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Abstract A general prescription is proposed for the study
of coherent phenomena in electron storage rings due to a local-
ized nonlinear force. The prescription is based on expanding
the distribution function into a series using generalized Hermite
polynomials in two dimensional phase space (Stratonovich ex-
pansion). When the series is truncated at the lowest order, it
gives the Gaussian approximation. The prescription is applied
to weak-strong beam-beam interactions in e*e~ colliding storage
rings. The approximation is introduced by the truncation but
no assumption is made for the strength of the beam-beam force.
This is not the perturbative approach in the traditional sense
and is applicable to quite strong beam-beam force. Up to 20-th
order (quasi-) moments can be included now. This is achieved by
expanding the distribution function around that of the Gaussian
approximation. (Gaussian gauge).

1 Introduction

In this paper, we report a part of results on extending the model
proposed in Ref.[1], where a solvable model was proposed for the
strong-strong and weak-strong beam-beam interaction based on
the Gaussian approximation of the distribution functions. It il-
lustrated some of the characteristic features of the problem qual-
itatively well. In particular, we could discuss the case of very
strong beam-beam force. The agreement between multiparti-
cle tracking results does not become worse for quite large force.
Quantitatively, however, there were some disagreements. This
seems to come from the lack of degrees of freedom of the model,
since we represented the distribution functions by only three mo-
ments.

More recently, one possible extension was proposed[2], which
is based on Stratonovich expansion[3] and truncating it at a fi-
nite order. In the next-to-lowest order approximation, the model
presents improved quantitative agreement with the multiparticle
tracking. There, however, we could not proceed to higher orders.

Here, we propose a variation of it using a ‘Gaussian gauge’.
It allows higher order expansion and we can obtain much better
agreement between the multiparticle tracking results. Other
extension of Ref.[1] will be reviewed in Appendix A.

2 General Stratonovich Expansion

As canonical variables in the 2-dimensional phase-space, we use

az + Bz’

\/BE ’

where z and z' are transverse coordinate and its slope, a and
B Twiss parameters and ¢ the nominal emittance (i.e. without
beam-beam effect).
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General Stratonovich expansion[3], is an expansion of two di-
mensional distribution function ¥(X?, X?) around the two di-
mensional Gaussian distribution,

G(X;9) = —1 -
(X;9) mﬂlp ¢,
b= %gaﬂx *X ﬁy
where gog is the inverse of g*° and det g = g''g?? — (¢'?)?. Here
g% is any symmetric positive definite matrix. Here and in
what follows, we employ Einstein’s summation convention;
when the same symbol appears in both upper and lower indices
simultaneously, a summation with respect to the symbol from 1
to 2 is implied. The ¢g*# will be called metric because of the
similarity to Riemanian geometry. Note that A* is different
from A,, which is g,54°.
We start from the following lemma:

Lemma 1 Any diatn}ution function 1[J(f ), which is symmetric
in phase-space, Y(—X) = ¢(A-" ), which is normalized to unity,
and which falls ezponentially at infinity, can be ezpanded as

H(X) = G(X;9)P(X;9,Q), (1)
P(X;9,Q) =1+ Y 10" ™ Hyppoan(Xig).  (2)

n=32
even

Here the sum eztends over all even numbers from 2 to infinity.
Here, H is the generalized Hérmite polynomial,

Hayoy-au(X39) = €* f](-a,i Je®.

i=1

The Q’s are called quasi-moments:
Lemma 2 For given v, the quasi-moments are obtained as

Queres =< Huer~(X;9) >,
where < > is the ezpectation value with respect to ¥ and

Hoeron = gmbigeaba .. g2 By gy
Let us introduce the moments

Moaeron — Xnxa ... X > . (3)
Using Eq.(1), we have
Lemma 3 A moment M of even order can be ezpanded in terms
of the quasi-moments of even order as
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Here

>

ape

means a sum over all possible combination of indices but re-
stricted not to reproduce the same expression. For example,

Zg‘.,ay»,a = 9apg~s + 9av985 + 9ab9p+-
ape

In the same manner, we have

Lemma 4 A quasi-moment Q of even order can be ezpanded in
terms of the moments of even order as

Qoo
= M*oran

- Z g1e Mo

ape
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D (mgmon) (=g e (=g, (5)

In the above, Q and M of only even order are considered. In-
clusion of the odd order M’s and Q’s are straightforward, but
irrelevant for the present problem.

3 Gauge Degree of Freedom

In the above, we did not specify g*®. Of course, M*3, for exam-
ple, has definite meaning, which can be expressed as

Maﬁ - gaﬂ + Qﬂﬂ (6)

Unless we specify ¢*#, Q’s are not defined.

We can freely specify g. This freedom is called Gauge freedom.
It is related to how to express ¥, but has nothing to do with
physical contents of i, provided we do not truncate the
expansion. Once we specify the metric g, the gauge is fixed.

There are some characteristic gauges:

proper gauge We use real second moments for g,
9% = M*,

so that, in this gauge, @*# = 0 by definition. This was employed
in Ref.[2]. The most important point of this gauge is that all Q’s
vanish if and only if ¥ is a Gaussian. Another important property
of it is that the convergence of the expansion is expected to be
the fastest, so that we can truncate it at lower orders.

nominal gauge We use the nominal value of the second-

order moment
gaﬁ = Jaﬂ.

In this gauge, the generalized Hermite polynomial’s are reduced
to the products of the usual Hermite polynomials. This gauge is
the simplest of all, but the convergence is the worst.

Gaussian gauge The Gaussian approximation[1] was shown
to be rather good, i.e. it reproduces all of the qualitative features
of the system. We can use the results of this approximation. That
is

gaﬂ = ggﬁ,
where gg is the Gaussian approximation result so that it depends
on all the parameters that characterizes the problem. (Beam-
beam parameters, tunes and so on.)

The first merit of this gauge is that the changes of Q’s around
the ring can be expressed as linear transformation. (See next
section). The theory is thus much simplified in this gauge so that
we can include higher order terms rather easily. The convergence
is worse, of course, than in the proper gauge.

Relation between different gauges It is easy to relate dif-
ferent gauges, if we use the fact that the moment M is gauge
independent. Once they are related to moments, using Eqs.(4)
and (5), the relation becomes clear. :

4 Weak-Strong Model

In this paper, we study the weak-strong case only, because the
dynamics is particularly simple,

Gaussian Approximation

Since we will use the Gaussian approximation results as a basis
of the expansion, it is convenient here to review it[1].

In this approximation, we put all Q’s zero so that g is the
second moment. We track the changes of g around a ring. A ring
is composed of one interaction point (IP) and an arec.

In the arc, the beam undergoes the betatron oscillation with
the radiation effect. This is represented by the following mapping

Gnew = U[AgaaA* + (1 = A®)|U*, (7
where N
{9 9
9 (gn g2 )7
_ [ cosp  sinp (1 0
U—(-sinp cosp)’A_(O ,\’)’ (8)

where u = 27v is the nominal phase advance for the arc.

transverse damping time
flight time during the arc

A =exp(-1/T.), T.=

The prescription of radiation given above is called asymmetric
prescription and was shown not the best way[4]. We use it, how-
ever, from a historical reason: The author does not have the mul-
tiparticle tracking results in the better prescription. The better
way is called symmetric prescription([4], which is recapitulated in
Appendix B.

The beam-beam kick, at the IP, is represented by the following:

nte =<(X +F)*(X + FF >¢ . (9)

—

Here, F = (0, F) is the beam-beam kick
F(X) = 8mnflexp(-X?/2) - 1],

where 7) is the nominal beam-beam parameter,

_ N.r.
T 4mye’

n

14



—-

Here N. and 7 are the number of particles of the strong beam
and the relativistic Lorentz factor of the weak beam, respectively,
and r, the classical electron radius. (In general, we use 7 for the
nominal beam-beam parameter and ¢ for the real beam-beam
parameter, which is defined in terms of the actual beam size
instead of the nominal one). The < >¢ stands for the average
with respect to the Gaussian part G(f ;g): to evaluate the r.h.s.
of Eqs.(9), we use G(X; goid).

It is observed that the system always falls into a period one
fixed point in (g'!,¢'%,9??) space. This can be expressed as a
complicated functions:

9*° = g*°(v, T, n).

Higher Order Quasi-Moments
The betatron oscillation with the radiation effect is represented
by the following mapping:
Qe ™ = (A" (UA)7, - (VA Q2™ (10)
The beam-beam effect, at the IP, is the following:
Quaras =< FMor (X 4 Fig,) > . (11)

Here, gnew is defined by Eq.(9). To evaluate this average, we
should truncate the expansion. Let us truncate it at 2N,,,.-th

order.
Let us denote

WN-n n
Q[Ny n] =Q -1 222-2

for the sake of brevity. We also abbreviate the generalized Her-
mite polynomials as
H[N,n|=H 111 222-2.
2N —-n 1
Then we can define vectors

(@) = QIN,n], (H) = H[N,n],

where

k=k(N,n)=N?+n. (1 <N < Npazy 0<n<2N)

That is,
Ql: Hy
1
6| @ | #-| m
Quu ):

These vectors are kpae = N2, + 2Nna, dimensional. .

Now, we can show that, under the beam-beam kick, @ changes
as - -
Qrew = A(9,9')Qua + B(g,9),
where g (g') is the second order moments in the Gaussian ap-
proximation just before (after) the beam-beam kick and 4 is a
Emas X kmaz matrix. Since we have an explicit expressions of g
and ¢’, A and B are also expressed explicitly.

Also under the betatron oscillation and radiation damping, Q
are transformed linearly as

ém = 0(/-"7 ’\)Q-‘ald-

Now we have a complete set of mappings for Q. If we observe
Q at the Poincaré section just before the beam-beam kick, it
changes every turn as

é(n“)-th turn = O(Adn—th turn + §)

If the ¥ is to fall into a fixed distribution after many turns, (al-

though it is not assured), we expect also that 6 will eventually

be a single fixed point in the k., dimensional vector space.
This fixed point is expressed as

@ =1=1570B. (12)

As is well known(5], the mapping converges into the fixed point
if and only if no eigenvalue of OA has the absolute value larger
than 1. It is expected that there is some domain in the parameter
space (v, A, 1) where the above condition does not apply. We
will discuss this case later.

5 Fixed Point

A Fortran program called SBS (Strong-weak Beam-beam inter-
action in Stratonovich expansion) solves Eq.(12). Due to the
memory size restriction, Npnas < 10, for the time being.

Second Moment

One of the characteristic phenomena in weak-strong interaction
is the relatively sudden increase of the (r.m.s.) beam size, when
one increases 7. The Gaussian approximation(1] could illustrate
it only qualitatively. In this approximation, beam-size is always
overestimated. This fact was understood as the unphysical in-
crease of the entropy in Ref.[1]: if a distribution ¥ was a Gaus-
sian before the beam-beam kick, it is no longer be so after the
kick. In approximating it by a Gaussian, we lose the informa-
tion contained in . This is almost equivalent to the case where
we add an additional diffusion to the system. Thus, we can ex-
pect that the discrepancy between Gaussian approximation and
the multiparticle tracking result will be reduced by introducing
higher order (quasi-) moments.

7 dependence In Table 1, we show the numerical results
of SBS on M'!, which is obtained from the solution of Eq.(12)
and the relation Eq.(6). We compare results with different N,,,,.
Since it can be shown that, in this gauge, when N, = 1, B
vanishes and consequently é = 0, we do not show this case in
the Table. In some cases, the large eigenvalue occurs so that
the result of SBS is not reliable (indicated by !). In some other
cases, we cannot use SBS because of the overflow in the numerical
process. The latter is less difficult a problem.

The former is a fundamental problem. It seems, however, that
such a thing occurs only in restricted region of 7. See section 6.

We also show the multiparticle tracking results(6] in the Table.
As N, becomes larger, the agreement is better, except for the
case of large eigenvalues.

Tune dependence A multiparticle tracking shows us that
the equilibrium distribution is quite sensitive to the tune[6]. In
Table 2, we show M!! for some parameters together with the
multiparticle tracking results. In some tunes, the multiparticle
tracking gives much smaller values. In this case, higher order
quasi-moments seem to be required. In some other cases, the
model suffers from the large eigenvalues.



7 =0.03] 7 =0.05] n=0.06
(Gauss) 1.08 2.06 3.60

2 0.92 1.50 2.52
3 0.89 1.14 1.81
4 0.88 0.97 1.40
6 0.88 0.87 1.01
8

0.89 ! 0.87

9 0.89 ! 0.81

(MPT) ~0.9 ~0.8 ~ 0.8

(Proper) ~0.9 BR BR

Npaz | 7=01] n=03| n=0.5

(Gauss) 12.5 83.3 179.7

2 9.89 75.1 165.8

3 8.00 69.7 157.6

4 6.69 66.2 152.5

6 5.03 61.1 144.9

8 4.05 56.6 1374

9 1 * *

(MPT) 1.95 36.0 59.5
(Proper) 9.0 72.0

Table 1: Second moment M!!. Parameters are T, = 142.8 and
v = 0.15. (Gauss) and (MPT) stand for the Gaussian approxi-
mation and the multiparticle tracking results, respectively. The
* means that the calculation fails due to overflow. The ! means
that the mapping has too large eigenvalue(s). (Proper) stands
for the proper gauge results obtained in Ref.[2]. BR stands for
the border region. (See section 6).

Excess Along with the second moment, the excess

[(Mnu _ 3(Mu)z]/(Mn)z

is an interesting and important quantity which expresses the de-
viation from a Gaussian. We will generalize it. As stated before,
the Gaussian gauge can be related to the proper Gauge through
the moments, Egs.(4) and (5). Let us denote the quasi-moment
in the proper gauge as Qprop. The Qprop is the natural extension
of the excess. (See section 2). We define the normalized-proper-
quasi-moment D[N} as
D(V) = U le.
(M™)

As easily seen, D[2] is the excess.

We show the numerical and multiparticle tracking results for
D[2] also in Tab.2. (Note that the multiparticle tracking results
are less accurate than those of M!'!, because of the possible fluc-
tuation due to the finite number of the test particles.) These
two types of results seem to agree with each other roughly. In
particular, the sign corresponds well.

We show D[N|’s for some values of 7 in Table 3 (A).

Distribution function ¥

It is interesting to see to what extent our truncated
Stratonovich expansion can reproduce .

As discussed in Ref.[2], the positive definiteness of ¥ is not
assured when the expansion is truncated. This is the worst point
of our model. In Ref.[2], however, it was shown to be harmless
for the usual range of parameters, (7 < 0.1, say). With larger
values of 7, it becomes more remarkable. Sometimes, y(0) can

become negative.

v MY [ M" [ D[2] | D

SBS | MPT | SBS | MPT
0.1 504 | 7.58 [ 0.345| 0.973
0.1125 | 52.0 | 38.3 |-0.33 |-1.08
0.125 | 57.3 | 8.31 | -0.526 | -0.55
0.1375 | 52.0 | 31.4 | -0.414 | 0.517
0.15 |[56.6|362 |-1.104|-1.42
0.1625 | ! 96.6 |! -0.813
0175 |48.4| 6.91 |-0.96 |-1.14
0.1875 | 50.5 | 16.8 | -0.491 | -0.148
0.2 52.1 112.7 |-0.82 |-1.55
02125 [!  |53.3 |! 3.88
0.225 [55.3|26.2 |-0.79 |-1.69
02375 |1 | 494 |1 -1.89

Table 2: Second moment M!! and normalized quasi-moment
D[2]. Parameters are T, = 142.8, 7 = 0.3 and Npm.. = 8. (SBS)
and (MPT) stand for the numerical and the multiparticle track-
ing results, respectively.

In the multiparticle tracking, on the other hand, it is fre-
quently be observed that even the origin of the phase space has no
particle[6]. It is natural to expect that when 3 becomes negative
in our model, it implies the absence of the particle there.

Since we truncated the expansion, there are at least two possi-
bilities for the reconstruction of ¥. One is to use (g, @), Gaussian
gauge, and the other is the proper gauge, (M, Q,..p):

$(X)e = G(X;9)P(X;9,Q), (13)
W X)peop = G(X; M*P)P(X; M2, Qprop)- (14)

These two need not be the same nor similar.

An example is shown in Fig.1. Here, in (B), the regions where
1 is larger than some positive value are plotted. The proper
gauge seems to be better in agreement with the multiparticle
tracking results. It does not seem easy, however, to predict the
right form of ¥ by this model.

6 Discussion

The Difference from the Proper Gauge

One merit of using the Gaussian gauge is that we can introduce
quasi-moments of much higher order. There are two main rea-
sons:

1. In the proper gauge, we should solve (or track) a set of com-
plicated nonlinear mappings of g and @, while in the Gaussian
gauge, the nonlinear mapping appears only in g. Once the
fixed point of this nonlinear mapping is obtained, (this can
be done analytically), the mapping for Q is represented by a
matrix with known elements.

2. It is hopeless to solve the mapping equations for (¢,Q) in
the proper gauge. All one can do is, therefore, to track the
mapping. In tracking (g,Q), the positive definiteness of g
is easily lost in the intermediate stage and this will lead an
overflow of the calculation. In the Gaussian gauge, however,
there is no need to track Q, since the equilibrium solution is
obtained explicitly.

Since we can use much higher order moments in the Gaussian
gauge, the agreement with the multiparticle tracking is much
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7 0.03 0.1 03 0.5

M 0.886 4.05 56.6 1374
D[2] 0.10 -0.52 -1.10 -0.69
D[3] 0.18 3.94 5.04 2.75
D[4] -1.30 | -2.89x10! | -1.67x10! 113
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D[8] | -3.37x10* | 1.19x107 | 4.21x107 | 2.69x107

B[ M1 1.95 36.0 59.5
D[2] ~ 0.9 3.31 -1.42 -1.51
M1 0.962 4.27 57.3 138.2
D[2] 0.05 -0.47 0.23 -0.42
D[3) 0.15 3.38 -3.68 0.90
D[4] -1.56 | -2.80x10! | 6.94x10 -1.14
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D[8] | -3.61x10* | 1.42x107 | 1.00x10° | -1.57x107
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Figure 1: The equilibrium distribution. (A),The phase space
obtained in a multiparticle tracking . (B), The same obtained by
the present model with N,,, = 8. Horizontal and vertical axes
are X and P, respectively. Parameters: T, = 142.8, v = 0.1125
and n = 0.3.

Table 3: Normalized quasi-moments, D[N]. Parameters are
T. = 142.8 and v = 0.15,Npmee = 8. (A) Asymmetric radiation,
(B) Multiparticle tracking results with asymmetric radiation, (C)
Symmetric radiation (see Appendix A).

better. It is a matter of course that, for a fixed value of Nz,
the proper gauge gives better agreement with the multiparticle
tracking. In Table 1, we compared the results of the proper
gauge obtained in Ref.[2] with Np,, = 2. In this example, the
difference between two gauges is quite small for this Np,.. We
thus conclude that the Gaussian gauge is better than the proper
gauge.

Why we are interested in so large value of

We considered n < 0.5. In the actual accelerators, we can not
reach this value of 7, usually. There are some reasons to consider
such a large value:

1. We consider the weak-strong case, which is more academic
than practical. Here, we are interested in the agreement be-
tween the theory and the multiparticle tracking but not in-
terested in that between the theory and the experiment. In
this case, it is helpful to consider an extreme case, since it
shows the essential points of the problem more clearly.

2. In one-dimensional theory, such as that considered here, we
cannot expect a good agreement with the experiments. Usu-
ally, such a theory gives larger value of . To be more realistic,
we should consider synchrotron oscillation, for example. Pre-
sumably, these effects lowers the beam-beam limit. If a model
agrees well with the multiparticle tracking for larger value of
7, we can expect the better agreement when the synchrotron
oscillation will be included. The opposite is also true. In the
one-dimensional theory, thus, we need the agreement even for
the large value of 7.

From the results in Table 1, we can conclude that, to obtain good
agreement between the multiparticle tracking, we need higher and
higher order moments when 7 becomes larger and larger. It seems
reasonable.



Large Eigenvalue

At some set of parameters, the large eigenvalue appears, which
means that the mapping of Q does not fall into the period one
fixed point, Eq.(12).

It might be thought that it comes from the fact that we use
the Gaussian gauge, where we expand ¥ around the Gaussian
approximation result. As shown in Ref.[2], however, the similar
thing exists even in the proper gauge: the mapping for (g,Q)
does not converge to a fixed point in some region which is called
‘border region’.

It seems more fundamental.

The most characteristic point of the weak-strong case is the
rapid increase of the beam size at some 7. The region of this
rapid increase seems to be identical with that where the large
eigenvalue occurs. This seems to be related to the heart of the
beam-beam interaction. The fact that ¢ falls into a period one
fixed point in the multiparticle tracking seems to imply that
this anomaly is related to the truncation. Thus, to understand
the most characteristic points of the beam-beam interaction, we
should not truncate it and should use 9 itself. This is the place
where the infiniteness of the degrees of freedom of 3 manifests
itself.

Apart from this case, the present model gives reasonable ap-
proximation and the numerical agreement seems to be improved
more and more when higher and higher order quasi moments are

introduced.
More detailed and extended work will be published elsewhere.
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A Review and Planning of the Extension of
Gaussian Model

It seems convenient here to review what has been done and what
is considered in the future as extensions of the work Ref.[1].

Second Moment Only This is done in Ref.[1].

First Moment Only We assume that the beams are Gaussian
and the second moments are given and fixed. Then we discuss
the (coherent) dipole mode problem. This is done in Ref.[7].

First and Second Moment We consider first and second mo-
ments as dynamical variables within the Gaussian approxi-
mation. This will be done in Ref.[8].

Second and Higher Even Order Moments This was done
in Ref.[2] in the proper gauge. In the Gaussian gauge, only
strong-weak case was considered in the present paper. The
strong-strong case will be considered in the future.

All Moments In the future.

Inclusion of Synchrotron Motion Under investigation.

B Better Treatment of Radiation

In Ref.[4], it is shown that the radiation should be symmetric,
that is, instead of A in Eq.(8), we should use

A0
= (30):

Accordingly, the expressions of the equilibrium value of g should
be modified a little[8].

In Table 3, we compared two ways of radiation treatment in
terms of M'! and D[N]. There seems no remarkable difference
with respect to M!! in the present problem. Also in the multi-
particle tracking , there does not seem to be so much difference
in the beam sizes. (In case of linear force insertion, there is a
great difference[4]).

As for D[N}, the difference is more noticeable. In simulation,
thus, the symmetric radiation is recommended even though it is
more time consuming and even though it gives similar results as
the asymmetric prescription for M4,
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