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Abstract

It has been phenomenologically shown and widely supported by experiments that statistical properties
in small scales of turbulence of incompressible fluids exhibit some universality irrespective of the
kinds of fluids, boundary condition and the Reynolds number. On the other hand, this system
is believed to be governed by the Navier-Stokes equations which consist of the equations of motion
and of continuity. However, relationships between these equations and phenomenologies on statistical
properties of small-scale motions have not been clearly understood primarily because such a statistical
theory is hard to construct due to the nonlinearity of the basic equations. Since the nonlinearity causes
an infinite hierarchy of moments, we never obtain a closed set of equations for a finite number of
statistical quantities without any assumptions. This is the so-called closure problem in the statistical
theory of turbulence. We adopt the direct-interaction approximation (DIA), which was originally
proposed by Kraichnan (1959), to attack and solve the closure problem.

The DIA is an excellent approximation in the sense that the nonlinearity is never neglected and
no adjustable parameter is introduced in the formulation. Unfortunately, however, it is known that
a closed set of equations obtained by a naive application of DIA (Kraichnan 1959) to the Navier-
Stokes system is inconsistent with experimental observation. Especially, it is E(k) o k=2 that the
closure equations predict as the energy spectrum E(k) in the inertial range, where the k~*/3 power
law is observed by many experiments. This inconsistency implies incompleteness of the application
of DIA to the Navier-Stokes system. Although Kraichnan (1965) improved the application method
of DIA and succeeded in deriving the k=5/3 power law, the formulations are too complicated to be
justified. Moreover, in spite of its long history and important role in the field of the statistical theory
of turbulence, the essence of DIA may have been misunderstood by many researchers. This is due to
the fact that validity conditions and applicability of DIA were not clear.

We introduce a model equation, consisting of quadratic nonlinear and linear dissipative terms,
which is simpler than the Navier-Stokes equation but still possesses its important mathematical struc-
tures. Then, it is shown that DIA is valid for such a system that has weak nonlinear couplings and
large numbers of degrees of freedom even if nonlinearity of the system is strong (i.e., the nonlinear
terms are larger than the linear ones in magnitude). Furthermore, we clarify similarities and dif-
ferences between DIA and a Reynolds-number expansion so-called RRE (Reynolds-number reversed
expansion). For some known systems, including the Navier-Stokes system and the present model,
these two approximations yield an identical set of equations for the correlation and the response
functions. Owing to this fact, these two approximations have sometimes been identified erroneously.
It must be stressed, however, that DIA and RRE are based upon completely different ideas and work-



ing assumptions. Hence, we should distinguish these two theories. This is reasonable because the
validity conditions of DIA depend on the strength of nonlinear couplings and the number of degrees of
freedom, but not on the Reynolds number, while the validity of RRE depends crucially on magnitude
of the Reynolds number.

We further investigate the validity condition of DIA and the relationships between DIA and RRE
from a viewpoint of the strength of nonlinear couplings by extending the model equation. [t is then
shown that DIA is valid for systems such that the average munber of direct interactions between a
pair of modes is much smaller than the square root of the number of degrees of freedom, and that
RRE may be regarded as an approximation under which the nonlinear terms are replaced by a joint-
Gaussian random variables. The last approximation, called normal nonlinear term approximation,
has the same validity conditions as DIA.

Small-scale motions of turbulence may be statistically homogeneous, and the number of degrees
of freedom of this system increases in proportion to the 9/4 power of the Reynolds number. Hence,
small-scale motions of turbulent fields at high Reynolds number satisfy the two validity conditions
of DIA, i.e., weakness of nonlinear couplings and largeness of the degrees of freedom. This implies
that DIA is applicable to this system. As mentioned above, however, when we apply DIA to the
Eulerian velocity correlation function and the Eulerian velocity response function (Kraichnan 1959),
we encounter the difficulty that the resultant closure equations are incompatible with experiments.
Here, we instead apply DIA to the Lagrangian wvelocity correlation function and the Lagrangian
response function with the help of the position function (Kaneda 1981), which is a map between the
Eulerian and the Lagrangian fields. The resultant equations yield not only the well-known k=5/3
power law predicted phenomenologically by Kolmogorov (1941) of the energy spectrum, but also the
functional form in the entire universal range, which excellently agrees with experimental data.

We next apply DIA to passive scalar fields (temperature, particle concentration, smoke, and so on)
advected by turbulence without affecting fluid motions. Then it is systematically shown that solutions
to the resultant closure equations by DIA for the Lagrangian correlation and the response functions
for the velocity and the passive scalar fields are completely consistent with the phenomenologies on the
scalar spectrum by Obukhov (1949) and Corrsin (1951) in the inertial-advective range, Batchelor,
Howells & Townsend (1959) in the inertial-diffusive range, and Batchelor (1959) in the viscouns-
advective range.
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Chapter 1

Introduction

1.1 Universality of turbulence

Let us start with Fig.1.1 which shows the well-known characteristics of incompressible fluid turbulence:
Universality of statistics of small-scale structures.

In this figure, experimental data of the one-dimensional longitudinal energy spectrum Ej (k) de-
fined by

By(k) = ~2l [dr Vi(r) exp| —ikr ] (1.1)

with
Vir) = wlz + er) w(x) (1.2)

in various kinds of turbulence are collected and shown by symbols. Here, u;(z,t) is the i(= 1,2,3)
component of fluid velocity vector measured at position @ at time £, e; is the unit vector parallel to 2
axis, k is the wavenumber, and an overbar denotes an average. Such a remarkable coincidence in the
large-wavenumber (small-scale) range of the spectrum from different data has been brought about by
normalization of k& by the Kolmogorov wavenumber,

ko= = (e/v) (13)

and of Ey by (ev*)'/1, where € and v are the mean rate of the energy dissipation per unit mass and
the kinematic viscosity of fluid, respectively. It is these unique combinations of ¢ and v, i.e., (¢/1®)1/*
and (er®)!/4, that yield the dimensions of the wavenumber [L™!] and the energy spectrum [L3T 2]
because € and v have the dimensions of [L*T'3] and [L*T "], respectively.

Both the idea of universality of small-scale fluctuations and the dimensional analysis in terms of ¢
and v constitute the basis of the Kolmogorov theory [1]. He introduced a local spatiotemporal coor-
dinate and a relative velocity field, and defined a notion of locally homogeneous isotropic turbulence,
which is much wider than the notion of isotropic turbulence by Taylor [2,3] (see also §1.5). IHere,
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FIGURE 1.1 One-dimensional longitudinal energy spectrum defined by (1.1) in the universal range of
statistically stationary turbulence. Symbols denote experimental data for various kinds of turbulence
(taken from Chapman 1979, Grant et al. 1962 and Saddoughi & Veeravalli 1994). R is the Taylor
microscale Reynolds number defined by (1.24).



the words homogeneity and isotropy are used in a statistical sense. In other words, even if a flow
field is not globally statistically isotropic by the boundary condition or some other reasons, the field
may be locally isotropic in small (precisely, much smaller than the integral scale (1.20)) domains far
from the boundaries, when the Reynolds number, defined by (1.13), is sufficiently large. He then
suggested a similarity hypothesis that the joint-probability distribution function of relative velocities
in the local coordinate is uniquely determined by e and v, if the system is locally homogeneous and
isotropic. This is the first similarity hypothesis by Kolmogorov, and is the basis of the dimensional
analysis. Incidentally, he further suggested, as the second hypothesis, that for length scale larger than
the viscous scale 7 (the Kolmogorov scale) the joint-probability distribution function is free from the
viscosity v, and is determined only by e. This Kolmogorov second hypothesis yields the well-known
k~53/3 power law of the energy spectrum in the inertial range, i.e., over the length scales between the
integral and the viscous scales (see §3.1.1).

We should refer, in passing, to a widely accepted understanding of the Kolmogorov theory by the
use of the notion of the energy cascade to smaller scales. Energy inputed by large-scale motions is
transfered down to small scales, and during this process information of the large-scale structure may
be lost, and then the small-scale motions acquire a universality. However, it has been reported that
the energy transfer between different scales is caused by strong non-local interactions (see e.g. Ref. [4]
and also §3.4.4). This may call the above simple argument of the energy cascade into question. There
does not seem to any definite reasons why turbulence has the universality in small scales. Notice
that the energy dissipation rate ¢, which is employed in the dimensional analysis, is also equal to
the energy input rate and to the energy flux in the energy cascading range of statistically stationary
turbulence.

Throughout this thesis, we assume that the fluid motion is governed by the Navier-Stokes equation,

LIS W e B SO AR =2 izt (=123 (1.4)
It T, u i, 35_-; b L = p oz ple,t aﬂ"_jal’j ihaley = Lly& } .
and the equation of continuity,
i wi(xz,t) =0, (1.5)

dz;
where p is the (uniform) density and p(z, t) is the pressure. Repeated subscripts are summed up over
1—3. Once we assume that the governing equation is common irrespective of the kind of flows, the
validness of the universality of small-scale fluctuations may be trivial. We emphasize, however, that
it is never easy to reveal the relationships between the universality of the small-scale motion and the
basic equations (1.4) and (1.5) because of their nonlinearity. Tn the next section, we describe this
problem.

1.2 Statistical theory — closure problem

It has been a common sense that the problem on turbulence is one of the most difficult unsolved
scientific issues in the classical mechanics. A main difficulty seems to arise from its strong nonlinear-
ity. In general, this property yields chaotic motion, which is one of the most typical characteristics



of turbulence, and makes the analysis of the system difficult. However, it is not necessarily disad-
vantageous because the randomness may permit us to treat the system statistically. In other words,
one may describe the properties of the field in terms of the distribution function in a six dimensional
phase space instead of the detailed spatiotemporal information of the field with an enormous number
of degrees of freedom. Indeed, Hopf [5] succeeded in obtaining a functional integro-differential equa-
tion which describes the temporal evolution of the probability distribution of the velocity field. This
contains complete information of the statistics of homogeneous isotropic turbulence. However, this
functional equation is too difficult to solve. In this situation we are tempted to deal only with the
lower order moments of the distribution function such as the mean velocity or the two-point velocity
correlation function, which are usually more important than the higher order moments. By taking
an average of the basic equation, we derive easily the governing equation for the mean velocity, which
depends on second-order moments of the velocity field (or the Reynolds stress). Similarly, third-order
moments generally appear in the evolution equation for the two-point velocity correlation function.
These terms of higher-order correlation functions originate from the nonlinearity of the Navier-Stokes
equation, and this hierarchy of moments continues infinitely. Hence, we have to impose some as-
sumptions to obtain a closed set of equations for finite number of statistical quantities. This is the
so-called closure problem in the statistical theory of turbulence. Although numerous studies for this
problem have been proposed by many researchers, none of them seem to be successful. The quasi-
normal approximation (QNA) [6-8], for example, is based upon the experimental evidence that the
probability density function of the velocity is nearly Gaussian. Thanks to the mathematical prop-
erty that even-order moments of joint-Gaussian random variables are expressed in terms of only its
second-order moments, we obtain a closed set of equations for second-order correlation function of
velocity field in the frame of QNA. However, this approximation leads to an unphysical result such
as the negative energy spectrum [9). Although a Markovianization [10,11] can avoid this realizability
problem, it predicts k=2 power law of the energy spectrum in the inertial range, which is inconsis-
tent with both the Kolmogorov theory and observations. The eddy-dumped quasi-normal Markovian
(EDQNM) theory proposed by Orszag [12] successfully predicts the k=7 power law of the energy
spectrum. However, EDQNM has a free parameter which cannot be determined in the framework of
the theory itself, and which are adjusted for a better agreement with observations.

1.3 Weakness of the nonlinear couplings

As stated above, it is challenging to attack the closure problem in the statistical theory of turbulence.
In the following, we restrict ourselves to homogeneous turbulence. As shown below, homogeneous
turbulence possesses an important property: Weakness of the nonlinear couplings. This will serve as
a small parameter, based upon which we shall develop a closure theory.

In order to make the analysis easier, we consider, first, the motion of a fluid confined in a periodic
cube of side L, and later we shall take the limit L. — oo. These procedures may be justified for
small-scale motions of turbulence at very large Reynolds number. Thus, we expand the velocity field
uy into the Fourier series as

w(z,t) = (T)a > ik, t) exp| ;k..«;], (1.6)
&



3 S (1.7)
k R==—00 ig=—00 fig=—0C
with 5
k= Tﬂ{ﬁ1,ﬁ21ﬂ3} {nhnﬁanﬂzﬂtil'liz'l“']l {]-E]l
and rewrite (1.4) in terms of the Fourier components as
-'3 9 |~ i 21’1’ 3 - - i
= +uvk? |k, t) =—= (5] Pym(k) .Y #i(—pit) im(—q,1). (1.9)
at 2 \L iy
(k+p+g=o0)
Here, k = |k| and
- - - = kik;
Rijm[k] = km Pl]{k} + kj Hm{k} and P;'_-p [k} = aij e F . {llﬂj

In the derivation of (1.9) we have used the incompressible condition k;i;(k) = 0, which is equivalent
to (1.5).

The right-hand side of (1.9) is composed of a summation of many products of Fourier modes. We
choose arbitrarily a triplet of Fourier modes u;(k,), u;(k2) and i;(ks) (ki + k2 + ka = o). Then,
ii;(ko) appears on the right-hand side of the governing equation (1.9) for k; as a term,

(2?5 " -
i (T) Brim (k1) 5=k, £) Tom(~K3, 8) (1.11)
On the other hand, #;(k;) appears in the equation for i, (ks) as
. (2n\? = z 5
- I) Bijm(k2) 5~ k1, t) (3, 1) (1.12)

We call these nonlinear interactions, which explicitly show up in the governing equation, the direct
interactions between #;(k,) and @;(kg) through #;(k;). Of course, these two modes nonlinearly
interact with each other by a series of direct interactions between other modes, which is called the
indirect interaction.

It must be emphasized that the condition of the summation on the right-hand side of (1.9) such
that k + p + ¢ = o permits only a single direct interaction between any pair of Fourier modes; for
example, as seen above, u;(k;) and @;(ks) interact only through %;j(—k; — py). Incidentally, the
number of direct interactions between a pair of modes in an N-mode guadratic nonlinear system is
O(N) in general. In this sense, the nonlinear couplings of the Navier-Stokes system (1.9) are quite
weak even if the nonlinearity (ratio in magnitude of the nonlinear to the linear terms) is very strong.

1.4 Purpose of this thesis

The main purpose of this thesis is to reveal the relationships between the phenomenologies on small-
scale statistics of turbulence and the basic equations. In other words, we aim at solving the closure



problem in the statistical theory of turbulence. It is the weakness of the nonlinear couplings of the
MNavier-Stokes system that is a key to attack this problem. Notice that phenomenologies such as
Kolmogorov's can predict the existence of universality of statistical quantities, but not the functional
forms (e.g. a solid line in Fig.1.1). On the other hand, the statistical theory based upon the basic
equations should be able to make quantitative estimations of the universal forms. Therefore, an
introduction of adjustable parameters reduces the value of the closure theory.

1.5 Fundamental quantities

Before moving on to the main task, we define here some fundamental quantities such as the Reynolds
number. For saving space, we give a minimum amount of descriptions. For further details, see
textbooks by Lamb [13] and Batchelor [14] for fundamentals of fluid mechanics, and by Batchelor [15],
Rotta [16], Tennekes & Lumly [17], Leslie [18], Moin & Yaglom [19], McComb [20], Frisch [21],
Lesieur [22] and so on for fluid turbulence.

Let u,, and L be the characteristic velocity and length scale, respectively. It is easy to show that
the Navier-Stokes equation non-dimensionalized by u,, and L has only a non-dimensional parameter,

the Reynolds number, defined by

fo= B0, (1.13)
L

For isotropic turbulence (see below) the characteristic velocity ., is defined by

uZ, = § w(z) uilx) (1.14)

and the characteristic length scale is defined by (1.20). The Reynolds number represents the ratio
between the magnitudes of the nonlinear and the linear terms, i.e., the strength of nonlinearity.

If the statistical quantities are independent of the absolute position, the system is called to
be statistically homogencous. For example, the two-point velocity correlation function defined by
Vij = ui{z, t) u;(z’, t) in a statistically homogeneous field depends only on the difference between the
position vector » = £ — &', and is expressed as

Vij(r, 1) = wilz, t) ui(z + 7, 1) . (1.15)

Furthermore, if statistical quantities of a system have rotational symmetry, we call that the system
is statistically isotropic. The general form of an isotropic second-order tensor depending on a vector
r is expressed as

["’.'j('l", t) = A(r,t) riry + B(r,t) 85 + C(r, ) €ijn Tx (1.16)

(see e.g. Ref [15]). If the system has a reflectional symmetry, the scalar C vanishes. In the following,
we use the word isotropic for those systems that have both rotational and reflectional symmetries.
Therefore, in the statistically homogeneous isotropic field, V}; can be expressed in general in terms
of only two scalar functions. Furthermore, if the velocity field is incompressible, then

d d



and Vj; is expressed in terms of a scalar function f(r) as

a s s |
Viglr, ) = ub; ‘Ef[’"rﬂ"éf"‘ fr, ﬂ+§§“r’t}] ﬁﬁ]- (1.18)

Here, f(r) is the longitudinal velocity correlation function defined by

ul f(r,t) = u(x, t) u(re) + x,t). (1.19)

Notice again that the two-point velocity correlation tensor in statistically homogeneous isotropic
turbulence can be expressed by only one scalar function. This simplicity encourages us to attack the
statistical theory of the system.

One of the most important statistical properties of turbulence is that there exist a few number
of characteristic length scales. For example, there are only two characteristic length scales in the
statistics of the incompressible turbulent velocity field. They are L and 5, which characterize the
large and the small scale motions, respectively. Note that, as will be seen below, the ratio of L to g
increases with the Reynolds number (see (1.26)). By the use of the longitudinal velocity correlation
function (1.19), we can define the characteristic macroscale L by

L=fﬂwdrf|:r}, (1.20)

which is sometimes called the integral scale. On the other hand, we often use the characteristic
microscale defined by

& —1/2
A= [—Ff(r] rzﬂ] . (1.21)

which is called the Taylor microscale. The ratio of L to X increases with the Reynolds number as

IIJ ~ Re''?. (1.22)

However, this microscale A is not appropriate to characterize the small-scale motion of turbulence.
We should use the Kolmogorov length scale 5 defined by (1.3) instead of A. The ratioof n to A is a

function of the Reynolds number as
A

=~ Re'/1, (1.23)
n

The Kolmogorov 7 is a scale at which the eddy turnover time and the viscous dissipation time scale are
comparable, while the Taylor microscale has no such mathematical or physical meanings. Actually no
characteristic features are seen at the microscale A in Fig.1.1, in which the wavenumber is normalized
by the Kolmogorov wavenumber &y = n~!. However, experimentalists prefer to the Reynolds number
defined in terms of the Taylor microscale A, which is easy to measure,

U A

R = (1.24)

L
It is useful to remember that this Taylor microscale Reynolds number is expressed by the Reynolds

number defined by (1.13) as
Ry ~ Re'/?, (1.25)



Finally, let ug consider the number of degrees of freedom of turbulence. Since the ratio of the
macro and the micro scales is expressed by the Reynolds number as

i Re?/4 (1.26)

i

the number of degrees of freedom N of active components of motion may be estimated as

i 3
N ~ (—) ~ Ret (1.27)
n

in a three dimensional flow. Note that (1.27) gives an upper bound of the number of degrees of
freedom. Since small-scale structures in turbulence are known to be very localized, we may express
turbulent field in terms of smaller number of components than N by employing a more appropriate
expansion instead of the Fourier. Although some attempts (e.g. Ref. [23]) to determine the actual
number of degrees of freedom of turbulence by the use of notion of attractor in the phase space have
been made, this problem is still open.



Chapter 2

Direct-Interaction Approximation

We introduce the direct-interaction approximation, which was originally proposed by
Kraichnan [24], by the use of a model equation which is simpler than the Navier-Stokes
equation but still retains its important properties. We show that this approximation is
applicable for a system with a large number of degrees of freedom, clarify similarities and
differences between this approximation and a so-called Reynolds-number reversed expan-
sion [25], and point out importance of the strength of the nonlinear couplings.

2.1 Introduction

Although numerous attempts have been made on the closure problem (§1.2), little attention is paid
to the important property of the Navier-Stokes equation (1.9) for homogeneous turbulence, that is,
the weakness of the nonlinear couplings (§1.3). The direct-interaction approximation (DIA), which
was originally introduced by Kraichnan [24], is a unique approximation which is founded on this
property. Unfortunately, however, we encounter an additional problem in the choice of statistical
variables (whether the Eulerian or the Lagrangian quantities), when we apply it to the Navier-Stokes
turbulence. This additional problem will be considered in the next chapter. We focus here in this
chapter to understanding of the essence and the applicability of DIA. Tt should be emphasized that
in spite of its long history no systematic studies have ever been made to clarify the applicability of
DIA.

Before moving on to the main task, it may be desirable to review that a closed set of integro-
differential equations derived by DIA (called Eulerian DIA equations in this thesis) are also obtained
by different kinds of approximations. For example, they are rederived by diagrammatic techniques
developed by Wyld [26] and Martin et al. [27], and also by a method described in Leslie’s textbook [18]
as an explanation of DIA, which is a Reynolds-number expansion followed by a formal replacement
of variables. This last method was justified in Ref. [25] by a kind of systematic expansion, which we
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call here the Reynolds-number reversed expansion (RRE). This fact that the Eulerian DIA equations
are derived by several methods has brought us some confusion. Especially, many researchers tend to
regard mistakenly DIA as an approximation for low Reynolds number turbulence because RRE leads
to the Eulerian DIA equations, and because RRE obvicusly works for small Reynolds numbers. In
this chapter, in order to clarify this confusion we consider similarities and differences between DIA
and RRE, and show that they have different parameter regions of applicability.

We shall introduce a model equation to explain DIA for understanding of its essence in detail.
A large number of studies using model equations have already been made for this purpose. Among
others, the random coupling model [28-30] and the spherical model [31,32] may be the most famous
ones. These are known as such systems for which the DIA equations are exact in some limits. These
models are, however, constructed as a coupling of the Navier-Stokes equations, and the physical
meanings of couplings of equations are obscure. A model we deal with in this chapter is a dynamical
system which is much simpler than the Navier-Stokes equation but still retains important ingredients
of the latter. This model equation is a single equation for NV variables, and consists of guadratic-
nonlinear, linear-viscous and random-forcing terms. It is the same as the ones introduced by Betchov
[33] and Orszag [12] to explain the notion of DIA except that they do not have viscous and forcing
terms. Incidentally, as long as the author knows, the article by Betchov [33] is one of the best
explanations on DIA.

This chapter ! is organized as follows. Our model equation is introduced by paying attention to
ga

the weakness of nonlinear couplings ? of the Navier-Stokes equation and solved numerically as an
initial value problem in §2.2 (an example of the concrete construction method of the model system
is given in Appendix A). Then, DIA and RRE are formulated in §§2.3 and 2.4, respectively. Validity
of all working assumptions introduced in DIA is confirmed numerically in §2.5. Section 2.6 is for the
concluding remarks of this chapter.

2.2 Model equation

2.2.1 Model equation with weak nonlinear couplings

By noting the property of the nonlinear couplings of the Navier-Stokes equation (1.9} described in
§1.3, we introduce a nonlinear model equation which is similar to (1.9). Let X;(i=1,2,---, N} be
sealar real variables which correspond to the Fourier components @(k) in the Navier-Stokes system.
Here, the subscript 1 may be understood to represent the wavenumber k, the three axial components,

"This chapter is based upon Ref. [34].

*We shall deal with the case of stronger nonlinear couplings in Chapter 3.
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and the real and the imaginary parts of @(k). These real variables X; are governed by

% Xi{ﬂ _— ZE Cl_'ifk X.:I'Et] Xk{t} — 4 Xi{t} + -F.l”'} {tl =1,2,--- :N] 1 {21]
i k

where 5, stands for T . (The summation convention for repeated subscripts is not used throughout
this chapter.) The coefficient, 14, of the linear term is a positive constant, which is an analogue of
the viscous effect in the Fourier representation of the Navier-Stokes equation. It can be assumed,
without loss of generality, that the time-independent coefficients, Cyji, of the quadratic-nonlinear
terms should be symmetric with respect to the second and the third subseripts, i.e.,

G:_ﬂi‘ —| C‘ik_;l {'E-_Ij,k = 1+2r"'TP'Ir} H [2.'2]
We further assume that
Ciji;'!'ng."l"Gg{j'—_ﬂ (i, 7,k =1,2,---, N} (2.3)

so that the sum of the energy of three modes } (X, + X ?+ X,?) may be conserved through the direct
interaction between them. This property of detailed balance of energy is analogous to the Navier-
Stokes system, and guarantees the conservation of the total energy of the system £ = 5 3~; X;* when
the viscosity v; (and therefore F;, see (2.4) below) vanishes. There is still an arbitrariness in the
choice of the numerical values of the coeflicients with the above properties. Here, notice that model
equation (2.1) can be equivalent to a forced Navier-Stokes equation (1.9) if coefficients Cyj and v
are appropriately chosen. In the following we restrict ourselves to a much simpler system that

[1] Cijx satisfies conditions (2.2) and (2.3),

[2] the system is, for simplicity, symmetric with respect to i (not only »; = v but also Cjjp is
homogeneous),

[3] the system have no self-interactions (i.e., Cyp =0ifi=j3, j =k or k = i),

[4] there is only a single, at the most, direct interaction between each pair of modes {X;}.

A way of construction of the coefficients Cy;; satisfying the above three properties is described in
Appendix A. We emphasize the importance of the last property (weak nonlinear couplings). Figure
2.1 is drawn for an explanation on the direct interactions in the Navier-Stokes equation and this
model. As discussed in §1.3, there is a unique direct interaction between each pair of Fourier modes,
i.c., a property of the so-called triad interaction in the Navier-Stokes equation. The last condition
[4] of the coefficient is reminiscent of it. This property of weakness of nonlinear couplings is essential
in the formulation of DIA (see §2.3.1 and Chapter 5).

The inhomogeneous term F;(t) is a random driving force. It is piecewise constant in each time
interval Af, which is set to be equal to the time increment of the numerical simulations, and the
amplitude obeys a Gaussian distribution of zero mean and of variance given by

2: 2
NAtS

a

(2.4)
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N (ko)
G~k — ks)
lks]
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ul—k, —
-k — k2)

FiguRE 2.1 (a) Direct interactions between @(k;) and other modes in the Navier-Stokes equation

(1.9). The direct interactions are expressed by triangles made by three points, which correspond to
Fourier modes, placed on a circle drawn for the sake of convenience. As discussed in §1.3, there is a
unique direct interaction between %(k;) and w(k,), for example. through %(—k; —k4). This property
is valid between an arbitrary pair of the Fourier modes. In other words, (1.9) is a dynamical system
with weak nonlinear couplings. (b) Direct interactions between X, and other modes in the model
equation (2.1) with the conditions ([1]-—[4] in §2.2.1). This system is similar to (a) in the sense of
weakness of the nonlinear couplings. The coefficients C;; is constructed so that there is only a single
direct interaction, at the most, between each pair of modes { X, }.

The forcing at different time intervals or of different modes are assumed to be statistically independent
of each other. Variance (2.4) has been chosen so thatl the averaged total energy be a half of unity,

ot Himnne ;
£=§ Edk"::—i {?ﬂ:l

i
in the statistically stationary state ®. The overbar stands for an ensemble average (or a long-term
average in a single run of simulation).

2.2.2 Direct numerical simulation

Before developing formulation of closure equations, it may be useful to see the statistical property of
model equation (2.1) by solving it numerically as the initial value problem.

The initial values of X; are given by random numbers under the constraint that ¥; X = 1. The

L
fourth-order Runge-Kutta scheme is employed for the time integration. There are two control param-

eters which characterize the present system, that is, the degrees of freedom N and the viscosity v, In

3By taking an ensemble average of equation (2.1) multiplied by X, and summed up over 1 < i < N, we obtain the
energy equation as
— N
uz X _Z FXi=5da,

in a statistically stationary state.
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order to examine the dependence of the statistics of the system on these parameters we perform two
series of simulations; (N, v) = (7,100),(7,10),(7,1).(7,0) and (N, ) = (7,0}, (10,0), (20,0}, (40,0).
In the first series we examine the viscosity dependence, while in the second the dependence on the
numbers of degrees of freedom. The time increment At is taken as 5 x 107%, 2x 1073, 1072 and 10~*
for N =7, 10, 20 and 40, respectively.

2.2.3 Correlation function

The two-time two-mode correlation function,
Vin(t, ') = Xi(t) Xo(t) (2> 1) (2.6)

is one of the representative statistical quantities which characterize the dynamical system (2.1). The
governing equations for it are derived from (2.1) as

a r 3 I [}
[E + V] Vin(t, t') = ?g Cije X;(1) Xie(t) X (t) (2> 1) (2.7)

and

|% X 2“] Vin(t,t) =3 3 Cijk X,(8) Xi(t) Xa(t) + Bi(H) Xu(8) + (f 0 m).  (28)
ik

These equations cannot be solved because of the appearance of a higher-order (third-order) correlation
function which originates from the nonlinearity of (2.1). This is the well-known closure problem. As
closure theories to solve it, we consider DIA in §3 and RRE in §4.

For a later comparison with the statistical theories we show here the the auto-correlation function
(i = n) obtained by the numerical simulations described in the preceding subsection. The viscosity
dependence of the auto-correlation function is depicted in Fig.2.2(a) in which those for v =0, 1, 10
and 100 are compared in the case of N = 7. The time is normalized by the viscous time-scale 1/
in Fig.2.2(b) (see (2.7)). We see that the characteristic time-scale of the velocity auto-correlation
function changes in proportion to the viscous time for v = 1.

In Fig.2.3(a) we show the dependence on the number of degrees of freedom of the auto-correlation
function, where those for N = 7, 10, 20 and 40 are compared in the inviscid case. The decaying
time-scale of the function decreases as N increases. The time is normalized by times-scale /N/c, of
the nonlinear term in Fig.2.3(b) (see a paragraph below (2.76)).

2.3 Direct-interaction approximation

In this section we shall explain DIA by the use of the model egquation (2.1). It should be emphasized
again that the formulation for the model equation is essentially the same as one for the Navier-Stokes
equation. It may be more understandable and useful for readers to see first the formulation for the
simpler system.
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FIGURE 2.2 (a) Auto-correlation functions V;(£.¢)) = X;(t)X;(#') for N = 7 and v = 0 (thin solid
line), 1 (thin broken line), 10 (thick broken line) and 100 (thick solid line). (b) Same as (a) but for
a rescaled time.

(a) (b)

1"‘j:'*.:'(t'.-r{]
Vii{t! H)

JaINE=-3

FIGURE 2.3 (a) Auto-correlation functions normalized by Vi;(¢,t) for v = 0. The degrees of freedom
N = 7 (thin broken line), 10 (thin solid line), 20 (thick broken line) and 40 (thick solid line). (b)
Same as (a) but for a rescaled time (see (2.74) for the definition of ¢;).

i
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First, for later use, we introduce a response function of X;
aX;i(t)
XA (t)

where § stands for a functional derivative. The evolution equation of Gy, is derived from (2.1), by
taking a functional derivative with respect to X, (t'), as

Ginlt|t') = ZZ 2Cyjn Xj(t) Graltlt) — v Gin(tlt')  (£> 7). (2.10)

Gun(tt') = (t=1), (2.9)

The boundary condition is given b;,r

Gin(t]t) = bin , (2.11)
where §;;, denotes Kronecker's delta. In the following we derive a closed set of equations for 15, and
Gin by the use of DIA from basic equation (2.1} and its products (2.7), (2.8), (2.10) and (2.11).

2.3.1 Direct-interaction decomposition

The DIA is formulated on the basis of the direct-interaction decomposition [24,35], in which the true
field X; is decomposed into two fields, an NDI (Non-Direct-Interaction) field X @ and a deviation

ifinfoke
feld X'V

ifigjoka’ A8

Xi(t) = X0) o (tlto) + XL (tlt) (2 to) - (2.12)

Here, X‘ fio Mh{titg] (t = tp) is defined as a fictitious field without the direct interaction between three
particular modes X;,, X;, and X, and {; denotes the time when the interaction is removed, i.e.,

Xf?;]mku[tﬂﬂﬂ} Xi(tg)  and Xffjmkﬂftﬂitn} o (2.13)

For simplicity of notations, the argument & in x{0) and XLI:}J - will be omitted below. It

t/inJoko
should be noted that there is no direct interaction between the three modes X (0) X}:}m ik

ig/iojoko’
Xﬁg}in joko (see Fig.2.4). This property is originated from the the weakness of the nonlinear couplings

of the system.

and

It follows from the definition that the NDI field obeys

X (0) (0) )
-::lt Xifiodoko () = sz: Cisk Xjiogoko (&) Xifiozore ) =¥ Xifigjone (8) + Filt) -
]
ik} # oo ko)
(2.14)

Subtraction of the above equation from (2.1) leads to the equation for the deviation field as

d (1) (
dt a!m;ﬂukn( = Z; 2 Cyk X5(1) Xk;.,:u,;,kﬂ[” = VX-;gmkﬂ[ ]
3
{ig.k}# {0 do.ko}

(0) (0)
+ 2840 Ciajoko X o figsoks () Ko igsoks ()

o (0)
+ 20455 Ciokoio X-‘-’u{"m_?uku{ﬂ X!u.l'll:-_?u'-'u“j
+ 28ikg Craipjo X _U:']!_ <3 x4 (t) , (2.15)

ig/iodoko { Jofiagoko
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DR ¢

NDI field X%

True field X; ifinjoko

FIGURE 2.4 The direct-interaction decomposition. The NDI field X[/} ., is defined as an artificial

field in which the direct interaction between X;,, X;, and X, is absent for time ¢ > tp. Since there
is only one, at the most, direct interaction between each pair of modes (the property of the weak
nonlinear couplings), these three modes do not have any direct interaction between them in the NDI

field.
where Xf” is assumed to be much smaller than X:-:G] in magnitude (see DIA assumption 1 below),

The response function Gy, is similarly decomposed as

Gin(t) = Gln)iyioko (1) + Gl H1E) (2.16)
where Gm Tiajoko 18 governed by
d
ot Eﬂ}mmkumt Jive ZE 2Cin X4(t) Gk“ﬁo}okﬂmt b= UGE:E’wukn“w} - (217)

1
{EJ!k}?&{iﬂ\jﬂrkﬂ}
Here, the direct-interaction decomposition has been made at #/. The evolution equation for the
deviation field of the response function is then obtained from this equation and (2.10) as

d
a GEn:jfannku{ﬂtF}: ZE 2G’J‘-‘-’ J{ﬂ knftu_mkg{tlt:}_quhg_mk.)Ef‘lt'}

J kK
{ig.k]}#{i0J0. o}
+2 ﬁ'|"|';| G‘Eujq;.kn Xju [t} G{un Iﬂmko{f[ti

+2 51“, C‘ﬂ.?ﬁkﬂ Xku{t} Jnﬂ’lﬂjukﬂ{ “‘i

+ 263i Chokoio Xao () G o (1]H!

)

)

wn g foko )

+ 285, Cjokoto Xio(t) G0 i (H1E)
)

)

i}
+ 2 dikg Chyigjo Xig(t) GTTDL iojnh“lt

+ 28k Chaioso Xia(t) Gionioguko (LIt (2.18)
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where we have assumed that |G{“ tiojokol X 1G E:E"iujn &, (sce DIA assumption 1 below). The boundary
conditions are written, from (2.11), as

el (m =

mj:u;n;.kn{tlf'} and Giﬂﬁujukn“'” =0. (2.19)

Then, it follows from (2.13), (2.15), (2.17) and (2.19) that

(1) — (0) (0) (0)
X‘ftn.’inku“] N .[ [2 G“u.l’!u.ruko{tlf' ) Ciojoka X}ohuj{:-ko[t ) Xkufinjnkal:t;}

+2G ) () Clokio X i ) X ()

tjo/iodako kg figjoko ig figjoko

0¥ (0 o)
+2{35kif:'njnku “If} C"‘ﬂfﬂl?ﬂ Xio ;tn.’mku (t ) xisuﬁo_'ioku{f}

(2.20)
and, from (2.17)—(2.19), that
60 sore) = [ " [2 G oot ") Ciioko X (") G oo 4o (1E)
+2G{i nsoka ") Ciosoks Xeo(t") Gl t'It)
e Ggggfmukumt"} Cigksio Xis (") Gtgfxmm.,{t"lt'}
+2G5 e (") Ciokoo Xio ") Gl t'I1)
+2GY) oo () Chsiogo Xio(t") G e
+2G) 1 ioka ") Chsiogo Xio () G 1 i E71E)
(2.21)
The deviation fields Xl Fiojoko A0d Gm Tiojoko Ar€ thus expressed in terms of the NDI and the true fields.

Before proceeding further, we summarize the assumptions employed in DIA, which are

(1)
n/fiojo
k,,]- over the period of order of the decaying time-scale of the

DIA assumption 1 The deviation field X{}) .. (or G

(0) (o)
the NDI field X[/, .. (or G{p), =

auto-correlation function.

k) 18 much smaller in magnitude than

DIA assumption 2 (I) Three variables X7, X)), and X[, between which the direct inter-
(o (0

action is absent, are statistically independent of each other. (II) Similarly, G%, ., G

infijk 304
X are statistically independent of each other.

These assumptions may be reasonably accepted if the degrees of freedom N of the system is large
enough. Since there are a lot of direct interactions for N 3 1, the influence of extracting only a
single one should be negligible, and therefore the NDI field X Em {or Gﬁﬂ}} may approximate the true
field X; (or G;,), which is DIA assumption 1. DIA assumption 2 is based upon the idea that the
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correlation among three modes without direct interaction should be weak. This assumption may also

be justified only in the case of N » 1. For example, the contribution to the dynamics of Xir:}iujnku
0 0 i ' ; ; i
from X;ﬂ}imkﬂ or Xf:u}iojnkn through the indirect interaction terms is not negligibly small unless

N = 1. We will check in §5.2 the validity of these assumptions by making a comparison with direct
numerical simulations.

2.3.2 Correlation function

The DIA is applied here to the governing equations (2.7) and (2.8) for the correlation functions. First,
we consider the two-time correlation function. By substituting direct-interaction decomposition (2.12)
into the nonlinear term of (2.7), we obtain
0 0 ;
S Ciie X5 X)) Xnl®) = 33 Cijee X (8) X0 (8) X501 (8)
ik ik
() (1) ()
T EZ;, 2 Cijk Xjpin(t) Xpfipn(t) Xpfen (@)
b ]

+ 3% Ciik XD XPa® X ne),  (222)
J ok

where the higher-order terms of the deviation field have been neglected under DIA assumption 1.
Notice that a different triplet of (ig, jo. ko) is chosen in each term in the summand on the right-hand
side of the above equation, i.e., (ig, jo. ko) = (4,7, k).

Now we evaluate each term on the right-hand side of (2.22) in turn. It follows from DIA assumption
2(I) that
(First term on r.h.s. of (2.22)) =0. (2.23)

For the second term, by substituting the solution (2.20) of the deviation field, we obtain

(Second term on r.h.s. of (2.22))
t
- - ') my y (0 ) (0) (0)
=4 sz: j;}dt" Cijk Cinj G/ san(tlE") Xp fisen (€ X piaon (8) X5 pian () X 00 ()
I

t
=43 3" fh dt" Cijx Cinj Grr(tt") Vin(max{t’, 1"}, min{t', £}) Vj;(t,¢") , (2.24)
i k

where use has been made of DIA assumptions 1 and 2. The independency between Gﬁzfﬁjk and X_E?Ejk
0

follows from the assumption that X} ,ngk == X; and DIA assumption 2(II). The third term is similarly
calculated to be

(Third term on r.h.s. of (2.22))
tﬂ
=2 Z z [ dt” Cﬁk ank Gan(t'|t"} V}j{t,t"}l ka{t,t"} : (2.25)
T

by the use of (2.20). Thus the equation for the correlation function is written in terms of the
correlation function itself and the response function Gy, as

a :
[E +u] Vin(t, 1)
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L
= :iz Z fh dt” Cijk Cinj Grre(t]t") Vi (max{t', t"}, min{t', t"}) Vi;(t. t")
i k

ii
+2 ZZ[; dt” Cijik Cjr Gan(t'|t") Vis(t,£") Vie(t, t") (2> 1) (2.26)
i k B

For the one-time correlation function, the forcing term in (2.8) is rewritien as

e T Irs
F(t) Xo(t) = 3 Ato? & = ~ din s (2.27)

and the nonlinear terms are calculated in a manner similar to the above. Then, we obtain

d f S ,
{a + 21’] Vil #) =4 % ¥ L dt’ Cijx Crnj Gra(tlt') Van(t, 1) Vi;(2, 1)
7k

‘ R e
+23°% f' dt' Cijx Crjk Gun(tlt)) Vis(t, 1) Vie(t, 1)
J ok 0

+ 5 0 + (0 m). (2.28)

2.3.3 Response function

An ensemble average of (2.10) for the response function is written as

ot

L + V] Ginltl) =33 2Ci5X;(t) Gralt]t') - (2.29)
i &

The right-hand side of this equation may be calculated in the same way as in the preceding subsection.
Substitution of direct-interaction decomposition (2.16) into the right-hand side leads to

Y 3 2G5 X500 GrnllF) = 3 32 it X (1) G E18)

ik i k
+ 3 2G5 X(t) G altlt). (2.30)
Jj k

Thanks to DIA assumption 2(IT), the first term on the right-hand side of (2.30) vanishes. By substi-
tuting expression (2.21) of the deviation ficld G}cﬂ and decomposition (2.12), we rewrite the second
term as

(Second term on r.h.s. of (2.30))
f —_—
=4 2% [ 4t Cigp Cony Vit ') Crall1E") o (P1E) (2.31)
I -
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where use has been made of DIA assumptions 1 and 2 and the assumption that Gii‘}ijk = 0

This last assumption follows from DIA assumption 2(I) and the approximation® that GU). .. ~
0 0 :

EXL.I.L P :Uf} J,Lj.u b Thellnﬂuence of thi‘]:fk(f} on Xﬂ; ((t) (t > t') should be very small because

there is no direct interaction between these modes. Thus, the temporal evolution of the response

function is described by

F s=ms g ¢
[E‘E”l GullE) =4 3 [ 4" Gyt Chny Vi (") Curlo0) Gran P10 - (232)
J k

In summary, (2.26), (2.28) and (2.32) construct a closed set of equations for the correlation and
the response functions. A closed system for the auto-correlation function Vj; and the auto-response
function Gj; follows by putting i = n in these equations.

2.4 Reynolds-number reversed expansion

The reason why we explain here Reynolds-number reversed expansion (RRE), which is a kind of
a Reynolds number expansion and is obviously an inappropriate approximation for large Reynolds
number turbulence, is that we would like to clarify similarities and differences between RRE and DIA.
As mentioned in the introduction of this chapter, these two approximations yield identical closed set
of equations for some nonlinear systems including the model equation (2.1) (sec §2.4.4). However,
readers will see a clear difference between procedures of DIA and RRE. In addition, it will be shown
in the next section that RRE is an approximation for small Reynolds number field, while DIA is
applicable to a system with strong nonlinearity as long as its number of degrees of freedom is large
enough. Incidentally, the number of degrees of freedom in the Navier-Stokes system increases with
the Reynolds number.

Since we are considering the model equation (2.1) in the limit of weak nonlinearity in this section
(§2.4), we start with the linearized equation and treat the nonlinear term as a perturbation. To make
the formulation clearer, we introduce

R (2.33)
74
which represents the ratio of the nonlinear to the viscous terms and will be called the Reynolds

number on the analogy with the Navier-Stokes equation. Introducing a rescaled time,

t=vt, (2.34)

“The evolution equation for af;?::imbg = EXEE.’”G*Q "IIEX;JD’:{»JM:; is derived from (2.1) as
8 =i i () (0} ' (0] !
at G""J”ﬂ.fl:-*ﬂﬂlt J= ZZ 2Cij x.n"‘-'niu*a{t} G*ﬂ.-'l-:.ln*n (tt) — IrllGil"».f’l|'|:-.1411=1:|“lE )
¥ E

{"1111" #{"D WJO -ku}

A comparison between this equation and (2.17) may justify that !5{? - G;?’I < IG'E,':'}I because X (f) = Xf?j]m*g.
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we rewrite (2.1), (2.9)—(2.11) respectively as

SX@ =R Y Cor %0 Xald - %) + F@. (2.35)
ik

- {7 sz'[f] R
Gun(tl) = Z) {t=1), (2.36)
= Gnll) =R T 2Cun Xy Gn(@D) - G @>7) (237

i k
and

ém{?a = tiim 1 {238}

where X;(f) = X:(t) and Fy(f) = Fi(t)/v. For simplicity of notations, we omit tildes on #, X,, Gy,
and F; in §§2.4.1—2.4.3,

2.4.1 Reynolds-number expansion

For small Reynolds numbers R < 1 (i.e.,, v 3 1) it may be legitimate to expand X, and Gy, in power
series of R as

Xit) = xP2) + R xM(t) + O(R?) (2.39)
Gun(tlt) = GV H) + R G (1)) + O(R?) . (2.40)

By substituting these equations into (2.35) and {2.37), we obtain, at O(1),
d

5 X0 =-x"0 + F() (2.41)
and P
5 Cin (t1t) = —GL(tlt) (2.42)
while, at O(R), .
S X0 =% cu x") x7(0 - x1(0) (2.43)
i k
and
= G‘”(si:‘] = Z Z 205 X0 (1) Gt - Gt (2.44)

The boundary conditions of response functions G"{ ' and G“]' are respectively written, from (2.38),
as

G0 (te) = 6in (2.45)

and
¢V =o. (2.46)

It follows from (2.42), (2.43) and (2.45) that

t
P =L X% [ dt'Cuc 6wl XV ) XO (2.47)
a § €
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and from (2.42) and (2.44)—(2.46) that
[
D)= % f; dt" 2 Cape GV (112") XV (¢") GO(2"|1) . (2.48)
a §p &£

Here, we have assumed that
xVitg)=0. (2.49)

2.4.2 Correlation function

The evolution equations for the correlation function (2.6) are derived from (2.35) as

[% + 1] Vin(t,t) =R 33 Cije X300 Xu(D) XnlF) (£ > 1) (2.50)
i k

and

[% + 2] Vin(t, ) =R 3" Ciji X;(8) X (1) X (8) + % Sin + (i &+ 1) . (2.51)
i k

Substitution of the Reynolds-number expansion (2.39) and (2.40) into the right-hand side of (2.50)
leads to

RYY Cin 0 Xe®) Xult) =R 3% Cise X0t xO ) xP(v)
ik ik
+R23°S 20k x}”m xM ) xP()

5 ok

+R2YY Cun x00) Xy xPey
ik

(2.52)

where the terms of O(R?) are neglected under the assumption of small Reynolds number. Since Xfﬂ']
is a solution to the linear equation (2.41) excited by a Gaussian random force, it obeys a joint normal
probability distribution with vanishing covariance. This leads to

(First term on r.h.s. of (2.52)) =0. (2.53)
The second term of (2.52) can be written, on substitution of the solution (2.47) of XEI:', as

{Second term on r.h.s. of (2.52))
2 ¥ agl (00 ppgmry 3-l00 [T o e L
=2R ZZZZEL‘“ Case Cijie Gig (H") X5 (1) X" (1) X () X&' (t")
i k a b ¢

E "
DI IS D L dt" Cape Cigie G2 (¢)17)
i k & b ¢

X0(8) a7 (#) X, (en) Xe” (&)

»

+ X0 3 (e X8 xE (e)
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+X““{t]| {ﬂ] (") }’iﬂ]{tr} Xéﬂj[ﬂ'}

i
=4rR?2Y Y f dt” Chnj Ciit Grp (1) X2(0) XV (") xP () x e . (2.54)
n k fo

Here, we have used the relation,
G(tt') = 6in G (41t)) (2.55)

and the assumption of independency between Xi[m and Giﬂ], both of which may be justified by the

fact that GEE} is a solution to the linear equation (2.42) with the initial condition (2.45).

Now, we employ the procedure of so-called reversion to rewrite (2.54). Substitution of the
Reynolds-number expansion (2.39) into the definition (2.6) of the correlation function gives

Vit ) = VO, ) + R | XO@0) xD (1) + XV (0) xXPe) | + O(R?)

= V)(t,¥) + O(R), (2.56)

where V[ ) is defined by

0 o) {0 .
V) = X e) X0 () - (2.57)

For the response function, the ensemble average of (2.40) yields
Ganll?) = GO (4)t') + O(R) . (2.58)

The O(R) and the higher-order terms in (2.56) and (2.58) can be expressed in terms of If't-{;m and f}'t[-ﬂ}
in principle (e.g. (2.47) and (2.48) for the O(R) terms). We can then regard (2.56) and (2.58) as

equations for V{ﬂ} and GEE", the solution of which is written in power series of R as

VD (8, t') = Vin(t,¥)) + O(R) (2.59)
G(t|t") = Cinltl?) + O(R) . (2.60)

This procedure is called the reversion [25], which the naming of the Reynolds-number reversed ex-
pansion (RRE) originates from. Equation (2.54) is then written in terms of the true field variables
Vin and Gy, as

t ——;
@sdy=4R*3"%" f A" Cinj Cije Grx(HE") Vij(t,t") Van(max{#', ¢'}, min{t’, t"})
g
(2.61)
at the leading order. The third term of (2.52) can be estimated in a similar manner as

(Third term on r.h.s. of (2.52))
t' —
—2R2T S f dt" Cusic Cisk CrnlFTE) Vis(t,2") Vi (2, 2") . (2.62)
i k
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Thus, a combination of (2.52), (2.53), (2.61) and (2.62) finally reduces the evolution equation for the
two-time correlation function into

8
[E + 1] Vin(t, )
i O TR L et e
=42 YT f At Cnj Cijk GRrllIT") Vij(t, ") Vi (max{t', £}, min{t/, ¢'})
j xe

t =R,
H#2RY Y l dt" Crjk Cijk Grn(t'[t") Vit t") Vi(t ") . (2.63)
i k g

Equation (2.51) for the one-time correlation function is similarly derived as

l P
%4‘ 2] Vin(t, t) =4R? 3~ E/;, dt' Cinj Cijr Gra(tt) Vis(t, 1) Vanlt, )
7K

]
+2R Y [ af Coi Cigp TonllIE) Vi (4, €) Vit )
I

1 .
+ N din + (i & n). (2.64)

2.4.3 Response function

The evolution equation for the ensemble average of the response function is
F; it ——— i
[E + 1] Gin(tlt) =R EZ 2055 X;(t) Gealtlt') . (2.65)
ik

which follows from (2.37). Substituting (2.39) and (2.40) into the right-hand side of this equation
and discarding the terms of O(R?), we obtain

R Y 205 X0 Gra(tlt) =R 33 2G5 X, (1) Gy (#]¢')
ik i k

+R2 Y 205 XV (@0 G (1)
] k

+R* YN 2045 X0 () GLl(el) - (2.66)
i k

In the same way as in the preceding subsection we can write each term in this equation in terms of
V and G. Then, (2.66) is converted into

B b — e e TR L [} I
= +1] Ginltlt) =4R* 33 f.-, dt” Cijh Chns Vii(6, ") G (tlt") Gun(t"]t) . (2.67)
i ok

2.4.4 Equivalence of RRE and DIA equations

In the formulation made in the last three subsections the time was scaled as £ = vt = t/R (see
(2.33) and (2.34), and remember the omission of the tilde). If f is transformed back to ¢ in the
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resultant equations (2.63), (2.64) and (2.67), they become identical to (2.26), (2.28) and (2.32),
respectively, which are derived by DIA. Incidentally a so-called bookkeeping parameter (R = 1},
which is sometimes introduced in this kind of expansion [36,18,12], plays a role similar to the time
transformation such as (2.34).

The RRE described in the preceding subsections is based upon an idea developed by Kraichnan
[25]. He showed it for the Navier-Stokes equation that those integro-differential equations derived by
DIA (both in the Eulerian and the Lagrangian formulations) are also obtained by the use of RRE.
Kaneda [36] applied this expansion (called the Lagrangian renormalized approximation by him) to
the Lagrangian velocity field. The resultant integro-differential equations are again the same as those
derived by DIA [35].

Now we know that the above two approximations lead to a same set of equations for the model
equation (2.1) and the Navier-Stokes equation. The arguments on the differences between these
approximations for the model equation, which will be made in the next section, is therefore expected
to be applicable to the Navier-Stokes equation as well.

2.5 Applicability of DIA

2.5.1 Solution to DIA equations

In the preceding two sections we have shown that an identical system of equations is derived by
two completely different approximations. It is quite obvious that RRE should be valid for small
Reynolds numbers (v > 1), whereas the assumptions of DIA summarized in §2.3.1 be for the large
degrees of freedom (IV 3 1). We expect, therefore, that the cquations (hereafter, called the DIA-
RRE equations) may give good predictions in such parameter ranges that v > 1 or N » 1. This
expectation will be verified in the following by a series of direct numerical simulations of the model
equation.

By construction (see (2.82)), the coefficients C;x do not depend on the absolute value of the
suffixes but only on their differences, and therefore the system can be statistically homogeneous (e.g.,
Vi; can be independent of ¢). If the system is statistically stationary as well as homogeneous, the
auto-correlation and the response functions are expressed as

Vi(t, t') = V(t - t), (2.68)
Gu(t,t)=G(t-t). (2.69)
Then, the DIA-RRE equations (2.26), (2.28) and (2.32) for 1 = n are respectively written as
d e "oy ! !
[E;+u]vhy=—m1£ dr' G(+') V(|7 — ') V(')
+ 2, fm dr' G — )V V() (r>0), (2.70)

V(0) = % (2.71)
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and
[;f; . u] 6(r) = =21 [ dr' V() 6() 6(r 7). (2.72)
with boundary condition
G(0) =1 (2.73)
(see (2.11)). Here, the coefficient ¢, is defined by ®
o = Z Zk; Cijk Cijk - (2.74)
i

Notice here that the original upper bound ¢ — #; of integrations in (2.70) has been replaced by the
infinity. This will be justified a posteriori by taking it to be sufficiently larger than the decaying
time-scale of V(7) and G(r) (see §2.5.2).

Equations (2.70)—(2.73) permit a solution such that
Vir) = V(0 G(r) (2.75)

and
[% + ul G(r) = —2¢, V(0) fu ar' [(")] 6(r ). (2.76)

Incidentally, this equation shows that the decaying time-scale of G(7) (and V(7)) is inversely propor-
tional to /1 V(0) = \/e1/N in the inviscid limit (see Fig.2.3(b)).

Equation (2.76) with boundary condition (2.73) is solved numerically by an iterative method.
The correlation function thus obtained are drawn in Figs.2.5 for various values of N and v together
with the results by the direct numerical simulation. A case of small number of degrees of freedom
is shown in Figs.2.5(a)-—(c) for three different values of viscosity v = 10, 1 and 0. It is seen that
the agreement between the prediction by the DIA-RRE equation and the direct numerical simulation
is better for larger values of v. The agreement seems perfect even at v = 1 (see Fig.2.5(b)). We
also compare them with a purely linear solution V() = V(0) exp[ —w7 ] (shown with a dotted line).
As seen in Fig.2.5(a), the three curves completely coincide with each other at » = 10, which means
that the nonlinear effects may be negligible at this value of viscosity. It is interesting however to
see in Fig.2.5(b) that the purely linear solution deviates substantially from the results of both the
DIA-RRE equation and the direct numerical simulation. This indicates that the nonlinear effects on
the correlation function, even though they are not so large, are properly evaluated by the DIA-RRE
equations. In Figs.2.5(¢)—(f), we compare the results for various values of N at vanishing viscosity
(in the limit of large Reynolds number). It is seen that the agreement of the two improves as N
increases. In conclusion, the prediction by the DIA-RERE equation works well for small Reynolds
numbers (¥ 33> 1) or for large degrees of freedom (N > 1).

5Notice the relation,
e = Z Zl‘jﬁk Crig = chijk {(—Cujp — Chpi) = —e1 — Z Z Cigj Crie = =01 — €32,
J k i k F A

which implies that ¢z = —% 1, where use has been made of {2.2) and (2.3)
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FIGURE 2.5 Comparisons between the predictions by the DIA-RRE equations (thick solid line) and
the evaluations by the direct numerical simulation (thin solid line). The broken lines in (a} and (h)
represent the linear solution V(1) = V(0) exp| —v7]. (a) (N,v) = (7,10). (b) (7,1). (c) (7,0). (d)
(10,0). (e) (20,0). (f) (40,0). The agreements are excellent in the cases of v > 1 or N > 1.
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FicURE 2.6 Magnitude of the deviation field with {ip, jo. ko) = (1,2,4) in the case of v = 0. The

horizontal axis represents the time normalized by decaying time-scale of the auto-correlation function
Vii(t,t) (ef. Fig.2.3(b)). Four different numbers of degrees of freedom (N = 7,20,40 and 80) are
compared. As the number of degrees of freedom increases, DIA assumption 1 is satisfied better.

2.5.2 Validity of DIA assumptions

It was shown in the preceding subsection that the DIA-RRE equations give an excellent prediction
of the auto-correlation function in the case of N % 1 or v 2 1. This is quite reasonable because DIA
and RRE are formulated for N > 1 and » 3 1, respectively. Here we demonstrate it numerically
that the assumptions of DIA summarized in §3.]1 are actually satisfied for N > 1.

First, in order to examine DIA assumption 1 that the deviation field is much smaller in magnitude
than the NDI field during the decaying time-scale of the auto-correlation function, we compare, in
Fig.2.6, the temporal evolution of the magnitude of the deviation field,

D) = { [ Xyt ] ) (2.77)

for four different values of V in the inviscid case. Here { ) stands for an average over a sufficiently
large number of runs starting with random initial conditions. The time in the horizontal axis is
normalized by the decaying time-scale of the auto-correlation function (cf. Fig.2.3(b)). Indeed the
deviation field develops in time, but it never exceeds the NDI field in magnitude within the correlation
time, namely, D(t) < ¥, [.J!.’t-t':':']2 =1 for \/e; /Nt < 2. Moreover, D(t) decreases roughly in the inverse
proportion to N. This concludes that DIA assumption 1 may be better for larger values of N.

A remark on the replacement of the upper bound of the integrations in (2.70) may be in order.
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FiGuRE 2.7 Triple correlation factor Rjjx in the true field X; (thin line) and in the NDI field X7,
(thick line) in the weak nonlinear coupling case. (a) (N,v) = (7,0). (b) (V,v) = (20,0). DIA
assumption 2(I) is satisfied well for N = 20, but not for N = 7.
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0.6 = o4 9

NI field

FIGURE 2.8 Correlation factor S4i2 in the true field Gy; (thin line) and in the NDI field Ggﬂm 4 (thick
line) in the weak nonlinear coupling case. (a) (N,v) = (7,0). (b) (N,v) = (20,0). DIA assumption

2(I1) is satisfied well for N = 20, but not for N = 7.

Remember that the DIA-RRE equations are formulated under the assumption that the deviation
fields are smaller in magnitude than the NDI fields (DIA assumption 1). The behavior of D(t) shown
in Fig.2.6 tells us that even if we choose the direct-interaction decomposition time f; so that ¢ — 1,
is sufficiently larger than the correlation time, the assumption of smallness of the deviation fields is
actually satisfied if N 3 1. Then, thanks to the exponential decay of G(7) and V(1), we can replace
t — ty by the infinity.

Next, we move to DIA assumption 2(I) on the independency between those modes without direct
interactions. This assumption is used in the derivation of the DIA-RRE equations as

XO

iik(t) X;?Ejt{t} Xﬁ‘l}-k“’? =0 (2.78)

(see (2.23)). In order to assess this assumption quantitatively, we calculate the triple correlation
factor,

X1 X;(8) X ()

Xi( ’ 2.79
VX0 X057 Xi(0)? (2.79)

Rij(t —1t) =

for the true field and for the NDI field (where X;(t) is replaced by X 1.5?% i) In Figs.2.7, we plot the
results for {1, 7, k} = {1,2,4} for (a) N =7 and (b) 20 in the inviscid case. It is clear from Figs.2.7(b)
that the triple correlation factor for the NDI ficld is drastically reduced for larger N. This gives a
strong support of the validity of (2.78) for N = 1. As seen in Figs.2.7(a), on the other hand, it does
not well behave for smaller N. This failure in the small-N case is due to the indirect interactions.

Finally, we consider DIA assumption 2(IT) that Gl), ., G\ and X are statistically indepen-
dent of each other. This is based on the fact that these three variables do not have direct nonlinear
interaction between them (see e.g. (2.17)). This assumption is used, for example, as

GE?;ijk“]"J X(t) =0 (2.80)
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in the derivation of the DIA-RRE equations (see a paragraph below (2.30)). To check it we calculate
a covariance factor, L _
Gy (tt) Xi(t)

V Xi(t)?
for the true field and for the NDI field (where G;; is replaced by GE;"{},'U*]. Notice that the assumption
requires that this factor should vanish for the NDI field. In Figs.2.8, we plot the results of 542 for
(a) N =7 and (b) 20 in the inviscid case. Other factors such as 5314 show similar behavior to 54,
(figures are omitted). It is seen that Sy tends to vanish for larger NV like Rij (see Figs.2.7). In
conclusion, DIA assumption 2(II) is also satisfied for N > 1.

Sijk(t —t') = (2.81)

2.6 Concluding remarks

One of the main purposes of this chapter is to remove a possible misunderstanding caused by the fact
that the Eulerian DIA equations are derived by several kinds of different approximations. The DIA
is a quite interesting approximation, in which the nonlinearity of the system is not totally neglected
and any adjustable parameter is not introduced. The anthor would like to emphasize again that
this approximation is based upon the weakness of the nonlinear couplings of the system, and that
it is different from any other approximations dealing with the nonlinear term as a perturbation.
Especially we have given a numerical evidence for a dynamical system that DIA and RRE have
different parameter regions of validity although they lead to an identical set of equations for the
correlation and the response functions. The RRE is applicable to a system with weak nonlinearity,
whereas DIA is to that with a large number of degrees of freedom. Figure 2.9 shows schematically
this situation. It should be stressed that we have checked this applicability of DIA by two means:
Comparisons between the predictions by the DTA-RRE equations and the direct numerical simulations
(see Fig.2.5) and direct confirmations of the DIA assumptions (see Figs.2.6-—2.8).

We have to mention, however, that in the above discussions we restrict ourselves to weak nonlinear
coupling cases. Intuitively, for stronger coupling systems DIA does not work well because the DIA
assumption 2 (see §2.3.1) may be violated. In Chapter 5, we shall discuss this important problem on
DIA for systems with stronger couplings by the use of the model equation introduced in this chapter.

As stressed in §§1.3 and 2.2.1, the weakness of the nonlinear couplings is one of the most important
properties of the Navier-Stokes equation (1.9). It is shown that DIA is applicable to a weak nonlinear
coupling system with large degrees of freedom, even if the nonlinearity is strong. The number of
degrees of freedom in the Navier-Stokes turbulence is proportional to Re®1 (see §1.5), and therefore
high Reynolds number homogeneous turbulence is a system with large degrees of freedom and strong
nonlinearity of weak couplings. Hence, it seems likely that DIA is applicable to the Navier-Stokes
turbulence at very high Reynolds number. In the next chapter, we shall examine this application of
DIA.
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Figurg 2.9 Applicability of DIA and RRE for systems with weak nonlinear couplings. The DIA is
valid for a system with large degrees of freedom even if the nonlinearity is strong, whereas RRE is an
approximation for small Reynolds number. The figures included are taken from Fig.2.5. Although the
coincidence between the prediction by the DIA-RRE equation (thick line) and the direct numerical
simulation (thin line) is not so bad even in the case (N,v) = (7,0), it is much more excellent in the
cases (N,v) = (40,0) (large degrees of freedom) and (N,v) = (7,10) (small Reynolds number).
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N (@n, bn, cn)

T (1,2,4)

10 (1,2,7)

20 (1,2,17),(4,5,11)

40 (1,2,37),(4,5,31).(6,7,27), (8,10,22), (11,12,17)

TABLE 2.1 Triplets (an, by, cn) adopted in the present numerical simulation.

Appendix A

We describe here an example of constructions of the coefficients C;;, which satisfy the three conditions
in §2.2.1. The coefficients are specified as follows. For the sake of explanation, we introduce a circle
of circumference N and assign N points with equal distance apart on it (Fig.2.10). For any triplets
of integers, i, 7 and k, we introduce a, b and ¢ as three arc lengths divided by these three points in
such a way that the point 7 is sandwiched by a and ¢, and that a, b and ¢ are placed counterclockwise.
Here, we choose a series of triplets of natural numbers (a,, by, ) (g + b+ =N;n=1,2,3,--)
so that there is no common element in a set {z|z = ay, bp.en, N —ay, N —bp, N —cp; n=1,2,3,---}.
(Note that the choice of an, b, and ¢, is not unique, and one adopted in the present paper is shown
in Table 2.1.)

The coefficients Cjji are then defined by

Gt = { IN-b (if 3n such that (a,b,¢) = (@n,bn,cn) ) (2.62)

0 ( otherwise )

where (a,b,¢) = (a', V', ¢') implies that (a, b, c) is equal to (a’, b, ¢') itself or its cyclic permutations.
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g or k

FIGURE 2.10 Definitions of a, b and ¢. N points are assigned with equal distance apart on a circle of
circumference N. The arc lengths a, b and ¢ between points 1, j and k are defined in such a way that
point i is located between a and ¢, and that a, b and ¢ are placed counterclockwise.



Chapter 3

Lagrangian DIA for Homogeneous Isotropic
Turbulence

We apply DIA, explained in detail in the preceding chapter by using a model equation,
to homogeneous isotropic turbulence governed by the Navier-Stokes equation. Since it is
known that DIA for the Eulerian field does not work well [this approximation is inconsistent
with Kolmogorov's phenomenology), we shall propose a new Lagrangian version of DIA.
It should be stressed that the present formulation is different from Kraichnan’s so-called
Lagrangian history DIA [37], and that the former is much simpler than the latter. We make
a bridge to connect the basic equations and the Kolmogorov phenomenology. Namely, it is
shown that Kolmogorov's universal function of the energy spectrum evaluated based upon
the basic equations under the present Lagrangian DIA is in an excellent agreement with
measurements and experimental data without any adjustable parameters. The Kolmogorov
constant and the skewness factor of longitudinal derivative of velocity are determined as
1.722 and —0.66, respectively. Energy transfer and flux functions in the wavenumber space
in stationary turbulence are evaluated. Universality and time independency of the large-
scale structure in freely decaying turbulence are also considered, and it is shown that the
Birkhoff invariance [38] does hold but not the Loitsiansky [39].

3.1 Introduction

As discussed in Chapter 2, DIA is valid for a nonlinear system with weak nonlinear couplings and a
large number of degrees of freedom. Homogeneous turbulence at large Reynolds number satisfies these
conditions because this nonlinear system, which is governed by the Navier-Stokes equation (1.9), has
weak couplings as shown in Fig.2.1, and because the number of degrees of freedom is proportional to
the power 9/4 of the Reynolds number as seen in §1.5. Then, iu this chapter, we shall apply DIA to
homogeneous turbulence to solve the closure problem in the statistical theory of turbulence described

in §1.2.
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This chapter ' is organized as follows. In the rest of this introduction, we review phenomenologies
and classical analytical theories on the universality of the small-scale (§3.1.1) and the large-scale
(§3.1.2) structures, and summarize a history of DIA (§3.1.3). Then, in the next section, we introduce
several basic quantities which are necessary in the subsequent analysis. The idea, the assumptions
and the procedures of the present formulation of DIA are explained in §3.3, and we shall derive a
closed set of equations for the Lagrangian velocity correlation and response functions. We then solve
the resultant closure equations for a stationary case in §3.4. The skewness of the velocity derivative,
the energy transfer and the flux functions and the wavenumber dependence of the eddy viscosity are
also calculated. A freely decaying case is treated in §3.5. The shape of the energy spectrum and its
time development are determined in a similarly evolving form. Section 3.6 is devoted to concluding
remarks of this chapter. Details of some calculations are given in Appendices.

3.1.1 Kolmogorov theory

We describe Kolmogorov's phenomenology [1] in terms of the energy spectrum function defined by
(3.45) below. As for the first similarity hypothesis, in the universal range (in which the length scale
is much smaller than the integral scale L, i.e., & » 1/L) the turbulent field is locally isotropic and
its statistics are determined by the wavenumber k, the mean rate of the energy dissipation per unit
mass ¢ and the kinematic viscosity of fluid v. By employing a dimensional analysis, we can derive a
similarity form,

E(k,t) = ™ e(t)/* F(k/ky) (3.1)

with

ki = (e(t) /)4 (3.2)
Figure 1.1 tells us that this universality of the energy spectrum is well supported by many kinds of
turbulence. As for the second similarity hypothesis, in the inertial range (in which the length scale is

much smaller than L but much larger than the viscous scale 1 = (e(t)~ )4, ie, 1/L € k <€ ky)
the statistics are free from the viscous effect, and therefore the spectrum takes a power form as

FEIEY

_&
3

E(k,t) = Ke(t)s k3 | (3.3)

where K is the Kolmogorov constant, which is evaluated experimentally to be 1.62 + 0.17 [40]. One
of our main objects in this chapter is to determine the universal function F with resort to the Navier-
Stokes equation.

3.1.2 Large-scale structure of decaying turbulence

Since the statistical stationarity requires an energy supply by large-scale motions which depend on
the kind of flows (e.g., the boundary condition), no universality may be expected in large scales. On

'This chapter is based upen Ref. [35].
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the other hand, freely decaying isotropic turbulence may have universality of the large-scale structure
as well as the small-scale. We review briefly several theories on this issue.

By making use of (1.18), the energy spectrum E(k, t) defined by (3.45) below is expressed in terms
of the velocity correlation function f(r,t) as

E(k,t) = U fm dr | 3f(r,t) + 7 fj—f{r t) | kr sin(kr) (3.4)
! 7 Jo ' ar '
which is rewritten in the limit & —= 0 as
E(k,t) = [ﬁ lim r* f(r t}] K + [ﬁ fmdrr" firt) - Uin lim ° f(r,t) | &' + O(k9) .
: T or=oo ! 37 Jo F Im o 4
(3.5)

In order to examine the large-scale structure in terms of the energy spectrum, we introduce an index
¢ which expresses the behavior of E(k,t) in the vicinity of the wavenumber origin as

E(k,t) = BX(t) k¢ (ask > 0) (3.6)
with
0<EPt) < o0, (3.7)

In the rest of this subsection, we shall consider the existence and the temporal invariance conditions
of Eéu}. The results are summarized in Table.3.1.

Although there is no universality of ¢, this index is limited as { £ 4 because the coefficient of
the k* term in (3.5) does not vanish in general. On the other hand, if { is less than 2 the Fourier
component of the velocity correlation tensor V;;(k, t,t') diverges at the origin. Therefore, we restrict
ourselves to the cases

2<(<4, (3.8)
and consider the behavior of E{” separately in three cases, that is, { =2, 4and 2 < { < 4. For
¢ =2, (3.5) requires that f(r,t) « r~2 as r = o0, and then Ef,_m is expressed as

B = Ejl lim r* f(r,2). (3.9)
In the case 2 < ( < 4, (3.4) yields
BO(t) = lim k¢ Un iy 12 fr,t) sin(kr) (2<¢<4), (3.10)
k—0 T rohee

which requires, by the condition (3.7), that f(r,#) o r=¢~! as » — 0o. Thus, we obtain

Eé“l{¢}=“¥" lim < f(ne)  (2<(<4). (3.11)

e
Therefore, the two cases { =2 and 2 < { < 4 can be considered together (see (3.9) and (3.11)). As

for the case = 4, on the other hand, it is easy to show from (3.5) that f(r, ) must decay faster than

r~2 as r — oo, and then E‘Eﬂj is expressed as

B0 = %2;-' fﬂ dr L Flr ). (3.12)
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2<(<4 ¢=4

B Um i O+ g g Un [ 4 f(r,0)

Ec"(2) 2 lim ¢ () 31:,[{} ri(nt)r
Existence condition of E‘EU} (t) fir,8) xr=<~! as r = oo0. f(r,t) decays faster than r—°.
Invariance condition of E‘Em{t} h(r,t) decays faster than r—<. | h(r,t) decays faster than r—7.

TABLE 3.1 Summary of §3.1.2. Parameter ( represents the behavior of the energy spectrum E(k,¢)
at the vicinity of the origin as E(k,{) = E{u}{t] kS (k — 0).

Next, we consider temporal invariance of large-scale structure in terms of Eéu}{t] by the use of

the Karman-Howarth equation [41],

8 P h(r, ) b2 40
2 3 2 E=fi=4
U 75 fr.t)=u, h(r,t) +4 = l + 2 ul, I P flr,t) + = f(rt)

(3.13)
where h(r,t) is the two-point triple velocity correlation function defined by
ud h(rt) = u(z, 02 u(z +7.1) . (3.14)
By taking the limit r — oc of (3.13) multiplied by r+!/x, we obtain
d a0, _ Cc o3 o -3 9 ¢ 4 "
T E7(1) = — U, rli;na.lc L ('.r' h(r, t]) (2<(<4). (3.15)

Hence, if h(r,t) decays faster than r—¢ as r — oc, Eéﬂ} does not vary in time. On the other hand, for
¢ = 4, we multiply r*/{37) to (3.13), and integrate from 0 to oc with respect to r to obtain

d m](f,}-- i Jim 7 Y h(r, 1) . (3.16)

The time invariance of E? requires that h(r, ) decays faster than r~1, Batchelor & Proudman [42]
pointed out a case that £} % does exist but is not invariant in time. We call E{m and E.-‘m:| the Birkhoff
constant [38] and the Loitsiansky integral [39], respectively.

3.1.3 Review of DIA family

Since the introduction of DIA by Kraichnan [24], many versions of application methods of DIA to
the Navier-Stokes turbulence have been proposed. We review here the history briefly. A closed
set of integro-differential equations for the correlation and the response functions of the Eulerian
velocity u;(z,t), which represents the fluid velocity at a fixed position x at time ¢, are formulated
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in the original DIA [24]. We call this kind of the direct-interaction approximation the Eulerian
DIA. Although the Eulerian DIA seems to be the most naive application of DIA, it unfortunately
predicts the k=% energy spectrum in the inertial range. which is inconsistent with the Kolmogorov
phenomenology (3.3). This failure may be related to the fact the Eulerian statistical quantities
violate the Galilean invariance [37, 12], which is one of the important symmetries inherent in the
Navier-Stokes turbulence [21]. The closure equations by the Eulerian DIA are also derived by many
kinds of different approximations [18,25-27]. It should be stressed again (see Chapter 2 for detailed
discussions) that although these approximations yield identical closure equations to those by the
Eulerian DIA, they are based upon completely different idea and working assumptions. Hence, we
have to distinguish these approximations from the DIA.

There have been proposed several closure theories to solve the misprediction of the k=53 power
law of the energy spectrum by the Eulerian DIA. McComb and his coworkers [43-46] developed the
local energy transfer (LET) theory, in which the closure equation for the Eulerian velocity correlation
function is identical to that by the Eulerian DIA, while the fluctuation-dissipation relation,

QB (k, t,t') = QP)(k, t,¢) GUE) (K, t, ¢ , (3.17)

where Q&) and G'E) are respectively the correlation and the response (called propagator by them)
functions of the Eulerian velocity, is introduced instead of the Eulerian DIA equation for the response
function. The LET theory is consistent with the Kolmogorov phenomenology and yields the k=57
power law spectrum in the inertial range with the Kolmogorov constant K = 2.3 [44]. On the
other hand, Kraichnan [37] proposed Lagrangian versions of DIA, in which closure equations for
the correlation and the response functions of the Lagrangian velocity v;(t|z, s), which represents the
velocity at time ¢ of a fluid particle passing = at time s. There are two versions of Kraichnan's
Lagrangian DIA, i.e, the abridged Lagrangian history DTA (ALHDIA) and the strain-based abridged
Lagrangian history DIA (SBALHDIA) [47]. Although these abridged Lagrangian DIAs are shown
to be consistent with the Kolmogorov spectrum in the inertial range (the Kolmogorov constant is
evaluated as K = 1.77 by ALHDIA [48] and 2.0 by SBALHDIA [49]}, it is difficult for the author to
understand their formulations because they have an intuitive procedure called the abridgment.

We shall propose another Lagrangian DIA in the present chapter, which is much simpler than
the ALHDIAs. Although we shall also construct a closed set of integro-differential equations for the
Lagrangian velocity correlation and the response functions, the definition of the correlation function
is different from the one employed in ALHDIA. In our formulation, the correlation function depends
on only two times; the measuring time ¢ and the labeling time 5, while it has three times ¢, ' and s in
ALHDIAs. Hence, we need not employ the abridgment. The resultant equations in our formulation of
Lagrangian DIA are identical to those derived by RRE (§2.4) proposed by Kaneda [36], which is called
the Lagrangian renormalized approximation (LRA). Hence, we name the resultant closure equations
the LRA-DIA equations. As discussed in Chapter 2, DIA and RRE are based upon completely
different working assumptions and have different parameter range of validity. Therefore, the fact that
they yield identical closure equation may imply its wide applicability. The properties of the LRA-DIA
equations have been examined by Kaneda and his coworkers [36,50-52]. It has been shown that the
LRA-DIA equations yield the Kolmogorov spectrum (3.3) in the inertial range with K = 1.722 [50],
which is in good agreement with measurements (see Ref. [40]).
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3.2 Preparations
3.2.1 DBasic equations

As mentioned in Chapter 1, we assume that the motion of an incompressible (Newtonian) viscous
fluid is described by the Navier-Stokes equation,

a d 1 9 a* ;
3 ui{x, t) 4+ uj(z, t) 5—% uix, t) = & plz,t) + v T, ui(z, ) (i=1,2,3) (3.18)

and the equation of continuity,

a—ifu.-{:n,t} =0. {3.19)

Here, we employ, in contrast with Chapter 2, the summation convention for a repeated subscript.

3.2.2 Lagrangian velocity correlation function

In manipulation of Lagrangian quantities, the Lagrangian position function,
Pz, tlx', t') = 8 (x — y(t|la’, t')) (3.20)

plays an important role [36]. Here, y(t|z’, t') stands for the Lagrangian coordinate (i.e., the position
of a fluid element at time ¢ which passed position ' at time # (< ¢)), and 8 is Dirac’s delta function.
The position function obeys

a I ) a F
= Wt ¢) = —u(e,8) 2 Y(z, e, ) 3.21)
b §
with initial condition,
Wz, e’ t) = P - ') (3.22)
The Lagrangian velocity v;(t|2', t") = w;(y(t|lx’, ¢'), ) and the Eulerian velocity are related with each

other as
vi(t|e', ') = fdxn: ui(z, t) (=, tiz', 1) , (3.23)

il 1 s f &' vt 1) Yl e, ') (3.24)

A main purpose of this chapter is to construct a system of equations for the Lagrangian velocity
correlation function which is defined by

Vij(r t,t') = wiltle + v, t') v;(t'|z, ') = vi(tle + r,¥') uj(x, t') . (3.25)

Here and below, an overbar denotes an ensemble average. We have assumed that the velocity field is
statistically homogeneous, so that Vj; is independent of position vector z.
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3.2.3 Fourier decomposition

For simplicity of description, we consider the motion of a fluid confined in a periodic cube of side L.
Then we can expand u;, v, ¥ and Vj; in Fourier series as

3
wilz, t) = (%’”) Y k. t) exp[ik-m], (3.26)
k
3
wltle't) = () ek, ) explite =), (3.27)
k
5 -
Ple, tje', ) = (%’5) S Gk, 6, ¢) expli (k -z + K -] (3.28)
k kK
and i
Vig(r, t, ¢) = (%”) Y Wik, t,¢) explik 7], (3.29)
k
respectively, where
k= 2% (1, ng, 1z (ny,ng,nz =0.£1,4£2,---) {3.30)

is the wavenumber vector. The summations are taken over triplets of integers ny, ne and ny. The
Fourier inverse transformations are written as

ik, ) = (%)3 frls:r: ui(e, 1) exp|—ik -z}, (3.31)
oi(t|k,t') = (%)3 fd:’a: vi(tlz’, ) cxp[—ik : :[:"]} (3.32)
Dk, k', ¢') = (%)5 fda.-n fd:’::' Wi, tlz', ) expl~i(k -z + K - 2')] (3.33)

and

Viilk, t,t') = (%)3 fd3r Vij(r,1,¢) exp—ik -r] = (%)aﬁi{ﬂk, R, (3.34)

respectively. In these equations, integrations are carried out over the periodic cube. Relations between
Lagrangian velocity (3.23) and Eulerian velocity (3.24) are written, in the Fourier space, as

(2n)°

vi(t|k, ') = 3 %:ﬁl{k', 1) P(—k' tk, t') (3.35)
and
Tk, t) = 9;7}5 Z Ttk ) ik, t] - &', 1) (3.36)
respectively. )

The governing equations of #; and 1;": are derived from (3.18), (3.19), (3.21) and (3.22) as

a ” i [2my\? = = o
lﬁ +szl Ui{k.ﬂ = —% (‘Ew") Pljm[k} g: Zq: ujt_p:u ‘f':] Mn(_m t} ' {3'3T]

(k4pig=a)
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ki il (e, t) = 0, (3.38)
and 5 )
Y5
k,tlk' 1) = —ik; (L) ZZ ij(—p.t) ¥(~q,tlk',t') (3.39)
fkﬂiw o)
with initial condition .
Bk, IR ) = By - (3.40)
Here,
kik;

Pijm(k) = km Pij(k) + k; Pin(k), Py(k) = 6 - (3.41)

K
where §3 and d;; are Kronecker's deltas (6 = 0(k # o), §; = 1(k = 0), 65 = 0(i # j), 6i5 = 1(i = j7)).
The time derivative of (3.35) then yields

ﬁ -
% wi(tk' ') = - @L; vy PP ii(p,t) ¢(—p .tk )
F
[2w} Z ZZ T Gl 1) Tinlg, ) Plr, tlR, 1) (3.42)
{P+Q+r=ﬂ}

where use has been made of (3.37) and (3.39). By using (3.34), (3.37) and (3.42), we can derive the
governing equations of the two-point Lagrangian velocity correlation function for a single time as

[_, +2vk*] Vij(k,t,t) = — 5 (21?3) Pinn(k) 3% Tm(—p,t) Un(—q. 1) (K, 1)
(k-'-l;-a-::o:
+(ie i, k——k) (3.43)

and for two times as

%ﬁ;{k, tt)=— {Lﬁ v Z PP i(p, t) Y(—p. tlk, ) 75—k, ')

{2"7}12 ""tfm"'"n & = T g
ZZZ m(D.1) Tn(g, t) $r, tlk, ') Ty (—k, t') . (3.44)
{}J+Q'-L'r"n}

The higher-order correlation functions on the right-hand side of (3.43) and (3.44) are the origin of
the closure problem (§1.2) of the Navier-Stokes turbulence. Based upon the idea of DIA, we shall
attack this problem in the next section.

For later convenience, we define here the energy spectrum,
1 =,
E(k,t) = Ek?fds? Vi, 1,1) (3.45)

where § df2 denotes a solid angle integration in the Fourier space, and the incompressible part of the
Lagrangian velocity correlation,

Qij(k, 1, t') = Pin(k) Vinj (k. 2, t') . (3.46)
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3.2.4 Response function

The response functions of the velocity and the position functions [24] play a key role in the present
formulation. The Eulerian velocity response function,
dii, (K, 1)

i, (K, ) (347

G (k, 1!, ¥) =
expresses the influence on i;(k,t) at time ¢ due to an infinitesimal disturbance for @;(k',t') (t' < 1),
where § denotes a functional derivative. By taking a functional derivative of (3.37), we obtain the
governing equation for this function as

|% +vk? |G (K, tk!, ) = —i (T) Ponk) 3 iim(—pt) G5 (—qutlk',t) . (3.48)
r q
(k+pt+g=o)
The initial condition is given by
— B L.‘I
GL }Ek:rllki1t’} [2 :]ﬁ Jlj 53 ,_k {349]

Similarly, the governing equations of the Lagrangian velocity response function,

AL g gty = S0l ) :
G;j (tikl k ¥ } a-ﬁj [k_,r:l t'} {3,&'}]
and the position response function,
= Sk, t|k', ¢
Bkt k", ) = S 1K ) (3.51)

S (k" 1)
are obtained from (3.42) and (3.39), respectively, as

d

= Gy (tlk, K, ) =

{2;? I [é&ﬁ(k”, tk', ') B(—k", tlk, t') + (K", 1) T (—k", t|k, K, a'}]
k”

g T - —~
—i {2;5} ):Zq:; rﬂ:ﬁr" liﬁm{p,f]GL‘f’(q, ti' ) B, k. 1)

(p+ger=0]

+m(p,t) tin(g,t) ﬁj{r,ﬂk, k!, t*}] (3.52)

with initial condition,
LE

@) 8 0% s (3.53)

L
Gk, 1) =
and

a T LA
at hﬁi{k,t!k; k", )=
- 1, K o T ;
ik (;) % | Gal=p.t) Ti(—q, tIK' K", ) + G5 (~p, tIk", ) Y(—q, t]K', 1)
P q

{k+p+g=0)
(3.54)
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with initial condition,
Tk, )k K" ) =0, (3.55)

A functional derivative of (3.36) gives a relation among the Eulerian velocity response, the La-
grangian velocity response and the position response functions as

GO w,ur,¢) = EL 5 GO Uk K, ¢) Bk, 6 - K, 0)
kn”

(2
'ﬁ‘] Z Z |,Ek.‘" km‘ tlkh’ :I j{k, 'EI o k", k’, Er} . {356]
kl‘f kfl‘f

For later use, we define here the incompressible part of the Lagrangian velocity response funection
by

2m)°®

- G (tlk, —k, ') Prj(k) - (3.57)

Ev';j[k, ) =

3.3 Lagrangian direct-interaction approximation

3.3.1 Direct-interaction decomposition

The DIA, discussed in Chapter 2, is applied to the Navier-Stokes turbulence to construct a closed set
of equations for the Lagrangian velocity correlation and the response functions. The assumptions and
procedures employed here, which will be summarized in the next section, and those in Chapter 2 are
the same, except for treatments of the position function. Similarly to X; in the model equation (2.1),
we first introduce the direct-interaction decomposition for the Fourier component of the Eulerian
velocity if; governed by (3.37).

Recall that the right-hand side of the Navier-Stokes equation (3.37) is composed of a sum of an
infinite number of quadratic nonlinear terms, each of which represents direct-interactions between
three Fourier components with wavenumbers k, p and g which construct a triangle (k +p + g = o).
We choose arbitrarily a triangular triplet of wavenumbers, say kg, py and g, (ko +py + g5 = o), and
imagine a fictitious field which does not contain the direct interactions between these three wavenum-
bers. This fictitious field is called the NDI field (non-direct-interaction field), and is denoted by
") (k, t]| kg, Py, @g)- Furthermore, we define the deviation field ii" (k, || ko, Py, g) by the difference
between the true field and the NDI field, namely,

ik, t) = 5" (k, t]lko, Py, go) + . (k. t]l ko, Py, 5. (3.58)

This decomposition is made at time fg, the initial condition of the deviation field -ﬁEl:' is, therefore,

expressed as
"k, toll ko, Po, @) = 0. (3.59)



By definition, the governing equation for ﬁEG} is written as
0 2| a0
a7 + vk | B (ks tlko, Po. o)

i f2r\% ~ [0 s
=-5(F) Piml®) 3 - . o) (K o) (3.0
(k+p+g=a)

where X' stands for summation without the interactions among chosen three wavenumbers kg,
Pp and g,. Subtracting the above equation from the Navier-Stokes equation (3.37), we obtain the
time-evolution equation of the deviation field as

d ut
[ 5" ukzl " (k, tl| ko, Po, o)

f2m\? o = =
= =i (f) Pym(k) 33" #;(-p. )l (—q. tllko. Py, q)
P q

(k+ptq=a)

. (2m\? o . i
—62_1,_0 1 (T) P;'jm(kul uﬁﬂj{_pﬂstlkﬂrpﬂr qn} um}{“qm-tlku:p{h QU]

f2m\? - 5 5
+6% sk | (f) Pijm (ko) “E‘ﬂ] (Po. tIka, Po. o) T (gq, tiko, Po. o)
+(pg = @y = ko = py) (3.61)

where we have neglected the higher-order terms of @i{!) (Assumption 1 written in the next subsection).
The direct-interaction decompositions for the Eulerian velocity response function (3.48), the position
function (3.39) and the position response function (3.54) are performed similarly (Appendix A).

By comparing (3.61) with (3.163) in Appendix A, we find that E}'Efu} serves as Green’s function

of EEI]. A solution to (3.61) is therefore expressed in terms of ﬁif " and ﬁEu} as

5 (2 X ! ;o=
s ko, 2o, a0) = g Puael) [t GLEV k]~ b, o, o, 0)

) [ -Gk Egﬂ]{“!’m t'ko, Po, @o) T (—go, t'|ko, Po, @o)
Z ‘534.1:.,1 ﬁiﬂ}{ﬁ'ﬂ: f|-‘=u~Pu: gy) ﬁiﬂ]{Qm fikumﬁu,fi‘u)
+ (pp = qp =+ ko — Po}l (3.62)

under the initial condition (3.59). The deviation fields of other quantities are similarly represented
in terms of the NDI fields (see Appendix B).

3.3.2 Assumptions and procedures

For the purpose of easy reference, we summarize here assumptions and procedures to construct a
system of equations for the Lagrangian velocity correlation and the response functions. We choose a
coordinate system with zero mean velocity and make the following three assumptions [24]:
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Assumption 1 X is much smaller than X(® in magnitude, hence we can neglect their higher-order
terms. Here, X stands for any physical quantity (for example ;).

Assumption 2 EEU}EkmtilkansQDL ﬁg'mtpu:f“kmpml}'n} and uk}{qﬂ'lt""k“1pﬂsqﬂ} are statisti-
cally independent of each other.

Assumption 3 {ii}, {G}, {4} and {F} are statistically independent of each other.

We construct a set of integro-differential equations for the Lagrangian quantities by employing the
following four procedures:

Procedure 1 Substitute the direct-interaction decompositions, (3.58) and (3.160)—(3.162), into the
right-hand side of the governing equations of statistical quantities. Thanks to Assumption 1,
we can neglect higher-order terms of the deviation field.

Procedure 2 Eliminate the deviation field by making use of (3.62), (3.175), (3.176) and (3.177).

Procedure 3 Eliminate G[Em. (0 and ﬁi{m respectively by making use of

G ke, tlk!, ko, Po, g0) = G, (tlke, k', t!|[ ko, Po, o) » (3.63)
i ;’13 3
¢fﬂ}[k,f[k*1 #"ku, Pﬂs QU] = ﬁﬂ%’ Jkd-k" {364}
and
- t "
&0 (k, t|K', k", /|| ko, Pos Go) = —% f dt" GUV ek + k' k", ¢ ko, Pos @o) -
:.l
(3.65)
Procedure 4 Replace um] {ﬂ} and @Eiﬂ] by Q;; and G, ; through
~10) ) , LA? - ,
0 (.o, o, ao) 1 (—k, ko, Pongo) = (57) Qo) (3.66)
and 58 S
T = e =
Cr)” G0 (elk, k. Uik, P @0) Py k) = Gl 1,1, (3.67)

which follows from (3.57) under Assumption 1. For derivations of relations (3.63)-—(3.66), see
Appendix C.

The third assumption and the third procedure are different from those of DIA explained in Chapter
2 by the introduction of the position function and its response function. Assumption 3 may be ad
hoc, and so strong that it makes the formulation of the closure drastically simple. There is room for
argument on the implication of this assumption. Notice that this assumption yields (3.64), which
physically implies that turbulent diffusion is not taken into account.
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3.3.3 Closed system of equations for statistical quantities

Applying the methods of the Lagrangian DIA described in the preceding subsection, we can construct
a system of equations for the statistical quantities. We start with the two-point one-time velocity
correlation function. By substituting direct-interaction decomposition (3.58) into the right-hand side
of (3.43), we obtain

— i G -
[% + zuk“] Vi, t,8) = — % (2%) Pionn (k)

x ¥y [ i (—p, tllk, p.q) @y (—q, t|k, p,q) & (—k, t| k. p, q)
(k+pt+g=a)
+ 20 (=p, tlk, p,q) i) (~q, t|k, p,q) @ (~k, t[Ik, . )

+ 7 (—p, tllk, p.q) T (~q, tllk, p.q) & (k. t]|k. p. @)
+ (i3], k- —k). (3.68)

Here a set of removed wavenumbers has been selected as (kg.py.qy) = (k,p.g) in the summand
on the right-hand side of the above equation, and higher-order terms of the deviation field have been
neglected (Assumption 1). Applying Procedures 2 —4 to (3.68), we obtain the temporal evolution
equation for the velocity correlation function as

d = 1 /2732
lﬁ - zuk?] Quj(k, t.t) = 5 (I) Pua(k)
- ¢ = o i e
x{ Pﬂmﬂ{k} Z Z -/t:; dtr Qm&{'_p: t: H:' [2( dh Gm{_Q'. £ 1':' + qc an(_Q+ t, ti} ) Qjc{_k: E:- ii]
fk-i-p:i-i-::ﬂ}
+( kb é.?-ﬁ{_k! f! f} + kﬂ; ﬁjb{_k: f-, r'jj ) @ﬂc(""h 'E: f:l J

+(eerj, k—r—kl}, (3.69)
(see Appendix D for the derivation).

In a similar manner, we can express the governing equation for the two-point two-time Lagrangian
velocity correlation function in terms of only the two-point Lagrangian velocity correlation and the
response functions. Employing Procedures 1-—-4 for (3.44), we obtain

3 - 2 3 = a A * o =
[E”kg] Qijlk,t,t') = -2 (T”) Bak) 3% ‘”’;# f dt" Qab(p, 1, t") Qo (ks 1, 1) .
P q

(k+p+g=0)
(3.70)

Finally, for the Lagrangian velocity response function, it follows from (3.52) that

8 2m\*? -’Ckmkn "
[E-I_DEE} éij{k,t,f] =-12 (%) ;; f dt [%Gm( q,t, t}+‘1carw{ —q,1,1")

{k+p+g=0)
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Xécj{k t",t') @1@(_P=tﬂ£”]
2 (2‘?1‘) Z ‘;"a(.'b'l?cfi'J j dr" Qu (p, t, ") Grj{k t,t'). (3.71})

[k+p+-r- o)

Derivations of (3.70) and (3.71) will be given in Appendix E.

Equations (3.69)—(3.71) constitute a closed system of equations for the Lagrangian velocity cor-
relation and the response functions. It should be remarked that this system of equations coincides
exactly with that obtained before by the use of LRA [36]. Note that LRA can be regarded as a kind
of RRE (§2.4) for the Lagrangian quantities. Relations between DIA and RRE have been discussed
in Chapter 2 in detail. It should be mentioned that the fact that LRA and the present Lagrangian
DIA yield the identical closure equations (we shall call them LERA-DIA equations hereafter) means
that they have wide applicability (see Fig.2.9 in Chapter 2).

Equations (3.69)—(3.71) have been derived for homogeneous turbulence. If turbulence is isotropic
as well as homogeneous, second-order tensors Q,J and G;_,II are represented by a single scalar as

Q:’j(k: £, t‘r} = 3 P:;Ek:] Q{k1 t, !r} 1 {3?2}

and

Gijlk, t,t') = Py(k) Gk, t,1") (3.73)

by the use of their incompressible conditions (see Ref. [15] for example). Incidentally, the energy
spectrum is represented by @, from (3.45), (3.46) and (3.72), as

E(k, 1) = 27k2 Q(k, £, 1) . (3.74)
Then, (3.69)—(3.71) reduce to

{; +2er2] Qlk, 1.t} =2x f dpdyg kpq b(k, p,q)

x L dt Q(g, t,¢) [ Glk,t,¢) Qp, 1Y) - Glp 6, t) Q(k,1,E) |, (3.75)

[ L. filk, t,¢") ] Qlk,t,t') =0, (3.76)
l—+vk2+r}ktt ]G{k,t,t'}:ﬂ (3.77)

and
Gk, t,t) =1 (3.78)

respectively (for derivation, see Appendix F), where we have taken the limit I — o¢, and

ff dpdg _f dp f:: (3.79)

(see Fig.3.1). Functions b(k,p,¢) and 7i(k, t,#') in (3.75)(3.77) are respectively defined by

Bk,0) = graas | K- 0= 0|0+ - ][ @P - - -] (s0)
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(a)

FIGURE 3.1 (a) Integral region represented by [f . dpdg (see (3.79)). (b) Variables of integration £
and 7 are sometimes used instead of p and ¢ (see Appendix C in Chapter 4). (c) It is convenient
to remember that infinite region (II) is mapped onto (I) by changing variables of integration as

(k?/p, kq/p) = (p,q) (see e.g. (4.75)).

and o0 m : .
itk 6, t) = 4w kS ] dao® 1k f 4t Qlkp, 1, £) (3.81)
0 ¢
with p3 ; 4 p-3
3 |(1-p°) (1+p2) 1+ 6 3
Jip) = log ————= — ——— (3p° — 14p° + 3}]. 3.82
{P) 32}.]5 [ 2}3’% og |1 HP%I 3 { I3 iy ) ( }

It follows from (3.76)—(3.78) that
Qlk,t,1') = Q(k, t',t') G(k,1,1) . (3.83)

This fluctuation-dissipation relation between the correlation and the response functions may be im-
portant to express statistics of turbulence [46]. Once the single-time velocity correlation function
Q(k,t,t) and the response function G(k,t,t') are determined, the two-time velocity correlation func-
tion Q(k,t,t") follows from (3.83). In homogeneous isotropic turbulence, therefore, it is sufficient to
deal with the system of equations for Q(k,t,t) and G(k, ¢ t'). Using (3.75) and (3.83), we can write
the equation for Q(k, 1, t) as

[ % + Ersz] Qk,,1) = 2r ffm dpdg kpq b(k. p, q)

xj:dt’G{k,t,t’}G{p,t,t’}G{q\t,t’}Ql[qi’,r’] Qlp,t',t'") — Q(k, ', t") |.  (3.84)

3.4 Stationary turbulence

In this section, we consider how the LRA-DIA equations (3.77) and (3.84) for isotropic turbulence
behave under an additional assumption of stationarity. It is shown that @ and G depend only on the
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difference between ¢ and t', so that we put

Q(k, b, t") = Qk,t — 1), (3.85)
Gk, 4, U) =Gkt —1t). (3.86)

Then, the single-time velocity correlation function is written as
Q(k,t,t) = Q(k,0), (3.87)
and (3.83) as
Qk, ) = Q(k,0) G (k). (3.88)

Introduction of the above relations into (3.77) yields

(] [}
% log Q(k, t) = —vk?® — %w kS j; dpp® J(p¥) [} at' Q(kp,t') . (3.89)

On the other hand, integration from ky to infinity with respect to k of (3.84) multiplied by 27k? leads
to

ko o0 i
g f dk k* O(k, 0) = € — 4x f dk ff T T
1] ky Dy

xfﬂw dt' Q(k, ') Q(p,t') Q. t') | Q(K,0)™" - Q(p,0)™" |,
(3.90)

where use has been made of s
4-;mf Ak kY Ok,0) =€, (3.91)
0

and the upper bound ¢ — £y of the integration with respect to t' is replaced by infinity. This last
procedure may be justified by the exponential decay of Q(k.t) with the second argument. It is
interesting to observe the disappearance of the artificial time ¢y by such a reason. Equations (3.89)
and (3.90) constitute the LRA-DIA equations for the stationary turbulence.

3.4.1 Kolmogorov constant

In order to examine the behavior of these equations in the inertial range, we take the limit v — 0.
Then, (3.89) and (3.90) are reduced respectively to

- m t -
2 105 Q) = -2 7 4° f dpp™ J(p%) f dt’ Q(kp, t) (3.92)
at 3 0 0
and
an? [ dk [[ dpdgkipgh
€= dm fkﬂ fa,. pdg k"pg bk, p, q)

X /:D dt' Q(k, ¢') Qp.t') Qlg. 1) [Q(hﬂ}"’ - Q(p,0)7" |. (3.93)
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FigURE 3.2 Lagrangian velocity response function for stationary turbulence.

These equations permit such a similar solution as

Qlk, 1) = % s k3 QN(Kzeskit), (3.94)
with
Qo) =1. (3.95)

In terms of Q we can rewrite (3.92) and (3.93) as

S 1sQM 0=~ [ apI0) [ @) (3.96)
and
kt=[Tak [ap ﬁ:{’k_m}dq Ko [ Q! kb Q') Q'tabo
x { [Eik,pﬁql +3U¢,q,p}] (pg)™ % - [E{H,puﬂ g% +b(t,q.p)p® ] ks }
(3.97)
respectively. The energy spectrum is represented, from (3.74) and (3.87), by
BE(k) = 2nk? Q(k,0) = K €5 k3. (3.98)

Hence, K is actually the Kolmogorov constant (ef. (3.3)}. We solved (3.96) numerically with boundary
condition (3.95). The result is shown in Fig.3.2 (which is same as Fig.1 in Ref. [50]). Here, G(k,t,1") =
Q(K3e3ks(t—t')). By making use of (3.97) and the above numerical result for @1, we can evaluate
the Kolmogorov constant to be 1.722 [50].
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Figurg 3.3 Three-dimensional energy spectrum in the universal range for stationary turbulence.
The Kolmogorov scaling in the inertial range (k < ki = (e*)'/4) is well satisfied with the universal

constant K = 1.722,

3.4.2 Energy spectrum

In order to solve (3.89) and (3.90) in the entire universal range, we express Q) in terms of non-

dimensional functions Q* of non-dimensional wavenumber x and time 7 as

Qmﬂ_ixak Q1)
with
QI[&U} =1,
where
K =K_§c %u%k, T= K%E%kgt

Then, (3.89) is converted into

j log QY (k,7) = —f dpJI[P:IQ”ﬁP? Tp)

with
4
= —K3,
=0

% log Q*(x,T)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)
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FIGURE 3.4 One-dimensional compensated longitudinal energy spectrum in the universal range for

stationary turbulence. Solid line denotes the prediction by the Lagrangian DIA, and symbols show
the same measurements as those in Fig.1.1.

while (3.90) is written as
Qw0 =5 [[ dpda o) $x~Bxipra)
X fu Qb s, k3t Q1,3 O a.a3E) | ¥ Qs 0) — p¥ QHp,0) .

(3.104)
Note that the energy spectrum is expressed as

E(k) = Kelk™3 Q% (x,0) . (3.105)

53
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Hence, by searching numerically ? the solution of Q@ which satisfies (3.102)—(3.104) and (3.100),
the functional form of the energy spectrum E(k) is determined uniquely through {3.105). The result
is shown in Fig.3.3. In contrast with the three-dimensional energy spectrum, the one dimensional
longitudinal energy spectrum By defined by (1.1) is relatively easy to measure in real flow turbulence.
This spectrum By, which is related with E as [19]

oo 2 A L
Ej(k) = % fk dk' (1 - f—ﬂ) EE:'], (3.106)

and the compensated one Ej|(k)/(e*/*k~%/3) are drawn in Figs.1.1 and 3.4, respectively. Here, a thick
curve represents the solution to the LRA-DIA equations. An agreement in the universal range with
measurements for various kinds of turbulence is excellent.

3.4.3 Skewness factor of velocity derivative

Although only the second-order moments are dealt with in the present closure theory, the skewness
factor of the longitudinal derivative of the velocity, which is a third-order moment, can be calculated
with the help of the the Karman-Howarth equation (see e.g. [15]) as

B (%)3/ (g%)ﬁ = -3"?" jrdkk‘*f:[k}/(/fdkk? E{k})%. (3.107)

Using the numerical solution of Q*, we can perform the integrations on the right-hand side of (3.107)
to find

S = -0.66, (3.108)

which is in perfect agreement with the value obtained by a numerical integration of the Markovianized
LRA equations for the decaying turbulence [52]. This agreement may be attributed to the fact
that the structure of the energy spectrum in the universal range is the same for the stationary
and the decaying cases (see Appendix G). Note that this factor is independent of the Reynolds
number. Many turbulence measurements, on the contrary, show that it may increase in magnitude
with Reynolds number which expresses the intermittency of turbulence, though it is not conclusive
because fluctuations in the data are quite large. It varies from —0.6 to —1 in the range 10* < Ry <
2 x 10" (see Ref. [53]). The present result (3.108) is consistent with observation within this range of
the Reynolds number.

3.4.4 Energy transfer and flux functions

The scale locality of the nonlinear interactions is implicitly assumed in the Kolmogorov theory [1]
(see §1.1). If the interactions between different scales are strong we may not expect the universality
in small-scale structures of turbulence. In other words, the picture of the energy cascade requires the

*We have used an iterative method for (3.102) and (3.103), and the Newton-Raphson method for (3.104).



FIGURE 3.5 Triad energy transfer function T (k, p, q)/(ek®) in the inertial range for stationary tur-
bulence. Contour levels are 0,102, £10~!, £107%%... +10°. Positive regions are shaded.

energies to transfer from large to small scales locally in the wavenumber space. This locality of the
energy transfer has been investigated by the use of direct numerical simulations [54, 55, 4] and by a
closure theory [56]. For discussions of the energy transfer in the wavenumber space it is convenient
to rewrite the energy equation (3.84) as

% E(k,t) = —2vE*E(k, t) + T(k, 1) , (3.109)
where
Tk, t) = ff& dpdg T®(k, p.q, 1) , (3.110)
"
and

Tk, p,q,t) = 27% k®pg fdt’ G(k,t,t'") Gp, t,t') G(g, 1, 1)
XI@w@ﬂ+ﬁh¢m)mmﬂﬁQwiﬂl

—(thﬂmmﬂﬂ+ﬁhmMmei0Q&fﬁﬂ (3.111)

is the triad energy transfer function. The first term on the right-hand side of (3.109) represents
the dissipation of energy by molecular viscosity, and the second the energy transfer to the maodal
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Figure 3.6 Two-component energy transfer function defined by (3.112) in the case that both

wavenumbers k and p are within the inertial range.

energy of wavenumber & from all the other modal energies through nonlinear interactions. Eddy
viscosity is defined as the molecular viscosity counterpart when the contribution from the subgrid
scale components is expressed like the first term of (3.109) (see (3.117) below). In Fig.3.5, we plot
contours of the triad energy transfer function in the case that all of three wavenumbers, k, p and
g, are in the inertial range of stationary turbulence. Positive regions are shaded. Sharp peaks at
the corners of the rectangular domain represent strong non-local triad interactions, which are also
observed in the direct numerical simulation [55,4]. This strength of the non-local interaction seems
to be inconsistent with the picture of energy cascade in the wavenumber space in the context of the
Kolmogorov theory [1]. However we should note that the non-local interactions do not necessarily
cause the non-local energy transfer [55]. To see this, the two-component energy transfer function

defined by

k+p

Tk, p,t) = [ dgTO(k,p.g,1) (3.112)
|de=p

is evaluated by integrating T*) numerically (Fig.3.6). Since T'?)(k, p, t) expresses the energy transfer
to the modal energy of wavenumber k through the nonlinear interactions with the modes of wavenum-
ber p, Fig.3.6 gives a strong support for the local energy transfers in the wavenumber space.

The locality of the energy transfer is also studied by examining how the triad transfer function
T3 contributes to the energy flux function,

4] [+ 4] b o}
(k) =f dk"T{k’}f ' =f dF ff dpdg T (K, p,q) , (3.113)
K k k &)

which is independent of k and equal to € in the universal range. Defining a scale locality parameter
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F1GURE 3.7 Local energy flux function in the inertial range. In spite of strong non-local interaction
seen in Fig.3.5, the energy flux, which is expressed by the integration of the transfer function, oceurs
locally in the wavenumber space.

s by

~ min{k,p,q}
we introduce the local energy flux function IIp(c), where [Ip(<)ds represents the contribution from
T (k, p,q), whose scale locality parameter is lying between ¢ and ¢ + dg, to the integral in (3.113).
Noting the expression,

1 1
mff > [ deT®(1,2,1/c) -2 f dz zloge TV(1, ¢z, ) (s<2), (3.115a)
/¢ 1/¢
My(s) =

Logy f‘ dz T (1, 2, 1/¢) - 2]W Y drologzr TO(,cn,2) (c>2) (3.115b)
3 {e=1)/¢ 1fs

in the case that all of three arguments k, p and g of T'¥(k,p.q) are within the inertial range, we
evaluate IT; (¢) by the use of the numerical values of T3 (Fig.3.5). The result is drawn in Fig.3.7. A
peak near ¢ = 1.93 in this figure again tells us that energy transfer in the inertial range is taking place
locally in the wavenumber space. In summary, although the triad energy transfer function exhibits
strong non-locality, the actual energy transfer occurs locally in the wavenumber space. This partly
supports the Kolmogorov theory, i.e., the picture of energy cascade. However, the existence of strong
non-local interactions raises a question on the universality of the small-scale structure of turbulence,
although the strong non-local components of the triad energy transfer function may solely imply the
sweeping effect by the large-scale structures without affecting the small-scale statistics.
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FIGURE 3.8 Wavenumber dependence of the eddy viscosity. It is nearly constant v 2= 0.224¢ %kc ¥ oat
small wavenumbers (k < k.). The variation is less than 50% up to k = 0.6k.. At cutoff wavenumber
ke, it is 5.7 times as large as that at small wavenumbers.

3.4.5 Eddy viscosity

One of the main difficulties in analyzing the structure of developed turbulence at high Reynolds
numbers may be attributed to the enormously wide range of relevant scales of active motions. The
ratio between the largest and smallest scales, that is, the energy-containing and the energy-dissipation
scales, increases in proportion to the power 3/4 of the Reynolds number (see §1.5). It is hard to
resolve the smallest excited scales of developed turbulence of practical interest even on a present-day
supercomputer. The so-called large-eddy simulation (see Ref. [57] for a review) may be one of the
most promising methods of analyzing the turbulence dynamics in which only large-scale components
of motion are explicitly simulated, and the effects on the resolved-scale components of the subgrid-
scale motions are implicitly taken into account as eddy viscosity. It is the purpose of the rest of this
subsection to examine the property of the eddy viscosity in the framework of closure theories [58].

Let us denote by k. the cutoff wavenumber which is the reciprocal of the dividing length of the
resolved and the subgrid scales (e.g., the mesh size in a numerical simulation of turbulence). We
divide the energy transfer function T'(k,{), which is composed of many triad interactions, into two
parts as

T(k,t) = T<(k,tlk.) + T (k, tlkc), (3.116)
where T denotes the contribution from the resolved scales, i.e., an integral of (3.110) over p and
q < k¢, and T that from the subgrid scales, i.e. an integral for p or ¢ > k.. If we write the second
term of (3.116) formally as

T>(k, t|k.) = —2k? vp(k, t|k.) E(k,t), (3.117)

then vk, f|k.) may be regarded as the eddy viscosity since it is a molecular viscosity counterpart
(cf. the first term of (3.109)). Notice that the eddy viscosity varies depending upon the relevant



wavenumber, contrary to the molecular viscosity. In the following we will estimate the wavenum-
ber dependence of the eddy viscosity for both wavenumbers k and k. lying in the inertial range of
stationary turbulence. By making use of (3.111) and (3.117), we obtain

wole iy = KX rs Y iike (3.118)

with

caj e

Ik/ke) =~ (/ko)H [~ at e [ et Q') Q'h) Q1)

k/ke)=1t

K[ (p)™ (B(t,p.q) +B(t,a.p) ) — (tp)™ % B(t,q,p) — (ta)™ ¥ B(t,p.q) |. (3.119)

Integration in (3.119) is carried out using the numerical solution of (' already obtained in §3.4.1. The
eddy viscosity thus determined is shown in Fig.3.8. At two extreme values of k/k. we find I'{(0) = 0.170
and I{l) = 0.970. The eddy viscosity is nearly constant vy = EJ.?ME“:,;_ 3 at wavenumbers much
smaller than the cutoff wavenumber (k <« k) [50]. The variation is less than 50% up to k =
0.6k.. However, as the wavenumber concerned approaches the cutofl wavenumber, the eddy viscosity
increases more and more rapidly. At the cutoff wavenumber it is 5.7 times as large as that at small
wavenumbers. This sharp increase of the eddy viscosity near the cutoff wavenumber, which is caused
by strong non-local triad interactions such as p € k = g or ¢ < k = p (see Fig.3.5), iz also observed
in other closure theories [58], large-eddy simulations [59], and direct numerical simulations [60].

3.5 Decaying turbulence

We consider homogeneous isotropic freely decaying turbulence with the LRA-DIA equations (3.77)
and (3.84). The initial value problem of these equations was solved numerically by Gotoh et al. [51].
We seek instead for solutions to these equations in a similarity form. It can be shown that there
are in general no similar solutions with a single similarity law throughout the entire wavenumber
range. Therefore, as was done by Kida [61] for the modified QNA, we seek similar solutions which
obey different similarity laws in two wavenumber ranges. The energy spectrum is assumed to he
characterized by total energy £(t) and energy dissipation rate €(t) in the energy-containing range,
and by €(t) and » in the universal range.

3.5.1 Similarity form in energy-containing range

It is easy to show that the similarity form of equations (3.77) and (3.84) in the universal range is the
same for decaying and for stationary turbulence (see Appendix G). That in the energy-containing
range, on the other hand, is derived as follows. We start by introducing a new variable E(k,t) by

E(k,t) = Ec(k,t) k¢, (3.120)

where
0 < E(0,t) < oo. (3.121)



(il

Here, the index ¢, which was introduced in §3.1.2, characterizes large-scale structure as
Elk,t) xk* as k—0. (3.122)
Then, (3.74) and (3.84) lead to

% i Eukz] Ee(k,t) = ffa,, dpdg k*~$pg*~" b(k, p, )

£ 5 e -
xf dt’' Gk, t,t') G(p,t,t') Glg,t,t') E¢lg.t') [p‘i—? Ec(p,t') — k2 E;{k,t’]], (3.123)
0

where we have put {5 = (). Equation (3.77) for the response function is rewritten as

e I -
[%H»ﬁ +§k<+3 f dpp? S J(pT) f dt” B¢ (kp,t") Glkp, ¢, t”}:| Gk, t,t') =0.
0 t
(3.124)

If we demand that turbulence in the energy-containing range is characterized only by k, £{t) and
€(t), functions E; and G may be written, from a dimensional analysis, as

E¢(k,t) = £(2)50¢9) ()~ Bl (A£() e(t) & ), (3.125)
Gk, t,1') = G'(As(t}% e(t) Kk, AE()F e(t) " k), (3.126)

where A4 is a non-dimensional constant, which will be determined later so that the final expression
may be simple (see (3.137) below). By substituting these similarity forms into (3.123) and (3.124),
we find that the viscous term is smaller than the time-derivative and the nonlinear terms by a factor
Re~!, where Re is the Reynolds number (Re = £2/er). Hence, in the limit of large Reynolds numbers,
the viscous terms can be neglected.

By neglecting the viscous term and taking the limit of k — 0 in (3.123), we obtain 3

0 2<¢<4), (3.127a)
4 B(01) =

14 [ * N B i 12 »
dt Efu dpfﬂ at [ G, t,t) Eap,t)]” (=14 (3.127h)

For 2 < { < 4, substitution of similarity form (3.125) into (3.127a) leads to the power law,

Elt)y =& t77, (3.128)
where 2 +1)
o= C+3 (2<(<4). (3.129)
Here, we have used relation,
e(t) = —~% ' (3.130)

3This equation tells us that the Birkhoff constant [38], which is Ez{ﬂ, f}, is invariant in time, but the Loitsiansky
integral [39], which is equal to Ea(0,t)}, is not, as pointed out before in other closure theories of turbulence [61,62].
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For ¢ = 4, on the other hand, it may not be possible to prove that £(t) is a power funetion of t.
However, if we assume (3.128), then o can be evaluated hy

2 — 0)(10 = 7o)
207

28 oo 1 a3
Bly(0) = 7 A7 fn dp fn dt {013V 2=2) [ 3 G, pt) Bypt)|© (¢ =4).
(3.131)
Inversely, it is easy to show that (3.128), (3.129) and (3.131) arc sufficient conditions for the existence
of similar solutions (3.125) and (3.126).

By making use of (3.128) and (3.130), we can rewrite (3.125) and (3.126) as

Bk, 8) = LTI g=(-1 l-o(-30+2(+2)/2 ET{(.A.EE? o~ g ) (3.132)
Z -4 i -
Glk,t,t) =G AL a7 7541k, A&§ o' £ F41), (3.133)
In order to make the final equations simpler, we further replace ET, G and o with
h 2
E'¢(z) = AS*3 (2—_—-%) =63 ghah) | (3.134)
Gl(z,2) = G(zF, 2'F) (3.135)
and
o=2-13b, {3.136)
respectively. If we choose -
A= _!__3 s (3.137)
E5 b2
then (3.132) and (3.133) are rewritten as
Ec(k,t) = £20-1) g=¢=§ Bip='o%d) (3.138)
Gk, t,¢) = GHb " t2k3, b~ 1%k 3) (3.139)

and (3.123) and (3.124) as

2 (-t gy ) =it ) [ a0}
at(t s ENt) ) =15 f]aidpdqwhil,p.ql ﬂd“

x GHt, ') GH(p3t,p3t)) GH(gdt,¢3t) ¢~ F EY(g 3 ¢) [ g3 BNp3t) - BNY) | (3.140)

and
s o) i '
% log G* (¢, t') =—:i—'f dp.}{p}j dt" t"' =5 EY(pt") G¥(pt,pt") , (3.141)
0 1
respectively. Conditions (3.129) and (3.131) for o are also rewritten as
4
3(C +3) (2<¢ <4), (3.142a)
b= | -
1 -1 3-3 ( f n _
[ - f, Wk [ast(cthmmeien) | =9 @

Here, E; is defined by
E'z)=E% "% as 2930, (3.143)
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which follows from (3.121) and (3.138).

Finally, we consider the boundary conditions for E? and G}. Energy spectrum E(k, t) is expressed,
from (3.120) and (3.138), as
* 2
E(k, t) = £20-1 k=3 EF (b~ 0%3) . (3.144)

If we demand that E(k,t) at large wavenumbers in the inertial range be connected smoothly with
the k=3/% spectrum which is realized at lower wavenumbers in the universal range, then E! must
approach a constant, for which we can choose, without loss of generality, unity, i.e.,

E*(x)=1, (3.145)
Then, we have

E
3

E(k,t}:ar%rm"=(£a[z-3b])'§e{zﬁk-% (=Ke) ,say) ask—roco, (3.146)

where use has been made of (3.128), (3.130), (3.136) and (3.144). Integration of (3.144) with respect
to k together with £(t) = [° dkE(k,t) gives

3 [+ v}
B 2 f dez? BYg). (3.147)
% Jo

Hence, the Kolmogorov constant is expressed, from (3.1.16) and (3.147), as

= [% (% '3) fgdsr:c‘2 E*{I}]-i. (3.148)

A boundary condition for G* follows from initial condition (3.78) as

GHz,z)=1. (3.149)

Thus, we have obtained a system of integro-differential equations (3.140)—(3.142) to be solved
with boundary conditions (3.145) and (3.149).

3.5.2 Kolmogorov constant

In the limit ' — oo, equation (3.141) for the response function becomes
Eluu:u GHt, ) = - uK}d J(p) Edt” GH(pt, pt") t'—
5 108 G (¢, fu p ft pt.pt")  as 00, (3.150)
where use has been made of
f:dt" =5 B pt") GHpt, pt") =t'"% ]: dt" GHpt.pt") (as t' = o). (3.151)
Equation (3.150) with (3.149) permits a solution such that

GHt, t) = Gt - 1), (3.152)
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where G, obeys
oo L
%lﬂg{}':m{t] =_/u dp J(p) ]D dt’' Gt (pt') (3.153)

with boundary condition
Gtee(0) =1. (3.154)

Notice that (3.153) is identical to (3.96). The functional form of G, does, therefore, coincide with
that of @', which is the response function for the stationary case (Fig.3.2) 4.

The energy equation (3.140), on the other hand, is reduced to (see Appendix H for derivation)

372 o9 —2 ot
s+ 1 t4p gs ol
=f dff dpf dg taqu At Gt (£3¢) Gl (p3H) G aclgdt)

1 0 max{t—p,p} o

X { [E{tm,t_a-) +5{t,¢1p}] (pg)™ % - [E{f-,n q) g3 +b(t,q,p) P‘%Jt'% } (3.155)

Hence, it follows from (3.148) and (3.155) that the Kolmogorov constant K is written as
1 t+p
wh=f m‘ﬂf a [ dgt’pq [ dt' Giu(tht) Gloo(pit) Glusla?t)
1 ] max{t-p,p} ]

« { [btr0 +3tan | 0% - [Hepaa¥ +bean ¥ ¥ }
(3.156)

By remembering that G?. is identical to @' and comparing (3.97) with (3.156), we can conclude
that the Kolmogorov constant in decaying turbulence is same as that in stationary turbulence, i.e.,
K = 1722

3.5.3 Two-similarity-range solution

The LRA-DIA equations (3.140)—(3.142) for the energy-containing range are solved numerically
under boundary conditions (3.145) and (3.149) for two extreme cases of index ¢, i.e., { =2 and 4. In
the case of { = 2, (3.142a) gives b = 4/15. Equations (3.140) and (3.141) are then solved iteratively
as described in Appendix I. The response function and the energy spectrum function thus obtained
are plotted in Figs.3.9 (a) and 3.10 (a), respectively . The almost equi-distance in the contours

Note the difference in the arguments of OF and G, Tt is K ¥ed k¥t — ¢') in the former, while K¥k¥(e(t)ds —
e(t')}¢)/b in the latter (see (3.94) and a footnote in §3.5.3). However, these two agree with each other in the limit
' = oo because

KYedente — ety 3e) b = k4 (e — )0,
which is derived from (3.128), (3.130), (3.136) and (3.146).

5The response function and the energy spectrum function are respectively written in terms of solutions of (3.140)
and (3.141) as

Gk, t,t") = G r/b, 7' /by, Ek /€ty =K (ed k)~ B! - 3)ed eyl
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of logarithmic levels in Fig.3.9 (a) indicates that the response function decays exponentially with
response time 7 — 7'. The non-dimensional characteristic decay time 7 — 7' of the response function
takes a non-zero finite value at initial time v = 0 and decreases with 7'. In the original physical
time ¢, however, it is a monotonically increasing function of time starting zero at the initial instant
(figures are omitted). The energy spectrum, shown in Fig.3.10 (a), has asymptotic forms, o< k% and
o k_%, at small and large wavenumbers respectively as imposed as the boundary conditions.

In the case of ( = 4, on the other hand, parameter b is not known a priori but to be determined
iteratively together with E* and G* (cf. (3.142b)). We obtained numerically that

b= 0.207 {ffor (=4), (3.157)
which gives, through (3.136), the power exponent of the energy decaying law,
o=1.238 (for (=4). (3.158)

Interestingly, this value is exactly same as the one predicted by the EDQNM theory [62] as well as
by the modified zero-fourth-order cumulant approximation [61]. As shown in Fig.3.9 (b) and Fig.3.10
(b), the shape of the response function and the energy spectrum function are qualitatively the same
as for { = 2.

As mentioned at the beginning of §3.5, there are in general no overall similarity solutions with
a single similarity law valid over the entire wavenumber range. Instead, the energy spectrum obeys
different similarity laws in the energy-containing range and in the universal range, and it is con-
nected smoothly between them. It follows from (3.128) and (3.130) that the normalized energy and
wavenumber depend on time, in the respective wavenumber ranges, as

E(k,t k

S(%;‘l} x 371 = o t— 5o+ (in the encrgy-containing range) , (3.159a)
E(k,t

—i-’—i] x tile+n) lkﬁl o t¥*1)  (in the universal range) . (3.159h)
E4lr4 cEdLr 4

Note that the two similarity laws coincide with each other only for ¢ = 1 for which the velocity
correlation tensor f‘}j{k, t,t') diverges at zero wavenumber, or the three-dimensional energy spectrum
behaves as E(k,t) oc k (as & — 0). In this case, the total energy decreases in inverse proportion to
time, which has been observed often in grid-generated turbulence (see Ref. [15]).

The time evolution of the energy spectrum with two similarity decay laws is depicted in the entire
wavenumber range for cases { = 2 (Fig.3.11(a)) and 4 (Fig.3.11(b)). In each figure, two inserted
panels (which are identical to Figs.3.10 (a) and 3.3 for { = 2, and 3.10 (b) and 3.3 for { = 4)
represent respectively the energy-containing and the universal ranges, which translate in time in the
directions indicated by arrows. Notice that the direction of the arrow in the energy-containing range
is exactly parallel to the asymptotic slope at the small wavenumber of the energy spectrum for the
case { = 2, which exhibits the invariance of the Birkhofl constant, whereas they are slightly inclined
each other in the case { = 4, which implies that the invariance of the Loitsiansky integral is slightly
broken.

where use has been made of (3.101), (3.128), (3.130), (3.136), (3.139), (3.144) and (3.146). Here r' = K ¥e(¢) b iiy
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FIGURE 3.9 Similar solutions of the Lagrangian velocity response function G(&, £, t') in ihe energy
containing and the inertial ranges of freely decaying turbulence for (a) { = 2 and (b) { = 4. Here,
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FiGURE 3.11 Time-evolution of the three-dimensional energy spectrum of freely decaying turbulence
with two similarity laws for (a) { = 2 and (b) { = 4. Two kinds of inserted panels represent (I)
the energy containing and the inertial ranges, and (II) the universal range, respectively. The energy
spectra in these two ranges are connected smoothly in the inertial range between them. The two
ranges move in this double logarithmic scale to the direction indicated by arrows according to the
respective similarity laws.
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3.6 Concluding remarks

We have shown that DIA is successfully applied to homogeneous turbulence governed by the Navier-
Stokes equation. Employing the correlation and the response functions of the Lagrangian velocity
field instead of the Eulerian field in the formulation of DIA, we can avoid a misprediction of the energy
spectrum in the inertial range. Several useful findings obtained by the present Lagrangian DIA are
summarized as follows. We have proved in the framework of the present closure that the form of the
energy spectrum in the universal range is common between stationary and freely decaying turbulence
if the energy spectrum and the wavenumber are appropriately normalized in terms of time-dependent
energy dissipation rate. The universal form of the energy spectrum is in an excellent agreement
with observations. The energy transfer occurs locally in the wavenumber space, which is consistent
with the cascade picture used often for an explanation of the Kolmogorov theory [1]. Wavenumber
dependence of the eddy viscosity [58], which is used in the large-eddy simulations [57] of turbulence, is
estimated to give comparable results with other closure theories. The skewness factor of the velocity
derivative is obtained to be equal to —0.66 and is independent of the Reynolds number. This value is
consistent with available experimental data [53] in Reynolds number range 10° < Ry < 2x10* though
it is not conclusive whether there will appear a significant difference at larger Reynolds numbers. By
considering two-similarity-range solutions for freely decaying turbulence, it is shown that the Birkhoff
constant [38] is time independent, but the Loitsiansky integral [39] varies in time.

A closed system of equations for the Lagrangian velocity correlation and the response functions
derived by the present Lagrangian DIA [35] is exactly same as those derived before by LRA [36],
which is a kind of RRE. However, the importance of the difference between DIA and RRE cannot be
overemphasized (see Chapter 2 for detailed discussions).

It is reasonable that DIA is applicable to homogeneous turbulence governed by the Navier-Stokes
equation because the system possesses weak nonlinear couplings and the large number of degrees of
freedom. It does not seem however to be totally understood why the Lagrangian DIA formulation does
work but not the Eulerian, despite that there have been several suggestions based upon the Galilean
invariance of the system (see [12]) and the sweeping effect (see [63]). This important question why
we need Lagrangian formulation is still open. In order to clarify this problem, we shall discuss in the
next chapter, the strong and weak points of the present Lagrangian DIA by applying it to a passive
scalar field advected by isotropic turbulence.

Appendix A

In §3.3.1, we introduced a direct-interaction decomposition for the Eulerian velocity field and con-
structed the governing equations for the NDI and the deviation fields of it. Here, we shall adopt
this decomposition for the Eulerian velocity response function, the position function and the position
response function, i.e.,

@f}l{k, tik',t') = ﬁEf"}{k,tlk“, t'|| ko, Po: qo) +é,‘-f”{k,t|k’, t'|\ko, Po. Qo) s (3.160)
Bk, tk', t') = POk, tlK', ko, Do, o) + 9 (K, tIk', ¢'l| ko, Do, 90) (3.161)



and

@ik, tk' k", ') =

7

GO (e, Ik, k", ¢/ || ko, o, @o) + L) (k, k', k", /[l ko, Py, o) - (3.162)

Now, we write the governing equations for the six quantities defined by the above three decomposi-
tions. First, we can show from (3.48) and (3.49) that G.*” obeys

d

ot

with initial condition,

whereas @Ef 2 obeys

ad

[&

at

L] +v“2] GEO ke, 1K, ¢'llko, Py, go) =

2 G
—:( ;"') () zz’ (—p.t) GEO (—q, 4k, k0. Py, q0)  (3.163)

Lk+p+ -r a)

_ , 3
GOk, ¢k, t'll ko, Pos 90) = ) 8 O} u s (3.164)

+ L"-‘Cz.| 555”“‘1 ﬂkI: t’HkD!PUJ fm] =~
A2 =
- (T) Pimn (k) ZZ i (=p, 1) G{E”{ q.t|k', ¢'l|ko, po. go)
l'.k+f-'+¢~—ﬂ}

2y} = SIE

—!5,35_15,3 1 (‘E) imn{kﬂl um}{"pﬂh ﬂ||kD-Pu~ qﬂ] GE;jm{._qﬂr tlkf: Er”kﬂrpﬂi qﬂ}
2wy 3 o

5k b () Ponnlo) (-0, ko, Po-90) G5 (P, LR, ko, o, 00

3 L2\ 3 G E0) gt

+£’=+ku 1 T lmn{kﬂl ﬂ '[Pnrt”kU PosG0) (qo. tk", [l ko, Po. go)
{27 . S " o

+§E+ku ! (f) FPymn (ko) ﬂiﬂ}{ii'm t||ko, po- qo) Gi‘gm (Po: tlk:: ﬁ’”ku._pm 90)

+ (Po — qo — ko — py) 3:366)

with initial condition,

égfi}[k, t’lkf, ﬂ“kquge ‘Iﬂ} =1, (3.166)

where higher-order terms of the deviation field have been neglected (Assumption 1). Next, the
temporal evolution of the position function is derived from (3.39) and (3.40) as

a - : 2\ ° = ~
o2 POk ' ko, pos o) = =185 (T) 0 X " 52, &) B0 (=g, K’ ¢ ko, o, 00
FLE

with initial condition,

(k+p+q=0)
(3.167)

LS
ﬂ’m]{k t']k’ f”“ﬂ:?mﬂuj EE }5 JJ,H.,I,; 3 {3163}
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and
5 1] T _
Y (k,tk', t'|| ko, Pp, ga) =

2 ~ _
—ik; (;) Y% tai(-p, t) $V (—q. t|k', ¢'llka, Py, G0)
r q
{k+p+q—a}

—~63 g, Lkoj ) @0 (—po, tllko, Po do) 9O (~gy, tIK', ¢ [ ko, Py, 9o)

—ﬁ?;_knikm( ) @) (~qg. tl ko, Po, 20) ¥ (—pg, tIK', ¢/l ko, Py o)
+5E+:¢.,ik{}_1( ) 29 (pg. llko, po- o) 9% (o, tlk, ¢'lke0, o> 20)

+0k ko 1 Koj ( ) t® (gq, tllko, po. ag) B (po, tIK', ' ko, Doy G0

+ (pg — go = ko — I’a] , (3.169)
with initial condition,
P (k, k', |0, po. gp) = 0. (3.170)
Finally, for the position response function, we obtain, from (3.54) and (3.55), that
a - 2 27y 3 i -
g B0 L KK koo go) = =ik (T ) D5 ul-pt) B0 (gt K" ko, )
P q
(k+p+g=0)
—ik, (EET) ZZ G B (—p, (k" t') P(~q, tk', 1) (3.171)
{k+p+q—o}
with y
GO ke, |k, k", || o, Py, @) = 0 (3.172)
and
ad F1) oo
E E}i l:kafs |k :k % l|ku-Pu,qn} =
2 i I ]
-ike (T ) L3 a(=p.t) B (g, k', K", £l ko, Po; 90)
P9
(k+p+g=0)
’ 23 _ - ,
Eokoibon () T (—po, ko, po. @0) B (~aos K’ K ¢ K0, pos o)
. P A .
_Eh kglkuﬂ- (’E) u::]ﬂ}{“ qﬂ! t“kﬂspﬂ-! qﬂ'} w}lﬂ}[-pﬂrtlk’! kn!£”"‘ﬂs?ﬂ: qﬂ-}
2r\3 _ -
+8hanikon () 5o, ko, Po,a0) 71 (ao, ' K, 110, o, 00)
2r\3 -
+8% kgl Ko (I) " (g0, tllko,Po: 20) 7" (po, tIK', k", ¥l k0. o, go)
+ (Po —* go = ko — py) (3.173)
with

& (e, t' k' k", ' ko, Py, q0) = 0. (3.174)
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In derivation of (3.169) and (3.173), higher-order terms of the deviation field have been neglected
(Assumption 1).

Appendix B

In performing Procedure 2, the deviation fields must be represented in terms of the NDI fields. We
shall give the expressions for Gi-‘fl:', i,EJ“] and 'I"]m,

First, by using (3.163) and (3. lﬁﬁ} we can solve formally (3.165) to obtain
~(E 2r)
GED 0k, UK, ¢ ko poy @0) = § L Busek) [ e GLEV k] — k¢, o )
" [‘ﬂi..h s (~Po.t"llko, Po, 90) G5 " (= o, 1K', 0, Po, Go)
— &% hﬁwf—qu "liko, po, @) Gy (~po, t'IK', || ko, Po, 46)
— kg By 2 (po, [l ko. Po. go) G[F gy, "Ik, || ko, Po. 20)
_5k+ku b]f.'?n:ﬂ [%a. n:qiﬂﬁ'ij [Pu.f"WJ'IIku,IJ{:-.qu]

+ (Po — g0 — ko — pg) (3.175)

Next, it follows from (3.167), (3.169) and (3.170) that

= (2
P (k, k', | ko, Py, go) = ik ( W} f dt" $'9 (k, t| — k. t"[lko, Py, qo)
5% ___{53 ~(0} i t k ﬂ] 3 f" k: t.r k
ke—ko Ui (—Po. 1|l 0: Po» o) B0 (—qq, "1k, 'l ko, Pg, €p)

0 = ¥
— 8k kg “'E»' '(~ao. t"lIko, Po, @0) %' (=0, "1, 'llKq, Po. Go)
= 52_'__% 'ﬁgu} {Pm f””kﬂr pl}! "-Tu} 60:” (QEH f'Mlklll'll trllkr}: pcl" qﬂ}
— 83 ko B (dg, " 1Ko- Pos @) B0 (g, 1K', 'l K0, By, 20)

+ (Po = g0 -+ ko -nﬂn}]- (3.176)
Finally, it is shown from (3.171), (3.173) and (3.174) that
& (ke, t|k! k", ¢l ko, Po, g0) = kﬁ )’ [ dt” 1O (k, t] — k. "|| ko, Pg, 90)
x [ — 6ty GO (~Po, t"|lk0, P, @0) T (~qg, t"|K', k", ¢/l o, Do, qo)

- 62—1:& ﬁir]}{_qw t””ku,pm ql:l} ﬁz'f':i:I{_p'I:Iu ‘EHIEF1 k”} tr”kﬂ'pﬂ! ‘ID]
— O3 kg T (Pgs 1k Pos Go) B (go. "1k K", ¢'ll Ko, P, Go)
— 81k T2 (g0, "I ko- Po, @0} L (po. "K', K", ¢'l|Ko, Po, Go)

+ (po = g9 = ko = pg) |- (3.177)
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Appendix C

We derive here relations (3.63)—(3.66). First, by taking an ensemble average of (3.167) and using
Assumption 3, we obtain

2 Ok, K, ¥k, pyy o) = 0. (3178)

which leads to (3.64) under initial condition (3.168) of ), Next, an ensemble average of (3.56)
gives, under Assumptions 1 and 3, that

2 "ogt i it
{ ;] Z G“ m{'tlk 1k 1 E'||kn*Pn=Gn} Tﬁ*m:'{k:ﬂ -k 1Ej”ki.!:p0:'?ﬂ} '
k”

GO (k, t|k', ¢'llko, Po; Qo) =

(3.179)

where G denotes the NDI field of G'2. By substituting (3.64) into the above equation, we obtain
ij i}
(3.63). As for (3.65), we take an ensemble average of (3.171) to obtain

a
L uﬁ,{ﬂ}(k t, k' k", t'|ko, Po. Go) =
2

—ikq (T) ZE G0 (—p, tIk", ¥llko, po, qo) 9O (—q. tlk', t'llko, Po,qo) ,  (3.180)

{k +p+q—n}

where Assumptions 1 and 3 have been employed. Equation (3.65) follows by substituting (3.63) and
(3.64) into (3.180) and integrating it under initial condition (3.172). Finally, in order to show (3.66)
we note the identity that

a0 (k, tlko, po. @o) T (—k, '[|ko, Py, @0) =

2r i % 7
) 5 ST UK ko, por 40) Dkt — K 1Ko, o) 5 (. 0, P0r 40)
kl

Py(k)
(3.181)

which follows from relation (3.36) between &; and ¥; and continuity equation (3. 33) Here, 7! denotes
the NDI field of the Lagrangian velocity. By substituting (3.64) and replacing {ul ; K )Y by (i, )
(Assumption 1), we obtain

@ (k, tl|ko, Dy, @o) Ty (—k, t'l|Ko. Po. Go) = Pialk) Taltlk, ) 5 (—F, ) - (3.182)
Then, (3.66) follows from (3.25) (3.46) and (3.182).

Appendix D

A deduction of (3.69) from (3.68) is described here. The first term on the right-hand side of (3.68)
vanishes because of Assumption 2. On substitution of

i (~q, ||k, p, q)

oy - " -
{L} Posclq fdt GSEY) (—q,tlq, U]k, p.q) T (p, t'||k. p, @) @ (k, 'k, p. q) ,

(3.183)
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which is derived from (3.62), into the second term of (3.68), we obtain
(Second term on r.h.s. of (3.68))
= B Binnl) EF Fua) [ a0 G a,ta.tik.p.0)
{k+p+q—ﬂ}
i (~p,tIk,p,@) Ty (B VIl p,a) T (—k, tk,p,q) @ (k.| k,pyq) . (3.184)
Assumptions 2 and 3, (3.63) and (3.66) then convert (3.184) into

{Second term on r.h.s. of (3.68))

15
. {2;}2 Pinn (k) ZZ Pasc(g) f dt' Gha (~q,tlq,t'[[k.p,q)
{k+p+rra}

x i (—p, tllk,p.q) &y (p, ¥k, p.q) T (~k,tik.p,q) Tl (k,t|k,p,q)

‘2'”} Pornl®) £ Pac@) f at' GE (11— q.q, U1k, @) Gua(—ps 1, ) Qjel—F, 1, )

[k+p+ q-.n}

(3.185)
Similarly, the third term reduces to
[Third term on r.h.s. of (3.68))
{2“} Pimn (k) Z Z Pape(k) f dt' G300 (] — k, k. vk, . @) Qmin(—P, 6 t') Qne(—a. 1, 1) .

Eh+p+u-01
(3.186)
A combination of (3.185) and (3.186) leads to
2 EEHF‘
2 +uk Vii(ke,t,8) = Pimn (k) ZE [ dt' Goup(—p, 1, 1)
uk+p+q =0}
~(L0) ; L .
{EPab.;{tﬂ Gra  (t| — q.9,t'|k,p. q) Qjc(—k, t, 1)
+Pape(k) @'ffi'm(tl —k, k,t'|lk.p. q) Qne(—g,t, 1) }
o (s Tt kYo (3.187)

Multiplying the above equation by Py;(k), replacing suffixes appropriately and using (3.46) and (3.67),
we obtain (3.69).

Appendix E

We derive here evolution equations (3.70) and (3.71) for the two-point two-time Lagrangian velocity
correlation and the response functions.
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As for the Lagrangian velocity correlation function, the viscous term of (3.44) is expressed, under
Assumption 1, as

(Viscous term of (3.44)) =

2m)? = = : 7
_C1 5 52 70 (b, o Por o) B0 (—p, ik, Ko, Po. 90) B0 (—k, Ellko,Par o) » (3.188)
P

Lﬁ
which is rewritten, using Assumption 3, (3.64) and (3.66), as
(Viscous term of (3.44)) = —vk? Q,;(k,t,t') . (3.189)
The nonlinear term of (3.44) is approximated, under Assumption 1, by
(Nonlinear term of (3.44)) = — {ZH} Z Z E: T‘T'“ o
"NQ f‘ﬂ]

x| W (p, tlp,q,v) @y (a, tlp, g, 7) BO(r, |k, t'llp.q,v) T (~F, [p, q.7)

+20%) (p, tIp, q,r) @ (g, tlp, @, 7) DO (r, Ik, |'p,q,7) T (—k, Vllp, g, 7)
w0 (p,tllp, g,7) @y (g, tlp. g, ) BO (r, tlk, ], q,7) T (—k, P, @, 7)

+ 3% (o, tlp.g. ) @ (g, tlp. g, r) PO (r, tlk, t']p. g, 7) & (~k, ¥|p. q.7) |. (3.190)

The first term of the above equation vanishes because of (3.64) and Assumptions 2 and 3. It is casily
shown that both of the second and third terms are proportional to k;. By substituting (3.176) in the
fourth term, and using Assumptions 2, 3, (3.64) and (3.66), we obtain

27 3 FaFmdndi : "o "y S I
(Fourth term of (3.190)) = —2 (mﬂ) pI0E = f; dt" Qma(p.t,t") Qn(k,t,t) .
P g

(k+p-g=0)
(3.191)

Therefore, (3.44) reduces to

8 - = 2m\? i e =
a7 Vilk,t, 1) = = vk? Quj (k. 1, ') —2 (T’T) ;; ﬁ%ﬂ f: dt" Qrma(p, t,t") Qnj(k, 1, ')

(k+p+g=0)
+ (terms proportional to k;) . (3.192)

By multiplying the above equation by P;(k), and noting that P;(k) k; = 0 and (3.46), we arrive at
(3.70).

For the Lagrangian velocity response function we have only to deal with an ensemble average of
(3.52) for k' = —k, i.e.
d

- G\ (tlk, K, t') =

(2“} 3| G Rt — ke, ) (k" th, ) + (K" 1) B (=K, Uk, -m’}]
krr
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9 ] —
-1 220 I | G, ) G (.t — b, t) G(r, e, ¥)

(p+g+r=0)

Vil (P, t) Tin (g, £) By (r tlke, —k, ) |, (3.193)

because only this combination appears in the equations for the correlation function (3.69) and (3.70).
The viscous term of this equation is calculated, using Assumptions 1 and 3, (3.63) and (3.64), to be

(Viscous term of (3.193))

2 T
o “"'} T K2 GO, 1] — ke, ¢lko, Do 40) 9O (K", t]k, €l1ko, po, 2o)
k”

= —v k2 GO(t]k, k, tl|ko, Po: o) - (3.194)

The first term in the second brackets of (3.193) is rewritten as

Efr}l

(First term in the second brackets of (3.193)) = Z Z 3 T‘r’“rﬂ

[p+q+r—all

i (o, tlp.g,7) G (q.t| — k, ¥l|p. g,7) §1O (v, ]k, ¥[Ip, q. )

i (p, tlp.q,7) Gos (g, t] — k., t|p.q,7) $O(r, tlke, ¥ |p,q, 7)
‘“]{p, tlp.q,r) G- (g, 1] — k. tl|p. q,7) OV (r, t]k, t'|lp, g, )

+al (p,tlp.g, ) G (g, 1] - k, t'llp.q,7) $0(r, tlk, ¢lp,g,7) |, (3.195)

where higher-order terms of the deviation field have been neglected (Assumption 1). Thanks to
Assumption 3 and i'.-ZEm = 0, the first term of (3.195) vanishes. For the other terms, we employ the
procedures described in §3.3.2. On substitution of (3.62) in the second term to eliminate uEn:', we
can show that it vanishes because of Assumptions 2 and 3. For the third term, we use (3.175) to

eliminate @‘,‘E”. Then, Assumption 3, (3.63), (3.64) and (3.66) reduce it to

(2r)° .&:k k

73 Z }: Panelq

(k& +P+q—ﬂ}

] -- ot i~
% f; at" GY (1] - q,q, 1"k, p,@) GV (1" 1k, —k, ¥k, p,q) Qus(—p,t,").  (3.196)

(Third term of (3.195)) = -2

For the fourth term, (3.176) is used to eliminate ¥{*). Then, we can rewrite it, using Assumptions 2
and 3, (3.63), (3.64) and (3.66), as

3
(Fourth term of (3.195)) = -2 (?g) ZZ q:"-?mﬂ'ni?a.

{k+p+q—o}

t p— =
x [ dt" GiLO(tik, —k, ik, 2, q) Gmalp,t,t") . (3.197)
tf
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Finally, we calculate the second term in the second brackets of (3.193). By neglecting higher-order
terms of the deviation field under Assumption 1, we obtain

{217}

222 L

{p+-;|r+r n}l

(Second term in the second brackets of (3.193))

@ (p, tlp, @, 7) @ (g. tlp, q.7) B (r, Ik, —k, V]|p, g, 7)

+2i (p, tp.q,v) & (g, tllp,q.7) &}° (v, tik, —k, t||p, q.7)

+ii (p,t]p,a,7) T (g, tlp, @, ) ) (r tlle, —k, Hllpag,r) | (3.198)

The first term of this equation vanishes because 4 u p||p g, 7) has no correlation with iy }{qi!p q,7)
(Assumption 2). Next, we substitute (3.62) into the second term, and (3.177) into the third term
to eliminate quantities of deviation field. Then, it is casy to show that these terms vanish under
Assumptions 2 and 3. The second term of the second brackets of (3.193), therefore, does not contribute

at all to the governing equation of Lagrangian velocity response function. A combination of (3.194),
(3.196) and (3.197) converts (3.193) into

g G\ (tlk, —k, t') + v k? GO (tlk, —e, tllko, Po, @) =
2m)° kikm .lc
{Lﬁ] EZ Pn,bcl:qj

{k+p+q~o}

x [ at" G- 4,011k, p.) G0 (lk, k. Tk, p.@) G-,

=h (T:) Z "-l';"i';rrt'fl'n‘?a /dt" G[LD]' (tlk, —k, ||k, p.q) ém(p,t,t"}. (3.199)
Iik+P+q o)

By multiplying this equation by Pj,(k) and using (3.67), we obtain (3.71).

Appendix F

Under the assumption of isotropy, by noting (3.72) and (3.73), we rewrite (3.69) as follows. First, we
put ¢ = § and take a summation with respect to i. Then, the left-hand side reduces to

(Lh.s. of (3.69)) =

E + 2wk? ] Qk,t,1) . (3.200)
As for the first and the second terms on the right-hand side, we obtain

(First term on r.h.s. of (3.69))
1 /2m\? = = = b ' / /
-3 (f) Py (k) ‘}p:ij By () Bos(a) fmdt Glp.t,t) Q(k, 1, 1) Qlg, t,t))

(k+pig=0)
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1 3 R b , ,
=-3(T) TX Fikpo [ a06o.n0) QLY QL) (3.201)
P q

(k+p+g=0)
and
(Second term on r.h.s. of (3.69))
L {2 P P, z L f ’ ’
:_(i) Pina(k) Pac(k) 3% Prs(p) Pucla) f! at' Gk, 1, ) Qlp, £, ¢) Qla, £.1')
P q ]

8\ L
(k+p+g=0]
1 f2m)\? - t
=T kz h{ki F-,,'Q'} ‘df G{k: !: i"] Q{p 't: 't;} Q{rh E! f]‘ 1 {32[}2]
() X o

(k+pt+g=a}

respectively. Here, use has been made of formulae,
Pijm(k) Pjin(p) Pun(q) = —2k* b(k, p,q) (3.203)

and
Pyjin(k) Pie(k) Piy(p) Prc(q) = 2 [EEFE,P,QJ +b(k,q.,p) |- (3.204)

Hence, we get

) 2\ 3 =
[E +2uk9] Q(k,t,t) = (E) );g k? b(k,p, q)

(k+prg=0)

t
x [ 4t Qat,t) Gk t.t) Qo tt) - Gt ) QU6 Y) | (3.209)
tp
By taking the limit L — oo and noting the formula (see for example Ref. [18])

(2%.)3 Ty —*fL dpdq%% (L = o0) (3.206)
P q .

{(k+p+q=0)

we may convert (3.205) into (3.75).

Next, we rewrite (3.70) under the assumption of isotropy. By putting i = j and taking a summa-
tion with respect to i, the left and right-hand sides of (3.70) are reduced respectively to

(Lh.s. of (3.70)) = [g; s vk2] Qlk,t,t") (3.207)
and
ehs of 310) =1 () Putk) TF %% 5 )[4 Q1) @k 1)
.n.s. A = 5 7 ah 2 19'2 ed\ I M s Ly 3 Ty
(k+pig=o)

(E—W)a >3 K dkp.a) fldr" Q(p.t,t") Q(k, 1, 1) (3.208)
L P q il ¢ P y e o .

(k+p+g=0o]



79

Here, E{k,p, q) is defined by

aQbde0d = =] 1 2
%ﬁﬂh(k}ﬁd{?} = k? [%gm (k+p+q)(k+p-q)(p+g—Fk)(g+k-p)
= k2 d(k,p,q) . (3.200)

We take the limit L — oc and rewrite (3.208) as

(rhis. of (3.70)) = — f fm T P TR SO f! A Q") QR L E) . (3.210)

Carrying out the integration with respect to g and using the function 7 define by (3.81), we obtain
(3.76) from (3.207) and (3.210).

Finally, we reduce (3.71) to (3.77) under the assumption of isotropy. By putting i = j and taking
summation with respect to i, we rewrite (3.71) as

(Lh.s. of (3.71)) =2 [E?E + vk? | Gk, t, 1), (3.211)
(First term on r.hs. of (3.71)) =0, (3.212)
since J:,-ﬁj{k} =0, and
(Second term on r.h.s. of (3.71))
s (%’")3 Puslk) g E,,: B2l Pralp) f; at" Q(p.t, ") G(k, t, )
(k+p+q=0)
=— (%")3 Y5 Kdk.p.aq) f: dt" Q(p,t,t") G(k,t,t') . (3.213)
{.k+pp+n;?:u}

Then, (3.211)—(3.213) tends to (3.77) at the limit L — 0.

Appendix G

We assume that in the universal range of decaying turbulence 2(k, ¢, ) is characterized by k, e(#) and
v, and therefore written as

Qlk,t,t) = v e(t) ¥ Q(Bui e(t) 1 k), (3.214)

where 15 is a non-dimensional constant. Then, it can be shown, under the assumption of a power decay
law (3.128) of energy, that the time-derivative term in (3.84) is smaller in magnitude than the viscous
and the nonlinear terms by Re™ 3. Hence, in the limit of e — oo, Gk, £, 1) is independent of time in
this range, which also allows such a stationary form as G(k,t,t") = G(k,t —t') in governing equation
(3.77) of G(k,t,t'). In conclusion, the solution of decaying turbulence in this range is identical to
that of stationary turbulence.
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Appendix H

Equation (3.155) is derived here. Successive changes of variables in (3.140), #' to #', ¢ to $3 and
(pt,gt) to (p,q), lead to

2 = :
ﬂ‘s-zi(z%-% E*{tg}) =z f[ dpdq pq b(t, p,q) f dr’ ¢33
at 3 Fay [}

x GH{¢,13¢) GH(p3,pit) GHg,¢3¢) g™ 3 E¥(g31) [p%-‘ EYpit) —t¥% BYedr) |.
(3.215)

|

By integrating the both sides of the above equation from 0 to infinity with respect to ¢, we obtain

Wil = —( % 3 ) F dt -2 BY(1) (3.216)

2 - o0 £ 1 3
(r.hs) = —jjgr‘:u %Ti /; dit j; dp L::f_p 5 dq t*pq fu di' t3-%
x GH(¢T) 5, (¢T)3¢) GH(pT)3, (pT) 3¢) GH((qT)3, (¢T) 31

x { [3tp.0) +5t0.p) | (0% BHGTIIE) B (@D
—[B{am,q} 8 BH(qm)bt) +0(t.a.p)p? E‘[@T}%’f’x] % B ()i }
(3.217)

By taking account of (3.145) and (3.152), we can calculate (3.217) to be

00 1 t4p o0
(r.h.s.}=-§j; dt/; dpf dqtqu/; dt' G (£3¢) Glo (P3t) GP (g3 t)

max{t—p,p}

X { [3(t~.p,q)+3{t1q1p}] (pg)~ 5 — [Ett,p,q} a % +5(t,q.p) p‘T]ﬂ‘% }
Equation (3.155) follows from (3.216) and (3.218).

Appendix I

For the purpose of numerical computation of (3.140)--(3.142), it is convenient to introduce H by
GHt,t') = H(t—t',t), (3.219)

because the difference between two times in G* has more important meaning of the response time.
Substituting (3.219) into (3.140) and (3.141), we obtain

o0

EMe) = — 3 -2+ fmdk fm ai I dp ds (s + 1)~ k%% (pq)?
4 0 2-2/3 gt -xtid max{ 0,45 }
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% H (ks, k) H (ps,p) H (gs,9)
x | B¥(p) E¥(q) (pg)™¥ {B(k?,p%,q%) + Bk, 5, p}) |
—EMk) k=% { BV ) p ¥ Bk qF,p%) + BYg) g% B(kE, pE, ) }]
(3.220)

and

w gl gl -
H{t}t‘}=exp[—fﬂ dt"fﬂi ds L;g;dpJ[p}p‘z r%-kl]b EN(t") H{s,t"}], (3.221)

i

respectively. Boundary condition (3.149) is written as
H(0.t) =1, (3.222)
while, asymptotic condition (3.152) at large time is represented by
H{t,t') = Gru(t) (a5 t' = x). (3.223)

Relation (3.142) between b and ¢ is rewritten as

4

S 2£(<4),
21 7 o (™ 32 3.3 [ ek A .
[I'm_Eir;.fu dtfu dk (k + )2 =2 ¢P=b (H{a,z}E*(t]) l (C=4).

(3.224)

We solve numerically a set of integro-differential equations (3.220), (3.221) and (3.224) under bound-
ary conditions (3.145) and (3.222), and asymptotic conditions (3.143) and (3.223). Equations (3.221)
and (3.224) are solved by an iterative method, while (3.220) by the Newton-Raphson method.



Chapter 4

Lagrangian DIA for a Passive Scalar Field
Advected by Turbulence

We apply the Lagrangian DIA introduced in the preceding chapter to a passive scalar field
advected by isotropic turbulence. We derive a closed set of equations for the passive scalar
correlation and the Lagrangian velocity correlation functions, and show that solutions to the
resultant closure equations are completely consistent with the well-known scaling laws of the
scalar spectrum, which were predicted phenomenologically by Obukhov [64], Corrsin [65],
Batchelor, Howells & Townsend [66] and Batchelor [67]. The functional forms of the scalar
spectrum in the statistically stationary state in the entire universal wavenumber range are
evaluated by solving numerically the closure equations for each case of moderate, extremely
large and small values of the Schmidt number. Schmidt number dependence of the mixed-
derivative skewness factor of the velocity and the scalar fields is also evaluated, which is in
a good agreement with a direct numerical simulation by Kerr [G8].

4.1 Introduction

Encouraged by the successes of an application of the Lagrangian DIA to incompressible turbulent
velocity field in the preceding chapter, we shall apply this closure theory to a scalar field, such
as temperature, contaminant, particle concentration, dye, smoke and so on, which is advected by
isotropic turbulence. It is assumed that dynamics of the velocity field is free from that of the scalar
field, in other words, the scalar field is passively advected by turbulent velocity field. Similarly to the
Kolmogorov theory on the velocity correlation function, several phenomenologies [64-67] on small-
scale statistics of scalar field, especially, the two-point correlation function, have been proposed. The
aim of this chapter is to make a bridge which connects such phenomenologies and the basic equations.

Numerous attempts to attack this problem have been made so far by many researchers. Among
others, Kraichnan [69,70] applied the abridged LHDIA [37] to a passive scalar field and showed that
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the results were consistent with the well-known scaling laws (4.8), (4.10) and (4.14) below, of the
passive scalar spectrum. The formulation of the abridged LHDIA is, however, somewhat complicated,
and the deduction of the scaling laws from the ALHDIA equations is partly incomplete. Moreover,
it cannot predict the wavenumber boundaries of each scaling law, which are important because there
are several different phenomenological proposal of boundaries (see e.g. Ref. [71]). Kaneda [50] and
Gotoh et al. [51] applied LRA [36] to a passive scalar field with zero diffusivity.

One of the main tasks of this chapter is to determine the universal functional forms in the sta-
tistically steady state of the scalar power spectrum with high accuracy. Although such studies have
been made [49, 51} based upon closure equations by LHDIA or LRA, the accuracy of their estima-
tions of the functional form determined from a late state in a decaying numerical simulation of the
closure equations may be questionable. It is not easy to know the time when it has approached the
universal state and there is no guarantee that the functional forms of the spectrum in the decaying
and stationary turbulence ever coincide with each other. For example, in Fig.12 of Ref. [49] or in
Fig.13 of Ref. [51] we hardly observe the universality of the constants even when an identical closure
equation is solved.

This chapter! is organized as follows. Phenomenologies on small-scale statistics of the passive scalar
fields are reviewed in the rest of this section, and summarized in Fig.4.1. (See Lesieur {22] and
Tennekes & Lumley [17] for more detailed discussions.) After describing the basic equations in §4.2,
we formulate in §4.3 the Lagrangian DIA for a passive scalar field to derive an integro-differential
equation for the correlation function. A detailed analysis of the resultant closure equation is made in
§4.4 to find universal forms of the passive scalar spectrum. Three kinds of scaling laws (4.8), (4.10)
and (4.14) are shown to be consistent with the solutions to the closure equation and all the universal
constants are evaluated. In addition, the universal forms of the function are determined numerically
for several finite values of s as well as for two extremes s > 1 and s <€ 1. Section 4.5 is devoted to
concluding remarks of this chapter.

4,1,1 Characteristic wavenumbers

Recall that there are only two characteristic length scales, the integral scale L and the viscous
(Kolmaogorov) scale 7, in the turbulent velocity field. Roughly speaking, the integral scale corresponds
to the wavenumber ky at which the energy spectrum takes the maximum. On the other hand, the
reciprocal of 1 is the Kolmogorov wavenumber,

kx = 1/n = (e/v*)1/4, (4.1)

where the inertial-range turbulent diffusion time (k%/3¢!/3)~! and the viscous dissipation time (vk2)~!
are comparable. Incidentally, the viscous dissipation time at wavenumbers larger than ki is smaller
than the inertial time. It is interesting that there is no characteristic length scale between the two

"This chapter is based upon Ref. [72].
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characteristic wavenumbers k, and k., and therefore a scale similarity of the velocity field in the
statistical sense may be expected. The k3% power law of the energy spectrum in the inertial range,
for example, results from this property. The ratio ky/ky increases with the Reynolds number in
proportion to Re®? (see (1.26)).

In addition to the two wavenumbers ky and kg, there exist a few more wavenumbers which
characterize the statistics of a passive scalar field. The peak wavenumber kg of the passive scalar
spectrum represents the typical length of the large-scale structures. The characteristic wavenumbers
for small scales, on the other hand, are different depending on the Schmidt number (or the Prandtl
number on speaking of temperature),

s=w/K, (4.2)

the ratio of the kinematic viscosity v of a fluid and the diffusion coefficient x of a passive scalar. If
s < 1, it is the Obukhov-Corrsin wavenumber,

ke = (e/k*)" (=Y k), (4.3)

at which the inertial-range turbulent diffusion time and the scalar dissipation time (xk%)~! are com-
parable, whereas, if s > 1, it is the Batchelor wavenumber,

kp = (¢/vr?)/* (=" ky =57 ko), (4.4)

at which the scalar dissipation time and the shearing time (v/ €)1/2 of vortices of the Kolmogorov
scale are comparable. In the cases that

max{k\rr k-s} <& ]Iliﬂ{kﬁ,h_;, k“} 3 {4-5}

which we shall consider in the following, there exist a large number of degrees of freedom between
the above two groups of wavenumbers, and scaling regions are expected for the scalar spectrum. As
will be shown in §§4.1.2—4, there are a variety of scaling laws, depending on the Schmidt number
which controls the relative magnitude of the three wavenumbers ki, k¢ and ky as

kx < ks (k¢ is meaningless) (for s = 1), (4.6a)
ko < ks (ks is meaningless) (for s < 1). (4.6b)

It is worthwhile to mention that the largeness of the number of degrees of freedom is one of the
validity conditions of DIA (see Chapter 2).

4.1.2 Inertial-advective range

The condition (4.5) guarantees the existence of the inertial-advective (inertial-convective) range,
max{ky, ks} < k < min{kg, kc}, (4.7)

irrespective of the Schmidt number, in which neither the molecular viscosity nor the scalar dissipation
is effective. By noting that the scalar spectrum function defined by (4.32) in §4.2.3 is independent of
& and v, and by employing a dimensional analysis, we can derive a scaling law in this range as

Ok) = Cy x e~ /3 k%3 | (4.8)
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where y denotes the mean rate of the scalar fluctuation dissipation. This k=2 power law in the
inertial-advective range was proposed by Obukhov [64] and Corrsin [65] independently, and is sup-
ported by many observations (see Ref. [73]). Experimental value of the universal constant C), called
the Obukhov-Corrsin constant, is about (5/3) x 0.4 = 0.67.

4.1.3 Viscous-advective range

In smaller scales than the inertial-advective range, if the Schmidt number is large enough (s 3 1),
there exists the viscous-advective (viscous-convective) range,

by < k < kg, (4.9)

in which the scalar field is deformed by shearing motions induced by vortices of the Kolmogorov scale.
Batchelor [67] derived a scaling law in this range as

Ok) = Cy x "2 e 2 1, (4.10)

This k~! power law is supported by measurements in the tidal flow by Grant et al. [74] and by
QOakey [75], and the experimental values of the universal constant Cs, called the Batchelor constant,
were found to be 3.9 £ 1.5 and 3.7 £ 1.5, respectively.

A simple derivation of (4.10) is as follows. In the advective range, the diffusion term in the
governing equation (4.17) of the passive scalar is negligible compared with the other terms, and
therefore the time derivative and the advection terms may balance. Then, from scalar fluctuation
equation (4.33), we obtain

% f:ﬁ dk' O(K', t) = TTp(k, 1) . (4.11)

Here, Iy is the flux function for the scalar fluctuations defined by (4.34) in §4.2.3, which may be
equal to x in the advective range. The left-hand side of (4.11) is roughly estimated as
k ©(k)

(Lh.s of (4.11)) ~ ) (4.12)
where 7(k) is the characteristic time scale of eddies that advect the scalar field. In the viscous-
advective range, those eddies of the Kolmogorov scale n contribute predominantly, the characteristic
time scale of which is (v/€)}/2. Equation (4.11) then leads to the k~! power law (4.10). By the way,
the power law (4.8) is obtained by putting 7(k) = k~2/%¢1/3, the time scale of eddies of inertial scale.

4.1.4 Inertial-diffusive range

If the Schmidt number is small enough (s < 1), there exists the inertial-diffusive (inertial-conductive)

range
ko € k < ky (4.13)
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in which the passive scalar is rapidly diffusing while being mixed by turbulence. Batchelor et al. [66]
proposed a scaling law in this range as

O(k) = Cy x k™33 1713 (4.14)

with C3 = 1 K. Let us describe an intuitive derivation of this scaling law. (See Ref. [66] for a detailed
derivation.) Since in the inertial-diffusive range the eddy turnover time k~2/3¢=Y3 which is equal to
characteristic time scale of the time derivative term in the governing equation (4.17) of the passive
scalar, is much larger than the scalar fluctuation dissipation time (v k?)~!, the governing equation

may be approximated as ,

d d
i — Ot = ——— Q> t). 4.1
ui(®,1) g 0@ t) = & 5o (=, 1) (4.15)
Noting that spatial variation of the scalar field in the diffusive range is relatively moderate because
of strong molecular diffusivity effects, the mean rate y of the scalar fluctuation dissipation may be

evaluated, by the use of (4.15), as

80 \2 sk2VROR) \2 5 4 Ok)
(35, ) “(Trrss—m‘) =% K B e

Then we arrive at the k~17/3 power law of the scalar spectrum because E(k) x k%% in the inertial
range.

This k~'7/3 scaling law with the relation C3 = 1K is supported by numerical simulations by
Chasnov et al. [76]. The inertial-diffusive range might be observed by experiments of liquid metal.
However, the scaling law seems too steep to measure accurately. Different phenomenological theories
have also been proposed. Corrsin [77] predicts exponential decay of the scalar spectrum in this
wavenumber range (see Tennekes & Lumley [17]). Gibson et al. [T1] argued that there exist two
scaling regions in the inertial-diffusive range, that is, the k=3 power law between k. and k, are
followed by the k~'7/3 power law up to kx. They claimed that Clay’s experiment [78] supported their
theory.
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FIGURE 4.1 Schematic sketch of the passive scalar spectra predicted phenomenologically by Obukhov
[64], Corrsin [65] (the k~5/% power law in the inertial-advective range), Batchelor [67] (the k~! power
law in the viscous-advective range) and Batchelor et al. [66] (the k~'7/? power law in the inertial-
diffusive range). Figures (a) and (b) correspond to the large and the small Schmidt number limits,
respectively. Energy spectrum is also drawn for a comparison. Both horizontal (wavenumber) and

vertical (spectra) axes are scaled logarithmically.



88

4.2 Preparations

4.2.1 Basic equations

We consider the statistical properties of a passive scalar field #(z, 1) which obeys the advection-
diffusion equation,

d

2 0. t) + uta, 1) % o, 1 0(a.1), (4.17)

o pc T

d:::.-ax;
where u;{x, ) is an incompressible turbulent velocity field governed by the Navier-Stokes equation
(3.18) and the equation of continuity (3.19).

4.2.2 Lagrangian scalar correlation function

The fundamental variables in the present Lagrangian closure are given by the Lagrangian scalar field
and the correlation function of it. Similarly to (3.23) and (3.24), the Lagrangian scalar field 8] is
defined by

o) (t|z, t') = fdﬂz"f,{?[z:",t!z;,t’] 8(z',t) (4.18)

and
0(, t) = f &3’ (. ', 1) 0 (fa, ) (4.19)

where 1 is the Lagrangian position function [36] defined by (3.20) and governed by (3.21) with initial
condition (3.22). The Lagrangian scalar correlation function is then defined by

Z(r, t, 1) = 0N tle + r, ¢) 0N |2, ') = 018t + v, ¢') (', 1) (4.20)

in the same manner as (3.25).

4.2.3 Fourier representation

Just as in Chapter 3, we assume that the fluid is confined in a periodic cube of side L (at the final
stage of analysis we shall take the limit L — o0), and formulate the Lagrangian DIA in the Fourier
space. The Eulerian and Lagrangian scalar fields are decomposed into Fourier series as

B(z, t) = (?LE)J ;E{k,t} exp|ik -z | (4.21)

and 3
8\l (z, 1) = (2%) 365k, t) exp[ik-:ﬂ], (4.22)
k

where k = (2n/L) (n1,nz,na), { ny,nz,n3 =0,%1,+2,--- ) is the wavenumber vector. The inverse
transformations are written as

ok, t) = (51;)3 fdﬁma{m,:} exp| —ik -z | (4.23)
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and .
- 1
65 (ke t) = (ﬂ) fd?'z 8 (. 1) exp[ —ik-x ] (4.24)

Then, the evolution equation (4.17) of the scalar field and the relations (4.18)—(4.19) are respectively
rewritten as

a9 = ; 2r\? 2 -
{“a—t-l‘-ﬂkz]ﬂ{k,ﬂ:—lkj (-E) ;g ii(—p, t) 0(~q,1) (4.25)
(k+p+g=0)
and é
6D (t|k, t') = {2;3’ ST Rk tlk, ) Bk, 1) (4.26)
4
Ok, t) = (2m)° 3 wlk,t) — K, ) 6D (2R, t) 4.27
WETE 2 b ; t) . (4.27)

Evolution equations for the Fourier transforms of the Lagrangian scalar field L) and the corre-
lation function,

Z(k,t,t') = (%)3 fdar Z(r,t,t') exp[vik-r] = (2%)3 O (t)k, ') B(—k, ') (4.28)

are derived as follows. The time derivative of (4.26) yields
[ EEE + K kzl g ¢k, ¢y =0. (4.29)

Combination of (4.25) and (4.29) leads to

E+2.ﬁk2 Z(k,t,1) = —ik; (?f)ﬁ 3 i(—p.t) 0(—q, 1) B(—k, ¢
Bt 14y - 3 L i “J i q, { 1 }

[k+pig=0)
+(k = —k) (4.30)

for the single time correlation and to
g 2| = ’
= 4+ rnk*| Z(k,t,t')=0 {4.31)
at

for the two-time correlation.

For a later use, we define here the scalar spectrum,

Ok, ) = Hjédﬂ Zlk,t,t), (4.32)
where § df? denotes a solid angle integration in the Fourier space, the transfer functions,
a
Ty(k) = =+ zmk“} Ok, 1), (4.33)

which is the solid angle integration of the right-hand side of (4.30), and the flux function,

My(k) = f; dk' Ty(k') . (4.34)
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4.2.4 Response function

The response functions of @(k, ) and 6% (t|k, #') are defined by

= 88k, t
Golk, tIk', t') = m (4.35)
and S0
2 56 (1], t')
GO il k' 8) = = (4.36)

respectively, where § denotes a functional derivative. The evolution equations for these response
functions are respectively derived by taking functional derivatives of (4.25) and (4.29) as

—+mk2](§{k,tik',tj——lk s iij(—p.t) Go(—q, t|k', ) (4.37)
Rl (F) =% werod

(k-p+g=0)

and

T%Hk?] GSP (tke, k' ) = (4.38)

The initial conditions are given by

LE

(2m)8 Gt (4.39)

Galk, t'|k', 1) = G 2|k, k', 1) =

4.3 Lagrangian DIA for a passive scalar field

4.3.1 Direct-interaction decomposition

In the same manner as in the preceding chapters, we contract a closed set of equations for the scalar
two-point correlation and the response functions. Recall that DIA is based upon the direct-interaction
decompaosition (§2.3.1) [24], in which & and Gy are respectively written as

B(k, t) = 60 (k, t|ko, o, go) + 0V (k, t]| ko, Py: 9) (4.40)
and
Golk,t) = G (k, tik', € ko. po, g5) + G5 (K., iK', ]| ko, Po. o) (4.41)

where kg, py and g (kg + py + gy = 0) are a triplet of wavenumbers, the direct interaction between
which has been removed in the NDI fields 8% and éEU}. These decompositions for # and Gy are made
after tg and t', respectively. The initial conditions for (%!, g0}, ﬁE,ﬂ} and é{ﬂ” are, therefore, given by

09 (&, tollko, Po, @) = O(k, to) , 0 (k, to|lko, Po, go) = 0, (4.42)

L.'!

GO (k, ¥k, ]| ko, Po. go) = @n)e g0 and GOk, UK, Clko,porao) =0,  (4.43)
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respectively. By definitions, the NDI fields ) and EF}"'E,D: are governed by

ij . 2733 _
[E’E + ﬁkz] 80 (k, 2| ko, Py, @g) = —i kj (%) SN "ui(—p, t) 01 (—q, tllko, Py, 90)
»q

(k+pg=o)
(4.44)

and

a = P | . i
[5‘5 i """fi] G (k. tIk' || ko, pg. go) = —i k; (“‘) ZZ i (—p,t) Gy (—q. tlk', /|| ko. Py, qp) -

)
(4.45)

Here, ¥ 5’ denotes a summation without direct interactions between the three particular modes of
wavenumbers kg, py and g;. The evolution equation for the deviation field 611} ig then obtained by

subtracting (4.44) from (4.25) as

|5+ mﬁ] Bk, koo ae) = =ik () 5 13-, 80 (- ke, o, 0
tk:;*::a}
— 16}, koj 1i5(—po. 1) 8 (~qq. t]l ko, pg. q0)
- iﬁi—ku ko ui(—po. t) 0 (~qy, tllko, Py, o)
+ 10} 41y Kos 5(p. 1) 00 (qq, tl| ko, Py, G0)
+10% 41y ko5 T;(g0, 1) 0 (g, tll ko, Po, 40)
+ (ko = Py = qp — ko) - (4.46)

It is easily shown from (4.42), (4.45) and (4.46) that the deviation field V) is expressed in terms of
ﬁgﬂ} and 8% as

{2'4?)9

8V (k, tlko, Po, @o) = —ik; f dt" GV (k, t| — k, "|[ko, Py, @o)

X [ﬁiﬁku i (—pg, t") 8 (- gy, t"| ko, Pos go)

+5%—ku ﬁj{_‘Im f":' g[ﬂ}{_?zh t””’ﬂnspn- ‘Iu}
+5E+Icu iij(pg. ") 0" (qq, t" || k0. Py, gp)
+ 84k 15(90, ") 8 (g, " [l o, Py, 90)

+ (ko = Py = gy = ko) |. (4.47)

4.3.2 Closed equation for passive scalar spectrum

Here, we will derive an approximate expression of the third-order correlation in the evolution equation
(4.30) for the scalar correlation function Z in terms of Z itself and the Lagrangian velocity correlation
function by the Lagrangian DIA. This approximation is based upon the following three assumptions:
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Assumption 1 The deviation filed is much smaller in magnitude than the NDI field as long as £ — {3
(for 8) or t — ' (for Gg) is limited within the order of the correlation time seale of the velocity
field.

Assumption 2 Any two Fourier components without their direct interaction are statistically inde-
pendent of each other. For example, any two of 01 (kq, t||ka, Py, Go), 0% (py, || ko, Pg. gy) and
Tig(gy, t") are statistically independent (see (4.44)).

Assumption 3 The NDI field of the position function 1) is statistically independent of those of
the Eulerian quantities such as ¢'9 itself, §(%, G{ﬂ] and ",

It must be stressed again that although the first and the second assumptions are reasonable and exam-
ined in detail for a model equation (chapter 2), the third one is only an assumption for simplification
to be checked in future (see §6.3).

First, we consider the one-time scalar correlation function Z (k,t,t) which is governed by (4.30).
By substituting the direct-interaction decompositions into the right-hand side of (4.30) and by ne-
glecting the higher-order terms of the deviation fields (Assumption 1), we obtain

(Nonlinear term of (4.30))
==k (EE)E Ep:%: [‘"‘Emf"ﬁ*llhm q) 0 (~q.t|lk, p.q) 60 (~k, t|k,p,q)
(k+p+g=0)
+3;(-p, tllk.p, q) 69 (~g, ]}k, p, @) 6O (~k, t|[k, p. q)
+37 (~p, tllk.p,q) 81 (~q. 1|k, p,q) 6O (~k, ||k, p. q)

+i(~p, t|k.p,q) 60 (~q. 1]|k, p, q) B)(=k, |k, p,q) |.

(4.48)

Note that thiz approximation is valid as long as t — {3 is within the order of the time-scale of the
velocity correlation function. The first term in the above equation vanishes under the assumption
that @ (p, t|lk, p, ), 8 (p, |k, p, q) and 8 (q, [k, p, ) are statistically independent of each other
(Assumption 2). Since the other three terms are evaluated similarly, we describe it here only for the
third term. Substitution of the solution (4.47) of #(1) into the third term yields

(Third term of (4.48)) = —ik; (2; ) }:Z L) { }9 f dt”

[k+:Hr o)

= — - - -
x| GV (~q,tlg, t"||k, p,q) Tx (p, "Ik, p, q) T (—p. tl|k, p, a) ) (k, 1" ||k, p, q) 8O (~k, t||k, p. q)

+G N (~q. tlg. "Ik, p, q) T (k, " ||k, p, q) & (= p, t|k. p,q) 60N (p, t" ||k, p, q) 619 (K, t||k, p.q) | .

(4.49)

The second term in the above equation vanishes because

6O (k, t"||ko. Py, go) Ti(—k, 1) = 0 (4.50)
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if the flow field is statistically isotropic.

The first term is converted, under Assumption 2, into

(First term of (4.49)) = k; {2"“9 ZZ m fdt"f'[“m -q,q.t") Qim(~p.1,t") Z(—k,1,t") .

{k+p+q a)
(4.51)
Here, we have used the relations (3.66),
= = 2\ ~ i -
80 (K, t) 9O (—k, ') = (-f-) Z(k,t,t') (4.52)
and
GV (k.t| — k,t)) = G (t|k, k. 1) . (4.53)

See Appendix A for derivation of (4.52) and (4.53). Similarly, we can calculate the second and fourth
terms on the right-hand side of (4.30) to obtain

[at+2xk2]2[ktt}=k ko EE’” ZZ fdt"@_,m( p.t,t")

’k+p*¢— o)

x [ —G\t| - q.q.t") Z(—k, t,1") + G (4] — K, ke, ) Z(—q, t,£")
4 AB<r=hy, (4.54)

where use has been made of the incompressible condition of the velocity correlation function, i.e.,
k:Qui(k) = 0.
ik

Turning now to the two-time correlation function Z(k, t, ") and the response function G{L] (k,t,t'),
we integrate the governing equations (4.31) and (4.38) as

Z(k,t,t") = Z(k,t',t") exp| —x k2(t — :)I (4.55)
and
L.’i
G4 e, —h, ) = s ex;:[—xkz{t—t':l] (4.56)

under the initial condition (4.39).

A combination of (4.54), (4.55) and (4.56) then yields

[——+2nk9]z(mt}_2k B (2;) >y [dt”@j,..{_p,a,t"} exp[—n{k%q?m-z"}]
P 9 A

(k+p+g=a)
x| =Z(~k,t",¢") + Z(-q,",t") ]. (4.57)
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By taking the limit L — oo, we may convert (4.57) into

- ’ t -
[ % + 2&&-2] Z(k,t,t) = 2k; km fd3p fdiq &3 cphe j;& At Giml(—p, t, ")
xexp| — (k2 + ¢*)(t — ¢) | [ ~Z(~k,t",t") + Z(~q.t",t")].
(4.58)

Thus, a closed system of equations for Z and {3,-1 is obtained by combining this equation and the
LRA-DIA equations for Q;; derived in Chapter 3. Let us stress again that the present formulation
of the Lagrangian DIA is quite simple and clear.

From now on, the velocity and the scalar fields will be assumed to be statistically stationary and
isotropic, so that Z and @ may be expressed as

Z(k,t,t) = Z'(k), (4.59)

Qijlk, t,t') = 1 Pj(k) Q(k,t — 1) (4.60)
Equation (4.58) then reduces to
2 t=ty F :
22'(k) = [ jm dpdg =X o(k,p,0) [-21k) + 2'(9)] fﬂ dt' Qp.t) exp[—x (K + )¢’ |
= Ty(k)/dmk* (4.61)
where

y - k+p+q)k+p—q)k— —k
Ut’k.mq}=%-ﬁmip}':{ i 3:fzk2p+q” tety) (4.62)

The second equality of (4.61) has followed from (4.32), (4.33) and (4.59). Equation (4.61) describes
a balance between the scalar fluctuation transfer and its dissipation. Recall that (4.61) is valid as
long as t — ¢y does not exceed the order of the velocity correlation time (see a paragraph below
(4.48)). However, the exponential decay of Q(k,t) with respect to ¢ permits us to replace { — I
by infinity. The resultant closed equation (4.61) for the scalar correlation function may be derived
also by LRA [36], although only the LRA equation for k = 0 is given in Ref. [50,51]. Note that as
discussed in Chapter 2 there is an essential difference between LRA and the Lagrangian DIA in the
underlying approximations. In the following, we call (4.61) the LRA-DIA equation.

4.4 Universal forms of passive scalar spectrum

We discuss in this section the functional form of the scalar spectrum ©(k) in the universal range for
arbitrary values of the Schmidt number. To make the following analysis clear, we non-dimensionalize

the wavenumber and the time as
k=kky (4.63)

and
t=Te WA EU (4.64)
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respectively, since the velocity correlation function Q(k, t) is expressed in terms of these normalized
variables as ?

Q(s:,fj=%Kﬂfﬂthﬁr“ﬁ*qﬁ,ﬂ with  Q(0,0) =1, (4.65)

where K denotes the Kolmogorov constant. We define a non-dimensional scalar spectrum O by
(k) = Cy x e P k3P B(k). (4.66)

It follows from (4.32), (4.59) and (4.66) that

1
47 k2

Then, the LRA-DIA equation (4.61) is written as

Ztk) =

1 R
O(k) = 4= Cixe V3 g A E-26() (4.67)

PR K - o l = =
6 =5 s [[ dapdgellpa)p [—E‘-*[k} e eu:q:r]
1

e = Ty
X f dt Q(kp, tp*'®) uxp[ -7 B3 (1 4 %) t] (4.68)
0
= Ty(k) /[ 2682 Cr xe 2R,

where the second equality follows from (4.33) and (4.66).

In the following subsections we will describe the solution for various values of k and s: the k=
power spectrum at k& < min{ky, kc} for arbitrary s in §4.4.1, numerical solutions for finite s in §4.4.2,
the asymptotic forms for s 3> 1 in §4.4.3, and for s < 1 in §4.4.4, and bumps in the spectrum at the
end of power law regions in §4.4.5.

4.4.1 Inertial-advective range

Assuming that both the kinematic viscosity v and the scalar diffusivity & are so small that
max{k,, k;} < min{ky, kc}. (4.69)
we consider the inertial-advective range,
max{ky, k;} < k < min{kg.ke} = k< min{1,s¥}. (4.70)

Then, since s~'k%/3 < 1 and k < 1, (4.68) may be written as

0= [[ dpdgolt,pa)p | -8R+ B(Re) [ Wi (¥, k< huko) (471
&y q

2The function € in this chapter relates with Qt as
QK1) = QUK K, Kty

where K is the Kolmogorov constant.



a6

at the leading order, where
=]
W, =f 4t Q(0,1) . (4.72)
L]

Since no characteristic scales appear in (4.71). it allows a power form of the spectrum function.
Substitution of
&(F) x k- (4.73)

into (4.71) leads to

1 l+g oo g+1
= Uu dq f dp "'f dg f dPJ o(1,p,q) p~ Mg (722 = 1), (4.74)
1 1 q

—q =1

which is rewritten as
S Fd. [P ~10/3 (=02 _ 1 (] — g@-5/3
=% ), Pollinar " elg ) (1=¢*7) (4.75)

by changing the integral variables in the second term on the right-hand side of (4.74) as p = p'/q' and
g = 1/q'. This equation has two apparent scaling laws of a = 5/3 and —2. The former corresponds
to the Obukhov-Corrsin spectrum (4.8) with finite flux IIg(k) = x(# 0). The latter, on the other
hand, represents a state of equipartition of the fuctuation of the passive scalar field with vanishing
Hux. Since we are interested in a statistically stationary state with finite flux through the advective
range toward the diffusive range, we will not consider this solution in the following.

The Obukhov-Corrsin constant C in (4.8) is shown to be expressed in terms of W, and the
Kolmogorov constant K as
_910v/3
7297 KW,
(see Appendix B for derivation). A similar relation was derived in the LHDIA [69,70]. A numerical
integration of (4.72) gives W, = 1.19 and then C'; = 0.34 [50]. This is about a half of the experimental
values which scatter around (5/3) x 0.4 = 0.67 [73]. The reason of this discrepancy is unknown.
Incidentally, the abridged LHDIA yields C; = 0.208 [70].

& (4.76)

4.4.2 Finite Schmidt number

We describe here numerical solutions of the LRA-DIA equation (4.68) for finite Schmidt numbers.
We search for a solution by an iterative method that approaches the k=33 power form in the inertial-
advective range k < min{ky, kc} discussed in the preceding subsection.

The scalar spectra for 5 > 1 are shown in Fig.4.2 together with the asymptotic form in the
limit s 3> 1 (see §4.4.3). The wavenumber is normalized by ky in (a) and by ks in (b). In these
figures we can see that the k~%/3 power law range extends up to ky, which is consistent with the
argument in §4.4.1 because ky < k¢ if 5 > 1, and that the function obeys the k~' power law in the
larger-wavenumber range kyx < k < ky. This k~! power law range widens with increasing Schmidi
number, and is followed by an exponential decay at k£ 3 ky. These behaviors are consistent with the
phenomenology for large Schmidt numbers by Batchelor [67] (see §4.4.3 for detailed discussions). We
also observe a bump in the spectrum around kg, which will be discussed in §4.4.5.
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In Fig.4.3, we plot the numerical solutions in the cases of s < 1 together with the asymptotic form
in the small Schmidt number limit (see §4.4.4). Since the upper limit of the inertial-advective range
is ke for s < 1 (see (4.7)), the wavenumber is normalized by k. instead of ky in (a). The k=53 power
law is actually established at k& < ko, Moreover we observe that as s decreases the spectrum scems
to approach the k~'7/3 power law at k > k., which was phenomenologically predicted by Batchelor
et al. [66]. The wavenumber in (b) is normalized by k. in order to focus the spectrum around ky.
We can see in (a) and (b) that the k='7/3 power law range extends between k. and ky and widens as
s decreases.

4.4.3 Large Schmidt number limit

We consider here the universal form of the scalar spectrum in the large Schmidt number limit. To
do it we introduce variable normalizations of the wavennmber and the spectrum in such a way that

k=khkgs® (4.77)
and _
Ok) = Cy x e~ B k3 8 &(k) (4.78)

with undetermined parameters o« and 3. Note that o indicates the reference wavenumber which
we focus on. The reference wavenumbers for @ = 0, 1/2 and 3/4, for example, are kg, ky and
ke, respectively. It should be mentioned that in the large (or small) Schmidt number limit the
characteristic wavenumbers {kyx, kc, kg} are separated infinitely far from each other on a logarithmic
scale.

On substitution of (4.77) and (4.78) into (4.68), we obtain

Bk = 7 s+ k-0 [ [, dpdac(1,p.q)p*2a [ ~E(h) +E(kg) |

o0 , .
® f dt Q(s%kp, tp*?) exp[ — g~ (1=40/8) R413 (1 4+ %) t], (4.79)
0

where
E(k) = O(k)/k* . (4.80)

Since this equation depends upon the Schmidt number only through s® and s'~**/3 we consider the
cases of @ < 0, @ =0 and & > 0 in turn. (It will be shown in subsection [3] below that an apparent
critical value @ = 3/4 is actually irrelevant.)

[1] Inertial-advective range (e < 0)

For a < () we are in the wavenumber range below ki because 5% < 1. Since s® < 1 and s—11742/3) & 1
(4.79) leads to

U='[L] dpdgo(l,p.q) p~%% g [-E(k) + Z(ke) | W, (s> 1,a<0). (4.81)

This is identical to the LRA-DIA equation (4.71) in the inertial-advective range, which yields the
spectrum O(k) proportional to k—5/3,
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FIGURE 4.2 Passive scalar spectra in stationary isotropic turbulence for s = 1. The wavenumber is
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[2] Around Kolmogorov wavenumber (o = 0)

For «« = 0 (k = Olkk)), (4.79) is deduced to
0= fL dpdgo(1,p,q) p~' g [ ~3(k) +E(kq) ] fumtuqqép ) (s3> 1,a=0). (4.82)

This equation has an asymptotie solution proportional to k%3 for & < 1 because it coincides with
(4.71). In the opposite limit k 3 1, on the other hand, we find that the contribution from the region
p < 1 is dominant in the integral, since Q(k,t) decays exponentially with k as Q(k,¢) o exp(—ck)

(see a paragraph below (4.126)). Thus, by changing the integral variable as ¢ = 1 + pr, we may
rewrite (4.82) as

oo 1 I I oo -
n:fﬂ dpp_af"ld:':a{l,p,l+p:t:] (1 + pz) [—Eck}+3uf;{1 +pm]}]j;} dt Q(kp, t) . (4.83)

Substituting the expansions,

o(l,p, 1 +pz) (1 +pz) = (1 — 2%) +2(1 - %) pz + O(p?) (4.84)
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and
dE o &°E 3
—E(k) + 2(k(1 = fpe 224 = 85
2(k) + B+ pe) = kpz 2 + 3 (kpe)? S5 + 06 (4.85)
into (4.82) and carrying out the integration with respect to =, we obtain
o0 1 d
0 =j; dpp .t‘* £ f dt QUkp, 1) (4.86)
at the leading order of p. Hence, the leading order of (4.82) for k » 1 is
d [:4dE ;
— |E'—=| =0 l,a=0,k351 4.87
i ik (s> lLa=0k>1), (4.87)

which gives E(k) x k=3 (i.e. O(k) o k7).

Thus, a solution of (4.82) behaves as ©(k) o< k™% for k < 1 and &' for k 3> 1. We now solve
(4.82) numerically so that the solution may satisfy these asymptotic forms. The result is drawn in
Fig.4.4(a), in which a transition from the k=>/* to the k= power laws occurs around the Kolmogorov
wavenumber (see also Fig.4.2(a)).

[3] Viscous range (o > 0)

In the case of @ > 0 (k > ki), the contribution from p < 1 is dominant in the integral of (4.79)
because (}(k,t) decays exponentially with & at large k. Therefore, we may carry out the integration
with respect to ¢ by putting ¢ = 1 + pz and by expanding the integrand into power series of p up to
O(p®) (see (4.84) and (4.85)) to obtain

- - m E‘J‘ - -
(k) ={%sl_"“*’r3 k-‘f"f dpp‘f3f dt Q(s"kp, tp*"?) exp[—zs—“—‘*‘*m k*”t]

L1}

p
[m; ET8 s—(1-1a/3) 4y T2 d“‘ o ps (4.88)

.i'r dk?

at the leading order. By changing the integral variables as (p,t) — (s7%p, s*®/3¢), this equation is
converted into

3(k) = = gl~% - 4;3[ dppusf dt Q(kp, tp?%) Exp[ _9g—(1-2a) j4/3 t]
xl-il[fc [7/3 g~ (1-20) b d + K2 fu;?'] (s> 1,0>0), (4.89)
1-2a

Since this equation depends upon s through only s , we will examine three cases 0 < a < 1/2,
a=1/2 and 1/2 < «a separately in the following subsections.

[3-1] Viscous-advective range (0 < o < 1/2)

f0<a<l/2 (kg €k < kg), (4.89) reduces to

K & = 12-—1
0= s Wy k! [4 3}‘ T o = (4.90)
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where

20 00
Wy = f dz f dy 2~ Q(z,y) . (4.91)
0 0
Since all the factors outside the brackets in (4.90) are non-zero, we have
l:!——4E+!7:Eig (s> 1,0<a<1/2) (4.92)
T dk o dR? ST ’ ‘

which yields a power law solution as Z(k) = k™2 (that is, ©(k) oc k~'). This implies that there is
only the k="' power law (4.10) of the spectrum function in the viscous-advective range (kyx < k <€ ky).

In order to estimate the universal constant (%5 in (4.10) we express the transfer function (4.33) in
this range in terms of ©(k) as

Ty(k) = EKIJ'WQ kS ;L [k“‘ g e“‘ ” (4.93)

which follows from (4.33), (4.78), (4.80) and the right-hand side of (4.90). Then, the flux function
Ilg(k), defined by (4.34), is written as

2 d [ Ok
Me(k) = ——EK v Wy k2 k' — == [% : (4.94)

since the contribution from the diffusive range to the integration in (4.34) is negligible. By substituting
the power law (4.10) into the above equation, we obtain

M4(k) = = x K W2 Cs, (4.95)

]

which yields 5
Co = KW, =1.30;, (4.96)

because Ilg(k) = x in the advective range and the numerical value of Wy is 1.11. This value of C;
should be compared with 3.9 £ 1.5 [74], 3.7 £ 1.5 [75], which were measured in tidal channel flows, as
well as 1.5 ~ 2.5 (LRA-DIA), 1.5 (a modified LRA) [51], 0.6 ~ 1.0 (abridged LHDIA; the deviation
is too large) and 1.9 ~ 2.0 (strain-based abridged LHDIA) [49], which were determined numerically
from various Lagrangian closure equations. All estimations by these closure theories are quite small
compared with the experimental data. It should be mentioned here an important difference in the
methods of evaluation of Cy used in the above closure theories and the present one; they estimated
it from a late state of a freely decaying solution whereas we did it from a stationary solution. This
is the reason why the numerical value obtained in Ref. [51] is different from ours, * though the same
LRA-DIA equation is solved. Since their results themselves show large deviations, such a method may
not be appropriate to evaluate the universal form. In the above measurements [74,75] the universal
constant Cy in the viscous-advective range ig evaluated by fitting the temperature spectrum function
with the Batchelor form ((4.108) below) in the whole viscous range, in which the Schmidt number is
about 10. It should be pointed out here a reservation that the k! power range is not so wide at this
value of the Schmidt number (see Fig.4.2(b)).

}Factor 2 is missing in section 4.4 of Ref. [51].
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A comment on Gibson's bounds {79] may be in order. He derived that V3I< s <2y fora
homogeneous dissipation field by making use of the Batchelor form (4.108) of the spectrum function
with the relation Cy = —(e/v)/2/+ (v is the least eigenvalue of the rate-of-strain tensor). Since the
Batchelor form (and therefore Gibson's bounds) is not a selution to the LRA-DIA equation but a
phenomenology, it is not unnatural that the present estimation of € violates these bounds.

[3-2] Around Batchelor wavenumber (o = 1/2)

For a=1/2 (k = O(kg)), (4.89) reduces to

(k) = 4] A(RYE — fa(R)k | ‘;;i + f1(k)E¥® :; (s> 1,e=1/2), (4.97)
where
Fithy {% fu  apptf3 fﬂ " dt QUkp. tp2%) exp| —2K¥3t] (4.98)
and
Folk) = % fum dpp!/3 fﬂm dt t QUhkp, tp?) exp| —2K*/3¢]. (4.99)

It is easy to show that (4.97) has an asymptotic solution of (k) oc £~2 (ie. O(k) x k=Y at k <« 1
because (4.97) coincides with (4.92) in this limit. (Note that fi(k) o< £2/% and fa(k) o logk for
k1)

In the opposite limit & 3 1, on the other hand, we have the asymptotic expressions,

fi(k) = k™8P 4ek TP LO(K%) and  fo(k) = ja k™ +e2k 0 +O(k®) (kK — o), (4.100)

where
a=3 | dr”emo =g (4.101)
and
K (. @ 78
= | dpp =0ty = —2. 4.102
" ﬁﬂfu PP 5 QPN | = 360v%0 i
The second equalities of (4.101) and (4.102) are respectively derived from the relation,
[ +] 20
- f dk k? E(k) = 2v K €3 f dk kY3 Q(k/ky, 0) (4.103)
(V] 0

and the Lagrangian DIA equation for (J(k,t) together with the expression of the skewness factor §
of the velocity derivative (see (3.103) and (3.107) in Chapter 3). Hence, in the limit k — oo, (4.97)
reduces to . .
K S(k) = 2 k7! s . [c. + 2 f:"?] i (4.104)
dk d

at the leading order, from which the asymptotic form of = is derived to be

E(k) o« k* exp[ R /2vED) | (s3> 1La=1/2,E>1) (4.105)
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or

1/2
O(k) x k*+? Mp{—@m (E) k?] (4.106)
L
with
AT el ¥ e e
a=3 [{c.}w 3] = S-3~-19, (4.107)

where we have used S = —0.66 which had been already determined in Chapter 3 (see (3.108)).
Thus we have found asymptotic solutions of (4.97) in both of small and large wavenumber limits.
The numerical solution to this equation integrated from the large wavenumber limit is shown in
Fig.4.4(b), in which we can clearly see the k= power law and the exponential asymptotes at small
and large wavenumbers.

The asymptotic form (4.106) is similar to the one derived phenomenologically by Batchelor [67],

which is
[Es

1/2
O(k) = Co x M2 e V2 | cxp[ —Ch K (;) kZ], (4.108)
A comparison of the arguments of the exponential function in (4.106) and (4.108) gives Cy = /60,2 =
3.87. This value is in a quite good agreement with experimental values 3.9 + 1.5 [74], 3.7 £ 1.5 [75].

Recall that C; is determined experimentally by the use of the Batchelor form (4.108). Another
analytical form of the spectrum in the viscous range,

O(k) = Co x (¢/v)/* k™' [ 1+ V6C2 k| exp[ -V6Cz k], (4.109)

was derived by Mjolsness [80] based upon Kraichnan's LHDIA equation under the assumption that the
transfer function is proportional to k~'d=/dk + d°=/dk?. Recently Bogucki et al. [81] have shown
that (4.109) agrees with a direct numerical simulation with a fitting parameter C; = 5.26 + 0.25.
However, we would like to note two points to be considered. First, (4.109) should not be precise at
wavenumbers larger than kg because the above expression of the transfer function can be applied
only at k < k under Kraichnan's formulation of Lagrangian DIA just like the present one (see a
paragraph below (4.99)). Second, the value of C; = 5.26 suggested by Bogucki et al. is much larger
than the experimental data [74,75].

[3-3] Far wiscous-diffusive range (ac > 1/2)

For a > 1/2 (k > kg), it follows from (4.89) that
Ek)=0 (s3>1la>1/2). (4.110)

This is consistent with an exponential decay of the spectrum function at wavenumbers larger than
kg discussed in the preceding subsection.
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FIGURE 4.5 Passive scalar spectrum in stationary isotropic turbulence around (a) k¢ and (b) k; for
8 < 1.

4.4.4 Small Schmidt number limit

In order to examine the small Schmidt number limit we write the LRA-DIA equation in terms of the
normalized wavenumber k and the spectrum © as

= %51“‘0“’3 k43 f[ dpdgo(l,p.q)p~ % ¢ [ ~O(k) + {% Gﬂ?q}}
Fa¥]

o0 - o
xf dt Q(skp, tp?1%) exp| ~s~(1~10/ 8 (1 4 2y ¢]. (4111
1]

@
_—
e

This equation, which is equivalent to (4.79), is more convenient in the present subsection because =
is not necessary to be dealt with. Since (4.111) depends upon s only through s and s'~%/3 we will

examine three cases a > 3/4, @ = 3/4, 0 < a < 3/4, @ = 0 and a < 0 separately in the following
subsections.
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[1] Imertial-advective range (o > 3/4)

For a > 3/4 (k < k), since s < 1 and s~(=4/3 « 1, (4.111) reduces to
O [f dpdgo(l,p,q) p~ "% ¢ | -B(F) + qlg O(kq) (s < La>3/4), (4.112)
&y

which is identical to (4.71). Hence, the spectrum obeys the k=33 power law. This is consistent with
the argument in §4.4.1 because ke < ki for s < 1.

[2] Around Obukhov-Corrsin wavenumber (a = 3/4)

In the case of & = 3/4 (k = O(ke)), (4.111) leads to

ok) = ] k173 f[g dpdge(l,p,q)p ¥ ¢ [—é{i‘} + % é{kq}]

9
xfumdaqm,fp”f”‘} :zxp[—-fn"-fﬁ{uq?]t] (s € 1,a=3/4). (4.113)

Since this equation coincides with (4.112) at k < 1, its asymptotic solution is proportional to k%
in this limit. At £ 3> 1, on the other hand, the exponential factor in the integrand allows us to replace
Q(0,1p*/?) by Q(0,0) = 1. Then, we obtain

- 8/3

. K. SR
(k) = ?k 8/3 fj;i{lpdqail,pﬂﬂ_'_qf [_B{kHFe[kﬂl' (4.114)

In order to estimate the limiting behavior for k > 1 of this integral we divide it into three paris as

L. . £ 1 —8/3 - o
o) =5 K [“ap [ :dqa(lm} e [méikl +3 @le]

K . o0 1+p p—z’sfaq s

2k ﬂ“f d 1, 9 &k

5 | Hp ll_pldqcri P.q) 7 & (k)
-8/3

K . [+.+] I+p p o
+—r3f3f d f dgo(l,p,q) -—— O(kq) 4.115
2 ¢ S g E pq}{1+q“}q (k) Gl
where £ (< 1) is a constant. The first and the second terms are respectively proportional to
5 d [;,d[©
43 p~2/3 © |j2 & _]
: dF l ak | 72 ]

and £~%/3 k=83 ©(k), both of which will be shown to be smaller than the third term (see (4.116)
below). The asymptotic behavior of the third term may be obtained by noting that a dominant
contribution to the integral comes from the vicinity of g = 0if @ is a decreasing function. Thus, we
may convert (4.114) into

e(£]=%ﬁ-”ﬁ fﬂmdqué{q} (s l,a=3/4,k>1). (4.116)

Hence, the spectrum obeys the k~!'7/% power law at k& » 1. The numerical solution of (4.113)
shown in Fig.4.5(a) actually exhibits a transition from the k~%/% to the k~'"/3 power laws around the
Obukhov-Corrsin wavenumber k.
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[3]1 Diffusive range (@ < 3/4)

For a < 3/4 (k > kc), since s~1+12/3 > 1 the exponential factor in (4.111) is a rapidly decreasing
function and the contribution from the vicinity of the origin is dominant in the integral with respect
to t. It then reduces to

! : s s =
O(k) = — s21-4e/3) [-8/3 f dpdgo(l,p,q) — 5:“ [—E‘rtkH éeucq}] Q(s%kp,0) .
(4.117)

This is further simplified by dividing the integral with respect to g into two regions, I, (0 < ¢ < ¢)
and I (g = €), where € (< 1) is a constant independent of 5. Then, (4.117) is written as

O(k) = = s1—10/3) j,~8/3 [I. + f;,] (4.118)

It is easy to show that I; and the first term of I; are bounded irrespective of the value of s. As for
the second term of I, we make a change of integral variables as p = 1 + gz, expand the integrand
around g = 0 and carry out the integration with respect to z to obtain

(Second term of I}) = 4 Q(Es“,ﬂj £ [fx dgq® O(q) — fm dg ¢° ©(q) }
= Q{ks ,0) k3 [-—- N e L /mdq 7 O(q) ] (4.119)

where use has been made of x = 2x [ dkk? ©(k). The second term of this equation is also bounded
and neglected compared with the first term in the limit s — 0 (because (4.121) and a < 3/4). On
substitution of the first term of (4.119) into (4.118), we find

O(k) = = *7113-FE-1TR Q(s°k,0) . (4.120)
In order that (4.120) may have a nontrivial solution, we must set
f=3=- I o (4.121)

to obtain P
B(k) = o k1R Q(s*E,0) (s l,a < 3/4). (4.122)
1

Since this equation depends upon 5 through 5%, we will examine three cases 0 < a < 3/4, @ = 0 and
a < 0 separately in the following.

[3-1] Inertial-diffusive range (0 < o < 3/4)

For 0 < o < 3/4 (ke < k < kg), we find, because of Q(0,0) = 1, that

(k) = k"”“ (s 1,0<a<3/4). (4.123)
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The dimensional form of the scalar speetrum corresponding to (4.123) is written, using (4.78) and
(4.121), as
(k) = é K x&B g2 V8, (4.124)

Thus, we have obtained the £~'7/ power law in the inertial-diffusive range. By comparing it with
(4.14), we get
Cy =1 K =0.572. (4.125)

This relation between two universal constants C; and K was obtained before by Batchelor et al. [66].
Qian [82] derived C3 = 1.2 K by a statistical mechanical theory, whereas Canuto et al. [83] proposed a
relation C3 = 8/(27C?%) by a turbulence model. There seems no experimental data available because
of difficulty of measurements in the inertial-diffusive range. The direct and kinematic numerical
simulations by Chasnov et al. [76] strongly support the relation (4.125).

[3-2] Around Kolmogerov wavenumber (o = 0)

Inthecase of e =10 [,‘; = D!:k].;}L {4122} is written as

. i o B,
(k) = = EVRQU0 (s<l,a=0). (4.126)
1
Since the functional form of Q{JE,D} has already known in Chapter 3, we can draw the scalar spectrum
function around ky (Fig.4.5(b)). The asymptotic form of energy spectrum E(k) = Ke23k=5353Q(k/ky.0)
in the large wavenumber limit may be proportional to k% exp(—ck), as shown from the LRA-DIA
equation for the velocity correlation function (see Appendix C}. Hence, we have

O(k) oc k7" exp(—ek) (s € 1, k> k). (4.127)

[3-3] Far viscous-diffusive range (o < 0)

Finally, for & < 0 (k 3 ky), (4.122) yields
Ok)=0 (s<l,a<0), (4.128)

which is consistent with (4.127) that the spectrum function is exponentially small at £ = k.

4.4.5 Bump in the spectrum

Here, we discuss the bump structure which is observed around the ends of the viscous-advective range
for s > 1 (see Figs.4.2(b) and 4.4(b})) and of the inertial-advective range for s < 1 (Figs.4.3(a) and
4.5(a)). These may be seen more clearly in their compensated spectra in Figs.4.6(a) and (b). Since
the end wavenumbers (kg for s > 1 and k¢ for s < 1) of these advective ranges correspond to the
beginning of the scalar dissipation, this may be understood as a bottleneck phenomenon [84] for the
scalar fluctuation transfer. The scalar fluctuation cascades down throughout the advective range
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FIGURE 4.6 Compensated passive scalar spectra in stationary isotropic turbulence (a) around ky for
s> 1, (b) around k¢ for s < 1 and (c) around ky for s < 1.

toward smaller scales by the interaction with the turbulent velocity field. The cascade is less effective
at the end of this range because the scalar fluctuation damps in the diffusive range. This results in a
pile up of the scalar fluctuation around the end of the advective range. Actually, such a bump in the
scalar spectrum is observed in measurements of atmospheric boundary layer (s ~ 0.7) by Williams
and Paulson [85] and Champagne et al. [86], and of tidal flow (s ~ 9.2) by Grant et al. [74]; the

results of these measurements are collected by Hill [87].

On the other hand, we can hardly observe any bump in the scalar spectrum at the end of the
inertial-diffusive range (Fig.4.5(b)) nor in the compensated spectrum (Fig.4.6(c)). Recall that the
functional form of the scalar spectrum in this range is similar to that of the energy spectrum in
a logarithmic scale (see §4.4.4), and that the end wavenumber ky represents the beginning of the
dissipation range of the velocity field but not of the scalar field. Hence, if there is a bump around k.,
it should be due to the bottleneck effect of the energy cascade. A bump in the energy spectrum is,
however, not so clearly observed in experiments (see Fig.3.4) if it exists. The bottleneck phenomenon
seems to be more effective in the passive scalar fluctuation cascade than in the energy cascade. More
detailed quantitative discussions would demand a scrutiny of the three component transfer functions.

Anyway, the present results on the bump structures of the spectra are qualitatively consistent with
experiments.

It may be worth mentioning, in passing, that the energy spectrum of the system [88] governed by
an equation,

a d g O
5 u(z,t) + ulz, t) e u(z,t) = (-1)"" v Fyen u{xr. t) + f(z,t) (n=1,2,..-) (4.129)

with a random forcing f(x, t) over the whole length scale (wavenumber range) exhibits a clear bump
structure. Here, we adopt a hyperviscosity, which enhances the bottleneck effect [84], by putting
n = 6. By the way, the equation (4.129) with n = 1 is the Burgers equation [89]. The numerically
evaluated compensated energy spectrum of this system is plotted in Fig.4.7, where we employed the
same viscosity v and random forcing f(x,t) as those in Ref. [88]. The governing equation of a passive



11

FIGURE 4.7 Compensated energy spectrum of the system governed by the Burgers equation with
a random forcing over the whole wavenumber range. Parameters are same to the direct numerical

simulation by Chekhlov & Yakhot [88]. A hyperviscosity proportional to a—:;;—",ﬁ;rl is employed. The
clear bump at the end of the inertial range is observed.

scalar (4.17) and the Burgers equation (4.129) are similar in the sense that they do not have a pressure
term.

4.4.6 Mixed-derivative skewness

The mixed-derivative skewness factor S,y of the scalar and the velocity fields defined by

B ]
S.a = M (4.130)

(G (=)

iy oz,

is a measurable quantity by experiments, and is related to the dissipation rate of the fluctuations of
the scalar gradient through the relation

6 seyi ) dkkO®)
Sa=——tw (8} e .
u

in isotropic stationary fields (see e.g. Ref. [68]). This factor depends upon the Schmidt number s,
and its asymptotic behaviors in the large and small s limits are described in the framework of the
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FIGURE 4.8 Mixed-derivative skewness factor defined by (4.130). The present theory (solid circles)
with its asymptotic forms Sys — —1.95Y/2 (s = 0) and S,g — —0.57 (s — oc) (dotted lines), dircct
numerical simulation by Kerr [68] (open circles), Clay’s theory [78] (solid line) and Gibson et al.’s
theory [71] (dashed line) are plotted.

present theory as follows. In the small s limit, the contribution from the vieinity of k¢ is dominant
in both of the integrals in (4.131), because the spectrum behaves as drawn in Fig.4.5. Hence, it has
an asymptotic form

Su = Sost? (s = 0) (4.132)

with i
" f dkt &t o(kh
1]

- [
\r’ﬁj; d.‘CT kfg E'{k:‘:l

where k! = k/kc. The constant Sy is evaluated by the numerical integration of the spectrum given in
Fig.4.5(a). In the large Schmidt number limit, on the other hand, the contribution from the vicinity
of ks is dominant in the integrals (see Fig.4.4), and therefore it is shown that

So = ~-1.9, (4.133)

Suo = S (5 = %) (4.134)

with = ;
6 f dikt kY oK)
D

_ —
V15 f dk? k1 o(kt)
)

where k* = k/kg, and use has been made of the numerical value of the spectrum shown in Fig.4.4(b).

Sgc=

~ -0.57, (4.135)

In Fig.4.8, we plot the mixed-derivative skewness factor (solid circles) obtained numerically
through (4.131) for finite Schmidt numbers 5 = 0.01,0.1,1,10 and 100 together with the asymp-
totic forms (dotted lines). The results by a direct numerical simulation [68] (open circles) and the
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prediction by Clay’s [T8] (solid line) and Gibson et al.’s theory [71] (dashed line) are also shown. The
fact that the skewness factors obtained by the numerical simulation for small s around 0.1 remains
almost constant led them [68,71] the conclusion that the numerical simulation favored Gibson et al.’s
theory rather than Batchelor et al.’s, the latter of which predicts the asymptotic form of the skewness
factor similar to (4.132) for s — 0, i.e,, Sy Y2 On the contrary, however, Fig.4.8 does suggest
that the simulation is consistent with our results, i.e., Batchelor et al.’s theory, rather than Gibson
et al.’s {or Clay’s). An experiment or direct numerical simulation at Schmidt numbers less than 104
is required for more precise comparison.

4.5 Concluding remarks

The Lagrangian DIA, which was successful in the application to turbulent velocity field (Chapter
3), has been applied to a scalar field advected passively by isotropic turbulence. The solutions to a
closed equation for the scalar correlation function by this theory is shown to be completely consistent
with the phenomenological theories for arbitrary Schmidt numbers (Obukhov [64] and Corrsin [65];
Batchelor et al. [66] for small Schmidt number; Batchelor [67] for large Schmidt number), which
are well confirmed by experiments and direct numerical simulations. This simple Lagrangian closure
is, therefore, excellently successful in making a bridge between the phenomenological theories and
the basic equations in describing the power spectra of both the velocity and passive scalar fields in
isotropic turbulence. It should be stressed here that the method employed to examine the Schmidt
number dependence of the scalar spectrum is systematic.

In addition, the functional forms over the universal range of the scalar spectrum in the statistically
stationary state have been determined numerically not only for moderate Schmidt numbers s but also
for the large and the small s limits. The numerically evaluated universal forms of the function have
a bump at the end of the advective ranges, which was clearly observed in measurements [74, 85, 86)].
Schmidt number dependence of the mixed-derivative skewness factor of the velocity and the scalar
fields is also investigated by the integration of the numerically evaluated universal forms of the
spectrum, and is shown to be in a good agreement with the direct numerical simulation by Kerr [68].
In summary, the Lagrangian DIA gives predictions consistent with observations at least qualitatively.
Although the universal constant in the inertial-diffusive range is in a good agreement with the results
of numerical simulations by Chasnov et al. [76], the constants in the inertial- and viscous-advective
ranges are only about half the experimental data [73-75]. This is a weak point of the Lagrangian DIA.
Recall that this approximation theory is founded on the working assumptions summarized in §4.3.2
(and §3.3.2). As mentioned in that section, the third assumption, i.e., the statistical independency
between the position function and the other field quantities, has no physical basis. The failure in
the estimation of the universal constants in the advective range may be caused by the this artificial
assumption because the position function and passive scalar in the range should be identical. Henece,
it seems that we have to take the correlation into account in the formulation of the approximation.
This important problem is, however, still open (see §6.3).
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Appendix A

Derivations of (4.52) and (4.53) are described here. By substituting (4.26) into (4.28), we obtain

P ' {Eﬂ}g et i ' =
Z(k,t,t) = 75— 3 0K, t) (=K', tlk, ') O(—k, ), (4.136)
=

which is further converted, by substitutions of the direct-interaction decompositions, into

= 2r)9 = = = —
2k, 1,¢) = L2 5 TR Hlko, po, 00) PO, 1k, [, P d0) O (b, Elko, 0. 20)
kl’
(4.137)

(see Assumption 3 in §4.3.2). A combination of (3.64) and (4.137) yields (4.52). As for (4.53), we
take the functional derivative of (4.26) to obtain

{ﬁw}"

G (tlk, —k, 1) = Z Galk',t| — b, 8') B(—K', t]k, ) . (4.138)

By substituting the direct-interaction decompaositions into the right-hand side of the above equation
and by taking (3.64) into account, we find (4.53).

Appendix B

We prove (4.76) based upon the LRA-DIA equation. The right-hand side of (4.71) gives the transfer
function (4.33) in the inertial-advective range as

Ty(k) = KW,ukmkff& dpdgo(k,p.q)p~ "% ¢ l Ok) + ( ) qu}} (4.139)
ke
The scalar flux function (4.34) is then written as
o0
(k) = KWkl [“arw [ dpdqatk‘,p,q}p"‘““q[ e{k‘}+ q}]

=Kw.pk:;"3f dE'E' ff dpdq ok ,p,qip"“”q[ @{k'}+( G{q}]
qunrq{ﬁ:

(4.140)

where we have used the property of the detailed balance of the nonlinear transfer of the scalar
Auctuation, i.e.,

[ aew [f dpdqa{k’.p.qap'“‘”q[ a{k'u(q e{q}] ~ 0. (4.141)
t.r
ma=k
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Substitution of the inertial-advective power spectrum (4.8) into (4.140) gives

m -
Mok) = KWiCrx [~k [[  dpdgoth',p.a) ¥ p9% g k=57 k24155
ﬂk.l'

p<k or g<k
oo
— le Cl X -[ dkl’ ff dpdq g[ki}pa.q} k: p--lﬂfﬂ-q [ki'—.r.\fﬁ _ k!ﬂ '?—“‘lrﬁ]
1 Dupr
p=l 01":}{1
= KW, Cix1, (4.142)

where

o0 1 k' p 2 1 P
lef dk’fdpf dq—fdk'f dp dq]
1 0 "p 1 k' /2 F—yp

X [Ul{k’d}:ﬂ K p~i0/3g [k"“?' - k7 q‘”ﬂ'] + (similar term p ¢ q}}

729 2187 ! dx 7297

£ dx
_— — - = — It 4- "'I
910 ,/; 3z +1) 910 Jo 24z 41 910V3 (43

Since ITy = x in the advective range, we obtain (4.76).

Appendix C

We show by the procedure described in Ref. [90] that the asymptotic form of the energy spectrum

for large wavenumber,
E(k) o« k? exp(—ck) k— oo (4.144)

is a solution to the LRA-DIA equation for the velocity correlation funetion, For simplicity of notations,
we write the LRA-DIA equation (3.104) in the statistically stationary state in terms of @ and G defined

by
Q. t) = Q(K) Glk, 1) (4.145)

with
G{k,0) =1 (4.146)

o) =547 [[ doda (p0)* B(kp.) [ K2 Q) -0 Q)] €(0)
x fu mdtg{k,k”:‘:] G(p,p*"*t) Glq. ¢*/*1) . (4.147)
Since in the limit & = oc the integration with respect to t is evaluated as
/; g At G(k, k*t) G(p, p*/°t) Glq, ¢*/31) = % (C = constant) , (4.148)
the LRA-DIA equation (4.147) reduces to

Q) = 5 K7 [ dpada a1 3(k,p.a) Q) Q). (4.149)



Furthermore, by changing integral variables from (p, q) to (£,7) by

p+g=£k¢ (4.150)
p—q=kn, (4.151)

we obtain
onfre [ el 45%) o452

4
& ﬁ'mﬂ ) (62 = 1) [ (€ + )% + &n (€ —n)? +4¢n ]|
207 = Py ‘

(4.152)

where we have used the definition (3.80) of E{.‘c, p.q). The contribution from the vicinity of £ ~ 1 to
the integration is dominant in the large k limit, therefore this equation is further rewritten as

oy =S [“ae [ ang( RN ) o (K1)

1-p2 ] (f—11[1+n}1+nil—n}2+4ﬁ] _—
o 4 (1- 2] (4.153)
Then, it is easy to show that
Q(k) o k* exp(—ck), (4.154)
a and ¢ being constants, is a solution to (4.147) if we choose a as
1
o= ; X {4.155)

Remembering the relation (3.105) between the energy spectrum E and QF, we arrive at (4.144),



Chapter 5

Strength of Nonlinear Couplings

We deal with two problems on the strength of the nonlinear couplings. First, defining the
strength s of the nonlinear couplings by the average number of direct interactions between
a pair of modes, we consider again the applicability of DIA by the use of a model equation
introduced in Chapter 2. It is shown both numerically and by a simple argument that DIA
gives a good approximation if s is much less than the square root of the number of degrees
of freedom of the system. Next, we suggest a reason why the closure equations derived both
by DIA and RRE, the latter of which should be valid for low Reynolds-number systems,
are applicable to strong nonlinear systems. It is concluded that RRE can be regarded as
an approximation under which the nonlinear terms are replaced by independent Gaussian

random variables.

5.1 Introduction

We have been considering applications of DIA to systems with very weak nonlinear couplings such as
the Navier-Stokes turbulence, in which there is only a single direct interaction between each pair of
modes. It should be emphasized that DIA is based upon this weakness of nonlinear conplings. In weak
coupling systems, if we remove the direct interaction between a particular triplet of modes, there is no
direct interaction between any two of these three modes. Furthermore, since many other modes are
coupled with them indirectly if the number of degree of freedom is large enough, contributions from
indirect interactions to correlation between them are randomized and negligible. Hence, we suppose
that the three mode are statistically independent of each other (DIA assumption 2, in §2.3) in the
NDI (non-direct-interaction) field in which the direct interaction between them is absent. Actually,
in Chapter 2, it was shown that this assumption is well satisfied for a very weak nonlinear coupling
system, if the number of degrees of freedom is large. On the other hand, when there are more direct
interactions between a pair of modes, this assumption deteriorates even if the number of degrees of
freedom is large. In §5.3 of Ref. [34], we investigated a model system with very strong nonlinear
couplings, in which a pair of modes directly interact through all the other modes, and showed that
the assumption failed and the prediction of the auto-correlation function by the DIA-RRE equations
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was inconsistent with numerical results by direct integration of the model equation. In this chapter,
we shall examine the relationship between validity of DIA and the strength of nonlinear couplings
quantitatively.

Another problem we shall consider is on an explanation of RRE (the Reynolds-number reversed
expansion, §2.4). Asshown in §2.4.4, the closure equations derived by DIA are also obtained by RRE.
It was also shown in Chapter 2 that DIA is valid for systems with weak nonlinear couplings and a
large number of degrees of freedom even if the Reynolds number of the systems is large. Therefore
the closure equations derived by RRE are applicable to such systems at large Reynolds number. This
is surprising because RRE is formulated under the assumption that the Reynolds number is small.
We shall solve this inconsistency by noting that the joint-Gaussianity of nonlinear terms is strongly
related with the strength of nonlinear couplings and the number of degrees of freedom.

This chapter is organized as follows. By using a model equatlion with stronger nonlinear couplings
introduced in the next section, we examine in detail the validity condition of DIA in §5.3, and suggest
an alternative explanation of RRE by considering an approximation based upon the joint-Gaussianity
of nonlinear terms in §5.4.

5.2 Model equation with stronger nonlinear couplings

We use again the model equation, introduced in Chapter 2, for a set of real variables {X;|i =
1} 21 el N}:

N N
X{t} =33 Cije X;(t) Xelt) — v Xi(t) + Fi(t) (5.1)
Jj=1k=1

where constant coefficients Cjj; satisfy the following three conditions:

Ct'jk = C:'kj (S}'mmetr},r] {52}
Cijk + Ciri + Crij =0 (detailed balance of energy) {5.3)
Cijk =10 fori=j,j=kor k=i {absence of self-interaction) . (5.4)

The random forcing F; is assumed to be a Gaussian with zero mean and variance,

2v
2 _
T NAt' (5.5)

where At is a time increment in numerical integration of (5.1).

One of the advantages of this model equation is that we can easily construct nonlinear systems
with either weak or strong couplings by changing coefficients Cj;x. We studied in Chapter 2 only a very
weak nonlinear coupling case, that is, there is only a single, at the most, direct interaction between
an arbitrary pair of modes. Here, we shall deal with systems with stronger nonlinear couplings.
The strength s of the nonlinear couplings is quantitatively defined by the average number of direct
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interactions between arbitrary pairs of modes. For example, s is estimated as s ~ 1 for the systems
used in Chapter 2, and 5 = 1 for the Navier-Stokes system in Chapters 3 and 4. (Because of
the restriction of symmetry with respect to subscript i of coefficients Cj;x we may not be able to
construct this model system (5.1) with s exactly equal to unity.) See also Fig.5.1 in which direct
interactions between X, and the other modes in several cases of coupling strength are schematically
depicted. Since there is arbitrariness in the choice of coefficients even if we set s an approximately
fixed value, we shall examine numerically several cases with almost same strength of couplings. We
choose the coefficients Cj;p so that the system can be homogeneous with respect to subscripts i,
and that the maximum number of the direct interactions between an arbitrary pair of modes cannot
exceed [s] + 1. The latter condition is imposed in order that the strength of nonlinear couplings may
also be homogeneous.

The model equation (5.1) has three parameters, that is, the viscosity » (or the Reynolds number
R = 1/v), the number N of degrees of freedom and the strength s of the nonlinear couplings. In the
following, we restrict ourselves in the strong nonlinearity limit that

R—=o0 <= v—0. (5.6)

In this limit both the dissipative and the forcing terms in (5.1) vanish (see (5.5)).

5.3 Validity condition of DIA

It was shown in Chapter 2 that DIA was valid for systems with weak nonlinear couplings and a large
number of degrees of freedom. However it has not yet considered how large the number of degrees of
freedom should be, or how weak the strength of nonlinear couplings should be so that DIA may be
accurate. In this section, we investigate such a quantitative evaluation of validity condition of DIA.

In Fig.5.2, we plot the prediction Vp,, of the auto-correlation function by the DIA-RRE equations
(2.70)—(2.73) in statistically stationary state and the results Vpys of the direct numerical simulation
of the model equation (5.1) for several combinations (s, N') of the strength of nonlinear couplings and
the number of degrees of freedom. When N is large or s is small, the DIA-RRE equations give good
results. This is consistent with the conclusion in Chapter 2 that DIA is valid for systems with weak
nonlinear couplings and a large number of degree of [reedom. Recall that DIA is based upon two
assumptions: the smallness of the deviation fields, and the statistical independency between three
modes without direct interaction. These two assumptions are valid for large N systems. As for the
first assumption, since there are many direct interactions in such systems, the influence of an artificial
removal of one direct interaction is small. As for the second assumption, since many modes are coupled
with the three modes indirectly if N is large, influence of indirect interaction may be randomized and
the contribution to correlation between the modes may be negligible. However, we have to notice
that the second assumption requires also weakness of nonlinear couplings because if couplings are
stronger there exist indirect interactions between a triplet of modes through a small number of modes
(e.g., four-mode indirect interaction shown in Fig.5.3). Since such indirect interactions through a
small number of modes are not expected to be randomized, correlation between the three modes is
not necessarily small in strong nonlinear coupling systems.
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FIGURE 5.1 Direct interactions of the model equation (5.1) between X, and other modes. The number
of degrees of freedom is 20. The cases of (a) s ~ 1 (b) 2 and (¢} 18 are shown, where the strength of
the nonlinear couplings s is defined by the average number of direct interactions between an arbitrary
pair of modes. We choose the coefficients Cyjx so that the number of direct interactions between a

pair of modes may not exceed [s] + 1 and that the system {X;} may be homogeneous with respect to
i
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Figurk 5.2 Auto-correlation function. Thick lines denote predictions by the DIA-RRE equations,
and thin lines are results by direct numerical integration of the model equation. Results for various
combinations of number N of degrees of freedom and strength s of nonlinear couplings are shown.

As N increases or s decreases, the DIA-RRE equations give better results,
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X; X; X, X, X; X,
FIGURE 5.3 Four-mode indirect interactions between X;, X; and X through a mode X..

In order to make a quantitative consideration, we introduce a parameter A by

]x dr ‘an.{’-"} = vnx5{7}|
A=ZL 5
>/‘; dT il‘:gh\('f]

; (5.7)

which denotes a deviation from direct numerical simulation of prediction by the DIA-RRE equations,
that is, small A implies the validness of the DIA-RRE equations. Numerical results of A evaluated
for various strength s (€« N) of nonlinear couplings are plotted in Figs.5.4(a) for N = 10? and
(b) N = 10*. These figures are qualitatively consistent with the above argument, namely, the
deviation A of prediction by the DIA-RRE equations is small for larger N and smaller 5. As shown
in Fig.5.4(c), A may be a function of s/N'/2. This is understandable by a simple discussion as
follows. The simplest indirect interactions between a triplet of modes are four-mode interactions
shown in Fig.5.3. We assume that if there exists such a four-mode indirect interaction, which is never
randomized in contrast with many-mode indirect interactions, the three modes have a correlation,
and the independency assumption (DIA assumption 2) is violated. The probability p of the existence
of a four-mode indirect interaction is evaluated as

(5.8)

under the condition,
l< N. (5.9)

Thus, we expect that if p is much less than unity then 4 is also small. This may be a reason why A
is a function of s/N'/2.

5.4 RRE and NNA

As shown in §2.4.4, when we apply RRE to the model equation (5.1), we obtain the same set of
closure equations (the DIA-RRE equations) as those by DIA. It has also been shown that DIA is
valid for systems with weak nonlinear couplings and a large nmunber of degrees of freedom even if the
Reynolds number of the system is large. These imply that the DIA-RRE equations can be valid for
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FIgurE 5.4 Deviation of the prediction of the auto-correlation funetion by the DIA-RRE equations
from the results by the direct integration of the model equation for the number of degrees of freedom
(a) N = 100 (closed circles) and (b) N = 1000 (open circles). Parameter A is defined by (5.7) and s
is the strength of nonlinear couplings. In (c), s is normalized by N1/2,
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large Reynolds-number systems. However, it seems strange that the DIA-RRE equations give good
approximation for such large Reynolds-number systems because RRE is obviously an approximation
for small Reynolds-number systems. In this section, we resolve this inconsistency problem from the
viewpoint of the joint-Gaussianity of the nonlinear terms.

5.4.1 Normal nonlinear term approximation

[1] Assumptions

Let us consider an approximation under which the nonlinear terms,

Ni(t) =35 Cije X;(t) Xi(t) (6.10)
7k

of the model equation (5.1) are replaced by joint-Gaussian random variables without covariance. In
the following, we call it the normal nonlinear term approximation (NNA). First, we decompose X;(t)
into

Xi(0) = X"+ xM ). (5.11)
where X Eﬂ] is governed by (5.1) with the nonlinear terms N; replaced by random variables f; as

d
3 X0 = £i() - v X00) + Fi(e), (5.12)
and X,-m denotes the deviation originating from the replacement. We define t; as the time when we
start this decomposition, i.e.,

xMag =0, (5.13)

In the framework of NNA, we impose the following three assumptions:

NNA assumption 1 Effective forcing terms {fili = 1.2,-.-, N} are a set of independent random
variables with Gaussian distribution.

NNA assumption 2 Amplitude-:)[)(l-:”{tj [Gﬂ}[tlt’]] is much smaller than that anfm{t} [GEﬂJ{E;L’}I},
as long as t — #y (¢t — t') is within the order of the time scale of the auto-correlation function of
X

NNA assumption 3 Functions Xf“:' and G“Eﬂ} are statistically independent of each other.

Here, Gl (#]#) and G)(¢]t') are defined by (5.16) and (5.20) below. Then, by subtracting (5.12)
from (5.1), we obtain the governing equation for le as
d

7 X0 =% Cu X7 X0 @ - £ - v X (®) (5.14)
J k

under NNA assumption 2.



[2] Response function

The response functions G;,(t|t') and Ggg}[tlt’ ) are respectively defined by

.10
Gt =
I-ﬂ-{ I ) :SXﬂl:t’}
and ©
¢ty = 2219

sxiV)’

and are governed by

2 Ganltit) = T X 20 X;(0) Gunltlt) — v Ginltlt) (6> ¥)
i k

and 5
5 Gin () = —vG(HE) (> 7)

with initial conditions
Gin(tlt) = G (tt) = Gin .
Then, the governing equation for GE,II}(ﬂt’], defined by

Gin(tlt) = G (#E) + GR) (1Y),
is obtained from (5.17) and (5.18) as

il G“]{tit’] > Z 2C; XV (1) GRlt) — v G (1Y)
J

where we have assumed that |Gm| < |G{mf (NNA assumption 2).

By employing Gifg}{ﬂt’j as the Green function, we obtain formal solutions,
t
=YY% Z fm A" Case Gl (#)t") X0 (") X0 (2
a b
t
=% [ at'eQam st
a Jh

from (5.13), (5.14), (5.18) and (5.19), and
GOty = 253 f dt" 2 Case G (tlt") XO(¢") GO (¢"12)

from (5.18)—(5.21).
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(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)
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[3]1 NNA for correlation functions

The governing equation for the two-time two-mode correlation function Vi, (t,1') = X(t) X, (#) is
obtained from (5.1) as

-Ei+1x
a

By substituting the decomposition (5.11) into the nonlinear term of this equation, we obtain under
NNA assumption 2 that

oS Cipr X;(8) Xi(t) Xu(t) = ZZ Cije X0 (8) X (1) XV (#1)
o -

V) =YY Cou X, X X[E) (£ 1), (5.24)

I -

+ Z Z 20 XV () X () xO(2)

¥ Z S G X0 xO (1) xV(2) . (5.25)
ik

The first term of (5.25) vanishes because the solution X I.;u} is expressed, from (5.12), as

xO) = [ “ar exp[-v (t—t) ] [£ilt) + B(t) ], (5.26)

and because {f;} and {F;} are Gaussian. Note that F; can be included into f; in general, and that
the amplitude of F; is much smaller than that of f; for high Reynolds-number systems. On the other
hand, the second term on the right-hand side of (5.25) is evaluated as

(Second term on r.h.s. of (5.25))
[/
=2y ¥ >3y f dt" Case Cizi GO (t1em) X (8) xO () X (27 xO ()
i k a b e *H

233X f,t de" Cije Gg (21t") X7 (8) Xa” (') fa(t”)

i k = 0
=9 ZEZZZ ft dt" C.y, Cijk Giu}(ﬂt"]‘ X'fﬂ}“] X{ﬂ}{t"] beﬂ}“u] X,_Eu}l[i":]
=3 ZEZZZ f dt" Cupe Cige GO (2]t")

[ X{m{t} XWIU:} Xﬁu}{f"} Xéﬂ}{tﬂ}

X700 X0 ) XD () X (@)

X‘fm{t] X[n}{.!"]l Xfﬂ]'“:} X:U}{t#}

i e s
=& % Z/;u dt" Cinj Cijk Gk (t]t") Vji(t, t") Von(min{t', ¢}, max{¢', t"}) . (5.27)
i k

Here, we have used condition (5.4) of absence of self-interaction. In a similar manner, we can rewrite
the third term as

lf
(Third term on r.h.s. of (5.25)) = 2 ZZ /;“ dt” Chjk Ciji Gralt'|t") V}jft__t"] Vi (t, ") .
k

2
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(5.28)

Thus, we rewrite the three-mode correlation function on the right-hand side of (5.25) in terms of the
two-mode correlation and the response functions, and obtain, from (5.27) and (5.28), that

i
[ _éE * U] Hﬂ-{t'l ti]
L e
=4 Z Zf d‘t" Gkﬂj Gijk Gkk”lf"} L’}'J(ﬂ, ﬂ"] le:max{:‘.', t"}, min{t*, t”}}
T

J

b R
+2 Z; j;] dt” Cujk Cijk Grn(t'|t") Vij(t,t") Vi (2, 1") . (5.29)
j

Similarly, the evolution equation for the one-time correlation function,

[% i 2”] Via(t,8) =3 Cij X;(2) Xi(8) Xn(0) + Fi()) Xut) + (i & n) (5.30)
ik

15 rewritten under NN A as

d ¢ -
[ﬁ +EV] Vinlt, t) = 4 ZZL dt’ Cinj Ciji Gre(t]t') Vij(t,t') Van(t, t)
Tk

t —— ———
+ 2 ZZ '/; dt’ Chjk Cijk Gun(t]t") V}j{f, ") Vir(t, 1)
ik 0
y 3
-+ Eﬁ;n + {"-1"‘? ﬂ}. (:Lalj
[4] NNA for responsc function

The ensemble average of the response function is governed by

2 Callt) = 35" 2Cit Xy10) CunlllF) — v ConlIE) (5.32)
k

]

the nonlinear term of which is rewritten by substituting the decompositions (5.11) and (5.20) as

2 Cur X0 Cen@) =2 T3 Ciit XV (8 ¢ e1)
ik ik

+2 Y3 Cur XMt G (et
ik

+2)°)° Cin Xﬁm{ﬂ Gltle), (5.33)
J k

where we have neglected the higher order term ¥, Cyjx X\ G, (NNA assumption 2). Then, by

n

using the solutions (5.26) and (5.22) of X" and X", it is shown that both the first and the second
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terms of (5.33) vanish under NNA assumptions 1 and 3. The third term is evaluated, from (5.23), as

(Third term on r.h.s. of (5.33))
=4 ZZZZE f dt” thk Cabe ij'[ Gfm itf”} Xm]{f-'] Gm]{ﬂ”jf

=4 Z g j; dt" Cijk Ckjn Xj-m{t} X;::m (") Gm]{tit” (0) ()
7

t .
5> ; j; dt” Cijie Cinj Vii(ts ") Cealllt") Gom(E1E) . (5.34)
J

Hence, we obtain

a — Tl " il
[ﬁ + P] Ga(tlt) =45 % j; dt” Ciji Cinj Vii(t,t") Gra(t]t") Grnlt'|t)) . (5.35)
ik

Equations (5.29), (5.31) and (5.35) constitute a closed set of equations for the two-mode correlation
and the response functions. Note that this closure equations are identical to the DIA-RRE equations
(2.63), (2.64) and (2.67), which are equivalent to (2.26), (2.28) and (2.32).

5.4.2 Similarity between RRE and NNA

It can be seen that the formulation of NNA in the preceding subsection is quite similar to that of RRE
in §2.4. In Table 5.1, similarities of RRE and NNA are summarized. Only a mathematical difference
is the effective random forcing term f; appearing in the evolution equations for X }m and X f”, and
then in the formal solution of X;m (see equations (5.12)(5.14)(5.22)). Since the equation for X;-[ﬂ]
is only used to justify the Gaussianity of the distribution function of X" by (5.26), the existence
of f; in the equation does not affect the closure formulation at all. Furthermore, the contribution
from f; in the equation and the formal solution of Xi-”} vanishes by taking an ensemble average (see
a paragraph below (5.27), for example).

The RRE described in §2.4 is a Reynolds-number expansion, in which the nonlinear term is
treated as a perturbation. On the other hand, in the framework of NNA, the nonlinear term is
never dealt with as a perturbation. A reason why, in spite of this great difference, their formulations
are mathematically very similar may be due to the fact that the equations for Xi-[m are used only
implicitly. In concluding remarks in this chapter, we shall discuss this issue in somewhat detail.

Anyway, since the formulations of RRE and NNA are quite similar from a mathematical point of

view, we suggest that RRE should be regarded as NNA. Otherwise, we cannot understand why RRE
is applicable to systems at large Reynolds numbers.

5.4.3 Joint-Gaussianity of the nonlinear terms

If the nonlinear couplings are weak and the number of degree of freedom is large, then the nonlinear
term which consists of a sum of random variables may obey a Gaussian distribution according to the
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RRE NNA ]l difference

Equation for X:-"UJ (2.41) (5.12) effective forcing term f;
XE]‘] (2.43) | (5.14) | effective forcing term f;
G (2.42) | (5.18)
Gl (2.44) | (5.21)
Formal solution of XE” (2.47) (5.22) term originating from f;
M (2.48) | (5.23)
Closure equation for Via(t,t') | (2.63) | (5.29)
Vin(t, t) (2.64) (5.31)
Gin(tlt') | (2.67) | (5.35)

TABLE 5.1 Similarity between RRE and NNA.
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FIGURE 5.6 (a) Skewness factor £ and (b) flatness factor @ of the nonlinear terms A of model
equation (5.1). The horizontal axis denotes the strength of nonlinear couplings. Open circles for N
(the number of degree of freedom) = 100, solid circles for N = 1000. £ = 0 and ¢ = 3 correspond to
the Gaussian distribution.
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FIGURE 5.7 Same as Fig.5.6. The strength s of nonlinear couplings is normalized by the number of
degrees of freedom.

central limit theorem. Indeed, Fig.5.5 supports this conjecture that the probability density function
of the nonlinear term is nearly Gaussian for small 5 or large N. For quantitative estimations of
Gaussianity, we define the skewness factor X of the nonlinear term by

3
R (5.36)

)"

which vanishes for a Gaussian distribution, and the flatness factor @ hy

N

2 L]
(*?)

which is equal to three for a Gaussian. These factors evaluated numerically are plotted in Fig.5.6.

These figures suggest that as the number of degrees of freedom increases or the nonlinear couplings
get weaker, the probability density tends to a Gaussian distribution.

(5.37)

The parameters s and /N examined in Fig.5.6 are the same as in Fig.5.2. It is likely that the
deviation of the distribution function of the nonlinear term from the Gaussian corresponds to the
deviation of prediction of correlation function by the DIA-RRE(-NNA) equations. However, we should
not jump to such a conclusion. We replot the skewness and the flatness factors of A against the
strength of nonlinear couplings divided by the number of degrees of freedom in Fig.5.7. This figure
tells us that the deviation of the distribution function of A; from the Gaussian is a function of s/N
rather than s/N1/2. Recall that A, which denotes the deviation of the prediction of the correlation
function by the DIA-RRE(-NNA) equations, is a function of s/N/? (see Fig.5.4(c)). This scaling s/N
is explained as follows. The central limit theorem, due to which the Gaussianity of the distribution



131

function of A is expected, requires that the summands of the nonlinear term (5.10) are independent
of each other. We assume that the dependency between two terms,

Cigiky Xy Xi,  and  Cijpp, Xy Xy

is produced by direct interactions between Xj; , Xy, X, and Xj,. The probability p, that there
exists one of direct interactions shown in Fig.5.8(a) between them may be evaluated as

0 (s <1).

P = -
1 4(.-3N 1) (1<)

(5.38)

for a system with a large number of degrees of freedom. Similarly, the probability ps that there are
two direct interactions between them (Fig.5.8(b)) is

(0 (s < 1),
d(s = 1)2
— -{—SNE—] (1<s<2), (5.39)
h 2(3—1;}33—4] (2<s)

for N > 1. It has been checked that the probability of the existence of the direct interactions evaluated
by the use of the coefficients C};; adopted in the numerical calculations are well approximated by
(5.38) and (5.39) for N = 10? and 10? (figures are omitted). Furthermore, the probabilities of the
existence of three and four direct interactions between them are p; = O ((s/N)?) and py = O ((s/N)*)
respectively, which are much smaller than p; for large N. If p; (i = 1,2,3,4) is much smaller than
unity, then the distribution function of the nonlinear term A may well approximated by a Gaussian.
This is the reason why the skewness and flatness factors of the distribution function are functions of
s/N.

The condition, s < N, that probability density function of A is approximated by a Gaussian is
much weaker than validity condition, s € N2 of the DIA-RRE(-NNA) equations. This is reasonable
because NNA assumption 1 requires that the joint-probability distribution function of the set A is
a joint-Gaussian with zero covariance. In other words, the nonlinear terms N; and NV (i # i') must
be statistically independent of each other. By estimating the correlation of nonlinear terms, we may
explain why the DIA-RRE(-NNA) equations give good approximations when s < N2 (see Ref. [91]).

5.5 Concluding remarks

From a viewpoint of the strength of nonlinear couplings we have considered two problems, the validity
of DIA for stronger nonlinear coupling systems, and an alternative explanation of RRE.

First, we have introduced the strength s of nonlinear couplings, which represents the average
number of direct interactions between a pair of modes, and further investigated the validity conditions
of DIA, the largeness of the number N of degrees of freedom and the weakness of nonlinear couplings.
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FIGURE 5.8 Direct interactions between four modes X;,, Xg,, Xj, and Xi,. (a) One and (b) two
direct interactions.

By a simple argument based on a relationship between the existence of four-mode indirect interactions
between a triplet of modes and a correlation between them, it is shown that DIA is valid for s < N1/2,
This is consistent with deviations, shown in Fig.5.4, of the auto-correlation function by the DIA-RRE
equations from the results of direct numerical simulation of the model equation.

Next, we have considered the problem why the DIA-RRE equations, which are derived for small
Reynolds-number systems in the framework of RRE, are applicable to large Reynolds-number systems
if the condition s < N2 is satisfied. The joint-Gaussianity of the set of nonlinear terms is a key.
If the nonlinear couplings between the modes X; are weak, the nonlinear term N is regarded as a
sum of independent random variables. Then, according to the central limit theorem, the distribution
function of the nonlinear term is nearly Gaussian if N is large. Furthermore, in such systems, a
correlation between the nonlinear terms is also expected to be small. It is emphasized that the
formulation of RRE is almost identical to that of NNA in which the nonlinear terms are replaced
by independent Gaussian random variables. This is a reason why the equations by RRE are valid
for large Reynolds-number systems with weak nonlinear couplings and a large number of degrees of
freedom.

Let us further consider a relationship between RRE and NNA. ! The evolution equations of the
zeroth order variable Xfm are expressed in RRE as

% X% = —ox"(t) + Fi(t)  (RRE, see (2.41)) ,

where the nonlinear term is neglected and the external force should exist to prevent the system from

"Please sift four letters in the alphabetical order.
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an exponential decay by the viscous term. On the other hand, in NNA, it is

% X0 = fi() v XV()  (NNA, see (5.12)),

where the nonlinear term is replaced by an effective random forcing and the external forcing is included
into f;. We can see that, in both approximations, the evolution equation takes a form like

(time derivative term) = (random forcing term) — (dissipative term) . {5.40)

The origin of random forcing is, however, completely different. Let us consider a variable z defined
by

R N
i i+ [, (5.41)
7R &
where {x;]i = 1,2,---, N} is a set of random variables with finite variances and vanishing covariances,

and f is a Gaussian random variable. There are two parameters R and N similarly to the system we
have considered. Probability density function of the variable z is well approximated to be Gaussian
distribution in the cases that T is small or N is large. The former corresponds to RRE, and the
latter to NNA. In statistical theories for strong nonlinear systems, e.g., turbulence, it is meaningless
to treat the nonlinear term as a perturbation as done in RRE. Hence, in this sense, RRE should be
explained as NNA, when we apply it to strong nonlinearity systems.

Finally, we mention a relation between NNA and DIA. As shown in this chapter, these two
approximations have the same validity conditions, i.e., weakness of nonlinear couplings and largeness
of degrees of freedom, and they yield an identical set of equations for the two-mode correlation and
the response function of the model system (5.1). However, this does not necessarily imply that DIA
and NNA are identical as approximation. First of all, these two are based on different working
assumptions described in §2.3 for DIA, and in §5.4 for NNA. Furthermore, in general, DIA and NNA
lead different closure equations for some systems, for example the model system (5.1} without the
condition (5.4) of the absence of self-interaction. Details of this point will be seen elsewhere in the
near future.



Chapter 6

Concluding Remarks

6.1 Summary

In Chapter 2, we introduced a model equation the mathematical structures of which were similar
to those of the Navier-Stokes equation, namely, quadratic nonlinear term with weak nonlinear con-
plings and linear dissipative term. We formulated the direct-interaction approximation (DIA) and
the Reynolds-number reversed expansion (RRE) for this model system. By comparing numerically
solutions to the resultant closure equations by these two approximations and to the model equation
itself, we obtained the following results.

1. The DIA is applicable to systems with weak nonlinear couplings and a large number of degrees
of freedom.

2. The two approximations, DIA and RRE, should be distinguished, although they yield an iden-
tical set of equations for the two-mode correlation and the response functions of this model
system. They are based upon completely different ideas and working assumptions, and there-
fore have different validity conditions and applicability.

In Chapter 3, we applied DIA to the Lagrangian velocity correlation and the Lagrangian velocity
response functions of incompressible fluid turbulence which was assumed to be governed by the
Navier-Stokes equation. Then, we obtained the following results.

1. The resultant closure equations for the correlation and the response functions are identical to
those by the Lagrangian renormalized approximation [36], which is a kind of RRE.

2. A solution to the closure equations derived by the Lagrangian DIA is consistent with the k~3/%
law of the energy spectrum E(k) predicted by Kolmogorov’s phenomenology [1].
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3. The universal form of the energy spectrum, which is common both in stationary and in freely
decaying cases, numerically evaluated by the closure equations is in an excellent agreement with
measurements (see Fig.1.1).

4. The skewness factor of the velocity derivative, which is a third order moment, is also consistent
with experimental data [53].

5. By evaluating the energy transfer and the Aux functions in the wavenumber space, it is shown
that although strong nonlocal interactions are obscrved, the energy transfer takes place locally
in the wavenumber space. This is consistent with the results by direct numerical simulations [4].

6. Wavenumber dependence of eddy viscosity, which is a basis of a turbulent model so-called the
large-eddy simulation, was determined.

7. In the framework of the Lagrangian DIA, the Birkhoff [38] invariance of large-scale structures
of turbulence is valid, but the Loitsiansky [39] is not.

In Chapter 4, we formulated the Lagrangian DIA for a passive scalar field advected by homogeneous
turbulence. By examining analytically and numerically solutions to the resultant closure equations
by the Lagrangian DIA, we obtained the following results.

1. The solutions to the closure equations are completely consistent with the well-known phe-
nomenologies on the passive scalar spectrum by Obukhov [64] and Corrsin [65] in the inertial-
advective range, Batchelor, Howells & Townsend [66] in the inertial-diffusive range, and Batch-
elor [67] in the viscous-advective range.

2. The functional forms of the passive scalar spectrum over the entire universal range are deter-
mined numerically for several moderate, and two extreme Schmidt numbers.

3. Schmidt number dependence of mixed-derivative skewness factor of the passive scalar and the
velocity fields is evaluated, which is also consistent with a direct numerical simulation by Kerr
[68].

In Chapter 5, we extended the model equation introduced in Chapter 2. By the use of this model
equation, we further investigated validity conditions of DIA and relationships between DIA and RRE
from a viewpoint of strength of nonlinear couplings. Then, we obtained the following results.

1. The DIA is valid if the average number of the direct interactions between a pair of modes is
much smaller than the square root of the number of degrees of freedom.

2, The RRE may be regarded as an approximation, called the normal nonlinear term approxima-
tion (NNA), of a replacement of the set of nonlinear terms by joint-Gaussian random variables
without covariance.

3. The NNA has the same validity condition as DIA, i.e., the weakness of nonlinear couplings
and the largeness of the number of degrees of freedom. This result together with the above 2.
is consistent with the fact that DIA and RRE-NNA yield identical closure equations for this
model system.
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6.2 Conclusion

The DIA is an appropriate approximation for strong nonlinear systems. This approximation is valid
if the number of degrees of freedom is large enough, and if the strength of nonlinear couplings is weak.
Fortunately, these two conditions are well satisfied by high Reynolds-number homogeneous turbulence
of incompressible Auids governed by the Navier-Stokes equation. Actually, the applications of DIA
to the Navier-Stokes turbulence by the use of Lagrangian variables are extremely successful.

6.3 Future works

[1] Check of Lagrangian DIA assumptions

The DIA is formulated under two assumptions deseribed in §2.3.1. Validity conditions of them have
been checked by the use of the model equation (2.1) in detail in Chapters 2 and 5. However, recall that
we have to impose an additional assumption of statistical independency between the position function
and the other Eulerian quantities in the formulation of the Lagrangian DIA for actual turbulent fields
(see §§3.3.2 and 4.3.2). This third assumption is introduced only for simplification of the formulation,
and there seems to be no physical or mathematical reason to justify it.

On the other hand, as shown in Chapter 4, quantitative estimations by the Lagrangian DIA of
the statistical properties of passive scalar in the advective range are not necessarily satisfiable. The
universal constants C; and C; in (4.8) and (4.10) of the passive scalar spectrum in the inertial-
and viscous-advective ranges are evaluated as about a half of experimental data. In the advective
range, the molecular diffusion is ineffective comparing with the turbulent advection. Note that the
governing equation (3.21) for the passive scalar with neglecting the molecular diffusivity, x — 0, is
exactly identical to the evolution equation (4.17) for the position function. Hence, the failure of the
estimation of the universal constants in the advective range may be caused by the third assumption
of the statistical independency between the position function and the other quantities including the
passive scalar field.

We have not yet checked the validity of not only the third assumption but also the first and the
second ones for the Navier-Stokes system. A systematic check of the Lagrangian DIA assumptions
is one of the most important future works because such a study may lead to an improvement of the
approximation. However, since there are many kinds of triplets of wavenumbers in contrast with the
case of the model equation, such a systematic consideration is not easy to achieve, even though it
may be relatively easy to construct the non-direct-interaction feld by direct numerical simulations
by the use of a spectral method.
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[2] Eulerian and Lagrangian formulations

As shown in Chapters 3 and 4, the applications of DIA to the Lagrangian correlation and the La-
grangian response functions are quite successful. It is well known, however, that the application of
DIA to the Eulerian correlation and the Eulerian response functions meets with failure that it predicts
the energy spectrum to be proportional to the —3/2 power of the wavenumber in the inertial range.

This misprediction of behavior of the energy spectrum by the Eulerian DIA is sometimes under-
stood from the viewpoint of time scale of correlation functions. Time scale of the Eulerian velocity
correlation function in the inertial range may be estimated as 7z = (uy,k) ™', which is the sweep-
ing time scale of eddies of the length scale k~' by large-scale motions with characteristic velocity
tm, while that of the Lagrangian correlation function may be 7, = k~%3¢"1/3 which is the eddy
turnover time at scale k~'. The energy equation by DIA gives € ~ k*E(k)%r (see (3.84) with (3.74)
in the present formulation). Then, we obtain the £~5% spectrum by putting 7 = 7, but k=32 by
T = 1s. However, this is only an explanation of the reason why the Eulerian DIA predicts k=%
energy spectrum in the inertial range, and is not a reason why Eulerian formulation is inappropriate.
In addition, McComb et al. [45] numerically showed that time scale of Eulerian velocity correlation
function evaluated by the Eulerian DIA equations was the inertial time scale k=%/ 3¢=1/3 rather than
the sweeping time (umk)™!.

Kraichnan [37,92] introduced the notion of random Galilean invariance in order to explain this
Eulerian-Lagrangian problem. Although the Navier-Stokes equation and closure equations derived by
Lagrangian versions of DIA, e.g., the LRA-DIA equations, satisfy this invariance, the Eulerian DIA
equations do not. McComb et al. [45] showed, however, that the random Galilean invariance was too
strong, and it was inconsistent with ergodicity. Moreover, even though the Eulerian DIA equations
are not random Galilean invariant, they are Galilean invariant in the usual sense. Thus, it is not
easy to understand why the Eulerian formulation is inappropriate from the viewpoint of Galilean
invariance.

The Lagrangian formulation seems to be just pragmatic at the present. We should understand why
Lagrangian formulations are more appropriate than Eulerian ones before developing the Lagrangian
closures further.

[3] Higher-order moments and intermittency

Since §1.2, we have focused only on lower-order moments of the probability density function such
as mean velocity or the two-point velocity correlation funetion. However, we have to confess that
the main result that we obtain in this thesis is just to bridge the Navier-Stokes equation and the
excellent phenomenology by Kolmogorov [1] in fifty years ago, which properly predicts the behavior
of the second order moment of velocity in the inertial range by a simple argument.

Kolmogorov's phenomenology is not applicable to higher-order moments. In his theory, statistical
properties of inertial-scale turbulence are characterized only by the mean dissipation rate of energy
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per unit mass. However, it is pointed out by Landau (93] that strong energy dissipation takes place
in small regions, and this (spatial) intermittency of turbulence (see Chapter 8 of Ref. [21]) is widely
supported by measurements [94, 95] and direct numerical simulations [96]. This intermittency of
turbulence implies that large deviations from the average occurs with relatively large probability, in
other words, the probability density function of the energy dissipation rate has long tails. Hence, the
Kolmogorov theory, which can be regarded as a kind of mean field theory, may not be able to predict
appropriately the behavior of higher-order moments, which is more significantly affected by the long
tails of the distribution function. Indeed, measurements by Anselmet et al. [95] exhibit deviations
of exponents of the higher-order velocity structure functions predicted by a naive extension of the
Kolmogorov theory.

Then, in order to evaluate the behavior of higher-order moments, we have to take spatial distribu-
tion of the energy dissipation rate into account. Kolmogorov [97] introduced locally averaged energy
dissipation rate ¢, in a sphere of radius r, and considering the effect of intermittency to higher-order
moments by assuming that the probability density of €, /e, is 2 log-normal distribution. However, it
has been pointed out [98-100] that this phenomenological theory has some problems. Since this log-
normal theory, a numerous number of theories, e.g.. an extension of the log-normal theory from the
viewpoint of the central limit theorem [101], f-models [102,103] based upon the cascade picture, mul-
tifractal models based on the scale invariance of turbulence [104 106), the log-Poisson model [107,108]
constructed under a reasonable assumnption that the most singular structure is filament, ete., have
been proposed. However, all of these are based upon ad hoc assumptions, and except the log-Poisson
model, they have one or more adjustable parameters.

On the other hand, although there are a few analytical theories, e.g., the mapping closure approx-
imation [109,110], to deal with the higher-order moments or the distribution function itself, they are
controversial. Incidentally, in the present formulation of DIA, we do not treat effects of intermittency
at all.

Both phenomenology and analytical theory based on the Navier-Stokes equation on the higher-
order moments or the probability density function are not conclusive up to the present. This problem
is one of the most interesting and challenging problems in the statistical theory of isotropic turbulence,
—— Finally, we, theorists of turbulence, must not forget that our theories cannot predict even the
mean velocity profile of turbulence of an incompressible fluid in a pipe.
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