” can be defined
as the way to assign the charge of a particle to the three grid points X;_;, X;, and X
(Fig.2.6).

We define each charge at the grid points by assigning the charge of superparticles
corresponding to the area of each superparticle occupied by each grid area. Therefore the
charge ¢;_; at the grid point X,;_; assigned by one superparticle with charge g, is

1 a TAX 2
Gji-1 = g X SAY {T —{@— X_f)] JaAX
ge [1 T; — XJ-]2

212 TAX

(2.68)

where a is the height of superparticle. The charge ¢; and g;4+; at the grid point X; and

X1, respectively are obtained in a similar way,

3 (mi— X5\ |
=1 Ti— X; # s

From these expressions, one obtains the concrete form of S,

o — Y72
A d

AX 12~ "Ax | (2.71)
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1 11 &-X50° ﬁ
SXm-=) = 335 3+ o] - (2.72)
1 3 $;"—'X' % -
SX;—w) = += {Z“( axj)]' (2.73)

In the three-dimensional case, this factor is composed of the factor of each dimension.

8(z) = S(2)S¥)S(=) - (2.74)

2.4.3 Time integration

We adopt the predictor-corrector method with a sub-stepping of the EM field for a time
advancing. Namely, the particles are advanced with a large time step of wyAt = 1.5 [69]
while the EM field is advanced with a small time step of (cAt)/(AgAr) < 1.0 (AgAr :
minimum grid separation ) [70] by using an iteration method.

Let us look briefly at the concrete technique for solving the basic equations. The

equations of motion are solved explicitly for time advance,

dﬂﬂ q ,vi'_l
1 = 21 i 2w B(x™ 75
7 . E(z}) + . X (7] , (2.75)
e 3

de. ? il

mét = v?';, _ (2.76)

where superscripts and subscripts denote the time level and the physical quantities of
J-th particle, respectively, i.e., g; is a charge and m; is a mass of j-th particle. The time

derivatives are expressed by

dvy _ op o) (2.77)
uaztl At ’ '
d“’;:z = EHT;“’—? . (2.78)
On the other hand, Maxwell equations are solved implicitly,
1
%aB&ME = -V x EMe, (2.79)
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10E™3 4m
= = Bﬂ+ﬂ =0 anty 23
e V x = SAEE (2.30)

where the time derivatives are replaced by finite difference as

aBrH--%- Bn+1 _ Bn

= 2.31
n+t3 ntl _ g
OE™% _ E B (.6
ot At

and time decentering parameter a and v are used (we adopt a = v = 0.6 in this the-
sis). The physical quantities defined at the decentering time are obtained by a linear

interpolation such as

Eﬂ+ct = aEn—!—l i (1 —CH)E“, [:255'3)
jﬂ.’.-r = (g ,}_) JI'H': + ( — %) "‘+g_ (284)

Because the field quantities E™', B™**, and j™*# at the future time levels appear in the
right hand sides of Eqgs.(2.79) and (2.80), we cannot solve them explicitly. We will discuss
the predictor and corrector technique employed to solve them in the followings.

(i) Predictor process

We assume that parameters & and vy equal 0.5, hence the current density j"*% disappear
*v}hL%, E", and B™.

in Maxwell equation. In the first place, we know the quantities xf,

Solving Eq.(2.76), then we obtain #]*'. The current density 7"*% is obtained by using

a;“+= =1 3 (@} + 27*")] and v?+%. Then, Maxwell equations are reduced to
11 1 1
BB = - (‘ = ) ' o
cﬁt( ) ¥V x 2E +2E ; (2.85)
—EY = —pn+l n) 2D gntg 9%
B ) VX(ZB +3B ~j (2.86)

We can solve these equations by iteration method and obtain the field quantities E*~*

and B™. Substitute E™*', B"*!, and v™% into Egs.(2.75) and (2.76), then, we can
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" n‘l‘% ﬂ-'i“;‘ . . cﬂ+3
obtain v; * and ¢, * which determines j"*2.

(ii) Corrector process

At the next step, we choose o = ¥ = 0.6 and use the quantities E*, B®, 7%, and j"

obtained in the predictor process. We solve Maxwell equations again and obtain E""!

and B™*'. By using these quantities, we can get the particle position 27" and velocity
n+

3
il
1'.?‘.', .
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Figure 2.1: Radial profile of toroidal current density for the case when Bsp = 0.02 and (a)

D = —0.6 (peaked profile), (b) D = 0.0 (flat profile), (c) D = 0.4 (hollow profile).
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Figure 2.2: Contour plots of pressure profile in the poloidal plane.



Figure 2.3: Contour plots of poloidal flux in the poloidal plane.
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Figure 2.4: Contour plots of toroidal current density in the poloidal plane.
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Chapter 3

Simulation results

3.1 Stabilization by cycling ions crossing magnetic

separatrix

In this section, we shall focus on both the finite ion Larmor radius effect and the profile
control effect [71]. That is to say, the parameters which control the ion beam effect,
the number ratio of beam ions to thermal ions N,/N; and the current ratio of beam
lons to background plasma I} /I, are always taken to zero. The parameters used for the
simulation are listed in Table 3.1. In the present model, three parameters can be controlled
independently. The first is the parameter § which controls the finite ion Larmor radius
effect. The others are the profile control parameters s, and D which determine the

pressure at the separatrix, and the hollowness of the current profile, respectively.
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3.1.1 Simulation result

We carry out several simulation runs for a moderately kinetic plasma of 2 < § < 5,
because the discrepancy between the theories and the experiments becomes most distinct
in this region. Let us examine the behaviors of the tilt instability based on the simulation
results for the typical case R1. Figures 3.1 and 3.2 display the spatial profiles of vector
plots of mass flux density (Fig. 3.1) and those of contour plots of mass density (Fig. 3.2)
in the poloidal cross section at four different time periods, where the mass flux density

fm(x,t) and the mass density p.(x,t) are defined as

N
fm(m: t) i ijyj(t) S[:L' - m}'(t)] E (31}
Pm(zyt) = imj Slx — z4(t)] , (3.2)
j=1

and time is normalized by the Alfvén transit time #4(= 7,/V4 : Vy is Alfvén velocity
estimated from the magnetic field B,y and the ion density at the field-null ). It is clearly
seen in Fig. 3.1 that the asymmetric flow with respect to the z axis grows gradually
as time goes on. As a result of the development of the tilt motion, two peaks of density
contours move in the opposite directions to each other. The development of tilt instability
is hereafter expressed in terms of the Fourier amplitude of the z-component of the fluid
velocity V{!)(t), where superscript (1) denotes the azimuthal mode number n = 1, and
the other spatial dependences are eliminated by averaging it over the (r, 2) space.

Three kinds of simulation runs are carried out to investigate the dependence of the
tilt instability on the parameters 3, §,,, and D. The dependence of the tilt mode V)
on Gy, are shown in Figure 3.3 where 5 = 3.0, D = —0.6, and Osp is equal to 0.02 (R1),

0.10 (R2), and 0.20 (R3), respectively. The growth rate of the tilt mode normalized by
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MHD one, /7, is listed in Table 3.1 where MHD growth rate v, [33,35] is defined by

= CZL::, , (3.3)
V4 is the average Alfvén velocity associated with the volume-averaged magnetic field and
the ion density at the field-null, and Z,,, is the separatrix half-length along the z axis. The
coefficient C in Eq. (3.3), which is of the order of unity and depends on the configuration
of magnetic separatrix, is fixed to 3 in this thesis [35]. Figure 3.3 clearly shows that the
growth rate /v decreases dramatically with increasing Bsp and thus the tilt mode can
be stabilized for a high S,,(= 0.2).

The finite ion Larmor radius effect on the tilt mode is examined for a low F,,(= 0.02)
plasma with a peaked current profile (D = —0.6), when § varies in a moderately kinetic
regime of 2 < 5§ < 5. The growth rates of tilt mode are listed in the cases R1(5 = 3),
R4(5 = 2), and R5(5 = 5) of Table 3.1. We cannot, find any distinct differences among the
growth rates. On the contrary, the previous particle simulation [44] indicated that the
growth rate of tilt mode decreases with decreasing 5. The difference between the previous
and our results may be explained by following reasons. The previous simulation [44]
adopted the rigid rotor model in which average ion velocity along the azimuthal direction
increases as the radial location moves outwards and § decreases. Thus, the stabilization
by the ions with a high rotational velocity may be more efficient with decreasing 8.

The dependence of the tilt mode on the hollowness parameters is examined for a low
Bep(= 0.02) and moderately kinetic ( = 3 ) plasma, where D is equal to —0.6 (R1), 0.0
(R8), and 0.4 (R6), respectively. It is found that the tilt mode, the growth rate of which
is listed in Table 3.1, are hardly affected by the hollowness parameter for low Bsp and

moderately kinetic plasmas. Cobb et al. [46] showed by using an extended MHD model

with Hall terms that the tilt mode tends to be stable if 3sp is enough high and the current



profile is hollow. In their model, however, § decreases as the current profile becomes
hollow and the stable configuration is realized in kinetic plasmas of § a2 1. Therefore, we
cannot identify from their results whether this stabilization comes from the profile control
effect or the finite ion Larmor radius effect.

These results lead us to the conclusion that both the finite ion Larmor radius effect
(parameter 5) and the profile control effect (hollowness parameter D) are not efficient for
low Bs, and moderately kinetic plasmas, but the tilt stabilization effect becomes significant
for high s, plasmas ( B, > 0.2 ), even if plasmas are moderately kinetic (5 = 3.0) and

the current profile is peaked (D = —6.0).

3.1.2 Stabilization mechanism by cycling ions

In order to clarify the stabilization mechanism when the parameter Bsp increases, we focus
on the role of the ions which move across the separatrix repeatedly (we call them “cycling
ions” to distinguish them from the other ions). Whether an ion is cycling or non-cycling
is determined by tracing its orbit in a real space. The motion of ions in a FRC is complex,
because magnetic field varies spatially and its scale is comparable to the orbit amplitude.
Two typical examples of ion orbits in the (r,$) plane are demonstrated in Figure 3.4 for
the case R3, where the solid and broken circles stand for the conducting wall and the
magnetic separatrix in the midplane, respectively. The ions with a relatively small energy
move along the gradient-B drift orbit [Fig. 3.4(a)], while the ions with a larger energy
than a critical value [44] execute a complex motion crossing the field-null line, which
is called “a meandering motion” [Fig. 3.4(b)]. The ion orbits are roughly classified into
these two motions regardless of whether they are cvcling or non-cycling. The percentage of

cycling ions executing gradient-B drifting motion increases as Bep increases. For exampie,



the percentage is about 1.2% for the case R1 (f,, = 0.02), and about 3.5% for the case
R3 (B = 0.20). One can find in Fig. 3.4 that a cycling, meandering ion spends most of
its time inside the separatrix, while a cvcling, gyrating ion exists outside the separatrix
as long as inside the separatrix.

Let us define the number flux of cycling ions by the total number which times cycling
ions move across the magnetic separatrix in one Alfvén time. For example, if an ion move
across the separatrix three times in one Alfvén time, the number flux of this ion is counted
three. The average number flux of cycling ions is shown as a function of f;, in Fig. 3.5
for all cases, where the number flux divided by the total number of ions is displayed. The
number flux increases monotonously as f,, increases. In contrast to this, the number flux
weakly depends on the values of 5 and D ( see three points at s = 0.1 and six points at
Bsp = 0.02 in Fig. 3.5). That is, the changes in the flux when 5 decreases or the current
profile becomes hollow are much smaller compared with that when f,, increases. Figure
3.6 shows the growth rate as a function of the average number flux of cycling ions for all
cases from R1 to R10 in Table 3.1. It is important to note that there is a clear correlation
between the average number flux and the growth rate of tilt mode, i.e., the larger the
average flux is, the smaller the growth rate becomes. In other words, cycling ions crossing
the magnetic separatrix contribute to the stabilization of the tilt mode.

Before examining the role of the cycling ions, a few remarks should be made concerning
the driving force of tilt instability. There are three force terms to create the plasma motion
along the z axis in the fluid equation, i.e., pE., (j x B)., and 8P/dz. Figure 3.7 indicates
the time histories of » = 1 mode of force terms for the case R1. While the amplitude of
(0P/8z)") (dot-dashed line) and (pB,)V) (dotted line) remain at the initial fluctuation

level, the amplitude of (§ x B){") increases gradually as time elapses. It is clear from these



results that the (7 x B), force is the dominant component to lead to the tilt instability.
Accordingly, we will focus on the behavior of the (7 x B). force later.

In order to elucidate the physical picture of the tilt stabilization by the cycling ions,
let us expand the current density into the cycling component ' and the non-cycling
component 7™. The force (7 X B)® which generates the tilt motion along the z direction
in the plasma can be calculated with these two components separately. Suppose that the

Fourier expansion in terms of the toroidal angle ¢ takes the following form as
[j(“} X B]EI} = Al®) (r,z)cos ¢ + Bl (r,z)sin¢, (3.4)

where the superscript () denotes a cycling component (a = ¢) or a non-cycling compo-
nent (o = n). We can define the average amplitude of the force F(®)(t) and the phase

difference 6¢ between the forces acting on the cycling ions and the non-cycling ions as

FO) = \fla@): 4 (B@)e, (3.5)
-1 {(B™) _1 (B)
6¢' = tan W — tan (A(C}) y (3.6)

where () stands for the average over the (r, z) space, i.e., (A(r,2)) = [ A(r, z)drdz. Figure
3.8 shows the time evolutions of (a) the amplitudes and (b) the phase difference for the
unstable case R4 where the solid and dotted lines in Fig. 3.8(a) represent the forces acting
on the cycling ions and the non-cyveling ions, respectively. The phase difference is nearly
equal to —7 at £ = 0, ie., the directions of two forces are opposite to each other. The
difference, however, tends to decrease as time elapses and remains nearly equal to zero for
t > 1.8t4. Thus, one component of the j x B force works synchronously on the plasma
to the same direction as the other component so that the tilt instability grows swiftly on
the whole. Figure 3.9 shows the time evolutions of (a) the amplitudes of the tilt forces and

(b) their phase difference for the stable case R3. It is important to note in Fig. 3.9 that



the amplitudes remain much smaller than those for the unstable case R4 [Fig. 3.9(a)],
and the phase difference is always large (6¢ ~ +7) [Fig. 3.9(b)]. If we take into account
the fact that two forces have always the same amplitude [see Fig. 3.9(a)], it is concluded
that the 7 x B force by the cycling ions works on the plasma so as to cancel the tilting
force by the non-cycling ions and thus the tilt mode can be stabilized for a large number

flux of cycling ions.

3.1.3 Summary and discussions

The stabilization of the tilt disruption in a FRC plasma by both the finite ion Larmor
radius effect and the profile control effect is investigated by means of a three-dimensional
particle simulation. By carrying out the simulation runs with different values of Bsp: &,
and D for a moderately kinetic plasma ( 2 < 5 < 5 ), we have clarified that it is effective
against the tilt instability to increase the separatrix beta value (f;,) and the tilt mode
can be stabilized for a high f,, ( > 0.2). On the other hand, the stabilization of tilt
mode can be scarcely altered by changing the 5 value and the current profile for low f,,
( <0.1) and moderately kinetic plasmas. The detailed analysis reveals that the number
flux of the ions crossing the magnetic separatrix repeatedly (“cycling ions”) increases in
proportion to [y, and the tilt stability is realized for a large number flux of cycling ions.

The stabilization mechanism by cycling ions is as follows. Tilt instability is triggered
by the internal mode, i.e., the collective motion of plasma is generated inside the magnetic
separatrix. The ions which make a cyclic motion across the separatrix are not able to
follow the collective motion when they move outside the separatrix. The phase differerce
between cycling ions and non-cycling ions is created in proportion to the period during

which cycling ions exist outside the separatrix. When cycling ions come back inside the
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separatrix, the internal tilting motion is disturbed by the motion of cycling ions. The
orbits of cycling ions are roughly classified into a gradient-B drift orbit and a meandering
orbit, as was shown in Fig. 3.4 . The cycling ions executing a gradient-B drift exist
outside the separatrix as long as inside the separatrix. Therefore, they play a role to
suppress the tilting motion because their motion is out of phase with the tilting motion.
The number of cycling, gyrating ions increase as f,, increase and thus the tilt mode is
stabilized for a high ;. On the other hand, a meandering, cycling ion spends most of
its time inside the separatrix. If the tilt mode starts to grow for a low f,,, the motion
of meandering, cycling ions is synchronized with the tilting motion inside the separatrix.
This is the reason why the phase difference between the tilt forces (5 x B){}) approaches
to zero for a low S, [Fig. 3.8(b)]. One can speculate that the cycling ions executing a
gradient- B drift play a role as “chain” to connect the internal plasma with the external
plasma and stabilize the tilting motion through their “chain” effect (Fig. 3.10).

Let us discuss the role of an electric field. Figure 3.11 shows the temporal evolutions
of an electric field energy for three different values of §, where the energy is averaged over
the whole volume. The difference between the ion and electron Larmor radii causes the
charge separation near the separatrix, thus generating the radial components of an electric
field. It is found from Fig. 3.11 that the electric field generated by the finite ion Larmor
radius effect becomes larger as 3§ decreases. However, the generated field is dominated by
the radial component and so it causes merely the E x B drift which rotates the FRC
plasma about the symmetric axis.

A number of experimental evidences [45] indicate that a FRC plasma tends to relax
into the hollow current profile which is stable against the tilt mode. Incidentally, we have

observed that the current profile becomes hollow near the field-null line in the early phase



of the simulation. However, the change of current profile is limited to a narrow region near
the field-null line and so this effect in the tilt stabilization is expected to be small. The
comparison of the simulation results with the experimental ones is not straightforwerd,
because a transport mechanism may play a role in the profile relaxation and the hollow
profiles exist in the relatively small X, ( 0.3 < X, < 0.65 ) and high f,, plasmas [43].
Moreover, the observed FRC plasma have a tendency to rotate about the symmetric axis
which gives rise to the rotational instability [11]. These situations are different from our

model.



Table 3.1: Characteristics of equilibrium solutions used in particle simulations, including
beta value at separatrix, f,,; hollowness parameter, D; kinetic effect parameter, §; ratio

of separatrix to vessel radius, X,; elongation, E; normalized growth rate, ¥/ Y-

ik Pep D § X E STl
R1 0.02 —0.6 3.0 0.841 2.14 0.58
R2 0.10 ~0.6 3.0 0.798 2.27 0.20
R3 0.20 ~0.6 3.0 0.739 2.44 0.02
R4 0.02 —06 2.0 0.841 2.14 1.00
R5 0.02 -0.6 5.0 0.841 2.14 0.93

R6 0.02 0.4 3.0 0.742 2.46 0.63
R7 0.10 0.4 3.0 0.709 2.53 0.33
RS 0.02 0.0 3.0 0.802 2.26 0.54
R9 0.10 0.0 3.0 0.760 2.39 0.21

R10 0.02 0.4 2.0 0.742 2.46 0.70




Mass Flux Density

Figure 3.1: Vector plots of mass density flux in the poloidal cross section at the pericds

of t/t4 = 0.0, 1.0, 3.0, and 5.0 for the case R1.
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Figure 3.2: Contour plots of mass density for the same case as Fig. 3.1.
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Figure 3.3: Time history of the tilt mode amplitude V¥ for three different values of Sy,

i.e., Bsp = 0.02(R1), 0.10(R2), and 0.20(R3).
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(a) (b)

Figure 3.4: The typical orbits of cycling ions projected on the midplane for the case
R3 where (a) five gradient-B drift orbits and (b) five meandering orbits are displayed.
The solid and broken circles stand for the conducting wall and the magnetic separatrix,
respectively. Each curve represents the ion trajectories during four Alfvén transit times
from the start of simulation and a closed circle is attached to each curve to show the

starting point.
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Figure 3.5: The average number flux of the cycling ions normalized by total number of
ions as a function of f,, for all cases where open triangles, closed circles, and open circles

correspond to the parameter D = —0.6, 0.0, and 0.4.
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Figure 3.7: Time history of three components of the tilt force for the case R1 in Table 3.1,

where the solid, dotted, and dot-dashed lines stand for j x B, pE, and VP, respectively.
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Figure 3.8: Time histories of (a) the amplitudes of the tilt forces acting on cycling ions

and non-cycling ions, and (b) their phase difference for the unstable case R4.
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Figure 3.9: The same figure as Fig. 7 but for the stable case R3.
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Figure 3.10: Schematic diagram of chain effect by cycling ions. Collective motion is
generated inside the separatrix as a result of the excitation of tilt instability. Cycling ions
play a role to connect the unstable internal plasmas with stable external plasmas and

keep the system stable against the tilt instability.
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Figure 3.11: Time history of an average electric field for three different values of 3, i.e.,
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3.2 Stabilization by energetic beam ions

The previous studies [55,56] show that the beam components in a FRC plasma can play an
important role to suppress the tilt instability. The purpose of this section is to investigate
the role of beam ions by carrving out the particle simulation. There are two important
parameters which we may change independently in this simulation. One is the ratio of the
beam current to the thermal plasma current I,/ I,, and the other is the ratio of the number
of beam ions to the number of thermal ions N;/N;. What we want to clarify is which plays
an important role in the suppression of tilt mode, the magnitude of beam current or the
total amount of kinetic energy of beam ions. Because the total current and total kinetic
energy (€x,) of beam ions are roughly given by I, ~ Nyuy and €x, ~ Nyvi/2 ~ IF /2N,
we can evaluate the dependences of the tilt instability on [, and €eg, by controlling two
parameters /I, and Ny/Nj. If the current ratio I, /I, changes with keeping the number
ratio N,/N; constant, it means that the ratio of the beam velocity to the thermal velocity
vp/vp; changes. On the other hand, if the number ratio changes with keeping the ratio
(Iy/1,)/(Ny/N;) constant, it roughly means that the velocity ratio vy/vyr; is constant. We
fix the kinetic parameter § to 3, the profile parameter f,, to 0.02, and the hollou;ness
parameter D to -0.6 for all cases. These values of three parameters promote the tilt mode

to be unstable for no beam case, as we have seen in the previous section.

3.2.1 Fixed number case for beam ions

Ten simulation runs are carried out and they are classified into two types. One type is
used to investigate the dependence of the tilt mode on the velocity of the beam ions w'th

keeping the total number of beam ions constant (RB1~RB6 in Table 3.2), and the other
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type is to investigate the dependence on the total number of beam ions with keeping the
ratio (I/I,)/(Ny/N;) constant (RB7~RB10 in Table 3.3).

First, let us describe the ion density distribution in the real space. Figure 3.12 a)
shows the contour plots of thermal ion density (left side) and beam density (right side)
in the poloidal cross section at the time of {/t4 = 0 for the case RB2. The beam density
distribution is determined according to the Eq. (2.52) in Sec. 2.2. Figure 3.12(b) displays
the radial distributions of the densities on the midplane, where the density is normalized
by that of thermal ions in the field-null line. It is clear that the peak of ion distribution
exists in the vicinity of the field-null line. We start the particle simulation from such
configurations.

Figure 3.13 shows the orbits of arbitrary five beam ions during 5 Alfvén times for the
case RB1 of Table 3.2. The yellow ellipsoid represents the magnetic separatrix on each
figure. The top panel shows the side view of the orbits and the bottom panel shows the
projection of the orbits onto the midplane. It is found that the stable orbits of beam ions
exist near the field-null line on the midplane and undergoes the small oscillation in the
radial and axial directions. Most of the other beam ions occupy the same region in the
vicinity of the field-null line.

The development of tilt instability is defined in terms of the Fourier amplitude of
n = 1 mode of the axial fluid velocity V*)(¢). We carried out the several simulation runs
to investigate the dependence of the tilt mode on the parameter I,/I,. The important
physical quantities used for the simulation are listed in Table 3.2, where the tilt growth
rate 7 is normalized by Alfvén transition time defined by both the vessel radius and the
Alfvén velocity associated with the magnetic field at the vessel wall and the ion density at

the field-null. Since the number ratio N,/NN; is fixed to 0.01 in these cases, the velocities
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of beam ions increase with increasing I,/I,. The relation between the tilt growth rate and
the current ratio is presented in Figure 3.14. From this figure, it is found that the growth
rate remains almost the same as that for no beam case (R1) for 0 < I,/I, < R.(~ 0.03). If
the current ratio exceeds this critical value R., the larger the current ratio is, the smaller
the tilt growth rate becomes. The physical meaning of R, will be discussed in the next
paragraph. Figure 3.15 shows the relation between the tilt growth rate and the kinetic
energy ratio of total beam ions to total thermal plasmas for the same cases as Fig. 3.14.
It reveals that the ion beam needs more than 30% of the kinetic energy of thermal ions
to reduce the growth rate below a half of that for no beam case.

Table 3.2 shows that the tilt stabilization becomes more efficient as the beam velocity
increases. Let us introduce the dimensionless parameter 5.55 to evaluate the beam stabi-
lization effect in the similar way to the definition of 5. That is, 3.y is given by replacing
the thermal velocity in the definition of § by the average velocity of the total ions as,

m;c ]ﬁp rdr (3.7)

R {v)B.(r)’
where m; and ¢; are the mass and the charge of ions, respectively, ¢ is the light velocity,
(v;) is the average ion velocity on the midplane, and B,(r) is the z component of the
magnetic field on the midplane. The parameter § measures the ratio of the confinement
spatial scale to the ion Larmor radius defined by the ion thermal velocity. The difference
appears between the parameters 5 and 5,55 as the beam velocity exceeds the ion thermal
velocity. Therefore, 5 is not a good parameter to evaluate the kinetic effect of total ions
when the beam component with the velocity larger than the ion thermal velocity exists.
The relation between 5.7y and the current ratio J;/I, is presented in Figure 3.16. It is
important to note that 5.7y remains constant (F.¢; ~ 3) when the current ratio I/, is

less than the critical value R,. If the current ratio I,/I, exceeds the critical value R.,



Sefs becomes small with increasing Ip/I,. In other words, the critical current ratio R,
corresponds to the point at which 5.s5 starts to deviate from the normal 5 value.

Figure 3.17 displays the relation between the tilt growth rate and the parameter 3.;;.
The tilt growth rate becomes small as 5,77 decrease below § (= 3), and there exists a clear
linear relation between v and 5.7¢. Thus, the tilt stabilization effect of the ion beam can
be evaluated in terms of the parameter 5.¢; value for the case where the velocity of beam

ions varies.

3.2.2 Fixed velocity case for beam ions

We discuss the dependence of the tilt instability on the number ratio N;/N; in this
subsection. The parameters used for the simulation are listed in Table 3.3. The ratio
(Is/I,)/(Ns/N;), which roughly stands for the ratio of beam velocity to ion thermal ve-
locity, is fixed to 2.2. It follows from this choice that the velocity of beam ions exists in
the limited range of 3.0 < vy/vr; < 4.0.

The relation between the tilt growth rate and the current ratio are shown in Fig. 3.18.
It is also found, as we have seen, that the growth rate nearly remains the same as that for
no beam case (R1) for 0 < I,/1I, < R.(~ 0.03), and it starts to decreases as soon as I,/I,
exceeds R,. This tendency is exactly the same as we have obtained for the case where
the velocity of beam ions varies. In other words, the influence of beam ions on the tilt
growth rate can be evaluated by the current ratio I,/I, regardless of whether the velocity
of ion beams varies or the number of ion beams varies. This effect becomes remarkable
as the current ratio increases more than R..

Figure 3.19 shows the dependence of .55 on the current ratio I, /I, for the same case

as Fig. 3.18. Since the number ratio changes with keeping the beam velocities constant,
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the averaged velocity of ions does not increase largely with increasing the current ratio
consequently, the growth rate varies independently of the parameter 5.;¢, as is seen in Fig.
3.20. In other words, 5.5 is not a suitable parameter to evaluate the beam stabilizat’on
effect when the number ratio N/N; varies.

Next we examine the relation between the tilt growth rate and the kinetic energy
ratio of total beam ions to total thermal plasma. The result is presented in Fig. 3.21.
It is important to note that the ion beam needs only 15% of the total kinetic energy of
thermal ions to reduce the growth rate below a half of that for no beam case. On the
contrary to the fixed number case where it needs more than 30% of the energy (see Fig.
3.15). These results lead us to the conclusion that the tilt mode can be suppressed more
effectively by increasing the number ratio N,/N; than increasing the velocity ratio vs/vr;
from a viewpoint of kinetic energy.

Let us examine the driving force of the tilt instability (j x B){! in order to elucidate
the beam stabilization mechanism. For this, we expand the current density into the beam
component 7 ®) and the thermal component J () and calculate the two components of the
driving force. The definitions of the average amplitude F(®)(¢) and the phase difference
8¢ between two components were expressed in Eq.(3.6),(3.6), where the superscript («)
denotes a beam component (o = b) or a thermal ion component (a = t) in this case.
Figure 3.22 shows the time evolutions of the amplitudes for the cases RB7 (N,/N; =
0.005), RB1 (N,/N; = 0.01), RB9 (N,/N; = 0.02) where top and bottom panels represent,
the force amplitudes acting on the thermal component [ x B]*) and that acting on the
beam component [7*) x B](), respectively. In these cases, the tilt growth rate decreases
with increasing the number ratio. There is no obvious difference between three cases as

far as the force acting on thermal component concerns [Fig. 3.22(a)]. It is clear that the
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force acting on the beam component increases with increasing the number of beam ions.
Figure 3.23 shows the time evolutions of the phase difference for three different number
ratios, i.e., (a) Ny/N; = 0.005 (RB7), (b) N3/N; = 0.01 (RB1), and (c) Ny/N; = 0.02
(RB9). It is found that the phase difference remains nearly equal to zero in the case of
Ny/N; = 0.005 [Fig. 3.23(a)], i.e., the directions of two forces are almost the same. Thus,
beam component of the (j x B){") force works synchronously so that the tilt instability
grows on the whole. In the case of Ny/N; = 0.01 [Fig. 3.23(b)], it can be seen that the
phase difference becomes a little large (¢ ~ #/2). The phase difference almost takes the
maximum value (§¢ ~ =) in the case of N;/N; = 0.02 [Fig. 3.23(c)]. That is to say,
the directions of two forces are opposite to each other and the total tilting force becomes
weak. Thus, we can conclude that the beam ions play an important role to cancel the

tilting motion of the thermal plasma.

3.2.3 Summary and discussions

We have examined the dependences of tilt instability on the ion beam effect by carrying
out two types of simulation runs. The first type is the case where the beam velocity varies
while keeping the total number of beam ions constant. The second is the case where the
total number of beam ions varies while keeping the beam velocity almost constant. In
both cases, the growth rate remains almost unchanged until the current ratio I, /I, reaches
the critical value It., and then it gradually decreases as the ratio increases above R.. The
dependences of the growth rates on the current ratio I;/I, are exactly the same for both
the fixed number case and the fixed velocity case. That is to say, we can evaluate the ion
beam effect universally with use of the current ratio.

On the other hand, it is also possible to evaluate the differences between two cases



with use of the kinetic energy ratio. In the case where the velocity of beam ions varies,
the ion beam needs 30% of the kinetic energy of the thermal ions to reduce the growth
rate below a half of that for no beam case. In the case where the total number of beam
ions varies, only 15% of the kinetic energy of thermal ions is needed for beam ions to
get the same growth rate. Thus, we come to the conclusion that the tilt mode can be
suppressed more effectively by increasing the number of beam ions.

Barnes and Milroy [56] investigated the same problem with using the three-dimensional
hybrid simulation code, in which the beam ion and the background plasma are treated as
a particle and MHD fluid, respectively. Since the beam ions are injected gradually into
the MHD plasma as time elapses, the equilibrium configuration of background plasma is
changed markedly after a few Alfvén times. They came to the conclusion that the filt
mode can be stabilized with ion beams whose energy is about 40% of the total kinetic
energy which corresponds to more than 60% of the thermal plasma energy. This value
is not realistic from the viewpoint of experiments. Furthermore, we note again that
the kinetic energy ratio is not appropriate parameter in evaluating the efficiency of tilt

suppression.
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Table 3.2: Characteristics of equilibrium solutions used in particle simulations, including
ratio of number, N,/N;; ratio of current, I,/I;; ratio of kinetic energy, ex,/€x,; velocity
ratio of beam to thermal ion, v,/vy;; ratio of separatrix to vessel radius, X,; elongation,

E; growth rate normalized by Alfvén transition time, 7.

RUN Ny/N; I/1, €xv/€xp  Ub/Vrs X, E ¥
R1 0 0 0 0 0.84 2.14 0.563
RB1 0.01 0.022 0.049 3.4 0.86 212 0.603
RB2 0.01 0.03 0.099 4.6 0.87 2.08 0.419
RB3 0.01 0.035 0.147 6.0 0.87 2,07 0.545
RB4 0.01 0.04 0.211 7.4 0.88 2.05 0.390
RB5 0.01 0.045 0.301 11.0 0.89 2.08 0.251
RB6 0.01 0.051 0.409 13.2 0.89 2.06 0.192

Table 3.3: Characteristics of equilibrium solutions used in particle simulations, including
ratio of number, N,/Nj; ratio of current, I/I; ratio of kinetic energy, €x,/€x,; velocity
ratio of beam to thermal ion, vy/v,,; ratio of separatrix to vessel radius, X,; elongation,

FE; growth rate normalized by Alfvén transition time, 7.

RUN Ny/N; IL/1, €xv/€xy  Ub/Urs X, E ¥
R1 0 0 0 0 0.84 2.14 0.563
RB7 0.005 0.011 0.02 2.9 0.85 2.13 0.567
RB1 0.01 0.022 0.049 3.4 0.86 2.12 0.603
RBS8 0.015 0.034 0.08 3.1 0.87 2.09 0.473
RB9 0.02 0.045 0.13 3.8 0.87 2.07 0.263

RB10 0.025 0.055 0.15 3.5 0.88 2.06 0.248
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Figure 3.12: Ion distribution function for the case R2 where (a) contour plots of thermal
ion density (left side) and beam density (right side) in the poloidal cross section at the

initial period, and (b) radial distribution of each ion density on the midplane.
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Figure 3.14: Tilt growth rates as a function of the current ratio of beam ions to thermal

plasma for the cases where the number ratio N,/N; is fixed.
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thermal plasma for the same cases as Fig. 3.14.
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Figure 3.16: The dependence of 5,57 on the current ratio of beam ions to thermal plasma

for the same cases as Fig. 3.14.
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Figure 3.18: Tilt growth rates as a function of the current ratio of beam ions to thermal
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Chapter 4

Conclusions

In order to investigate the tilt stabilization mechanism in FRC plasmas, we have developed
a three-dimensional particle simulation code which can describe the finite ion Larmor
radius effect, the profile control effect, and the ion beam effect simultaneously. By carrying
out the simulation runs with controlling each effect independently, we obtained several

new results as follows.

(1) We investigated both the finite ion Larmor radius effect and the profile control effect
in the tilt stabilization for the case where no beam ion exists. The finite ion Larmor
radius effect is characterized by the parameter § which is roughly the ratio of plasma
radius to average ion gyroradius. The profile control effect is characterized by fy,
and D, where the parameter f;, represents roughly the plasma beta value at the
separatrix and D is the hollowness parameter which determines the current profile.
By carrying out the simulation runs with different values of f,. 5, and D for a
moderately kinetic plasma (2 < § < 3), we have clarified that the tilt instability
is effectively stabilized by increasing the separatrix beta value (85, > 0.2). On the

other hand, the stabilization of tilt mode can be scarcely altered by changing the
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parameter § and the current profile parameter D for low f,, (< 0.1) and moderately

kinetic plasmas.

(2) The detailed analysis reveals that the number flux of the ions crossing the mag-
netic separatrix repeatedly (cycling ions) increases in proportion to f, and the -ilt

stability is realized for a large number flux of cycling ions.

(3) The cycling ions play a role as “chain” to connect the internal plasma with the
external plasma and stabilize the tilting motion through their “chain” effect. In
order to elucidate the physical picture of “chain” effect, we investigated the force
(4 x B)(!) which generates the tilt motion along the z direction. The current density
is expanded into the cycling component and the non-cycling component. For the
unstable case, one component of the j x B force works synchronously on the plasma
to the same direction as the other component so that the tilt instability grows swiftly
on the whole. For the stable case, however, the amplitudes of two forces remain
smaller than those for the unstable case and the phase difference is always large
(8¢ ~ =m). It is concluded that the j x B force by the cycling ions works on the

plasma so as to cancel the tilting force by the non-cycling ions.

(4) We investigated the ion beam effect for the case where the energetic ion beam is
injected in the vicinity of field-null line of a tilt unstable profile (3 = 3, g,, = 0.02,
and D = —0.6). By carrying out the simulation runs with different values of I/,
and Ny/Nj, it is found that the tilt growth rate remains almost unchanged until the
current ratio reaches the critical value R.(~ 0.03). and then it gradually decreases
as the ratio increases above R,.. The dependence of the growth rate on the current

ratio Iy /I, are exactly the same for both the fixed number case and the fixed velocity
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case. That is to say, we can evaluate the ion beam effect universally with use of the

current ratio.

(5) We can also evaluate the efficiency of the tilt stabilization by beam ions in terms of the
kinetic energy. Comparing with the fixed number case and the fixed velocity case,
we come to the conclusion that the tilt mode can be suppressed more effectively by
increasing the number of beam ions. That is to say, in the case where the velocity of
beam ions varies, the ion beam needs 30% of the kinetic energy of the thermal ions
to reduce the growth rate below a half of that for no beam case. On the other hand,
in the case where the total number of beam ions varies, only 15% of the kinetic

energy of thermal ions is needed for beam ions to get the same growth rate.
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