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Abstract

Genes involved in the transition from wild to cultivated crop species should be of great agronomic importance. Population
genomic approaches utilizing genome resequencing data have been recently applied for this purpose, although it only
reports a large list of candidate genes with no biological information. Here, by resequencing more than 30 genomes
altogether of wild rice Oryza rufipogon and cultivated rice O. sativa, we identified a number of regions with clear footprints
of selection during the domestication process. We then focused on identifying candidate domestication genes in these
regions by utilizing the wealth of QTL information in rice. We were able to identify a number of interesting candidates such
as transcription factors that should control key domestication traits such as shattering, awn length, and seed dormancy.
Other candidates include those that might have been related to the improvement of grain quality and those that might
have been involved in the local adaptation to dry conditions and colder environments. Our study shows that population
genomic approaches and QTL mapping information can be used together to identify genes that might be of agronomic
importance.
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Introduction

Improving the yield and quality of crops is one of the biggest

challenges in plant biology, and efforts are being made to identify

genes underlying phenotypic variation that could be utilized for

crop improvement [1]. One of the most popular approaches to

search for such genes has been the mapping of quantitative trait

loci (QTL) [2]. However, although a huge amount of QTL

information has accumulated in various species, such a rough

marker-based survey rarely provides enough information to

actually identify the gene responsible for the trait of interest. In

addition, a top-down approach starting from a QTL or candidate

gene of interest would be biased towards prior knowledge [3,4].

An alternative approach that is recently gaining popularity is a

bottom-up population genomics approach where one screens for

genes or regions that differentiate cultivated species from wild

species, or certain cultivars from others based on genomic

polymorphism data [5,6,7,8,9]. Although this approach can

identify multiple relatively small regions (compared to QTL

mapping), these regions can still contain a large number of genes,

most which are not the actual target gene, due to genetic

hitchhiking. Thus, the identification of such genes of interest

remains a challenge. Here, we combine the population genomics

approach with QTL mapping information to identify candidate

genes selected during the domestication of rice that should be of

agronomic importance.

As illustrated in Figure 1, substantial morphological and

physiological differences exist between the cultivated rice Oryza

sativa and the wild rice O. rufipogon as a result of strong artificial

selection on certain alleles during the process of domestication.

Regions containing alleles that were fixed by selection during the

domestication process are expected to show reduction of

polymorphisms. This is because other genetic variants in

neighboring regions are swept out by the hitchhiking effect [10].

At the same time, cultivated species often show reduction in the

genome-wide genetic variation due to the bottleneck in the initial

phase of domestication. It is nevertheless possible to identify

regions of selective sweeps because these regions should show a

reduction of polymorphisms that is significantly greater than what

would be expected by the bottleneck effect alone. These regions

can contain tens of or even over a hundred genes, especially in

selfing species such as rice [8,11,12]. Thus, it is still necessary to

further narrow down the candidate genes within each region based

on some other information before experimentally testing each

gene. For instance, He et al. [7] chose to report genes within low

diversity regions that have at least one nonsynonymous substitu-

tion distinguishing the cultivated species from the wild species.

However, this could be misleading because the target of selection
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could be various other kinds of mutations [3,13,14]. Also, the

relevant mutations could fall in poorly sequenced/assembled

regions and go undetected.

In this study, we first resequenced more than 30 genomes

altogether of O. rufipogon Griff and the two subspecies indica and

japonica of O. sativa L., and then identified regions where variation

is reduced due to directional selection. To gain further insight into

the genes targeted during the domestication process, we took

advantage of the wealth of QTL information in rice [15]. We

searched for QTLs that map to each region, particularly focusing

on QTLs related to shattering, seed dormancy, awn length, and

grain quality; traits that are clearly different between cultivated

and wild rice. With the aim to assist future studies, we created a list

including all QTLs that map to each selective sweep region. We

also created a list with all genes within each region, together with

information of their expression pattern [16], and a list of genes

within each region that contain sequence variants that are fixed in

O. sativa. The information we have gathered allows us to make

more meaningful speculation on the candidate genes, which

should motivate further empirical verifications. In particular, we

discuss a number of interesting candidate genes that were likely

targeted by selection during the domestication of O. sativa, and also

genes likely involved in the differentiation between indica and

japonica, and between temperate and tropical japonica.

Results

We will first overview the genome-wide pattern of SNPs

revealed by resequencing over 30 strains of O. sativa ssp. indica, ssp.

japonica and O. rufipogon. After that, we will describe the

identification of candidate regions of various modes of domesti-

cation selection by applying population genomic techniques. This

requires precise understanding of the pattern of SNPs, such as the

levels of polymorphism and linkage disequilibrium.

Sequencing genomes
We sequenced the entire genomes of 12 O. sativa ssp. indica, 10

ssp. japonica, and 10 O. rufipogon accessions by using the Illumina

next-generation sequencing platform. These accessions were

sampled to cover the major geographic ranges of wild and

cultivated rice (Table 1). After sampling, they were inbred for

several generations so that most genomic regions are expected to

be homozygous. In total, we obtained 1.626109 paired-end reads

of 75-bp nucleotides ( = 243.0 Gb). Japonica accessions were

sequenced to an average of x18 depth and 94% coverage, and

indica accessions to an average of x15 depth and 88% coverage. O.

rufipogon accessions were sequenced to a higher depth (x21 on

average) as they are more diverged from the reference genome

(Table S1). All sequenced reads were aligned to the reference

Figure 1. Strategy to identify genes targeted by selection during the domestication process. A hypothetical example of a chromosome
with polymorphism data is shown. The domestication process of O. rufipogon to O. sativa should have resulted in changes in traits such as shattering,
seed dormancy, awn length, and grain quality, among others, and the QTLs related to these traits have been roughly mapped on to the genome
(shown by triangles). In addition, genomic regions that contain domestication genes should show reduced levels of polymorphisms due to selective
sweep. We reasoned that these regions should overlap with the domestication related QTLs, and contain genes with functions related to such QTLs
(those indicated by colors).
doi:10.1371/journal.pone.0083720.g001
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genome Nipponbare (japonica) by using BWA version 0.5.9 rc1

[17]. Roughly half of the reads (56.1% in O. sativa, 49.8% in O.

rufipogon) reliably mapped to the reference genome with a Mapping

Quality (MAPQ) score of $50. On average, we identified 4.26105

SNPs and 7.46104 short indels, and 1.56106 SNPs and 2.36105

short indels per accession for japonica and indica, respectively (Table

S1). We then delineated 1,042,719 high quality SNPs in 31,036

annotated genes to use in further population genetic analyses (see

Text S1 for details).

Genome-wide pattern of SNPs
In order to identify target regions of selection during the

domestication process, it is imperative to obtain an overview of the

population structure of each rice species. We first surveyed the

level of polymorphism by estimating the average numbers of

pairwise nucleotide differences per site, denoted by p (Table 2 and

Table S2). Similar to previous studies [8,18], the level of

polymorphism in O. sativa was about 60% of that of O. rufipogon

(Figure 2A). The results for O. rufipogon, indica, and japonica are

presented in red, blue, and green, respectively in all figures.

Polymorphism is particularly reduced in japonica (,27.5% of O.

rufipogon). The diversity was reduced in protein-coding sequences

(CDS) compared to non-coding sequences, especially in non-

synonymous sites, probably because they are under stronger

selective constraints. The nucleotide diversity was lower in introns

and untranslated regions (UTRs) than in synonymous sites,

Table 1. Accessions and sampling locations.

No Accession Taxon Sampling Location ref

1 W593 rufipogon Malaysia 1

2 W1294 rufipogon Philippines 2

3 W1807 rufipogon Sri Lanka 3

4 W2003 rufipogon India 3

5 W1976 rufipogon Indonesia 3

6 W2057 rufipogon Bangladesh 3

7 W0120 rufipogon India 3

8 W630 rufipogon Myammar 4

9 W1866 rufipogon Thailand 3

10 W1965 rufipogon China 2

11 BADARI DHAN (WRC 39) Indica Nepal 5

12 KALUHEENATL (WRC 41) Indica Sri Lanka 5

13 KASALATH (WRC 2) Indica India 5

14 RATUL (WRC 36) Indica India 5

15 SHONI (WRC 31) Indica Bangladesh 5

16 SURJAMUKHI (WRC 33) Indica India 5

17 TUPA121-3 (WRC 32) Indica Bangladesh 5

18 JENA 035 (WRC 4) Indica Nepal 5

19 DEEJIAOHUALUO (WRC 98) Indica China 5

20 HONG CHEUH ZAI (WRC 99) Indica China 5

21 KEIBOBA (WRC 17) Indica China 5

22 TAKANARI Indica Japan 6

23 NIPPONBARE Japonica Japan 2

24 HITOMEBORE Japonica Japan 2

25 SASANISHIKI Japonica Japan 3

26 IWATEKKO Japonica Japan 2

27 DUNGHAN SHALI Japonica Hungary 2

28 JAGUARY (WRC 47) Tropical japonica Brazil 5

29 URASAN1 (WRC 51) Tropical japonica Japan 5

30 REXMONT (WRC 50) Tropical japonica United States 5

31 TUPA 729 (WRC 55) Tropical japonica Bangladesh 5

32 NERICA1 O. glaberrima x japonica Africa 7

1: Takano-Kai et al. [60].
2: Rakshit et al. [61].
3: Oryzabase (http://www.shigen.nig.ac.jp/rice/oryzabase/top/top.jsp).
4: Ishikawa et al. [62].
5: NIAS Genebank (http://www.gene.affrc.go.jp/databases-core_collections_wr.php)
6: Imbe et al. [63].
7: AfricaRice (http://www.africarice.org/warda/uplandnerica.asp).
doi:10.1371/journal.pone.0083720.t001
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implying that introns and UTRs might be under stronger selective

constraints than synonymous sites (Table S2). This pattern has also

been observed in Drosophila melanogaster [19]. We then evaluated the

population structures by constructing a neighbor-joining (NJ) tree,

performing a principal component analysis (PCA), and also by

using STRUCTURE [20] (Figure 2B,C,D. See also Figure S1).

Consistent with other studies [8,9,21], each analysis showed that

O. rufipogon and the two O. sativa subspecies, especially japonica, are

relatively well differentiated but not completely; there are

substantial local variations. We also examined the relationship

between the levels of linkage disequilibrium (LD) and the physical

distances for O. rufipogon, indica, and japonica populations. LD in O.

rufipogon decayed as the distance increased, and saturated roughly

at 100 kb. The decay was slower in both indica and japonica

compared to O. rufipogon, most likely because of the reduced

effective population sizes due to the founder (bottleneck) effect in

the initial phase of the rice domestication. Another important

factor is the selfing rate which directly reduces the efficacy of

recombination; indica and japonica are near selfers with a selfing rate

of ,95% [22], which is much higher than that of O. rufipogon

(40,95%, [23]). The decay was especially slow in japonica

probably because it underwent a more severe bottleneck [21,24].

The LD pattern suggests that the local patterns of SNPs are

shuffled by recombination, and that the correlation between

regions that are more than several hundred kb apart is expected to

be small. Therefore, in the subsequent analyses, we focused on

local patterns of SNPs in the entire genome. The local variation

was evaluated by window analyses with different sizes (100 kb,

200 kb and 500 kb). As essentially identical results were obtained

for the three sizes of window (not shown), in the following analyses,

we use the results obtained with a window size of 500 kb.

Detecting selection from local patterns of SNPs
Selection during the domestication process should result in a

drastic reduction of p in regions of cultivated rice containing the

alleles targeted by selection. We searched for such regions with

reduced p at synonymous sites in O. sativa (ps) relative to that in O.

rufipogon (pr). Population bottleneck should also affect the pattern of

polymorphism by causing a genome-wide reduction of ps. We

therefore first estimated the size and duration of bottleneck using a

coalescent simulation-based likelihood approach assuming a two-

population model that has been commonly used for the analysis of

domesticated species (see Text S1 and Figure S2) [5,25,26]. Then,

assuming these estimated parameters represent the reduction ofps

at neutral loci (with the least effect of selection), we produced a null

distribution ofps/pr over 500 kb by 100,000 replications of further

coalescent simulations. Theps/pr across each chromosome was

then computed with a 500 kb sliding window with steps of 20 kb.

We derived scores for each 500 kb window that reflect the

statistical significance of the observedps/pr, that is, the log-scaled

proportion (logP) of simulation runs with ps/pr lower than the

observed value. In Figure 3, the spatial distributions of pr and ps,

and the statistical scores are plotted along the local clustering

patterns obtained by the linkage model of STRUCTURE (results

for chromosomes 1 and 3 are shown here, see Figure S3 for the

remaining chromosomes). Overall, ps is lower than pr. However,

several regions with reduced genetic variation in O. sativa, as

exemplified by lowps/pr and high statistical scores, were observed.

These regions generally corresponded to regions with less

differentiation between indica and japonica in the local STRUC-

TURE pattern, where all indica and japonica strains are represented

by the same color (either blue or green) (Figure 3). We also

evaluated the statistical significance by using another measure of

polymorphism level based on the number of segregating sites (hW,

[27]), and obtained almost identical results (see Figure 3 and

Figure S3). Each 500 kb region was ordered according to the

statistical scores based on the ps/pr and hs/hr ratios. The ten

regions containing 500 kb regions that were within the top 15 by

both measures are indicated by black boxes (S01 to S10; S10

might contain two different regions) in Figure 3 and Figure S3. We

specifically focused on these regions that most probably were

targeted by selection during the domestication process. Fine-scale

distributions of the genetic variation across these ten regions of

extremely low variation are shown in Figure 4. We found that two

of these 10 regions contain ‘‘known’’ domestication genes; sh4

[28,29] was present in a region on chromosome 4 (Figure 4, S06)

and PROG1 [30,31] in a region on chromosome 7 (Figure 4, S08).

These 10 regions overlap but are not identical with selective sweep

regions reported by other recent rice resequencing studies. Eight

out of the 10 (apart from S01 and S03) overlap with the regions

reported by [9], which are based on the ratio ofpr/ps. Another

eight out of 10 (apart from S02 and S09) overlap with regions

reported by [7] where the FST between indica and japonica were

significantly smaller than both the FST between O. rufipogon and

indica and between O. rufipogon and japonica. Six out of 10 (S02, S04,

S05, S06, S08, and S10) overlap with those reported by [8], which

are based on the ratio of diversity in indica to the diversity of O.

nivara (pi/pnivara).

Detecting selection involved in the diversification
process of rice

Although the origin of cultivated rice is still under debate, the

two subspecies indica and japonica, and also the two different groups

of japonica, temperate japonica and tropical japonica should have

Table 2. Summary of SNPs and nucleotide diversity.

All (65,827,877 bp)1 CDS (22,536,684 bp)1 Non-CDS (43,291,193 bp)1

SNPs ĥhp
2 ĥhw

3 SNPs ĥhp
2 ĥhw

3 SNPs ĥhp
2 ĥhw

3

All n = 32 1,042,719 0.32 0.39 256,361 0.23 0.28 786,358 0.36 0.45

O. rufipogon n = 10 855,296 0.40 0.32 210,446 0.29 0.23 644,850 0.46 0.37

O. sativa n = 22 494,458 0.24 0.19 122,504 0.17 0.13 371,954 0.27 0.21

indica n = 12 380,807 0.21 0.14 95,410 0.15 0.10 285,397 0.24 0.16

japonica n = 10 230,093 0.11 0.09 57,316 0.08 0.06 172,777 0.12 0.10

1Sites from 31,036 genes.
2Estimator of h (4Nm) based on the average numbers of pairwise nucleotide differences [64].
3Watterson’s estimator of h (4Nm) based on the number of segregating sites [27].
doi:10.1371/journal.pone.0083720.t002
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experienced different directional selection. We can also identify

such selection using similar methods. First, we looked for regions

that exhibit reduced genetic variation within each subspecies by

applying the same analysis as described above to the O. rufipogon-

indica and O. rufipogon-japonica pairs separately. In practice, we

inferred the demographic parameters using the two-population

model, and the statistical significances (based on the p and hW

ratios) were evaluated considering the inferred demography.

The obtained scores for each 500 kb region across each

chromosome are shown in Figures S4 and S5. For the O.

rufipogon-indica comparison, we found that the distributions of pi/pr

and hi/hr were very similar to those of the O. rufipogon-O. sativa pair,

indicating that the majority of the genetic variation in O. sativa can

be explained by the variation in indica. Accordingly, the detected

regions of reduced diversity for the O.rufipogon-indica pair are very

similar to those for the O. rufipogon-O. sativa pair. We found 11 low

diversity regions that were within the top 15 based on bothpi/pr

and hi/hr. 8 of the 11 regions overlapped with the 10 low diversity

regions based on the O. rufipogon-O. sativa comparison. Two of the

remaining three low diversity regions did show reduced diversity in

O. sativa but were not in the top 10 regions. Only one region

showed clear reduction of diversity specifically in indica and not in

japonica (Figure 5, see also the blue-boxed region, I01, in Figure

S3F). It is most likely that this region has undergone selection

specific to indica.

By contrast, we obtained quite a different picture for the O.

rufipogon-japonica comparison. In japonica, the genetic diversity was

generally low throughout the genome, and a number of large

Figure 2. Summary of population genetics analyses. In each figure, red is used for O. rufipogon, blue for indica, and green for japonica. (A)
Distribution of p of protein coding genes. The first 1000 synonymous sites from the translation start site were used for each gene to correct for the
difference in length in each gene. 13,471 genes with 1,000 sites with reliable SNP data are used. (B) Neighbor-joining tree of all sequenced strains. (C)
Population structure estimated by PCA. (D) Population structure estimated by the bayesian clustering program STRUCTURE (K = 3). The results of
K = 2,6 are shown in Figure S1. (E) Decay of LD against distance. The bin size is 2000 bp (measured until 1000 kb).
doi:10.1371/journal.pone.0083720.g002
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regions exhibited almost no genetic variation. Two examples are

shown in Figure 6; a typical pattern is that a region of reduced

polymorphism in japonica is much wider than that detected by the

O. rufipogon-O. sativa comparison. Therefore, the data of japonica is

not very suitable to narrow down the target of selection.

We also searched for regions that are highly differentiated

between indica and japonica by computing the FST between the two

subspecies for the entire genome. We found one region on

chromosome 2 that showed especially high FST (Figure 7A, see also

the green-boxed region, IJ01, in Figure S3B). We also computed

the FST between the temperate and tropical japonica accessions.

One region on chromosome 3 in particular showed a strikingly

high degree of differentiation (Figure 7B, see also the green-boxed

region, JJ01, in Figure 3B or Figure S3C). This can also be

observed by the STRUCTURE analysis (Figure 3B). These two

regions have most probably been under strong directional

selection and are likely to be responsible for key phenotypic

differences between indica and japonica, or temperate and tropical

japonica, respectively.

Detecting candidate target genes of selection from QTL
information

In the previous sections, we overviewed the genome-wide

patterns of SNPs, from which we identified local regions that were

likely targeted by domestication selection. One kind of signature of

selection is the local reduction of the level of SNPs (Figures 3 and

4). This is most probably due to strong selection on a beneficial

allele of a certain gene sweeping out other genetic variants in the

nearby linked regions, as in sh4 in S06 and PROG1 in S08 (Figure

4). The identification of such domestication genes is of huge

agronomic importance and is the ultimate goal of many

domestication-related studies. However, as shown here and also

in other rice resequencing studies [7,8,9], the low diversity regions

in O. sativa are large and contain a large number of genes (tens or

even over a hundred), making it difficult to determine the exact

targets. As it is unrealistic to experimentally test every single gene,

it is desirable to further narrow down the candidates based on in

silico approaches. To this end, He et al. [7] reported genes within

low diversity regions that have at least one nonsynonymous

substitution distinguishing the cultivated species from the wild

species. However, this approach is potentially misleading and also

restrictive because the target of selection could be indels instead of

Figure 3. Genome-wide analysis of population structure and p for chromosomes 1 (A) and 3 (B). The upper panel shows the results of
STRUCTURE of K = 3. Thus, three clusters are assumed, which generally (but not strictly) correspond to O. rufipogon (red), indica (blue) and japonica
(green). Unaligned regions (mostly due to gaps) are in gray. The middle panel shows the genome wide distributions of p for each taxa. O. rufipogon is
in red, indica in blue, japonica, in green, and O. sativa (both indica and japonica included together) in black. The lower panel shows the statistical
scores (logP) of the observed p (black) and hw (gray) of O. sativa O. rufipogon, calculated by coalescent simulation [59]. The top 10 low diversity
regions are indicated by black boxes (S01, S02, and S04). The region that shows exceptionally high FST between tropical and temperate japonica is
indicated by a green box (JJ01). Results of the other chromosomes are shown in Figure S3.
doi:10.1371/journal.pone.0083720.g003

Figure 4. Spatial distribution of the level of polymorphism around the top 10 low diversity regions. The black line shows the scaled p
(O. sativa/O. rufipogon), and the gray line shows the scaledhw (O. sativa/O. rufipogon). The dotted line indicates the genome-wide average of the
scaled p and hw. The positions of two known domesticated genes sh4 [28,29] and PROG1 [30,31] are indicated by red arrows. The positions of some
other interesting candidate domestication genes; seed storage proteins, and a number of transcription factors that contain fixed variants in O. sativa,
are indicated by green and purple arrows, respectively. The numbers of QTLs related to awn length, shattering, seed dormancy, and quality (in blue,
red, orange, and brown, respectively), and the number of annotated genes with fixed variants in O. sativa over the total number of annotated genes
in each region are indicated. The black arrowed lines indicate the approximate regions of selective sweeps (the selective sweep regions in S01 and
S09 are likely to extend into the regions shown by broken lines that could not be analyzed due to low sequencing coverage etc).
doi:10.1371/journal.pone.0083720.g004
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point mutations, various loss-of-function mutations, or mutations

in regulatory regions that affect the expression of the gene, as

observed in many previously reported domestication alleles

[3,13,14].

Here, we have instead used a more inclusive approach and have

provided various information on the low diversity regions that

should facilitate further in-depth investigations. In particular, the

excellent resource of QTLs in rice should be useful in narrowing

down the target genes. The GRAMENE database [32] contains

several kinds of QTLs whose rough locations have been

determined by QTL mapping [15]. We first compiled a list of

QTLs in GRAMENE that map close to each of the 10 selective

sweep regions. As mentioned in the Introduction (see also Figure

1), the domestication process should have targeted a number of

quantitative traits. It is then reasonable to assume that the selective

sweep regions should be strongly linked to some of the QTLs that

were targeted by domestication selection, such as shattering, seed

dormancy, awn length, and grain quality. If so, they should

contain genes with functions that are related to these QTLs. We

have listed all QTLs that overlap with each target region of

selection (Dataset S1). We have particularly highlighted QTLs

related to shattering, awn length, seed dormancy, and grain

quality that map close to the low diversity regions in Figure 4. In

addition, we have listed all genes within each low diversity regions,

together with the expression evidence of each genes in 7 different

tissues based on the RNA-seq analysis of [16] (Dataset S2). We

have also listed specifically those that have variants including point

mutations and indels in coding regions or upstream regions that

are fixed in domesticated rice (Dataset S3). We note that our data

do not cover all point mutations and indels in these candidate

regions because there are regions where short-reads are difficult to

map. Although this problem applies to any study based on next-

generation short-read sequencing, the proportion of such regions is

smaller compared with previous studies of rice [7,8,9] because of

the much higher coverage achieved in this study. We also

acknowledge that the resolution of QTL mapping is often low and

the ‘‘genomic location’’ of a mapped QTL can sometimes span a

few megabases and also be imprecise. This makes it difficult to

confidently assign any given QTL to a selective sweep region or

assign a gene to every QTL. We have here chosen to be inclusive

rather than restrictive, and our list of QTLs should contain several

QTLs that are not associated with the selective sweep regions. The

list of QTLs should thus be considered as an additional source of

information that will help narrow down the candidate target

genes. Furthermore, there would be other traits that one could

potentially associate with the initial domestication or subsequent

diversification processes. Our aim here is not to be restrictive or to

try to single out one particular QTL or gene, but to provide

enough useful information that should allow researchers to

generate various hypotheses which can then be experimentally

tested.

Discussion

Understanding the genetic basis of important phenotypes is one

of the major goals of molecular biology, especially in cultivated

plants because the identification of genes underlying agronomic

traits can directly contribute to the further improvement of the

yield and quality [1]. Although QTL mapping, and more recently

population genetic approaches, are commonly used to search for

genes (or genomic regions) responsible for phenotypic differences,

the actual identification of such genes remains a huge challenge

[3]. O. sativa and its wild progenitor O. rufipogon are clearly different

in several traits related to the yield and quality of rice, and

Figure 5. Spatial distribution of the level of polymorphism around a typical low diversity region in O. sativa ssp. indica. The statistical
scores of the scaled p of indica/O. rufipogon. The dotted horizontal lines indicate the genome-wide average values of p. Indica is shown in blue,
japonica in green, and O. sativa (indica and japonica pooled) in black. Results of the entire genome are shown in Figure S4.
doi:10.1371/journal.pone.0083720.g005

Figure 6. Spatial distribution of the level of polymorphism around two typical low diversity regions in O. sativa ssp. japonica. The
statistical scores of the scaled p of japonica/O. rufipogon. The dotted horizontal lines indicate the genome-wide average values of p. Indica is shown in
blue, japonica in green, and O. sativa (indica and japonica pooled together) in black. Results of the entire genome are shown in Figure S5.
doi:10.1371/journal.pone.0083720.g006
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selection should have played a crucial role in genes related to such

traits during the domestication process of rice. A genome-wide

population genetic survey of selection should identify large regions

containing the target genes, and the QTL information should

serve as a powerful guide to narrow down on them. Below we

discuss a few interesting examples.

QTLs related to shattering, awn length, and seed dormancy all

mapped to the selective sweep regions S05 and S10 (Figure 4).

This suggests that mutations in genes controlling these traits within

these regions were likely to be targeted by selection. Transcription

factors would be strong candidates as they can affect multiple

developmental traits including seed shattering and dormancy

[33,34,35], and many genes identified as controlling domestication

traits are transcription factors [3]. We found that a homeodomain-

like containing gene in S05 has a nucleotide variation in the 5’

upstream region that is fixed in O. sativa. We also found 3

transcription factor genes in S10 which contain sequence variants

fixed in O. sativa – a homeoldomain leucine zipper (HD-Zip) I gene

with a deletion of a single amino acid (3 nucleotides), and a helix-

loop-helix DNA binding gene and a WRKY gene with nonsynon-

ymous substitutions in protein-coding regions (Figure 4 and

Dataset S3). All 4 genes have expression evidence in O. sativa

(Dataset S2). In addition, it is thought that some HD-Zip I and

WRKY genes are involved in the abscisic acid (ABA) signaling

pathway and control seed dormancy and germination [34,36,37].

It is therefore tempting to speculate that a mutation in one of these

transcription factors was selected for due to its pleiotropic effect on

multiple domestication traits.

Grain quality, which includes eating, cooking, nutritional, and

milling quality, clearly differentiates wild and cultivated rice and

might well have been targets throughout human cultivation. In

particular, seed storage protein genes would be strong candidates

as they account for a significant portion of the total protein content

of seeds, and strongly affect the nutritional quality of rice [38]. In

addition, the major seed storage proteins, globulin, prolamin, and

glutelin, are highly expressed in seeds [39,40]. We found that S04

has 11 quality-related QTLs, and also contains a Globulin-1 gene

which has two nucleotide variations in the upstream promoter

region that are fixed in the O. sativa accessions. Interestingly, this

gene was reported to be up-regulated in a high milling yield

cultivar Cypress compared to a low milling yield cultivar LaGrue

[41]. We also noticed that several quality-related QTLs map close

to the region that showed reduction of diversity specific to indica

(Figure 5). This region contains a globulin-like gene, and also a

sucrose synthase 2 gene. Sucrose synthase catalyzes the first step in

the conversion of sucrose to starch and may well affect various

quality traits such as amylose content, gel consistency, or

gelatinization temperature [42,43]. Genes involved in starch

biosynthesis are thought to have been under strong selection

during domestication in both maize and rice [8,44]. It has also

been reported that sucrose synthase activity affects rice grain yield

[45].

Another interesting candidate is the CONSTANS-like gene in

S07, which has a fixed deletion in the 5’ upstream region and a

fixed nonsynonymous substitution in the protein-coding region

(Figure 4). CONSTANS genes are transcription factors that have an

important role in the controlling of flowering time, which should

have been a major determinant for the adaptation of cultivated

rice to different environments [46]. Two recent studies suggested

that Hd1, ortholog of the Arabidopsis CONSTANS gene, might have

been targeted by human selection during the domestication

process [47,48]. Interestingly, a QTL that affects days to heading

and days to maturity (i.e. flowering time) is mapped to this region

(Dataset S1).

We were also able to identify some interesting candidates in the

region highly differentiated between indica and japonica, and in the

region highly differentiated between temperate and tropical

japonica (Figure 7). Indica is a lowland rice that is usually grown

submerged throughout tropical Asia, whereas japonica is usually an

upland rice cultivated in dry fields. Upland rice has thus developed

drought-resistant traits and often has a deeper root system in

response to water deficit conditions [49]. We noticed that the

region on chromosome 2 (Figure 7A) contained several QTLs

related to different aspects of root. In addition, this region

contained an aquaporin gene OsPIP1;1 (OsPIP1a). Aquaporins play

an essential role in water uptake and water movement. OsPIP1;1 is

expressed in root, and its expression is regulated in response to

water stress or drought treatments [50,51]. Although OsPIP1;1 did

not exhibit any difference in expression between the indica and

japonica accessions in these particular studies [50,51], it would be

interesting to examine whether this gene has different functions in

Figure 7. Highest FST regions. (A) Between japonica and indica. (B) Between temperate japonica and tropical japonica.
doi:10.1371/journal.pone.0083720.g007
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indica and japonica, and whether it might have contributed to the

different adaptation of these two subspecies.

Tropical japonica is cultivated in Southeast Asia such as

Indonesia and the Philippines, whereas temperate japonica is

cultivated in temperate East Asia and regions of higher altitudes in

South Asia and Southeast Asia. Temperate japonica is thought to be

derived from tropical japonica. This process most probably involved

artificial selection for traits such as cold tolerance. We found that

the highly differentiated region on chromosome 3 (Figures 3B and

7B) contains a gene OsCIPK03, also known as OsCK1, whose

expression was shown to be induced by diverse signals including

cold [52]. Furthermore, transgenic plants overexpressing this gene

showed improved tolerance to cold by being able to accumulate

higher contents of proline and soluble sugar during cold stress

compared to wild type plants [53]. Other candidate targets within

this region are a number of MYB family transcription factor genes,

a large family of transcription factor genes that are known to be

involved in response to various stresses including cold [54]. A

QTL for low-temperature vigor has also been mapped to this

region [55], although this QTL was not present in GRAMENE.

These candidates are obviously not conclusive and other genes

could well have been the targets of selection. Nevertheless, they

should be more biologically relevant and meaningful than those

that are only based on sequence information. In addition, the list

of QTLs and genes within each region that we provide here should

allow researchers to investigate other possibilities.

Bottom-up population genomic analysis with genome resequen-

cing is likely to become more and more of a common approach to

search for genes responsible for phenotypic differences, especially

in model organisms. Indeed, a few other studies have recently

reported the resequencing of different accessions of wild and

cultivated rice [7,8,9]. We also sequenced each accession to a high

coverage as in [8] rather than pooling many accessions together as

in [7], and our sequence data should be a useful resource for

further rice population studies. Furthermore, we have here shown

that by combining the population genomic information with other

valuable information such as QTLs, we can gain a lot more insight

and make a more informed decision on candidate domestication

genes to further investigate. Although we mainly focused here on

differences between cultivated and wild rice, we were also able to

identify strong candidate targets of artificial selection in highly

divergent regions between indica and japonica, and between tropical

and temperate japonica, which was not done in the other studies

[7,8,9]. Our approach should therefore be applicable to other

more specifically designed resequencing studies such as to identify

genes related to the local adaptation of certain landraces.

Materials and Methods

Genome sequencing and SNP calling
Sequencing libraries were constructed according to the manu-

facturer’s instruction (Illumina). Paired-end short reads (75-bp)

were generated using the Illumina Genome Analyser IIx systems.

Low quality reads that contain contiguous undetermined nucle-

otides or a long array of a single kind of nucleotide were removed.

The obtained paired-end short reads were then mapped to the O.

sativa cv. Nipponbare reference genome (IRGSP build 5, masked

with MIPS repeat data) using the short-read alignment program

BWA version 0.5.9 rc1 [17]. Reliably mapped reads (Map quality

$50) were used in subsequent analyses. SNP detection was

conducted using Samtools ver. 0.0.12a without BAQ algorithm

[56]. To avoid false positive and false negative errors, we screened

for SNPs with the SNP quality score $100 and depth $3. We also

excluded SNPs with depth $100 because such SNPs are likely

located in repetitive regions or TEs. The raw sequence data is

available at NCBI under the accession number PRJNA222757.

Analyses of genome-wide SNP patterns
We delineated high quality SNPs within gene regions to

minimize the risk of comparing paralogous sequences across

multiple individuals caused by repetitive regions including

transposable elements (TEs) (see Text S1 for details). These SNPs

were used to calculate p and hw. Once candidate target regions of

selection with reduced nucleotide diversity were identified, p and

hw of these regions were calculated using all sites including those

outside gene regions in order to obtain a finer picture by

increasing the sample size. The SNPs within the gene regions were

also used for the following analyses. An NJ tree was constructed

using the PHYLIP package based on the pairwise p-distance

calculated using all sites within the gene regions. Sites containing

missing data among the 32 accessions or the outgroup accession

were excluded. O. meridionalis was included as an outgroup which

we had also sequenced at a low coverage. The model-based

program STRUCTURE 2.3 [20] was used to evaluate the genetic

structure among the 32 accessions. For this analysis, a random set

of SNPs was used to represent the genome (roughly one SNP every

20 kb). First, the correlated allele frequency model and admixture

model with no linkage was used. The posterior probability of K

from 2 to 9 under the no linkage model was calculated to infer the

number of clusters K. Five independent runs yielded nearly

consistent results for each K (Figure S1). The highest posterior

probability was obtained when K = 3. The three clusters were

more or less consistent with the O. rufipogon, indica, and japonica

populations. Next, the linkage model with K = 3 assuming constant

recombination rate across the entire genome was used to infer the

patterns of genetic structures across chromosomal regions.

Principal component analysis (PCA) was performed using a

random set of SNPs (roughly one SNP every 50 kb). The

eigenvectors were calculated by the procmp function of the R

statistical package [57,58]. The relationship between the levels of

linkage disequilibrium (LD) and the physical distances for wild,

indica and japonica populations was evaluated by calculating the r2

statistic using all SNPs. 10 out of 12 individuals from the indica

population were randomly selected for each pair of SNPs so that

we can compare the results of the three populations with the same

sample size.

QTL information
A list of QTLs was downloaded from the GRAMENE database

(http://www.gramene.org). The 11,624 QTLs are classified into 9

large categories, which are further divided into 332 traits [15]. The

midpoint of the start and end positions of each QTL was treated as

the position of the QTL. QTLs whose start and end positions were

more than 5 Mb apart were removed, which resulted in 6,862

QTLs remaining. Of these QTLs, 1,017 mapped to the low

diversity regions (+/22Mb), and these are listed in Dataset S1.

Screening of genes with fixed mutations
We screened all gene regions in each low diversity region for

replacement or frameshift mutations that are fixed in cultivated

rice. We also searched for mutations in the 200 bp upstream or

100 bp downstream regions of annotated transcription start sites.

All sites containing such mutations were reported if FST $0.7 and

if the variant is fixed in cultivated rice. Only sites where $6

accessions in O. rufipogon, and $12 in O. sativa ($6 in indica in the

case of the low diversity region specific to indica) had determined

nucleotides (not ‘N’) were considered.

QTL Map Meets Population Genomics

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e83720



Supporting Information

Figure S1 Results of STRUCTURE with K = 2,6. Red,
blue, and green roughly correspond to O. rufipogon,
indica and japonica, respectively.
(TIFF)

Figure S2 Estimation of demographic parameters. (A)

The demographic model used in this study. (B) The log likelihood

distribution for N0. The maximum likelihood estimate is indicated by

a vertical line at N0 = 1806103. (C-D) The two-dimensional

distribution of log likelihood for T1 and N1 for the O. rufipogon – O.

sativa (C), O. rufipogon – indica (D), O. rufipogon – japonica pairs (E). The

maximum likelihood estimate is indicated by a red box in each panel.

(TIFF)

Figure S3 Genome-wide analysis of population struc-
ture and p for each chromosome. For each chromosome, the

upper panel shows the results of STRUCTURE. Unaligned regions

(mostly due to gaps) are in gray. The middle panel shows the genome

wide distributions ofp for each taxa. O. rufipogon is in red, indica in blue,

japonica in green, and O. sativa (both indica and japonica included

together) in black. The lower panel shows the statistical scores (logP)

of the observed p (black) and hw (gray) of O. sativa/O. rufipogon,

calculated by coalescent simulation [59]. The top 10 low diversity

regions are indicated by black boxes (S1 to S10). The region that

shows reduction of diversity specifically in indica is indicated by a blue

box (I01). The regions that show exceptionally high FST between

indica and japonica, and between tropical and temperate japonica are

indicated by green boxes (IJ01 and JJ01, respectively).

(ZIP)

Figure S4 Statistical scores of the observed p and hw of
indica/O. rufipogon. The black line represents p, and the gray

line represents hw, both calculated by coalescent simulation [59].

(TIFF)

Figure S5 Statistical scores of the observed p and hw of
japonica/O. rufipogon. The black line represents the score

based on p, and the gray line represents that forhw.

(TIFF)

Table S1 Summary of sequencing.

(DOCX)

Table S2 Summary of SNPs and nucleotide diversity.

(DOCX)

Text S1 Supplementary methods.

(DOCX)

Dataset S1 QTLs mapped to each low diversity region
and high FST region.

(XLS)

Dataset S2 Genes mapped to each low diversity region
and high FST region.

(XLS)

Dataset S3 Sites with variants fixed in cultivated rice
and FST $ 0.7 in gene regions of each low diversity
region.

(XLS)

Acknowledgments

We thank Hiroaki Sakai for providing the expression data set.

Author Contributions

Conceived and designed the experiments: RT HI. Performed the

experiments: KY SK SN CM AU HT AA. Analyzed the data: TK JAF

ES RPS ST. Contributed reagents/materials/analysis tools: TI. Wrote the

paper: JAF HI.

References

1. Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement:

responding to environmental and population changes. Nat Rev Genet 9: 444–

457.

2. Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of

high-yielding rice. Trends Plant Sci 16: 319–326.

3. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop

domestication. Cell 127: 1309–1321.

4. Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique

opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A

104 Suppl 1: 8641–8648.

5. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, et al. (2005) The

effects of artificial selection on the maize genome. Science 308: 1310–1314.

6. Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S, et al. (2008) A genomic

scan for selection reveals candidates for genes involved in the evolution of

cultivated sunflower (Helianthus annuus). Plant Cell 20: 2931–2945.

7. He Z, Zhai W, Wen H, Tang T, Wang Y, et al. (2011) Two evolutionary

histories in the genome of rice: the roles of domestication genes. PLoS Genet 7:

e1002100.

8. Xu X, Liu X, Ge S, Jensen JD, Hu F, et al. (2012) Resequencing 50 accessions of

cultivated and wild rice yields markers for identifying agronomically important

genes. Nat Biotechnol 30: 105–111.

9. Huang X, Kurata N, Wei X, Wang Z-X, Wang A, et al. (2012) A map of rice

genome variation reveals the origin of cultivated rice. Nature 490: 497–501.

10. Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favourable gene.

Genet Res 23: 23–35.

11. Lam H-M, Xu X, Liu X, Chen W, Yang G, et al. (2010) Resequencing of 31

wild and cultivated soybean genomes identifies patterns of genetic diversity and

selection. Nat Genet 42: 1053–1059.

12. Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, et al. (2011) Molecular

evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci

U S A 108: 8351–8356.

13. Izawa T, Konishi S, Shomura A, Yano M (2009) DNA changes tell us about rice

domestication. Curr Opin Plant Biol 12: 185–192.

14. Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends

Plant Sci 15: 529–537.

15. Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, et al. (2009) Gramene QTL

database: development, content and applications. Database (Oxford) 2009:
bap005.

16. Sakai H, Mizuno H, Kawahara Y, Wakimoto H, Ikawa H, et al. (2011)
Retrogenes in rice (Oryza sativa L. ssp. japonica) exhibit correlated expression with

their source genes. Genome Biol Evol 3: 1357–1368.

17. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

18. Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, et al.

(2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice.
PLoS Genet 3: 1745–1756.

19. Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature

437: 1149–1152.

20. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure

using multilocus genotype data: linked loci and correlated allele frequencies.

Genetics 164: 1567–1587.

21. Huang X, Wei X, Sang T, Zhao Q, Feng Q, et al. (2010) Genome-wide

association studies of 14 agronomic traits in rice landraces. Nat Genet 42: 961–
967.

22. Oka HI (1988) Origin of Cultivated Rice: Japan Sci. Soc. Press/Elsevier,

Tokyo/Amsterdam.

23. Oka HI, Morishima H (1967) Variations in the breeding systems of a wild rice,
Oryza perennis. Evolution 21: 249–258.

24. Gao L-z, Innan H (2008) Nonindependent domestication of the two rice
subspecies, Oryza sativa ssp. indica and ssp. japonica, demonstrated by multilocus

microsatellites. Genetics 179: 965–976.

25. Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998) Investigation
of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci U S

A 95: 4441–4446.

26. Innan H, Kim Y (2008) Detecting local adaptation using the joint sampling of
polymorphism data in the parental and derived populations. Genetics 179:

1713–1720.

27. Watterson GA (1975) On the number of segregating sites in genetical models
without recombination. Theor Popul Biol 7: 256–276.

28. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science

311: 1936–1939.

QTL Map Meets Population Genomics

PLOS ONE | www.plosone.org 11 December 2013 | Volume 8 | Issue 12 | e83720



29. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, et al. (2006) An SNP caused

loss of seed shattering during rice domestication. Science 312: 1392–1396.
30. Jin J, Huang W, Gao J-P, Yang J, Shi M, et al. (2008) Genetic control of rice

plant architecture under domestication. Nat Genet 40: 1365–1369.

31. Tan L, Li X, Liu F, Sun X, Li C, et al. (2008) Control of a key transition from
prostrate to erect growth in rice domestication. Nat Genet 40: 1360–1364.

32. Youens-Clark K, Buckler E, Casstevens T, Chen C, Declerck G, et al. (2011)
Gramene database in 2010: updates and extensions. Nucleic Acids Res 39:

D1085–D1094.

33. Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant
form. Plant Cell 10: 1075–1082.

34. Barrero JM, Millar AA, Griffiths J, Czechowski T, Scheible WR, et al. (2010)
Gene expression profiling identifies two regulatory genes controlling dormancy

and ABA sensitivity in Arabidopsis seeds. Plant J 61: 611–622.
35. Zhou Y, Lu D, Li C, Luo J, Zhu B-F, et al. (2012) Genetic control of seed

shattering in rice by the APETALA2 transcription factor SHATTERING

ABORTION1. Plant Cell 24: 1034–1048.
36. Harris JC, Hrmova M, Lopato S, Langridge P (2011) Modulation of plant

growth by HD-Zip class I and II transcription factors in response to
environmental stimuli. New Phytol 190: 823–837.

37. Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, et al. (2012) WRKY

transcription factors: key components in abscisic acid signalling. Plant Biotechnol
J 10: 2–11.

38. Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures,
properties and role in grain utilization. J Exp Bot 53: 947–958.

39. Matsumura H, Nirasawa S, Terauchi R (1999) Transcript profiling in rice (Oryza

sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J 20:

719–726.

40. Gibbings JG, Cook BP, Dufault MR, Madden SL, Khuri S, et al. (2003) Global
transcript analysis of rice leaf and seed using SAGE technology. Plant Biotechnol

J 1: 271–285.
41. Venu RC, Sreerekha MV, Nobuta K, Beló A, Ning Y, et al. (2011) Deep
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