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It has been phenomenologically shown and widely supported by experiments that
statistical properties in small scales of turbulence of incompressible fluids exhibit some
universality irrespective of the kinds of fluids, boundary condition and the Reynolds
number. On the other hand, this system is believed to be governed by the Navier-
Stokes equations which consist of the equations of motion and of continuity. However,
relationships between these equations and phenomenologies on statistical properties of
small-scale motions have not been clearly understood primarily because such a statistical
theory is hard to construct due to the nonlinearity of the basic equations. Since the
nonlinearity causes an infinite hierarchy of moments, we never obtain a closed set of
equations for a finite number of statistical quantities without any assumptions. This is
the so-called closure problem in the statistical theory of turbulence. We adopt the direct-
interaction approximation (DIA), which was originally proposed by Kraichnan (1959), to
attack and solve the closure problem.

The DIA is an excellent approximation in the sense that the nonlinearity is never
neglected and no adjustable parameter is introduced in the formulation. Unfortunately,
however, it is known that a closed set of equations obtained by a naive application
of DIA (Kraichnan 1959) to the Navier-Stokes system is inconsistent with experimental
observation. Especially, it is E(k) k—3/2 that the closure equations predict as the energy
spectrum E(k) in the inertial range, where the k~5/3 power law is observed by many
experiments. This inconsistency implies incompleteness of the application of DIA to the
Navier-Stokes system. Although Kraichnan (1965) improved the application method of
DIA and succeeded in deriving the k=53 power law, the formulations are too complicated
to be justified. Moreover, in spite of its long history and important role in the field of
the statistical theory of turbulence, the essence of DIA may have been misunderstood
by many researchers. This is due to the fact that validity conditions and applicability of
DIA were not clear.

We introduce a model equation, consisting of quadratic nonlinear and linear dissi-
pative terms, which is simpler than the Navier-Stokes equation but still possesses its
important mathematical structures. Then, it is shown that DIA is valid for such a sys-
tem that has weak nonlinear couplings and large numbers of degrees of freedom even if
nonlinearity of the system is strong (i.e., the nonlinear terms are larger than the linear
ones in magnitude). Furthermore, we clarify similarities and differences between DIA and
a Reynolds-number expansion so-called RRE (Reynolds-number reversed expansion). For
some known systems, including the Navier-Stokes system and the present model, these
two approximations yield an identical set of equations for the correlation and the response
functions. Owing to this fact, these two approximations have sometimes been identified
erroneously. It must be stressed, however, that DIA and RRE are based upon completely
different ideas and working assumptions. Hence, we should distinguish these two theories.
This is reasonable because the validity conditions of DIA depend on the strength of non-
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linear couplings and the number of degrees of freedom, but not on the Reynolds number,
while the validity of RRE depends crucially on magnitude of the Reynolds number.

We further investigate the validity condition of DIA and the relationships between
DIA and RRE from a viewpoint of the strength of nonlinear couplings by extending the
model equation. It is then shown that DIA is valid for systems such that the average
number of direct interactions between a pair of modes is much smaller than the square root
of the number of degrees of freedom, and that RRE may be regarded as an approximation
under which the nonlinear terms are replaced by a joint-Gaussian random variables. The
last approximation, called normal nonlinear term approximation, has the same validity
conditions as DIA.

Small-scale motions of turbulence may be statistically homogeneous, and the num-
ber of degrees of freedom of this system increases in proportion to the 9/4 power of the
Reynolds number. Hence, small-scale motions of turbulent fields at high Reynolds num-
ber satisfy the two validity conditions of DIA, i.e., weakness of nonlinear couplings and
largeness of the degrees of freedom. This implies that DIA is applicable to this system.
As mentioned above, however, when we apply DIA to the Eulerian velocity correlation
function and the Eulerian velocity response function (Kraichnan 1959), we encounter the
difficulty that the resultant closure equations are incompatible with experiments. Here,
we instead apply DIA to the Lagrangian velocity correlation function and the Lagrangian
response function with the help of the position function (Kaneda 1981), which is a map
between the Eulerian and the Lagrangian fields. The resultant equations yield not only
the well-known k~%/3 power law predicted phenomenologically by Kolmogorov (1941) of
the energy spectrum, but also the functional form in the entire universal range, which
excellently agrees with experimental data.

We next apply DIA to passive scalar fields (temperature, particle concentration,
smoke, and so on) advected by turbulence without affecting fluid motions. Then it is
systematically shown that solutions to the resultant closure equations by DIA for the
Lagrangian correlation and the response functions for the vélocity and the passive scalar
fields are completely consistent with the phenomenologies on the scalar spectrum by
Obukhov (1949) and Corrsin (1951) in the inertial-advective range, Batchelor, Howells
& Townsend (1959) in the inertial-diffusive range, and Batchelor (1959) in the viscous-
advective range.
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